47 research outputs found

    Development of Distributed Research Center for analysis of regional climatic and environmental changes

    Get PDF
    We present an approach and first results of a collaborative project being carried out by a joint team of researchers from the Institute of Monitoring of Climatic and Ecological Systems, Russia and Earth Systems Research Center UNH, USA. Its main objective is development of a hardware and software platform prototype of a Distributed Research Center (DRC) for monitoring and projecting of regional climatic and environmental changes in the Northern extratropical areas. The DRC should provide the specialists working in climate related sciences and decision-makers with accurate and detailed climatic characteristics for the selected area and reliable and affordable tools for their in-depth statistical analysis and studies of the effects of climate change. Within the framework of the project, new approaches to cloud processing and analysis of large geospatial datasets (big geospatial data) inherent to climate change studies are developed and deployed on technical platforms of both institutions. We discuss here the state of the art in this domain, describe web based information-computational systems developed by the partners, justify the methods chosen to reach the project goal, and briefly list the results obtained so far

    Web service-based exploration of Earth Observation time-series data for analyzing environmental changes

    Get PDF
    The increasing amount of Earth observation (EO) data requires a tremendous change, in order to property handle the number of observations and storage size thereof. Due to open data strategies and the increasing size of data archives, a new market has been developed to provide analysis and application-ready data, services, and platforms. It is not only scientists and geospatial processing specialists who work with EO data; stakeholders, thematic experts, and software developers do too. There is thus a great demand for improving the discovery, access, and analysis of EO data in line with new possibilities of web-based infrastructures. With the aim of bridging the gap between users and EO data archives, various topics have been researched: 1) user requirements and their relation to web services and output formats; 2) technical requirements for the discovery and access of multi-source EO time-series data, and 3) management of EO time-series data focusing on application-ready data. Web services for EO data discovery and access, time-series data processing, and EO platforms have been reviewed and related to the requirements of users. The diversity of data providers and web services requires specific knowledge of systems and specifications. Although service specifications for the discovery of EO data exist, improvements are still necessary to meet the requirements of different user personas. For the processing of EO time-series data, various data formats and processing steps need to be handled. Still, there remains a gap between EO time-series data access and analysis tools, which needs to be addressed to simplify work with such data. Within this thesis, web services for the discovery, access, and analysis of EO time-series data have been described and evaluated based on different user requirements. Standardized web services specifications, output and data formats are proposed, introduced and described to meet the needs of the different user personas

    Virtual Research Environment for Regional Climatic Processes Analysis: Ontological Approach to Spatial Data Systematization

    Get PDF
    his paper describes a Virtual Research Environment (VRE) based on a web GIS platform ‘Climate+’, which provides an access to analytic instruments processing 19 collections of meteorological and climate data of several international organizations. This environment provides systematization of spatial data and related climate information and allows a user getting analysis results using geoinformation technologies. The ontology approach to this systematization is described, making it possible to match semantics of meteorological and climate parameters presented in different collections and used in solving various applied problems

    Pan-arctic climate and land cover trends derived from multi-variate and multi-scale analyses (1981-2012)

    Get PDF
    Arctic ecosystems have been afflicted by vast changes in recent decades. Changes in temperature, as well as precipitation, are having an impact on snow cover, vegetation productivity and coverage, vegetation seasonality, surface albedo, and permafrost dynamics. The coupled climate-vegetation change in the arctic is thought to be a positive feedback in the Earth system, which can potentially further accelerate global warming. This study focuses on the co-occurrence of temperature, precipitation, snow cover, and vegetation greenness trends between 1981 and 2012 in the pan-arctic region based on coarse resolution climate and remote sensing data, as well as ground stations. Precipitation significantly increased during summer and fall. Temperature had the strongest increase during the winter months (twice than during the summer months). The snow water equivalent had the highest trends during the transition seasons of the year. Vegetation greenness trends are characterized by a constant increase during the vegetation-growing period. High spatial resolution remote sensing data were utilized to map structural vegetation changes between 1973 and 2012 for a selected test region in Northern Siberia. An intensification of woody vegetation cover at the taiga-tundra transition area was found. The observed co-occurrence of climatic and ecosystem changes is an example of the multi-scale feedbacks in the arctic ecosystems

    User response and organisational fit for information systems in Earth observation

    Get PDF
    A group of seventy six scientists and data managers in the Australian research agency CSIRO were surveyed to establish their needs and preferences in relation to information systems for Earth observation data. After study of available alternatives, three prototype Earth observation information management systems were installed and the user response was evaluated through interview of fifteen of the group. The prototypes consisted of web-based client servers which permitted users to interrogate databases of Earth observation datasets; to search for information about sensor or satellite performance, and to retrieve data and information products. The chosen systems were CILS, the CEOS (Committee on Earth Observation Satellites) Information Location System; IDN, the CEOS International Directory Network; and JMS, NASA\u27s Information Management System of EOSDIS, the Earth Observing System Data and Information System. For this study, no special effort was taken to populate the system directories and inventories with local data holdings, and the prototypes were essentially mirror sites of operational data management systems used in other parts of the world. While some of the interviewed scientists expressed enthusiasm for web based spatial information management approaches, all indicated that improvements should be sought in the prototypes to make them more user-oriented, intuitive, and responsive. Most of the interview group were experienced remote sensing researchers who had developed their own contacts with overseas peers and data providers. Several in this category expressed the vithem, unless the scientists changed discipline, application or geographic area of interest. On the other hand, several individual research projects or organisational units of CSIRO, as a result of these trials, were considering utilising one of more of the prototypes - particularly the IMS - to address their current unfulfilled requirements for data management. The study also found that while all fifteen of the interviewees felt they could benefit in some way from electronic information retrieval and spatial data management systems of the type assessed, it seemed unlikely that the target organisation would ever assign a sufficient priority to implement any of them in a systematic manner. The biggest impediment to an organisation-wide approach to spatial data management for Earth observation was the low priority assigned to information management, because this activity was considered supporting or non-core in relation to the central objective of scientific research. Results indicated that a piecemeal, decentralised or federated approach was the only means by which systems of this type could feasibly be introduced into the operating environment of CSIRO, in the absence of a major external forcing mechanism. This observation was compared to the evolution of EOSDIS, which had demonstrated a marked change from a centralised to a federated paradigm due to user preferences similar to those observed in the CSIRO case

    Computational virtual measurement for trees

    Get PDF
    National forest inventory (NFI) is a systematic sampling method to collect forest information, including tree parameters, site conditions, and auxiliary data. The sample plot measurement is the key work in NFI. However, compared to the techniques 100 years ago, measuring methods and data-processing (modeling) approaches for NFI sample plots have been improved to a minor extent. The limit was that the newly-developed methods introduced additional validation workflows and would increase the workload in NFI. That was due to that these methods were usually developed based on species-specific and site-specific strategies. In order to overcome these obstacles, the integration of the novel measuring instruments is in urgent need, e.g., light detection and ranging (LiDAR) and the corresponding data processing methods with NFI. Given these situations, this thesis proposed a novel computational virtual measurement (CVM) method for the determination of tree parameters without the need for validation. Primarily, CVM is a physical simulation method and works as a virtual measuring instrument. CVM measures raw data, e.g., LiDAR point clouds and tree models, by the simulation of the physical mechanism of measuring instruments and natural phenomena. Based on the theory of CVM, this thesis is a systematic description of how to develop virtual measuring instruments. The first work is to introduce the CVM theory. CVM is a conceptual and general methodology, which is different from a specific measurement of tree parameters. Then, the feasibility of CVM was tested using a conceptual implementation, i.e., virtual ruler. The development of virtual ruler demonstrated the two key differences between CVM and conventional modeling methods. Firstly, the research focus of CVM is to build an appropriate physical scenario instead of finding a mathematical relationship between modeling results and true values. Secondly, the CVM outputs can approach true values, whereas the modeling results could not. Consequently, in a virtual space, tree parameters are determined by a measuring process without mathematical predictions. Accordingly, the result is free of validation and can be regarded as true values, at least in virtual spaces. With the knowledge from the virtual ruler development, two exceptional implementations are further developed. They are the virtual water displacement (VWD) method and sunlight analysis method. Both of them employ the same CVM workflow, which is firstly measured in reality and secondly measured in virtual space. The VWD aims to virtually measure the point clouds using the simulation of water displacement methods in reality. There are two stages in this method. The first stage is to apply the simulation of water displacement using massive virtual water molecules (VWMs). Some empirical regressions have to be employed in this stage, due to the limitation of computer performance. In the second stage, a single (or few) VWM (or VWMs) is developed to remove those empirical processes in VWD. Finally, VWD can function as a fully automatic method to measure point clouds.The sunlight analysis method aims to virtually measure the tree models using the simulation of solar illumination during daylight. There are also two stages in this method. The first stage is to develop sunlight analysis for a single tree. The second stage is to analyze the interference from neighboring trees. The results include default tree attributes, which can be collected in the future NFI. The successful developments of CVM, along with implementations of VWD and sunlight analysis methods, prove the initial assumptions in this thesis. It is the conversion of mathematical processing of data into virtual measurements. Accordingly, this is a different philosophy, i.e., the role of data is extended to the digital representative of trees. It opens an avenue of data processing using a more natural approach and is expected to be employed in the near future as a standard measuring instrument, such as a diameter tape, in NFI.Die Nationale Waldinventur (NFI) ist eine systematische Stichprobenmethode zur Erfassung von Waldinformationen, einschließlich Baumparameter, Standortbedingungen und Hilfsdaten. Die Messung von Stichprobenparzellen ist die Schlüsselarbeit der NFI. Im Vergleich zu den Techniken vor 100 Jahren wurden die Messmethoden und Datenverarbeitungsansätze (Modellierung) für NFI-Stichprobenparzellen jedoch in geringem Umfang verbessert. Die Grenze lag darin, dass die neu entwickelten Methoden zusätzliche Validierungsabläufe einführten und den Arbeitsaufwand in der NFI erhöhen würden. Dies war darauf zurückzuführen, dass diese Methoden in der Regel auf der Grundlage art- und standortspezifischer Strategien entwickelt wurden. Um diese Hindernisse zu überwinden, ist die Integration der neuartigen Messinstrumente dringend erforderlich, z.B. Light Detection and Ranging (LiDAR) und die entsprechenden Datenverarbeitungsmethoden mit NFI. Vor diesem Hintergrund wird in dieser Arbeit ein neuartiges rechnergestütztes virtuelles Messverfahren (CVM) zur Bestimmung von Baumparametern ohne Validierungsbedarf vorgeschlagen. CVM ist in erster Linie eine physikalische Simulationsmethode und arbeitet als virtuelles Messinstrument. CVM misst Rohdaten, z.B. LiDAR-Punktwolken und Baummodelle, durch die Simulation des physikalischen Mechanismus von Messinstrumenten und Naturphänomenen. Basierend auf der Theorie des CVM ist diese Arbeit eine systematische Beschreibung, wie virtuelle Messinstrumente entwickelt werden können. Die erste Arbeit dient der Einführung in die Theorie des CVM. CVM ist eine konzeptuelle und allgemeine Methodik, die sich von einer spezifischen Messung von Baumparametern unterscheidet. Anschliessend wird die Durchführbarkeit des CVM anhand einer konzeptuellen Implementierung, d.h. eines virtuellen Lineals, getestet. Die Entwicklung des virtuellen Lineals zeigte die beiden Hauptunterschiede zwischen CVM und konventionellen Modellierungsmethoden auf. Erstens besteht der Forschungsschwerpunkt von CVM darin, ein geeignetes physisches Szenario zu erstellen, anstatt eine mathematische Beziehung zwischen Modellierungsergebnissen und wahren Werten zu finden. Zweitens können sich die Ergebnisse des CVM den wahren Werten annähern, während die Modellierungsergebnisse dies nicht konnten. Folglich werden in einem virtuellen Raum die Baumparameter durch einen Messprozess ohne mathematische Vorhersagen bestimmt. Dementsprechend ist das Ergebnis frei von Validierung und kann, zumindest in virtuellen Räumen, als wahre Werte betrachtet werden. Mit dem Wissen aus der Entwicklung des virtuellen Lineals werden zwei aussergewöhnliche Implementierungen weiterentwickelt. Es handelt sich um die Methode der virtuellen Wasserverdrängung (VWD) und die Methode der Sonnenlichtanalyse. Beide verwenden den gleichen CVM-Workflow, der erstens in der Realität und zweitens im virtuellen Raum gemessen wird. Das VWD zielt darauf ab, die Punktwolken virtuell zu messen, wobei die Simulation von Wasserverdrängungsmethoden in der Realität verwendet wird. Diese Methode besteht aus zwei Stufen. Die erste Stufe besteht in der Anwendung der Simulation der Wasserverdrängung unter Verwendung massiver virtueller Wassermoleküle (VWMs). Aufgrund der begrenzten Computerleistung müssen in dieser Phase einige empirische Regressionen angewandt werden. In der zweiten Stufe wird ein einzelnes (oder wenige) VWM (oder VWMs) entwickelt, um diese empirischen Prozesse im VWD zu entfernen. Schließlich kann VWD als vollautomatische Methode zur Messung von Punktwolken fungieren. Die Methode der Sonnenlichtanalyse zielt darauf ab, die Baummodelle virtuell zu messen, indem die Simulation der Sonneneinstrahlung bei Tageslicht verwendet wird. Auch bei dieser Methode gibt es zwei Stufen. In der ersten Stufe wird die Sonnenlichtanalyse für einen einzelnen Baum entwickelt. Die zweite Stufe ist die Analyse der Interferenz von benachbarten Bäumen. Die Ergebnisse umfassen Standard-Baumattribute, die in der zukünftigen NFI gesammelt werden können. Die erfolgreichen Entwicklungen von CVM, zusammen mit Implementierungen von VWD- und Sonnenlichtanalysemethoden, beweisen die anfänglichen Annahmen in dieser Arbeit. Es handelt sich um die Umsetzung der mathematischen Verarbeitung von Daten in virtuelle Messungen. Dementsprechend handelt es sich um eine andere Philosophie, d.h. die Rolle der Daten wird auf die digitale Darstellung von Bäumen ausgedehnt. Sie eröffnet einen Weg der Datenverarbeitung unter Verwendung eines natürlicheren Ansatzes und wird voraussichtlich in naher Zukunft als Standard-Messinstrument, wie z.B. ein Durchmesser-Band, in der NFI eingesetzt werden
    corecore