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Abstract: Arctic ecosystems have been afflicted by vast changes in recent decades. Changes 

in temperature, as well as precipitation, are having an impact on snow cover, vegetation 

productivity and coverage, vegetation seasonality, surface albedo, and permafrost dynamics. 

The coupled climate-vegetation change in the arctic is thought to be a positive feedback in 

the Earth system, which can potentially further accelerate global warming. This study 

focuses on the co-occurrence of temperature, precipitation, snow cover, and vegetation 

greenness trends between 1981 and 2012 in the pan-arctic region based on coarse resolution 

climate and remote sensing data, as well as ground stations. Precipitation significantly 

increased during summer and fall. Temperature had the strongest increase during the winter 

months (twice than during the summer months). The snow water equivalent had the highest 

trends during the transition seasons of the year. Vegetation greenness trends are characterized 

by a constant increase during the vegetation-growing period. High spatial resolution remote 

sensing data were utilized to map structural vegetation changes between 1973 and 2012 for a 

selected test region in Northern Siberia. An intensification of woody vegetation cover at the 

taiga-tundra transition area was found. The observed co-occurrence of climatic and 

ecosystem changes is an example of the multi-scale feedbacks in the arctic ecosystems. 
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1. Introduction 

The high latitude regions of the northern hemisphere have been undergoing significant changes 

during the last few decades [1–4]. The arctic regions are highly vulnerable to modifications in the 

climate system and are influenced by changes in temperature and precipitation regimes, as well as 

snow and vegetation dynamics. Temperature conditions in the arctic regions have never been as high, 

compared to the last 300 years [1]. Predictions from climate models forecast a significant increase in 

temperature for the upcoming decades [5]. These climate trends cause modifications in permafrost soil 

temperatures, snow cover dynamics, sea ice concentration, vegetation growth, and phenological 

dynamics [6–9]. Among other factors, the increasing greenhouse gas emissions from melting 

permafrost, as well as the recruitment of woody vegetation species to the northernmost regions are 

assumed to result in positive feedback mechanisms within the global climate system [10–17]. 

The arctic regions are highly vulnerable to climate modifications, therefore the monitoring of land 

cover changes and triggers are of major importance. Changes in snow cover and sea ice extent have 

been found to have a critical impact on the environmental and ecological dynamics of the 

Arctic [6,18,19]. In addition to an increase in phenological activity, woody cover vegetation types, 

which are representing not only trees but also shrubs, have been identified to be expending in the 

tundra regions [20–22]. Recent publications have emphasized the increase of shrub cover in the pan-arctic 

area [21–24]. These changes in vegetation dynamics and structure are indicators for present 

modifications in the arctic climate system [23,25–27], leading to an alternation of the energy budget, 

the storage capacity, as well as the permafrost dynamics on regional and global scales. The transition 

zone between the taiga and the tundra has an extent of nearly 13,000 km around the northern 

hemisphere and is of high importance in climate change studies and climate modeling [28,29]. The 

identification and interpretation of changes in structure, composition and dynamics of different arctic 

vegetation types, particularly the arctic tree line region, have been highly accentuated in scientific studies 

during the last decade [1,30,31]. The potential for using different earth observation data to monitor the 

vegetation changes at the taiga-tundra transition zone in northern Siberia has been shown by [28,32,33].  

A consistent and operational monitoring of climate variables within the arctic regions is of high 

importance. Because information from in situ measurements is rare in the arctic regions, remote 

sensing investigation is a useful tool to observe and monitor various essential climate parameters. Long 

time series on coarse spatial resolution as well as high-resolution remote sensing data for climate 

research are of high importance. Hence, synergetic multi-scale methodologies for the identification and 

the analysis of climate parameters derived by Earth observation techniques are required. Various 

methods for the extraction of trends from time series data are available. A common approach is to 

calculate linear regressions on time series at different temporal resolutions. The majority of recent 

trend analyses are based on seasonal and yearly time steps. Trend analyses using monthly resolution 

time steps, which emphasize the variability within the yearly cycle, are underrepresented in climate 



Remote Sens. 2014, 6 2298 

 

 

change related studies. This paper focuses on the trend analysis from different climate and ecosystem 

parameters for monthly time series.  

However, the changes and trend patterns are not homogeneous over the pan-arctic region. The aim 

of this paper is to show the variability of findings in temporal and spatial scale for the last 30 years 

using coarse resolution remote sensing data and additional products. Furthermore, high-resolution 

Earth observation data, from Landsat and RapidEye, are utilized to measure woody vegetation cover 

and vegetation structures for a 40-year time span for a selected test region in Siberia. The objectives are 

to (1) identify areas showing the most significant trends and dynamics, (2) analyze the co-occurrence of 

different climate and ecosystem parameters, as well as (3) show the synergetic potential of identifying 

effects of large-scale trend patterns to local scale change. This paper presents monthly trend 

calculation from maximum snow water equivalent (SWEmax), temperature (CRUTemp), precipitation 

(CRUPrecip), and NDVI (Normalized Difference Vegetation Index—NDVI3g) for the time period of 

1981 to 2012. The analysis was done by identifying trend regions using a monthly temporal resolution on 

pan-arctic scale. A regionalization of the trend findings was done using a biodiversity map defined by the 

CAFF (Conservation of Arctic Flora and Fauna) [34]. On a local scale, high-resolution remote sensing 

data were investigated, using Landsat (1973) and RapidEye (2012) data to monitor woody vegetation 

cover changes between a 40 year time span at the taiga tundra transition area of the Taymyr peninsula. 

2. Data and Methods 

2.1. Maximum Snow Water Equivalent—ESA DUE GlobSnow 

The GlobSnow program is a Data User Element (DUE) funded by the European Space Agency (ESA). 

This project provides information on different snow parameters in near real time, such as snow extent (SE) 

and snow water equivalent (SWE) for the northern hemisphere. The SWE product covers the time 

period since 1978 and has a spatial resolution of 25 km in EASE-Grid projection (Equal-Area Scalable 

Earth Grid). The product is available in daily, weekly and monthly resolutions. In this study, SWEmax 

information has been used for the time series trend analysis. The SWEmax information is extracted from 

the weekly aggregated products [35]. 

The SWE product is derived using remote sensing data from the Scanning Multichannel Microwave 

Radiometer (SMMR), Special Sensor Microwave/Imager (SSM/I), and Advanced Microwave 

Scanning Radiometer (AMSR-E). SMMR onboard of the Nimbus-7 satellite covers the time period 

from 1978 to 1987, SSM/I from 1987 to 2002, and AMSR-E, which is onboard Aqua, since 2002. 

Additional information about the product development and algorithms, which were used to derive SE 

and SWE can be found in [36]. Individual studies assessing the quality of the GlobSnow data have 

proven the good quality of the product with error margins below 40 mm, especially for the derivation 

of peak accumulation information and seasonal snow dynamics [37,38] 

2.2. Temperature and Precipitation—Climate Research Unit (CRU) 

For this study temperature and precipitation measurements from the Climate Research Unit (CRU 

TS3.2) were utilized [39]. The CRUs provide global gridded information of different climate 

parameters, such as temperature, precipitation, vapor pressure, cloud cover, etc., which were 
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interpolated from meteorological stations. The input data, derived from climate stations, are collected 

from different archives coordinated by the World Meteorological Organization (WMO), the National 

Oceanographic and Atmospheric Administration (NOAA), as well as other data sources [40]. In total, 

the CRUs are based on data from more than 4000 meteorological stations, which are distributed around 

the globe. However, the amount of meteorological stations in the arctic regions is limited. The 

interpolation between these stations might introduce additional errors and need to be taken into 

account. Based on user requirements from the climatology modeling community, the spatial resolution 

of the products are defined with 0.5° in latitude and longitude. The time series starts in 1901. Until the 

early 1980s, the amount of stations has substantially increased [40,41]. Temperature and precipitation 

information from the CRU data archive have been widely used for arctic research studies [42–45]. 

2.3. NDVI3g—GIMMS 

The GIMMS NDVI dataset (Global Inventory Modeling and Mapping Studies—Normalized 

Difference Vegetation Index) from NOAA AVHRR (National Oceanic and Atmospheric 

Administration—Advanced Very High Resolution Radiometer) have been used in many arctic related 

climate studies [7,27,46–52]. A new version (NDVI3g) of the long-term time series of GIMMS is 

available. The GIMMS NDVI3g was re-calibrated for improved usage in high-latitude regions [16,53]. 

The dataset covers the time period from July 1981 until December 2011 with a bi-weekly temporal and 

8 km spatial resolution. The NOAA satellites are affected by the orbital drift, which causes a delay in 

overflying time during the life-time of each satellite [54,55]. These effects have been substantially 

reduced in the dataset [46,56]. 

As the high latitude regions are affected by snow and cloud cover, the GIMMS NDVI3g dataset 

was pre-processed for the specific requirements of this study. Pixels that were flagged as snow or 

cloud cover have been excluded from this analysis. The remaining bi-weekly NDVI information was 

aggregated to a monthly temporal resolution, which is a widely used method to reduce remaining 

effects from other influencing factors, e.g., haze [57]. 

2.4. Arctic Biodiversity Assessment—CAFF 

The regionalization of the trend findings was done by using an arctic boundary map produced by 

the Arctic Biodiversity Assessment as part of the CAFF (Conservation of Arctic Flora and Fauna) [34]. 

The map consists of three classes representing the high and low-arctic areas as well as the sub-arctic 

regions (shown in the supplementary material Figure S1). The high and low-arctic regions are 

extracted from the Circumpolar Arctic Vegetation Map (CAVM) by [58]. The CAVM was divided into 

two areas. The high-arctic areas are based on the geographic distribution of subzone A, B, and C, 

whereas subzone D and E are represent the low-arctic regions. The southern limit of the sub-arctic 

regions is not defined by a specific dataset. Hence, it is representing an approximation of the area 

covered by the boreal forest (Figure S1). It is planned to update the southern border as soon as the 

Circumboreal Vegetation Map (CBVM) has been completed [59].  
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2.5. Trend Analysis 

The extraction of trends from time series data can be estimated with different approaches. A 

common approach is to calculate linear regressions on time series at different temporal resolutions. 

The resulting slope coefficient from the regression line is used to describe the trend. Many studies have 

shown the potential of identifying trends in long-term time series [49,60–62]. We computed trends on 

each month separately, i.e., on 30-year time series with annual resolution. The trend slope was 

calculated based on ordinary least square regression, while the significance of the trend was assessed 

by computing the Mann-Kendall trend test [63]. We used the implementation of trend analysis as 

described in [62]. All input data have been rescaled to a spatial resolution of 0.5°. The trends have 

been calculated for the entire area covering the regions north of 50-degree latitude. 

2.6. Vegetation Structure Change Detection Using High Resolution Remote Sensing Data 

The observation of vegetation structure at the taiga-tundra transition areas is done for the eastern 

region of the Taymyr Peninsula in Russia covering approximately 28,800 km
2
. The entire Taymyr 

peninsula covers an area of about 400,000 km
2
 along the arctic coastline of the Krasnoyarsk Krai in 

Siberia. The area of investigation is characterized by continental climate conditions and represents the 

northernmost forest regions [64], acting as a carbon sink [65]. Larch (larix gmelinii) is the dominant 

tree species. The Khatanga River represents the border between the taiga and tundra vegetation in the 

study region [58]. Growing conditions suitable for woody vegetation are present [33]. The 

development and dynamics of the vegetation structure and properties show a strong correlation to the 

summer temperature trends and growing season length [65–67]. Tree ring analysis, based on [68], has 

confirmed these findings. Moreover, the start of the growing period has shown to be shifted from June 

to May. These observations are interpreted to be a start of vegetation activity as soon as the freezing 

point is reached [68]. 

High-resolution land cover change analysis was done using a Landsat MSS (Multispectral Scanner) 

mosaic, which consists of two images from the same day (26 July 1973) [69,70], and two RapidEye 

scenes from 22 July and 1 September 2012 (40-year time difference). The Landsat MSS images were 

acquired through the Global Land Cover Facility (USGS). The data were processed with the product 

generation system (LPGS) into a Level 1 product, where they were geometrically corrected using cubic 

convolution as the re-sampling method and a terrain correction (L1T) were applied to the raw imagery. 

The Landsat MSS images have a pixel resolution of 79 m. The RapidEye data were provided by the 

RapidEye Science Archive (RESA), which is coordinated by the German Aerospace Center (DLR). 

The images were available in NITF format (National Imagery Transmission Format) including RPCs 

(Rapid Positioning Capability). Atmospheric effects were reduced using ATCOR2 [71]. The final 

RapidEye images have a spatial resolution of 5 m. 

In this study an object-oriented supervised classification approach was used. For the identification 

and extraction of training samples, we used historical topographic and forest maps, Google Earth  

high-resolution imagery, as well as NDVI profiles. The tree line reference from [58] was used as 

orientation to differentiate the investigation area into tundra and taiga dominated landscapes. The 

classification results were overlaid by a regular grid with a cell size of 25 km
2
 (5 km by 5 km). For 
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each cell, the percentage cover for each class was calculated. This approach allows retaining the spatial 

resolution of each dataset. Hence, no downscaling of the spatial high resolution from RapidEye to the 

Landsat scale was done. 

3. Results and Discussion 

3.1. Pan-Arctic Trends on Monthly Scale 

The co-occurrence analysis of different climatic and ecosystem parameters suggests the multi-scale 

feedbacks in the arctic ecosystems (Figures 1–4). The monthly trends were split into positive and 

negative values. The combination of different trend patterns from different parameters allows identifying 

regions having congruent and/or divergent trends when separating between positive and negative.  

Figure 1. Co-occurrence of different climatic and ecosystem trends on pan-arctic scale 

between 1981 and 2012 (December to February). The trend findings from monthly 

temperatures, precipitation, SWEmax are combined into one information source, which 

includes all possible combinations of trend patterns. Only areas showing significant trends 

(p-value < 0.05) are displayed. 
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The winter months (Figure 1) are dominated by areas showing positive trends in temperature and 

precipitation in addition to negative SWEmax trends. The majority (approx. 40%) of the identified areas 

are characterized by this trend combination during the time of November to January. The second 

largest combination during the winter season is characterized by negative temperature and SWEmax and 

positive precipitation trends. However, the increasing precipitation trends are rather low in comparison 

to the other parameters. Approximately 20% of the significant trend regions are labeled by this type of 

trend combination.  

Figure 2. Co-occurrence of different climatic and ecosystem trends on pan-arctic scale 

between 1981 and 2012 (March to May) (for more explanation see Figure 1). The NDVI is 

shown via plus or minus symbols, which are indicating either positive or negative trends at 

the location. 

 

The proportions of the trend findings remain the same until the end of March, as the area of the 

major trend combinations increasing towards the end of the winter season. The months of seasonal 

transition (April and May—Figure 2) are dominated by areas showing a decrease in SWEmax. This 

phenomenon can be referred to the early ablation of the snow cover, which also causes the early onset 

of the vegetation-growing period in these regions [10,14,72,73]. As the positive precipitation trends 
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have their maxima during the summer months and very low trends in the other seasons, decreasing 

SWEmax trends are feasible at the end of the winter season. 

During the summer months (Figure 3), regions with positive precipitation trends are covering the 

largest parts of the pan-arctic study area [74,75]. The area covered by positive and negative 

temperature trends is evenly distributed. As expected, no SWE information is available during the 

summer months June, July, and August. Hence, only temperature, precipitation and the NDVI trends 

are calculated and therefore displayed in a separate legend. During the months covering all four 

parameters, areas of negative SWEmax and positive temperature trends show an increase in NDVI, 

especially at the beginning and end of the growing season, which is an indicator for an early onset of 

the vegetation-growing season [76,77].  

Figure 3. Co-occurrence of different climatic and ecosystem trends on pan-arctic scale 

between 1981 and 2012 (June to August). The trend findings from monthly temperatures 

and precipitation were combined into one information source. The NDVI is shown via plus 

or minus symbols, which are indicating either positive or negative trends at the location. 

 

At the end of the growing season in September, only few significant trend regions can be identified, 

which are locally concentrated at the northernmost parts of the pan-arctic region (Figure 4). In 
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October, half of the identified trend areas are characterized by rising precipitations and positive 

SWEmax areas are dominant. These trend regions are situated in the northern parts of the high latitudes. 

Further south, areas showing an opposite trend can be found [78]. 

The increase in early winter temperatures is changing the properties of the snow pack as well as the 

snow structure. Late fall (Figure 4) and early winter are very dynamic, with alternating rain and snow 

events. This is reducing the snow accumulation at the start of the winter season [43]. Hence, the 

SWEmax is reduced over time and results in a negative trend. Towards the end of the winter season 

(Figure 2), the negative SWEmax trend areas are increasing in size caused by an earlier and faster snow 

melt in the late winter months [43,78,79], accompanied by positive temperature trends. Moreover, the 

properties of the snowpack are influenced by changes in the frequencies of snow melt during the 

transition seasons, rain as well as the development of an ice layer on top of the snow pack [79]. 

Figure 4. Co-occurrence of different climatic and ecosystem trends on pan-arctic scale 

between 1981 and 2012 (September to November) (for more explanation see Figure 1). 

 

In Siberia, multiple trend combinations are found compared to other regions on pan-arctic scale. 

Especially in March, the southern parts are dominated by various multivariate trend patterns. During 

the winter season, Siberia is dominated by an increase in precipitation and temperature, which is 
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accompanied by decreasing SWEmax trends. However, the precipitation trends are fairly low compared 

to the temperature trends. During the summer, larger trend areas are found compared to other regions. 

In September, at the end of the growing season, no significant trend areas are visible. The NDVI trends 

are concentrated around the northernmost parts of Siberia. Especially, the Taymyr and Yamal 

Peninsula show a significant increase in the NDVI signal [72]. 

In difference to Siberia, the trends around the Bering Strait are dominated by negative precipitation 

with both positive and negative temperature trends, with all areas showing a negative trend in SWEmax. 

This region is dominated by ocean circulation coming from the northern pacific, the Chukchi Sea as well as 

the continental territories of Siberia [80]. The most significant trends are found for the transition times after 

the winter and the summer season. During the summer months, only few significant trend areas are 

found. Nevertheless, the majority of the area is dominated by increasing trends in all observed 

parameters. In contrast to all other regions, the Bering Strait shows significant trend areas in 

September. This month is dominated by increasing precipitation. The North Slope shows some trend 

patterns during the transition times between the seasons, which have been also described in [79]. The 

Hudson Bay region is showing the same but smaller area trend patterns than the Siberian territories [81].  

3.2. Monthly Inter-Annual Trend Dynamics for Different Arctic Regions 

Trend findings have been analyzed for three regions, dividing the pan-arctic regions in high-arctic, 

the low-arctic, as well as the sub-arctic, according to the CAFF (Conservation of Arctic Flora and 

Fauna) definition (shown in the supplementary material Figure S1). For each parameter the yearly 

trend dynamics are shown in Figure 5. The individual boxplots are showing a monthly summary of the 

pixel values of each sub region. In comparison to the spatial analysis, the strength, the magnitude, and 

the dynamics of the trends are displayed. 

The SWEmax trends are showing high dynamics in March for high and low-arctic regions. In 

general, variability is increasing while the majority of the SWEmax trends are decreasing towards the 

snow free period. The low-arctic (the median Ø−1.52 mm/year) and sub-arctic (Ø−1.43 mm/year) 

regions are characterized by the largest decline in SWEmax trend for April and May. For the time 

period from January to May, the largest magnitudes of trend findings are found for the low-arctic, 

indicating these regions to be highly dynamic during the last few decades [82,83]. Low positive 

SWEmax trends are found at the beginning of the winter season. In September, the high and low-arctic 

regions are showing a decrease in SWEmax (−0.23 mm/year and −0.21 mm/year), which is two times 

lower than for the sub-arctic regions (−0.12 mm/year). October and November are characterized by 

positive values (Ø 0.5 mm/year), whereas the majority of the regions during January to March are 

showing a decline in the SWEmax values (Ø−0.95 mm/year). The decrease in these snow cover 

properties will have a direct influence on extreme weather events, as well as the polar jet stream [84]. 

The intra-annual variability of the temperature trends follows a yearly cycle, which is similar for all 

three regions. In detail, the trend patterns are indicating that the winter season is dominated by larger 

positive temperature trends in comparison to the summer months. These findings have been also 

identified by [42]. This is especially true for the high-arctic and low-arctic regions. Compared to 

Figure 1 to 4, some parts of the sub-arctic regions are indicating a decline in winter temperatures, 

which is conform to the analysis of [85]. Comparing the summer and winter temperature trends, the 
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majority of the winter trends (Ø 0.13 °C/year) are nearly twice as high as during the summer season 

(Ø 0.07 °C/year). The sub-arctic regions are showing a high magnitude in February, indicating 

declining temperature conditions (−0.10 °C/year). The same month is showing the highest temperature 

increase in the low-arctic region (0.28 °C/year). In general, the magnitudes of monthly temperature 

trends during the winter-time are showing the largest variations. The higher temperatures during the 

cold seasons and in the fall have a direct influence on the dynamics of the SWEmax in mid-winter 

season as well as the snow-melt in late winter [43,78,79]. Moreover, an increase in winter temperatures 

was identified to have a large impact on the vegetation structure, as damages maybe caused by the 

increase of these warming events [86]. 

Figure 5. Monthly inter-annual variability of the slopes from the multivariate trend 

calculations. Only trends with a significance level of p < 0.05 are shown. 
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From January to May, very low precipitation trends are found for the high-arctic (Ø 0.08 mm/year) and 

low-arctic regions (Ø 0.12 mm/year). The median values for the sub-arctic regions are twice as high 

during the same time period and also show higher dynamics. The largest precipitation trend variability 

are found in the summer and fall seasons. Especially the sub-arctic regions are showing the highest 

variability. During the summer season, the high arctic region is characterized by declining precipitation 

trends. During the fall and the beginning of the winter season, the sub-arctic regions are showing a 

higher increase in precipitation with a higher range of values when compared to the other parameters.  

The monthly inter-annual dynamics of the NDVI trends are rather constant for the low and sub-arctic 

regions. Larger variability has been found for the high arctic regions. Nevertheless, the high-arctic 

region is characterized by relatively low vegetation cover. The focus should be more on the dynamics 

of the other land cover classes, including the taiga-tundra boundary as well as the boreal forest classes. 

In the perspective of climate change, these regions are of higher interest, as the appearing changes 

have a larger feedback to the climate system. For the low and sub-arctic higher NDVI trends at the 

beginning of the growing season are found. This might be an indicator of a shift in the onset of the 

vegetation-growing period in May, as observed in [87]. Towards the end of the summer season all 

regions are showing a decline in positive NDVI trends. Whereas the majority of NDVI trends are still 

positive for the low and sub-arctic, the high arctic indicates decreasing NDVI trends in October. In 

addition, a positive median, the sub-arctic regions are also showing negative NDVI trends in September, 

which might be referred to the boreal browning, found for some regions on pan-arctic scale [62]. 

Nevertheless, the transition time between the summer and winter months is dominated by areas with 

increasing NDVI trends. This phenomenon is connected to the enlargement of the vegetation active 

period in the arctic [77]. 

3.3. High-Resolution Change Mapping of the Taiga-Tundra Transition Zone in Northern Siberia 

The Taymyr peninsula has been found to be one of the regions on pan-arctic scale showing the 

largest trends in different climate parameters during the last decades (Section 3.1). The trend analysis 

results from the previous section have shown the transition seasons to be characterized by positive 

temperature trends with a decline in maximum snow water equivalent for the area of the Taymyr 

peninsula. Daily air temperature (Tair) information from meteorological stations in this region are 

showing an increase during the last 40 years by approximately 3 °C (Figures 6 and S2), with an 

intensification of peak temperature events during the summer months [88,89]. 

Based on these observations, changes in woody vegetation cover have been analyzed by using 

historical and recent earth observation data. Figure 7 shows the changes of woody vegetation cover 

between 1973 and 2012. The majority of the cells situated south of the tree line reference, show woody 

vegetation cover values of greater than 60% for both time steps. The classification result of both time 

steps highly agrees with the separation of tundra from forested areas defined by the tree line reference 

from [58]. Unfortunately, the Landsat MSS mosaic is partly covered by clouds in the south. Both 

RapidEye images were free of clouds and ice.  

When observing the transition zone between taiga and tundra, a decrease of woody vegetation cover 

percentage towards the northern parts becomes visible. The abrupt change at this vegetation border 

seems to be stronger in 1973, whereas, the recent years are characterized by a smoother transition. 
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North of the tree line, only single patches of woody vegetation cover are detected. The patches are 

increasing in size, diameter and distribution in the recent years. Comparing both time steps, an increase 

in woody vegetation cover between 1973 and 2012 is obvious. Particularly, the fluvial terraces of the 

Khatanga river system are characterized by a higher amount of woody vegetation cover percentage in 

the RapidEye scenes.  

Figure 6. Air-Temperature time series divided by seasons (winter—DJF; spring—MAM, 

summer—JJA and fall—SON) of the meteorological station Khatanga at the Taymyr 

Peninsula (71.9°N, 102.5°E)—Additional stations are shown in the supplementary 

material (Figure S2). 

 

The appearance of contiguous patches of woody vegetation north of the tree line is indicating a 

substantial impact to the ecosystem. This phenomenon is stronger in the eastern region in 2012, as this 

RapidEye scene is also from the same month as the Landsat MSS data. The western RapidEye scene is 

from September. Here the increase of woody vegetation patches is not significant, which might be due 

to the different observation time. When comparing July and September, the vegetation activity is 

already reduced towards the end of the growing season, which is influencing the ability to detect 

changes in the classification results. 

Land cover classification and monitoring in the arctic regions using remote sensing information is a 

challenging issue due to snow, ice, and cloud cover, as well as the length of growing season [7]. 

Temporal variations between different acquisition times within the year need to be minimized when 

mapping land cover changes over long time periods [7]. In this study the acquisition times of the high 

resolution remote sensing data was July, except for one RapidEye scene, which was acquired in 

September. Hence, we expect the comparison of the western image pair to be affected by uncertainties 

due to the different acquisition months. Assessing the accuracy of the individual classification results 

was not possible, as information from in situ measurements is marginally available for the arctic 

regions. However, tree line change analysis using different data sources have been carried out for a 

small region in Ary-Mas (360 km
2
), indicating an encroachment of larch trees into the tundra region 

between 1973 and 2000 [33], which increases the confidence of the findings presented in this paper. 
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Figure 7. Landsat MSS and RapidEye woody vegetation cover (in % per 5 km grid cell) 

mapping between 1973 (Left) and 2012 (Right)—background based on World Imagery by 

ESRI. The tree line reference from [58] is shown in black. Cloud regions in the Landsat 

MSS data are shown in grey. 

 

4. Conclusion  

Multi-scale trends in the arctic ecosystems have been observed by analyzing the co-occurrence of 

climatic and ecosystem changes. The investigation of different spatial and temporal scales has 

highlighted multiple indicators of land cover changes related to climate-induced trends over the last 

decades. The highest temperature trends, twice as high as during the summer month, have been found 

during the winter season. Precipitation trends are rather low compared to the other parameters during 

the entire year, but considerably higher in summer and fall. The results from SWEmax and NDVI 

analysis have shown substantial modifications during the transition seasons of the year, potentially 

inducing and reflecting vegetation phenology shifts, resulting in longer vegetation periods and early 

spring green up. Particularly the low-arctic region, representing the taiga-tundra boundary, has the 

highest trends in all observed parameters. On a local scale, high-resolution land cover change analysis 

has shown increasing woody vegetation cover towards the northernmost regions dominated by tundra 

vegetation indicating a northwards shift of the tree line in a site of Taymyr Peninsula. 

The consistent and operational monitoring of different essential climate and ecosystem parameters 

is of high importance for future arctic research. Earth observation data and techniques from various 

sources are available to retrieve spatial information and compensate the lack of ground measurements 

for remote areas. As the coverage of available meteorological stations in the arctic is sparse, the 

interpolation between the climate stations is introducing uncertainties of unknown magnitude, which 

needs to be taken into account. Hence, the continuity of satellite observation services for the 

integration of long-term time series information into climate monitoring and modeling approaches is 

essential. The synergetic combination of different information sources has shown the potential of 
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identifying the co-occurrence of various climate parameters. Future studies should focus on the 

integration of data sources from different spatial and temporal scales. Additionally, the assessment of 

uncertainties and error sources is an essential issue for the investigation of remote sensing products. 

The identification of trend hot spot regions can create the basis (in terms of detecting regions of above 

average environmental change) for using observation data with higher spatial resolution. In 

combination with available ground measurements, the above-shown multi-scale approaches contribute 

to an increased confidence of land change magnitudes and ensure a high potential for future climate 

change and land monitoring research in the arctic.  
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