194 research outputs found

    QoS-Balancing Algorithm for Optimal Relay Selection in Heterogeneous Vehicular Networks

    Get PDF
    Intelligent Transportation System (ITS) could facilitate communications among various road entities to improve the driver's safety and driving experience. These communications are called Vehicle-to-Everything (V2X) communications that can be supported by LTE-V2X protocols. Due to frequent changes of network topology in V2X, the source node (e.g., a vehicle) may have to choose a Device-to-Device(D2D) relay node to forward its packet to the destination node. In this paper, we propose a new method for choosing an optimal D2D relay node. The proposed method considers Quality of Service (QoS) requirements for selecting D2D relay nodes. It employs an Analytic Hierarchy Process (AHP) for making decisions. The decision criteria are linked with channel capacity, link stability and end-to-end delay. A number of simulations were performed considering various network scenarios to evaluate the performance of the proposed method. Simulation results show that the proposed method improves Packet Dropping Rate (PDR) by 30% and delivery ratio by 23% in comparison with the existing methods

    Design Models for Trusted Communications in Vehicle-to-Everything (V2X) Networks

    Get PDF
    Intelligent transportation system is one of the main systems which has been developed to achieve safe traffic and efficient transportation. It enables the road entities to establish connections with other road entities and infrastructure units using Vehicle-to-Everything (V2X) communications. To improve the driving experience, various applications are implemented to allow for road entities to share the information among each other. Then, based on the received information, the road entity can make its own decision regarding road safety and guide the driver. However, when these packets are dropped for any reason, it could lead to inaccurate decisions due to lack of enough information. Therefore, the packets should be sent through a trusted communication. The trusted communication includes a trusted link and trusted road entity. Before sending packets, the road entity should assess the link quality and choose the trusted link to ensure the packet delivery. Also, evaluating the neighboring node behavior is essential to obtain trusted communications because some misbehavior nodes may drop the received packets. As a consequence, two main models are designed to achieve trusted V2X communications. First, a multi-metric Quality of Service (QoS)-balancing relay selection algorithm is proposed to elect the trusted link. Analytic Hierarchy Process (AHP) is applied to evaluate the link based on three metrics, which are channel capacity, link stability and end-to-end delay. Second, a recommendation-based trust model is designed for V2X communication to exclude misbehavior nodes. Based on a comparison between trust-based methods, weighted-sum is chosen in the proposed model. The proposed methods ensure trusted communications by reducing the Packet Dropping Rate (PDR) and increasing the end-to-end delivery packet ratio. In addition, the proposed trust model achieves a very low False Negative Rate (FNR) in comparison with an existing model

    Seamless Connectivity Techniques in Vehicular Ad-hoc Networks

    Get PDF
    In this chapter we describe the traditional techniques used for seamless connectivity in heterogeneous wireless network environments, and in particular adopt them in VANETs, where V2V and V2I represent the main communication protocols. Section 2 deals with the basic features of Vertical Handover (VHO) in the general context of a hybrid wireless network environment, and it discusses how decision metrics can affect handover performance (i.e. number of handover occurrences, and throughput). Instead, Section 3 briefly introduces two proposed techniques achieving seamless connectivity in VANETs. The first technique is a vertical handover mechanism applied to V2I-only communication environments; it is presented in Section 4 via an analytical model, and main simulated results are shown. The second approach is described in Section 5. It addresses a hybrid vehicular communication protocol (i.e. called as Vehicle-to-X) performing handover between V2V and V2I communications, and vice versa.

    QoSHVCP: hybrid vehicular communications protocol with QoS prioritization for safety applications

    Get PDF
    This paper introduces a hybrid communication paradigm for achieving seamless connectivity in Vehicular Ad hoc Networks (VANETs), wherein the connectivity is often affected by changes in the dynamic topology, vehicles' speed, as well as the traffic density. Our proposed technique named QoS-oriented Hybrid Vehicular Communications Protocol (QoSHVCP) exploits both existing network infrastructure through a Vehicle-to-Infrastructure (V2I), as well as a traditional Vehicle-to-Vehicle (V2V) connection that could satisfy Quality-of-Service requirements. QoSHVCP is based on a V2V-V2I protocol switching algorithm, executed in a distributed fashion by each vehicle and is based on the cost function for alternative paths each time it needs to transmit a message. We utilize time delay as a performance metric and present the delay propagation rates when vehicles are transmitting high priority messages via QoSHVCP. Simulation results indicate that simultaneous usage of preexisting network infrastructure along with intervehicular communication provide lower delays, while maintaining the level of user's performance. Our results show a great promise for their future use in VANETs

    D4.3 Final Report on Network-Level Solutions

    Full text link
    Research activities in METIS reported in this document focus on proposing solutions to the network-level challenges of future wireless communication networks. Thereby, a large variety of scenarios is considered and a set of technical concepts is proposed to serve the needs envisioned for the 2020 and beyond. This document provides the final findings on several network-level aspects and groups of solutions that are considered essential for designing future 5G solutions. Specifically, it elaborates on: -Interference management and resource allocation schemes -Mobility management and robustness enhancements -Context aware approaches -D2D and V2X mechanisms -Technology components focused on clustering -Dynamic reconfiguration enablers These novel network-level technology concepts are evaluated against requirements defined by METIS for future 5G systems. Moreover, functional enablers which can support the solutions mentioned aboveare proposed. We find that the network level solutions and technology components developed during the course of METIS complement the lower layer technology components and thereby effectively contribute to meeting 5G requirements and targets.Aydin, O.; Valentin, S.; Ren, Z.; Botsov, M.; Lakshmana, TR.; Sui, Y.; Sun, W.... (2015). D4.3 Final Report on Network-Level Solutions. http://hdl.handle.net/10251/7675

    Power Control and Fuzzy Pairing in V2X Communications

    Get PDF

    SDN-based VANET routing: A comprehensive survey on architectures, protocols, analysis, and future challenges

    Get PDF
    As the automotive and telecommunication industries advance, more vehicles are becoming connected, leading to the realization of intelligent transportation systems (ITS). Vehicular ad-hoc network (VANET) supports various ITS services, including safety, convenience, and infotainment services for drivers and passengers. Generally, such services are realized through data sharing among vehicles and nearby infrastructures or vehicles over multi-hop data routing mechanisms. Vehicular data routing faces many challenges caused by vehicle dynamicity, intermittent connectivity, and diverse application requirements. Consequently, the software-defined networking (SDN) paradigm offers unique features such as programmability and flexibility to enhance vehicular network performance and management and meet the quality of services (QoS) requirements of various VANET services. Recently, VANET routing protocols have been improved using the multilevel knowledge and an up-to-date global view of traffic conditions offered by SDN technology. The primary objective of this study is to furnish comprehensive information regarding the current SDN-based VANET routing protocols, encompassing intricate details of their underlying mechanisms, forwarding algorithms, and architectural considerations. Each protocol will be thoroughly examined individually, elucidating its strengths, weaknesses, and proposed enhancements. Also, the software-defined vehicular network (SDVN) architectures are presented according to their operation modes and controlling degree. Then, the potential of SDN-based VANET is explored from the aspect of routing and the design requirements of routing protocols in SDVNs. SDVN routing algorithms are uniquely classified according to various criteria. In addition, a complete comparative analysis will be achieved to analyze the protocols regarding performance, optimization, and simulation results. Finally, the challenges and upcoming research directions for developing such protocols are widely stated here. By presenting such insights, this paper provides a comprehensive overview and inspires researchers to enhance existing protocols and explore novel solutions, thereby paving the way for innovation in this field

    New Gateway Selection Algorithm Based on Multi-Objective Integer Programming and Reinforcement Learning

    Get PDF
    Connecting vehicles to the infrastructure and benefiting from the services provided by the network is one of the main objectives to increase safety and provide well-being for passengers. Providing such services requires finding suitable gateways to connect the source vehicles to the infrastructure. The major feature of using gateways is to decrease the load of the network infrastructure resources so that each gateway is responsible for a group of vehicles. Unfortunately, the implementation of this goal is facing many challenges, including the highly dynamic topology of VANETs, which causes network instability, and the deployment of applications with high bandwidth demand that can cause network congestion, particularly in urban areas with a high-density vehicle. This work introduces a novel gateway selection algorithm for vehicular networks in urban areas, consisting of two phases. The first phase identifies the best gateways among the deployed vehicles using multi-objective integer programming. While in the second phase, reinforcement learning is employed to select a suitable gateway for any vehicular node in need to access the VANET infrastructure. The proposed model is evaluated and compared to other existing solutions. The obtained results show the efficiency of the proposed system in identifying and selecting the gateways
    corecore