1,673 research outputs found

    Location Awareness in Beyond 5G Networks

    Get PDF
    Location awareness is essential for enabling contextual services and for improving network management in 5th generation (5G) and beyond 5G (B5G) networks. This paper provides an overview of the expanding opportunities offered by location awareness in wireless networks, discusses soft information (SI)-based approaches for improved location awareness, and presents case studies in conformity to the 3rd Generation Partnership Project (3GPP) standardization by the European Telecommunications Standards Institute (ETSI). Results show that SI-based approaches can provide a new level of location awareness in 5G and B5G networks

    Towards an intelligent and supportive environment for people with physical or cognitive restrictions

    Get PDF
    AmbienNet environment has been developed with the aim of demonstrating the feasibility of accessible intelligent environments designed to support people with disabilities and older persons living independently. Its main purpose is to examine in depth the advantages and disadvantages of pervasive supporting systems based on the paradigm of Ambient Intelligence for people with sensory, physical or cognitive limitations. Hence diverse supporting technologies and applications have been designed in order to test their accessibility, ease of use and validity. This paper presents the architecture of AmbienNet intelligent environment and an intelligent application to support indoors navigation for smart wheelchairs designed for validation purposes.Ministerio de Educación y Ciencia TIN2006-15617-C[01,02,03

    Senseable Spaces: from a theoretical perspective to the application in augmented environments

    Get PDF
    Grazie all’ enorme diffusione di dispositivi senzienti nella vita di tutti i giorni, nell’ ultimo decennio abbiamo assistito ad un cambio definitivo nel modo in cui gli utenti interagiscono con lo spazio circostante. Viene coniato il termine Spazio Sensibile, per descrivere quegli spazi in grado di fornire servizi contestuali agli utenti, misurando e analizzando le dinamiche che in esso avvengono, e di reagire conseguentemente a questo continuo flusso di dati bidirezionale. La ricerca è stata condotta abbracciando diversi domini di applicazione, le cui singole esigenze hanno reso necessario testare il concetto di Spazi Sensibili in diverse declinazioni, mantenendo al centro della ricerca l’utente, con la duplice accezione di end-user e manager. Molteplici sono i contributi rispetto allo stato dell’ arte. Il concetto di Spazio Sensibile è stato calato nel settore dei Beni Culturali, degli Spazi Pubblici, delle Geosciences e del Retail. I casi studio nei musei e nella archeologia dimostrano come l’ utilizzo della Realtà Aumentata possa essere sfruttata di fronte a un dipinto o in outdoor per la visualizzazione di modelli complessi, In ambito urbano, il monitoraggio di dati generati dagli utenti ha consentito di capire le dinamiche di un evento di massa, durante il quale le stesse persone fruivano di servizi contestuali. Una innovativa applicazione di Realtà Aumentata è stata come servizio per facilitare l’ ispezione di fasce tampone lungo i fiumi, standardizzando flussi di dati e modelli provenienti da un Sistema Informativo Territoriale. Infine, un robusto sistema di indoor localization è stato istallato in ambiente retail, per scopi classificazione dei percorsi e per determinare le potenzialità di un punto vendita. La tesi è inoltre una dimostrazione di come Space Sensing e Geomatica siano discipline complementari: la geomatica consente di acquisire e misurare dati geo spaziali e spazio temporali a diversa scala, lo Space Sensing utilizza questi dati per fornire servizi all’ utente precisi e contestuali.Given the tremendous growth of ubiquitous services in our daily lives, during the last few decades we have witnessed a definitive change in the way users' experience their surroundings. At the current state of art, devices are able to sense the environment and users’ location, enabling them to experience improved digital services, creating synergistic loop between the use of the technology, and the use of the space itself. We coined the term Senseable Space, to define the kinds of spaces able to provide users with contextual services, to measure and analyse their dynamics and to react accordingly, in a seamless exchange of information. Following the paradigm of Senseable Spaces as the main thread, we selected a set of experiences carried out in different fields; central to this investigation there is of course the user, placed in the dual roles of end-user and manager. The main contribution of this thesis lies in the definition of this new paradigm, realized in the following domains: Cultural Heritage, Public Open Spaces, Geosciences and Retail. For the Cultural Heritage panorama, different pilot projects have been constructed from creating museum based installations to developing mobile applications for archaeological settings. Dealing with urban areas, app-based services are designed to facilitate the route finding in a urban park and to provide contextual information in a city festival. We also outlined a novel application to facilitate the on-site inspection by risk managers thanks to the use of Augmented Reality services. Finally, a robust indoor localization system has been developed, designed to ease customer profiling in the retail sector. The thesis also demonstrates how Space Sensing and Geomatics are complementary to one another, given the assumption that the branches of Geomatics cover all the different scales of data collection, whilst Space Sensing gives one the possibility to provide the services at the correct location, at the correct time

    Senseable Spaces: from a theoretical perspective to the application in augmented environments

    Get PDF
    openGrazie all’ enorme diffusione di dispositivi senzienti nella vita di tutti i giorni, nell’ ultimo decennio abbiamo assistito ad un cambio definitivo nel modo in cui gli utenti interagiscono con lo spazio circostante. Viene coniato il termine Spazio Sensibile, per descrivere quegli spazi in grado di fornire servizi contestuali agli utenti, misurando e analizzando le dinamiche che in esso avvengono, e di reagire conseguentemente a questo continuo flusso di dati bidirezionale. La ricerca è stata condotta abbracciando diversi domini di applicazione, le cui singole esigenze hanno reso necessario testare il concetto di Spazi Sensibili in diverse declinazioni, mantenendo al centro della ricerca l’utente, con la duplice accezione di end-user e manager. Molteplici sono i contributi rispetto allo stato dell’ arte. Il concetto di Spazio Sensibile è stato calato nel settore dei Beni Culturali, degli Spazi Pubblici, delle Geosciences e del Retail. I casi studio nei musei e nella archeologia dimostrano come l’ utilizzo della Realtà Aumentata possa essere sfruttata di fronte a un dipinto o in outdoor per la visualizzazione di modelli complessi, In ambito urbano, il monitoraggio di dati generati dagli utenti ha consentito di capire le dinamiche di un evento di massa, durante il quale le stesse persone fruivano di servizi contestuali. Una innovativa applicazione di Realtà Aumentata è stata come servizio per facilitare l’ ispezione di fasce tampone lungo i fiumi, standardizzando flussi di dati e modelli provenienti da un Sistema Informativo Territoriale. Infine, un robusto sistema di indoor localization è stato istallato in ambiente retail, per scopi classificazione dei percorsi e per determinare le potenzialità di un punto vendita. La tesi è inoltre una dimostrazione di come Space Sensing e Geomatica siano discipline complementari: la geomatica consente di acquisire e misurare dati geo spaziali e spazio temporali a diversa scala, lo Space Sensing utilizza questi dati per fornire servizi all’ utente precisi e contestuali.Given the tremendous growth of ubiquitous services in our daily lives, during the last few decades we have witnessed a definitive change in the way users' experience their surroundings. At the current state of art, devices are able to sense the environment and users’ location, enabling them to experience improved digital services, creating synergistic loop between the use of the technology, and the use of the space itself. We coined the term Senseable Space, to define the kinds of spaces able to provide users with contextual services, to measure and analyse their dynamics and to react accordingly, in a seamless exchange of information. Following the paradigm of Senseable Spaces as the main thread, we selected a set of experiences carried out in different fields; central to this investigation there is of course the user, placed in the dual roles of end-user and manager. The main contribution of this thesis lies in the definition of this new paradigm, realized in the following domains: Cultural Heritage, Public Open Spaces, Geosciences and Retail. For the Cultural Heritage panorama, different pilot projects have been constructed from creating museum based installations to developing mobile applications for archaeological settings. Dealing with urban areas, app-based services are designed to facilitate the route finding in a urban park and to provide contextual information in a city festival. We also outlined a novel application to facilitate the on-site inspection by risk managers thanks to the use of Augmented Reality services. Finally, a robust indoor localization system has been developed, designed to ease customer profiling in the retail sector. The thesis also demonstrates how Space Sensing and Geomatics are complementary to one another, given the assumption that the branches of Geomatics cover all the different scales of data collection, whilst Space Sensing gives one the possibility to provide the services at the correct location, at the correct time.INGEGNERIA DELL'INFORMAZIONEembargoed_20181001Pierdicca, RobertoPierdicca, Robert

    Mobiles Robots - Past Present and Future

    Get PDF

    Crowd-based cognitive perception of the physical world: Towards the internet of senses

    Get PDF
    This paper introduces a possible architecture and discusses the research directions for the realization of the Cognitive Perceptual Internet (CPI), which is enabled by the convergence of wired and wireless communications, traditional sensor networks, mobile crowd-sensing, and machine learning techniques. The CPI concept stems from the fact that mobile devices, such as smartphones and wearables, are becoming an outstanding mean for zero-effort world-sensing and digitalization thanks to their pervasive diffusion and the increasing number of embedded sensors. Data collected by such devices provide unprecedented insights into the physical world that can be inferred through cognitive processes, thus originating a digital sixth sense. In this paper, we describe how the Internet can behave like a sensing brain, thus evolving into the Internet of Senses, with network-based cognitive perception and action capabilities built upon mobile crowd-sensing mechanisms. The new concept of hyper-map is envisioned as an efficient geo-referenced repository of knowledge about the physical world. Such knowledge is acquired and augmented through heterogeneous sensors, multi-user cooperation and distributed learning mechanisms. Furthermore, we indicate the possibility to accommodate proactive sensors, in addition to common reactive sensors such as cameras, antennas, thermometers and inertial measurement units, by exploiting massive antenna arrays at millimeter-waves to enhance mobile terminals perception capabilities as well as the range of new applications. Finally, we distillate some insights about the challenges arising in the realization of the CPI, corroborated by preliminary results, and we depict a futuristic scenario where the proposed Internet of Senses becomes true

    Mobile Augmented Reality: User Interfaces, Frameworks, and Intelligence

    Get PDF
    Mobile Augmented Reality (MAR) integrates computer-generated virtual objects with physical environments for mobile devices. MAR systems enable users to interact with MAR devices, such as smartphones and head-worn wearables, and perform seamless transitions from the physical world to a mixed world with digital entities. These MAR systems support user experiences using MAR devices to provide universal access to digital content. Over the past 20 years, several MAR systems have been developed, however, the studies and design of MAR frameworks have not yet been systematically reviewed from the perspective of user-centric design. This article presents the first effort of surveying existing MAR frameworks (count: 37) and further discuss the latest studies on MAR through a top-down approach: (1) MAR applications; (2) MAR visualisation techniques adaptive to user mobility and contexts; (3) systematic evaluation of MAR frameworks, including supported platforms and corresponding features such as tracking, feature extraction, and sensing capabilities; and (4) underlying machine learning approaches supporting intelligent operations within MAR systems. Finally, we summarise the development of emerging research fields and the current state-of-the-art, and discuss the important open challenges and possible theoretical and technical directions. This survey aims to benefit both researchers and MAR system developers alike.Peer reviewe

    A Framework to Improve Energy Efficient Behaviour at Home through Activity and Context Monitoring

    Get PDF
    [EN]Real-time Localization Systems have been postulated as one of the most appropriated technologies for the development of applications that provide customized services. These systems provide us with the ability to locate and trace users and, among other features, they help identify behavioural patterns and habits. Moreover, the implementation of policies that will foster energy saving in homes is a complex task that involves the use of this type of systems. Although there are multiple proposals in this area, the implementation of frameworks that combine technologies and use Social Computing to influence user behaviour have not yet reached any significant savings in terms of energy. In this work, the CAFCLA framework (Context-Aware Framework for Collaborative Learning Applications) is used to develop a recommendation system for home users. The proposed system integrates a Real-Time Localization System and Wireless Sensor Networks, making it possible to develop applications that work under the umbrella of Social Computing. The implementation of an experimental use case aided efficient energy use, achieving savings of 17%. Moreover, the conducted case study pointed to the possibility of attaining good energy consumption habits in the long term. This can be done thanks to the system’s real time and historical localization, tracking and contextual data, based on which customized recommendations are generated.European Commision (EC). Funding H2020/MSCARISE. Project Code: 64179

    Unifying terrain awareness for the visually impaired through real-time semantic segmentation.

    Get PDF
    Navigational assistance aims to help visually-impaired people to ambulate the environment safely and independently. This topic becomes challenging as it requires detecting a wide variety of scenes to provide higher level assistive awareness. Vision-based technologies with monocular detectors or depth sensors have sprung up within several years of research. These separate approaches have achieved remarkable results with relatively low processing time and have improved the mobility of impaired people to a large extent. However, running all detectors jointly increases the latency and burdens the computational resources. In this paper, we put forward seizing pixel-wise semantic segmentation to cover navigation-related perception needs in a unified way. This is critical not only for the terrain awareness regarding traversable areas, sidewalks, stairs and water hazards, but also for the avoidance of short-range obstacles, fast-approaching pedestrians and vehicles. The core of our unification proposal is a deep architecture, aimed at attaining efficient semantic understanding. We have integrated the approach in a wearable navigation system by incorporating robust depth segmentation. A comprehensive set of experiments prove the qualified accuracy over state-of-the-art methods while maintaining real-time speed. We also present a closed-loop field test involving real visually-impaired users, demonstrating the effectivity and versatility of the assistive framework
    corecore