955 research outputs found

    Light field image coding with flexible viewpoint scalability and random access

    Get PDF
    This paper proposes a novel light field image compression approach with viewpoint scalability and random access functionalities. Although current state-of-the-art image coding algorithms for light fields already achieve high compression ratios, there is a lack of support for such functionalities, which are important for ensuring compatibility with different displays/capturing devices, enhanced user interaction and low decoding delay. The proposed solution enables various encoding profiles with different flexible viewpoint scalability and random access capabilities, depending on the application scenario. When compared to other state-of-the-art methods, the proposed approach consistently presents higher bitrate savings (44% on average), namely when compared to pseudo-video sequence coding approach based on HEVC. Moreover, the proposed scalable codec also outperforms MuLE and WaSP verification models, achieving average bitrate saving gains of 37% and 47%, respectively. The various flexible encoding profiles proposed add fine control to the image prediction dependencies, which allow to exploit the tradeoff between coding efficiency and the viewpoint random access, consequently, decreasing the maximum random access penalties that range from 0.60 to 0.15, for lenslet and HDCA light fields.info:eu-repo/semantics/acceptedVersio

    Scalable light field representation and coding

    Get PDF
    This Thesis aims to advance the state-of-the-art in light field representation and coding. In this context, proposals to improve functionalities like light field random access and scalability are also presented. As the light field representation constrains the coding approach to be used, several light field coding techniques to exploit the inherent characteristics of the most popular types of light field representations are proposed and studied, which are normally based on micro-images or sub-aperture-images. To encode micro-images, two solutions are proposed, aiming to exploit the redundancy between neighboring micro-images using a high order prediction model, where the model parameters are either explicitly transmitted or inferred at the decoder, respectively. In both cases, the proposed solutions are able to outperform low order prediction solutions. To encode sub-aperture-images, an HEVC-based solution that exploits their inherent intra and inter redundancies is proposed. In this case, the light field image is encoded as a pseudo video sequence, where the scanning order is signaled, allowing the encoder and decoder to optimize the reference picture lists to improve coding efficiency. A novel hybrid light field representation coding approach is also proposed, by exploiting the combined use of both micro-image and sub-aperture-image representation types, instead of using each representation individually. In order to aid the fast deployment of the light field technology, this Thesis also proposes scalable coding and representation approaches that enable adequate compatibility with legacy displays (e.g., 2D, stereoscopic or multiview) and with future light field displays, while maintaining high coding efficiency. Additionally, viewpoint random access, allowing to improve the light field navigation and to reduce the decoding delay, is also enabled with a flexible trade-off between coding efficiency and viewpoint random access.Esta Tese tem como objetivo avançar o estado da arte em representação e codificação de campos de luz. Neste contexto, são também apresentadas propostas para melhorar funcionalidades como o acesso aleatório ao campo de luz e a escalabilidade. Como a representação do campo de luz limita a abordagem de codificação a ser utilizada, são propostas e estudadas várias técnicas de codificação de campos de luz para explorar as características inerentes aos seus tipos mais populares de representação, que são normalmente baseadas em micro-imagens ou imagens de sub-abertura. Para codificar as micro-imagens, são propostas duas soluções, visando explorar a redundância entre micro-imagens vizinhas utilizando um modelo de predição de alta ordem, onde os parâmetros do modelo são explicitamente transmitidos ou inferidos no decodificador, respetivamente. Em ambos os casos, as soluções propostas são capazes de superar as soluções de predição de baixa ordem. Para codificar imagens de sub-abertura, é proposta uma solução baseada em HEVC que explora a inerente redundância intra e inter deste tipo de imagens. Neste caso, a imagem do campo de luz é codificada como uma pseudo-sequência de vídeo, onde a ordem de varrimento é sinalizada, permitindo ao codificador e decodificador otimizar as listas de imagens de referência para melhorar a eficiência da codificação. Também é proposta uma nova abordagem de codificação baseada na representação híbrida do campo de luz, explorando o uso combinado dos tipos de representação de micro-imagem e sub-imagem, em vez de usar cada representação individualmente. A fim de facilitar a rápida implantação da tecnologia de campo de luz, esta Tese também propõe abordagens escaláveis de codificação e representação que permitem uma compatibilidade adequada com monitores tradicionais (e.g., 2D, estereoscópicos ou multivista) e com futuros monitores de campo de luz, mantendo ao mesmo tempo uma alta eficiência de codificação. Além disso, o acesso aleatório de pontos de vista, permitindo melhorar a navegação no campo de luz e reduzir o atraso na descodificação, também é permitido com um equilíbrio flexível entre eficiência de codificação e acesso aleatório de pontos de vista

    Light field image compression

    Get PDF
    Light field imaging based on a single-tier camera equipped with a micro-lens array has currently risen up as a practical and prospective approach for future visual applications and services. However, successfully deploying actual light field imaging applications and services will require identifying adequate coding solutions to efficiently handle the massive amount of data involved in these systems. In this context, this chapter presents some of the most recent light field image coding solutions that have been investigated. After a brief review of the current state of the art in image coding formats for light field photography, an experimental study of the rate-distortion performance for different coding formats and architectures is presented. Then, aiming at enabling faster deployment of light field applications and services in the consumer market, a scalable light field coding solution that provides backward compatibility with legacy display devices (e.g., 2D, 3D stereo, and 3D multiview) is also presented. Furthermore, a light field coding scheme based on a sparse set of microimages and the associated blockwise disparity is also presented. This coding scheme is scalable with three layers such that the rendering can be performed with the sparse micro-image set, the reconstructed light field image, and the decoded light field image.info:eu-repo/semantics/acceptedVersio

    Resource-Constrained Low-Complexity Video Coding for Wireless Transmission

    Get PDF

    Packet loss visibility across SD, HD, 3D, and UHD video streams

    Get PDF
    The trend towards video streaming with increased spatial resolutions and dimensions, SD, HD, 3D, and 4kUHD, even for portable devices has important implications for displayed video quality. There is an interplay between packetization, packet loss visibility, choice of codec, and viewing conditions, which implies that prior studies at lower resolutions may not be as relevant. This paper presents two sets of experiments, the one at a Variable BitRate (VBR) and the other at a Constant BitRate (CBR), which highlight different aspects of the interpretation. The latter experiments also compare and contrast encoding with either an H.264 or an High Efficiency Video Coding (HEVC) codec, with all results recorded as objective Mean Opinion Score (MOS). The video quality assessments will be of interest to those considering: the bitrates and expected quality in error-prone environments; or, in fact, whether to use a reliable transport protocol to prevent all errors, at a cost in jitter and latency, rather than tolerate low levels of packet errors

    An experiment in remote manufacturing using the advanced communications technology satellite

    Get PDF
    The goal of the completed project was to develop an experiment in remote manufacturing that would use the capabilities of the ACTS satellite. A set of possible experiments that could be performed using the Advanced Communications Technology Satellite (ACTS), and which would perform remote manufacturing using a laser cutter and an integrated circuit testing machine are described in detail. The proposed design is shown to be a feasible solution to the offered problem and it takes into consideration the constraints that were placed on the experiment. In addition, we have developed two more experiments that are included in this report: backup of rural telecommunication networks, and remote use of Synthetic Aperture Radar (SAR) data analysis for on-site collection of glacier scattering data in the Antarctic

    End to end Multi-Objective Optimisation of H.264 and HEVC Codecs

    Get PDF
    All multimedia devices now incorporate video CODECs that comply with international video coding standards such as H.264 / MPEG4-AVC and the new High Efficiency Video Coding Standard (HEVC) otherwise known as H.265. Although the standard CODECs have been designed to include algorithms with optimal efficiency, large number of coding parameters can be used to fine tune their operation, within known constraints of for e.g., available computational power, bandwidth, consumer QoS requirements, etc. With large number of such parameters involved, determining which parameters will play a significant role in providing optimal quality of service within given constraints is a further challenge that needs to be met. Further how to select the values of the significant parameters so that the CODEC performs optimally under the given constraints is a further important question to be answered. This thesis proposes a framework that uses machine learning algorithms to model the performance of a video CODEC based on the significant coding parameters. Means of modelling both the Encoder and Decoder performance is proposed. We define objective functions that can be used to model the performance related properties of a CODEC, i.e., video quality, bit-rate and CPU time. We show that these objective functions can be practically utilised in video Encoder/Decoder designs, in particular in their performance optimisation within given operational and practical constraints. A Multi-objective Optimisation framework based on Genetic Algorithms is thus proposed to optimise the performance of a video codec. The framework is designed to jointly minimize the CPU Time, Bit-rate and to maximize the quality of the compressed video stream. The thesis presents the use of this framework in the performance modelling and multi-objective optimisation of the most widely used video coding standard in practice at present, H.264 and the latest video coding standard, H.265/HEVC. When a communication network is used to transmit video, performance related parameters of the communication channel will impact the end-to-end performance of the video CODEC. Network delays and packet loss will impact the quality of the video that is received at the decoder via the communication channel, i.e., even if a video CODEC is optimally configured network conditions will make the experience sub-optimal. Given the above the thesis proposes a design, integration and testing of a novel approach to simulating a wired network and the use of UDP protocol for the transmission of video data. This network is subsequently used to simulate the impact of packet loss and network delays on optimally coded video based on the framework previously proposed for the modelling and optimisation of video CODECs. The quality of received video under different levels of packet loss and network delay is simulated, concluding the impact on transmitted video based on their content and features

    Real-time digital signal processing system for normal probe diffraction technique

    Get PDF
    Ultrasonic systems are widely used in many fields of non-destructive testing. The increasing requirement for high quality steel product stirs the improvement of both ultrasonic instruments and testing methods. The thesis indicates the basics of ultrasonic testing and Digital Signal Processing (DSP) technology for the development of an ultrasonic system. The aim of this project was to apply a new ultrasonic testing method - the Normal Probe Diffraction method to course grained steel in real-time and investigate whether the potential of probability of detection (POD) has been improved. The theories and corresponding experiment set-up of pulse-echo method, TOFD and NPD method are explained and demonstrated separately. A comparison of these methods shows different contributions made by these methods using different types of algorithms and signals. Non-real-time experiments were carried out on a VI calibration block using an USPC 3100 ultrasonic testing card to implement pulse-echo and NPD method respectively. The experiments and algorithm were simulated and demonstrated in Matlab. A low frequency Single-transmitter-multi-receiver ultrasonic system was designed and built with a digital development board and an analogue daughter card to transmit or receive signals asynchronously. A high frequency high voltage amplifier was designed to drive the ultrasonic probes. A Matlab simulation system built with Simulink indicates that the Signal to Noise Ratio (SNR) can be improved with an increment of up to 3dB theoretically based on the simulation results using DSP techniques. The DSP system hardware and software was investigated and a real-time DSP hardware system was supposed to be built to implement the high frequency system using a rapid code generated system based on Matlab Simulink model and the method was presented. However, extra effort needs to be taken to program the hardware using a low-level computer language to make the system work stably and efficiently

    Image Processing Using FPGAs

    Get PDF
    This book presents a selection of papers representing current research on using field programmable gate arrays (FPGAs) for realising image processing algorithms. These papers are reprints of papers selected for a Special Issue of the Journal of Imaging on image processing using FPGAs. A diverse range of topics is covered, including parallel soft processors, memory management, image filters, segmentation, clustering, image analysis, and image compression. Applications include traffic sign recognition for autonomous driving, cell detection for histopathology, and video compression. Collectively, they represent the current state-of-the-art on image processing using FPGAs
    corecore