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Abstract 

Light field imaging based on a single-tier camera equipped with a microlens array 

has currently risen up as a practical and prospective approach for future visual ap-

plications and services. However, successfully deploying actual light field imag-

ing applications and services will require identifying adequate coding solutions to 

efficiently handle the massive amount of data involved in these systems. In this 

context, this chapter presents some of the most recent light field image coding so-

lutions that have been investigated. After a brief review of the current state-of-the-

art in image coding formats for light field photography, an experimental study of 

the rate-distortion performance for different coding formats and architectures is 

presented. Then, aiming at enabling faster deployment of light field applications 

and services in the consumer market, a scalable light field coding solution that 

provides backward compatibility with legacy display devices (e.g., 2D, 3D stereo, 

and 3D multiview) is also presented. Furthermore, a light field coding scheme 

based on a sparse set of micro-images and associated block-wise disparity is also 

presented. This coding scheme is scalable with three layers such that the rendering 

can be performed with the sparse micro-image set, the reconstructed light field 

image, and the decoded light field image. 
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7.1 Introduction 

Light field imaging based on a single-tier camera equipped with a microlens array 

(MLA) – simply referred to as Light Field (LF) in this chapter – has currently ris-

en up as a practical and prospective approach for future visual applications and 

services. However, successfully deploying actual LF imaging applications and 

services will require identifying adequate coding solutions to efficiently handle the 

massive amount of data involved in these systems. 

In this context, this chapter overviews some relevant LF image coding solu-

tions that have been recently proposed in the literature. For this, the chapter starts 

reviewing the state-of-the-art in image coding formats for LF photography in Sec-

tion 7.2. Moreover, since the choice of the used data format strongly influences 

the LF coding performance, a comprehensive analysis of the rate-distortion per-

formance for different coding formats and different coding architectures applied to 

LF image coding is presented in Section 7.3. In addition to this, aiming at allow-

ing faster deployment of LF applications and services in the consumer market, a 

scalable LF coding solution that provides backward compatibility with legacy dis-

play devices (e.g., 2D, 3D stereo, and 3D multiview) is presented in Section 7.4 

This display scalable solution makes use of an efficient inter-layer prediction 

scheme that when combined with a spatial displacement compensated prediction is 

able to achieve, in most of the cases, better rate-distortion performance than the 

non-scalable HEVC solution. 

Furthermore, a LF coding scheme based on a sparse set of Micro-Images (MIs) 

and associated block-wise disparity is presented in Section 7.5. This coding 

scheme is scalable with three layers such that the rendering can be performed with 

the sparse MI set, the reconstructed LF image, and the decoded LF image. Moreo-

ver, it is shown that this coding scheme improves considerably the coding effi-

ciency with respect to HEVC Intra and is slightly better than the spatial displace-

ment compensated prediction with multiple hypotheses. 

7.2 Light Field Image Representation 

Since the first approach proposed by Lippman [1] to capture light rays, continuous 

research and technological developments led to production of LF cameras (a.k.a. 

plenoptic cameras) that are now available in the consumer market and also for re-

search and scientific applications. Such cameras are mainly characterized by their 

ability to record not only the light intensity but also the directionality of light-rays 

that reach the camera. This is equivalent to sample the continuous plenoptic func-

tion in (6.1), which describes the intensity of light rays passing through any point 

at a 3D spatial location (x,y,z), i.e. the camera center, from any possible direction 

() with wavelength  at any instant t. 
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   ,( ), , , , ,P P x y z t  =   (6.1) 

For practical acquisition and representation of light fields, the high dimension-

ality of the plenoptic function is reduced by assuming that the optical spectrum is 

monochromatic and the light intensity does not change over the discrete acquisi-

tion time of each sample (i.e., a single shot that captures one image at each instant 

t). Moreover, the LF is not captured for all possible 3D positions in the scene 

space. Instead, only the light projected onto the 2D camera plane is recorded. This 

simplification turns the 7D plenoptic function into a 4D representation of light 

fields, which is commonly used by defining two parallel planes, the camera plane 

(u,v) and the image plane (s,t). In such 4D model, the light field L(s,t,u,v) defines 

the intensity of a light ray intersecting both planes [2]. This representation allows 

visualization of a light field as a (u,v) array of (s,t) images (i.e. different views or 

perspectives) or as a (s,t) array of (u,v) images (i.e. sub-aperture images of the 

whole captured scene [3]. Since in currently available LF cameras, 4D light fields 

are captured as a two-dimensional matrix of tiled 2D MIs, the latter is also the 

most common representation format used in many application areas and computa-

tional algorithms based on the information conveyed by light directionality. 

However, such tiled representation may not enable simple and fast access to 

other type of implicit information embedded in a 4D light field, such as surface re-

flection and the 3D structure of objects in the scene, i.e., depth. For extracting and 

processing such type of information the Epipolar Plane Image (EPI) representation 

is in general more appropriate. An EPI representation of a 4D light field can be 

thought as a large set of views, where the viewpoints all lie in the common focal 

plane and the views are projected onto the same image plane I. If P is parameter-

ized with coordinates (s,t) and I with coordinates (x,y), then by fixing a camera 

coordinate t and image plane coordinate y, the resulting cut in the (x,s) plane is the 

EPI image. The EPI structure captures 2D views from different viewpoints and 

encodes the depth information as the slope of line structures in the 2D (x,s) planes. 

7.3 Light Field Image Coding Formats 

Regardless of the representation format, LF images require a huge amount of data 

to capture and store the light intensity along with directional information. The 

number of samples that is necessary to capture the intensity and direction of light 

rays is much higher than the spatial resolution of conventional 2D images usually 

rendered in end user devices. 

Due to the inherent redundancy of LF representation, this type of visual data 

can be easily compressed using conventional image/video coding methods. How-

ever, such redundancy is dependent on the data structure that is used in conjunc-

tion with each specific coding scheme. For instance, when using standard im-

age/video encoders, which are not specifically tailored for images comprising a lot 
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of MIs with sharp boundaries and highly redundant content, there is a mismatch 

between such input data structure and the coding units used in most standard com-

pression algorithms. Standard image and video encoders have been used for this 

purpose, but optimal exploitation of the intrinsic redundancy of LF data requires 

specific pre-processing. For instance, the correlation between neighboring MIs 

was exploited in [4] while the correlation in sub-aperture images, using three-

dimensional transforms was exploited in [5]. Another method based on prepro-

cessing the raw LF in two steps was prosed in [6]. The first step consists in parti-

tioning the raw LF in tiles of equal size and then, in the second step, these tiles are 

ordered as a pseudo-temporal sequence in order to adapt the data to subsequent 

HEVC temporal predictive coding. The results show that, by exploiting redundan-

cies in the spatial and view angle domain, the HEVC encoding tools are more effi-

cient than JPEG exploiting only spatial redundancies in the whole LF image. An-

other result of interest is the significant difference between R-D performance of 

the tile-based scheme and that of JPEG, which is quite large for high compression 

ratios (e.g., bpp = 0.1), but much lower for small compression ratios (e.g., bpp = 

1). Such results indicate that the benefits of exploiting both the spatial and view 

angle correlations decrease as the compression ratio also decreases. Thus, for low-

er compression ratios, exploiting the data redundancy in the two dimensions may 

result in similar coding efficiency as exploiting redundancy only in the spatial di-

mension. 

For other applications, where the full accuracy of the originally captured LF 

needs to be preserved, lossless encoding must be used for the entire representation 

data. This is required for applications with stringent accuracy requirements, such 

as medical imaging, computer vision for industry, microscopy, etc.  For such pur-

pose, LF lossless coding methods have been reported in the literature.  For in-

stance, in [7], Perra encodes the non-rectified lenslet image by exploiting the cor-

relation between micro-images, like Henlin et al, in [8], where the proposed 

method encodes the sub-aperture images extracted from the rectified lenslet data, 

exploiting inter-image correlations by applying different predictors to regions of 

the same depth. An experimental study on lossless light-field coding using stand-

ard codecs is presented in [9], using pre-processing techniques to convert the LF 

data to a format that enables higher lossless compression performance of current 

standard encoders. The study analyses the use of two types of pre-processing 

techniques that increase the compression efficiency of standard lossless encoders, 

namely lenslet data rearrangement and color transformation. 

7.3.1 Light field image coding using HEVC 



5 

This section presents a performance evaluation study of the coding efficiency at-

tained by the standard High Efficiency Video Coding (HEVC) using different LF 

representation formats [10]. To this aim, a data set comprising twelve LF images 

was captured with the Lytro-Illum camera, which stores the data on LPR files (≈ 

55 MBytes each). This is basically a container format comprising several types of 

data (the RAW image as captured by the sensor, a thumbnail in PNG format and 

system settings, amongst others). The RAW image itself is a 10 bits pack, in 

GRBG format, with a total resolution of 7728×5368. The RAW files were pro-

cessed using the “Light Field Toolbox for Matlab”, which allows to decode and 

rectify the captured information using the camera’s specific calibration data, com-

prising a set of white images [11]. The main output of this process is a recon-

structed LF corresponding to a 625×434 matrix of MIs, each one capturing the 

light coming from 15×15 different directions. The data set used in this study is 

characterized in Table 6.1. 

Five data formats were defined to evaluate the standard HEVC coding efficiency, 

corresponding to different data structures of the same YUV LF. Three of these are 

organized as still images and encoded using the HEVC Still Image Profile. For the 

remaining two, LF images are decomposed into sequences of different views in a 

pseudo-video arrangement encoded using the “Low-delay B”, “Low-delay P” and 

“Random Access” video coding configuration. The following formats were used 

for the HEVC Still Image Profile. 

• Light Field (Lenslet) – This is the LF comprising a matrix of MIs obtained 

with Light Field Toolbox for Matlab, as described in section II. An example 

can be seen in Fig. 6.1. 

• All-views – The LF data is rearranged by first extracting the different angular 

Table Error! Reference source not found..1. Data set used to evaluate the HEVC light field cod-

ing performance 

 Light Field Image  Visual content 

1 Euro  A 2e coin 

2 Bottles Bottles (1.5L) on a table  

3 Bottle caps Plastic bottle caps on a grey table 

4 Corridor Corridor in back light 

5 WhiteFlowers Large green leaves and few pink flowers 

6 RedFlowers Small red and white flowers  

7 Park  A few cars at a park exit  

8 Garden Part of a garden with medium-sized trees 

9 TrashCans Large (≈ 1.80m) recycling containers 

10 Twobottles Two plastic bottles (1.5L)   

11 People Four adults at building entrance  

12 SkinSpots Dark spots (≈ 2mm) on white skin 
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views which are then placed side-by-side, as seen in Fig. 6.2. 

• Light field filled – This is similar to Lenslet but the black corner pixels of each 

MI is filled by extending the left-neighbour pixels (Fig. 6.3). 

 

  

 
The pseudo-video formats were obtained by using two different approaches to ar-

range sequences of views. Both of them result in a pseudo-video sequence such 

that adjacent views correspond to “temporally-adjacent” frames in order to obtain 

high inter-frame correlation. In general, this is observed when views have small 

view-angles, i.e., where disparity is smaller. The two pseudo-video formats used 

in this study are the following. 

   

Fig. Error! Reference source not found..1. Data set used to evaluate the HEVC light field coding 

performance 

 

Fig. Error! Reference source not found..2. 

Light field – all views 

 

Fig. Error! Reference source not found..3. 

Light field filled 
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• Raster –  The pseudo-video sequence is obtained by gathering the views from 

left to right and top-down, following the scan path shown in Fig. Error! Refer-

ence source not found..4 (left).   

• Spiral –  The pseudo-video sequence is obtained starting from the central view 

outwards, following the spiral scan path shown in Fig. Error! Reference source 

not found..4 (right). 

  

Fig. Error! Reference source not found..4. Scan patterns to generate pseudo-video from all 

views: raster (left), spiral (right) 1 

For both Raster and Spiral pseudo-video formats, the HEVC configurations used 

for encoding the Light Field were the following: All Intra, Low Delay B, Low De-

lay P and Random Access. In the next section the performance of these coding 

configurations is evaluated, under test conditions adapted from [12]. 

7.3.1.1 Coding efficiency 

The coding efficiency obtained from Bottles, People and RedFlowers is shown in 

Figs. Error! Reference source not found..5, Error! Reference source not found..6, 

and Error! Reference source not found..7 for the different configurations referred 

to above. From these Figures, it is quite obvious that different data formats have 

huge impact on the HEVC coding efficiency. For different arrangements of the LF 

data and HEVC coding configurations, the PSNR exhibits significant variations, 

which can be greater than 10dB at the same rate (bpp). It is worthwhile to note in 

these Figures that the pair (data format, coding configuration) does not correspond 

to a consistent relative coding performance for different visual content. Given the 

particular structure of the LF data, comprised of a matrix of tiny micro images 

with dark corners, a consistent worst performance would be expected from the 

Light-Field format. However, while this is true for People and Bottles, in the case 

of RedFlowers the Spiral All-Intra format is the one achieving the poorest perfor-

mance. This is most likely due to the fact that the visual content of RedFlowers in-

side the MIs also contain further high frequency components corresponding to 

many small leaves of the flowers. Therefore, besides the high frequency nature of 

 
1 © 2017 IEEE. Reprinted, with permission, from [10]. 
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the LF format itself, the coding efficiency is also greatly influenced by the charac-

teristics of the visual content in each MI. On average, the Bottles and People LF 

images should not have so much high frequency content in each MI, which justi-

fies the results shown in the Figures. Further research is necessary to find a valid 

threshold for the high frequency content of MIs, below which coding lenslet light 

field images might be better than intra coding of all views (i.e., All-Intra).  

Figs. Error! Reference source not found..5, Error! Reference source not 

found..6, and Error! Reference source not found..7 also show a detailed zoom of 

the lowest rates between 0 bpp and 0.03 bpp. For the pseudo-video formats, one 

can observe that very low rates are obtained for acceptable levels of PSNR. In this 

operational region, pseudo-video coding produces very similar results for all data 

formats, due to the use of high quantization parameters, which contribute to vanish 

the small differences between adjacent views. 

 

 

 

Fig. Error! Reference source not found..5. HEVC efficiency for LF image Bottles2 

 

 
2 © 2017 IEEE. Reprinted, with permission, from [10]. 
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Fig. Error! Reference source not found..6. HEVC efficiency for LF image People3 

 

 

 

Fig. Error! Reference source not found..7. HEVC efficiency for LF image RedFlowers4 

 
3 © 2017 IEEE. Reprinted, with permission, from [10]. 
4 © 2017 IEEE. Reprinted, with permission, from [10]. 
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In Figs. Error! Reference source not found..5, Error! Reference source not 

found..6, and Error! Reference source not found..7, it is clear that organizing the 

LF data as pseudo video sequences provide much better performance than still im-

ages, as expected. This can also be seen in Table 6.2, where the coding efficiency 

Table Error! Reference source not found..2 RD coding performance comparison for the et of LF 

images in Table Error! Reference source not found..1 

 Light Field 

(Lenslet) 
AllViews LF Filled 

Raster Video 

(LowDelay B) 

Spiral Video  

LowDelay B) 

Sequences  bpp PSNR bpp PSNR bpp PSNR bpp PSNR bpp PSNR 

QP = 12 

BottleCaps  3,003 51,03 1,556 51,53 1,732 50,97 0,787 48,00 0,814 48,03 

Bottles  2,406 51,58 1,326 51,89 1,246 51,61 0,484 48,85 0,511 48,85 

Corridor  2,524 51,62 1,699 51,74 1,506 51,62 0,637 48,57 0,670 48,59 

Euro  2,868 51,37 2,254 51,43 1,888 51,41 0,843 48,00 0,906 48,02 

Garden  2,688 51,65 2,372 51,99 1,523 51,61 0,902 48,32 0,970 48,33 

Park  2,967 51,31 2,155 51,60 1,826 51,35 0,818 48,03 0,891 48,02 

People  2,263 51,69 1,388 51,88 1,160 51,77 0,471 48,92 0,492 48,92 

RedFlowers  3,009 51,25 4,286 51,43 1,935 51,37 1,431 47,54 1,538 47,53 

SkinSpots  3,315 50,94 2,225 51,34 2,074 51,04 0,895 47,60 0,945 47,63 

TrashCans  3,394 51,08 1,518 51,60 2,477 50,99 0,750 48,21 0,750 48,22 

TwoBottles  2,811 51,24 1,382 51,74 1,391 51,33 0,584 48,42 0,610 48,45 

WhiteFlowers  3,250 51,06 3,248 51,25 2,129 51,13 1,167 47,60 1,252 47,62 

           

QP = 37 

BottleCaps  0,309 32,99 0,020 40,43 0,022 39,30 0,002 39,65 0,002 39,80 

Bottles  0,244 34,03 0,079 37,95 0,033 39,23 0,003 36,59 0,003 37,09 

Corridor  0,239 33,92 0,094 36,20 0,045 37,79 0,004 34,82 0,005 35,43 

Euro  0,197 33,25 0,075 34,77 0,054 36,74 0,005 33,57 0,006 33,80 

Garden  0,249 33,86 0,141 34,65 0,048 37,89 0,004 33,40 0,004 33,78 

Park  0,352 33,16 0,117 35,69 0,039 36,95 0,004 34,27 0,005 34,83 

People  0,196 34,49 0,077 37,60 0,029 39,60 0,003 36,25 0,003 36,91 

RedFlowers  0,302 32,52 0,506 30,74 0,106 35,95 0,014 29,14 0,019 29,45 

SkinSpots  0,402 32,27 0,025 36,39 0,044 36,68 0,002 35,59 0,002 35,77 

TrashCans  0,341 32,18 0,064 38,53 0,106 35,02 0,005 37,03 0,006 37,48 

TwoBottles  0,382 34,13 0,043 38,96 0,018 40,31 0,002 37,72 0,002 38,18 

WhiteFlowers  0,343 32,68 0,243 32,89 0,076 36,23 0,006 31,46 0,007 32,05 
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is shown for the whole set of LF images. Table 6.2 reports the results obtained 

with quantization parameter QP=12 and QP = 37. As expected from the results 

above, the pseudo-video formats (Raster and Spiral) achieve lower bitrates in 

comparison with the other formats using the Still Image Profile. The Raster and 

Spiral scan patterns produce very similar results, which suggests that either one 

can be used without significant differences in performance. 

The results of this simulation study lead to the conclusion that high efficiency 

coding of LFs is not only dependent of the encoder configuration but also requires 

appropriate data re-arrangement in order to obtain the best performance. The same 

coding configuration produce quite different results when using the same input da-

ta arranged in a different format. There are also intrinsic signal characteristics of 

each microlens, such as the amount of high frequency content, that influence the 

relative coding performance of the various methods. Further research is necessary 

to find the best LF pre-processing algorithms that are capable of guaranteeing a 

consistent relative performance across all coding configurations, for any type of 

content.  

7.4 Scalable Light Field Coding for Backward Display 

Compatibility 

In addition to the challenge of proposing efficient coding solutions for handling 

the huge amount of data involved in LF application systems, another important is-

sue when trying to deliver LF content to end-users is to provide backward compat-

ibility with existing legacy receivers (either 2D, or current stereo or multiview). 

Dealing with this specific concern is an essential requirement for enabling faster 

deployment of new LF imaging application services in the consumer market. For 

enabling this, an efficient scalable LF coding approach is then desirable where by 

decoding only the adequate subsets of the scalable stream, 2D or 3D compatible 

video decoders can present an appropriate version of the LF content. Regarding 

the scalable coding solution, although simulcast is a possible approach, the band-

width consumption may not be acceptable, thus demanding a more efficient scala-

ble coding solution. 

In this context, a display scalable architecture for LF coding is presented in 

Section 7.4.1 (as firstly proposed in [13]) using a three hierarchical layer approach 

so as to accommodate from the end-user who wants to have a simple 2D version 

of the LF content to be visualized in a conventional 2D display; to the end-user 

who wants have a more immersive and interactive visualization by using a more 

advanced LF display technology, such as an integral imaging display [14–17] or a 

head mounted display for augmented and virtual reality [18, 19]. As discussed in 

Section 7.4.2, a pre-processing is necessary for generating the content for each hi-

erarchical layer before coding. Based on this hierarchical coding architecture, Sec-

tion 7.4.3 presents an Light Field (LF) enhancement codec to efficiently encode 
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the LF content in the highest layer [20]. Finally, Section 7.4.4 performs the evalu-

ation of the presented display scalable codec. 

7.4.1 Display Scalable Coding Architecture 

A Display Scalable Architecture for Light Field Coding (DS-LFC) with a three-

layer approach is used here as illustrated in Fig. 6.8. As can be seen, each layer of 

this scalable coding architecture represents a different level of display scalability: 

• Base Layer (2D Layer) – The base layer represents a single 2D view, which 

can be used to deliver a 2D version of the LF content to 2D displays devices. 

This 2D view is then coded with conventional HEVC [21] intra coder to pro-

vide backward compatibility with a state-of-the-art coding solution. Then, the 

reconstructed 2D view is used for coding the higher layers, as illustrated in Fig. 

6.8. 

• First Enhancement Layer (Stereo or Multiview Layer) – This layer repre-

sents the necessary information to obtain an additional view (representing a ste-

reo pair) or various additional views (representing multiview content). This is 

to allow stereo and autostereoscopic devices to play versions of the same LF 

content. The content in this layer can be then encoded by using a standard ste-

reo or multiview coding solution [22–25], and the reconstructed 2D views are 

then made available to be used for coding of the LF enhancement layer (Fig. 

6.8). In this work, the multiview extension of HEVC, MV-HEVC [25], is 

adopted. With these solutions [22–25], inter-view prediction can be used to im-

prove the coding efficiency between the base layer and the first enhancement 

 

Fig. Error! Reference source not found..8 Scalable light field coding architecture using three hi-

erarchical layers for backward display compatibility. The novel and modified blocks are high-

lighted in blue shaded blocks. 
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layer, as well as within the views in the first enhancement layer. However, it 

should be noticed that efficient prediction mechanisms between the base layer 

and the first enhancement layer and within the first enhancement layer are not 

addressed in this chapter since these cases have been extensively studied in the 

context of MVC [22], and in the 3D video coding extensions of the HEVC 

[25]. For a good review of these 3D video coding solutions, the reader can refer 

to [22–25] as well as Chapters 3 and 4. 

• Second Enhancement Layer (LF Enhancement Layer) – This layer repre-

sents the additional data needed to support full LF display. The content in the 

LF enhancement layer is then encoded by using the LF enhancement coding so-

lution presented in Section 7.4.3, as depicted in Fig. 6.8. 

High compression efficiency is still an important requirement for the scalable 

coding architecture presented in this section. In this context, the scalable coding 

solution should be able to improve the Rate Distortion (RD) coding performance 

compared to independent compression of the three different layers (the simulcast 

case). 

7.4.2 Hierarchical Content Generation 

Generating 2D and 3D multiview content from LF content basically means pro-

ducing various 2D views with different viewing angles. For this, a particular ren-

dering algorithm needs to be chosen and some information about the acquisition 

process – such as the MI resolution and MLA structure (i.e., the array packing 

scheme and the microlens shape) – needs to be known at both encoder and decod-

er sides. 

In the work presented in this section, the rendering algorithm proposed in [26] 

and referred to as Basic Rendering is adopted for this hierarchical content genera-

tion. The idea behind these algorithms is to combine suitable patches from each 

MI to properly compose a 2D view image. Then, as explained in [26], the process 

of generating a 2D view image can be controlled by the following two main pa-

rameters: 

• Patch Size – It is possible to control the plane of focus in the generated 2D 

view image (i.e., which objects will appear in sharp focus) by choosing a suita-

ble patch size to be extracted from each MI. Therefore, during a creative post-

production process, a proper patch size will be selected for generating the con-

tent for the first two hierarchical layers. It is worth noting that this decision is 

limited to the available depth range in the captured LF image. 

• Patch Position – By varying the relative position of the patch in the MI, it is 

possible to generate multiple 2D views with different horizontal and vertical 

viewing angles (i.e., different scene perspectives). It is also worthwhile to note 

that this choice is also made in a creative manner, and the number of views and 
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their corresponding positions may be based on a target type of display device 

that will be used for visualization. 

In other words, there is a large degree of freedom when defining how to gener-

ate the content for the base and first enhancement layers. Therefore, the perfor-

mance of the scalable coding solution shall be analyzed while taking into account 

the parameters that control this process. 

7.4.3 Efficient LF Enhancement Layer Coding Solution 

Since the lower layers of the proposed DS-LFC codec presented in Section 7.4.1 

are based on the HEVC [21] standard (or on its extension for multiview coding 

MV-HEVC), the LF enhancement encoder proposed in this section is also based 

on the hybrid coding techniques of HEVC, as illustrated in Fig. 6.8, so as to modi-

fy as few aspects of the underlying architecture as possible. Notice that, although 

the LF enhancement layer encoder presented in Fig. 6.8 targets LF still image cod-

ing, it can be also extended for scalable LF video coding by including also the 

HEVC inter-frame coding. 

The main blocks of the proposed HEVC-based LF enhancement encoder (high-

lighted in Fig. 6.8) are explained in the following. 

7.4.3.1 Self-Similarity (SS) Prediction 

Since the LF content in the highest enhancement layer presents a significant  

The SS prediction [27–29] (Fig. 6.8) is used to exploit the redundancy within the 

highest enhancement layer and to improve coding efficiency. As can be seen in 

Fig. Error! Reference source not found..9a, a significant cross-correlation exists 

between neighbor MIs in the LF image captured with a LF camera. 

Hence, the SS prediction is a spatial displacement compensated prediction [31] 

which makes use of a block-based matching algorithm to estimate the prediction 

block with the highest similarity (according to appropriate criteria) to the current 

block in the previously coded and reconstructed area of the current picture itself 

(the SS reference, as seen in Fig. Error! Reference source not found..9b). This 

predictor block can be generated from a single candidate block [27, 28] or from a 

combination of two different candidate blocks [29, 31] (Fig. Error! Reference 

source not found..9b). Hence, the relative position between the current and the 

‘best’ candidate block(s) is signaled by one of two SS vector(s), 𝒗𝑖, (Fig. Error! 

Reference source not found..9b). 
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As a result of the SS prediction, the residual information and the SS vector(s) 

are coded and sent to the decoder. 

7.4.3.2 Inter-Layer (IL) Prediction 

An IL prediction mode can also be used to further improve the LF enhancement 

coding efficiency by removing redundancy between the LF content and its stereo 

or multiview version from the enhancement layer underneath. 

For this, an Inter-Layer Reference (ILR) is constructed by using information 

from the lower layers. This ILR picture can be then used as new a reference frame 

for employing an IL compensated prediction (see Fig. 6.8) when encoding the LF 

image. To build an ILR picture, the following information is needed: 

• Set of 2D Views – The set of reconstructed 2D views obtained by decoding the 

bitstream in the lower layers is available in the decoded picture buffer, as de-

picted in Fig. 6.8; 

• Acquisition Parameters – These parameters comprise information from the 

LF capturing process (such as the MI resolution and the MLA structure) and al-

so information from the 2D view generation process (i.e., size and position of 

the patches). As explained in Section 7.4.3.4, this information has to be con-

veyed along with the bitstream to be available at the decoding side. 

Therefore, two steps are distinguished when generating an ILR picture, which 

are explained in the following. 

 
5 Reprinted from [30], Copyright (2017), with permission from Elsevier. 

  
(a) (b) 

Fig. Error! Reference source not found..9 SS prediction: (a) inherent MI cross-correlation in a 

light field image neighborhood; and (b) SS estimation process (example of a second candidate 

block and SS vector for bi-prediction is shown in dashed blue line). (From [30]5.) 
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7.4.3.2.1 Patch Remapping 

Although most of the LF information is discarded when rendering each view in 

the hierarchical layer generation block in Fig. 6.8 (see Section 7.4.2), it is still 

possible to re-organize the reconstructed view texture information into its original 

positions in the LF image. This is the purpose of the patch remapping step. The 

input for this step is the coded and reconstructed views from the two lower layers, 

as well as the acquisition parameters used for acquiring these views at the encoder 

side. 

The patch remapping simply corresponds to an inverse process of the rendering 

algorithm used Section 7.4.2. More specifically, it corresponds to an inverse map-

ping (referred to here as remapping) of the patches from all rendered and recon-

structed views to their original positions in the LF image, as illustrated in Fig. 

6.10a. A template for the LF image assembles all patches, and the output is re-

ferred to as the sparse ILR picture, as seen in Fig. 6.11a. 

 

 

(a) (b) 

Fig. Error! Reference source not found..10 The process to generate an ILR picture to be used in 

the proposed IL prediction: (a) Patch remapping step; and (b) MI refilling step 
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7.4.3.2.2 MI Refilling 

This step aims at emulating the significant cross-correlation existing between 

neighboring MIs so as to fill the holes in the sparse ILR picture (built in the previ-

ous step) as much as possible. 

Since there is no information about the disparity/depth between objects in 

neighboring MIs, the disparity is defined in a patch-based manner, by using the 

patch size parameter that was used in the hierarchical layer generation block (see 

Section 7.4.2). An illustrative example of this process is shown in Fig. 6.10a for 

only three neighboring MIs in the sparse ILR picture. As can be seen, for each MI 

in the sparse ILR picture, an available set of pixels (see Fig. 6.10a) is copied to a 

suitable position in a neighboring MI that is shifted by the patch size. Additional-

ly, the number of neighboring MIs where the patch may be copied to depends on 

the size of the MI and the patch size. Finally, the output of the process is the ILR 

picture (see Fig. 6.11b). 

It is worthwhile to notice that there are still opportunities to enhance the pro-

posed IL prediction (notably, the MI refilling step) and to enlarge the applicability 

of the proposed DS-LFC solution. A possibility is to incorporate supplementary 

data (such as depth, ray-space, and 3D model data) into the scalable bitstream. 

This solution will be further studied in future work. 

7.4.3.3 Intra Prediction 

HEVC Intra prediction is available as an alternative prediction when selecting the 

most efficient mode for encoding a CB in the LF enhancement layer (Fig. 6.8). 

The decision between the different available prediction modes is made in an Rate 

Distortion Optimization(RDO) manner [32] as in conventional HEVC [21]. 

   
(a) (b) (c) 

Fig. Error! Reference source not found..11 Illustrative example of a portion of an ILR built for 

the LF image Plane and Toy (frame 123): (a) the sparse ILR picture; (b) the corresponding com-

plete ILR constructed using the MI refilling algorithm; and (c) the corresponding portion of the 

original LF image (which is coded in the LF enhancement layer) 
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7.4.3.4 Header Formatting & CABAC 

Additional high-level syntax elements are carried through the scalable bitstream to 

support this new type of scalability. These are basically: i) acquisition parameters 

that are used to generate the content for the lower layers and are also necessary to 

build the ILR picture (i.e., MI resolution, MLA structure, size and position of the 

patches); and ii) dependency information for signaling the use of the novel refer-

ence pictures (SS reference and ILR). Finally, residual and prediction mode sig-

naling data are entropy coded using CABAC. 

7.4.4 Performance Assessment 

To evaluate the performance of the proposed DS-LFC codec, the following test 

conditions were considered: 

• Light field test images – Six LF images with different spatial and MI resolu-

tions are considered to achieve representative RD results. These are (see Fig. 

6.12): Fredo, Seagull, Laura, Demichelis Spark (first frame of a sequence with 

identical name), Robot 3D, and Plane and Toy (frame number 123 from a se-

quence with identical name). The first three images are available in [33] and 

the remaining images in [34]. The original tested images were rectified to have 

all MIs with integer number of pixels, and they were then converted to the 

Y’CbCr 4:2:0 color format. 



19 

• Hierarchical Content Generation - To generate the content for the 2D, stereo 

or multiview layers, the six LF test images were processed using the algorithm 

Basic Rendering [26] (Section 7.4.2). In this process, a set of 9×1 regularly 

spaced 2D views were generated – one for the base layer and the remainder for 

the first enhancement layer. Additionally, the patch size was chosen to repre-

sent the case where the main object of the scene is in focus. Based on the above 

decisions, the chosen patch sizes and positions for each LF test image are 

summarized in Table 6.3. 

• Codec Software Implementation – For these tests, the reference software for 

the MV-HEVC extension version 12.0 [35] is used as the base software for im-

plementing the proposed DS-LFC codec. 

• Coding Configuration – The results are presented for four QP values (22, 27, 

32, and 37). The same QP value was used for coding all hierarchical layers. In 

the proposed DS-LFC codec, all the views in the lower layers are independent-

ly encoded as intra frames. Notice that, other configurations for encoding the 

content in the first layer are still possible, notably, by enabling inter-view pre-

diction (coding as P or B frames). However, due to the large number of possi-

ble test condition combinations, the following sections will focus on analyzing 

the influence of varying the parameters for generating the content for the lower 

layers in the performance of the proposed IL prediction. Following this, the LF 

enhancement layer is encoded as an inter B frame. 

• Search Strategy – Considering both IL and SS prediction, a search range value 

of 128 is adopted for all tested LF images. The full search algorithm with the 

HEVC quarter-pixel accuracy is also used. 

   
(a) Fredo 

7104 × 5328  

𝑀𝐼𝑟𝑒𝑠𝑜𝑙 = 74 × 74 

(b) Seagull 

7104 × 5328 
𝑀𝐼𝑟𝑒𝑠𝑜𝑙 = 74 × 74  

(c) Laura 

7104 × 5328 
𝑀𝐼𝑟𝑒𝑠𝑜𝑙 = 74 × 74  

   
(d) Demichelis Spark 

2850 × 1558 
𝑀𝐼𝑟𝑒𝑠𝑜𝑙 = 38 × 38  

(e) Robot 3D 

1904 × 1064 
𝑀𝐼𝑟𝑒𝑠𝑜𝑙 = 28 × 28  

(f) Plane and Toy 

1904 × 1064 
𝑀𝐼𝑟𝑒𝑠𝑜𝑙 = 28 × 28  

Fig. Error! Reference source not found..12 Example of a central view rendered from each light 

field test image (with the corresponding characteristics below each image) 
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• RD Evaluation – For evaluating the RD performance of the proposed LF en-

hancement layer encoder, the distortion, in terms of PSNR, of the reconstructed 

LF image in the LF enhancement layer is considered. The rate is presented in 

bits per pixel (bpp), which is calculated as the total number of bits needed for 

encoding all scalable layers, divided by the number of pixels in the LF raw im-

age. Therefore, the BD [36] results are presented in terms of the luma PSNR of 

the reconstructed LF image in the LF enhancement layer and the corresponding 

rate in terms of bpp values. 

• Additional Objective Quality Metrics – Additionally, to analyze the perfor-

mance in terms of the quality for views synthesized from the reconstructed con-

tent in the LF enhancement layer, the distortion is also measured in terms of 

average PSNR and SSIM values calculated for a set of 3×3 views rendered 

from viewpoint positions equally distributed in horizontal and vertical direc-

tions. This metric is referred to here as PSNR3×3Views and SSIM3×3Views. These 

views are different than the views rendered for the lower layers (except for the 

central view). The standard deviation for each of these metrics is also used as a 

dispersion evaluation of the presented average values. For rendering the views, 

the same algorithm used for generating content for each hierarchical layer is 

used (i.e., Basic Rendering or Weighted Blending [26]). 

The next subsections present and analyze the performance of the proposed DS-

LFC solution and compare it to the following solutions: 

• DS-LFC (Simulcast) – This scalable codec corresponds to the benchmark for 

the simulcast case, where the content from each hierarchical layer is coded in-

dependently with the MV-HEVC standard using “All Intra, Main” configura-

tion [37]. 

• DS-LFC (SS Simulcast) – In this case, the content from the LF enhancement 

Layer was coded with the DS-LFC codec but only enabling the SS prediction 

and conventional HEVC Intra prediction (without IL prediction). Hence, not 

only local spatial prediction is exploited (with intra prediction) but also the 

Table Error! Reference source not found..3 Test Conditions – Patch sizes and positions (in pix-

els) for generating content for the lower hierarchical layers using the DS-LFC solution (for each 

light field test image in Fig. Error! Reference source not found..12) 

Test Image 
Patch Size 

(Focus Plane) 

Patch Positions 

(View’s Perspectives) 

(a) 10 {(-24,0), (-18,0), (-12,0), (-6,0), (0,0), (6,0), (12,0), (18,0), (24,0)} 

(b) 9 {(-24,0), (-18,0), (-12,0), (-6,0), (0,0), (6,0), (12,0), (18,0), (24,0)} 

(c) 10 {(-24,0), (-18,0), (-12,0), (-6,0), (0,0), (6,0), (12,0), (18,0), (24,0)} 

(d) 12 {(-8,0), (-6,0), (-4,0), (-2,0), (0,0), (2,0), (4,0), (6,0), (8,0)} 

(e) 4 {(-8,0), (-6,0), (-4,0), (-2,0), (0,0), (2,0), (4,0), (6,0), (8,0)} 

(f) 4 {(-8,0), (-6,0), (-4,0), (-2,0), (0,0), (2,0), (4,0), (6,0), (8,0)} 
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non-local spatial correlation between neighbor MIs (with SS prediction). Since 

when using the SS prediction each scalable layer is still coded independently 

(from each other), the proposed DS-LFC (SS) can be seen as an alternative 

simulcast coding solution. 

• HEVC (Single Layer) – In this case, the entire LF image is encoded into a 

single layer with HEVC using the Main Still Picture profile [21]. Since the 

proposed DS-LFC codec provides an HEVC-compliant base layer, this solution 

is used as the benchmark for non-scalable LF coding, and the resulting bit sav-

ings are compared to the proposed scalable LF coding solution so as to analyze 

the cost (in terms of RD performance) of supporting display scalability in the 

bitstream. 

7.4.4.1 Overall DS-LFC RD Performance 

To assess the performance of the proposed DS-LFC codec, Table 6.4 presents the 

RD performance in terms of the Bjøntegaard Delta in PSNR (BD-PSNR) and rate 

(BD-BR) [36] regarding the benchmarks solutions for all test images in Fig. 6.12. 

From these results, the following conclusions can be derived: 

• Comparison with simulcast cases – The RD performance of the proposed 

DS-LFC is significantly better than the DS LFC (Simulcast) for all tested im-

ages, with average BD gains of 2.05 dB or 33.71 % of bit savings (see Table 

6.4). The gains are much more expressive for test images with higher MI reso-

lution, where the BD gain goes up to 3.00 dB with 44.56 % of bit savings (for 

Seagull). These gains show the efficiency of the predictive coding tools used in 

the LF enhancement encoder. Moreover, comparing the DS-LFC (Proposed) 

solution with the DS-LFC (SS Simulcast), improved RD performance can be 

attained by taking advantage of the redundancy in all domains (local and non-

local spatial domain, and inter-layer domain), leading to average BD gains of 

0.35 dB or -6.56 %. 

Table Error! Reference source not found..4 BD-PSNR and BD-BR performance of the proposed 

DS-LFC codec against the benchmarks (for each test image) 

Test Image 
DS LFC (Simulcast) DS LFC (SS Simulcast) HEVC (Single Layer) 

PSNR [dB] BR [%] PSNR [dB] BR [%] PSNR [dB] BR [%] 

(a) 2.85 -41.32 0.44 -8.52 2.08 -32.27 

(b) 3.00 -44.56 0.43 -9.08 2.40 -37.90 

(c) 2.59 -33.05 0.35 -5.86 1.32 -19.99 

(d) 1.14 -29.04 0.26 -7.56 -0.19 6.80 

(e) 1.18 -13.02 0.26 -3.12 -0.56 7.54 

(f) 1.53 -20.58 0.34 -5.22 0.32 -5.13 

Average 2.05 -33.71 0.35 -6.56 0.90 -13.49 
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• Comparison with HEVC (Single Layer) – As shown in Table 6.4, the pro-

posed DS-LFC solution presents better RD performance, in terms of average 

BD gains (0.90 dB and 13.49 %), than the non-scalable HEVC (Single Layer), 

showing that it is possible to support a display scalable bitstream with no addi-

tional bitrate cost. Moreover, for LF images with larger resolution and MI siz-

es, it is even possible to achieve significant better RD performance with the 

proposed DS-LFC (with BD gains of up to 2.40 dB and 37.90 % of bit sav-

ings). On the other hand, for some LF images with smaller resolutions and MI 

sizes, the scalability is allowed at a cost of some compression efficiency penal-

ty (up to -0.56 dB and 7.54 % of penalty). However, it is important to notice 

that the worse RD performance of the proposed DS-LFC solution is, in this 

case, also due to the set of 9×1 views that are independently encoded as intra 

frames in the lower layers, instead of enabling the inter-view prediction to im-

prove the RD performance. 

7.4.4.2 Quality of Rendered Views 

To assess the performance of the proposed scalable coding architecture regarding 

the quality of rendered views, the RD performance of the DS-LFC (Proposed) is 

here presented in terms of the PSNR3×3Views and SSIM3×3Views metrics and com-

pared to the DS-LFC (Simulcast) and HEVC (Single Layer) solutions. The results 

are illustrated in Fig. 6.13 and Fig. 6.14, respectively, for the worst (i.e., for test 

image Robot 3D) and best case (i.e., for test image Seagull) in terms of DS-LFC 

(Proposed) RD coding gains. 

It was observed that there is a consistent relative RD performance gain using 

the three different quality metrics. In all cases, the proposed DS-LFC outperforms 

the simulcast cases with significant gains, showing the advantage of using the 

proposed IL prediction for improving the RD performance. In terms of the 

PSNR3×3Views metric (Fig. 6.14a), the RD gains (using the BD metric [36]) of the 

DS-LFC (Proposed) solution go up to 2.79 dB or 14.82 % compared to DS-LFC 

(Simulcast) and 2.48 dB or 38.62 % with respect to HEVC (Single Layer). In the 

worst case (Fig. 6.14a), supporting a display scalable bitstream using the DS-LFC 

(Proposed) solution results in a RD performance penalty (using the BD metric 

[36]) of 0.37 dB or 4.89 % of bit saving loss. 

Regarding the standard deviation values presented in Fig. 6.13 and Fig. 6.14, a 

more careful analysis of the PSNR3×3Views/SSIM3×3Views results for each rendered 

views showed that views rendered from viewpoint positions near to the border of 

the MIs presented larger variation in PSNR/SSIM values. These variations are 

more significant in the case of Demichelis Spark, Robot 3D (see Fig. 6.13) and 

Plane and Toy mainly due to the increased vignetting that appears in these images, 

at the border of each MI. 
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7.5 Sparse Set of Micro-Lens Images and Disparities for an 

Efficient Scalable Coding of Light Field Images 

The information in lightfield images has a high degree of correlation, as its el-

ements are projections captured from a single scene out of different angles for 

many positions. In the previous sections of this chapter, this correlation has been 

modelled in different ways to enable efficient compression. In the present section, 

the correlation is described by introducing disparity maps in a similar way as 

depth maps. It is based on a number of articles that describe and evaluate com-

pression of LF that use disparity maps [38, 39] and multi-hypothesis intra predic-

tion [31, 40] for compression of LF images, both from focused as well as conven-

tional LF cameras [41]. 

  
(a) (b) 

Fig. Error! Reference source not found..13 RD performance for a set of rendered views from 

image Robot 3D (Fig. Error! Reference source not found..12e) in terms of: (a) PSNR3×3Views ver-

sus bpp; and (b) SSIM3×3Views versus bpp 

  
(a) (b) 

Fig. Error! Reference source not found..14 RD performance for a set of rendered views from 

image Seagull (Fig. Error! Reference source not found..12b) in terms of: (a) PSNR3×3Views versus 

bpp; and (b) SSIM3×3Views versus bpp 
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The use of disparity maps to describe the correlation between MIs is particular-

ly suitable when the full LF image is produced by focused LF cameras. The reason 

is that each MI constitutes a small perspective view of the observed scene with a 

fair amount of information overlap. The disparities so constitute a shift of pixels 

between adjacent MIs. This pixel shift is also rather small for data coming from 

LF cameras, as the distances between the MIs are small and objects at intermedi-

ate and long distances from the camera.  

The principal reason for using the disparity between MIs can also be found in 

other compression schemes. For example, in an earlier work [42] the scheme ar-

ranges light field images into a grid, images within the grid are recursively pre-

dicted from a few intra coded images. It was later improved by using homography 

transformations to describe the disparities between views in the light field [43]. 

The compression scheme using a sparse set of micro-lens images and dispari-

ties that is presented in this section consists of three parts: 

• Sparse set of MIs – The MIs of the original LF image is decimated by select-

ing every s MI and so constitute a new LF image of sub-sampled MIs. 

• Disparity maps – The disparity between adjacent MIs are described by a best 

value of pixel shift. These disparities so constitute two maps, one describing 

the horizontal, one the vertical pixel shifts. 

• Refinement by inter and intra prediction – The two previous parts, sparse set 

of MIs and the disparity maps, enable the prediction of a LF image of full reso-

lution. The third part contains a refinement to obtain a high quality LF image 

by predicting from this first LF image of full resolution. 

7.5.1 Scalability  

The three parts of the compression scheme constitutes a successive refinement 

of the final LF image reconstruction, and therefore is the basis for a scalability 

built into the compression scheme. The first layer includes a decimated image 

with a lower angular and spatial resolution. Image reconstruction from this layer 

can be useful for thumbnails or presentations on smaller displays and devices with 

lower computational power. The first layer so forms a scalability with respect to 

resolution. The second layer include additional information so that a LF image 

with full spatial and angular resolution can be reconstructed, although with a re-

duced image quality than the original. The second layer so forms a scalability with 

respect to quality. The third layer adds further information that enable a full reso-

lution LF image with the highest possible images quality for the selected compres-

sion ratio. 
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7.5.2 Displacement Intra and Inter Prediction Scheme 

Intra prediction schemes are efficient compression methods for images that con-

tain correlated information. This is demonstrated in Section 7.4, in which self-

similarity prediction for LF images is used. Likewise, the block-copying mode 

(BC) [44] was introduced into the HEVC codec in order to compress screen con-

tents that contain plenty of correlated information. Both self-similarity and 

HEVC-BC are single-hypothesis intra predictions, i.e. they find a best block match 

in the already decoded part of the image and keeps the disparity vector to describe 

the block to be compressed.  

The displacement intra prediction scheme was proposed and investigated in 

[31, 40]. It employs a multi-hypothesis intra prediction by subdividing the already 

decoded part of the image into two areas, from each of which a best candidate for 

block prediction is searched. These two blocks are candidates to be used as a ref-

erence for the intra prediction. There is also a third candidate. It is the mean of two 

blocks found by searching near the first two blocks. The best match of the three 

candidates is used for the intra prediction. The scheme works well both for LF im-

ages from focused as well as conventional LF cameras [41]. 

In the case of light field video coding, i.e. a sequence of LF images, the intra 

prediction scheme can also incorporate predictions from previous or future frames 

to search for good candidates. Thereby, the previous or future frames are loaded 

into the reference picture list, and the rate-distortion optimization of the codec se-

lects the best prediction mode among the inter prediction, the displacement intra 

and the original HEVC intra. The combination of these modes provides more pos-

sible prediction candidates for an efficient compression. See Fig. 6.15. 

 

 

Fig. Error! Reference source not found..15 Multi-hypothesis prediction in displacement intra 

and inter prediction scheme. Each block may be predicted from previously decoded areas in the 

same frame (L0 and L1), and from previous frames (L2). 
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7.5.3 Encoding 

A schematic description of the encoding of LF images using the sparse set of mi-

cro-lens images and disparities is given in Fig. 6.16. The scheme is subdivided in-

to three layers that constitute the basis of the scalability. 

7.5.3.1 Sparse set of micro-lens images 

The decimation of the full LF image into a sparse set of MIs is done by selecting 

every s MI. The input LF image 𝐶(𝑥, 𝑦, 𝑟, 𝑡) is described by 𝑁 × 𝑀 MIs with co-

ordinates (𝑥, 𝑦), each containing 𝑁𝑡 × 𝑀𝑡 pixels with coordinates (𝑟, 𝑡). So, the 

sparse set of MIs is described by 𝐶𝑠(𝑥𝑠, 𝑦𝑠, 𝑟, 𝑡) = 𝐶(𝑥 ∙ 𝑠, 𝑦 ∙ 𝑠, 𝑟, 𝑡), such that 

𝑥𝑠 ∈ [1, 𝑁/𝑠] and 𝑦𝑠 ∈ [1, 𝑀/𝑠]. See Fig. 6.17a.  

The sparse set is itself an LF image with fewer MIs than the original, and there-

fore has a reduced resolution. The scheme is developed for LF images from fo-

cused LF cameras, which has a distribution of angular and spatial information 

throughout the MIs, which means that the decimation implies a reduction in both 

angular and spatial resolution. 

Another consequence of the sparse set being an LF image is that it can be com-

pressed with any codec developed of this kind of data. HEVC was employed in 

[39] but Displacement intra has a better compression performance for LF image 

data and is employed from now on. The compressed sparse set of MIs constitutes 

the first layer of the scalable codec. The encoder further includes a decoding of the 

first sparse set to assure that the other layers receives the same data as the decoder 

on the receiver side. 

 

 

Fig. Error! Reference source not found..16 Schematic overview of decoding for sparse set of 

MIs and disparities. The LF image is encoded in three scalability layers. Layer 1 decimates the 

LF image to fewer number of MIs and is encoded by the displacement intra prediction scheme. 

Layer 2 estimates horizontal and vertical disparities between all adjacent MIs. The two disparity 

maps are encoded using HEVC video coder. Layer 3 uses the reconstruction of layer 1 and 2 as a 

reference in the displacement intra and inter coder. 
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7.5.3.2 Disparity maps 

Disparities between adjacent MIs are estimated on the original LF image. They are 

later used to calculate the disparities from the sparse set of MIs onto the MIs re-

moved from the original LF image. In fact, these disparities can give an estimated 

disparity between any two MIs in the LF image. The disparities are gathered in 

two maps, one for horizontal disparity and one for vertical disparity.  

The disparity map is computed by finding a best disparity for the whole MI and 

its neighbor. The total pixel square error between the MI displaced by the disparity 

and its neighbor is minimized to obtain the disparity value, 

 

( , ) arg min ( , , , ) ( 1, , , )

( , ) arg min ( , , , ) ( , 1, , )

h

v

h h FD

v h FD

D x y C x y r D t C x y r t

D x y C x y r t D C x y r t

= + − +

= + − +
  (6.2) 

where subscript 𝐹 denotes the Frobenius norm, in which the summation is done 

over all 𝑟 and 𝑡. Note that the disparity maps are of sizes (𝑁 − 1) × 𝑀 and 

𝑁 × (𝑀 − 1), respectively.  

These disparity maps can be compressed in many different ways. It is very im-

portant that the decoded values are very accurate in order to retain a good predic-

tion result when reconstructing the full LF image. (See Section 7.5.4 for the recon-

struction process.) In [39], HEVC lossless intra codec was used to assure the 

quality of the disparity maps. However, it turns out that HEVC lossy coding of 

high quality (low QP-value) give higher compression ratio with sufficient quality. 

It was chosen to use HEVC to encode the disparity maps as a sequence of two 

frames, i.e. the first map is encoded by HEVC lossy intra coding and the second is 

  

 

(a) (b)  

Fig. Error! Reference source not found..17 Decimation and reconstruction of sparse set of MIs. 

(a) The sparse set is constructed by selecting every s MI and combing them into a new LF image 

of fewer MIs; here 𝑠 = 4. (b) LF image of high resolution is reconstructed by first placing the 

MIs of the low resolution LF image into their original positions. The remaining MIs are recov-

ered through predictions that use estimated disparities, see Sect. 7.5.3.2. MIs between those MIs 

part of the sparse set averaged using all surrounding MIs (bottom right arrows) 
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inter-frame predicted. The compressed disparity maps constitute the second layer 

of the scalable codec. 

The encoder further includes a decoding of disparity maps and a reconstruction 

of the full LF image starting from the sparse set of MIs and calculated disparities. 

This is done to assure the same data as in the decoder for the process of encoding 

the third layer of the scalable codec. 

7.5.3.3 Refinement by inter and intra prediction 

The sparse set of MIs and the disparity maps can be used to predict the other MIs 

of the full resolution LF image. This LF image reconstruction is as other predic-

tions of lower quality than the original. A straightforward way to have a final LF 

image of high quality would be to compute the residuals with respect to the origi-

nal LF image, and compress the residuals by common arithmetic coding. In [39] 

the LF image reconstruction was instead used as a reference frame in the dis-

placement intra and inter prediction compression as described in Section 7.5.2. 

and the HEVC RDO chooses the block that gives the least error. The residuals of 

this prediction are compressed by the HEVC. The compression by inter and intra 

prediction constitutes the third layer of the scalable codec that produces the full 

resolution LF image of highest quality. 

7.5.4 Decoding and Reconstruction 

The encoded LF image data are decoded and reconstructed in three steps that cor-

responds to the three scalability layers, as schematically depicted in Fig. 6.18.  

The first layer is decoded according to the Disparity intra prediction scheme 

defined in [31]. The result of the decoding is the sparse set of MIs, which itself is 

a low resolution LF image of the original LF image. It can be used to render imag-

es of low spatial resolution and refocusing with limited depth resolution and depth 

of field as the data contain low angular resolution. This is sufficient for thumbnails 

 

 

Fig. Error! Reference source not found..18 Schematic overview of decoding for sparse set of 

MIs and disparities. The decoding is divided into three parts, one for each scalability layer. Each 

layer decoding results in LF images of low resolution (layer 1), high resolution of low quality 

(layer 2), and high resolution and high quality (layer 3). 
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and small displays. 

The second layer is decoded using HEVC and results in the horizontal and ver-

tical disparity maps, 𝐷ℎ(𝑥, 𝑦) and 𝐷𝑣(𝑥, 𝑦). These maps are then used to calculate 

the disparities 𝐷ℎ𝑠(𝑥, 𝑦, 𝑥𝑠 , 𝑦𝑠) and 𝐷𝑣𝑠(𝑥, 𝑦, 𝑥𝑠 , 𝑦𝑠) in (6.3), from the MIs at posi-

tion (𝑥𝑠, 𝑦𝑠) in the sparse set to each MI position (𝑥, 𝑦) of the original LF image, 

i.e. to those not being part of the sparse set. See Fig. 6.18. 
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  (6.3) 

The full LF image of the second layer is reconstructed by shifting the sparse set 

MIs using the disparities 𝐷ℎ𝑠(𝑥, 𝑦, 𝑥𝑠, 𝑦𝑠) and 𝐷𝑣𝑠(𝑥, 𝑦, 𝑥𝑠, 𝑦𝑠), and placing the 

predicted MI in the corresponding position. If the predicted MI has sparse set MIs 

on more than one side, the predicted MIs are averaged. See Fig. 6.17b. In case 

there are still missing areas in a predicted MI, i.e. pixels have not been assigned a 

value in the disparity-based prediction, these areas need to be filled with plausible 

information. For this reason, a dynamic inpainting approach [45] was employed in 

[38] to obtain the final LF image reconstruction of the second layer. This second 

layer LF image reconstruction has full spatial and angular resolution but has a 

lower image quality than when also utilizing the third layer data.  

The third layer data is fed into the decoder of the disparity intra and inter pre-

diction scheme, along with the output from the second layer. The second layer LF 

image is put into the reference list and is used for inter prediction along intra pre-

diction of the third layer data. Thereby, the final, third layer, LF image is recon-

structed that has full resolution and is of high quality. 

7.5.5 Evaluation 

The coding scheme using a sparse set of MIs and disparities was evaluated in [38, 

39]. The lowest bit rate is obtained for a decimation factor of 𝑠 = 2, which led to a 

bit rate reduction of 50% - 60% for different input LF images. Larger decimation 

factors imply a small increase in bit rate. Although it improves the compression 

efficiency by only a small margin relative to the displacement intra prediction, it 

provides a scalable structure for coding and rendering. Compared to HEVC BC 

being a single-hypothesis intra prediction scheme, the sparse set and disparity 

scheme has a reduction of 20% in bit rate. See Fig. 6.19a. 
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The third scalability layer contains a fair amount of the bit budget, especially 

when a very high quality is required for the final LFI. The compression of dispari-

ty maps in the second layer results in a very low number of bits when the lossy 

HEVC coding is employed, whereas the lossless coding use more than 30 times 

more bits. Yet, the second layer the smallest component among the three. See Fig. 

6.19b. 

 
The objective quality of the second layer reconstruction is much lower than that 

of the third and final layer. See Fig. 6.20a. However, the visual quality of the sec-

ond layer reconstruction is fairly good for the central view rendering, even if im-

provements can be seen for the full LFI reconstruction. See Fig. 6.20b. 

7.5.5.1 Remarks 

A compression scheme for LF images from focused LF cameras was presented in 

this section. It uses a sparse set of micro-lens images (MIs) and disparities be-

tween these MIs. The scheme exhibits large compression improvements over both 

HEVC Intra and HEVC BC, and moderate improvements over the multi-

hypothesis prediction scheme Displacement intra. The computational complexity 

is increase. Instead, the scheme introduces scalability in both resolution and quali-

ty, and so provides a flexible reconstruction of images. 

  

 

(a) (b)  

Fig. Error! Reference source not found..19 Efficiency of compression schemes. (a) Rate-

distortion graphs for evaluated compression schemes. The scheme using sparse set and dispari-

ties performs slightly better than the displacement intra scheme and much better than the single-

hypothesis prediction method HEVC-BC and standard HEVC. (b) Distributions of data in the 

three scalability layers. The third layer contains most data, whereas the second layer (disparities) 

is constant independent of QP-value, and contains less than 0.5 % of the total for QP37. Data 

obtained from [38]. 
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7.6 Conclusions 

This chapter covered recent advances in LF coding, based on different approaches. 

After a brief description of LF representation formats, the coding efficiency of 

unmodified standard codecs using various LF image data structures were evaluat-

ed and discussed for different coding configurations.  In general, it was shown that 

LFs in pseudo video format provide higher compression efficiency still image 

formats. Then a scalable LF coding solution, capable of providing compatible sub-

streams to 2D and 3D decoders, is described and evaluated. A display scalable ar-

chitecture was presented, using a three-layered hierarchical approach, which al-

lows to support a wide range of end-user displays, from conventional 2D to 

advanced immersive LF applications (e.g., augmented and immersive virtual reali-

ty). Furthermore, another recent approach to encode LFs, which exploits spatial 

correlation based on the disparity maps and multi-hypothesis prediction is also 

presented and discussed. A sparse set of MIs is used as a first layer, which pro-

vides a small resolution representation of the visual content. Then the second and 

third layers provide higher spatial resolution and the full resolution of the LF, re-

spectively. Such scalable coding schemes also enable seamless interoperability 

with legacy video systems and smooth transition to emerging applications and 

services where LFs are increasingly gaining importance and user acceptance. 
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