44 research outputs found

    Advanced flight computer. Special study

    Get PDF
    This report documents a special study to define a 32-bit radiation hardened, SEU tolerant flight computer architecture, and to investigate current or near-term technologies and development efforts that contribute to the Advanced Flight Computer (AFC) design and development. An AFC processing node architecture is defined. Each node may consist of a multi-chip processor as needed. The modular, building block approach uses VLSI technology and packaging methods that demonstrate a feasible AFC module in 1998 that meets that AFC goals. The defined architecture and approach demonstrate a clear low-risk, low-cost path to the 1998 production goal, with intermediate prototypes in 1996

    Optimizing SIMD execution in HW/SW co-designed processors

    Get PDF
    SIMD accelerators are ubiquitous in microprocessors from different computing domains. Their high compute power and hardware simplicity improve overall performance in an energy efficient manner. Moreover, their replicated functional units and simple control mechanism make them amenable to scaling to higher vector lengths. However, code generation for these accelerators has been a challenge from the days of their inception. Compilers generate vector code conservatively to ensure correctness. As a result they lose significant vectorization opportunities and fail to extract maximum benefits out of SIMD accelerators. This thesis proposes to vectorize the program binary at runtime in a speculative manner, in addition to the compile time static vectorization. There are different environments that support runtime profiling and optimization support required for dynamic vectorization, one of most prominent ones being: 1) Dynamic Binary Translators and Optimizers (DBTO) and 2) Hardware/Software (HW/SW) Co-designed Processors. HW/SW co-designed environment provides several advantages over DBTOs like transparent incorporations of new hardware features, binary compatibility, etc. Therefore, we use HW/SW co-designed environment to assess the potential of speculative dynamic vectorization. Furthermore, we analyze vector code generation for wider vector units and find out that even though SIMD accelerators are amenable to scaling from the hardware point of view, vector code generation at higher vector length is even more challenging. The two major factors impeding vectorization for wider SIMD units are: 1) Reduced dynamic instruction stream coverage for vectorization and 2) Large number of permutation instructions. To solve the first problem we propose Variable Length Vectorization that iteratively vectorizes for multiple vector lengths to improve dynamic instruction stream coverage. Secondly, to reduce the number of permutation instructions we propose Selective Writing that selectively writes to different parts of a vector register and avoids permutations. Finally, we tackle the problem of leakage energy in SIMD accelerators. Since SIMD accelerators consume significant amount of real estate on the chip, they become the principle source of leakage if not utilized judiciously. Power gating is one of the most widely used techniques to reduce leakage energy of functional units. However, power gating has its own energy and performance overhead associated with it. We propose to selectively devectorize the vector code when higher SIMD lanes are used intermittently. This selective devectorization keeps the higher SIMD lanes idle and power gated for maximum duration. Therefore, resulting in overall leakage energy reduction.Postprint (published version

    Avatar: A Framework to Support Dynamic Security Analysis of Embedded Systems’ Firmwares

    Full text link

    Conceptions of Emulation, Migration, and Related Concepts in Digital Preservation Literature

    Get PDF
    This study uses conceptual content analysis to examine and compare definitions of "emulation," "migration," and other key terms in the digital preservation literature. Eight terms were coded and analyzed including "digital object," "authenticity," and "significant properties." Particular attention is paid to definitions of emulation and migration, and arguments for and against each process are reviewed. Within the library science literature there is a significant consensus about the definitions of many of these key terms. However, there still exists some ambiguity and disagreement about how these fundamental concepts should be understood. Those undertaking digital projects must be deliberate about defining these foundational terms before they begin work

    Extending the reach of microprocessors : column and curious caching

    Get PDF
    Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1999.Includes bibliographical references (p. 162-167).by Derek T. Chiou.Ph.D

    Design and implementation of a multi-purpose cluster system NIU

    Get PDF
    Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1999.Includes bibliographical references (p. 209-221).by Boon Seong Ang.Ph.D

    Dynamic Binary Translation for Embedded Systems with Scratchpad Memory

    Get PDF
    Embedded software development has recently changed with advances in computing. Rather than fully co-designing software and hardware to perform a relatively simple task, nowadays embedded and mobile devices are designed as a platform where multiple applications can be run, new applications can be added, and existing applications can be updated. In this scenario, traditional constraints in embedded systems design (i.e., performance, memory and energy consumption and real-time guarantees) are more difficult to address. New concerns (e.g., security) have become important and increase software complexity as well. In general-purpose systems, Dynamic Binary Translation (DBT) has been used to address these issues with services such as Just-In-Time (JIT) compilation, dynamic optimization, virtualization, power management and code security. In embedded systems, however, DBT is not usually employed due to performance, memory and power overhead. This dissertation presents StrataX, a low-overhead DBT framework for embedded systems. StrataX addresses the challenges faced by DBT in embedded systems using novel techniques. To reduce DBT overhead, StrataX loads code from NAND-Flash storage and translates it into a Scratchpad Memory (SPM), a software-managed on-chip SRAM with limited capacity. SPM has similar access latency as a hardware cache, but consumes less power and chip area. StrataX manages SPM as a software instruction cache, and employs victim compression and pinning to reduce retranslation cost and capture frequently executed code in the SPM. To prevent performance loss due to excessive code expansion, StrataX minimizes the amount of code inserted by DBT to maintain control of program execution. When a hardware instruction cache is available, StrataX dynamically partitions translated code among the SPM and main memory. With these techniques, StrataX has low performance overhead relative to native execution for MiBench programs. Further, it simplifies embedded software and hardware design by operating transparently to applications without any special hardware support. StrataX achieves sufficiently low overhead to make it feasible to use DBT in embedded systems to address important design goals and requirements

    Security challenges with virtualization

    Get PDF
    Tese de mestrado, Segurança Informática, Universidade de Lisboa, Faculdade de Ciências, 2009Virtualização é uma palavra em voga no mundo das tecnologias de informação. Com a promessa de reduzir o constante crescimento das infra-estruturas informáticas dentro de um centro de processamento de dados, aliado a outros aspectos importantes como disponibilidade e escalabilidade, as tecnologias de virtualização têm vindo a ganhar popularidade, não só entre os profissionais de tecnologias de informação mas também administradores e directores. No entanto, o aumento da adopção do uso desta tecnologia expõe o sistema a novas preocupações de segurança que normalmente são negligenciadas. Esta tese apresenta o estado da arte das soluções actualmente mais usadas de virtualização de servidores e também um estudo literário dos vários problemas de segurança das tecnologias de virtualização. Estes problemas não são específicos em termos de produto, e são abordados no âmbito de tecnologias de virtualização. No entanto, nesta tese é feita uma análise de vulnerabilidades de duas das mais conhecidas soluções de virtualização: Vmware EXS e Xen. No final, são descritas algumas soluções para melhorar a segurança de acesso a banco online e de comercio electrónico, usando virtualização.Virtualization is a hype word in the IT world. With the promise to reduce the ever-growing infrastructure inside data centers allied to other important concerns such as availability and scalability, virtualization technology has been gaining popularity not only with IT professionals but also among administrators and directors as well. The increasingly rising rate of the adoption of this technology has exposed these systems to new security concerns which in recent history have been ignored or simply overlooked. This thesis presents an in depth state of art look at the currently most used server virtualization solutions, as well as a literature study on various security issues found within this virtualization technology. These issues can be applied to all the current virtualization technologies available without focusing on a specific solution. However, we do a vulnerability analysis of two of the most known virtualization solutions: VMware ESX and Xen. Finally, we describe some solutions on how to improve the security of online banking and e-commerce, using virtualization

    FAT-DBT engine (framework for application-tailorcd, co-designcd dynamic binary translation enginc)

    Get PDF
    Tese de Doutoramento em Engenharia Eletrónica e de Computadores (PDEEC)Dynamic binary translation (DBT) has emerged as an execution engine that monitors, modifies and possibly optimizes running applications for specific purposes. DBT is deployed as an execution layer between the application binary and the operating system or host-machine, which creates opportunities for collecting runtime information. Initially, DBT supported binary-level compatibility, but based on the collected runtime information, it also became popular for code instrumentation, ISA-virtualization and dynamic-optimization purposes. Building a DBT system brings many challenges, as it involves complex components integration and requires deep architectural level knowledge. Moreover, DBT incurs in significant overheads, mainly due to code decoding and translation, as well as execution along with general functionalities emulation. While initially conceived bearing in mind high-end architectures for performance demanding applications, such challenges become even more evident when directing DBT to embedded systems. The latter makes an effective deployment very challenging due to its complexity, tight constraints on memory, and limited performance and power. Legacy support and binary compatibility is a topic of relevant interest in such systems, due to their broad dissemination among industrial environments and wide utilization in sensing and monitoring processes, from yearly times, with considerable maintenance and replacement costs. To address such issues, this thesis intents to contribute with a solution that leverages an optimized and accelerated dynamic binary translator targeting resourceconstrained embedded systems while supporting legacy systems. The developed work allows to: (1) evaluate the potential of DBT for legacy support purposes on the resource-constrained embedded systems; (2) achieve a configurable DBT architecture specialized for resource-constrained embedded systems; (3) address DBT translation, execution and emulation overheads through the combination of software and hardware; and (4) promote DBT utilization as a legacy support tool for the industry as a end-product.A tradução binária dinâmica (TBD) emergiu como um motor de execução que permite a modificação e possível optimização de código executável para um determinado propósito. A TBD é integrada nos sistemas como uma camada de execução entre o código binário executável e o sistema operativo ou a máquina hospedeira alvo, o que origina oportunidades de recolha de informação de execução. A criação de um sistema de TBD traz consigo diversos desafios, uma vez que envolve a integração de componentes complexos e conhecimentos aprofundados das arquitecturas de processadores envolvidas. Ademais, a utilização de TBD gera diversos custos computacionais indirectos, maioritariamente devido à descodificação e tradução de código, bem como emulação de funcionalidades em geral. Considerando que a TBD foi inicialmente pensada para sistemas de gama alta, os desafios mencionados tornam-se ainda mais evidentes quando a mesma é aplicada em sistemas embebidos. Nesta área os limitados recursos de memória e os exigentes requisitos de desempenho e consumo energético,tornam uma implementação eficiente de TBD muito difícil de obter. Compatibilidade binária e suporte a código de legado são tópicos de interesse em sistemas embebidos, justificado pela ampla disseminação dos mesmos no meio industrial para tarefas de sensorização e monitorização ao longo dos tempos, reforçado pelos custos de manutenção adjacentes à sua utilização. Para endereçar os desafios descritos, nesta tese propõe-se uma solução para potencializar a tradução binária dinâmica, optimizada e com aceleração, para suporte a código de legado em sistemas embebidos de baixa gama. O trabalho permitiu (1) avaliar o potencial da TBD quando aplicada ao suporte a código de legado em sistemas embebidos de baixa gama; (2) a obtenção de uma arquitectura de TBD configurável e especializada para este tipo de sistemas; (3) reduzir os custos computacionais associados à tradução, execução e emulação, através do uso combinado de software e hardware; (4) e promover a utilização na industria de TBD como uma ferramenta de suporte a código de legado.This thesis was supported by a PhD scholarship from Fundação para a Ciência e Tecnologia, SFRH/BD/81681/201
    corecore