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Abstract

Today, the interface between a high speed network and a high performance com-
putation node is the least mature hardware technology in scalable general purpose
cluster computing. Currently, the one-interface-fits-all philosophy prevails. This ap-
proach performs poorly in some cases because of the complexity of modern memory
hierarchy and the wide range of communication sizes and patterns. Today's mes-
sage passing NIU's are also unable to utilize the best data transfer and coordination
mechanisms due to poor integration into the computation node's memory hierarchy.
These shortcomings unnecessarily constrain the performance of cluster systems.

Our thesis is that a cluster system NIU should support multiple communica-
tion interfaces layered on a virtual message queue substrate in order to streamline
data movement both within each node as well as between nodes. The NIU should
be tightly integrated into the computation node's memory hierarchy via the cache-
coherent snoopy system bus so as to gain access to a rich set of data movement
operations. We further propose to achieve the goal of a large set of high performance
communication functions with a hybrid NIU micro-architecture that combines custom
hardware building blocks with an off-the-shelf embedded processor.

These ideas are tested through the design and implementation of the StarT-
Voyager NES, an NIU used to connect a cluster of commercial PowerPC based SMP's.
Our prototype demonstrates that it is feasible to implement a multi-interface NIU at
reasonable hardware cost. This is achieved by reusing a set of basic hardware building
blocks and adopting a layered architecture that separates protected network sharing
from software visible communication interfaces. Through different mechanisms, our
35MHz NIU (140MHz processor core) can deliver very low latency for very short
messages (under 2ps), very high bandwidth for multi-kilobyte block transfers (167
MBytes/s bi-directional bandwidth), and very low processor overhead for multi-cast
communication (each additional destination after the first incurs 10 processor clocks).

We introduce the novel idea of supporting a large number of virtual message
queues through a combination of hardware Resident message queues and firmware
emulated Non-resident message queues. By using the Resident queues as firmware



controlled caches, our implementation delivers hardware speed on the average while
providing graceful degradation in a low cost implementation.

Finally, we also demonstrate that an off-the-shelf embedded processor comple-
ments custom hardware in the NIU, with the former providing flexibility and the
latter performance. We identify the interface between the embedded processor and
custom hardware as a critical design component and propose a command and com-
pletion queue interface to improve the performance and reduce the complexity of
embedded firmware.

Thesis Supervisor: Arvind
Title: Johnson Professor of Computer Science

Thesis Supervisor: Larry Rudolph
Title: Principal Research Scientist
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Chapter 1

Introduction

Today, the interface between a high speed network and a high performance com-

putation node is the least mature hardware technology in scalable general purpose

cluster computing. Currently, the one-interface-fits-all philosophy prevails. This ap-

proach performs poorly in some cases because of the complexity of modern memory

hierarchy and the wide range of communication sizes and patterns. Today's mes-

sage passing NIU's are also unable to utilize the best data transfer and coordination

mechanisms due to poor integration into the computation node's memory hierarchy.

These shortcomings unnecessarily constrain the performance of cluster systems.

Our thesis is that a cluster system NIU should support multiple communication

interfaces layered on a virtual message queue substrate in order to streamline data

movement both within each node as well as between nodes. The NIU should be tightly

integrated into the computation node's memory hierarchy via the cache-coherent sys-

tem bus so as to gain access to a rich set of data movement operations. We further

propose to achieve the goal of a large set of high performance communication func-

tions with a hybrid NIU micro-architecture that combines a set of custom hardware

basic building blocks with an off-the-shelf embedded processor.

Together, these features provide a cost effective solution for running mixed work-

loads encompassing parallel, distributed client-server, and sequential applications.

This means achieving both good overall system utilization and high single application

performance across applications with widely different communication requirements.

13



Our proposed NIU architectural features address the seemingly opposing require-

ments of high performance, multiple communication interface support while catering

to system-level issues of sharing, protection, and job scheduling flexibility.

1.1 Motivation

Connecting a cluster of commercial Symmetric Multi-processors with a high perfor-

mance network is an attractive way of building large general purpose computation

platforms. By exploiting existing high volume commercial hardware and software as

the building blocks, this approach both reduces cost and provides an evolutionary

system upgrade path. It also offers other advantages such as modular expansion and,

with appropriate system software, higher availability because of multiple instances of

similar resources.

The communication system is a key component of a cluster system and should

have, the following attributes. Realizing these goals will require support in the NIU..

" A general purpose cluster system will encounter applications with a range of

communication requirements, e.g. fine and coarse grain communication, and

shared memory and message passing styles of communication. For both compat-

ibility and performance reasons, it is important that a cluster system supports

a range of communication interfaces.

" High performance is important for the system to be able to support fine grain

parallel processing and aggressive resource sharing across the cluster. Ideally,

inter-node latency and bandwidth should be no more than a few times worse

than those within a node.

" Finally, system oriented support - efficient network sharing, full communication

protection, and flexible job scheduling - is also critical as system throughput is

just as important as single application performance.

Today's NIU's, divided between the two camps of message passing NIU's and shared

memory NIU's, fall short of these goals.

14



All NIU's today are designed with a one-interface-fits-all philosophy, presumably

to keep hardware simple and fast. Should an application desire a communication

interface different from that provided by the underlying hardware, software layers

are used to "synthesize" it from the hardware supported operations. Unfortunately,

neither types of NIU offer a "communication instruction set" sufficient for efficient

software synthesis of all common communication interfaces.

The problem is particularly acute for message passing NIU's as it is very difficult

to synthesize shared memory in a way that is transparent to application programs. A

number of methods have been attempted [67, 53, 95, 94], but none have found wide

acceptance. With the growing popularity of SMP and SMP applications, this is a

significant draw back.

Shared memory NIU's have fared better, since it is functionally simple to syn-

thesize message passing on shared memory. Nonetheless, shared memory emulated

message passing incurs more network trips than a direct implementation. This points

to an interesting feature of shared memory systems - software has no direct control

over data movement, which occurs indirectly in response to cache-misses. Although it

simplifies programming, this feature also creates inefficiency, particularly for control

oriented communication.

The work of Mellor-Crummey and Scott [74, 75] on shared memory implementa-

tions of mutex lock and barrier provides an interesting illustration. At a meta-level,

the solution is to understand the behavior of the underlying coherence protocol, and

craft algorithms that coax it into communicating in a way that is close to what a di-

rect message passing implementation would have done. Unfortunately, due to the lack

of direct control over communication, even these clever lock and barrier implemen-

tations incur more network traffic than a message passing implementation of similar

algorithms (See Heinlein [40]').

'Heinlein's implementation is best viewed as a hybrid that blurs the line between message passing
and shared memory. A large part of the message passing code implementing the lock and barrier
runs on an embedded processor in the NIU, with application code interacting with this code through
memory mapped interfaces. One could either view this as extending shared memory with special
lock and barrier protocol, or as message passing code off-loaded onto the NIU.

15



The bottom line is that shared memory system's communication instruction set

is also inadequate, resulting in redundant data movement between nodes. Interest-

ingly, while message passing NIU's provide good control over data movement between

nodes, many of them are not well integrated into the node's memory hierarchy re-

sulting in inefficient data movement and control exchange within node. Solving this

problem requires the NIU to be located on the cache-coherent system bus so that it

has access to a rich set of intra-node data movement operations. In addition, the NIU

should offer multiple communication interfaces so that software has a sufficiently rich

communication instruction set to synthesize its desired communication efficiently.

Supporting multiple communication interfaces requires re-visiting the issue of net-

work sharing and protection. Traditionally, message passing and shared memory

systems handle this issue differently. Shared memory machines essentially skirt this

issue by providing shared communication access without allowing direct network ac-

cess. Although entities in different protection domains can communicate concurrently

through shared memory accesses - with protection enforced by normal virtual address

translation mechanism - the fast network is used directly only by cache-coherence

protocol traffic.

Message passing systems that permit direct user-level network access have to

resolve a tougher network sharing protection problem. Aside from preventing illegal

message transmission and reception, the protection scheme has to prevent deadlock

and starvation that may arise from sharing network resources between otherwise

independent jobs. In our opinion, this problem has never been solved satisfactorily

in existing systems. Current solutions, discussed in Section 2.3.2, suffer from one or

more draw-backs including harsh restrictions on job scheduling policies, significant

latency penalty, and constrained functionality.

Network sharing and protection get even more complex when both shared memory

and message passing interfaces are supported over the same network. Interaction

between the two breaks some solutions used in systems that support only one of them.

For example, a solution employed in message passing systems to prevent network

deadlocks is to rely on software to continually accept packets from the network. In

16



Applications Interface Layer

Virtual Queues Layer

Physical Network Layer

Figure 1-1: Our proposed layered cluster system communication architecture.

a system with both shared memory and message passing support, this no longer

works because software may not get a chance to service messages: its processor may

be stalled waiting for a cache-miss processing to complete. In turn, the cache-miss

processing could be waiting for network resources held by message passing traffic to

become available. Solving problems of this nature requires a comprehensive protected

network sharing model.

1.2 Proposed Cluster Communication Architec-

ture

We propose a layered communication architecture illustrated in Figure 1-1 to meet the

complex communication requirements of a cluster system. This design assumes that

the NIU resides on the SMP node's memory bus, giving it the ability to participate in

cache-coherence snooping operations. It also assumes an NIU with a programmable

core, making it feasible to support a large and extendable set of communication

functions.

The Physical Network Layer is a transport layer that provides reliable packet

delivery over two logically independent networks. It is also responsible for regulating

the flow of traffic through the network to avoid network congestion.

The Virtual Queues Layer implements the bulk of the protection scheme in our

system. It operates on the abstraction of virtual message queues, using the packet

transport services provided by the Physical Network layer to move each message from

17



its transmit queue (TxQ) to its receive queue (RxQ). By controlling local queue access

and transmit-to-receive-queue connectivity, the Virtual Queues layer provides system

software with the mechanism to "stitch" virtual message queues into independent

communication domains.

The Virtual Queues layer deals with the problem of network deadlock arising from

dynamic receive queue buffer space allocation with a novel Reactive Flow-control

scheme. This lazy queue-to-queue flow-control strategy incurs no flow-control cost

when communication traffic is well-behaved, imposing flow-control only when a pos-

sible problem is detected. (See Section 3.2.3 for further details.)

Virtualization of message queue name in the Virtual Queues layer introduces a

level of indirection which facilitates job migration and the contraction of the number

of processors devoted to a parallel job. Furthermore, our design allows a message

queue to remain active, independent of the scheduling state of the process using it.

Together, these features give system job scheduling unprecedented flexibility.

Finally, the Application Interface Layer focuses on the interface seen by application

code. One could view this layer as providing "wrappers" around the message queue

service of the Virtual Queues layer to form the communication instruction set. As

an example, a wrapper for large messages marshals data from, and stores data into

user virtual address space, implementing virtual memory to virtual memory copy

across the network. Another wrapper in our design implements an interface crafted

to reduce end-to-end latency and message send/receive handshake overhead of very

short messages.

Cache-coherent distributed shared memory support can be viewed as yet another

wrapper, albeit a sophisticated one. This wrapper observes transactions on the mem-

ory bus, and where necessary, translates them into request messages to remote nodes.

It also services requests from other nodes, supplying data, initiating invalidation or

update actions, or executing these actions on local caches to maintain data coherence

in the shared address space.

It is feasible for an NIU to support a fair number of wrappers because although

they export different communication abstractions, their implementations share many

18



subcomponents. As such, the actual provision of multiple Application Interface layer

abstractions can be achieved with a relatively small set of composable primitives.

By dividing the communication architecture into several layers with well defined

responsibilities, this approach not only avoids the duplication of functions, but also

simplifies the internal design of each layer. For instance, with the Virtual Queues

Layer responsible for network sharing issues, the design and implementation of each

instance in the interface layer can be done in isolation, without concern about how

other instances are using the shared network.

1.3 A Flexible Network Interface Unit (NIU) De-

sign

The abstract communication architecture described in the previous section is

tested. in an actual implementation, the StarT-Voyager Network Endpoint Subsys-

tem (NES). The NES connects a cluster of IBM PowerPC 604e-based SMP's2 to the

Arctic network [12, 13], a high performance, packet switched, Fat-Tree [63] network.

Figure 1-2 illustrates how the StarT-Voyager NES replaces one of the processor cards

in the normal SMP to interface directly to the SMP's cache-coherent 60X system

bus. The diagram also shows the two main components of the NES: an NES Core

containing custom logic, and an sP subsystem containing a PowerPC 604 processor

used an an embedded processor. We refer to this processor as the Service Processor

(sP),and the host SMP's processors as the Application Processors (aP's).

The NES micro-architecture attempts to achieve both performance and flexibility

through the combination of custom hardware and embedded processor firmware. By

ensuring that the common communication operations are fully supported in hard-

ware, average performance is close to "hardware speed". On the other hand, the

sP firmware handles the infrequent corner cases, and provides extension capabilities.

This combination ensures that the hardware can be kept simple and thus fast, despite

2 These are the IBM RISCSystem/6000 Model 43P-240 machines, first introduced in the fourth
quarter of 1996.
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Figure 1-2: The top of the diagram shows an original SMP. The bottom shows a
one used in the StarT-Voyager system, with a processor card replaced by the StarT-
Voyager NES.
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the NES's support for a large set of functionalities. Key to the effectiveness of this

design is the interface between the sP and the NES Core, described in Section 4.4.

Implementation of multiple virtual queues provides a concrete example of this hy-

brid hardware/firmware implementation approach. The abstraction of a large number

of active message queues is achieved with a small number of NES Core implemented

hardware Resident queues and a large number of sP firmware implemented Non-

resident queues. Both types of queues export identical interfaces to aP software. In

addition, the Resident queues can be used as system software (or sP firmware) man-

aged caches of the Non-resident queues, and switching a queue between Resident and

Non-resident resources is transparent to code using the queue.

The NES Core is designed as a collection of communication primitives. These are

assembled by other NES custom hardware or sP firmware into the functions available

to aP software, providing an efficient way to implement multiple abstractions while

facilitating future extension. As an illustration of this design concept, the NES Core

supports several different message passing mechanisms - Express, Basic, Express-

TagOn, Basic-TagOn and inter-node DMA - catering to messages of increasing size.

Although coherent shared memory is not a focus of this work, the NES Core

provides sufficient hardware hooks so that sP firmware can implement various cache

coherence protocols. This part of the design emphasizes flexibility for experimentation

over absolute performance. With researchers constantly coming up with suggestions

for modifying cache coherence protocol to improve performance (e.g. [23, 29, 51]),

we believe that it is useful to have a platform which allows easy modification to its

protocol so that meaningful comparison with real work-load can be done.

The StarT-Voyager NES is designed to facilitate migration of performance critical

portions of sP firmware into hardware. Major portions of the StarT-Voyager NES

are implemented in FPGA's, with the base design occupying less than a third of the

total FPGA space. Because the StarT-Voyager NES is designed in a modular fashion

with well-defined functional units, moving a function from sP firmware to custom

hardware involves the addition of a new functional unit without major perturbations

to the existing design. With two levels of programmability, StarT-Voyager allows
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new functions to be implemented and fully debugged in firmware first; subsequently,

portions that are critical to performance can be moved into FPGA hardware.

1.4 Related Work

This section compares our NIU design with some closely related work. We leveraged

many of the ideas proposed in these work. Section 2.5 describes NIU design in general,

and includes references to a larger set of related work.

SynfinityNUMA

A recent commercial product, the Fujitsu SynfinityNUMA [1021, is very similar to

our design in that it employs a layered NIU architecture, with each layer handling a

different function. Like our communication architecture, the top layer deals with is-

sues of interfacing to the applications. Their second layer is responsible for recovering

from packet losses, and as such presents a level of service equivalent to our bottom

layer. Their third layer provides a raw network transport service that has low but

non-negligible loss/error rate. They do not have a layer corresponding to our Virtual

Queues layer. The network interface in SynfinityNUMA is not programmable. Hence,

although it supports both message passing and shared memory, there is no capability

for any further communication interface extensions.

FLASH

The FLASH [59, 60] multiprocessor's communication element, the MAGIC chip, is

the closest to our design from a capability perspective. A custom designed chip,

MAGIC interfaces to the node processor, DRAM, PCI I/O bus and a high perfor-

mance network. It has a programmable core, called the PP, which coordinates data

movement between the four components that it interfaces with. The PP also runs

cache-coherence protocol code. Because MAGIC occupies an extremely strategic po-

sition in the compute node and is programmable, it can be programmed to implement

any function that our design can offer.

Our design differs from MAGIC/FLASH in that we want to interface to commer-

22



cial SMP's without replacing their memory controller and I/O bus bridge chip. As

a result, we face different design constraints. In that respect, DASH [65, 66], the

predecessor of FLASH, is more similar but it only supports shared memory and has

no programmability.

Our NIU design also takes a very different micro-architecture approach. In the

FLASH design, all memory, I/O, and network communication is processed by MAGIC's

programmable core. Obviously, the performance of this programmable core is crit-

ical and their research focuses on making this fast. We are interested in using an

off-the-shelf microprocessor as the programmable element in our NIU to lower devel-

opment cost and capitalize on the rapid improvements and higher core performance

of commercial microprocessors. To compensate for the weaknesses of our approach,

such as slow off-chip access in today's microprocessors, we provide full NIU hardware

support for the most common and simple communication operations. Furthermore,

the NIU provides the embedded processor with a rich set of communication oriented

primitives. These enable the embedded processor to orchestrate data transfer without

directly touching data, and to coordinate a sequence of primitives without constantly

monitoring their progress.

As a result of the difference in implementation approach, the programmability of

the two designs are good for different things. For performance reasons, our NIU's

programmable portion can only be used to service infrequent operations. But it can

afford to execute more complex sequences of code than can MAGIC's PP on each

occasion.

Typhoon

The Typhoon design [91] is similar to ours in that they advocate using a commer-

cial microprocessor to provide programmability in the NIU. The design mentions

support for both message passing and shared memory, though there is no publicly

available description of message passing aspect of the machine. No machine beyond

the Typhoon-0 [92], a stripped down version of the design, was built.

Typhoon-0 uses Myrinet [11], an I/O bus NIU, to provide message passing service,
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an existing SMP processor (one of the Sparc processors in their SUN SMP) as protocol

engine, and a custom bus snooper hardware which imposes cache-line granularity

access permission checks on bus transactions to main memory DRAM. Typhoon-0

has little control over the design of most of its components since they come off-the-

shelf. Its design does not address many of the micro-architectural issues that we

studied.

Alewife

Alewife [1, 581, an earlier experimental machine built at MIT, is similar to our work

in that it supports both message passing and shared memory. Its communication sup-

port is programmable in an interesting way. Alewife uses a modified Sparc processor,

called Sparcle [2], which has hardware multi-threading and fast interrupt support.

This makes it feasible for its CMMU [57], the cache and memory management unit

which also serves as the network interface unit, to interrupt Sparcle and have software

take over some of its functions. For instance, this is used to handle corner cases in

Alewife's cache-coherence protocol [17].

Alewife does not deal with issues of protection and sharing. These are investi-

gated in a follow-on project, FUGU [70, 69, 71]. Aside from adding small hardware

extensions to Alewife, FUGU relies on Sparcle's fast interrupt and interrupt software

to impose sharing protection.

The constraints we faced are very different from those faced in Alewife and FUGU.

For example, Sparcle has no on-chip cache, and Alewife's CMMU essentially inter-

faces to Sparcle's Li cache bus. This is much closer to the processor core than any

possible point of interface in today's commercial SMP's. Sparcle's fast interrupt and

multi-threading support is also not available on today's commercial microprocessors,

whose complex superscalar and speculative processing pipelines are slow to respond

to interrupts. These differences make many of Alewife's solutions inapplicable to a

cluster of unmodified SMP's.

Hamlyn

Hamlyn [16, 15], a message passing interface architecture that was implemented on
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the Myrinet hardware, shares our work's goal of sharing a fast network between mul-

tiple users in a protected fashion without scheduling restriction. Through their choice

of requiring the sender to specify the destination memory to write a message into,

they avoid one of the major problems of sharing the network - dynamic receive queue

buffer allocation. Whereas the NIU is responsible for receive buffer allocation in our

architecture, this task is relegated to the message sender software in Hamlyn. Hamlyn

shares another similarity with our design: support for several different message types

targeting messages of varying granularity.

Remote Queues

Brewer and Chong [14] proposed exposing message receive queues as Remote Queues

to software in order to optimize message passing. The abstraction of message queue

is a central part of our protection mechanism, and we leveraged their work.

1.5 Contributions

The main contribution of this work is the proposition that the NIU architecture for

cluster systems can be endowed with a rich set of capabilities that provide sharing,

protection, and flexibility without sacrificing low latency and high performance. This

proposition is supported with a full, realistic NIU design and associated simulations.

The following is a list of novel features explored in this work:

" A network sharing scheme based on multiple, virtual message queues and a

simple Reactive flow-control strategy. This scheme permits flexible network

sharing while retaining full protection and low communication latency.

" A cost effective, high performance implementation of the multiple virtual mes-

sage queue abstraction using caching concepts.

" A set of efficient message passing primitives crafted to achieve high performance

over a wide range of message sizes in an SMP environment.
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" An NIU micro-architecture that couples a commercial microprocessor with cus-

tom hardware to achieve high performance and flexibility. The custom hardware

is organized around a basic set of communication primitives assembled by other

NIU hardware or embedded processor firmware into multiple communication

interfaces.

" The actual construction of an NIU, the StarT-Voyager NES, which embodies

most of the ideas proposed in this work.

The primary emphasis of this thesis work is demonstrating the feasibility of an

NIU which directly supports multiple, extendable communication interfaces. It does

not attempt to provide a definitive study of whether this NIU architecture leads to

better performance than alternate communication architectures, such as one that

relies only on cache-coherent shared memory hardware. Furthermore, evaluation in

this thesis focuses on the message passing aspect of StarT-Voyager NES, as shared

memory support is studied by other research group members [99, 98, 97].

Our evaluation of the StarT-Voyager NES shows that with an appropriate archi-

tecture, multi-interface support and flexible protected sharing of the NIU and network

are compatible with high performance and low latency. For example, a comparison

with StarT-X [42], an I/O bus message passing NIU implemented in similar tech-

nology but without NIU programmability or protection for network sharing, shows

that the StarT-Voyager NES delivers superior message passing performance - higher

bandwidth for large transfers, and lower latency for the shortest messages. Part of the

advantage derives from being on the system memory bus, while the remainder comes

from the multiple message passing mechanisms of StarT-Voyager, each of which has

its own "sweet spot".

We also show that only a small amount of fast memory and custom logic is required

for virtual queue support. A large number of message queues can be supported using

a Resident/Non-resident scheme: only a small number of queues are buffered in the

NES while the rest are buffered in DRAM3 . Although message passing through Non-

3Determining the exact size of the message queue "working set" is beyond the scope of this thesis,
as it is dependent on node size and workload. In the StarT-Voyager test bed, we provide sixteen
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resident queues incurs longer latency and achieves lower throughput, the degradation

is reasonable - less than a factor of five in the worst case.

The Non-resident message queues, implemented with firmware on the sP, provide

our first examples of the utility of the sP. As further study of the sP, we conducted

a set of block transfer experiments (see Section 5.4) with application code, sP code

and dedicated hardware taking on varying responsibilities. These experiments show

that the sP is functionally extremely flexible. They also show that when pushed to

the extreme, sP performance is limited by context switch overhead when servicing

fine-grain communication events, and by off-chip access when handling coarse-grain

communication events.

1.6 Road Map

Chapter 1 provided a summary of this thesis: why we are interested in this work,

the problems addressed, the solution proposed, both abstract and concrete, our

contributions and results.

Chapter 2 examines the communication requirements of cluster systems, what is

needed from the NIU, current NIU design practices, and why these designs are

inadequate.

Chapter 3 presents an abstract three-layered network interface architecture that

meets the goals set forth in Chapter 2. In addition to describing each of the

three layers, this chapter also explains the rationale behind the design choices,

including comparing them with alternate design options.

Chapter 4 describes the StarT-Voyager NES, a concrete implementation of the ar-

chitecture proposed in Chapter 3. The micro-architecture of the NES is first

presented at the functional level. Next, the mapping of the abstract architec-

ture of Chapter 3 onto the micro-architecture is described. Finally the hardware

transmit and sixteen receive resident queues, a number which should be sufficient for the needs of
the operating system and the current, previous, and next user jobs.

27



mapping of the functional blocks into physical devices and the hardware design

flow is presented.

Chapter 5 presents quantitative evaluation of the NES. These evaluations are done

on a simulator because the NES hardware was not available in time for this

work. Using micro-benchmarks, a series of experiments demonstrate the per-

formance of both the fully hardware implemented Resident message queues and

the sP implemented Non-resident message queues. A second series of exper-

iments examine several different ways of implementing block transfers on the

NES. They not only demonstrate the versatility of the NES's programmability,

but also throw light on the performance potential and limits of the design.

Chapter 6 summarizes what we learned from this research, and suggest several av-

enues for future work.
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Chapter 2

Design Requirements

An NIU designed to support multiple communication abstractions and share a fast

network between traffic in several protection domains has to overcome a number of

challenges. One is implementing the multiple communication abstractions efficiently,

i.e. achieve good performance while working within reasonable hardware cost and

design complexity. A second challenge is sharing the network in a protected fashion

without degrading performance such as incurring longer latency. A third issue is

achieving efficient interaction between the application processor and the NIU so as

to keep communication overhead low; this is particularly challenging for message

passing.

This chapter approaches these issues by examining the communication needs of

cluster systems, the restrictions imposed by commercial SMP's, and the role of the

NIU in meeting these requirements. Sections 2.1 and 2.2 survey the current practices

and promising new directions in message passing and shared memory communication

respectively. These functions constitute a core set of capabilities that our NIU has

to support. Next, Section 2.3 examines system-level communication issues. Since our

design targets commercial SMP's as the host nodes, it has to respect SMP imposed

restrictions discussed in Section 2.4. The last section of this chapter, Section 2.5,

explains what an NIU does to deliver these communication functions. We approach

this task in an incremental fashion, and in the process highlight some existing NIU's

that are representative of particular classes of NIU.
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2.1 Message Passing Communication

Message passing is a broad term referring to communication involving explicit software

send and receive actions. In addition to transporting data from a sender to a receiver,

message passing often associates control implications with the events of sending or

receiving a message. Occasionally, the term is also used to include Get and Put

operations - unilateral remote data fetch and write actions explicitly requested by

software on one node, but completed without direct participation of software on the

remote node.

Application code usually utilizes the message passing service of a library which

presents it with a convenient, portable interface. Any mismatch between this interface

and the machine's native communication capability is hidden by the library code. As

to be expected, a good match between the library's message passing interface and the

machine's capability results the cost of library emulation code.

Message passing libraries come in many forms. Some, crafted to be fast, of-

fer slightly abstracted versions of the machine's underlying communication support.

Examples include Active Message [1001, Fast Message [84] and Intel's Virtual Inter-

face Architecture [281. Others, such as NX [88], PVM [35] and MPI [31, 27] offer

many more functions meant to simplify the task of writing message passing parallel

programs. The following are some common variations among the different message

passing services.

2.1.1 Channel vs Queues-and-network Model

Two connectivity model: channel and queues-and-network are common among

message passing libraries. Under the channel model, each channel connects exactly

one sender to one receiver. In contrast to this one-to-one model, the queues-and-

network model offers many-to-many connectivity, where each sender can send mes-

sages to a large number of destinations using the same transmit queue. Each receiver

similarly can receive messages from a large number of senders through one receive

queue. Whereas the message destination of each channel is fixed when it is set up,
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Channel Model:

Sender A Pipe/Channel Receiver C

Sender A Pipe/Channel - Receiver D

Queues and Network Model:

Transmit Receive
queues queues

Sender A_ -A_ Receiver C

0 Networ

Sender B - Receiver D

Figure 2-1: Two common models of communication: channels and network connected
queues. A channel connects a sender to only one receiver. In contrast, messages can
be send to multiple receive queues through each send queue.

each message sent via a transmit queue specifies its destination.

The queues-and-network model is advantageous when the communication pattern

is dynamically determined and involves many source-destination pairs. To connect

s senders with r receivers, the channel model requires (s x r) channels, compared

to queues-and-network's (r + s) queues. Furthermore, if messages are received by

polling, the channel model requires each receiver to poll from up to s channels if the

source of the next message is unknown.

The channel model is appropriate when the communication pattern is static and

involves only a small number of source-destination pairs. Many traditional parallel

programs involve only nearest neighbor communication and global barrier synchro-

nization which can be implemented with a reduction tree. In such cases, channels are

only needed between nearest neighbors and neighboring nodes in the reduction tree.

The queues-and-network model is more flexible than the channel model but comes

at the price of more complex message buffer management as we will see later in

Sections 2.1.3 and 3.2.2. It is our design goal to support this model because it offers

a super-set of the functions of the channel model.
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2.1.2 Message Content Specification

The content of a message can be specified in one of two ways: (i) by reference, with

the starting address and transfer size, or (ii) by value, with the data copied explicitly

into some special send buffer. Specification by reference can potentially reduce the

number of times message data is copied. Zero copying is possible provided the NIU

is able to access memory with user virtual addresses. This means that the NIU must

be able to translate user virtual addresses into physical addresses because the host

SMP's system bus deals with physical addresses only. The alternative of making

system calls to translate virtual addresses to physical addresses incurs unacceptably

high overhead. Unfortunately, many NIU's are not equipped with this translation

capability so that when a library interface uses specification by reference, the library

code ends up copying the message data.

Zero copying is not always an important goal. If the message contains very little

data, data copying overhead is small while directly writing the data to the NIU reduces

message passing latency. In addition, specification by reference is advantageous only

if the location of the data can be specified easily, e.g. if the message data already

exists in contiguous memory locations or at some regular stride. Otherwise, the task of

describing the data layout may be as expensive, if not more expensive than assembling

the data into the send buffer. If message content can be specified by reference only,

application code may end up assembling data in normal memory location. This

nullifies the advantage of specification by reference.

A good design should support specification by value for short to medium sized

messages, while adopting specification by reference for large messages.

2.1.3 Message Buffer Management

Message passing requires buffer space for storing messages between a send and the

corresponding receive. Buffer management is closely tied to the message passing inter-

face design, with many possible division of responsibilities between the NIU and the

software using its message passing service. Furthermore, these choices have implica-
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tions for network sharing - in a shared network, some buffer management choices are

more prone to network deadlocks than others. We begin with a discussion of transmit

buffer space management followed by one on receive buffer space management.

Transmit Buffer Management

When transmit buffer space is unavailable, two interface design options are possible:

(i) block the sender, or (ii) notify the sender about send failure. Blocking the sender

means hardware stalls the sender so that software is unaware of the problem. It is

less flexible than the second option because a sender notified of a send failure can not

only retry in a tight loop to emulate blocking, but also has the option of carrying out

other computation or receive actions before attempting to send again. This added

flexibility not only improves performance, but is needed to prevent communication

deadlocks.

Although the above paragraph uses the term "notify the sender of send failure",

this behavior is typically achieved with software testing for sufficient transmit buffer

space before sending a message. The sender could be notified of send failure through

an exception/interrupt, but such a design is not used today because of implement

difficulty. An exception/interrupt based scheme must provide means for software

recovery; at the very least, the exception must occur before software attempts to

transmit yet another message. This is not easy to guarantee when the NIU is not

integrated into the processor core. The high cost of interrupt/exception handling on

most processors and OS's also makes its performance advantage unclear.

Programs that can estimate its maximum transmit buffering requirement can

avoid the dynamic buffer space availability check overhead by allocating the max-

imum required space in the channel or transmit queue. Others that need to deal with

the out-of-send-buffer problem must ensure that buffer space will eventually free up

to avoid getting into a deadlock. This is a classic resource allocation with dependence

problem, and an application must ensure that no cycle forms in the dependence graph.

Receive Buffer Management

Receive buffer management is more complex. It interacts with network sharing, and
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the detail requirements are dependent on the connectivity model. We first discuss

receive buffer management for channel models.

The simplest way to implement the channel model uses the same amount of buffer

space in both the sender and receiver, but expose only the buffer space of one side

to software. It treats the destination buffer as an eagerly updated mirror of the

source buffer. Whenever a message is enqueued into the channel, the source NIU can

forward it to the destination with full confidence that there is sufficient destination

buffer to accommodate it. The source buffer space provides transient buffering should

the network be congested. This approach simplifies NIU design as it never runs into

an out-of-buffer situation; that problem is handled by software when it attempts

to enqueue into the channel. However, the simplicity comes at the expense of less

efficiently buffer space utilization - only half the total amount of buffer space used

to implement a channel is exposed to software. Any attempt to expose more of

the combined buffer space to user code requires additional coordination between the

source and destination NIU.

Receive buffer space allocation in the queues-and-network model is more difficult.

Typically, this is done dynamically at the time a message arrives. When an application

is unable to estimate the maximum amount of receive queue space needed, a message

may arrive at its destination to find its receive queue out of buffer space. Most

systems deal with this situation in one of two ways: (i) the message is blocked, i.e.

continue to occupy the transient buffer in the network, (ii) the message is dropped.

A third option of returning the message to the sender is sometimes used [30], but

requires appropriate support to ensure that: (a) the sender has space to buffer the

returned message before re-sending it again, and (b) there is a logically separate

network dedicated to return traffic.

Blocking an incoming message when its destination queue is full causes blockage

into the network, which may lead to deadlocks. Nevertheless, the approach has been

adopted in some machines, e.g. the CM-5, where multiple logically independent

networks and a software network usage discipline ensures that the blockage never

develops into dependence cycles [64].

34



If messages are dropped when buffer space is unavailable at the destination, the

message loss can either be exposed to user code, or hidden by the message passing

library with recovery protocol. It is important to note that dropping the message

prevents only those deadlocks due to dependence cycles involving transient, shared,

system resources, such as buffers in network switches. The application still has to

ensure that there is no dependence cycles involving privately owned resources such as

its private receive queue buffer space. Otherwise, dropping the packet merely converts

a network deadlock into communication live-lock, where repeated attempts to deliver

a message fails with the message dropped at the destination NIU.

The issue of dynamic receive buffer allocation can be "legislated" away with an

NIU interface that requires a message sender to specify the destination buffer address

for each message. In essence, the interface is equivalent to remote write initiated

through a message transmit interface. VIA [28] and Hamlyn [16, 15], for instance,

take this approach. However, this approach basically pushes the buffer management

duties up one level. If that level is also hardware such as cache-coherence protocol in

the NIU, it is unclear that the problem has gotten any easier. As such, it is our goal

to support dynamic receive buffer allocation even in the presence of network sharing.

Dynamic buffer allocation and network deadlocks in a shared network environment

is a major problem in NIU design, which we revisit in Section 3.2.2. For now, it suffices

to say that in a system where network resources are shared by multiple logically

independent applications, use of these shared resources have to be done with care to

prevent dependences from building up between otherwise independent jobs.

2.1.4 Message Reception Method

The most common methods of receiving messages are by polling or via interrupts.

Because interrupts are expensive in most systems today, polling is the recommended

method for high performance systems when communication is frequent. Interrupts

also introduces atomicity issues that force the use of mutex locks which reception by

polling avoids. Nevertheless, polling has its inconvenience and overhead. When timely

servicing of messages is important, polling code has to be inserted into numerous parts
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of the receiver's code, making the resulting code difficult to read and debug.

Ideally, both reception by polling and by interrupt should be supported. The

receiver should be able to dynamically opt for polling when it expects messages, and

for interrupt when messages are expected to be rare. It is also useful for the sender to

request that a particular message cause an interrupt, e.g., when the sender urgently

needs the receiver's attention.

While messages are typically received by application code, this may be preceded

by NIU hardware or firmware pre-processing. An example is the proposed StarT sys-

tem [80] based on the 88110MP [85] processors which treats each message in the sys-

tem as a continuation composed of an instruction pointer (IP) and a list of parameters.

Designed to be a multi-threaded processor operating in a continuation-passing fashion,

the 88110 MP includes an NIU that pre-processes each in-coming continuation mes-

sage, incorporating it into the local, hardware-supported continuation stack/queue.

The processor hardware maintains several priorities of continuations, and supports a

branch instruction that jumps to the highest priority continuation.

Processing in the NIU can also completely take care of a message. Examples in-

clude Put or Get operations (available on DEC's Memory Channel [36]), and NIU

implemented barrier or lock. Aside from freeing the processor to concentrate on

executing longer threads, shifting servicing of in-coming messages to the NIU en-

sures timely servicing; the NIU is always "scheduled", is continually servicing short

requests, and does not face suspension due to interrupts like a page fault.

2.1.5 Communication Service Guarantee

Application programmers are usually interested in whether message delivery is (i)

reliable, i.e. lossless, and (ii) in-order, i.e. messages between each source-destination

pair arrive in the order sent. Although some applications can tolerate message losses,

most require reliable message delivery. In-order delivery is very useful to certain ap-

plications as it helps reasoning about distributed events; for instance, cache coherent

distributed shared memory protocols that can assume in-order delivery of messages

are simpler as fewer scenarios are possible.
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Messages may be lost for many reasons. Some networks do not guarantee lossless

service. Optical networks for example are designed to operate at high speed with very

low, but non-negligible error rates. Networks may also adopt link-level control which

drops a message when its destination port fails to make forward progress within a

time-out interval (e.g. in Myrinet). Finally, some NIU's are designed to drop messages

when their destination queues are full; hence, even if the network delivers messages

reliably, the NIU may drop them.

Packets sent from one source to the same destination may not arrive in the order

sent due to several causes. Some networks provide multiple paths between a source-

destination pair of nodes and adaptively routes packets to achieve higher bandwidth or

improve fault tolerance. Flow-control protocols can also disrupt ordering if messages

are dropped and retried without regard for ordering.

Depending on the network and the NIU designs, providing lossless and in-order

delivery guarantees may incur extra overhead in the form of protocols, usually some

form of Sliding Window protocol, to recover from losses, re-construct the ordering,

or achieve both. A portable message passing library is therefore better off leaving

both as options so that applications which can tolerate some losses or out-of-order

messages do not incur the corresponding protocol overhead. At the same time, a

network and NIU design that delivers these properties without the overhead of these

protocols is very useful.

2.1.6 Synchronization Semantics

Message passing send and receive actions often have associated control semantics.

A receive action is often used as a mechanism to initiate action at the destination.

The information received can also inform the receiver that the sender has reached a

particular point in execution.

Some message passing libraries also support blocking send and receive actions. In

a blocking send, the sender's execution is suspended until the message is received at

the destination. In a blocking receive, the receiver's execution is suspended until a

message arrives. The alternatives to blocking receive are either some way of indicating
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that there is no message for the receiver, or returning a default message. Some

message passing library, e.g. MPI, offers even more semantics to the receive action,

permitting the receiver to request for messages from a particular sender, or of a

particular type.

Blocking send/receive, and selective receive are high level semantics that are

more appropriately implemented in software message passing layers or possibly NIU

firmware.

2.1.7 Summary

The above review of message passing practices shows that diversity abounds. The

challenge for a general purpose system is to cater to these differences without com-

promising the performance of any particular feature. Many of the issues covered in

this review of message passing practices are inter-related, with choices- in one area

having implications on other aspects. For example the connectivity model (chan-

nel vs queues-and-network) has implications for buffer management, which in turn

interacts with network sharing arid job scheduling policy. This apparent lack of or-

thogonality complicates the NIU design task substantially. Section 2.3 revisits some

of these issues in a multi-tasking shared network environment. Chapters 3 and 4 of

this dissertation will show how our design meets these challenges.

2.2 Shared Memory Communication

This discussion focuses on coherent shared memory at the processor load/store in-

struction level, i.e. load/store instructions executed on different SMP nodes access

the same logical memory location in a coherent fashion. Researchers have tried other

ways of providing application programmers the abstraction of shared objects. These

range from using special access routines, explicitly making a local transient copy of a

shared object when access is needed [81, 50], to automated modification of executa-

bles to replace shared memory load/store instructions with access routines [95, 94].

Nevertheless, supporting shared memory at the processor load/store instruction level
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has better performance potential and places few requirements on software.

2.2.1 Caching and Coherence Granularity

Coherent, transparent access to shared memory using load/store instructions is com-

monly achieved in three ways: (i) the memory location is not cached; (ii) caching is

allowed, and state information is kept at the cache-line level to maintain coherence;

(iii) caching is allowed, and state information for coherence maintenance is kept at

the page level.

Under the first method, each load/store instruction results in an actual remote

operation. The T3D [55], T3E [96], and Tera [5] are some machines that support

only this kind of coherent shared memory. Its greatest attraction is implementation

simplicity; there is no cache coherence protocol to deal with. Its drawback is remote

access latency on every load/store access. T3D and T3E provides special pre-fetch

buffers in addition to relatively short remote access latency achieved with exotic

Supercomputer class technology to reduce the effect of this latency. Tera uses special

processors which exploit multi-threading parallelism to tolerate this latency.

When shared memory caching is allowed, there is the problem of a cache copy

becoming stale when another processor writes over part or all of the same cache-

line. The stale cached copies of the cache-line are said to have become incoherent.

The most common way of maintaining coherence among caches of a bus-based SMP

is through bus snooping techniques which maintains book-keeping at the cache-line

granularity [7]. In distributed implementations, cache-coherence is typically main-

tained with a directory based approach [65, 66, 1, 2, 62] which again keeps cache-line

granularity state information. Compared to uncached shared memory, caching shared

memory takes advantage of data locality, both temporal and spatial, at the cost of

a fair amount of book-keeping and design complexity. NIU access to system bus is

needed to make this work across SMP's in a cluster.

The third approach is logically similar to the second one but does book-keeping at

the page-level. This small difference translates into the big implementation advantage

of requiring no hardware beyond normal paging support and some form of message
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passing capability. Its implementation through extensions to paging software is rela-

tively easy in most UNIX OS's because it uses an exported interface originally meant

for building third-party file systems. This approach was pioneered by Li [67], and has

been further refined in many subsequent implementations, the most notable being

Treadmark[53]. A variant of this approach, Cashmere [56], relies on non-coherent

shared memory hardware with remote write capability.

A good shared memory system should be built from a combination of all three

techniques. Either user directive, or dynamic monitoring of access characteristics can

help pick the right implementation technique for a particular region of memory. Un-

cached access is the most efficient technique when there is little or no locality. In that

case, any attempt at caching simply incurs overhead without any payback. When

data is shared in a coarse grain fashion, page-level coherence is adequate and con-

sumes little resources for book-keeping state, coherence traffic, and coherence message

processing. For example, if the shared memory capability is used to simplify migra-

tion of sequential jobs for load balancing reasons, page-level coherence is perfectly

adequate. Besides, most of the software infrastructure for implementing page level

coherence is also needed for cluster level virtual memory paging, so supporting it

incurs little additional cost.

Page-level coherence is inadequate when data is shared in a finer-grained fashion,

for which cache-line granularity coherence maintenance offers better performance.

As described next, cache-line granularity coherence can be implemented in several

methods, each with its own advantages and short-comings. Ideally, one would like

to combine the advantages while avoiding the short-comings. Our NIU is designed

to facilitate this research by providing hooks for implementing the major approaches

and new improvements that are being considered.

2.2.2 Memory Model

A memory model (sometimes referred to as consistency model) defines how multiple

load/store operations to different memory locations appear to be ordered for code

running on different processors. Sequential Consistency [61] is commonly regarded
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as the most convenient memory model for programmers. A simplified but useful

way of thinking about Sequential Consistency is that in a system implementing this

consistency model, all memory access operations appear to occur in the same order to

all processors; it is as though all of them have been serialized. More specifically, two

processors will not see a set of memory access instructions as occurring in different

orders. Although this model is simple to understand, it is difficult to implement

efficiently in a distributed environment.

In response to this challenge, a multitude of weaker consistency models, e.g.

Lazy Consistency [54], Release Consistency [18], Entry Consistency [8], Scope Consis-

tency [48], Location Consistency [34], and DAG Consistency [32], have been proposed.

The main distinction between these consistency models and Sequential Consistency

is they distinguish between normal memory access operations, and special order im-

posing operations which are typically related to synchronization. An imprecise but

useful way to think about these special operations is that they demarcate points in a

thread's execution where either the effects of memory operations it has executed must

become visible to other threads, or those performed by other threads will be examined

by this thread. By requiring the user to clearly identify these points, weaker mem-

ory models allow an implementation to achieve higher performance through delaying

coherence actions and allowing greater overlap between operations. Update-based

coherence protocols, for instance, can be implemented efficiently for weak memory

models, but is inefficient under Sequential consistency memory model.

The question of memory model requires further research to understand the seman-

tics and implementation implications of different models. An experiment platform,

like StarT-Voyager, that is fast enough to run real programs and able to implement

different memory models in comparable technology will throw much light on this

issue.

2.2.3 Invalidate vs Update

A coherence protocol can either adopt an invalidate or update strategy. The former

deletes cache copies that are stale, so that future accesses will incur cache-misses and
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fetch the new copy. The latter sends the new data to existing cache copies to keep

them up to date. The two strategies are good for different data sharing patterns.

Invalidation is the best approach if a node accesses the same cache-line repeatedly

without another node writing any part of it. On the other hand, update is better if

there is repeated producer-consumer data communication between multiple nodes, or

if there are multiple writers to the same cache-line. The latter causes thrashing in an

invalidation based scheme, even if the writes are to different locations (false sharing).

Ideally, a coherence protocol should adaptively select the appropriate strategy for

a cache-line (or page) based on dynamically gathered access patterns information [52].
As a nearer term goal, the user can provide directives to assist in this choice.

2.2.4 CC-NUMA and S-COMA

In the older CC-NUMA (Cache Coherent Non Uniform Memory Access) approach [65,

68], each paged-in shared memory cache-line has a unique system-wide physical ad-

dress, and remotely fetched cache-lines can only reside in a traditional cache where

its address tag and cache-set index furnish the global identify of a shared memory

location.

Under the S-COMA (Simple Cache-only Memory Architecture) approach [39, 93],

local main memory DRAM is used to cache remotely fetched cache-lines. Space

in this cache is allocated at page granularity, but filled at the cache-line granular-

ity. Because allocation is at page granularity, no address-tag at individual cache-line

granularity is necessary. Instead, the function of address-tag matching in normal

caches is performed by a processor's conventional virtual memory address translation

mechanism when it maps virtual page number to physical page frame. Coherence

state is, however, still kept at the cache-line granularity to permit finer granularity

coherence control. Under S-COMA, the same logical memory location can be mapped

to different local DRAM addresses on different nodes. Correspondence between each

local DRAM address and a global shared memory address must be maintained as it

is needed during cache miss processing.

The S-COMA approach can cheaply maintain a large cache of remotely fetched
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data because it incurs no address-tag overhead and uses main-memory DRAM, which

is fairly cheap and plentiful, to store cache data. If, however, memory access to a

page is sparse, S-COMA makes poor use of memory as a cached page of DRAM

may contain only a very small number of valid cache-lines. In such cases, a CC-

NUMA implementation is more efficient. Falsafi and Wood proposed an algorithm

for automatically choosing between the two [29].

S-COMA and CC-NUMA are two ends of a spectrum in which middle-ground

schemes are possible. By introducing a small number of address-tag bits for each

cache-line in S-COMA DRAM, each S-COMA DRAM page can be shared between

several physical page frames. At any one time, each DRAM cache-line can only be

used by a particular page frame, but cache-lines from several physical page frames

can use different cache-lines of a DRAM page.

The number of address-tag bits is kept small by requiring the physical page frames

mapped to the same S-COMA DRAM page to have page frame addresses that differ

only in a small number of bits in a pre-determined bit field. In addition, the memory

controller has to alias these pages to the same DRAM page by ignoring this bit field.

For example, a system may allow up to four physical page frames to map to the same

DRAM page with the constrain that these page frames must have the same addresses

except in the most significant two bits. In this case, only two bits of address-tag is

kept for each DRAM cache-line to identify the actual physical page frame using it.

This scheme, which we call Nu-COMA (Non-Uniform COMA), combines S-COMA's

benefit of full-associative mapping of virtual pages to physical page frame, with the

ability to share a DRAM page between several virtual pages. Furthermore, the

address-tag overhead is small, unlike the case of a traditional cache. Another in-

teresting feature of Nu-COMA is when a single DRAM cache-line is shared between

two active (physical address) cache-lines. Nu-COMA does not required switching the

DRAM cache-line between the two cache-lines which can lead to thrashing. Instead,

one cache-line is allowed to use the DRAM in the traditional S-COMA way while the

Caches closer to the processor may or may not suffer from thrashing depending on details of
their organization, such as associativity and number of sets in the caches.
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other is treated like a CC-NUMA cache-line.

From an implementation perspective, CC-NUMA can be implemented with a sub-

set of the infrastructure needed for S-COMA. Nu-COMA will require additional, sim-

ple hardware support beyond those used for S-COMA and CC-NUMA.

2.2.5 Atomic Access and Operation-aware Protocol

A shared memory implementation must include atomic access support. In systems

implementing weak memory models, synchronization actions, including atomic ac-

cesses, must be dealt with specially because they take on additional semantics for

coherence maintenance. Furthermore, coherence protocol for locations used as syn-

chronization variables should be different because they are often highly contended

for, and are accessed in a highly stylized manner. As an example, QOLB (Queue on

Lock Bit) [37, 51] is proposed as a means of avoiding unnecessary cache-miss fetches

for locations used as mutex locks. One can regard it as an instance of a class of

operation-aware protocols which are cognizant of the semantics of and operations on

data values stored in the shared memory locations.

Operation-aware protocols may use local copies of a memory location to maintain

parts of a distributed data structure instead of simply being a copy of a variable.

Furthermore, the "coherence operations" perform functions other than simply updat-

ing or invalidating a cache-copy. For instance, in the case of a lock, a special lock

protocol may ensure that at most one local copy indicates the lock to be free (say a

non-zero value) while other local copies all indicate that the lock is not free (say a

zero value). "Coherence maintenance" on this location includes the responsibility for

moving the "lock is free" instance from one node to another across the cluster as the

need arises, and maintaining a list of waiting lock requesters.

Aside from locks, memory locations used for accumulating the sum, minimum,

maximum, or some other reduction operation can also benefit from operation-aware

coherence protocols. The protocol could automatically clone local versions of the

memory location, and combine the local version with the global version periodically.

A special operation is then used to obtain the globally up-to-date value. Further re-
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search and experimentation is needed to evaluate the effectiveness of operation-aware

protocols, but as a start, the NIU must be able to accommodate their implementation.

2.2.6 Performance Enhancement Hints

Shared memory performance can often be improved with hints. A system should allow

easy specification of hints such as the choice of coherence protocol, pre-fetching and

pre-sending of data of various granularities. Because hints only affect performance

but not correctness they do not have to be precisely accurate all the time.

The NIU hardware should also assist in collecting memory access statistics. Either

user code or the cache coherence protocol can then use this information to select the

appropriate coherence maintenance strategy.

2.2.7 Summary

Overall, because shared memory support is still an active research area, it is important

that our NIU design permits experimentation. Both CC-NUMA and S-COMA styles

of implementation should be supported. The implementation should permit easy

modifications to coherence protocol and provide low-cost mechanisms for dynamically

relaying hints from the application code to the underlying CCDSM implementation.

2.3 System Requirements

System-level requirements for cluster communication center around protection en-

forcement and fault isolation. Protection enforcement depends on the network sharing

model, which is in turn highly related to the job scheduling model. Fault isolation fo-

cuses on preventing faults at one SMP from spreading to other SMP's through cluster

level communication.
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2.3.1 Multi-tasking Model

Existing approaches to job scheduling for parallel applications have mostly been re-

stricted to gang scheduling. When there is tight dependence between different threads

of execution, gang scheduling is necessary to ensure that threads scheduled to run are

not held back waiting for data from unscheduled threads. This led to the popularity

of gang scheduling and the side-effect that existing protection schemes in message

passing systems are mostly built on this assumption.

Unfortunately, gang scheduling is too restrictive for a general cluster system. For

one, it is not an appropriate concept for distributed application and OS communi-

cation. OS communication is more naturally thought of as occurring on-demand,

concurrently with user jobs' communication. If the OS message is urgent, it should

cause an interrupt at the destination so that it is handled immediately. If it is not

urgent, the message should be buffered up for subsequent processing, such as when

the OS takes an exception to service some other trap or interrupt.

It is also unclear at this point how a job scheduler should deal with exceptional

events, such as page faults, on a subset of a parallel job's processes. Many earlier

parallel machines have side-stepped this issue by operating with no virtual memory

(e.g. CM-5, most Crays). Suspending the entire parallel job when exception occurs

runs the danger of causing repeated job swaps as page faults occur in one process after

another of the same parallel job. A better strategy is to allow the unaffected processes

to continue until data dependence prevents them from making further progress.

More generally, parallelism variation across different phases of a program's ex-

ecution suggests that machine utilization will improve if the number of processors

devoted to a parallel job can expand and contract over time. A parallel job may have

processes that are fairly dormant during certain phases of execution. At such times,

the under-utilized processors should be allocated to other jobs, including other paral-

lel jobs or subset of a parallel job. A parallel job with coarse granularity dependence,

for example, is a good candidate for absorbing the idle processors as it is likely to

make useful progress without all its constituent parts scheduled in a gang fashion.
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The cluster communication support can make it easier to improve job scheduling

by imposing fewer restrictions on the scheduler. Thus, the traditional practice of

using gang scheduling to impose communication protection by limiting the number

of jobs simultaneously sharing the network are unnecessarily limiting. The communi-

cation support should also be virtualized so that it does not impose any impediment

on process migration. If a job scheduler can easily and cheaply migrate processes, it

will have an easier task at load balancing. The same capabilities also make it easier

to implement automatic check-point and restart. Along the same line, a communi-

cation architecture with appropriate hooks can ease the implementation of run-time

expansion and contraction of allocated processor resource.

2.3.2 Network Sharing Model

New network sharing and protection models are needed to achieve greater job schedul-

ing flexibility. Our discussion will focus on network sharing in the presence of direct

user-level network access. With the exception of experimental machines like Alewife

and possibly FLASH (depending on the. PP firmware in MAGIC), the network in

distributed shared memory machines is not directly accessible from user-level code

and is really a private resource controlled by the coherence protocol. As a result,

there is no issue of isolating network traffic belonging to different protection domains.

Job scheduling on these machines is not restricted by any communication protection

concerns, which is adequately taken care of by normal virtual address translation.

The picture changes immediately when user-level code is given direct access to the

network. We first examine how a number of message passing machines deal with

sharing and protection issues, before proposing our own model.

The CM-5 treats its fast networks as a resource dedicated to each job while it is

running, much like processors. The machine can be shared by several independent

jobs in two ways: (i) it can be physically partitioned into several smaller independent

units; and (ii) each partition can be time-sliced between several jobs under a strict

gang scheduled policy. Within each partition and time-slice, its networks are not

shared. Context switching between time slices includes saving and restoring the
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network state with the assistance of special operation modes in the CM-5 network

switches. Aside from having a rather restricted network sharing model, this design

employs special context-switching features in switch hardware which are not useful

for other purposes. Context switching a lossless network without this level of support

is tricky as one runs into the issue of buffer space requirement for the packets that are

swapped out. Unless some flow-control scheme is in place to bound packet count, the

storage requirement can build up each time a job is swapped in and out. Furthermore,

unless care is taken, a save-and-restore scheme is also likely to affect delivery order

guarantees.

The SP-2 adopts a slightly different solution, but essentially still gang schedules

parallel jobs and uses the network for only one user job. Instead of having hardware

capability for context-switching the network, the SP-2 NIU tags every out-going mes-

sage with a job ID. At the destination, this ID is checked against that of the current

job. If a mis-match is detected, the message is dropped. The scheme relies on a mes-

sage loss recovery protocol to re-send the dropped message at some later time. This

allows each context switch to be less strictly synchronized. SP-2 also allows system

code to share the network by supporting an extra system job ID and message queues.

We argue for sharing the network aggressively. As one of the most expensive

resource in a cluster system, the network should be used by all traffic that benefits

from fast communication. In addition to user parallel jobs, the fast network should be

available to OS services such as a parallel file system and the job scheduler. To support

the flexible job scheduling policies described earlier, the network must be prepared to

transport messages belonging to arbitrarily many communication domains.

To protect the independence of two parallel jobs A and B that happen to be

sharing a network, the communication system must ensure that job A cannot intercept

job B's messages nor fake messages to job B, and vice-versa. Furthermore, a job

must be prevented from hogging shared network resources and depriving other jobs

of communication services.

The SP-2 job ID solution can be generalized to satisfy these requirements. But

traditional loss recovery protocol often increases communication latency because of
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more complex source buffering requirements and protocol book-keeping. This is par-

ticularly troublesome with the queues-and-network model, because sliding window

protocol is a per source-destination pair protocol. This mismatch means that a sim-

ple FIFO send buffer management policy, which is convenient for hardware imple-

mentation, does not work. Instead, when retransmission is needed, send buffers may

be read and deallocated in an order different from the message enqueue order. The

increased hardware complexity may increase latency beyond what is acceptable for

latency sensitive communication such as shared memory protocol. A solution that

permits simpler hardware, at least in the common case, is highly desired.

A shared network also interacts with buffer management in that it cannot afford to

allow packets to block into the network when destination queues are full. This option,

allowed in the CM-5 and most distributed shared memory machines, requires logically

separate networks. While these logically separate networks can be implemented as

virtual channels in the network switches to avoid the cost of extra wires and package

pins, a fast network switch cannot support more than a small number of virtual

channels. The virtual channel solution is therefore insufficient for our environment,

where an arbitrary and large number of communication domains have to be supported

simultaneously.

Issues of network sharing are present in LAN and WAN, but critical differences

between these and tightly coupled cluster networks make many of the LAN/WAN

solutions infeasible. Communication occurs much more frequently in cluster system

and requires much lower latencies. Because these differences usually span several

orders-of-magnitude, LAN/WAN protection approach of implementing communica-

tion through system calls was long ago recognized as too expensive. For the same

reasons, we are re-visiting the practice of using common loss recovery protocols, such

as variants of sliding window protocols, for preventing network blockage. New solu-

tions could exploit positive attributes of cluster system networks such as its extremely

low communication latency.
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2.3.3 Fault Isolation

In order for a cluster system to be more reliable than its constituent SMP's, faults in

each SMP must be isolated. Each SMP should run its own instance of the operating

system that can function in isolation. Parallel or cluster wide services should be

layered on top as extensions. By limiting the interaction of OS's on different SMP

nodes to a well defined, protected interface, it is easier to isolate faults.

At a lower level, it is necessary to impose memory access control on remotely

initiated shared memory operations, particularly remotely initiated memory writes.

Granting each remote SMP access to only a limited part of memory confines damage

that each SMP can wrought. Local OS's state, for example, should not be directly

read/write-able with shared memory operations from any other SMP.

2.4 SMP Host System Restrictions

A typical commercial SMP offers an NIU limited points of interface. The most com-

mon options are the I/O bus and the memory bus; interfacing via DRAM SIMM/DIMM

interface has also been proposed.

The I/O bus is by far the most popular choice. Examples include the SP-1

and SP-2 [3], Myrinet [11], StarT-Jr [43], StarT-X [42], Memory Channel [36], and

Shrimp [10]2. The I/O bus, designed to accommodate third party devices, has the

advantage of being precisely specified. There are also extensive tools, chip-sets and

ASIC modules that are available to make implementation easier. Unfortunately, cur-

rent bridges connecting I/O and memory buses do not propagate sufficient cache

operation information for efficient cache-coherent distributed shared memory imple-

mentation.

Interfacing at the main memory DRAM interface was proposed in MINI [38]. Just

like in the case of I/O bus, insufficient cache-state information is exchanged across

the memory bus/DRAM interface for implementing cache-coherent distributed shared

2Shrimp-II has interfaces on both the EISA I/O bus and the memory bus.
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memory efficiently. Its advantage over an I/O bus NIU is potentially shorter latency

for message passing operations, due to its proximity to the processor.

The memory bus is the most flexible point of interface for a cluster system NIU. An

NIU positioned on the memory bus can participate in the snoopy bus protocol, making

cluster-wide cache-coherent shared memory implementation feasible. Message pass-

ing performance is also good due to close proximity to both the SMP processors and

memory, the two main sources and destinations of message data. Message passing

interfaces can also take advantage of the coherent caching capability of the mem-

ory bus. The NIU of most existing shared memory machine are located here, e.g.,

DASH [66], Origin-2000 [62], NUMA-Q [68], SynfinityNuma [102]. Message passing

machines like the CM-5, the CS-2 [44], and the Paragon [49] also have NIU's on the

memory bus. This choice is convenient with today's SMP's, whose multiple memory

bus slots, intended for processor, and sometimes I/O cards, present ready slots for

the NIU.

This thesis will investigate an NIU that interfaces to the SMP memory bus. Al-

though the design of such an NIU is influenced by the types of bus transaction sup-

ported by the SMP, these are fairly similar across today's microprocessors so that

the general architectural principles proposed in this work are application across SMP

families. As an example of the uniformity among SMP families today, practically all

of them support invalidation-based cache-coherence. Most will also allow additional

system bus devices to be bus master, slave, and snooper. The main variations, pre-

sented below, are the atomic access primitive, and the method of intervention. These

differences affect low level NIU design choices, but have no bearing on the high level

architectural concepts of our thesis.

The most common atomic access operations are the load-with-reservation (LR)

and store-conditional (SC) pair used in PowerPC, Alpha and MIPS. Swapping be-

tween a register and a memory location is used in Sparc and x86 processor architec-

tures. Sparc also supports conditional swap. There is as yet no definitive position on

how each of these atomic operations scale in a distributed system.

Intervention refers to the process whereby a cache with the most up-to-date copy
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of a cache-line supplies the data to another cache. Less aggressive snoopy buses im-

plement intervention by retrying the reader, having the cache with the data write it

back to main memory, and then supplying data to the reader from main memory.

More aggressive buses simply have the cache with the up-to-date data supply it di-

rectly to the reader, possibly with write-back to main memory at the same time. This

is sometimes called cache-to-cache transfer. Many systems which implement the less

aggressive style of intervention can accommodate a look-aside cache. This supplies

data directly to readers, providing a special case of cache-to-cache transfer. We will

see later that our NIU design makes use of this feature.

Interfacing to the memory bus has the slight disadvantage of dealing with a pro-

prietary, and sometimes not very well documented bus. This is not a serious problem

if the SMP manufacturer is accessible to clarify ambiguities. For portability of net-

work interfaces, one may choose to define a new interface designed to accommodate

cluster communication, but this is beyond the scope of this thesis.

2.5 NIU Functionalities

This section examines the tasks an NIU performs to deliver the communication func-

tions and system environment described in earlier sections of this chapter. We break

communication operations into elementary steps that are examined individually. We

begin with three key functions supplied by every NIU: interface to host, interface to

network, and data path and buffering. Next, two other functions commonly found in

NIU's are discussed; these are: data transport reliability and ordering, and support

for unilateral remote communication action. Finally, cache-coherent shared mem-

ory related NIU functions, partitioned between a cache protocol engine, and a home

protocol engine, are described.

2.5.1 Interface to Host

As the intermediary between a computation node and the network, an NIU is respon-

sible for detecting when communication is required, and determining the communi-
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cation content. It is also responsible for notifying the host node of information that

has arrived and making that information available.

Except for NIU's that are integrated into microprocessors, an "extinct species"

these days, NIU's typically detect service requests by the following methods: (i) mon-

itoring the state of pre-determined main memory locations, (ii) presenting software

with a memory mapped interface, or (iii) snooping bus transactions. The first two

methods are commonly employed when communication is explicitly initiated by soft-

ware, as in the case of message passing style communication. Among the two, method

(i) has the disadvantage that the NIU has to actively poll for information. Method

(ii) allows event-driven processing in the NIU. The last approach is most commonly

used to implement shared memory, where communication is implicitly initiated when

software accesses to shared memory locations trigger remote cache-miss or ownership

acquisition processing. The method can also be used in combination with (i) to re-

duce polling cost: the pre-determined location is only polled when snooping indicates

that a write has been attempted on that location.

Message passing communication requires the NIU to inform the host when in-

formation arrives for it. This may be done actively, with the NIU interrupting a

host processor, or passively with the NIU supplying status information in either pre-

defined main memory locations, or memory mapped NIU registers. In the case of

shared memory, software on the host processor never explicitly sees the arrival of

messages. Instead, incoming information is delivered at the hardware level; e.g.,

replies to locally initiated requests, such as cache-miss or cache-line ownership, allow

pending bus transactions to complete. Externally initiated requests, such as to re-

move cache copies or write permission of a cache-line from local caches, result in NIU

initiated system bus transactions that cause the desired changes.

The different methods of detecting service requests and delivering message avail-

ability information require different NIU capabilities. If coordination between NIU

and host is through the main memory, the NIU needs to have bus master capability,

i.e. be able to initiate bus transactions. If coordination is through memory mapped

NIU registers, the NIU has to be a bus slave, a device which responds to bus trans-
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actions, supplying or accepting data. As a snooper, the NIU has to participate in

snoopy bus protocol, intervening where necessary. Although limiting the NIU to be

either just a slave, or just a master simplifies the NIU design, an NIU with all three

capabilities, master, slave and snooper, has the greatest flexibility in host interface

design.

2.5.2 Interface to Network

The NIU is the entity that connects directly to the network. As such, it has to

participate in the link-level protocol of the network, behaving much like a port in a

network switch. Link-level protocol covers issues like how the beginning and end of

a packet is indicated, and flow-control strategy to deal with possible buffer over-run

problems. In some networks [25, 33], it also includes link-level error recovery. This

part of the NIU also deals with signal encoding (e.g. Manchester encoding to improve

reliability), and the actual electrical levels used in signaling.

Data transported over the network has to conform to some format specified by the

network. For instance, there is usually a header, containing pre-specified control fields

like the packet destination, followed by payload of arbitrary data. Most systems also

append extra information for checking the integrity of the packet, usually some form of

CRC. A network may also impose a limit on the maximum packet size; messages that

are larger than the size limit will have to be fragmented at the source and reassembled

at the destination. Whether these details are directly exposed to software, making

it responsible for assembling messages into the network packet format, or masked by

the NIU vary across systems.

2.5.3 Data Path and Buffering

An NIU provides the data path between the network and its host node. This includes

at least some rate-matching buffers used as transient storage to decouple the real-time

bandwidth requirement of the network from that available on the host node.

Within the node, CC-NUMA style shared memory directly transfers data between
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the NIU and caches. Although S-COMA style shared memory logically moves data

between the NIU and main memory DRAM, actual data transfer sometimes occurs

directly between the NIU and caches.

Message passing often involves additional buffers which can be thought of as

service delay buffers. For instance, incoming messages can be buffered away until

software is at a convenient point to service them. Such buffers are managed in a

co-operative fashion between node software and the NIU.

Service delay buffers may be on the NIU or in main memory DRAM. Another

possibility is to place them logically in the main memory, but have the NIU maintain

a cache of them. For NIU's located on memory buses that support cache-to-cache

intervention, the latter design avoids cycling data through DRAM in good cases, while

having access to large, cheap buffer space in main memory.

Every NIU has to deliver all the above three functions in some form. In fact, simple

message passing NIU's provide only these functions and none of those described later.

For instance, the CM-5 NIU is a slave device on the memory bus, providing memory

mapped FIFO's that software on the node processor writes to or reads from directly.

These FIFO's serve both the bandwidth-matching and service delay functions.

The StarT-X PCI bus NIU card [42] is both a slave and a master on the PCI

bus. As a slave, it accepts direct command and data writes from the processor, much

like the CM-5 NIU, except that the writes physically passes through a chip bridging

the memory and PCI buses. With its bus master capability, the StarT-X NIU can

transfer data to and from main memory DRAM. This allows it to use main memory

DRAM as service delay buffers.

2.5.4 Data Transport Reliability and Ordering

In many systems, the function of recovering from losses caused by unreliable net-

work service, or NIU dropping packets is left to software, e.g. most ATM networks.
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Although this does not present a functional problem since software can implement

recovery protocols, it is best that the NIU provides this function in low-latency net-

works. Aside from off-loading this overhead from software, the NIU is in a better

position to implement the recovery protocol - without the duty of running long com-

putation threads, it can send and handle acknowledgements in a timely fashion and

monitor the need for re-transmission. For similar reasons, protocols for guaranteeing

in-order communication are also best implemented by the NIU.

NIU implemented loss recovery and ordering protocols is most often found in

message passing NIU's with programmable embedded processors where the function

is implemented in firmware. Examples include the SP2, and the Myrinet. Most

shared memory machines relied on their networks to guarantee reliable data transport.

This is strongly motivated by their requirement for low communication latency. An

exception is the SynfinityNuma [102] which has hardware implemented NIU-to-NIU

loss recovery protocol.

2.5.5 Unilateral Remote Action

A few NIU's, such as Shrimp [10], Memory Channel [36], T3D [55] and T3E [96],

support uncached remote memory access. 'This ability to carry out remote actions

unilaterally can be a very useful because it decouples the round-trip communication

latency from the scheduling status of any user software counterpart on the remote end.

Currently, this capability is only available for stylized operations, typically memory

read/write. The T3D also support an atomic remote fetch-increment-write operation.

The ability to run short remote user threads upon message arrival has been proposed,

e.g. hardware platforms like J-machine [24] and M-machine [30], and sofware libraries

like Active Message [100], but has not found wide-spread adoption.

2.5.6 Cache Protocol Engine

The NIU of a cache-coherent distributed shared memory system performs tasks be-

yond those listed above, namely coherence maintenance. Though traditionally con-
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sidered part of the cache controller or the memory controller, coherence functions are

included in our NIU because they are a form of communication and many capabilities

needed to implement shared memory are also useful for message passing. Coherence

hardware is divided into two parts: cache protocol engine described in this section,

and home protocol engine described in the next section. Our discussion is confined

to NIU's with direct access to the system bus because other points of interface are

inadequate to this task.

The cache protocol engine performs the cache side of coherence shared memory

support. It has two functions: (i) it determines when a requested operation on a

cache-copy requires actions at other nodes and initiates those actions; and (ii) it

executes other nodes' commands to modify the state or data of local cache copies.

The cache protocol engine is really part of the NIU's interface to host.

For S-COMA style shared memory implementation, the cache protocol engine has

to maintain cache-line state information, and implement access control to DRAM

cache-lines. For CC-NUMA style shared memory, the cache protocol engine typically

does not retain any long term information, but simply "echoes" bus transactions to

the home site for the cache-line involved.

Executing other nodes' commands on local cache copies involves performing an

appropriate system bus transaction. This is of course limited to the set of bus trans-

actions supported by the host system. In the case of S-COMA, the cache protocol

engine may also have to modify the cache-line state it maintains.

An important role of the cache protocol engine is to maintain transient state for

out-standing operations. Because a cache-coherence protocol is a distributed algo-

rithm dealing with concurrent activities, a local view sometimes cannot differentiate

between a number of possible global scenarios. The projections of these scenarios

onto a local node can be similar, but the scenarios require different local actions.

Maintaining transient state can help disambiguate. For instance, when a cache pro-

tocol engine receives an external command to invalidate a cache-line for which it

has a pending read, it is not possible to tell whether the command has over-taken

a reply to its pending read. (Many implementations put the two messages onto dif-
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ferent virtual networks due to deadlock concerns; thus message ordering cannot be

assumed.) The cache protocol engine therefore has to be more sophisticated than

echoing commands/requests in a simplistic way.

Support for S-COMA requires the NIU to track address mapping, so that from

the physical address of a cache-line, the cache engine can determine its home site and

provide the home site with sufficient information to look up the cache-line's directory

information. The cache engine also needs to track global address to local physical

address mapping so that home protocol engines operate on globally addresses only.

CC-NUMA style shared memory avoids address translation by using a fixed field

of the physical address to identify the home node. As long as a large physical address

space is available, this is an adequate approach. Translation capability bring conve-

nience, e.g. when the home node is migrated, only the translation information needs

to be modified instead of having to flush all existing cache copies.

2.5.7 Home Protocol Engine

Associated with main memory, the home protocol engine is the centralized controller

which maintains the global view of what is happening to a cache-line. It is typically

the authority which issues caches the permissions to maintain and operate on cache

copies. It also initiates commands to these caches to modify those permissions. The

exact functions performed by the home protocol engine differ across implementations.

For instance, almost all systems keep directory for each cache-line to identify the

caches that (may) have copies of that cache-line. This can be kept in a localized data

structure at the cache-line's home site (the common approach), or in a distributed

data structure, maintained co-operatively with the cache engines, as in SCI [47].

Directory size is often a small, but significant fraction of the supported shared

memory size. While highly implementation dependent, this fraction is often targeted

to be not more than 10 to 15%. For example, if 8 bytes is kept for every 64 bytes

cache-line, the overhead is about 12%. It is also preferably to use part of main

memory DRAM for this purpose, but when that is not feasible (such as due to possible

deadlocks), extra DRAM can be provided on the NIU.
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Earlier shared memory machines with only CC-NUMA support include DASH,

Alewife3 , SGI's Origin-2000, Sequent's NUMA-Q (subsequently renamed STiNG),

and Fujitsu/HAL's SynfinityNuma.

3Alewife's coherence protocol is implemented with a combination of hardware FSM's and pro-
cessor software. Hardware handles the common cases but interrupts the processor for corner cases.
Therefore, it is theoretically possible for Alewife to implement S-COMA style shared memory. This
has not been attempted.
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Chapter 3

A Layered Network Interface

Macro-architecture

This chapter presents our NIU's macro-architecture. The macro-architecture is an ab-

stract functional specification realizable with multiple implementations, one of which

is presented in Chapter 4. We adopt a layered architecture to facilitate implementing

a wide range of communication operations and ease of porting. Three layers are de-

fined: (i) a Physical Network layer, which provides reliable, ordered packet delivery;

(ii) a Virtual Queues layer, which implements protected network sharing; and (iii) an

Application Interface layer, which implements the communication interface exported

to application code, for example shared memory or message passing operations.

Each layer builds on services provided by the layer below to offer additional func-

tions. By dividing the responsibility this way, a uniform framework takes care of

network sharing protection issues once and for all, and the Application Interface

layer can implement multiple abstractions without worrying about subtle protection

violation; it only needs to control, through traditional virtual memory translation

mechanisms, which job gets access to each memory-mapped interface.

Figure 3-1 compares our proposed communication architecture against that of

more established machines. Each NIU in the other machines has a monolithic struc-

ture, and presents a small set of interface functions. The figure also shows how each

architecture has a different way of enforcing sharing protection. Protection in our

61



StarT-Voyager
Message Passing Machines

Applications OS

Applications OS

SM MP MP
Network Interface

Virtual Network
(mul1tipleci ne

Network
Network ____

Shared Memory Machines

Applications os
Applications OS

Network Interface

Bus Interface
Coherence Protocol Network

Network

Figure 3-1: Comparison of StarT-Voyager network interface architecture against those

of traditional message passing machines and shared memory machines. The bold black

lines indicate points where protection checks are imposed. Message passing machines

typically either rely on OS to enforce communication protection (top right), or operate

in single network user mode (bottom right).

architecture, demonstrated in the StarT-Voyager example, is enforced in two differ-

ent places. The first one, higher up in the diagram, makes use of conventional VMM

translation, while the second one is implemented in the Virtual Queues layer in the

NIU.

3.1 Physical Network Layer

The Physical Network layer defines the characteristics of the underlying data trans-

port service. These are chosen both to ease the design and implementation of the

layers above, and to match the functions supplied by most system area networks

(SAN). The Physical Network layer provides reliable, ordered packet delivery over

two logically independent networks, with bounded number of outstanding packets in
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each network.

3.1.1 Two Independent Networks

Abstractly, the Physical Network layer at each NIU provides two pairs of send and

receive packet queues corresponding to entry and exit points of two independent

networks. Each packet enqueued into a send queue specifies its destination receive

queue, which has to be on the same network. Having more than one network greatly

increases the options for over-coming network deadlock problems, with attendant

performance improvements.

3.1.2 Reliable Delivery Option

The Physical Network layer provides reliable packet delivery as an option on a packet

by packet basis. Packets that are not marked as requiring reliable delivery may never

reach its destination queue, but are never delivered more than once. This service

guarantee is made an option because we expect some systems to incur lower overhead

for packets that do not request for reliable delivery.

An alternative is to push delivery reliability guarantees up to the next layer, the

Virtual Queues layer. Our discussion of buffer management in Section 2.1 mentioned

that a design which dynamically allocates receiver queue buffer space at message

arrival may run into the situation where no buffer space is left. If not handled

properly, that problem can lead to deadlock affecting all parties sharing the network.

We will revisit this problem in Section 3.2.2. For now, it suffices to mention that

one solution is to drop a packet when its destination queue is out of buffer space,

and recover with a loss recovery protocol implemented between the private messages

queues of the Virtual Queues layer. Attempting to recover the dropped packet with

loss recovery protocol at the shared queues of the Physical Network layer does not

resolve the deadlock (more details in the next section). It therefore appears that

requiring reliable packet delivery at the network level is redundant.

Our choice is motivated by two performance considerations. Firstly, many cluster
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networks provide reliable packet delivery service which one would like to pass on to

application code. This level of service is wasted if network sharing entails packet

dropping and the attendant overhead of loss recovery protocol.

Secondly, implementing a sliding window protocol requires a fair amount of state

and buffering. If it is done at the multiple queues level, it most likely will have to be

done in NIU firmware. Implementing it directly in hardware for all the queues in the

Virtual Queues layer is infeasible because of the significant increase in per message

queue state. In contrast, by pushing the loss recovery protocol down to the shared

Physical Network layer, each NIU only implements two copies of the protocol, one

for each network, making it feasible to implement the protocol fully in hardware at

high performance.

Finally, our choice is possible because of an alternate solution to the deadlock

problem: Reactive Flow-control. This is discussed in Section 3.2,3.

3.1.3 Ordered Delivery Option and Ordering-set Concept

We introduced a more flexible concept of delivery ordering to permit taking advantage

of multiple paths in a network. Each packet which requires ordered delivery of some

form specifies an ordering set. Packets between the same source-destination pair that

have requested for ordered delivery under the same ordering-set are guaranteed to be

delivered in the sent order. No ordering is guaranteed between packets of different

ordering-sets. The traditional notion of message ordering is the limiting case where

only one ordering-set is supported.

The ordering-set concept is useful in networks which provide multiple paths be-

tween each source-destination NIU pair. For systems that determine packet routes

at the source, the ordering-set concept translates into using the same path for pack-

ets in the same ordering set. Ordered packets from different ordering-set can utilize

different paths, spreading out traffic load. Packets with no ordering requirements are

randomly assigned one of the possible routes.
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3.1.4 Bounded Outstanding Packet Count

The term outstanding packets refers to packets in transit in the network: they have

left the source NIU, but may not have reached the destination NIU. A bound on

the number of outstanding packets is required by the Reactive Flow-control scheme

described in Section 3.2.3. A well chosen bound can also prevent congestion in the

network, without limiting the good case network performance.

Packet delivery reliability was made optional based on the argument that providing

that guarantee incurs additional cost in certain system. Given the need to account

for outstanding packets, that argument may appear invalid. After all, accounting for

outstanding packets requires knowing when a packet no longer exists in the network.

If one has gone through the effort of tracking the existence of a packet, recovering

from its loss should not be that much more expensive.

This perception is not strictly true. Packets may be lost because they are deliber-

ately dropped at the destination NIU in response to lack of buffer space in destination

queues. Accounting for outstanding packets is relatively simple, with destinations

sending periodic, aggregated acknowledgement counts to the sources. In comparison,

if recovery of lost packets is needed, it becomes necessary to either buffer packets

at the source until delivery is confirmed. A bound on the number of outstanding

packets can also be gotten in passive ways, e.g., the entire networks' transient buffer-

ing capacity provides a bound which may be low enough to be useful for Reactive

Flow-control.

3.1.5 Programmable Send-rate Limiter

A programmable send-rate limiter imposes a programmable minimum time interval

between launching two packets into the same network. It is a useful tool for congestion

control. Congestion in the network arises when senders inject packets at a faster

rate than they can be removed. In switched networks, this often leads to very bad

congestion due to tree-blocking effects. With the send-rate limiter, faster NIU's in

heterogenous environment can be programmed to match the receive speed of slower

65



NIU's [45]. The minimum time interval can also be dynamically altered in response

to network conditions.

The Physical Network layer implements the glue to the underlying network. When

that network already possesses the desired properties, the network layer simply im-

plements low level signaling between the NIU and the network. When there is a

mismatch, some form of sliding window protocol can be used to bridge the gap.

Sliding window protocol not only recovers from packet losses, but can also enforce

order. Furthermore the send window size imposes a bound on the number of (unique)

outstanding packets.

3.2 Virtual Queues Layer

The Physical Network layer is a physically addressed packet transport service, in-

aware of processes and protection requirements. The Virtual Queues layer virtualizes

it, laying the foundation for multi-tasking sharing of the network. System-level job

scheduling flexibility depends on this layer. Our design not only facilitates transpar-

ent process migration, but also enables novel features such as dynamic contraction

and re-expansion of the number of processes devoted to a parallel job.

Figure 3-2 shows the Virtual Queues layer and Physical Network layer working

co-operatively. Central to the Virtual Queues layer is the abstraction of an arbitrary

number of message queues, allocated by the system as private queues to different

jobs. These queues form the components for constructing an arbitrary number of

independent virtual networks which can operate simultaneously. Protection is strictly

enforced through a virtual queue naming and translation scheme, while the out-of-

receive-buffer problem is solved by a Reactive flow-control protocol which imposes

zero performance cost under favorable conditions.
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Figure 3-2: Relationship between the Virtual Queues layer and Physical Network

layer.
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3.2.1 Virtual Queue Names and Translation

Controlling access to message queue is the basis for protection. There are two cat-

egories of message queue access: (i) local access to transmit and receive queues for

message enqueue and dequeue operations respectively; and (ii) remote receive queue

access, i.e. naming a receive queue as the destination of a message.

Without modifications to microprocessors, local access to transmit and receive

queues has to be through a memory mapped interface. Access control here is then

simply a matter of restricting which transmit and receive queues are mapped into the

virtual address space of a process. The normal virtual address translation mechanism

takes care of enforcing protection in each access instance.

Control over the naming of message destination queue is more interesting as it

defines the communication domains. Application code refers to message destinations

with virtual names, each of which is translated at the sender's NIU into a global queue

address used by the Physical Network layer. This translation is context dependent,

with each transmit queue having a different destination name space. Only system

code can set up the translation tables, which define the "reach" of each transmit

queue.

Each global queue name has two components: one part identifies the destination

NIU, while the second specifies a receive queue identifier (RQID) on that NIU. The

latter is subjected to a second translation at the destination NIU to determine the

actual destination queue resources. The utility of this second translation will become

apparent later when we discuss process migration in Section 3.2.5 and the combined

Resident and Non-resident queues approach of implementing the Virtual Queues layer

in Section 4.6.2.

This scheme allows arbitrary communication graphs to be set up. Aside from the

fully-connected communication graph common to parallel jobs, partially connected

communication graphs are also possible. The latter may be useful for client-server

communication where a server is connected to its clients but the clients are not con-

nected to one another. Adding and removing connections dynamically is also easy in
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this scheme.

Our protection scheme for network sharing offers several advantages over con-

ventional approaches, such as network time-slicing employed on the CM-5, and the

job-ID tagging and matching scheme used on the SP-2. These approaches coupled

three issues which we feel should be dealt with separately; these are: (i) communica-

tion protection, (ii) job scheduling; and (iii) network packet loss recovery. Coupling

communication protection with jobs scheduling restricts the kind of job scheduling

or network sharing in a system. As for network packet loss recovery, many cluster

system networks are reliable enough to not require provision for recovery from losses

due to network errors.

Our protection scheme also offers other system-level benefits like easing job migra-

tion and dynamic computation resource adjustment as described below. But before

that, we show that our scheme can be viewed as a generalized job-ID tagging scheme.

The job-ID tagging scheme on SP-2 only delivers packets that are tagged with

either the current job's job-ID, or the system job's job-ID. It is easy to extend this

scheme so that the receiver NIU permits more receive queues to be active, and de-

multiplexes incoming packets into their desired receive queues. This is, however,

insufficient when we want to migrate jobs and their message queues that used to

be on different nodes to the same node. Job-ID alone does not provide sufficient

disambiguation; it has to be further refined by some kind of process identity or queue

identity. The is essentially our destination queue naming and translation scheme.

3.2.2 Dynamic Destination Buffer Allocation

This section revisits the problem of allocating destination queue buffer space dynam-

ically at message arrival time. When space is unavailable, the choices are either to

drop or block the message. Blocking is a dangerous option in a shared environment

because a blocked packet occupies a shared network buffer leading to the insidious

build up of dependences between logically unrelated jobs. Blocking is only safe if there

is some way to guarantee that space will eventually free up. In dedicated network en-

vironments, this typically depends on the application respecting some network usage
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Figure 3-3: A sliding window style loss recovery protocol at the Physical Network
layer is insufficient for preventing blockage in the receive queue of one communication
domain from blocking traffic in another communication domain which shares the same
physical network. Repeated dropping of A 40 blocks B 12 .

discipline. In shared network environments, this requires an NIU imposed strategy.

This is necessary because the system cannot trust every job to respect the communi-

cation discipline and sharing the same pool of network buffers can create inter-job.

Dropping message when receiver buffer is unavailable is simple but requires some

recovery strategy if reliable communication is desired. Care has to be taken to ensure

that the recovery protocol does not introduce its own dependence arcs between un-

related message queues. In particular, if a variant of sliding window protocol is used,

an instance of the protocol is required for each pair of Virtual Queues layer transmit

and receive message queues. Relying on a shared instance in the Physical Network
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layer for this recovery will not work as illustrated in Figure 3-3.

Figure 3-3 shows a case where Packet A 40 arrives to find its destination queue,

RxQAi, full. The packet is dropped and no positive acknowledgement is provided

by the sliding window protocol in the Physical Network layer. This causes A 40 to be

re-sent later. Suppose the program which sent A40 has a deadlock bug such that it

never frees up queue space to accommodate A 40 . The sliding window protocol will

fail to make progress because the failure to deliver A 40 prevents the protocol from

reporting progress. Packets from queues belonging to other protection domains are

thus blocked too, e.g. B12 waiting in TxQB1. Basically, any sliding window protocol

must operate between TxQ and RxQ in the same layer.

When the Physical Network layer provides lossless packet delivery, and losses only

occur because a full receive queue causes new packets to be dropped, another possi-

ble recovery protocol is to provide acknowledge, either positive or negative, for each

packet. Under this scheme, the acknowledgements use a logically different network

from the one used for normal packets. A negative acknowledgement (NAck) trig-

gers subsequent re-send [41]. Source buffer space has to be pre-allocated before the

message is launched into the network, but copying into this buffer can be deferred

by requiring NAck to return the entire message. The appeal of this scheme is its

simplicity.

Yet another alternate is to take steps to ensure that there is always sufficient buffer

space in the receive queues. The onus of ensuring this can be placed on the user or

library code running on the aP. A possible manifestation of this idea is to require the

message sender to specify destination address to store the message into. Another is

to continue to have the NIU allocate destination buffer, but should the user program

make a mistake resulting in a message arriving to find no buffer space, the message

will be dropped. To aid debugging, the Virtual Queues layer provides a 1-bit history

available to user code indicating whether any message has been discarded. A second

option is to provide NIU assistance which dynamically and transparently regulates

message traffic to avoid running out of receive queue buffer space. We propose one

such scheme, which we call Reactive flow-control.
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3.2.3 Reactive Flow-control

Reactive flow-control imposes no flow-control overhead when traffic in the network is

well behaved while providing a means to contain the damage wrought by ill behaved

programs. It is also well suited to our NIU architecture; as shown in the next chapter,

it can be implemented very cheaply on our system.

Under Reactive flow-control, each receive queue has a low and a high water-mark

as shown in Figure 3-4. When the number of packets in a receive queue is below

the high water-mark, the receive queue operates without any flow-control feedback

to the transmit queues which send it messages. When occupancy of the receive

queue reaches the high water-mark, flow-control throttling packets are sent to all the

transmit queues that are potential message sources to throttle message traffic: the

senders are told to stop sending packets to this destination until further notified. The

receive queue is said to have overflowed and gone into throttled mode. To ensure that

flow-control packets are not blocked by the congestion that it is attempting to control,

one logical network of the Physical Network layer is reserved for flow-control packets

only. All normal packets go over the other logical network.

After flow-control throttling has been initiated, packets will continue to arrive

for the receive queue until throttle is completely in place. The receive queue must

continue to accept these packets. Upon receiving a throttling packet, an NIU uses

a selective disable capability to prevent the relevant transmit queue from sending

packets to the receive queue concerned. Packets to other destinations can, however,

continue to be sent out from that receive queue.

Each receive queue also has a low water-mark. A receive queue in throttled mode

gets out of the mode when its occupancy drops below this water-mark. At that point,

the receive queue's NIU sends throttle lifting flow-control packets to the sources to

notify them that the receive queue is ready to accept packets again. To prevent a

sudden flood of packets to the receive queue, the throttle lifting phase is done in a

controlled fashion, by staggering the destination re-enabling at different sources.

Reactive flow-control requires the receive queue to accept all in-coming packets.
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For this to work, we must be able to determine the maximum amount of buffering

needed. In our architecture, the network layer provides this bound. Both active and

passive methods for achieving this bound were discussed in Section 3.1. This amount

of buffer space, also known as the overflow buffer space, is needed for each receive

queue in addition to the normal buffer space of size equivalent to the high water-

mark. In practice, the overflow buffer size can be substantial (several kilobytes),

but because it resides within the owner process's virtual address space, implementa-

tions can provide overflow buffering in main memory DRAM, and even locally paged

memory.

Strictly speaking, in order to use the network's buffering capacity as a bound on

overflow buffer space, as is done in the StarT-Voyager NES described in Chapter 4, a

message which crosses the high water-mark should be blocked until the flow-control

throttling is known to have taken effect at all the message sources. To avoid this tem-

porary blockage, a threshold water-mark, at a point lower than the high water-mark

is introduced. Flow-control is initiated when the threshold water-mark is reached,

while message blockage pending disabling of all sources is only required when cross-

ing the high water-mark. With an appropriate gap between the threshold and high

water-marks, the temporary message blockage can be avoided in most cases.

The water-marks are picked in the following ways:

Low water-mark: The low water-mark should be high enough so that there is suf-

ficient work to keep the receiver busy while throttle is lifted. Thus, if it takes

time tt1 to remove throttle, the message servicing rate is r8, and average size

of each message is m, bytes, the low water-mark should be ((tti/r,)*m) bytes.

This value should be determined by system code as both tti and m, are system

parameters. r, is application dependent, though the system can easily esti-

mate a lower bound; this value can also be specified by the application when it

requests allocation of a message queue.

Threshold water-mark: The choice of threshold water-mark is influenced by two

considerations. Firstly, the threshold should provide sufficient space for the
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expected normal buffering requirement of the application. Furthermore, the

size between low and threshold water-marks should provide hysteresis to pre-

vent oscillation between throttled and normal mode. For instance, this size

should be such that the time to fill it up under maximum message arrival rate

is a reasonable multiple (say 8 times) of the time it takes to impose and re-

move throttle. Hysteresis should work in the other direction too, but we expect

message reception service rate to be lower than the arrival rate, so we do not

have to worry about throttle being imposed and lifted very quickly. The ap-

plication should provide system code with the expected buffering requirement,

from which the system code determines a threshold water-mark that also has

sufficient hysteresis.

High water-mark: The high water-mark is picked so that the size between thresh-

old and high water-marks allows the receiver NIU to continue taking in arriving

messages during the time it takes throttle to be put in place. So if it takes time

tti to impose throttle, the message arrival rate is ra, and average size of each

message remains at m, bytes, the size between threshold and high water-marks

should be ((tti/ra)*ms). This, like the low water-mark, should be determined

by system code. Application code can again assist by estimating the expected

Ta-

3.2.4 Decoupled Process Scheduling and Message Queue

Activity

To enable more flexible job scheduling policies, message queues remain active inde-

pendent of the scheduling status of the owner processes. This means messages can

be launched into the network from them, and arrive from the network into them

while their owner processes are not running. Reactive flow-control takes care of filled

receive queues when the receiver process is not active, preventing network deadlock

from developing. This will eventually block senders that need to communicate with

this receiver. The cluster job scheduler can be informed of receive queue overflow and
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transmit queue blockage, and use this information to carry out appropriate scheduling

actions.

3.2.5 Transparent Process Migration

Using virtual message destination queue names removes one potential obstacle to

transparent process migration. When migrating a process which owns a number of

receive queues to a new SMP, the global queue names of these receive queues have to

be changed. In our design, this simply means changing the virtual to global queue

name mapping in the translation tables of the transmit queues that send messages to

the affected receive queues. The rest of this section briefly sketches out the commu-

nication aspects of job migration.

The system first suspends the migrating process and all processes which commu-

nicate with it. Next, changes are made to the transmit queue translation tables,

while the network is swept of all outstanding messages to the affected receive queues.

Once this is done, the process migration can be completed, and all the suspended

processes re-enabled. Transparent migration requires references to other system re-

sources, such as file descriptors, to be migratable too. These issues are, however,

othorgonal to communication and beyond the scope of this thesis.

The rest of this discussion describes several features in our design which further

reduce the coordination and dead time (i. e. time when processes must be suspended)

during process migration. Although it is unclear how important these migration cost

reductions are compared to other costs of migration, such as copying the migrated

process state to the new SMP, the improvements rely on features that are present for

other purposes, and thus come "for free".

Improvement 1: Each message transmit and receive queue in the Virtual Queues

layer can be disabled individually. When a message transmit queue is disabled,

messages will not be launched from it into the network layer. The owner process

can, however, continue to enqueue message into the transmit queue, as long as

there is buffer space. When a message receive queue is disabled, messages
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arriving into this queue will not be enqueued into it. Instead, system code

handles such messages.

The capability for system code to disable message queues is critical for the Reac-

tive flow-control scheme but also comes in handy for process migration. Instead

of suspending processes that may send messages to the migrating process, the

system only needs to disable the affected transmit queues until the migration is

completed. The processes themselves can continue execution. Queue disabling

involves only actions in the NIU's and is a very cheap operation in contrast to

process suspension.

Improvement 2: Further improvement to process migration is possible with trans-

mit queue's selective disable feature. As the name suggests, applying selective

disable to a transmit queue prevents messages heading towards specific destina-

tions from being launched from that queue. Messages to other destinations are

unaffected. This is, again, motivated by Reactive flow-control considerations,

but is useful for relaxing the restrictions on sender processes during process

migration.

Improvement 3: Thus far, our description of process migration requires disabling

all transmit queues until the network is swept of messages previously sent from

them. This is necessary to preserve message ordering. In cases where message

ordering is unimportant, these sweeps are unnecessary. To deal with messages

heading to a receive queue that is being migrated, a temporary message forward-

ing service, implemented by the NIU, forwards these messages to the queue's

new location. This results in an implementation of process migration without

global coordination or global synchronization requirements.

3.2.6 Dynamic Computation Resource Adjustment

The contraction and subsequent re-expansion of the number of processors allocated

to a parallel job is likely to be a useful tool for job scheduling. Such changes may be

triggered by a cluster's work-load fluctuations or fault induced cluster size contraction.
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We will consider two cases here to illustrate how our queue name translation model

assists these contractions and re-expansions.

Our first example considers a static parallel execution model with coarse grain

dependence, for example, bulk synchronous scientific parallel programs. Because de-

pendence is coarse grain, it is sufficient to implement contraction by migrating some

processes so that the parallel job's processes fit into fewer SMP's. This assumes that

dependence between processes mapped onto the same processors are coarse grain

enough that satisfying the dependence does not require excessive context switching.

Re-expansion again simply involves process migration. Using migration capabilities

described earlier, both contraction and re-expansion are logically transparent to ap-

plication code.

Our second example considers a multi-threaded execution model, characterized

by dynamically created medium to short threads, and finer grain dependence. Exe-

cution, orchestrated by a run time system (RTS), is driven off continuation queues or

stacks. Typically, each process has one continuation queue/stack, and work stealing

is commonly used for distributing work among processes.

Cid [81] and Cilk [9] are examples of parallel programming systems which fall into

this model. Because of fine-grain dependences, an efficient implementation of contrac-

tion should combine processes, and the continuation queue/stack of these processes.

This is to avoid constant process switches to satisfy fine grain dependences between

threads in different processes that are mapped onto the same processor. Message re-

ceive queues of these processes should also be combined to improve polling efficiency

and timely servicing of messages.

Appropriate RTS support is critical for making such a contraction possible. Our

destination queue name translation assists the collapsing of queues by allowing two

or more virtual destination queues to be mapped to the same physical queue. With

this support, references to (virtual) destination queues can be stored in application

data structure before the contraction and continue to be valid after it. Messages sent

before the contraction and received after that can also contain references to (virtual)

destination queues without encountering problem.
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3.3 Application Interface Layer: Message Pass-

ing

The third and last layer of this communication architecture is the Application In-

terface layer, which corresponds to the NIU's interface on the SMP host's memory

bus. The service exported by this layer is visible to application code, and is divided

between a message passing interface, a shared memory interface, and provision for

interface extensions. This section covers the message passing interface.

Software overhead, latency, and bandwidth are several considerations for message

transmission and reception [22]. StarT-Voyager provides five mechanisms that offer

performance tradeoffs among these considerations. These are: (i) Basic message, (ii)

Express message, (iii) DMA, (iv) Express-TagOn, and (v) Basic-TagOn. Custom

message passing interfaces can be added using the interface extension capability of

the NIU.

For most commercial microprocessors and SMP's, memory mapping is the main

interface to the NES. Because neither the memory hierarchy's control structures nor

data path are designed for message passing, the interaction between the processor and

the NIU has to be constructed out of existing memory load/store oriented operations.

On the transmit side, this interaction has three logical components: (i) determine

whether there is sufficient transmit buffer, (ii) indicate the content of the message, and

(iii) indicate that the message is ready for transmission. The interaction on the receive

side also has three logical components: (i) determine if any message has arrived and is

awaiting processing, (ii) obtain message data, and (iii) free up buffer space occupied

by the message. Designing efficient methods to achieve these interactions requires

taking into account the optimal operating mode of the memory bus, the cache-line

transfer mechanism, and the memory model.

With today's SMP's, the number of bus transactions involved in each message send

and receive is a primary determinant of message passing performance. Processor

book-keeping overhead tends to have a smaller impact on bandwidth and latency

because today's processor clock frequency is typically 4 to 7 times the bus clock
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frequency, whereas each bus transaction occupies the bus for several bus clocks. The

consumption of bus bandwidth becomes an even more significant issue in an SMP

environment where the memory bus is shared by a number of processors. Several

techniques useful for reducing the number of message passing bus transactions are

described below.

Use cache-line burst transfers: Virtually all modern microprocessor buses are

optimized for cache-line burst transfers. Consider the 60X bus [4] used by

the PowerPC 604; a cache-line (32-bytes) of data can be transferred in as few

as 6 bus cycles compared to 32 bus cycles required for eight uncached 4-Byte

transfers1 . Aside from superior bus occupancy, the cache-line burst transfer

also uses processor store-buffers more efficiently, reducing processor stalls due

to store-buffer overflow.

Using burst transfers adds some complexity to NIU design because burst trans-

fers are typically only available for cacheable memory. With message queues

read and written by both the processor and the NIU, cache coherence must

be maintained between the NES and processor caches in order to exploit the

burst transfer. This issue is discussed further when we describe Basic Message

support below.

Avoid main memory DRAM: The message data path should avoid going through

main memory DRAM in the common case because information that goes through

DRAM crosses the system bus twice, first to be written into main memory, and

a second time to be read out. This not only wastes bus bandwidth, but in-

creases communication latency; in today's systems, the write-read delay through

DRAM can easily add another 15 to 20 bus clocks. Instead, transfers should

be directly between the NIU and processor, through any in-line caches between

them.

'A few microprocessors, such as the MIPS R10000 and Pentium Pro, are able to aggregate
uncached memory writes to contiguous addresses into larger units for transfer over the memory bus;
others offer special block transfer operations, e.g. 64byte load/store instructions in Sparc. These are,
however, still non-standard. The PowerPC family used in this project has neither of these features.
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Main memory DRAM does have the advantage of offering large amount of rel-

atively cheap memory. An NIU may want to take advantage of it as back-up

message buffer space. This is quite easy if the SMP system's bus protocol sup-

ports cache-to-cache transfers. The feature allows a cache with modified data to

supply it directly to another cache without first writing it back to main memory.

In such systems, message buffers can logically reside in main memory but be

burst transferred directly between the processor cache and the NES.

Bundle control and data into the same bus transaction: Control information

can be placed on the same cache-line as message data so that it is transferred

in the same burst transaction. For instance, a Full/Empty field can be used to

indicate the status of a message. For transmit buffers, the NIU indicates that

a buffer is available by setting its Full/Empty field to Empty, and processor

software sets it to Full to indicate that the message should be transmitted.

Control information can also be conveyed implicitly by the very presence of a

bus event. Because the number of bus events on cached addresses is not directly

controlled by software but is dependent on cache behavior, this technique can

only be used on uncached addresses. It is employed in our Express and Express-

TagOn message passing mechanisms. In those cases, we also make use of address

bits to convey "data" to the NIU.

Compress message into single software-controllable bus transaction: This is

an advantage if the SMP system uses one of the weak memory models. Found

in many modern microprocessor families, weak memory models allow memory

operations executed on one processor to appear out-of-order to other devices.

In such systems, a message-launch operation might get re-ordered to appear

on the bus before the corresponding message-compose memory operations. To

enforce ordering, processors that implement a weak memory model provide a

memory barrier operation (e.g. SYNC in PowerPC processors) which is needed

between the message-composition operations and the message-launch operation.

Unfortunately, memory barrier operations result in bus transactions, and their
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implementations often wait for superscalar processor pipeline to "serialize".

If the entire content of a message can be compressed into a single software-

controllable bus transaction, memory-barrier instructions are avoided. Express

message takes advantage of this.

Aggregate Control Operations: An interface that exchanges producer and con-

sumer pointers to a circular buffer to coordinate buffer usage allows aggregation

of control operations. Instead of finding out whether there is another free trans-

mit buffer or another message waiting to be serviced, the processor software can

find out the number of transmit buffers still available, or the number of mes-

sages still waiting to be serviced. Software can similarly aggregate the "transmit

message" or the "free received message buffer space" indicators. Aggregation in

these cases, unfortunately, does have the negative side-effect of delaying trans-

mission and the release of unneeded buffer space. There is thus a tradeoff

between overhead and latency.

Another form of aggregation is packing several pieces of control information

into the data exchanged in one transaction. This can again potentially save

bus transactions. Both aggregation techniques are used in our Basic Message

support.

Cache Control Information: For control variables that are expected to have good

run-length, i.e. one party reads it many times before the other writes it, or one

party writes it many times before the other reads it, making the location cache-

able is advantageous. To actually exchange information, invalidation based

snoopy coherence operations will cause at least two bus operations: one to

acquire write ownership, and another to read data. Therefore, this is only a

good idea if average run-length is greater than two.

A possible application of this idea is to cache consumer pointer of receive queue

as is done in the CNI message passing interface [77]. This pointer is written

frequently by processor software but typically read infrequently by the NIU.
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Similarly, the consumer pointer of transmit queue is also a candidate, although

in that case making it uncached has its merits. This is because to obtain long

write run-length on the NIU side for a transmit queue consumer pointer, the

processor software has to use a local variable to keep track of the number of

available buffers, and only read the consumer pointer from the NIU to update

this variable when it reaches zero. That being the case, making the consumer

pointer uncached is actually better because there is no need for the NIU to

obtain write ownership as is necessary if the location is cached.

In the case of receive queue consumer pointer, making the pointer uncached

and using aggregation to reduce the number of write bus transactions has the

negative side-effect of delaying buffer release. A cached consumer pointer allows

the write to occur to the processor cache, which only goes on the bus when the

NIU needs it.

Special Support for Multicast/Broadcast: An NIU interface that allows multi-

cast or broadcast operations to be specified can reduce the number of times the

same data is moved over the memory bus. Our TagOn message capitalizes on

this, while giving the flexibility for some of the message data to be different for

each "multicast" destination.

One of the biggest challenges in improving message passing performance is to

reduce the latency of reading information into the processor. Unfortunately, there

are few ways of improving this other than to reduce the number of such occurrences

using techniques described above. Invalidation based snoopy bus protocol provides

no opportunity to push data into caches unless the processor has requested for it.

Snoopy bus protocol that allow update or snarfing [6], neither of which are found

in commercial systems today, may open up new opportunities. Processor software

can also use pre-fetching to hide this latency, but this is not always easy or possible,

particularly since the data can become stale if the pre-fetch occurs too early.

We studied the above design options in 1994 when we designed the StarT-NG [19],

and again in late 1995 when we started designing StarT-Voyager. Independently,

83



Mukherjee et al [77, 78 also studied the problem of message passing interface design

for NIU connecting to coherent memory buses. The most interesting result of their

work is a class of message passing interfaces that they named Coherent Network

Interfaces (CNI). We will discuss these after we describe Basic Message. This section

describes the message passing mechanisms in our Application Interface layer.

3.3.1 Basic Message

The Basic message mechanism provides direct access to the Virtual Queues layer's

messaging service. With a 32-bit header specifying the logical destination queue and

other options, and a variable payload of between four and twenty-two 4-byte words,

a Basic Message is ideal for communicating an RPC request, or any medium size

transfer of up to several hundred kilobytes.

The Basic Message interface consists of separate transmit and receive queues, each

with a cacheable message buffer region, and uncached producer and consumer point-

ers for exchanging control information between the processor and the NIU. Status

information from the NIU - transmit queues' consumer pointers and receive queues'

producer pointers - are packed into a 4 byte value so that they can all be obtained

with a single read. The message buffer region is arranged as a circular FIFO with the

whole queue visible to application software 2 , enabling concurrent access to multiple

messages. The message content is specified by value, i.e. the processor is responsi-

ble for assembling the message content into the transmit buffer space. An uncached

pointer update immediately triggers NIU processing.

The processor performs four steps to send a basic message (Figure 3-5, top half).

The Basic Message transmit code first checks to see if there is sufficient buffer space

to send the message (Step 1). That figure also shows several messages that were

composed earlier, and are waiting to be transmitted. When there is buffer space,

the message is stored into the next available buffer location (Step 2); the buffer

2This is not strictly true in that the NIU maintains an overflow buffer extension for each receive
queue where incoming messages are temporarily buffered when the normal, software visible receive
queue is full.
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2. Write Buffer 3. Flush Cache to NES Buffer

Figure 3-5: Sending a Basic Message

is maintained as a circular queue of a fixed but configurable size. The transmit

and receive queue buffers are mapped into cached regions of memory. Unless NIU

Reclaim mode is used, in which case the NIU is responsible for buffer space coherence

maintenance, the processor must issue CLEAN instructions to write the modified cache-

lines to the corresponding NIU buffer locations (step 3). For systems with weak

memory model, a barrier instruction is required after the CLEAN instructions and

before the producer pointer is updated via an uncached write. This write (step 4)

prompts the NIU to launch the message, after which the NIU frees the buffer space

by incrementing the consumer pointer.

The application processor overhead can be reduced by using the NIU Reclaim

facility where the NIU issues CLEAN bus operations to maintain coherence between

the processor cache and the NIU buffers. In this case, the pointer update will cause

the NIU to reclaim the message and then launch it.

Though the transmit and receive queues are mapped to cached regions, producer

and consumer pointers are mapped to uncached regions to ensure that the most up-to-

date copies are seen both by the application and the NIU. To minimize the frequency

of reading these pointers from the NIU, software maintains a copy of the producer

and consumer pointers (P, C in top half of figure). The copy of the consumer pointer

needs to be updated only when it indicates that the queue is full; space may have
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freed up since by then. The NIU may move the consumer pointer any time it launches

a messages, as illustrated in our example between steps 1 and 2.

Message reception by polling is expected to be the common case, although an

application can request for an interrupt upon message arrival. This choice is available

to a receiver on a per receive queue basis, or to a sender on a per message basis. When

polling for messages, an application compares the producer and consumer pointers

to determine the presence of messages. Messages are read directly from the message

buffer region. Coherence maintenance is again needed so that the application does

not read a cached copy of an old message. As before, this can be done either explicitly

by the processor with FLUSH instructions or by NIU Reclaim.

A unique aspect of the Basic Message buffer queue is its memory allocation scheme.

Buffer space in this queue is allocated in cache-line granularity and both the producer

and consumer pointers are cache-line address pointers. Allocation in smaller granu-

larity is undesirable because of the coherence problem caused by multiple messages

sharing a cache-line. The other obvious choice of allocating maximum-sized buffers

was rejected because it does not work well with either software pre-fetching of received

messages, or NIU Reclaim. The main problem is that the size of a message is unknown

until the header is read. Therefore, both pre-fetching and a simple implementation

of NIU Reclaim must either first read the header, and then decide how many more

cache-lines of data to read, or blindly read all three cache-lines. The former introduces

latency while the latter wastes bandwidth. With cache-line granularity allocation, ev-

ery cache-line contains useful data, and data that is fetched will either be used for

the current message, or subsequent ones. Better buffer space utilization is another

benefit of this choice.

When we designed the Basic message support, we considered both the producer-

consumer pointer scheme described above, and a scheme which uses Full/Empty bits

in each fixed-size buffer. (We adopted the latter scheme in StarT-NG [19], the pre-

decessor of StarT-Voyager.) Tables 3.1 and 3.2 compare the bus transaction costs of

the two schemes.

A Full/Empty bit scheme is expected to have better performance because the
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control functions do not incur additional bus transactions. Under the producer-

consumer pointer scheme, the cost of obtaining free transmit buffers can probably

be amortized and is thus insignificant. Similarly, the cost of releasing receive buffers

should be insignificant. But this still leaves this scheme at a disadvantage because of

the extra cost of indicating transmit and finding out about received messages, both

of which can only be amortized at a cost to end-to-end latency.

We choose the producer-consumer pointer based scheme despite its performance

disadvantage due to implementation considerations. Section 3.3.6 provides a more de-

tailed comparison of implementation complexity of pointer and full-empty bit hand-

shake schemes.

3.3.2 Express Message

Messages with a minimal amount of data are common in many applications for syn-

chronization or communicating a simple request or reply. Basic Messages, with a

cached message buffer space, is a bad match because the bandwidth of burst trans-

fer is not needed while the overhead of coherence maintenance, weak memory model

(if applicable), and explicit handshake remains. Express Messages are introduced to

cater to such small payloads by utilizing a single uncached access to transfer all the

data of a message and thus avoid these overheads of Basic Messages.

A major challenge of the Express Message design is to maximize the amount of

data transported by a message while keeping each compose and launch to a single, un-

cached memory access. The Express Message Mechanism packs the transmit queue

ID, message destination and 5 bits of data into the address of an uncached write.

The NIU automatically transforms the information contained in the address into a

message header and appends the data from the uncached write to form a message.

Figure 3-6 shows a simplified format for sending and receiving Express Messages.

Additional address bits can be used to convey more information but they consume

larger (virtual and physical) address space and can also have a detrimental effect on

TLB if the information encoded into the address bits does not exhibit "good local-

ity". (Alternate translation mechanisms such as PowerPC's block-address translation
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Item Description Cost and Frequency

Transmit

TI Read transmit queue consumer 1 bus transaction (aggregatable)

pointer

T2 Write message content 1 to 2 bus transactions each cache-

line. Only 1 bus transaction to

move data from processor cache to

NIU for each cache-line if it is al-
ready present in cache with write

permission. Otherwise cache-miss

or ownership acquisition incurs an-

other bus transaction.

T3 1 memory barrier operation 1 bus transaction (aggregatable)

T4 Write transmit queue producer 1 bus transaction (aggregatable)

pointer

Total (n cache-lines message; not (n + 1/b + 2/s) to (2n + 1/b + 2/s)

using Reclaim)

b: average number of buffers

obtained at each read of transmit

queue consumer pointer.

s: average number of buffers

sent at each write of transmit queue

producer pointer.

Receive

RI Read receive queue producer 1 bus transaction (aggregatable)

pointer

R2 Read message content 1 bus transaction each cache-line.

R3 Removal of stale data 1 bus transaction each cache-line.

R4 1 memory barrier operation 1 bus transaction (aggregatable)

R5 Write receive queue consumer 1 bus transaction (aggregatable)

pointer

Total (n cache-lines message) (2n + 1/r + 2/f)
r: average number of buffers ob-

tained at each read of receive queue

producer pointer.

f: average number of buffers

freed at each write of receive queue

consumer pointer.

Table 3.1: This table summarizes the bus transaction cost of Basic Message support,
assuming NIU Reclaim is not used. With NIU Reclaim, the receive case incurs an

additional bus transaction for each cache-line of data. NIU Reclaim for the transmit

case does not incur any additional bus transaction if the snoopy bus protocol supports

cache-to-cache transfer. Otherwise, it also incurs an additional bus transaction for

each cache-line of data. 88



Item Description Cost and Frequency

Transmit
TI Read next transmit buffer's 1 bus transaction

Full/Empty bit.
T2 Write message content 1 additional bus transaction to

move data from processor cache to
NIU for the cache-line which con-
tains the Full/Empty bit (assuming
that the read in TI also obtained
write permission);
1 to 2 bus transactions for each
additional cache-line. Only 1 bus
transaction to move data from pro-
cessor cache to NIU for each cache-
line if it is already present in cache
with write permission. Otherwise
cache-miss or ownership acquisition
incurs another bus transaction.

T3 1 memory barrier operation I bus transaction
T4 Write Full/Empty bit 0 additional bus transactions.

Total (n cache-lines message; not (n + 2) to (2n + 1)
using Reclaim)

Receive
RI Read next receive buffer's 1 bus transaction

Full/Empty bit.
R2 Read message content 0 additional bus transactions for

the cache-line which contains the
Full/Empty bit;
1 bus transaction for each addi-
tional cache-line.

R3 Removal of stale data 1 bus transaction for each cache-line
after the first one.

R4 1 memory barrier operation 1 bus transaction
R5 Write Full/Empty bit 1 additional bus transaction, as-

suming the earlier read of the cache-
line has obtained write permission.
This bus transaction accounts for
the NIU reading this bit.

Total (n cache-lines message; not (2n + 1)
using Reclaim)

Table 3.2: This table summarizes the bus transaction cost of a Full/Empty bit based
scheme, assuming software is responsible for coherence maintenance. If something
analogous to NIU Reclaim is used, each transmitted or received cache-line incurs an
additional bus transaction.
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Tx Format Rx Format

Address DataO
Queue Priority Queue Priority

0 1 2 3 4 5 6 I 8 9 0 Il 1 2 1 3 14 15 16 17 18 19 20 21 22 23 24 25 26272V29 30 31 0 1 3 4 5 6 7 8 9 10 11 12 1, 14 15 16 17 IS 19 20 21 22 23, 24 25 26 27 2 29 30 31

Fixed field indicating queue number Logical Destination general payload Reserved Iogical Source general payload

Data Datal

32 33 34 35 36 37 38 39140 41 42 43 4445 46 47 48 49 50 51 52 53 54 55 j6 37 58 59 60 61 62 63 32 33 34 35 36 37 38 39140 41 42 43 4445 46 47 L4 49 50 51 52 53 54 55 #6 57 58 59 60 61 62 63

general sayload general payload

Arctic Packet Format

Interrpt on A val Priority UpRoute Logical Source
Node Num (Ist h 1

16 17 18 19 20/21 22 23124 25 26 2728 29 30 31 32 33 34 35 36 37 38 31 40 41 42 43 4445 46 47

Logical Source DownRoute NsgOp Receive Queue ID Length
Node Num (2nd half)

0 1 2 34567 89 1 l 1 1 3 4 15 16 17 18 19 20 21 22 23114i25 2 96 272293031

Fi xed field indicating queue number Logical Destination general payload
32 33 34 35 36 37 38 3940 41 42 44 4 8 49 50 51 5 53 54 556 8 60 1 62 63

general ayload

Figure 3-6: Express Message Formats

mechanism[72] may be employed to mitigate this problem but this depends on both

processor architecture and OS support.) Producer and consumer pointers are still

required for transmit queues as a mechanism for software to find out the amount of

buffer space available in the transmit queues.

To reduce the data read by a receive handler, the NIU reformats a received Express

Message packet into a 64 bit value as illustrated in Figure 3-6. Unlike Express Message

transmits, address bits cannot be used to convey message data to the processor when

receiving an Express Message. With processors which support double-word read into

contiguous GPR's, an Express Message receive is accomplished with a 64 bit uncached

read. For processor families without this support but with 64 bit floating points, an

Express Message receive can be accomplished with a 64 bit uncached read into an

FPR, and the data is subsequently move into GPRs. Alternatively, two 32 bit loads

into GPRs can be issued to receive the message.

Unlike Basic Messages, the addresses for accessing Express Message queues do not

specify particular queue entries. Instead, the NIU provides a FIFO push/pop interface

to transmit and receive Express Messages. Due to this side effect, speculative loads

from Express Message receive regions are disabled by setting the page attributes
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Item Description Cost and Frequency

Transmit
TI indicate transmit and content 1 bus transaction

Receive
RI poll received message 2 bus transactions if using 32-bit

uncached read;
1 bus transaction if using 64-bit un-
cached read;

Table 3.3: Bus transaction cost of Express message transmit and receive.

appropriately. When an application attempts to receive a message from an empty

receive queue, a special Empty Express Message, whose content is programmable by

system code, is returned. If message handler information is encoded in the message,

such as in Active Messages[100], the Empty Message can be treated as a legitimate

message with a "no action" message handler.

The Express message interface is implemented as a veneer on top of circular buffer

queues controlled with producer-consumer pointers. The NIU automatically incre-

ments these pointers in response to read/write bus transactions. Software can actu-

ally directly access the lower-level interface in the same way as for Basic message,

except that up to 4 messages now packs into each cache-line. When there are a num-

ber of Express messages to send (e.g. multicasting to say 8 destinations), it is cheaper

to use this lower-level interface (3-6 bus transactions for the 8 messages, compared

to 8 bus transactions. In systems with larger cache-line size, this advantage is even

greater.)

Although using the lower-level interface can be useful on the receive end too,

software has to guess whether there is going to be many messages for it to receive,

and then select the interface. This can be difficult. The NIU, which knows the number

of messages waiting to be processed in each Express RxQ, can help by making this

decision for software. (This feature is not in the current version of the StarT-Voyager

described in Chapter 4.) When an RxQ has a large number of messages pending,

the NIU response to a poll not with the next message, but with a special message
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that includes the identity of the Express RxQ, and the current pointer values; this is

currently already used for One-poll on Basic messages. Software can then switch to

using the lower-level interface to receive Express messages. The advantage of using

the lower-level interface for receiver is even greater than for transmit, since on StarT-

Voyager we use two 32-bit uncached read (plus a possible SYNC) to receive each

Express message. Using the lower-level interface, two cache-line of 8 messages can be

received with 4-5 bus transactions, compared to 16 with the usual interface.

3.3.3 DMA Transfer

DMA support provides an efficient mechanism for moving contiguously located data

from the memory on one node to that on another. It resembles traditional DMA

facility in that an aP can unilaterally achieve the movement without the remote aP's

involvement. This is in contrast to data movement effected through normal message

passing, where matching request and reply messages are needed. The DMA facility

can be thought of as a remote memory get or memory put operation. DMA re-

quests are specified with virtual addresses, allowing zero-copying message passing to

be implemented. When global shared memory address space is involved, the DMA

guarantees local coherence [58] but not global coherence. This means that the data

that is read or written is coherent with any cache copies in the source and destination

nodes respectively, but not necessarily with cache copies elsewhere in the system.

Kubiatowicz [58] provides arguments for this model of DMA in shared memory ma-

chines.

The DMA facility is designed to be "light weight" so that it can be profitably

employed for relatively small sized transfers. To reduce per-transfer aP overhead,

the design decouples page pinning from transfer request. The cost of the former

can be amortized over several transfers if traditional system calls are used to pin

pages. Alternatively, system software can be designed so that the aP Virtual Memory

Manager cooperates with the sP, allowing the latter to effect any necessary page

pinning. User code initiates DMA transfers through an interface similar to a Basic

Message transmit queue. The transfer direction, logical source and destination, source
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data (virtual) address, destination data (virtual) address, and length are specified in a

DMA request message to the local sP. This sP, together with the other sP involved in

the transfer, performs the necessary translation and protection checks before setting

up DMA hardware to carry out the transfer. An option for messages to be delivered

after DMA completion, e.g. to notify the receiver of the sender, is also available.

3.3.4 TagOn Message

The Express-TagOn Message mechanism extends the Express Message mechanism to

allow additional data located in special NIU memory to be appended to an out-going

message. The Express-TagOn Message mechanism was designed to eliminate a copy

if message data was already in NIU memory. It is especially useful for implementing

coherent shared memory protocol, and for multi-casting a medium sized message. As

composed by an application, an Express-TagOn Message looks similar to an Express

Message with the addition that several previously unused address bits now specify

the NIU memory location where the additional 32 Bytes (or 64 Bytes) of message

data can be found. For protection and to reduce the number of bits used to specify

this location, the address used is the offset from a TagOn base address. This base

address can be different for each transmit queue, and is programmed by system code.

At the destination NIU, an Express-TagOn Message is partitioned into two parts

that are placed into two separate queues. The first part is its header which is delivered

like an Express Message, via a queue that appears to be a hardware FIFO. The second

part, made up of the data that is "tagged on", is placed in a separate buffer similar

to a Basic Message receive queue which utilizes explicit buffer deallocation.

Express-TagOn Messages have the advantage of decoupling the header from the

message data, allowing them to be located in non-contiguous addresses. This is useful

in coherence protocol when shipping a cache-line of data from one site to another.

Suppose the sP is responding to another site's request for data. This is achieved by

the sP first issuing a command to move the data from aP-DRAM into NIU memory,

followed by a Express-TagOn Message that ships the data to the requester. In addition

to the cache-line of data, an Express-TagOn Message inherits the 37 bit payload of
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Express Messages which can be used in this instance to identify the message type and

the address of the cache-line that is shipped. Cache-line data may also be brought

into the NIU without the sP asking for it, for example the aP's cache may initiated a

write-back of dirty data. In such cases, Express-TagOn Message's ability to decouple

message header and data allows the data to be shipped out without further copying.

Express-TagOn Messages are also useful for multi-casting. To multi-cast some

data, an application first moves it into NIU memory. Once that is done, the ap-

plication can send it to multiple destinations very cheaply, using a Express-TagOn

Message for each one. Thus, data is moved over the system memory bus only once

at the source site, and the incremental cost for each destination is an uncached write

to indicate a Express-TagOn Message.

Basic--TagOn extends Basic Messages in a way similar to Express-TagOn. It differs

in that the non-TagOn part of the message can contain a variable amount of data.

Furthermore, when a Basic-TagOn message is received, it is not separated into two

parts, but is instead placed into one receive queue, just like an ordinary Basic Message.

Basic TagOn message offers similar advantages as Express-TagOn at the transmit end:

separation of message body permitting more efficient multi-cast.

Basic-TagOn was added fairly late in the design. It was mostly added to make

the support uniform: TagOn is an orthogonal option available with both Basic and

Express messages.

3.3.5 One-poll

In order to minimize the overhead of polling from multiple receive queues, StarT-

Voyager introduces a novel mechanism, called OnePoll, which allows one polling ac-

tion to poll simultaneously from a number of Express Message receive queues as well

as Basic Message receive queues. A single uncached read specifies within some of

its address bits the queues from which to poll. The result of the read is the highest

priority Express Message. If the highest priority non-empty queue is a Basic Message

queue, a special Express Message that includes the Basic Message queue name and

its queue pointers is returned. If there are no messages in any of the polled queues,
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a special Empty Express Message is returned.

OnePoll is useful to user applications, most of which are expected to have four

receive queues: Basic and Express/Express-TagOn, each with two priorities. The sP

has nine queues to poll; clearly the OnePoll mechanism dramatically reduces the sP's

polling costs.

3.3.6 Implications of Handshake Alternatives

The Full/Empty bit scheme requires the control portion of the NIU to poll and write

locations in the message buffers. With message queue buffer usage occurring in FIFO

order, the NIU knows the buffer in each queue to poll on next. This section considers

several implementations; invariably, each is more complex than those for the Basic

message mechanism.

First consider a simple implementation, where the NIU provides message buffer

SRAM and the control portion of the NIU reads the next buffer's Full/Empty bit field

from this SRAM. The NIU control also writes to the SRAM to set or clear Full/Empty

bits. Both actions consume SRAM memory port bandwidth, a contention problem

that increases in severity if the same SRAM port is used for other functions such

as buffering received messages. The polling overhead also increases as the number

of queues supported in the NIU increases. Even without considering contention, the

time to perform this polling increases with the number of message queues as the

number of message buffer SRAM ports is unlikely to increase at the same rate.

Clearly, to implement the Full/Empty scheme efficiently, the NIU has to be

smarter and poll only when necessary. This requires snooping on writes to mes-

sage buffer space, and only polling after writes have occurred. If NIU Reclaim is

supported, the snooping will only reveal an attempt to write, due to acquisition of

cache-line ownership. The NIU should then Reclaim the cache-line after a suitable

delay. The design also has to deal with the situation where the NIU is unable to

transmit as fast as messages are composed. In order that it does not drop any needed

poll, the NIU has to keeps track of the message queues with pending polls, probably

in a condensed form. A design that blocks write or write-ownership acquisition until
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the NIU can transmit enough messages to free up hardware resources to track new

message transmit requests is unacceptable as it can cause deadlocks.

The contention effect of NIU reading Full/Empty bits can be circumvented by

duplicating the slice of the message buffer SRAM where the Full/Empty information

is kept, devoting it to NIU Full/Empty bits polling. Using the same idea to reduce the

contention effect of NIU writing Full/Empty bits requires slightly more complex data

paths. Because the system bus width is unlikely to be the same width as the message

buffer size, certain bits of the data bus takes data either from the Full/Empty SRAM

or the normal message data SRAM, depending on which part of the message being

driven on to the bus. A mux is thus needed. Making this scheme work for variable

sized message buffers will further increase complexity. The most likely design in that

case is to not only store the value of Full/Empty bit, but also store a bit to determine

if that location is currently used for that purpose.

If we constrain software to modify the Full/Enipty bit in a FIFO order, and

assume fixed-size message buffers, the above design can be further simplified. The

NIU need not poll on the Full/Empty bits. Instead, it simply snoops on the data

portion of a bus transaction in addition to the address and control parts. When it

sees a set Full/Empty field in a bus transaction to a region associated with a transmit

queue. it goes ahead to increment that transmit queue's producer pointer. Similarly,

a cleared Full/Empty bit for a bus transaction associated with a receive queue triggers

increment of that queue's consumer pointer. The constraint that the Full/Empty bit

of message queues has to be set or cleared in FIFO order is unlikely to be a problem

if each message queue is used by only one thread. If several threads share a message

queue, it may incur additional coordination overhead.

Although the Full/Empty bit design is well understood, the implementation con-

straints we faced in StarT-Voyager make it infeasible. Because we are using off-the-

shelf dual-ported SRAM's for message buffers, with one port of the SRAM directly

connecting to the SMP system bus, we are unable to use the duplicated memory slice

idea to remove the overhead of NIU writing Full/Empty bits. Even duplicating the

slice to remove NIU Full/Empty read contention is not seriously considered because of
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concerns about capacitance loading on the SMP system bus3 . We would have picked

the Full/Empty bit design had we been implementing the NIU in an ASIC with much

more flexibility over the data-path organization.

The implementation of the producer-consumer pointer scheme is much simpler.

One reason is that the data and control information are clearly separated. In fact,

software updates message queue pointers by providing the new values of the pointer

in the address portion of a memory operation. We also allow both read and write

operations to update the pointers, with the read operation returning packed pointer

information from the NIU.

The separation of data and control makes it feasible to implement producer and

consumer pointers in registers located with control logic. By comparing these pointers,

the control logic determines whether the queue is full or empty and whether the NIU

needs to carry out any action.

3.3.7 Comparison with Coherent Network Interface

The Coherence Network Interfaces (CNI's) [77] use a combination of consumer point-

ers and Full/Empty bits to exchange control information between processor software

and the NIU. The pointers are placed in cached address locations to take advantage

of expected long write run-lengths.

To avoid explicitly setting the Full/Empty bits to empty, they added a clever idea

of sense-reverse on the Full/Empty bits - the meaning of a 1 in the Full/Empty bit

field changes as the usage of the queue reaches the end of the linear buffer address

region and wraps around to the beginning. Thus, whereas in one pass, 1 indicates

Full buffers, the value indicates Empty buffers on the next pass. Using this scheme

requires fixed-size message buffers and the linear buffer region to be a multiple of

that fixed size. The hardware complexity of implementing CNI is around that of the

generic Full/Empty bit scheme. While it dispenses with the NIU clearing transmit

queue Full/Empty bits, it adds the need to maintain full cache-coherence on the

3This was a serious concern earlier in the design when we were targeting a 50MHz clock rates.
With our final clock rate of 35MHz, this should not be an issue.
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producer pointers.

The bus transaction costs of using CNI is shown in Table 3.4. It actually looks

very similar to the generic Full/Empty bit scheme. A definitive comparison of CNI

with the Full/Empty bit scheme can only be done with a specific system, taking

into account a number of details, including processor's memory system details and

actual NIU implementation. For instance, under CNI, software does not read the

Full/Empty bit to determine if a transmit buffer is available, so that round-trip read

latency is avoided. However, software using a generic Full/Empty bit scheme can

hide this cost by pre-fetching the next buffer's Full/Empty bit when it starts to use

the current transmit buffer. CNI's use of a cached receive queue consumer pointer is

a good idea. Under the reasonable assumption that the receive queue does not run

out of space very frequently it is better than using an uncached consumer pointer, or

using Full/Empty bit to indicate release of receive queue buffer.

3.4 Application Interface Layer: Shared Memory

The shared memory interface implements both CC-NUMA and S-COMA support.

The NIU's behavior on the system bus differs in the two cases. It is the slave for bus

transactions generated by CC-NUMA cache misses, and has to carry out actions at

remote sites to obtain data or ownership. In response to requests from other nodes,

the NIU must be able to behave as a proxy bus master, fetching data from local

main memory, or forcing it from local caches. The NIU also has to keep directory

information for those cache-lines for which it is the "home site".

In clusters with multiprocessor SMP nodes, CC-NUMA implementation presents

some anomaly if the host SMP does not support cache-to-cache data transfer of both

clean and dirty data. Most snoopy bus protocols do not require, nor allow a cache to

respond to a read transaction on the bus if it has the requested data in clean state.

Thus, it is possible that a remotely fetched cache-line, da is present in processor A of

an SMP, but processor B encounters a cache miss of the same cache line which has

to be serviced by the SMP's NIU. For simplicity of the distributed CCDSM protocol,
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Item Description Cost and Frequency

Transmit
Ti Read transmit queue consumer 1 bus transaction (aggregatable)

pointer
T2 Write message content 1 to 2 bus transactions each cache-

line. Only 1 bus transaction to
move data from processor cache to
NIU for each cache-line if it is al-
ready present in cache with write
permission. Otherwise cache-miss
or ownership acquisition incurs an-
other bus transaction.

T3 1 memory barrier operation 1 bus transaction
T4 Write Full/Empty bit 0 additional bus transactions.

Total (n cache-lines message; not (n + 1 + 1/b) to (2n + 1 + 1/b)
using Reclaim)

b: average number of buffers
obtained at each read of transmit
queue consumer pointer:

Receive
R1 Read next receive buffer's 1 bus transaction

Full/Empty bit.
R2 Read message content 1 bus transaction each cache-line.
R3 Removal of stale data 1 bus transaction each cache-line.
R4 1 memory barrier operation 1 bus transaction
R5 Write receive queue consumer 0 bus transaction if hit in cache;

pointer
2 bus transactions each time NIU
actually reads consumer pointer.

Total (n cache-lines message; not (2n + 1 + 2/h)
using Reclaim)

h: average number of times soft-
ware writes the consumer pointer
before the NIU reads it.

Table 3.4: This table summarizes the bus transaction cost of a CNI style scheme,
assuming software is responsible for coherence maintenance for receive queues. If
something analogous to NIU Reclaim is used on the receive queues, each received
cache-line incurs an additional bus transaction.
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the NIU should implement a cache of remotely fetched data so that processor B's

cache-miss can be serviced with data from this cache. This may be implemented with

NIU firmware.

NIU support for S-COMA keeps coherence state information for cache-lines in local

main memory, and snoops on bus transactions addressing these regions. Cases where

further actions at remote nodes are needed use infrastructure similar to those for

implementing CC-NUMA support. A further requirement is the ability to translate

address between local main memory address and global shared memory address. NIU

S-COMA support should include hardware snooping, so that the sP is not involved

when the current cache-line state permits the bus transaction to complete. Otherwise,

the advantage of S-COMA over CC-NUMA is badly eroded.

The shared memory interface includes provision for passing hints from application

code to the NIU. This can be implemented fairly simply by using a memory mapped

interface to addresses interpreted by the sP.

The problem of designing and implementing correct cache-coherence protocol is

still a major research area today [73, 21, 89, 90, 26, 86, 87]. Deadlock aside, imple-

menting a coherence protocol that actually meets the specifications of its memory

model is also a difficult problem. Part of the problem is that many memory models

are motivated by implementation convenience and specified in an operational man-

ner that is often imprecise and incomplete. It is beyond the scope of this thesis to

delve into the problem of coherence protocol design, implementation and verification.

Instead, we target an NIU design which leaves details of the coherence protocol pro-

grammable. This both decouples the final details of coherence protocols from NIU

hardware design and implementation, and permits future experimentation.

Providing the ability to program the coherence protocol takes care of logical er-

rors. In addition, hard-wired low-level resource sharing policies in our NIU design

must not can cause deadlock. This problem is actually protocol dependent; whether

a certain partitioning of resources is adequate safe-guard against resource sharing

induced deadlock for a protocol is dependent on the dependence chains that can arise

under the protocol. One solution is to restrict the types of dependence chains that a
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protocol can create, and constrain protocols to be written in a way that respect these

limitations. This approach is adopted for PP code in FLASH's MAGIC chip [60], and

is applicable to our design. A second possibility, which our design also supports, is

to provide the capability to extend the number of resource pools through firmware.

3.5 Support for Interface Extensions

The NIU firmware programmable core has several capabilities that enable extend-

ing the application communication interface. These capabilities, described below,

are in addition to a basic instruction set encompassing general integer and control

instructions, and access to a reasonable amount of memory.

The NIU firmware observes the system bus to detect both explicit and implicit

initiation of communication. This is achieved through bus slave and bus snooper

capabilities. The NIU firmware is the slave for a static region of physical address

space. Write bus transactions to this address space are forwarded to NIU firmware,

while read bus transactions are supplied data by the NIU firmware.

The NIU also snoops on a static region of main memory. NIU firmware can specify,

at cache-line granularity, the type of bus transactions it is interested in observing, and

those that it is interested in intervening. In the latter case, the bus transaction is not

allowed to complete until NIU firmware gives the approval, and optionally provide

data to read-like transactions.

NIU firmware is able to initiate any bus transaction to an arbitrary physical

address. If data is transferred, the NIU specifies the memory location on the NIU

to transfer the data to or from, including regions in the transmit and receive queues.

This, together with NIU firmware's ability to directly read and write these NIU

memory locations enables NIU firmware to indirectly read and modify the SMP's

main memory locations.

General message passing capability is available to NIU firmware. A TagOn-like

capability makes it easy for NIU firmware to send out data that is in NIU SRAM. The

message passing capability also allows physical addressing of message destination. In
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this way, NIU firmware can implement destination translation.

NIU firmware has sufficient capability to generate network packets of arbitrary

format. Thus, the firmware message passing capability not only enables NIU firmware

on different nodes to communicate, but allows NIU firmware to generate network

packets that are processed completely by NIU hardware at the destination. The NIU

firmware can also intercept selected in-coming packets and take over their processing.

This selection is based on a field in the packet header, normally inserted during

destination translation at the message source.

All the NIU firmware interface extension capabilities are composable. They func-

tion as an instruction set that NIU firmware uses to deliver the functions of new

communication interfaces. Because NIU firmware is limited to one or a small number

of threads, but is multiplexed between many different functions, it is important that

its execution is never blocked at the hardware level. Instead, all blockage must be

visible to the firmware so that it can suspend processing the affected request, and

switch to processing other requests. The latter may be necessary to clear up the

blockage.
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Chapter 4

StarT-Voyager NES

Micro-architecture

This chapter describes the StarT-Voyager Network Endpoint Subsystem (NES), an

NIU that connects IBM RISCSystem/6000 Model 43P-240 SMP's to the Arctic net-

work [12, 13]. The IBM RISCSystem/6000 Model 43P-240 SMP, also called Doral,

was first introduced at the end of the fourth quarter of 1996. With two processor card

slots and two PCI I/O buses, it is a desktop class machine marketed as an engineer-

ing graphics workstation. Each processor card contains a PowerPC 604e running at

167MHz and a 512 kByte in-line L2 cache. The system bus conforms to the 60X bus

protocol [4] and runs at 66MHz in the original system. In StarT-Voyager, we replace

one of the processor cards with our NES. Figure 4-1 shows both the original Doral

SMP and the one used in the StarT-Voyager system.

We would have preferred to use larger SMP's, but real life constraints concerning

access to technical information, system cost and timely availability of the SMP led to

our choice. An earlier iteration of this project, the StarT-NG [19], targeted an eight-

processor, PowerPC 620 based SMP that was being developed by Bull. Unfortunately,

the PowerPC 620 microprocessor was never fully debugged or sold commercially.

Naturally, the SMP we were targeting did not materialize either.

The demise of that project taught us a few lessons. In StarT-NG, strong emphasis

was placed on the absolute performance of the resulting system. To meet this goal,
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Figure 4-1: The top of the diagram shows an original IBM Doral SMP. The bottom
shows a Doral used in the StarT-Voyager system, with a processor card replaced by
the StarT-Voyager NES.
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we targeted projected commercial systems that were still in very early stages of de-

velopment. This was to ensure that the completed cluster system would be available

around the same time as the host SMP, rather than much later as a "late" system

using previous generation SMP's. This choice greatly increased the risk of the cho-

sen host SMP system not materializing, and is an unnecessary risk for architecture

research. Although the absolute clock speed of StarT-Voyager is lower than contem-

porary systems, both its architecture at the microprocessor and SMP system levels,

and its relative clock ratios are highly similar to today's systems. Our research results

are therefore directly applicable. For example, the newest PowerPC microprocessor

from IBM, the 750, announced in September 1998, has a micro-architecture almost

identical to that of the 604e; the only differences being the presence of a back-side L2

cache interface on the 750 and a much higher processor core clock rate of 450 MHz.

Once we were convinced that absolute clock speed was no longer a high priority for

our project, we decided to implement the custom portions of the NES with FPGA's

(Field Programmable Gate Arrays) from Xilinx and an LPGA (Laser Programmable

Gate Array) from ChipExpress. This reduces both the manpower and financial costs,

while improving the architecture research potential of the system as FPGA allows

relatively easy hardware design modifications after the NES is constructed. It also

reduces the risk of the project. Although we had access to IBM technical manuals

of the devices on the system bus, we were unable to get simulation models from

IBM for verifying our design. Instead, our hardware design is verified in a simulation

system that uses device models we wrote based on our reading of the manuals. Using

FPGA's reduces the risk from mis-interpreting the manuals as changes can be made

during bring-up if such problems are detected. The price for using FPGA and LPGA

technologies is a lower NES and memory bus clock frequency of 35MHz.

Host SMP Memory System Characteristics

The PowerPC 604e implements a weak memory model, where memory accesses are

not guaranteed to appear in program order to external devices. When such ordering

is important, it is necessary to insert SYNC instructions. Each SYNC instruction
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State Read okay? write okay? dirty?

Modified (M) Yes Yes Yes
Exclusive (E) Yes Yes No
Shared (S) Yes No No
Invalid (I) No No No

Table 4.1: Semantics of the four cache-line states in MESI coherence protocol.

ensures that memory access instructions before it are completed and visible to external

devices before those after it.

The 60X bus protocol uses the MESI cache coherence protocol, an invalidation

based protocol with caches maintaining a 2-bit state for each (32 byte) cache-line,

representing one of the four states: (i) M: Modified, (ii) E: Exclusive, (iii) S: Shared,

and (iv) I: Invalid. Table 4.1 describes the semantics of these states. The Pow-

erPC processor family provides the Load-reserve/Conditional-store (LR/SC) pair of

instructions as the atomicity primitives.

The 60X bus protocol does not support cache-to-cache transfers, i. e., data is not

normally supplied from one cache to another, even if one cache has a dirty copy of

a cache-line that another cache wants to read. Instead, the dirty cache-line is first

written back to main memory before it is read out again. The Doral system provided

an exception to this: it can accommodate an L2 look-aside cache which can intervene

and act like main memory, supplying data to read transactions and accepting data

from write transactions. This limited form of cache-to-cache transfer capability is

utilized by the NES.

Arctic Network Characteristics

The Arctic network is a high performance, packet switched, Fat-Tree network. It

supports variable packet sizes between 16 to 96 bytes in increments of 8 bytes. This

packet size includes a 6 byte packet header and a 2 byte CRC. Packet delivery is

reliable, i. e. lossless, and in-order for packets using the same up-route through the

Fat-tree. Except for nearest neighbor nodes, multiple paths through the network exist

between each source-destination node pair. Each link of the Arctic network delivers a
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Network
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Hardware viler

System Bus (60X Protocol) (64bits data, 32bits address/66MHz)

Main data path

Figure 4-2: A high level view of the StarT-Voyager Network Endpoint Subsystem
(NES). The hardware filters determine whether the sP should be involved in pro-
cessing a particular event. In most cases, NES Core hardware handles the events
completely, ensuring high performance. The sP handles corner cases and provides
extendibility.

bandwidth of 150 MBytes per second. Two links, an in link and an out link, connects

to each SMP in the StarT-Voyager system.

Arctic distinguishes between two priorities of packets, high and low, with high

priority ones having precedence over low priority packets when routing through a

switch. Furthermore, switch buffer allocation is done in such a way that the last

buffer is always reserved for high priority packets. Effectively, this means that high

priority packets can always get through the network, even if low priority ones are

blocked. The converse is, however, not true. Therefore, strictly speaking, Arctic does

not support two fully independent networks, but the design is adequate for request-

reply style network usage, where one network (reply/high) must remain unclogged

even when the other (request/low) is blocked, but not vice-versa.

4.1 StarT-Voyager NES Overview
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The NES design faces the challenge of delivering a wide range of functions at

high performance while providing programmability. Furthermore, it must be imple-

mentable with moderate effort. We meet these demands with the design shown in

Figure 4-2, which couples a moderate amount of custom hardware, the NES Core,

with an off-the-shelf microprocessor, a PowerPC 604 microprocessor which we refer

to as the sP (service processor). The idea is to have custom hardware completely

handle the most frequent operations, so that the sP is not involved very frequently.

Because the sP takes care of infrequent corner cases, the custom hardware can be kept

simple. Conversely because the custom hardware completely takes care of most cases,

overall performance is little affected even if the sP is somewhat slower at handling

operations. This makes it feasible to employ a normal off-the-shelf microprocessor to

provide NES programmability.

Using an Off-the-Shelf Service Processor

Compared to a custom designed programmable engine, a generic microprocessor

reduces the design effort, but faces the problems of inadequate capabilities and slow

access to off-chip devices due to deep pipelining between its high-speed processor core

and the external bus. To overcome these deficiencies, we designed the custom logic

in the NES Core as a co-processor to the sP, offering it a flexible set of composable,

communication oriented commands. These commands provide missing functions and

off-loads data movement tasks that are simple for the NES core to provide but are

inefficient for the sP to undertake.

The strength of the sP is its ability to implement complex control decisions that

can also be modified easily. Thus a guiding principle in the NES design is to have

the sP make control decisions which are carried out by the NES Core. With this

organization, most of the communication data move between the network and the

host SMP system through the NES Core, by-passing the sP. This design philosophy

is also adopted in the FLASH's MAGIC chip [60], where the PP typically does not

handle data directly, but only deals with control information such as network packet

headers.
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A disadvantage of firmware implemented functions is lower throughput, since han-

dling each event takes multiple firmware instructions spanning a number of processor

cycles. With today's commercial microprocessors, which are all single-threaded, this

limits concurrency. A custom designed programmable core suffers similar inefficien-

cies although it could opt to support multiple threads simultaneously to improve

throughput. In contrast, dedicated hardware for handling the same event can be

pipelined so that several operations can simultaneously be in progress. Custom dedi-

cated hardware can also exploit greater parallelism, e.g. CAM (Content Addressable

Memory) hardware for parallel lookup.

As before, this problem is partly resolved with the communication primitives

supplied by the NES Core hardware. With an appropriate set of primitives, and

an efficient interface between the sP and the NES Core, the sP can simply specify

the sequence of actions needed, but it neither carries out those actions by itself, nor

closely supervises the ordering of the sequence. This reduces the occupancy of the

sP. A detailed discussion of the interface between sP and NES Core can be found in

Section 4.4.

The sP has its own memory subsystem consisting of a memory controller and

normal page-mode DRAM. The decision to provide sP with its own memory system,

as opposed to using the host SMP's main memory, is discussed in the next section

(Section 4.2), where several alternative organizations are presented.

Overview of NES Hardware Functions

The NES Core provides full hardware implementation of Basic message, Express

message and their TagOn variants. These message passing services are available to

both the aP and the sP. Because the buffer space and control state of these message

queues both reside in the NES Core, only a fixed, small number of hardware message

queues are available - 16 transmit and 16 receive queues. To meet our goal of sup-

porting a large number of queues, additional message queues, with their buffer and

control state residing in DRAM, are implemented with the assistance of the sP.

Both hardware implemented and sP implemented message queues present identical
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interfaces to aP software. Switching a logical message queue used by aP software

between hardware and sP implemented queues involves copying its state, and changing

VMM mapping on the aP. This can be done in a manner completely transparent to

aP software. The switch is also a local decision. The NES Core maintains a TLB-like

hardware which identifies the RQID's associated with the hardware receive queues.

A packet with an RQID that misses in this lookup is handled by the sP.

NES hardware handles the repetitive operations in a DMA. At the sender, NES

Core hardware reads data from system bus, packetizes and sends them into the net-

work. At the receiver, NES Core hardware writes the data into DRAM, and keeps

count of the number of packets that have arrived. The sP at both the source and

the destination are involved in non-repetitive operations of a DMA transfer such as

address translation, and issuing commands to the functional units that perform the

repetitive tasks. (See Section 4.5.7 for details.)

NES Core hardware also implements cache-line state bits for main memory falling

within S-COMA address space, using them to impose access permission checks on

bus transactions to this address space. (We sometimes refer to this as the Snooped

Space.) In the good cases where the cache-line is present in a state that permits the

attempted bus transaction, the bus transaction completes with no further delay than

a cache-miss to local main memory in the original SMP. The sP can ask to be notified

of such an event. In other cases, the bus transaction is retried until the sP is notified

and replies with an approval. When giving approval, the sP can optionally supply the

data to a read-like bus transaction. Section 4.5.9 elaborates on S-COMA support.

The sP is directly responsible for another address space, the sP Serviced Space.

Typically, write-like bus transactions are allowed to complete, with their control and

state information enqueued for subsequent processing by the sP. Read-like bus trans-

actions are typically retried until the sP comes back with approval. The NES Core

hardware that supports this actually provides other options, as described later in Sec-

tion 4.5.8. CC-NUMA style shared memory implementation is one use of this address

space. Other uses are possible; because the sP interprets bus transactions to this ad-

dress space, aP software and sP can impose arbitrary semantics to bus transactions
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to specific addresses.

The sP can also request for bus transactions on the aP bus. These are specified as

commands to the NES Core, with the sP specifying all 60X bus control signal values.

NES Core execution of these bus transactions is decoupled from the sP's instruction

stream processing. (Further details in Section 4.5.6)

Our sP is similar to embedded processors on message passing NIU's like Myrinet

and SP2 in that it has the ability to construct, send and receive arbitrary message

packets across the network. (See Sections 4.5.1 through 4.5.5.) In addition, the

NES Core provides the sP with very general capability not present in those systems

to observe and intervene in aP system bus transactions. (Details in Sections 4.5.8

and 4.5.9.)

The sP operates as a software functional unit with many virtual functional units

time multiplexed on it. NES Core hardware improves the sP's efficiency by imple-

menting configurable hardware filters, which only present it with bus transactions or

packets that it wants to see or handle,. On the bus side, the hardware cache-line state-

bit check performs that function. On the network side, the destination translation

and receive packet RQID lookup perform this filtering for out-going and in-coming

packets respectively.

4.2 Alternate Organizations

This section examines several alternate NES organizations, covering major design

choices that fundamentally shape the NES micro-architecture.

4.2.1 Using an SMP processor as NIU Service Processor

An alternative to our StarT-Voyager NES organization is a design which uses one

of the SMP processors as the sP (See Figure 4-3). (Typhoon-0 [92] has a similar

organization, except that the NES is split into two devices: a device on the system

bus to impose fine-grain access control, and a device on the I/O bus for message

passing access to the network.) This design has the advantage of not needing an sP
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Figure 4-3: A design which uses one of the SMP processors to serve as the NES sP.

subsystem on the NES. Unfortunately, this design has a serious performance problem

arising from the sP having to constantly poll the NES to find out if it has any events

to handle. This translates into system bus usage, even when there is nothing for the

sP to do'.

There is also the possibility of deadlocks. Part of the sP's function is to be

intimately involved in controlling the progress of bus transactions on the system bus.

In this capacity, there will be cases when the sP wants to prevent bus transactions

from completing until it has carried out some action such as communicating with other

nodes. With the sP functions undertaken by one of the SMP processors, these actions

now depend on the ability of this sP to use the system bus, either to communicate

with the NES or simply to access main memory. Insufficient bus interface resources

may prevent such system bus transactions from completing, as elaborated below.

In an SMP, bus interface resources in microprocessor and other system bus devices

are divided into separate pools devoted to different operations. This is to avoid

deadlocks arising from dependence chains in snoopy cache coherence operations. The

specifics of a design, e.g. the number of pools of resources and the mapping of bus

'Caching device registers, proposed by Mukherjee et al. [77], can remove this bus bandwidth
consumption when there is no event to handle. However, it will lengthen the latency of handling
events since an actual transfer of information now requires two bus transactions: an invalidation
and an actual read.
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interface operations to the resource pool, is tied to the dependence chains that can

arise under its particular bus protocol.

In bus-based SMP, it is common to assume that a push-out - write transaction

triggered by a bus snoop hitting a dirty local cache copy - is the end of a dependence

chain. Such a bus transaction will always complete because its destination, memory,

is effectively an infinite sink of data.

Read transactions, on the other hand, may depend on a push-out. Consequently

resources used for read transactions should be in a different pool from push-out, and

dependence from this pool to that used for push-out will build up dynamically from

time to time. The fact that push-out transactions do not create new dependence

prevents dependence cycles from forming.

This assumption, that a push-out transaction never creates new dependence, is

violated when a normal SMP processor, used as an sP, delays the completion of a

push-out until it is able to read from main memory. Whether this will really cause

a deadlock, and whether there are any acceptable work-arounds, depend on details

of the SMP system; e.g. whether push-out queues operate strictly in FIFO order, or

permits by-passes. Nevertheless, the danger clearly exists.

StarT-NG

In the StarT-NG project, we explored an organization that is very similar to using

an SMP processor as the sP (See Figure 4-4). It differs in that the PowerPC 620

processor was designed with a back-side L2 cache interface that can also accommodate

a slave device. Our design made use of this capability to connect the NES through

a private (i.e. non-shared) interface to a 620 processor that also directly connects

to the system bus. This processor, used as the sP, would poll the NES via its back-

side L2 cache interface rather than the system bus2 . One way to think about this

2The StarT-NG design reported in [19] divides the equivalent of our NES core into two portions.
One portion, which is message passing oriented, interfaces to the back-side L2 cache interface. The
other portion, which takes care of shared memory oriented functions, is mostly accessible only via
the system bus with the exception that notification of pending events is delivered to the sP via the
message passing interface. Another difference is that StarT-NG's shared memory support is a subset
of StarT-Voyager's.
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Network

Figure 4-4: The StarT-NG design, which uses one of the SMP processors as the NES
sP, but capitalizes on this processor's special back-side L2 cache to have a private
interface between the NES and this processor.

is StarT-Voyager's sP bus is moved to the back-side L2 cache interface. This design

solves the performance problem of sP constantly polling over the system bus.

To deal with the problem of potential deadlocks from the sP directly using the

system bus, usage rules are imposed on sP software in the StarT-NG design. For

instance, the sP processor and the other SMP processors cannot share cache-able

memory. This avoids any possibility of dependence arising from snoopy coherence

operations on the shared data. In addition, many bus transactions that the sP wants

performed on the system bus have to be done through the NES Core even though sP

software is capable of issuing instructions that result in the desired bus transactions

on the system bus. This again is to avoid deadlocks; an example follows.

Consider the case where the sP wishes to flush a particular cache-line from other

caches in the SMP node. A Flush bus transaction on the system bus will achieve

this. But even though the sP can directly execute a Dcbf (Data Cache Block Flush)

instruction that will result in such a bus transaction, it is not safe to do so. The

Flush bus transaction may require a push-out from another SMP processor before

it completes. In turn, that push-out may be queued behind several other push-outs
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requiring sP processing. But until the Flush bus transaction triggered by the sP's

Dcbf instruction is completed, the sP's instruction pipelined is blocked. A deadlock

results3

While there are several ways of circumventing this particular deadlock scenario,

delegating the task of performing the Flush bus transaction to the NES Core is the

only general one4 . It ensures that the sP's execution is decoupled from the completion

of the Flush bus transaction. While waiting for the latter's completion, the sP is

free to handle push-outs or any of many other events. Because many functions are

multiplexed onto the sP, any scenario which can block its execution pipeline must be

closely examined.

Using the SMP main memory as sP memory is a more elegant design than the

separate sP memory system adopted.in the StarT-Voyager NES. But as shown above,

several serious issues have to be resolved before it is feasible. In StarT-Voyager, the

lack of a back-side L2 cache interface on the PowerPC 604e processor precludes the

solution used in StarT-NG. The next best solution that both avoids dedicated sP

DRAM and maintains a private bus between the sP and the NES Core is to have the

NES Core act as a bridge chip, relaying sP bus transactions onto the SMP system

bus to access main memory. We decided that for our experimental prototype, this

was too much trouble; we were able to put together the sP's memory system using

commercial parts with little design effort.

3This example assumes that items in the push-out queues are serviced in-order. The problem
does not arise if the queuing policy allows by-passing. Unfortunately, this level of detail is rarely
specified in microprocessor manuals. Furthermore, neither a bus based SMP, nor a more traditional
hardware implemented cache-coherent distributed shared memory machine requires by-passing in
the push-out queue. Since allowing by-pass requires a more complex design, it is unlikely that the
feature is implemented.

4Other solutions typically rely on implementation details that allow absolute bounds on buffering
requirements to be computed and provided for. We view these solutions as too dependent on
implementation specifics which should not be tied down rigidly. For example, should the buffer
space in the processor bus interface increase because a new version of the chip has more silicon
available, this solution will need the amount of resources to be increased.
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4.2.2 Custom NIU ASIC with Integrated Programmable

Core

Incorporating a custom programmable core into the NIU is an alternative that can

not only achieve the goals that we laid out in earlier chapters, but also overcome some

disadvantages of an off-the-shelf sP. Aside from having the programmable core closer

to the rest of the NIU, this approach brings many opportunities for customizing the

programmable core's instruction set, and perhaps adding multiple contexts, or even

simultaneous multi-threading support.

A number of projects have taken this approach, e.g. FLASH [60], SUN's S3.mp [83,

82] and Sequent's NUMA-Q [68]. Though all three machines contain some kind of

custom programmable core, they vary in generality. Most are highly specialized micro-

code engines. The MAGIC chip in FLASH is the closest to a generally programmable

core.

In the interest of keeping design effort down, we elected not to include a cus-

tom designed programmable core. We also felt that with the correct mix of simple

hardware and an off-the-shelf processor, good communication performance can be

achieved. Furthermore, the higher core clock speed of our sP may allow it to perform

more complex decisions on the occasions when it is involved. In contrast, PP, the

programmable core of MAGIC, is involved in all transactions. The number of cycles

it can spend on handling each event is therefore constrained in order to maintain

adequate throughput and latency. This can become a particularly serious issue with

multiple processor SMP nodes5 .

4.2.3 Table-driven Protocol Engines

Using hardware protocol engines driven by configurable tables offers some amount

of programmability over how a cache coherence protocol operates without employing

micro-code engine or general programmable core. The flexibility is of course limited

to what is configurable in the tables. Since it is less general, its implementation is

5Each MAGIC chip serves only one single R10000 processor in FLASH.
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likely to retain the low latency and high throughput advantage of hardwired coherence

protocol engines. Its implementation is also simpler than a generally programmable

core.

The StarT-Voyager NES actually employs this idea in a limited way. As explained

later in Section 4.5.9, the NES Core performs cache-line granularity access permission

checks for system bus transactions addressed to a portion of main memory DRAM.

(This memory region can be used to implement S-COMA, and local portion of CC-

NUMA shared memory.) The outcome of this hardware check is determined not only

by cache-line state information, but also by configurable tables which specify how

the cache-line state information is interpreted. Useful as a component of our overall

design, the table driven FSM approach alone does not provide the level of flexibility

that we want in our NIU.

4.3 StarT-Voyager NES Execution Model

The NES Core is unusual as a co-processor in that its execution is driven by multiple

external sources of stimuli triggering concurrent execution in shared functional units.

These sources are: (i) commands from the sP, (ii) packets arrival from the network,

and (iii) bus transactions on the SMP system bus. Internally, the NES Core consists

of a collection of functional units connected by queues. Execution proceeds in a

continuation passing/dataflow style, with each functional unit taking requests from

one or more input queues and in some cases, generating (continuation) results into

output queues. These queues, in turn, feed other functional units.

This model of functional units connected by queues extends across the entire

cluster, with requests from one NES traveling across the network into the queues of

another NES. A very important part of the design is to ensure that dependence cycles

do not build up across this vast web of queues.

Although the NES Core has several sources of stimuli, the notion of per-thread

context is weak, limited to address base/bound and producer/consumer pointer values

that define FIFO queues. In the case of transmit queues, the context also includes the

117



destination translation table and base/bound addresses which define the NES SRAM

memory space used for TagOn messages.

Conspicuously absent is a register file associated with each command stream.

Unlike register style instructions used in RISC microprocessors today, but similar

to tokens in dataflow machines, the commands in the NES Core specify operand

information by value. This choice is motivated by hardware simplicity. Each of the

sP command streams can probably make use of a small register file, but since most

events handled by the sP are expected to result in only a small number of commands,

the context provided by a register file in the NES Core is not critical6 . Without

the register file and the associated register operands fetching, NES Core hardware is

simplified.

Management of ordering and dependence between commands from the same stream,

discussed in Section 4.4, is also kept very simple. There is no general hardware sup-

port for dynamic data dependence tracking, such as score-boarding. A few special

commands are, however, designed to allow vector-processor style chaining (See im-

plementation of DMA in Section 4.5.7).

4.4 Interface between sP and NES Custom Func-

tional Units

The interface between the sP and the NES Core is critical to performance. sP oc-

cupancy and the overall latency of functions implemented by the sP can vary signif-

icantly depending on this interface. In designing this interface, we have to keep in

mind that it is relatively expensive for the sP to read from the NES Core. It also

takes a fair number of cycles for the sP to write to the NES Core. Three possible

interface designs are discussed here: (i) a traditional command and status register

6 We will see later in the evaluation chapter, Chapter 5 that the cost of switching context is a
significant overhead for sP firmware. That suggests that multiple context support in the sP is likely
to be useful. However, that is not the same as saying that the NES Core should support multiple
contexts for its command streams. Firmware must be able to get to those contexts cheaply if it is
to be an advantage.
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Figure 4-5: A command and status register interface.

interface common among I/O devices; (ii) a command and completion queues design

with ordering guarantee between selected commands; and (iii) an interface similar to

(ii) with the addition of command templates. The StarT-Voyager NES implemented

the second option.

4.4.1 Option 1: Status and Command Registers

I/O devices are commonly designed with status and command registers which are

memory mapped by the microprocessor. As illustrated in Figure 4-5, the micro-

processor issues requests by writing to command registers and checks the results or

progress of these requests by reading from status registers. The I/O device can usually

also notify the microprocessor of an event with an interrupt but this is expensive.

Traditional I/O device interfaces are not designed for efficiency as microprocessors

are expected to access them infrequently. A major limitation of this interface is each

command register typically supports only one request at a time. The microprocessor

has to withhold subsequent requests to the same command register until the current

command is completed.
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Secondly, when a sequence of operations to different registers (i.e. different func-

tional units) of the device contains dependences, the required ordering has to be

enforced externally by the microprocessor. The microprocessor has to delay issuing a

command until commands which it depends on are known to have completed.

Thirdly, polling individual status registers to find out about progress or completion

of a command is slow. This can be improved by packing status bits together so that

a single poll returns more information. There is, however, a limit to the amount of

information that can be packed into a single access; because status reads are normally

done with uncached bus transactions, this limit is typically 32 or 64 bits. Checking

through a vector of packed status bits can also be slow for the sP firmware.

An sP working with such an interface will be very inefficient. To accomplish a

sequence of commands, the sP has to enforce inter-command dependence and arbi-

trate between functional unit usage conflicts. In the mean time, it has to poll for

both completion of previous requests, and arrival of new transactions to handle. Per-

formance is degraded because polling is relatively slow and pipelining between NES

Core command execution and sP issue of subsequent requests is severely limits by the

poll--and-issue sequence. The sP code also becomes very complex because it has to

choreograph one or more sequences of actions while servicing new requests arriving

from the network or the SMP bus7 .

4.4.2 Option 2: Command and Completion Queues

Ideally, the sP would like to issue, all at once, an entire sequence of commands

needed for processing a new request. This simplifies sP coding by removing the need

to continually monitor the progress of the sequence. It also facilitates pipelining: not

only can the sP issue more commands while earlier ones are being executed, the NES

Core can potentially exploit parallelism between these commands.

The efficiency of sP polling for new requests or for notification of command com-

pletion can be improved by merging them into polling from a single address. The

7 Interleaving processing of multiple transactions is not merely a performance improvement option
but a necessity as failure to continue servicing new requests can lead to deadlocks.
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Figure 4-6: A command and completion queues interface.

StarT-Voyager NES achieves these advantages with an interface composed of two com-

mand queues, a completion queue and the ability to perform OnePoll from several

queues.

4.4.2.1 Command Ordering and Data Dependence

A major command queue design issue is hardware maintenance of ordering and data

dependence between commands. Without such guarantees, the sP cannot fully exploit

the command queues since it still has to manually enforce data dependence in the old

way. In addressing this issue, a design has to balance among the need for ordering,

exploitation of inter-command parallelism and design complexity. The following are

some options we considered.

Dependence Tracking Hardware: At one extreme is an aggressive design that

dynamically tracks dependence between commands due to read/write access

to shared NES SRAM locations. Several implementations of this dependence

tracking are possible. One is to employ score-boarding, with full/empty bits

for all NES SRAM memory locations. Another is to maintain a list of SRAM
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locations which are being modified, much like the scheme used in load/store

units of today's aggressive superscalar microprocessors. The size of NES SRAM

memory, 32kB, makes keeping full-empty bits relatively expensive. The other

design is also difficult because the exact SRAM memory location read or written

by a command is sometimes unknown until part way through its execution in

a functional unit.

Barrier Command: A middle of the road option with moderate design complexity

is to have sP software explicitly specify dependences. The sP could be provided

with "barrier" commands which block issue of subsequent commands until pre-

vious ones have completed. Given that "barriers" are expected to be used quite

frequently, it can be made an option in each ordinary command. Setting this

option bit is equivalent to preceding a command with a barrier command.

Dependence Bit Register File: Another way for sP software to explicitly specify

dependence is to provide a small register file of full-empty bits. Each command

is expanded with two or more fields for naming full-empty registers, one for

which it is producer and the others consumer. A command is not issued until

its consumer full-empty registers are all set. Its producer full-empty register

is cleared when the command is issued, and set upon its completion. This

approach provides finer granularity specification of dependence than the "bar-

rier" command approach, but comes at the price of increased command size,

dependence register file hardware, and the control logic to track and enforce

dependence.

Multiple Sequentially Processed Queues: At the other extreme is a very simple

design which executes only one command from each queue at a time, proceeding

to the next one only after the previous one has completed. While simple, this

design kills all inter-command parallelism. To improve parallelism, a design

can employ multiple command queues, with no ordering constraints between

commands in different queues. It can also limit ordering to command types that

are likely to have dependences. In the unlikely event that ordering is needed
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between other commands, the sP will manually enforce it by appropriately

holding back command issue.

The last design is adopted in the StarT-Voyager NES, where two command queues

are supported. The sP can also utilize additional queues which are limited to send-

ing messages only. All the design options described above achieve the first order

requirement of allowing the sP to issue a stream of commands without polling for

completion. They differ only in their exploitation of inter-command parallelism. Our

choice is a compromise between design simplicity and parallelism exploitation.

4.4.2.2 Command Completion Notification

Command completion is reported to the sP via a completion queue. Since it is

expensive for the sP to poll the NES Core, completion notification is made an option in

each command. Very often, a sequence of commands requires completion notification

only for the last command, or none at all. The completion queue is treated like

another message queue, and can be one of the queues named in a OnePoll. Using

OnePoll further reduces sP polling cost.

The completion queue has a finite size, and when it is full, completion notification

cannot be placed into it. This will cause functional units to stall. The sP is responsible

to ensure that this does not lead to a deadlock. It should, in general, pre-allocate space

in the completion queue before issuing a command requiring completion notification.

Alternatively, sP code can be structured to ensure that it is constantly removing

notifications from the completion queue.

4.4.3 Option 3: Template Augmented Command and Com-

pletion Queues

Given that the sP is expected to issue short command sequences when processing new

requests, it is natural to consider extending our design with command templates. The

goal is to reduce the time taken to issue a command sequence by pre-programming the

fixed portions of each command sequence in the NES Core. To invoke a sequence, the
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Figure 4-7: A template augmented command and status register interface.

sP simply identifies the template, and specifies the values of the variable parameters.

While interesting, it is unclear how much savings this produces. As mentioned

before, when a stream of commands is issued by the sP, processing of earlier com-

mands overlap issuing of subsequent ones. Thus the benefit of the template scheme

is probably more a matter of reducing sP occupancy rather than overall latency of

getting the command sequence done. Coming up with an efficient means of passing

parameters is also tricky.

As proposed here, a template is a straight sequence of commands. It is, however,

not difficult to envision including more capabilities, such as predicated commands

and conditional branches. If the NES Core capability is pushed in that direction,

one will soon end up with a customized programmable core. At that point, the sP

is probably no longer needed. A substantial amount of design and implementation

effort is needed to implement the template scheme, and even more for a more generally

programmable NES Core. Consequently, we did not explore the idea much further.
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4.5 NES Core Micro-architecture

This section describes in detail the different queues and functional units in the

NES Core as illustrated in Figure 4-8. We do this in an incremental fashion, starting

with the simplest subset which implements only Resident Basic message support.

By re-using and extending existing hardware capabilities, and adding additional NES

Core hardware, the NES's functionality is enhanced until we arrive at the final design.

Figure 4-9 shows the partitioning of the NES Core functional units and queues into

physical devices.

4.5.1 Resident Basic Message

Figure 4-10 presents a logical view of the NES Core components that implement

Resident Basic message passing support. The state associated with each queue is

separated into two parts: the buffer space and the control state. Control state is lo-

cated with the transmit and receive functional units, while buffer space is provided by

normal dual-ported synchronous SRAM. The exact location and size of each queue's

buffer space is programmable by setting appropriate base and bound registers in the

queue's control state. To support a number of queues with minimal duplication of

hardware, the message queue control state is aggregated into "files", similar to register

files, which share control logic that choreographs the launch and arrival of messages

to and from the network.

Software accesses the message queue buffer space directly using either cached or

uncached bus transactions. The NES State Read/Write logic provides software with

two windows to access message queue control state. One window has access to the full

state including configuration information. Obviously, access to this window should

be limited to system software or other trusted software. A second window provides

limited access to only producer and consumer pointers. This is exported to user-level

code.

The actual implementation of Basic Message functions involves the devices shown

in Figure 4-11. The design is completely symmetrical for the aP and the sP. Two
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Figure 4-8: Queues and functional units in the StarT-Voyager NES.
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Figure 4-9: Physical devices in the StarT-Voyager NES.
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Figure 4-10: Queues and functional units to implement Resident Basic Message.

banks of dual-ported SRAM provide storage space for message buffer. Software access

to these SRAM banks is achieved with the help of the BIUJ's, which determine the

SRAM location to read data from and write data into. The destination translation

tables are also located in the SRAM banks. The TxFIFO and RxFIFO in the diagram

are used to decouple the real-time requirement of Arctic network from the scheduling

of I-bus. This is necessary for in-coming messages to prevent data losses. A second

role of these FIFO's is for crossing clock domains: the network operates at 37.5 MHz,

most of the NES at 35MHz.

Logic that implements transmit and receive functions is divided into two parts: one

part resides in the NESCtrl chip, and the other in the TxURxU FPGA. The former is

responsible for the control functions. Although it observes packet headers, this part

does not manipulate nor alter the data stream. Such tasks are the responsibility of

the TxURxU. The NESCtrl chip is also the arbitrator for the I-bus, which is shared

among many different functions.

Access to Queue Control State

Implementation of control state update is easy, since both the name of the state
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Figure 4-11: Actual realization of Resident Basic Message queues and functional
units.
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being updated, and the new value are both found in the address portion of a control

state update bus transaction. Reading control state is more involved, because the

data has to be written from the NESCtrl chip over the I-bus into the SRAM banks

before it can be supplied as data to read bus transactions. To reduce the impact

of this long data path on the latency of reading queue state, shadow copies of the

most frequently read state, the producer pointer of receive queues and the consumer

pointer of transmit queues, are kept in the SRAM banks, and periodically updated

by NESCtrl.

Transmit Unit

The transmit unit tracks the transmit queues that are non-empty, updating this

information each time the producer or consumer pointer of a transmit queue is written

to. A scheduler in the transmit unit then selects one of the non-empty transmit queues

that is also enabled and loads its control state into the state machine that controls

the actual message launch.

The transmit unit is responsible for performing destination translation on most

out-going packets. With both message and translation table data coming from NES

SRAM, this is achieved by simply marshalling the appropriate translation table entry

data into the message data stream heading towards the TxURxU. The data path

in TxURxU then splices that information into appropriate portions of the out-going

packet's header.

For the other packets that request physical destination addressing, the transmit

unit checks that the transmit queue from which the packet originates has physical

addressing privilege. Any error, such as naming a logical destination whose translation

table is invalid, or using physical addressing in a queue without that privilege results

in an error that shuts down the transmit queue. The error is reported in an NES

Error register, and may raise either an aP or an sP interrupt depending on how the

aP and sP interrupt masks are configured.

Receive Unit

The receive unit is responsible for directing an incoming packet into an appropriate

130



receive queue. It maintains an associative lookup table which matches RQID (Re-

ceive Queue ID), taken from the header of incoming packets, to physical message

queues. The receive unit also maintains a special queue called the Overflow/Miss

queue. Packets with RQID's that miss in the lookup are placed into this queue. So

are packets heading to receive queues that are already full, and whose control state

enables overflow. Exceptions to the latter are packets that ask to be dropped when

its receive queue is full. The choice of whether to drop a packet heading to a full

receive queue is made at the packet source, specified in the translation table entry.

A packet can also block if its receive queue is full. This happens when the receive

queue state indicates that overflow is not enabled, and the incoming packet does

not ask to be dropped when encountering such a situation. Although blocking is in

general dangerous, providing this option in the hardware gives system software the

flexibility to decide whether this should be made available to any software; perhaps

sP software can make use of it.

Link-level Protocol

Both the transmit and receive units participate in link-level flow-control with an Arc-

tic Router switch. Arctic adopts the strategy that each out-going port keeps a count

of the number of message buffers available at its destination. This is decremented

each time a packet is sent out of a port, and incremented when the destination signals

that space for another packet is available. Arctic also imposes the rule that the last

packet buffer has to be reserved for high priority packets. The NES's transmit unit

has to respect this convention. The receive unit typically indicates a packet buffer

space has freed up when a packet is moved from RxFIFO into message buffer space

in SRAM.

4.5.2 Resident Express Message

The NES Core implementation of Resident Express message support, shown in

Figure 4-12, re-uses most of the hardware that is present for Basic message. The hard-

ware message queue structures are re-used with only minor changes to the granularity
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Figure 4-12: Queues and functional units to implement Resident Express message

and Basic message. The lightly shaded portions require modifications when we add
Express message. The more deeply shaded portions are new additions for Express
message.
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Figure 4-14: Message headers of Basic and Express messages.

of the pointers, 64 bits vs 32 bytes in Basic message.

Transmit Unit

The Basic message and Express message formats are compared in Figure 4-14. Be-

cause we keep the first 4 bytes of the Basic and Express message headers almost

identical, few changes are needed in the transmit unit. One change is having the

transmit unit add a packet length field, which is explicitly specified by software in

Basic message format, but left implicit in the Express message format. Another

change is feeding the 64 bit Express message to TxURxU twice, the first time as the

equivalent of the Basic message header, and the second time as the equivalent of the

first data word in Basic message.

Receive Unit

The receive unit requires additions to re-format Arctic packets into the 64 bit format

required by Express message. No re-formatting is needed for Basic message since its

receive packet format is essentially Arctic's format packet. The re-formating, shown

in Figure 4-15, is very simple, and is done in TxURxU. Most existing functions of

the receive unit, such as respecting Arctic's link-level protocol and determining the

NES SRAM location to place an incoming packet, are unchanged between Basic and

Express message.
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BIU Express Message Support

The main hardware addition to support Express message is in the BIU's, where

shadow copies of the control state of Express message queue are introduced. The

BIU's use these to implement the hardware FIFO interface of Express messages, and

also the OnePoll mechanism for prioritized polling of message queues.

When processor software performs an Express message send with an uncached

write, its BIU uses the local copy of queue state to generate the message buffer's

SRAM address. The BIU also writes the address portion of the bus transaction,

which is part of the message, into the even word of this buffer if this transmit is

triggered by a 4-byte uncached write. This is done over the I-bus, with the help of

NESCtrl. Finally, it increments its copy of the producer pointer, and updates the

transmit unit's copy of that pointer. The latter is done using the same hardware path

taken when queue state is explicitly updated by software in a Basic message send.

When software polls for messages from an Express message queue, the BIU again

uses its copy of queue state to generate the SRAM address. But instead of always

generating the SRAM address of the buffer indicated by the queue's consumer pointer,
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the BIU takes into account whether the queue is empty. If it is empty, the BIU

generates the SRAM address of a special location that contains a system software

programmed Empty Express message. If the queue is non-empty, the BIU updates the

consumer pointer. The BIU and the receive unit co-operate to keep the queue pointers

in synchrony. The BIU propagates consumer pointer updates to the receive unit, while

the receive unit propagates producer pointer updates in the reverse direction.

4.5.3 OnePoll

OnePoll of multiple queues is an extension of polling from a single Express message

receive queue. A OnePoll bus transaction specifies a number of message queues that

it wants to poll from. On its part, the BIU determines which queues among these

are not empty, and when there are several, one queue is selected based on a fixed,

hardwired priority. Since normal polling already selects between two possible SRAM

addresses to read data from, OnePoll simply increases the choice to include more

queues.

To reduce the amount of work done when a OnePoll transaction is encountered,

the BIU maintains a 1-bit value for each Express message receive queue indicating

whether it is empty. This is re-evaluated each time a producer or consumer pointer is

updated'. When servicing a OnePoll bus transaction, the BIU uses this information,

selecting only those of queues picked by the OnePoll bus transaction, and finds the

highest priority non-empty queue among them. The result is then used as mux

controls to select the desired SRAM address. The depth of OnePoll logic for n queues

is O(log(n)), while the size of the logic is 0(n 2 ). In our implementation, we are able

to include up to ten queues without timing problem.

A Basic message receive queue can also be included as a target queue in a OnePoll

operation. When a Basic message queue is the highest priority non-empty queue, the

data returned by the OnePoll action includes both a software programmable portion

8This implementation also avoids the need for parallel access to a large number of producer and
consumer pointers. These pointers can continue to be kept in register files with limited number of
read/write ports.
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that is typically programmed to identify the Basic message queue, and a portion

containing the NESCtrl updated shadow queue pointers in NES SRAM.

4.5.4 TagOn Capability

TagOn capability is an option available with both Basic and Express message types.

When transmitting a TagOn message, the transmit unit appends additional data from

an NES SRAM location specified in the message. When receiving an Express TagOn

message, the receive unit splits the packet into two parts, directing the first part into

a normal Express receive queue, and the second into a queue similar to Basic message

receive queue. Modifications to the control logic of both the transmit and receive

units are necessary to implement this feature.

Implementation of TagOn also requires additional control state. Transmit queues

are augmented with a TagOn base address, and a bound value. With the use of these

base/bound values, the SRAM address of the additional data is specified with only an

offset, reducing the number of address bits needed. This is helpful in Express TagOn

where bits are scarce. The scheme also enforces protection by limiting the NES SRAM

region that software can specify as the source of TagOn data. The control state of

Express receive queue is increased to accommodate the additional queue.

When performing TagOn transmit, the transmit unit needs to read in the TagOn

address offset to generate the TagOn data's SRAM address. This capability is already

present to generate addresses of translation table entries. Thus the design changes

are fairly incremental.

4.5.5 NES Reclaim

The NES provides the Reclaim option' to help maintain coherence of cache-able

Basic message queue buffer space. This is implemented in a very simple fashion.

Instead of actually maintaining coherence state-bits for each cache-line of buffer space,

9 Reclaim option is only available to the aP. Supporting Reclaim requires the BIU to be a bus
master. Because there is no pressing need for sBIU to be a bus master, we did not go through the
effort of implementing it.
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Figure 4-16: Queues and functional units to implement Resident Express message

and Basic message, including Reclaim option for Basic message queues. The shaded

portions are introduced to support Reclaim.
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Figure 4-17: Actual realization of Express and Basic Message queues and functional

units, including Reclaim option for Basic message queues. The shaded portions are

introduced to support Reclaim.
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the design relies on queue pointer updates to trigger coherence maintenance actions.

When the producer pointer of a transmit queue is updated, the region between its

old value and the new value is conservatively assumed to be freshly written, and

still in the processor's cache. The NES triggers write-back of these cache-lines using

appropriate system bus transactions before transmitting the messages.

Similarly, when the consumer pointer of a receive queue is updated, the region

between its old and new values is conservatively assumed to be in the processor's

cache. This time, the value needs to be invalidated as they will become stale once

the buffer space is re-used for new messages.

As shown in Figures 4-16 and 4-17, the NES Core implements Reclaim with the

addition of a Bus Master Unit to the aBIU, and a new Reclaim Unit to the NESCtrl.

The Reclaim Unit keeps a new category of pointers, called reclaim pointers, that are

related to producer and consumer pointers. We will use transmit queue operations

to illustrate how this scheme works.

During a message send, software updates the reclaim pointer instead of the pro-

ducer pointer of a transmit queue. When the Reclaim Unit detects that a reclaim

pointer has advanced beyond its corresponding producer pointer, the Reclaim Unit

issues bus transaction requests to the BIU's Bus Master unit to pull any dirty data out

of processor caches. Once these bus transactions complete, the Reclaim Unit updates

the queue's producer pointer, which triggers the transmit unit to begin processing.

With this implementation, neither the transmit nor receive units are modified to sup-

port reclaim. Furthermore, the option of whether to use reclaim simply depends on

which pointer software updates.

4.5.6 sP Bus Master Capability on SMP System Bus

With the NES Core functions described so far, the sP is unable to do much as an

embedded processor. In fact, an sP receives no more services from the NES Core than

an aP. But now that aBIU has implemented bus master capability, it is only a small

step to make this capability available to the sP. Figure 4-18 shows the additional

functional blocks and queues that are needed to make this possible. Figure 4-19 is
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a similar diagram showing how these components map onto physical devices. The

main additions are two Local Command Queues, a Dispatch Unit that arbitrates and

dispatches commands from these queues, and an Acknowledgement Queue.

Local Command Queues To execute bus operations on the SMP system bus, the

sP inserts bus operation commands into any of the Local Command queues, in

the same way it issues an Express message send. One can think of this as issuing

a message to the bus master unit in the aBIU to perform the bus operation.

A bus operation command specifies the transaction's (physical) address and

control signals. In addition, if data is involved in the transaction, the command

also specifies the aSRAM address to read data from or write data to. The

format of this bus operation request message is also used by the Reclaim Unit

to request bus operations. In this way, the Bus Master unit offers a primitive

that is used by both the Reclaim Unit and the sP.

Acknowledgement Queue If the sP needs to know when a command is completed,

it can request for an acknowledgement. The Bus Master unit inserts such an

acknowledgement into an Acknowledgement queue using much of the infras-

tructure that already exists to place the address portion of an Express message

into buffer space in the SRAM banks. A minor difference is that an acknowl-

edgement requires 64 bits of information to be written as opposed to 32 bits

in the case of Express message composition. The sP polls for acknowledge-

ment in the same way it receives Express messages. In fact, using OnePoll, the

sP can be polling from the Acknowledgement queue and other message queues

simultaneously.

The above description shows that most of the functions needed to let the sP

issue bus transactions on the SMP system bus already exist. Giving sP the ability

to transfer data between the SMP system bus and the aSRAM, which it can access

directly using load/store instructions, gives the sP indirect access to the host SMP's

main memory. Furthermore, data can be transferred between the SMP main memory

and NES SRAM locations used as message buffer space. Thus, the sP can now be a
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proxy that transmits messages out of aP DRAM, and writes in-coming messages into

aP DRAM.

The sP can also send normal Express and Express TagOn messages from the Local

Command queues. Because bus operation and message commands in these queues

are serviced in strict sequential order, the sP can issue both a bus command to move

data into aSRAM and an Express TagOn command to ship it out all at once; there

is no need for the sP to poll for the completion of the bus command before issuing

the Express TagOn.

While this level of NES support is functionally adequate for the sP to imple-

ment Non-resident Basic message queues, other NES Core features described in Sec-

tions 4.5.8 and 4.5.9 improve efficiency.

4.5.7 Inter-node DMA

With the NES Core features described so far, the sP can implement DMA in

firmware. But such an implementation can consume a significant amount of sP time

(see Section 5.4). Since block DMA involves a number of simple but repetitive steps,

we added several functional units in the NES Core to off-load these tasks from the

sP.

Two functional units, the Block Bus Operations unit and the Block Transmit unit,

are employed at the sender NES. The receiver NES is assisted by the addition of a

Remote Command Queue, and a counting service provided by the Bus Master unit.

The basic idea is to transmit DMA packets that include both data, and bus commands.

When the latter are executed by the Bus Master unit at the destination NES, data

is written to appropriate SMP main memory locations. The counting service counts

the number of packets that have arrived so that when all packets of a transfer have

arrived, an acknowledgement is inserted into the Acknowledgement queue. The sP is

responsible for setting up the Block Bus Operations unit, the Block Transmit unit,

and initializing the DMA Channel Counters. It does this with commands issued to

the Local Command queues. All these commands include acknowledgement options.

Details of these features follow.
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Figure 4-20: This diagram illustrates the addition of DMA support. The lightly
shaded blocks are modified while the darkly shaded regions are new additions to
provide NES hardware DMA support.
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Figure 4-21: Actual realization of newly added logic for DMA support are shaded in

this diagram. Lightly shaded regions are existing functional blocks that are modified,
while darkly shaded regions are new functional blocks.
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Block Bus Operations Unit: The Block Bus Operations unit is used to repeat a

bus operation command a number of times, each time incrementing the SMP

bus address and SRAM address by 32 (cache-line size)10 .

A command to this unit is similar to a bus operation command but also spec-

ifies the number of times the bus operation is repeated. The Block Bus Oper-

ation unit treats SRAM space very much like a message queue. Configurable

system state in the Block Bus Operation unit includes base and bound ad-

dresses and a producer pointer that are used to generate aSRAM addresses.

The base and bound values are not expected to change frequently so they are

programmed through the usual NES state access mechanism and not via the

command queues.

In order for the Block Bus Operations unit to operate in a pipelined fashion

with the Block Transmit unit, the producer pointer is shared with the Block

Transmit unit. It can be optionally reset in each command.

The Block Bus Operation unit is implemented in NESCtrl. It could equally

well have been associated with the Bus Master unit in the aBIU FPGA.

Block Transmit Unit: The Block Transmit unit formats data into DMA packets,

appending an appropriate header and two bus operation commands as trailers.

Two cache-lines (64 bytes) of data, taken from NES SRAM, is sandwiched

between them. A command to this unit specifies the physical destination node

name, details of the bus operation command to use, such as the transaction

type and other control signal values and the starting SMP system bus physical

address. The command also specifies a packet count.

This unit shares the base, bound, and producer pointer state with the Block

Bus Operations unit. It also uses a private consumer pointer. As long as the

0 The design will be much more flexible if the increment is not fixed but can be varied in each
command. Furthermore, there should be two separate increment values: one for system bus address,
the other for SRAM address. Such a design would allow the Block Bus Operations unit to "gather"
data from the SMP system bus into NES SRAM, subject to the data path-imposed constraints that
the smallest data granularity is 8 bytes, and addresses have to be 8-byte aligned.
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desired packet count has not been reached, and the producer pointer is ahead

of the consumer pointer, this unit generates DMA packets. Data is fetched

from aSRAM addresses produced from the base, bound and incrementing con-

sumer pointer. The generated bus operation commands carry remote system

bus addresses in increments of 32 (cache-line size)".

Each command to this unit can optionally reset the consumer pointer. This,

together with the decoupling of the read operation from the transmit operation,

allows multi-cast DMA operation at no additional design or hardware cost. A

single block read command executed by the Block Bus Operations unit moves

the desired data into NES SRAM, and multiple Block Transmit commands send

them to several destinations.

The Block Transmit unit shares features with the normal Transmit unit and is

implemented in NESCtrl.

Remote Command Queue: At its destination, a DMA packet is split into two

parts, command and data, and enqueued into the Remote Command queue, a

special receive queue. The command part of the Remote Command queue offers

an instruction set that is almost identical to that of the Local Command queues.

Thus, supporting a Remote Command queue adds few new requirements to what

is already in the design.

Since it is more efficient to move data directly from the receive queue buffer space

and space in this queue is shared between packets from multiple sources and

dynamically allocated the bus commands in each DMA packet do not specify

the SRAM address at which data is located. It is possible to adopt a design

where the destination NES inserts the SRAM address into each bus command

"Just like in the case of Block Bus Operation unit, the Block Transmit unit would have been
more flexible if the address increment is programmable, with separate SRAM address and SMP
physical address increments. This would have allowed "scatter" operation. Scattering of data with
granularity smaller than a cache-line is still rather inefficient, because each packet can only cause two
bus transactions at the destination. The best way to get around it is to have a smarter functional
unit at the receive end which produces the required number of bus transactions, a unit similar in
function to the Block Bus Operations unit.
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before they are passed on to the Bus Master unit. This is inconvenient in the

StarT-Voyager NES because of the way data path and control are organized.

TxURxU is the part of the data path where this can be done quite easily and

efficiently, but unfortunately the SRAM address is not available at that point.

Instead, we augment the Bus Master unit with a copy of the Remote Command

queue state and a modified form of bus operation commands called DMA Bus

Operation commands. The aBIU generates SRAM address for these commands

from the consumer pointer and associated base and bound values of the Re-

mote Command queue. This choice also has the beneficial effect of freeing up

some bits in the DMA Bus Operation command for specifying a DMA Channel

number.

DMA Channel Counters: The Bus Master unit maintains eight DMA Channel

counters. These are initialized by commands from the local or remote com-

mand queues, and decremented when a DMA Bus Operation command is com-

pleted. When a counter reaches zero, an acknowledgement is inserted into the

Acknowledgement queue to inform the local sP of the event.

With these functional units, the sP is only minimally involved in DMA. The sP's

may have to perform address translation if a request from user code uses logical

memory and node addresses. But once that is done, the destination sP only needs

to initialize a DMA channel counter and then poll for acknowledgement of that com-

mand. In parallel, the source sP issues the Block Bus Operation unit a command

to read the desired data into the aSRAM. After it is informed that the destination

sP has initialized the DMA Channel counter, the source sP issues a Block Transmit

command.

A DMA Channel counter can also be re-initialized from the Remote command

queue. This can reduce latency of a transfer, but requires the source sP to be pre-

allocated a DMA Channel counter, and to also send all the DMA packets in FIFO

order, behind the reset command packet".

'2 The design can be made more flexible. Instead of using a counter that is decremented, we can
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Having control over the transaction type used by the Block Bus operation unit

is useful. In the context of DMA, the possible options, READ, RWITM (Read with

intent to modify), and RWNITC (Read with no intent to cache), have different effects

on caches that have previously fetched the data that is being sent out. READ will

leave only shared copies in caches, RWITM will leave no copies, while RWNITC will

not modify the cache states, i.e. a cache can retain ownership of a cache-line.

The functional units introduced for DMA have additional uses. The Block Bus

operation unit is obviously useful for moving block data from aSRAM to aP DRAM,

e.g. when we swap message queues between Resident and Non-resident implemen-

tations. It can also be used to issue Flush bus operations to a page that is being

paged out. (The current design shares base/bound state values between the Block

Bus Operation and Block Transmit units. This couples their operations too tightly.

Greater flexibility can be achieved if each has its own copy of this state. The producer

pointer should also be duplicated and a command to the Block Bus Operation unit

should specify whether to increment the Block Transmit unit's producer pointer.)

The DMA Channel counters can be decremented by a command that does not in-

clude bus transactions. This allows them to be used as counters that are decremented

remotely via the Remote Command queue. Uses include implementing a barrier, or

accumulating the acknowledgement count of cache-coherence protocol invalidations.

Although the sP could do this counting, this hardware support reduces sP occupancy,

and results in faster processing of the packets.

The Remote Command queue opens up many possibilities. An sP can now issue

commands to a remote NES Core, without the involvement of the remote sP. This

cuts down latency, and remote sP occupancy. On the down side, this opens up some

protection concerns. As long as it is safe to assume that remote sP and system code

use two counters, a target value and a current count. An acknowledgement is only generated if the
two counters match, and the target value is non-zero. If both counters are reset to zero after they
match, this design avoids the requirement that the reset command has to arrive before the data
packets. A variant, which keeps the target value unmodified after both counters match avoids the
need to re-initialize the counter for repeated transfers of the same size. To accommodate both, a
reset command should specify whether to clear the target value register. This part of the design is
in the aBIU FPGA and can easily be modified to implement this new design.
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is trusted, there is no safety violation because access to this queue is controlled by

destination address translation mechanism. Hence, user packets cannot normally get

into this queue. If remote sP and system code is not to be trusted, some protection

checks will be needed at the destination. This is not in our current design.

DMA Implementation Alternatives

We now compare this design with two other DMA design options which were not

adopted. One design is completely state-less at the receiver end, with each DMA

packet acknowledged to the sender which tracks the status of the transfer. By adding

a (programmable) limit on the number of unacknowledged DMA packets, this design

can also easily incorporate sender imposed traffic control to avoid congestion. If

the sender already knows the physical addresses to use at the destination, possibly

because this has been set up in an earlier transfer and is still valid, this design has the

advantage of not requiring setup. Its main disadvantage is the extra acknowledgement

traffic, and hardware to implement the acknowledgement.

We take the position that congestion control should be addressed at a level where

all message traffic is covered. As for the setup delay, our design can also avoid the

setup round-trip latency if the destination physical address is known, and a channel

has been pre-allocated, as described earlier.

Another DMA design utilizes a much more elaborate receiver in which both the bus

transaction command and the full destination address are generated at the destination

NES. The DMA packets still has to contain address offset information if multiple

network paths are exploited to improve performance. Otherwise, the packets have

to arrive in a pre-determined order, effectively restricting them to in-order delivery.

Destination setup is of course necessary in this design. It has the advantage of avoiding

the overhead of sending the bus command and address over the network repeatedly.

For example, in our design, each DMA packet carries 64 bytes of data, 16 bytes of bus

command, and 8 bytes of Arctic header. The 16 bytes of bus command is a fairly high

overhead, which can be reduced to 1 or 2 bytes if this alternate design is adopted.

This alternate design also gives better protection since SMP memory addresses are
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generated locally.

We settled on our design because it introduces very little additional mechanism

for receiving DMA packets, but instead re-uses, with minor augmentation, existing

bus master command capability. Implementing our design requires adding an external

command queue, which is a more general mechanism than a specialized DMA receiver.

4.5.8 sP Serviced Space

Using the NES Core features described so far, the aP and sP can only communicate

either with messages, or via memory locations in NES SRAM or the SMP's main

memory. The sP Serviced Space support described in this section allows the sP to

directly participate in aP bus transactions at a low hardware level. This capability,

together with the features described above, is functionally sufficient for implementing

CC-NUMA style cache-coherent distributed shared memory.

The sP Serviced Space is a physical address region on the SMP system bus that is

mapped to the NES, i.e. the NES behaves like memory, taking on the responsibility

of supplying or accepting data. What distinguishes this region from normal memory,

such as NES SRAM, is that the sP handles bus transactions to this space, i.e. the

sP decides what data to supply to reads, what to do with the data of writes, and

when each bus transaction is allowed to complete. In that sense, this address space

is "active" and not merely a static repository of state. The following NES Core

mechanisms together implement the sP Serviced Space.

Transaction Capture

The transaction capture mechanism informs the sP about bus transactions to the sP

Serviced space. For instance, if a bus transaction initiated by the aP writes data to

this region, the sP needs to be informed and given the full details such as the address,

transaction type, caching information, and the data itself. With this information, the

sP can decide what to do, such as writing the data to main memory of a remote node.

We extend the Acknowledgement queue for this purpose. When capturing a trans-

action, the NES Core inserts its address and control information as a 64-bit entry
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Figure 4-22: The addition of sP Serviced space support to the NES involves introduc-

ing the shaded functional block. Other existing infrastructure, such as the Capture

& Ack queue, is re-used.
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Figure 4-23: The addition of sP Serviced space support to the NES involves intro-

ducing the shaded functional block in the aBIU. Other existing infrastructure, such

as the Capture & Ack queue, is re-used.
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into the Acknowledgement queue, which we rename the Capture & Ack queue. As

before, the sP polls this queue to obtain the captured information. In addition, a

data queue is added to the Capture & Ack queue, into which data written by the bus

transaction, if any, is enqueued. From an implementation point of view, the hardware

data structure to implement this Acknowledgement queue is the same as that of an

Express message receive queue, which has both a "header portion" that stores 64-bit

entries, and a data portion. Thus, existing design and implementation component is

re-used.

Transaction Approval

In order for the sP to return arbitrary data to a read-like bus transaction, the NES

Core needs to "suspend" a bus transaction until the sP provides the data to return.

To avoid deadlock situations such as those described in Section 3.4 when this address

space is used to implement CC-NUMA shared memory, the means of suspending

the bus transaction must not block the system bus. For the 60X bus protocol, this

requires retrying the bus transaction, i.e. the bus master for the transaction is told

to relinquish the bus, and re-attempt that transaction at a later time. Since the bus

master may re-attempt the same bus transaction several times before the sP is ready

with the data, the NES Core should filter out repeated attempts; the sP should not

be sent multiple copies of the bus transaction's address and control information.

The ability to hold a bus transaction until the sP gives the approval to proceed

is not only useful for Read-like transactions, but also for bus transactions like SYNC

(memory barrier). The sP may need to carry out some actions before the SYNC bus

transaction is allowed to complete in order to maintain the semantics of weak memory

131n more advanced bus protocols that supports out-of-order split address and data buses, such as
the 6XX bus protocol, other mechanisms are potentially available. For instance, the address phase
may be allowed to complete, with the data phase happening later; during this interval other bus
transactions can begin and fully complete (i.e. both address and data phases finish) on the bus.
This provision may, however, still be insufficient to prevent deadlocks. In particular this is unsafe if
completing the address phase of a bus transaction means the processor cache takes logical ownership
of cache-line, and will hold back other bus transactions attempting to Invalidate the cache-line until
its data phase has completed. Determining whether deadlock can arise involves details that are still
not uniform across bus protocol families. There is also close interaction between the snoopy bus
and specifics of the directory base coherence protocol. Delving into this level of detail is beyond the
scope of this thesis.
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Figure 4-24: State transition diagram of the ApprovalReg.

models.

The NES Core provides an Approval Register (ApprovalReg) to coordinate this

process. The ApprovalReg is best thought of as a transient cache entry - space is

allocated when cache-miss is detected, the sP is responsible for filling the cache entry,

and the cache-entry is freed after a single use. Although our implementation has only

one ApprovalReg, more ApprovalReg's can be included to permit more outstanding

pending approvals.

When a bus transaction requiring sP's approval first appears on the bus, and the

ApprovalReg is not currently occupied, its details are recorded in the ApprovalReg

and also captured into the Capture & Ack queue. The ApprovalReg state changes

from "Free" to "Pending" as shown in Figure 4-24. Subsequently, the sP gives ap-

proval for the transaction to complete by writing the ApprovalReg, changing its state

to "Ready". If data is involved, this write also supplies the SRAM address where the

data should be read from or written to. When the same bus transaction is attempted

again, it is allowed to complete. At the same time, the Approval Register is cleared.

Allowing the sP to specify an arbitrary data location SRAM address when it

gives approval, as opposed to restricting the data to a fixed location, avoids copying

if the data has arrived over the network and is buffered in some message receive
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Notify sP? Retry? NES behavior

Yes Yes Approval Needed
Yes No Notification Only
No Yes Retry Only
No No Ignore (allow bus transaction to complete)

Table 4.2: The four possible NES responses to bus transactions to the sP Service
Space or Snooped Space, and bus transactions with no associated address.

queue. Because the command to write the ApprovalReg comes from either the Local

or Remote command queues, it is possible for a remote sP to return data directly to

the NES Core without the involvement of the local sP. The local sP can be notified

of such an event simply by setting the acknowledgement option in the command.

Service Space Response Table

The NES's response to bus transactions addressed to the sP Serviced space, or bus

transactions without associated address (e.g. SYNC) is determined by a configurable

response table, the Srv Space Response Table. The bus transaction type encoding

is used as index into this table to obtain the response. As shown in Table 4.2 four

responses are possible, arising from the cross product of two decisions: (i) whether

the sP should be notified of the bus transaction, and (ii) whether the bus transaction

should be retried. This level of programmability is only marginally useful for the sP

Snooped space since only one or two responses make sense for most bus transaction

types. It is included for uniformity of design because similar programmability is very

useful for the Snooped Space support described in the next section.

Nevertheless, the design tries to make this generality as useful as possible. For

instance, if the table indicates a response of Ignore to a read-like bus transaction, and

there is no match against the ApprovalReg, data is read from a fixed SRAM location

which system software can program with whatever Miss value desired. This feature

allows aP software to determine whether a cache-miss has occurred - if the Miss value

contains a bit pattern that is not valid data, software can check the value loaded to

see if a cache-miss has occurred.
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The response obtained from the Srv Space Response table is used only if a bus

transaction does not match that captured in the ApprovalReg. Otherwise, the re-

sponse is to retry the transaction if ApprovalReg is in the "Pending" state, and to

allow it to complete if it is in the "Ready" state.

4.5.9 Snooped Space

The NES Core provides cache-line granularity access-permission check for a portion

of the SMP's main memory, the Snooped (address) space. The mechanism enables

the sP to selectively observe and intervene in bus transactions to this address space.

This capability can be used to implement S-COMA style shared memory, or to allow

fast access to the local portion of CC-NUMA shared memory 4 . It is also useful

for sP implementation of fancier message passing interfaces, such as CNI, which can

only be implemented efficiently if cache-line ownership acquisition is used to trigger

processing.

The Snooped Space support shares many similarities with the sP Serviced Space

mechanism but is more complex. NES response to a bus transaction to this address

space is again configurable to any one of the four described in Table 4.2. Generation

of this response is more complex, taking into account a 3-bit cache-line state asso-

ciated with the bus transaction's address and maintained in a new memory bank,

the clsSRAM (See Figure 4-26). Access to this memory is controlled by the Snooped

Space unit in the aBIU. To simplify the design, the sP can write but not read this

state with command issued via the Local or Remote command queues.

Other designs that maintain cache-line state bit for DRAM hardwire the interpre-

tation of the state values [92]. In order to allow flexible experimentation with cache-

coherence protocol, the StarT-Voyager NES uses a configurable table, the Snooped

Space response table, to interpret the state values. Experimental flexibility is also

the rationale for having 3 instead of 2 state bits per cache-line as having only four

different cache-line states leaves little room for what the four states should mean.

1 4With small modifications to the aBJU FPGA, it can also be used to implement Nu-COMA style
shared memory described in Section 2.2.
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Figure 4-25: This diagram illustrates the addition of Snooped Space support through
the shaded functional block. It also shows the full design of the StarT-Voyager NES.
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Figure 4-26: This diagram illustrates the addition of Snooped Space support through
the shaded functional block from a device perspective. It also shows the full design
of the StarT-Voyager NES.
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The response to a bus transaction is determined by using its transaction type and its

3-bit cache-line state as offset into the Snooped Space response table. The result is a

2-bit response encoding the four possibilities described in Table 4.2.

The ApprovalReg described in the previous section is also used for Snooped Space

bus transactions. As before, it filters out retries of a bus transaction requiring sP's

approval, so that the sP is only informed once. Whenever the address of a bus

transaction matches that in the ApprovalReg, the ApprovalReg's response supersedes

that from the Snooped Space response table lookup. Again, a "Pending" ApprovalReg

state retries the bus transaction while a "Ready" state allows the bus transaction

to complete. In the latter case, the data supplied to a pending bus transaction is

obtained from the NES SRAM location indicated by the ApprovalReg. Data for a

write transaction is also directly written into that NES SRAM location.

Providing approval through the ApprovalReg is not the only way to end the retry

of a Snooped Space bus transaction. An alternative is to modify the cache-line state

kept in clsSRAM to a value which allows the bus transaction to complete. In that

case, data for the bus transaction is read from or written to SMP main memory. If

data is coming from or going to the network, using ApprovalReg has the advantage

of avoiding cycling the data through main memory DRAM.

aP bus transactions initiated by the NES's bus master unit are treated specially

by the NES Snooped Space unit. They are allowed to complete regardless of the

status of the ApprovalReg, the various response tables, and the relevant clsSRAM

cache-line state value.

The use of configurable response table adds to the latency of response generation.

But because the table is small, this increase does not present a serious timing issue in

our design. A production system that supports only one or a small number of fixed

protocols will not need this flexibility.

The addition of Snooped Space support brings us to the full design of the StarT-

Voyager NES. Through incrementally adding more functions to the design, this section

both provides a detailed view of the NES micro-architecture, and illustrates the re-use

of existing functional blocks as new capabilities are added to the NES.
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4.6 Mapping onto Micro-architecture

Now that the NES micro-architecture has been described, this section shows how the

macro-architecture described in Chapter 3 is realized on the micro-architecture.

4.6.1 Physical Network Layer Implementation

The Arctic network closely matches the requirements of the Physical Network layer.

The only missing property is an active means of bounding the number of outstanding

packets. To keep the design simple, we rely on the maximum buffering capacity of the

entire Arctic network to provide this bound instead of introducing some new active

mechanism in the NES. Our system is relatively small with a target size of 32 nodes.

This translates into (5 x 32) Arctic routers. Buffering capacity in each Arctic router

is also not large, (12 x 96) Bytes. This gives a total network buffering capacity of 180

kilobytes. This bound is low enough to be a useful overflow buffer size estimate for

Reactive Flow-control.

4.6.2 Virtual Queues Layer Implementation

The StarT-Voyager NES implements the Virtual Queues Layer and the Application

Interface Layer with a combination of NES Core hardware and sP firmware. The

division of tasks between hardware and firmware is mostly based on function, with

those expected to be used infrequently delegated to sP firmware. Some functions,

such as those related to Basic, Express message passing mechanisms and their TagOn

variants, are performed by both NES Core hardware and sP.

Resident and Non-resident Queues

The NES Core hardware provides fast implementation of a limited number of mes-

sage queues, a number which is meant to capture the typical working set. The sP

implements, at lower performance, a much larger number of queues to meet the de-

sign goal of supporting a large number of simultaneously active queues. The former,

referred to as Resident message queues act as a sP firmware managed cache of the
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latter, the Non-resident message queues. Switching a logical message queue between

Resident and Non-resident resources is a local decision requiring no coordination with

other nodes and is transparent to aP software.

In the case of Resident message queues, the NES Core hardware directly imple-

ments the Virtual Queues Layer functions of destination translation, and multiplexing

and demultiplexing messages from several hardware message queues onto the Phys-

ical Network Layer services. This is fairly straight forward, and is described in the

micro-architecture Sections 4.5.1 through 4.5.3.

To logically support a larger number of message queues, the sP firmware multi-

plexes the Non-resident queues onto a subset of the Resident queues. (Discussion

of exactly how the aP interacts with the sP to use Non-resident queues is deferred

until next Section when the Application Interface Layer mapping is described.) Dur-

ing transmit, the sP performs destination translation by either physical addressing of

packet destination, or changing translation table entry. Low-level design choices, such

as associating a source identity with each translation table entry instead of each mes-

sage queue, makes it feasible to use the latter approach. Other NES Core functions,

such as giving sP the ability to initiate aP bus transactions to move data between

aSRAM and sP DRAM, and reading data (message header) from aSRAM, are also

necessary capabilities.

The NES Core hardware's RQID cache-tag lookup mechanism (Section 4.5.1)

makes it possible to switch receive queue between Resident and Non-resident queues

without global coordination. It also channels packets of Non-resident queues to the

Miss/Overflow queue where sP takes over the task of sorting the packets into their

final receive queues.

Reactive Flow-control

Reactive flow-control, for preventing deadlock, is implemented in sP firmware. For

Non-resident queues, it is clear that the sP, which is already handling all the messages,

can impose Reactive flow-control, both triggering throttle, getting out of it, and

selectively disabling transmission to a particular destination queue.
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For Resident queues, the sP is also in a position to impose Reactive flow-control

as long as the threshold water-mark, the point at which throttle is triggered, is larger

than the receive queue size. When a Resident receive queue overflows, overflowing

packets are diverted to the Miss/Overflow queue serviced by the sP. The sP there-

fore starts handling the Resident queue's in-coming packets as well, and can initiate

throttle when necessary.

The NES SRAM buffer space of Resident receive queue is actually only part of

the total buffer space for the receive queue. The overflowing packets are buffered

in memory outside NES SRAM, in aP DRAM or sP DRAM. This is also the buffer

space for the queue when it operates in Non-resident mode. Ideally, the threshold

water-mark should match the size of the Resident receive queue's buffer space in NES

SRAM, so that as long as a program operates within this receive queue buffering

requirement, the sP is never involved and end-to-end message passing latency is not

degraded.

When a Resident receive queue overflows, the sP programs the NES Core to notify

it of subsequent bus transactions accessing this queue's state". In this way, the sP

can move packets from the overflow queue back into the aSRAM as space frees up,

and monitor whether space usage in the Resident receive queue has dropped below

the low water-mark.

The sP is also involved in implementing selective disable of Resident transmit

queues, a function not directly supported in hardware. To selectively disable a des-

tination, the sP modifies the physical destination of its translation table entry so

that packets heading to this logical destination are directed back to the sP itself.

When the sP receives such looped-back packets, it buffers them up for subsequent

re-transmission. In this way, the Resident transmit queue, which operates in a strict

FIFO manner, can continue to send other packets out to other destinations. In the

event that too many packets have looped back, the sP can shut down the transmit

queue, by writing its queue-enable bit, to avoid running out of loop-back packet buffer

"This was not implemented in the NES, but it requires only simple modifications to the aBIU
FPGA Verilog code.
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space.

4.6.3 Application Interface Layer Implementation: Mes-

sage Passing Interfaces

As pointed out in the last section, the message passing interfaces, with the exception

of DMA, are implemented with both Resident and Non-resident queues. The Appli-

cation Interface Layer portion of Resident queues is completely implemented in NES

Core hardware, as described in Sections 4.5.1, 4.5.2, and 4.5.4. DMA implementation

is also described earlier in Section 4.5.7. This section describes how the interfaces of

Non-resident queues are implemented.

A key component of Non-resident message queue implementation is the mapping

of addresses. This determines the visibility of access events to the sP, the level of

control sP exercises over such events, and the message data path efficiency.

Non-resident Basic Message Queues

The message queue buffers of Non-resident Basic message queues are mapped to aP

main memory, addresses for reading pointer values are mapped to NES SRAM16 and

addresses used for updating pointers are mapped to the sP Serviced Space. Mapping

pointer update addresses to sP Serviced Space has the advantage of relieving the sP

from continually polling memory locations holding queue pointers. Instead, captured

transactions trigger sP processing. This is crucial as the sP may otherwise have to

blindly poll many locations.

Updates to the producer pointer of a Non-resident Basic message transmit queue

causes the sP to attempt a message transmit. If the proxy Resident transmit queue,

i. e. the queue onto which Non-resident messages are multiplexed, has sufficient buffer

space, the sP issues a bus operation command to read message data from the SMP

system bus into the proxy queue's next available buffer space. The sP will require

16Because protection is only enforceable at 4 kByte granularity, but only 8 bytes is really needed

for message queue state, the NES SRAM can be designed with a window where each 4 kilobyte page

is aliased to only 8 bytes of NES SRAM space.
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notification of command completion, so that it can then read in the message header,

translate it, and update the proxy queue's producer pointer to launch the packet

into the network. At that time, it also updates the emulated queue's consumer

pointer to free up transmit buffer space. If the sP is unable to transmit the message

immediately because the proxy transmit queue is full, the pending send is recorded

and subsequently resumed when transmit space frees up. The sP periodically polls

the proxy transmit queue's state to determine if sufficient space has freed up.

Non-resident Express Message Queues

The address used to indicate an Express message transmit is mapped to sP Serviced

space. This is needed for implementing FIFO semantics, i.e. a store has further

effects beyond merely over-writing the data in a fixed memory location, and allows

event driven sP processing. Similarly, the address for receive polling is also mapped

to sP Serviced space. Buffer space for the non-tagged-on portion of Express message

is provided in sP DRAM, while buffer space for the tagged-on data is mapped to aP

DRAM.

Mapping the Express receive polling address to sP Serviced space provides the

required functionality but the aP incurs fairly long latency when polling for a message.

A design which takes the sP off the latency path of providing the polled data is highly

desired. This is tricky, however, because although the sP can deposit the next message

at the address that aP software polls from, a mechanism is needed to ensure that the

aP software sees this message only once. The generality of OnePoll also complicates

this as several different polling addresses could all receive from the same receive queue.

If OnePoll is limited to only the high and low priority receive queues of a typical

Express message End-point, and a simple enhancement is made to NES Core hard-

ware, a lower latency alternative is possible. The required enhancement enables the

Snooped Space support to not only read clsSRAM state-bit, but also modify it. A new

configurable table could be introduced to determine the next clsSRAM value based

on the current clsSRAM value. With the Express message receive address mapped

to a Snooped Space location, the sP can get the next answer ready there, so that an
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aP can poll, i.e. read, it from DRAM. Because the aP needs to read this cache-line

exactly twice (assuming aP uses only 32 bit reads to receive Express messages), the

automatic clsSRAM value transition will need to go from one which generates an

Ignore response (written by sP), to a second one that Notifies sP (automatic), to a

third which Retries without Notifying sP (automatic).

This enchancement scheme works even when OnePoll-ing is from both receive

queues of an end-point because the address for polling only one receive queue and

that for polling both receive queues in an end-point all fall within the same cache-

line. Unfortunately, the more general form of OnePoll does not work in this enchanced

scheme. Although this new scheme improves the latency of a single Express receive

poll, the minimum interval between two polls, and hence the maximum throughput,

is still constrained by sP processing.

4.6.4 Application Interface Layer Implementation: Shared

Memory Interfaces

Coherent shared memory implementation on StarT-Voyager relies heavily on the sP's

involvement. For instance, as described below, the sP is involved in servicing all

cache-misses under both CC-NUMA and S-COMA style shared memory. The sP

implements most of the functions of the cache protocol engine and the home protocol

engine.

The basic NES Core hardware mechanisms that enable the sP to implement cache-

coherent distributed shared memory are described in Sections 4.5.8 and 4.5.9. It is

beyond the scope of this thesis to design and implement complete coherence protocols.

In this section, we sketch out a cache-miss servicing example for S-COMA style shared

memory to illustrate how coherence protocols can be put together.

In this example, an S-COMA style cache-line miss results in fetching data from

the home node. The NES cache-line state and the response table entries are set up

17We use the term "cache-miss" broadly to mean not having the correct access permission, i.e.
acquiring write permission is considered a cache-miss.
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Figure 4-27: S-COMA style processing of a READ cache-miss on StarT-Voyager. In
this example, clean data is available in the home node.

168



so that a read transaction to an absent cache-line is retried while the sP is notified.

As described in Section 4.5.9, when such a bus transaction is attempted, the NES

Core hardware notifies the sP of the event by sending it details of the bus transaction

through the Capture & Ack queue. It also records details of the bus transaction in

the ApprovalReg (Step 1 in Figure 4-27).

The top-level sP code is an infinite loop, in which the sP polls for events from the

Capture & Ack queue, the overflow queue, and other message receive queues used

for inter-sP communication. OnePoll is used to improve polling efficiency. The sP

may also need to monitor for space in transmit queues if there are pending message

transmits.

When the sP reads the captured read transaction information (Step 2 in Figure 4-

27) and decodes it as an S-COMA space read cache-miss, it translates the captured

physical address into a global address and a home node number. Using the Express

message mechanism, the sP sends a request message to the home node (Step 3). This

message could be sent through a Local Command queue or another Express message

queue. The choice will be the former if the protocol relies on ordering between this

new request and earlier messages sent through the Local Command queue. The sP

will typically also need to keep some transient information about the pending bus

transaction in order to deal with in-coming commands which may be directed at the

same cache-line address.

Action now shifts to the home node. The home node sP receives this message when

it polls for new events in its top-level polling loop (Step 4a). This sP looks up the

cache-line's directory information to decide what to do. In our example, the directory

state indicates that the cache-line is clean at home; consequently data can be supplied

directly from the home node. To achieve this, the home sP first translates the global

address into a local physical address, and then issues a bus master command (Step 5)

to transfer data from that local SMP system bus physical address into NES SRAM

(Step 6). Through the same local command queue, the sP also issues an Express-

TagOn message to send that data to the requesting sP. Ordering imposed by NES

Core hardware between bus master command and Express/Express-TagOn message
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command ensures that the second command is not executed until data fetched by the

first is in NES SRAM.

While waiting for this reply, the sP at the requesting node modifies the clsSRAM

state of the cache-line with the pending transaction to one which allows read (Step

4b). Because the ApprovalReg still records the pending transaction and its response

dominates, the READ bus transaction is still unable to proceed. Once the reply

comes in (Step 7), the sP moves the data from the receive queue buffer into the

appropriate aP DRAM location (Step 8) using a bus master command issued through

a Local Command queue. It then clears the ApprovalReg, and a retried READ bus

transaction can now complete (Step 9).

Discussions

The above scenario involves the sP three times: twice at the requesting node, and

once at the home node. The last involvement of the sP can be removed, or at least

taken off the (latency) critical path of returning data to the pending bus transaction.

'To achieve this, the home sP sends the reply into the Remote Command queue, using

a reply message similar to a DMA packet. The requesting sP can be informed of the

reply using the acknowledgement option on this bus command.

Heavy sP involvement in cache-miss processing has both advantages and disad-

vantages. The main disadvantage is relatively long cache-miss latencies; therefore,

shared memory performance on this machine is very sensitive to cache-miss rate.

The advantage is flexibility in how the protocols are implemented, including the op-

tion of trying out less common ways of maintaining coherence which may improve

cache-miss rate. Given the tradeoffs, this design makes sense for an experimentation

platform. An actual work-horse design should include more custom hardware support

to reduce sP involvement during cache-miss processing.

An interesting question is what other NES Core mechanism can be provided to

reduce sP involvement in cache-miss processing without drastically affecting the flex-

ibility of using different coherence protocol. One avenue is to remove the duty of

cache protocol engine from the sP, or at least only involve the sP in difficult but rare
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Figure 4-28: Major components of the StarT-Voyager NES.

cases when ordering of events is ambiguous. We need to experiment with a number

of protocols using the existing StarT-Voyager NES design before we can answer that

question concretely.

4.7 NES Hardware Implementation

The StarT-Voyager NES is physically separated into two printed circuit boards:

the NES main board, and the NES daughter card as shown in Figure 4-28. Logic

specific to the network are isolated in the daughter card so that porting the design

to another network involves replacing only the daughter card.

The main board contains two major portions: the sP subsystem and the NES

Core. The former consists of a PowerPC 604 microprocessor [46], employed as an
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Component Implementation Technology Comments

NESCtrl ChipExpress CX2001 Laser approximately 55k gates
Programmable Gate Array plus 1.5 kilobits of ram.

aBIU Xilinx XC4052XL, -09 speed 47% of CLB's used.
grade

sBIU Xilinx XC4036XL, -1 speed 29% of CLB's used.
grade

TxURxU Xilinx XC4036XL, -1 speed 31% of CLB's used.
grade

Table 4.3: Custom designed hardware in the StarT-Voyager NES.

embedded processor, and its own memory system comprising of the commercially

available MPC 105 memory controller[76], and ordinary DRAM.

The NES Core includes a control block (NesCTRL) implemented with a ChipEx-

press LPGA [20], two Bus Interface Units (aBIU and sBIU) implemented in Xilinx

FPGA's and two banks of dual ported SRAM. One bus interface unit, the aBIU,

interfaces to the SMP's memory bus, while the other, the sBIU, interfaces to the sP

subsystem's memory bus.

Porting this design to a different SMP will require changes to the aBIU and

possibly sP firmware, but other parts of the NES hardware can remain unmodified.

Originally, a single LPGA is to contain the NESCtrl, aBIU and sBIU. This introduces

pin-count constraints so that only address and control signals from the two external

buses are directly wired to the BIU's. The 64-bit wide data portion of the buses

connects directly to the dual ported SRAM banks only. We subsequently moved the

aBIU and sBIU into large FPGA's which no longer has the pin-count constraints, but

we left this design unchanged.

The main data-path through the NES main board is eight bytes18 wide. Each

of the dual ported SRAM banks, aSRAM and sSRAM, has 32 kilobyte of storage

provided by eight, byte-sliced, IDT70914s dual-ported, synchronous, SRAM memory

chips. Five IDT709269s hardware FIFO chip, each 36 bit wide and 512 deep, are used

1 8There are eight more parity bits, but we will ignore parity in this discussion.
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to implement the RxFIFOF and TxFIFO.

4.7.1 Design Flow

The main custom designed hardware components in the StarT-Voyager NES are the

NESCtrl, aBIU, sBIU, and TxURxU. Design of these components were done in Verilog

at the Register Transfer Level (RTL) and then automatically synthesized, placed and

routed with CAD tools.

The NESCtrl LPGA, designed by Daniel Rosenband, is synthesized with Synop-

sys's Design Compiler, and then placed and routed by ChipExpress with proprietary

tools. The TxURxU FPGA, designed by Michael Ehrlich, is synthesized with Syn-

opsys's FPGA Compiler and then placed and routed with Xilinx's M1 tool set. The

aBIU and sBIU FPGA's, designed by me, are synthesized using Synplicity's Synplify,

and again placed and routed with Xilinx's M1 tool set.

Functional simulation and testing is done using the Cadence Verilog XL environ-

ment, augmented with our own C code to model the aP and sP processors and DRAM.

The C code interacts with Verilog through Cadence's PLI (Programming Language

Interface). Verilog code implements the bus interface portion of the processors, while

C code models the rest of the processors. As for memory, the Verilog code imple-

ments the memory controls, but the actual data storage elements are modeled in C

code. Functional testing is done with hand coded test examples; these include tests

targeting specific functions, as well as random combinations of tests.
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Chapter 5

Evaluations

This chapter describes simulation evaluation results obtained with micro-benchmarks.

The results fall into three categories. The first category evaluates StarT-Voyager

NES's support for multiple message passing mechanisms. The goal is to demonstrate

that additional mechanisms layered on top of a basic set of capabilities improve per-

formance by taking advantage of specific communication characteristics, such as very

small or very large message sizes. The second category examines the multiple mes-

sage queues support, quantifying the cost of supporting a large number of message

queues in the StarT-Voyager design. The third category evaluates the performance

of the off-the-shelf sP, providing both absolute performance numbers for represen-

tative communication operations, and an understanding of the factors limiting its

performance.

Although actual hardware was designed and built as part of this research work, it

was not available in time for the evaluation reported here. Instead, the experiments

presented are conducted on a simulator, StarT-sim, described in the next section.

Although we were unable to validate the simulator against actual working system

due to late availability of working hardware, we expect the conclusions drawn from

our results to hold. This is because we base our conclusions on relative performance

relationships, which still hold even if there is inaccuracies in the simulator since those

affect the performance numbers uniformly.
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5.1 Evaluation Methodology

StarT-sim is an execution driven simulator; it "executes" the simulated application

during each simulation run so that the program can respond to "run time" conditions.

Thus, it is possible for simulation of the same program to follow different execution

paths when run time conditions such as memory access or message passing latency

vary. Written in C, StarT-sim runs in a single process and has two major components:

(i) a processor core simulator (AugRS6k), and (ii) a memory system, NES and network

simulator (Csim).

5.1.1 Processor Core Simulation

The processor core simulator, AugRS6k, operates in an event driven fashion and is

capable of modelling a multi-processor system. In the interest of faster simulation

speed, the processors are not simulated in lock-step cycle by cycle. Instead, as long

as a processor is executing instructions that do not depend on external events, it ad-

vances its "local" time and continues executing more instructions. In our system, this

means that simulation of a processor only suspends at a memory access instruction.

At that point, an event to resume simulating the processor when global time reaches

its local time is enqueued in the global event queue.

Processor simulation is achieved by editing the assembly code of the simulated

program with an extra custom compilation pass. Memory access instructions are

replaced with calls to special routines which enforce causal order by suspending and

resuming simulation as appropriate. These routines also make calls to model caches,

the NES, and the network. Code is also added at basic block exit points to advance

local processor time.

StarT-sim models the latencies of memory access instructions precisely. These

are determined dynamically, taking into account cache-hit/miss information, and the

latency and contention effects in the memory system and the NES. StarT-sim's mod-

elling of processor core timing is approximate. It assumes that each non-memory

access instruction takes one processor cycle. There is no modelling of superscalar

176



instruction issue, data-dependence induced stalls, or branch prediction and the cost

of mis-prediction. Modelling the processor more accurately is highly desired but it

requires an effort that is beyond the scope of this thesis.

The processor simulator was based on the Augmint[79] simulator which models

x86 processors. Initial effort to port it to model the PowerPC architecture was done

at IBM Research. We made extensive modifications to complete the port, and to

model the StarT-Voyager system accurately.

5.1.2 Memory System, NES and Network Simulation

The second component of StarT-sim, Csim, is a detailed RTL (Register Transfer

Level) style model of the processor cache, memory bus, NES, and Arctic network

written in C1 . Simulation in Csim proceeds in a cycle-by-cycle, time synchronous

fashion. Modelling is very detailed, accounting for contentions and delays in the NES

and the memory system. The NES portion of this model is derived from the Verilog

RTL description used to synthesize the actual NES custom hardware. -

StarT-sim models two separate clock domains: a processor clock domain and a

bus clock domain. The former can be any integral multiple of the latter, and is set to

four times in our experiments to reflect the processor core to bus block ratio of our

hardware proto-type. This ratio is also common in systems sold today (end 1998);

for example, a typical system with a 400 MHz Pentium II processor employs a 100

MHz system bus. The processor core, load/store unit, and cache are in the processor

clock domain while the memory bus, the NES, and the network operate in the bus

clock domain. The performance numbers reported in this chapter assume a processor

clock frequency of 140 MHz, and a bus clock frequency of 35 MHz.

StarT-sim also models address translations, including both page and block ad-

dress translation mechanisms found in the PowerPC architecture. Our simulation

environment provides a skeletal set of virtual memory management system software

routines to allocate virtual and physical address ranges, track virtual to physical

'Csim is mainly the work of Derek Chiou. I wrote code to model some of the NES functions and
assisted in debugging Csim.
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address mappings, and handle page faults.

5.2 Multiple Message Passing Mechanisms

This section presents a detailed micro-benchmark based performance evaluation of

Resident versions of Basic message, Express message, Express-TagOn message, and

DMA. Performance is measured in terms of bandwidth, latency and processor over-

head. The result shows that while Basic message presents a versatile message passing

mechanism, adding thin interface veneers on it to support the other message passing

mechanisms significantly enhances performance and functionality for certain types of

communication. Together, the collection of mechanisms is able to offer better perfor-

mance over a range of communication sizes and patterns than is possible with Basic

message alone. A synopsis of specific instances follows.

NES hardware supported DMA presents significant advantage for block transfers

beyond about 1 kByte. If such transfers are done using Basic message, the overhead

that aP code incurs while copying message data is the dominating performance con-

straint. Moving message through the aP registers is an unnecessarily convoluted data

path in this case. This inefficiency imposes performance limits that are significantly

lower than those under hardware DMA - bi-directional block transfer bandwidth un-

der Basic message is only about a third of that under hardware DMA. Hardware

DMA also brings with it the equally significant advantage of off-loading the data

packetization overhead from the aP.

When message latency is critical and message payload is very small, as often

happens with urgent control messages, Express message is the best option. Intra-node

handshake overhead between aP software and the NES is a significant component of

latency. In StarT-Voyager, this amounts to about 45% of the overall latency for the

smallest Basic message. This ratio is expected to be even higher for future system

because the latency through the StarT-Voyager NES and Arctic network are not

the best possible. The NES is a board level design which incurs latencies that an

integrated ASIC can avoid. Newer networks, like SGI's Spider [33], have significantly
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Message Passing Mechanism Bandwidth (MBytes/s)

Express Message 9.51
Basic Message 53.15
Express-TagOn Message 55.31
NES Hardware DMA 84.40

Table 5.1: Bandwidth achieved with different message passing mechanisms to transfer
4 kByte of data from one node to another.

lower latency than Arctic. With Express message, the cost of intra-node handshake

is reduced drastically, so that overall latency is close to 30% lower than that for Basic

message.

When multi-casting a message, TagOn message offers the best mechanism by

avoiding redundantly moving the same data to the NES multiple times. Through more

efficient intra-node data movement and control exchange between the aP and the NES,

TagOn message both reduces the aP processor overhead and improves throughput.

TagOn's interface is also "thread safe", and is thus a better option if a message queue

is shared between multiple threads.

The remainder of this section, Sections 5.2.1 through 5.2.3 presents details of the

benchmarks, performance numbers and explanation of these numbers.

5.2.1 Bandwidth

Table 5.1 shows the bandwidth achieved using the four message passing mechanisms.

As expected, NES hardware implemented DMA achieves the highest bandwidth,

while Express message delivers the lowest bandwidth. The bandwidth for Basic and

Express-TagOn are effectively the same.

The bandwidth advantage of NES hardware DMA is even more pronounced when

bi-directional transfer bandwidth is considered, i.e. two nodes are simultaneously

exchanging data with each other. Hardware DMA sustains a combined bandwidth

of 166.70 MBytes/s for 4 kByte bi-directional block transfers. The corresponding

bandwidth for the other three transfer mechanisms is actually lower than their re-
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spectively uni-directional transfer bandwidth since the aP has to multiplex between

message send and receive actions.

Micro-benchmark Details

Unidirectional bandwidth is measured with different send and receive nodes. The

time taken to transfer 4 kBytes of data from the sending node's main memory to the

destination node's main memory is measured and bandwidth is derived accordingly.

All benchmarks are written in C.

For NES hardware supported DMA, the initiating aP sends its local sP an Express-

TagOn message with details of the node to node transfer request. This sP coordinates

with the remote sP to translate virtual addresses into physical addresses, and set up

the NES DMA hardware. From that point on, all the data transfer tasks are handled

by NES hardware, which also notifies the destination sP when the transfer completes.

In the Basic Message block transfer micro-benchmark, the source aP is respon-

sible for packetizing and marshalling data into transmit buffers. It also appends a

destination address to each packet. Because each packet is "self identifying", the

destination aP maintains almost no state for each in-progress DMA. The destination

aP is responsible for copying data from receive queue buffers into the target main

memory locations. A similar scheme is used by the Express-TagOn block transfer

micro-benchmark.

Carrying the destination address in each packet simplifies the destination aP's job

but consumes 4.5% of the total payload. An alternate design avoids this overhead by

having the destination node generate destination addresses. This, however, requires

establishing a connection between the source and destination node. Furthermore, to

avoid the overhead of sequence numbers and connection identification in each packet,

the data packets have to arrive in the sent order, and only one connection can exist

between each source-destination pair at any time.

This connection based approach is used in the Express message block transfer

micro-benchmark. The extremely small payload in Express message makes it imprac-

tical for each packet to be self identifying. By adopting the connection approach, the
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Block Transfer Size Bandwidth (MBytes/s)

2 kBytes 76.8
4 kBytes 84.4
8 kBytes 88.6

Table 5.2: Measured NES hardware DMA bandwidth as transfer size changes. Band-
width improves with larger transfers because of fixed setup overhead.

benchmark can transfer 4 byte in each data packet. These packets all belong to the

same order set to ensure the desired arrival order. Each Express message has room

to carry 5 more bits of information, which is used to identify the connection number

and the packet type - connection setup vs data packets.

Bandwidth Limiting Factors

The NES hardware DMA bandwidth is limited by a combination of Arctic network

bandwidth limit and the NES DMA architecture. Each NES hardware DMA data

packet carries 64 bytes of data, and 16 bytes of aP bus operation command. There

is a further 8 bytes of overhead imposed by the Arctic network. Thus, data takes

up only 64/88 of each packet. Consequently, although Arctic's link bandwidth is 140

MBytes/s, our DMA scheme is bounded by a maximum bandwidth of 102 MBytes/s.

The overhead of setting up the NES DMA hardware is responsible for bringing that

number down to the measured 84.4 MBytes/s for 4 kByte transfers. Because this

overhead is constant regardless of the transfer size, the measured bandwidth improves

with larger transfer sizes, as illustrated in Table 5.2.

We can model the time taken for an n byte transfer as: n x x + c. Using the

timing for 2, 4 and 8 kbyte transfers, we arrive at these values for x and c:

x 10.7 x 10-12

c = 4.6 x 10-6
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As n -+ oc, the achieved bandwidth is:

n1 c/x
lim( )n lim( ) C

now nx+ c n-ox x n+ c/x

1
x

= 93.5 MBytes/s

c is the fixed coordination overhead that works out to be 4.6 ps.

The other three message types all share the same bandwidth limiting factor: the

aP's processing overhead. The handshake between the aP and the NES, and mar-

shalling data through the aP to the NES limits the bandwidth attained. Much of this

is due to aP bus access cost. The next paragraph justifies this claim in the case of

the Basic Message.

Table 3.1 in Chapter 3 estimates the number of bus transactions for each Basic

Message packet. Under steady state in the block transfer micro-benchmark, the

handshake aggregation feature of Basic message is not expected to help reduce cost,

neither in obtaining free buffer, nor in updating transmit queue producer pointer.

This is supported by the fact that Express-TagOn achieves the same (in fact slightly

better) bandwidth as Basic Message - the two mechanisms have almost identical

overheads once aggregation is not done in Basic Message.

A maximum size Basic message - 3 cache-lines - is therefore expected to incur

about 9 bus transactions, which occupies the bus for 42 bus clocks. This is close to

the one packet every 53 bus clocks throughput inferred from the bandwidth of the

Basic Message block transfer benchmark. The difference between this number, and

the memory bus occupancy number is due to other aP processor overhead - buffer

allocation and deallocation and data marshalling.
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Message Passing Mechanism Minimum Size Message Latency
# pclk ps @ 140MHz pclk

Express Message 234 1.67
Express-TagOn Message 414 2.96
Basic Message 328 2.34

Table 5.3: One-way message latency for minimum size Express, Express-TagOn, and
Basic messages. Numbers are reported in both processor clocks (pclks), and in micro-
seconds ([ps) assuming a processor clock of 140 MHz. The latency is measured from
the point when sender aP software begins execution to the moment the receiver aP
software reads in the message data. It includes the software cost of allocating sender
buffers. The reported numbers are for communication between nearest neighbors;
each additional hop on the Arctic network adds 18 pclks under no-contention situa-
tions.

5.2.2 Latency

Latency is measured by ping-ponging a message between two nodes a large number

of times, averaging the round trip time observed by one node, and then halving that

to obtain the one-way message latency. We are only interested in the latency of

short messages that fit within one packet since the latency of multi-packet messages

is reflected in the bandwidth benchmarks described previously. For this reason, we

present data for Express, Express-TagOn and Basic messages, but not for hardware

DMA.

Table 5.3 lists the one-way latency of sending a minimum size message under dif-

ferent message passing mechanisms 2. The result shows that Express Message achieves

latency 30% lower than that of Basic Message, while Express-TagOn incurs the longest

latency due to its limited message size options.

As the message size increases from two to twenty words (4-byte words), the latency

of Basic messages increases in a step fashion. Each step coincides with the message

buffer crossing a cache-line boundary: between 6 and 8 words, and then again between

2 This may appear to be an unfair comparison since the minimum message size of Express-TagOn
is larger than those of Express and Basic messages, owing to its paucity of message size option.
The intent of this table is, however, to capture the minimum latency incurred when the payload is
extremely small.
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Figure 5-1: One-way latency for Express (emsg), Express-TagOn (tmsg) and Basic
(bmsg) messages as message size varies from 2 to 20 (4 byte) words.
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Latency components Express Express-TagOn Basic
(proc clks) (proc clks) (proc clks)

aP software send 22 100 70
Delay through source NES 80 80 72
Delay through Arctic network (1 switch) 56 56 56
Delay through destination NES 48 48 48
aP software receive 28 130 82

Total 234 414 328

Table 5.4: Breakdown of end-to-end latency of minimum size Express, Express-TagOn
and Basic messages. The aP software components include latency on the memory bus.

14 and 16 words. This is illustrated in Figure 5-1 which also shows Express-TagOn

message latency. Express-TagOn message latencies also have a grouping pattern

determined by cache-line boundary. But owing to its different interface, the cache-

line boundary for Express-TagOn message occurs between message sizes of 12 and 14

words.

Table 5.4 provides the breakdown of the end-to-end latency for minimum size

messages. aP software overhead, including. moving the data to and from the NES,

dominates the latency of Express-TagOn and Basic messages. Of the two, Express-

TagOn incurs higher software overhead since its buffer management is more complex -

it has to deal with the buffer space used for the TagOn data, in addition to that for its

Express-style header portion. Together, these numbers clearly show that intra-node

overhead is a serious issue for message passing. With Express message, we are able

to pare this down to the point where the latency through StarT-Voyager's hardware

components dominate.

The absolute latency through the NES and Arctic is quite substantial for all three

message types. It accounts for the greater part of Express message latency - 184 out

of 234 processor clocks. There are three reasons for this, all of which can be overcome

with better hardware implementation technology.

Firstly, the 4:1 processor core to bus clock ratio greatly magnifies any NES or

network latency. This can be improved by using better silicon technology in the NES
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Message Passing Mechanism Tx Processor Overhead Rx Processor Overhead

# pclk ps @ 140MHz pclk # pclk ps @ 140MHz pclk
Express Message 9 0.06 28 0.20
Express-TagOn Message 73 0.52 116 0.83
Basic Message 49 0.35 49 0.35

Table 5.5: Processor overhead for minimum size message (one 4-byte word).

and the network to bring their clock speeds closer to that of the processor. Secondly,

our NES design is a loosely integrated board-level design. Loose integration results in

our NES message data path crossing 4 devices between the Arctic network and the aP

system bus. Each chip crossing adds at least two cycles to latch-in and latch-out the

data. Implementing the entire NES Core in a single ASIC will improve this. Lastly,

parts of our NES are designed for fairly slow FPGA. Even though faster FPGA's

are eventually available, these portions have not been re-designed to reduce their

pipeline depths. Based on manual examination of the Verilog RTL code, we expect

the approximately 130 pclk (35 NES clock) delay through the current NES to be

reduced to about 88 pelk (22 NES clock) if a re-implementation is done.

5.2.3 Processor Overhead

We now examine the processor overhead for the various message types. The processor

overhead is related to but not exactly the same as the aP software components of

the latency path - the former measures occupancy, while the latter measures critical

path.

Table 5.5 reports the processor overheads incurred for minimum size messages.

More detailed breakdowns for these numbers are shown in Tables 5.6 and 5.7. The

processor overhead for messages with sizes ranging from 2 to 20 words are reported

in Figure 5-2; this shows a significantly higher processor overhead increment when

the message size increase crosses a cache-line boundary.

The processor overhead for Express message is significantly lower than those for

the other message types. This is especially true for message transmit. This is achieved
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Figure 5-2: Message transmit (tx) and receive (rx) processor overhead for Express

(emsg), Express-TagOn (tmsg) and Basic (bmsg) messages as message size varies from
2 to 20 (4 byte) words.
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Processor overhead
components

Data copying (active cycles)
Data copying (stalled cycles)
Book-keeping

Total

Table 5.6: Breakdown of processor
Express-TagOn and Basic messages.

Processor overhead
components

Reading data (active cycles)
Reading data (stalled cycles)
Book-keeping

Total

Table 5.7: Breakdown of processor
Express-TagOn and Basic messages.

Express
(proc clks)

2
0
7

9

Express-TagOn
(proc clks)

2
30
41

73

overhead for sending minimum size Express,

Express
(proc clks)

2
26
0
28

Express-TagOn
(proc clks)

3
56
57

116

overhead for receiving minimum size Express,

by bundling all the off-chip access into an uncached transaction, so that off-chip access

cost is minimized. As reflected in Table 5.6, off-chip access cost, which shows up as

stalled processor cycles caused by cache-miss and cache push-out, dominates the

processor overhead for the other message types.

Processor overhead incurred during message receive is again dominated by off-

chip access, particularly the latency of reading from the NES. It is very difficult to

reduce this read latency which shows up as processor stall cycles unless pre-fetching

is done. Though a good idea, pre-fetching is not easy when message receive code

is integrated into real programs; as such, our micro-benchmarks do not include pre-

fetching. Among the different message types, Express message still manages to achieve

the lowest processor overhead because it does not require any book-keeping by the

aP software.

Next, we present statistics on the processor overhead of sending multi-cast mes-

sages under Basic and Express-TagOn message passing mechanisms. The overhead
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(proc clks)

2
20
27

49

Basic
(proc clks)

1
28
20

49

I



is significantly lower with Express-TagOn as the number of multi-cast destinations

increases, since the aP specifies the content of the multi-cast message to the NES only

once. For a payload of 80 bytes, Basic message incurs an overhead of 104 processor

clocks (0.74 pus A 140 MHz pclk) per destination. Using Express-TagOn, the cost for

the first destination is 96 processor clocks (0.68 ps), but each additional destination

incurs only 10 processor clocks (0.07 ps).

Finally, if multiple threads share a message queue, Basic message will require the

threads to coordinate their usage using mutex locks. This adds processor overhead.

To get an idea of this cost, we implemented user-level mutex locks with the load-

reserve and store-conditional pair of atomicity instructions available on PowerPC

processors and measured the cost on a real system. Even in the case where there is

no contention, it costs about 30 processor clocks to take or to release a lock. The high

cost is partly due to serialization of execution within the PowerPC 604e processor,

and partly due to the bus operations triggered by these instructions. Bracketing a

message send or receive code sequence with a lock acquire and release will therefore

add about 60 processor clocks of processor overhead. In contrast, the uncached write

to send an Express or Express-TagOn message is inherently atomic and hence no

locking is needed. Atomicity on the receive side can similarly be achieved using 64bit

uncached read.

Sharing a Basic Message queue among concurrent threads adds not only the over-

head of using mutex locks to coordinate message queue usage, but also introduces

thread scheduling headaches. A thread that has obtained the right to use a mes-

sage queue will block other threads if it is suspended, say due to page fault, before

completing usage of the message queue.

5.3 Multiple Message Queues Support

This section provides quantitative evaluation of the virtual message queues idea as

implemented with our Resident/Non-resident strategy. First, the impact of message

queue virtualization and supporting a moderate number of hardware queues is quan-
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tified. We show that the added latency from queue name translation, and the slightly

more complex logic is immaterial - it is very small compared to the overall message

passing latency today.

Next, the performance of Non-resident Basic message is presented and compared to

Resident Basic message performance. The evaluation shows that the latency of Non-

resident implementation is at worst five times longer than Resident implementation,

while bandwidth is reduced by two thirds. This level of performance is perfectly

adequate performance as a backup, although it is not as good as we had anticipated.

The message send portion of the Basic message interface presents many challenges to

efficient emulation by the sP; other message send interfaces, notably that of Express

and Express-TagOn messages are more conducive to sP emulation.

Despite not living up to our expectations, the Non-resident Basic message per-

formance is still very respectable. The one-way latency of 12 Ps is not unlike those

reported for Myrinet. Myrinet performance varies depending on the host system

used and the interface firmware running on the Lanai, its custom designed embedded

processor. Numbers reported by various researchers indicate one-way latency as low

as 5.5us. However, well known user-level interfaces, such as AM-II and VIA incur

one-way latency numbers of 10.5us and 30us respectively [101].
Although the Non-resident bandwidth of around 18 MByte/s.may look low, this

is achieved with the sP performing send and receive of messages with only 80 byte

payload. If all that we care about is how fast sP can implement block transfers, other

methods presented in Section 5.4 achieve bandwidths of over 60 MByte/s.

An insight we gained from this evaluation is the importance of handling the

most common communication operations completely in hardware instead of involv-

ing firmware. The relatively long latency of many well known message passing

NIU's/machines, such as Myrinet and SP-2, is due in large part to using firmware to

handle every message send and receive operation. It is common to attribute their long

latency to their location on the I/O bus. While that is partly responsible, firmware

is by far the biggest culprit.
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Component Latency Penalty
(NES clks)

TxQ state load 1
Destination translation 3
TxQ state write-back 0
RQID lookup 1
RxQ state load 1
RxQ state write-back 0

Table 5.8: The latency penalty incurred by Resident message queues in order to sup-
port multiple virtual message queues. The message queue state write-back penalties
are zero because they are not on the latency critical path.

5.3.1 Performance Cost to Resident Message Queues

Message queue virtualization, as implemented in StarT-Voyager, imposes two types

of performance penalty on hardware message queues: (i) the cost of supporting a

moderately large number of hardware message queues; and (ii) the cost of queue

name translation and matching virtual queue names to hardware queues. Latency

is the performance metric most affected, incurring a total overhead of six NES clock

cycles (24 processor cycles). This is about 10% of Express message latency, which

is the shortest among all message types. Table 5.8 shows the breakdown for this

overhead.

The transmit and receive queue state loading overhead is due to the way the NES

micro-architecture implements multiple hardware message queues. As described in

Section 4.5.1, message queue states are separated from the logic that operates on

them. The former are grouped into queue state files, akin to register files, while

the latter is structured as transmit and receive functional units. This organization

achieves more efficient silicon usage as the number of message queues increases since

the functional units need not be replicated. With this organization, queue state has

to be loaded into the functional units and subsequently written back. Each load or

write-back operation takes one cycle. Its latency impact is minimal and bandwidth

impact is practically zero since it is hidden by pipelining.
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Virtualization of queue names requires message destination translation during

transmit and RQID (Receive Queue IDentity) tag lookup to de-multiplex incoming

packets. Similar to cache-tag matching, the RQID tag lookup incurs a latency penalty

of one NES clock cycle. It has no bandwidth impact as the lookup is done with

dedicated CAM (Content Addressable Memory) in the NESCtrl chip.

Message destination translation adds three NES cycles to latency: one cycle to

generate the address of the translation table entry, another to read the translation

information itself, and a third to splice this information into the out-going packet.

Because the NES design places the translation information in the same SRAM bank as

message queue buffers, reading the translation information has a bandwidth impact.

SRAM port usage, originally [(n/8)] cycles for an n-byte message, is lengthened

by one cycle. This only has an impact on very small messages. Furthermore, an

implementation can use a separate translation table RAM to avoid this bandwidth

penalty altogether.

The latency penalty of six NES clock cycles is so low that it will remain a small

part of the overall latency even if better implementation technology is used for the

NES and the network so that their latency contribution is greatly reduced. We can

make an argument that the six cycle overhead value is small relative to the latency

of a system bus transaction, which is at least four bus clocks today and unlikely

to decrease. As long as the NIU is external to the processor, any message passing

communication will require at least two system bus transactions, and probably more.

5.3.2 Comparison of Resident and Non-resident Basic Mes-

sage Queues

This section examines the performance of Non-resident Basic Message queues imple-

mented as described in Section 4.6.2. We present bandwidth and latency numbers for

the four combinations resulting from the cross-product of the sender and the receiver

using either Resident or Non-resident queues. Processor overhead numbers are only

minimally increased by the switch from Resident to Non-resident queues, and are not
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TxQ Resident? RxQ Resident? Bandwidth (MByte/s)

Yes Yes 53.15
Yes No 25.75
No Yes 17.80
No No 17.40

Table 5.9: Bandwidth achieved with Basic Message when transferring 4 kByte of data
from one node to another. The four cases employ different combinations of Resident
and Non-resident queues at the sender and receiver.

presented here. The marginal increase is due to longer latency of accessing DRAM.

Table 5.9 lists the bandwidth achieved for 4-kByte block data transfers. When

both sender and receiver use Non-resident message queues, the bandwidth is a third

of the Resident implementation's bandwidth. The same table also shows that the

bottleneck is at the sender's end, since close to half the Resident queues bandwidth

is attained if the sender uses a Resident queue while the receiver uses a Non-resident

queue.

Figure 5-3 reports one-way message latency under the four combinations of sender

and receiver queue types. The bar graph displays the absolute latency numbers, while

the line graphs join the points indicating the latency "slow-down" ratios, i. e. the

ratio of the (longer) latencies incurred with Non-resident queues compared to the

corresponding latencies under Resident queues. The latency deterioration is worse

for smaller messages because several Non-resident queue overhead components are

fixed regardless of message size. The figure also shows that Non-resident message

transmission causes greater latency deterioration than Non-resident message receive.

In the worst case of a one word (4 Byte) Basic message sent between Non-resident

queues, latency is almost five times longer.

Accounting for sP Emulation Costs

To facilitate understanding of sP emulation cost, we differentiate between two cost

categories. The first is the inherent cost of sP firmware processing. This is determined

by our NES micro-architecture. The second is the Basic message interface itself;
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Figure 5-3: One-way latency of Basic Message when sent from and received in different
combinations of Resident and Non-resident Basic Message queues. The "bmsg" case
is between Resident transmit and Resident receive queues. The "nr-bmsg" case is
between Non-resident transmit and Non-resident receive queues. The "snr-rr-bmsg"
case is between a Non-resident sender and a Resident receiver, while the "sr-rnr-bmsg"
case is between a Resident sender and a Non-resident receiver.
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obviously, different interface design choices influence the efficiency of sP emulation.

We defer detailed discussions of the efficiency of sP firmware processing to Sec-

tion 5.4. It suffices to say that sP handling of each event imposes fixed overheads

which can be significant if events are frequent. Multi-phase processing of an operation

exacerbates this cost because state has to be saved and restored between phases.

The Basic message interface design is difficult to implement efficiently with sP code

for two reasons: (i) information is exchanged in a way that forces the sP to process a

message transmission in two phases; (ii) our choice of buffer queue organization with

a dynamically varied end of queue. Details follow.

Updating a transmit queue producer pointer triggers the first phase of sP process-

ing. The sP is, however, unable to complete the emulated transmit because two pieces

of message header information - message destination and size - have to be read from

the SMP's main memory. Because the sP cannot directly read the aP's DRAM, it has

to first marshal the message header and data into NES SRAM. While waiting for this

to complete, it must continue to service other requests to avoid possible deadlocks.

This incurs context switching overhead, including storing aside information for the

second phase, which then has to locate it.

Basic message receive also incurs multiple phases of sP processing, but fortunately,

the second phase can be aggregated, and there is little state carried from the first

phase to the second one. The main task of the latter is to free up message buffer space

in the proxy receive queue3 . In retrospect, we could have extended the command set

of the local command queue to include one that frees up hardware queue space. This,

together with the FIFO property of the local command queue would make it possible

for the sP to completely process a Basic message receive in a single phase.

Not all Non-resident transmit emulation is as expensive as that for Basic message.

The transmit part of Express and Express-TagOn interface is in fact much more

conducive to sP Non-resident implementation because message destination and size

information are available in the bus transaction that triggers sP processing. This

3The proxy queue is the hardware queue onto which packets from multiple emulated queues are
multiplexed.
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enables the sP to emulate message transmit in a single phase. As a result of this

simplification, the transmit sP occupancy is expected to be half that of Basic message.

Implementing Basic message Non-resident transmit is also particularly difficult

due to a seemingly innocuous buffer queue design decision. Basic message queues are

circular queues with variable size buffers. While having many advantages discussed

in Section 3.3.1, variable buffer size leads to the possibility of a buffer at the end of a

message queue's linear address region straddling both the end, and the beginning of

the queue's address range. This situation is inconvenient for software; for example,

it makes it impossible to reference a message buffer as a "struct" in C programs.

To handle this problem, we made the effective end of a queue variable - as long

as the space left at the end is insufficient for the maximum size message, the queue

is wrapped back to the beginning. The amount of space skipped over is dependent

on the dynamic composition of buffer sizes encountered. This was a bad decision

because of problems it causes and because there is an easier solution.

Our buffer queue structure makes buffer allocation code tedious. This inconve-

nience and inefficiency is greatly compounded in Non-resident transmit because the

dynamically varied end of a queue shows up in both the emulated Non-resident queue,

and the hardware proxy queue. Furthermore, the dynamic end of an emulated queue

cannot be determined until the second phase processing.

The straight forward way to deal with this complexity is to stall processing when-

ever any queue, either proxy or emulated, approaches its dynamically determined end.

Processing only resumes when message size information available during the second

phase resolves the precise point at which the queue has reached its end.

A second approach avoids stalling by having phase one processing marshal suffi-

cient data into two different SRAM locations. Only one of these two copies is used

during phase two, depending on where the queue wraps back to its beginning. Phase

two processing ignores redundant data by sending loop-back "garbage" packets which

it discards. This is the implementation we chose.

The complexity of this variable end of queue design could have been avoided

with an alternate solution that permits variable packet sizes without breaking any
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packet into non-contiguous address region. This solution imposes the restriction that

message queues have to be allocated in page-size granularity. When the physical

pages are mapped into an application's virtual address space, an extra virtual page

is used at the end, which maps to the first physical page, i.e. both the first and last

virtual pages of a message queue map onto the same physical page. This allows a

packet occupying non-contiguous physical addresses to end up in contiguous virtual

addresses.

5.4 Performance Limits of the sP

This section examines the efficacy of the sP in the StarT-Voyager NES design. As

described in Chapter 4, the NES Core provides the sP with a large, flexible set of

functions, leaving few doubts that the sP is functionally capable of emulating almost

any communication abstraction. What is less apparent is the performance the sP can

achieve, and the factors limiting this performance.

The results reported in this section show that when driven to the limit, sP perfor-

mance is constrained by either context switching or off-chip access. When the amount

of work involved in each sP invocation is small, the context switch overhead - event

poll, dispatch and book-keeping (especially for multi-phase operations) - dominates.

When each sP invocation orchestrates a large amount of data communication, the

cost of sP off-chip access dominates.

This result validates several of our concerns when designing the sP/NES Core

interface. These include: (i) crafting an interface which minimizes the number of

phases in sP processing of an event, and (ii) reducing the number of sP off-chip

accesses through mechanisms like One-poll. On the other hand, it also reveals one

area of sP function that we did not consider carefully during our design - the burden

of NES Core hardware resource allocation and deallocation.

At a higher level, the results are a reminder that the sP's performance is ulti-

mately lower than that of dedicated hardware. Therefore, it is crucial that it is not

invoked too often. If the sP's duties are limited to a small number of simple tasks, its
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processing cost can potentially be lowered because of reduced book-keeping. In our

opinion, an sP so constrained is better replaced with FPGA's.

Two sets of experiments contribute to the results of this section. The first is the

Non-resident Basic message performance first presented in Section 5.3.2. We revisit

the performance results, dissecting it to quantify the cost of generic sP functions.

Details are reported in Section 5.4.1.

In the second set of experiments, the sP implements block transfer in several

ways. These experiments differ qualitatively from the first set in that a fair amount of

communication is involved each time the sP is invoked. Because the sP overhead from

dispatch and resource allocation is amortized, these experiments reveal a different set

of performance constrains. Details are reported in Section 5.4.2.

5.4.1 sP Handling of Micro-operations

We instrumented our simulator and the Non-resident Basic message performance

benchmarks to obtain the cost for each invocation of the sP when it emulated Ba-

sic message queues. These numbers are tabulated in Table 5.10. To double check

that these numbers are reasonable, we also inferred from the bandwidth numbers in

Table 5.9 that at the bottleneck point, each Non-resident Basic packet takes 660 pro-

cessor clocks and 457 processor clocks for transmit and receive respectively 4. These

numbers are compatible with those in Table 5.9. They also show that sP occupancy

constrains transmit bandwidth, but not the receive bandwidth.

Why does the sP take several hundred processor clocks to process each of these

events? Firstly, all our code is written in C and then compiled with GCC. Manual

examination of the code suggests that careful assembly coding should improve perfor-

mance by at least 20-30%. Secondly, the sP code is written to handle a large number

of events. Polling and then dispatching to these events, and saving and restoring the

4Each emulated Basic Message packet carries 84 bytes of data. When sP emulates message
transmit, it achieves 17.8 MBytes/s, i.e. it processes 212 thousand packets every second. Since the
sP operates at 140 MHz, this works out to be one packet every 660 cycles. Similarly, when the sP
emulates message receive, it achieves 25.75 MBytes/s, i.e. it processes 306.5 thousand packets every
second. This works out to be one packet every 457 cycles.
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Component sP occupancy
(proc clks/packet)

Tx emulation, Phase 1 346
(Marshal data)

Tx emulation, Phase 2 281
(Destination trans and launch)

Total 627

Rx emulation, Phase 1 209
(Demultiplex data)
Rx emulation, Phase 2 112
(Free buffer and update queue state)
sP free receive buffer 59
Total 380

Table 5.10: Breakdown of sP occupany when it implements
sage.

Non-resident Basic mes-

state of suspended, multi-phase processing all contribute to the cost.

As illustration, we obtained the timing for sP code fragments taken from the Non-

resident Basic message implementation. The sP's top-level dispatch code using a C

switch-case statement takes 13 processor clocks. When this is followed by dequeuing

the state of a suspended operation from a FIFO queue, and then a second dispatch,

an additional 35 processor clocks is incurred.

Hardware resource management, such as allocation and deallocation of space in

the local command queues, also incurs overhead. With each task taking several tens

of cycles, these dispatches, lookups and resource management very quickly add up to

a large number of sP processor cycles.

5.4.2 sP Handling of Macro-operations

Table 5.11 shows the bandwidth achieved for 4 kBytes block transfer using three

transfer methods, two of which involves the sP.

Benchmark Details

The first method uses the NES hardware DMA capability. This has been reported
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Transfer Method Bandwidth (MBytes/s)

NES Hardware DMA 84.40
sP sends and receives 62.41
sP sends, NES hardware receives 70.85

Table 5.11: (4 kByte) Block transfer bandwidth under different transfer methods on
StarT-Voyager as measured on the StarT-sim simulator.

earlier but is repeated here for easy comparison. In the second method, the sP is

involved at both the sending and receiving ends. The sP packetizes and sends data

by issuing aP bus operations to its local command queue to read data into the NES.

These are followed by Express-TagOn commands to ship the data across the network.

The sP takes advantage of the local command queue's FIFO guarantee to avoid a

second phase processing of the transmit packets.

On the receive end, the Express-TagOn receive queue is set up so that the TagOn

part of the packet goes into aSRAM, while the header/Express-like part goes into

sSRAM. The sP examines only the latter, and then issues aP bus operation commands

to its local command queue to move the TagOn data into the appropriate aP DRAM

locations. Processing at the receiver sP has a second phase to de-allocate TagOn

data buffer space in the receive queue. This can be aggregated, and the reported

numbers are from code that aggregates the buffer free action of two packet into one

sP invocation.

In the third benchmark, the sP is only involved at the sender end. On the receiv-

ing side, the packets are processed by the NES's remote command queue, the same

hardware used in NES hardware DMA. The purpose of this example is to characterize

sP packetize and send performance. When the sP is responsible for both sending and

receiving, the receive process is the likely performance bottleneck because it has two

phases. This suspicion is confirmed by the results in Table 5.11 which shows this

third transfer method achieving higher performance than the second one.

Result Analysis

The numbers in Table 5.11 can be explained by the conjecture that the limiting factor
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on sP performance is the number of times it makes off-chip accesses. For example,

under the second transfer method, the 62.41 MBytes/s bandwidth implies that the

bottleneck processes one packet every 143.5 processor clock (36 bus clocks). As shown

in the following table, when the sP sends block data, off-chip access occupies the sP

bus for 34 bus clocks per packet. (Short bus transactions involve smaller amounts of

data and each occupies the bus for only 4 bus clocks; more data is involved in long

bus transactions, each occupying the bus for 5 bus clocks.)

Operation

Poll for event to handle

3 local command queue commands

1 cache-line write-miss

1 cache-line flush

Poll for command ack

Total

num & type of bus transaction bus

2 short

3 short

1 long

1 long

2 short/2 (aggregated)
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8

12

5

5

4
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Chapter 6

Conclusions and Future Work

This piece of research centers around the thesis that a cluster system NIU should

support multiple communication interfaces layered on a virtual message queues sub-

strate in order to streamline data movement both within each node as well as between

nodes. To validate this thesis, we undertook the design and implementation of the

StarT-Voyager NES, an NIU that embodies these ideas. Our work encompasses design

specification, Verilog coding, synthesis and performance tuning, simulator building,

functional verification, PC board netlist generation, sP firmware coding and finally

micro-benchmark based evaluation. Through this exercise, we obtained a qualitative

idea of the design complexity and a quantitative picture of the hardware (silicon) size.

Neither issues present any significant impediment to realizing our design.

6.1 What We Did

To enable an NIU to support multiple interfaces, we solved a series of problems,

such as sharing a fast system area network in a safe manner without imposing an

unreasonable performance penalty, and managing the hardware complexity and cost

of supporting multiple interfaces. We introduced a three-layer NIU architecture,

described in Chapter 3, to decouple the different issues encountered in this design.

Specifically, network sharing protection is handled in the Virtual Queues layer so that

the Application Interface layer can devote itself to crafting efficient communication
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interfaces.

In the Virtual Queues layer, we designed a protection scheme that is both very

flexible and cheap to implement. Flexibility is achieved by leaving policy decisions to

system software. Implementation is cheap because the scheme requires only simple

support from the NIU hardware. We implemented these virtual queues in the StarT-

Voyager NES with a combination of hardware Resident queues and firmware emulated

Non-resident queues. The former are employed as caches of the latter under firmware

control. This design illustrates the synergy between custom hardware functional

blocks and the embedded processor in our hybrid NIU micro-architecture.

In the Applications Interface layer, we designed a number of message passing

mechanisms catering to messages of different sizes and communication patterns. We

also provided sufficient hooks in the NES for firmware to implement cache-coherent

distributed shared memory. These hooks allow firmware to participate in and control

the outcome of snoopy bus transactions on the computation node, ensuring tight

integration into the node's memory hierarchy. Though originally intended for cache-

coherent shared memory implementation, these capabilities are used to implement

other communication interfaces, such as our Non-resident message queues. The design

shows that by building on a basic set of hardware mechanisms, multiple interfaces

can be supported with minimal to no per-interface enhancements.

At the micro-architectural level, we examined different options for introducing

programmability into the NIU. We considered using one of the node processors but

found serious dangers of deadlock and likely performance problems. We finally picked

using a dedicated, off-the-shelf embedded processor in the NIU as the most expedient

choice. To overcome some performance and functional limitations of this approach,

we treated the custom NIU hardware as a coprocessor to the embedded processor,

and structured this interface as a set of in-order command and completion queues.

204



6.2 What We Learned

The merits of our ideas are evaluated on a system simulator we developed. The

results show that the Resident/Non-resident implementation of virtual queues is a

good idea that achieves the seemingly conflicting goals of high performance, low cost,

and flexible functionality. The average performance, expected to be dominated by

Resident queue performance, is little worse than if the had NIU supported only a

small fixed number of queues. NIU hardware cost is kept low as the large number of

queues is implemented in firmware using storage in main memory.

Micro-benchmark based evaluation also illustrates the performance merit of mul-

tiple interface support - in StarT-Voyager NES, the best message passing mechanism

for a specific communication depends on its characteristics such as data size or com-

munication pattern. The advantage comes from using these characteristics to pick the

best data and control path from among the myriad options in today's complex mem-

ory hierarchy. It is also significant that despite the generality and flexibility of the

StarT-Voyager NES, each mechanism it offers is competitive against implementations

that provide only that particular mechanism.

Finally, we evaluated the utility of the off-the-shelf embedded processor in the

NIU. While functionally extremely flexible, the embedded processor offers lower per-

formance than custom hardware. We showed that with our design, the embedded

processor is limited by either context switch overhead in the case of fine-grain com-

munication events, or by off-chip access when it handles coarse-grain communication

events.

While the StarT-Voyager NES is an interesting academic prototype, its imple-

mentation is not very aggressive, resulting in compromised performance. If financial

and man-power resources permitted, the entire NES except for the embedded pro-

cessor and its memory system should be integrated into one ASIC. This will improve

communication performance, particularly latency. If further resources are available,

a generic programmable core integrated into this ASIC could overcome the off-chip

access limitation of our embedded processor.
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6.3 Future Work

This work addresses the question: "Is a multi-interface NIU feasible?" This question

has been answered in the affirmative through a complete design and micro-benchmark

performance evaluation of the message passing substrate. This work is, however, just

an initial investigation and many open issues remain; we list some below.

Further Evaluation with Real Workload

This thesis focuses more on design, both abstract and concrete, and less on evaluation.

Further evaluation of the StarT-Voyager NES with real applications and workload will

lead to more definitive answers to the following important questions.

" What are the effects of multiple message passing mechanisms on overall appli-

cation and workload performance?

* Does more flexible job scheduling enabled by our network sharing model actually

improve system utilization?

" What is the performance of Reactive Flow-control when used on real programs

under real workload conditions?

" Is our choice of supporting the queues-of-network model and dynamic receive

queue buffer allocation necessary? In particular, is either the channel model,

or having the message sender specify destination address sufficiently convenient

interfaces?

While seemingly simple, these questions can only be answered after the entire system

- hardware, system software, and application software - is in place.

Cache-coherent Global Shared Memory

Shared memory is not a focus of this research, but to fully validate the concept of

a multi-function NIU, we must demonstrate that this architecture does not penalize

shared memory performance in any significant way. The goal is to demonstrate shared

memory performance on par with if not better than that delivered by shared memory

machines.
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Although the current NES functionally supports cache-coherent shared memory,

and will deliver good performance when inter-node cache miss rate is low, there are

concerns about inter-node cache-miss processing latency and throughput because the

sP is always involved in such cases.

Further work needed in this area includes a combination of performance study,

scrutiny of and modification to the NES micro-architecture to ensure that all cache-

miss latency critical paths and throughput bottlenecks are handled in NES hardware.

Some possibilities are to add by-passes, aggressively avoid store-and-forward in the

processing paths, and give shared memory traffic priority in resource arbitration.

The StarT-Voyager NES, with its malleable FPGA-based hardware, provides a good

platform for conducting this piece of research.

Multi-interface NIU vs aP Emulation on Shared Memory NIU

This thesis investigated multi-interface NIU's, i.e. NIU's designed to directly sup-

port multiple communication interfaces. An increasingly common approach to satisfy

application demand for different communication abstractions is to implement fast

coherent shared memory support in hardware, and use aP code to emulate all other

communication interfaces. Although we believe that this latter approach has both

performance and fault-isolation draw-backs due to lack of direct control over data

movement, this thesis did not attempt a definitive comparison of the two approaches.

This is pre-mature until the implementation feasibility of the multi-interface NIU

approach is demonstrated. With this thesis work and further work on the shared

memory aspects of the multi-interface NIU architecture as the foundation, a compar-

ative study on how best to support multiple communication interfaces is in order.
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