100 research outputs found

    Data-driven methods for analyzing ballistocardiograms in longitudinal cardiovascular monitoring

    Get PDF
    Cardiovascular disease (CVD) is the leading cause of death in the US; about 48% of American adults have one or more types of CVD. The importance of continuous monitoring of the older population, for early detection of changes in health conditions, has been shown in the literature, as the key to a successful clinical intervention. We have been investigating environmentally-embedded in-home networks of non-invasive sensing modalities. This dissertation concentrates on the signal processing techniques required for the robust extraction of morphological features from the ballistocardiographs (BCG), and machine learning approaches to utilize these features in non-invasive monitoring of cardiovascular conditions. At first, enhancements in the time domain detection of the cardiac cycle are addressed due to its importance in the estimation of heart rate variability (HRV) and sleep stages. The proposed enhancements in the energy-based algorithm for BCG beat detection have shown at least 50% improvement in the root mean square error (RMSE) of the beat to beat heart rate estimations compared to the reference estimations from the electrocardiogram (ECG) R to R intervals. These results are still subject to some errors, primarily due to the contamination of noise and motion artifacts caused by floor vibration, unconstrained subject movements, or even the respiratory activities. Aging, diseases, breathing, and sleep disorders can also affect the quality of estimation as they slightly modify the morphology of the BCG waveform.Includes bibliographical reference

    Performance Comparison for Ballistocardiogram Peak Detection Methods

    Get PDF
    Citation: Suliman, A., Carlson, C., Ade, C. J., Warren, S., & Thompson, D. E. (2019). Performance Comparison for Ballistocardiogram Peak Detection Methods. IEEE Access, 7, 53945–53955. https://doi.org/10.1109/ACCESS.2019.2912650A number of research groups have proposed methods for ballistocardiogram (BCG) peak detection toward the identification of individual cardiac cycles. However, objective comparisons of these proposed methods are lacking. This paper, therefore, conducts a systematic and objective performance evaluation and comparison of several of these approaches. Five peak-detection methods (three replicated from the literature and two adapted from code provided by the methods' authors) are compared using data from 30 volunteers. A basic cross-correlation approach was also included as a sixth method. Two high-performing methods were identified: the method proposed by Sadek et al. and the method proposed by Brüser et al. The first achieved the highest average peak-detection rate of 94%, the lowest average false alarm rate of 0.0552 false alarms per second, and a relatively small mean absolute error between the real and detected peaks: 0.0175 seconds. The second method achieved the lowest mean absolute error of 0.0088 seconds between the real and detected peaks, an average peak-detection success rate of 89%, and 0.0766 false alarms per second. All metrics are averaged across participants

    A smart cushion for real-time heart rate monitoring

    Get PDF
    10.1109/BioCAS.2012.64185122012 IEEE Biomedical Circuits and Systems Conference: Intelligent Biomedical Electronics and Systems for Better Life and Better Environment, BioCAS 2012 - Conference Publications53-5

    A unified methodology for heartbeats detection in seismocardiogram and ballistocardiogram signals

    Get PDF
    This work presents a methodology to analyze and segment both seismocardiogram (SCG) and ballistocardiogram (BCG) signals in a unified fashion. An unsupervised approach is followed to extract a template of SCG/BCG heartbeats, which is then used to fine-tune temporal waveform annotation. Rigorous performance assessment is conducted in terms of sensitivity, precision, Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) of annotation. The methodology is tested on four independent datasets, covering different measurement setups and time resolutions. A wide application range is therefore explored, which better characterizes the robustness and generality of the method with respect to a single dataset. Overall, sensitivity and precision scores are uniform across all datasets (p > 0.05 from the Kruskal–Wallis test): the average sensitivity among datasets is 98.7%, with 98.2% precision. On the other hand, a slight yet significant difference in RMSE and MAE scores was found (p < 0.01) in favor of datasets with higher sampling frequency. The best RMSE scores for SCG and BCG are 4.5 and 4.8 ms, respectively; similarly, the best MAE scores are 3.3 and 3.6 ms. The results were compared to relevant recent literature and are found to improve both detection performance and temporal annotation errors

    Biotelemetry of the triaxial ballistocardiogram and electrocardiogram in a weightless environment

    Get PDF
    Biotelemetry of triaxial ballistocardiogram and electrocardiogram in weightless environmen

    Wearable and Nearable Biosensors and Systems for Healthcare

    Get PDF
    Biosensors and systems in the form of wearables and “nearables” (i.e., everyday sensorized objects with transmitting capabilities such as smartphones) are rapidly evolving for use in healthcare. Unlike conventional approaches, these technologies can enable seamless or on-demand physiological monitoring, anytime and anywhere. Such monitoring can help transform healthcare from the current reactive, one-size-fits-all, hospital-centered approach into a future proactive, personalized, decentralized structure. Wearable and nearable biosensors and systems have been made possible through integrated innovations in sensor design, electronics, data transmission, power management, and signal processing. Although much progress has been made in this field, many open challenges for the scientific community remain, especially for those applications requiring high accuracy. This book contains the 12 papers that constituted a recent Special Issue of Sensors sharing the same title. The aim of the initiative was to provide a collection of state-of-the-art investigations on wearables and nearables, in order to stimulate technological advances and the use of the technology to benefit healthcare. The topics covered by the book offer both depth and breadth pertaining to wearable and nearable technology. They include new biosensors and data transmission techniques, studies on accelerometers, signal processing, and cardiovascular monitoring, clinical applications, and validation of commercial devices

    A Brief Summary of EEG Artifact Handling

    Get PDF
    There are various obstacles in the way of use of EEG. Among these, the major obstacles are the artifacts. While some artifacts are avoidable, due to the nature of the EEG techniques there are inevitable artifacts as well. Artifacts can be categorized as internal/physiological or external/non-physiological. The most common internal artifacts are ocular or muscular origins. Internal artifacts are difficult to detect and remove, because they contain signal information as well. For both resting state EEG and ERP studies, artifact handling needs to be carefully carried out in order to retain the maximal signal. Therefore, an effective management of these inevitable artifacts is critical for the EEG based researches. Many researchers from various fields studied this challenging phenomenon and came up with some solutions. However, the developed methods are not well known by the real practitioners of EEG as a tool because of their limited knowledge about these engineering approaches. They still use the traditional visual inspection of the EEG. This work aims to inform the researchers working in the field of EEG about the artifacts and artifact management options available in order to increase the awareness of the available tools such as EEG preprocessing pipelines

    Artifact Noise Removal Techniques and Automatic Annotation on Seismocardiogram Using Two Tri-axial Accelerometers

    Get PDF
    Heart disease are ones of the most death causes in the world. Many studies investigated in evaluating the heart performance in order to detect cardiac diseases in the early stage. The aim of this study is to monitor the heart activities in long-term on active people to reduce the risk of heart disease. Specifically, this study investigates the motion noise removal techniques using two-accelerometer sensor system and various positions of the sensors on gentle movement and walking of subjects. The study also ends up with algorithms to detect cardiac phases and events on Seismocardiogram (SCG) based on acceleration sensors. A Wi-Fi based data acquisition system and a framework on Matlab are developed to collect and process data while the subjects are in motion. The tests include eight volunteers who have no record of heart disease. The walking and running data on the subjects are analyzed to find the minimal-noise bandwidth of the SCG signal. This bandwidth is used to design bandpass filters in the motion noise removal techniques and peak signal detection. There are three main techniques of combining data of the two sensors to mitigate the motion artifact: analog processing, digital processing and fusion processing. The analog processing comprises analog ADDER/SUBTRACTOR and bandpass filter to remove the motion before entering the data acquisition system. The digital processing processes all the data using combinations of total acceleration and z-axis only acceleration. The fusion processing automatically controls the amplification gain of the SUBTRACTOR to improve signal quality as long as a signal saturation is detected. The three techniques are tested on three placements of sensors including horizontal, vertical, and diagonal on gentle motion and walking. In general, the total acceleration and z-axis acceleration are best techniques to deal with gentle motion on all placements which improve average systolic signal-noise-ratio (SNR) around 2 times and average diastolic SNR around 3 times comparing to only one accelerometer. With walking motion, overall the ADDER and zaxis acceleration are best techniques on all placements of the sensors on the body which enhance about 7 times of average systolic SNR and about 11 times of average diastolic SNR comparing to only one accelerometer. The combination of two sensors also increases the average number of recognizable systole and diastole on walking corresponding to 71.3 % and 43.8 % comparing toiii only one sensor. Among the sensor placements, the performance of horizontal placement of the sensors is outstanding comparing with other positions on all motions. There are two detection stages to detect events in the SCG for automatic annotation. First, two algorithms including moving average threshold and interpolation are applied to locate the systolic and diastolic phases. Then, based on those identified phases, cardiac events are found in the searched intervals using two outstanding characteristics of the SCG. The two algorithms of phase detection are examined on the stationary data sets of digital processing and horizontal placement. The total acceleration of only one sensor is also calculated for comparison. With moving average threshold algorithm, the average error and missing rates of total acceleration and z-axis acceleration are 1.8 % and 2.1 % respectively which are lower than using one accelerometer (3.6 %). With interpolation algorithm, the average error and missing rates of total acceleration and z-axis acceleration are in the order of 2.3 % and 2.4 % which are still lower than one accelerometer. The average calculation time of the moving average algorithm is lower than the interpolation counterpart. The real-time mode of detection algorithms is also demonstrated on Matlab framework to prove the possibility of practical applications

    Ballistocardiography : physically-based modeling to bridge physiology and technology

    Get PDF
    The ballistocardiogram (BCG) captures the motion of the center of mass (CoM) of the human body resulting from the blood motion within the circulatory system. The BCG signal reflects the status of the cardiovascular system as a whole and, for this reason, it offers a more holistic evaluation of cardiovascular performance than traditional markers, such as electrocardiography or echocardiography. In addition, the acquisition of BCG signals is not invasive, can be performed with several devices -such as accelerometers, chairs, hydraulic system- and does not require body contact. However, the utilization of the BCG as a clinical diagnosis tool and monitoring method is currently hindered by the absence of standardized methods to link the motion of the CoM of the human body, which constitutes the physiological BCG (pBCG), with the BCG signal acquired with sensing devices, which constitute the measured BCG (mBCG). To address this issue, in the first part of the present work we provide a formal definition of pBCG and mBCG, which will be then utilized to (i) define the physical connection between the mBCG obtained with two sensing devices, i.e. the suspended bed and the load cell system, and the pBCG signal and (ii) reconstruct the individual CoM motion. In the second part of the thesis, we focus on the synergistic combination between the physiology behind the BCG signal and the physics of the sensing devices, which may lead to novel clinical applications. In particular, we propose a cuff-less method for absolute pulse pressure assessment via the synergistic integration of two components, namely (i) theoretical simulations of cardiovascular physiology by means of a mathematical closed-loop model of the cardiovascular system, and (ii) synchronous ECG, SCG and BCG data acquired in our laboratory. Then, we present an evolutionary algorithm aimed at individualizing the closed-loop model of the cardiovascular system, with which we will also provide an estimate of the arterial pressure. Finally, in the last part of the thesis, we draw the conclusion of this study, showing how the integration of the mathematical modeling alongside with clinical studies can improve the understanding of the BCG signal and actively contributing to the development of new clinical monitoring solution.Includes bibliographical references (pages 80-84)

    Extracting Cardiac Information From Medical Radar Using Locally Projective Adaptive Signal Separation

    Get PDF
    Electrocardiography is the gold standard for electrical heartbeat activity, but offers no direct measurement of mechanical activity. Mechanical cardiac activity can be assessed non-invasively using, e.g., ballistocardiography and recently, medical radar has emerged as a contactless alternative modality. However, all modalities for measuring the mechanical cardiac activity are affected by respiratory movements, requiring a signal separation step before higher-level analysis can be performed. This paper adapts a non-linear filter for separating the respiratory and cardiac signal components of radar recordings. In addition, we present an adaptive algorithm for estimating the parameters for the non-linear filter. The novelty of our method lies in the combination of the non-linear signal separation method with a novel, adaptive parameter estimation method specifically designed for the non-linear signal separation method, eliminating the need for manual intervention and resulting in a fully adaptive algorithm. Using the two benchmark applications of (i) cardiac template extraction from radar and (ii) peak timing analysis, we demonstrate that the non-linear filter combined with adaptive parameter estimation delivers superior results compared to linear filtering. The results show that using locally projective adaptive signal separation (LoPASS), we are able to reduce the mean standard deviation of the cardiac template by at least a factor of 2 across all subjects. In addition, using LoPASS, 9 out of 10 subjects show significant (at a confidence level of 2.5%) correlation between the R-T-interval and the R-radar-interval, while using linear filters this ratio drops to 6 out of 10. Our analysis suggests that the improvement is due to better preservation of the cardiac signal morphology by the non-linear signal separation method. Hence, we expect that the non-linear signal separation method introduced in this paper will mostly benefit analysis methods investigating the cardiac radar signal morphology on a beat-to-beat basis
    corecore