1,949 research outputs found

    Fracture characterization of multi-layer wire mesh rubberized ferrocement composite slabs by means of acoustic emission

    Get PDF
    This study investigated the fracture behaviour of multi-layer ferrocement composite slabs with partial replacement of tire rubber powder as filler utilizing acoustic emission (AE) technique for characterization. Ferrocement slab specimens prepared using normal-compact cement mortar, self-compact cement mortar, fly ash, and rubberized self-compact cement mortar –with varying steel mesh reinforcement layers– were statically loaded to failure. The inclusion of 10% rubber powder (by weight) was found capable of altering the failure mode of composite slabs from brittle to ductile with a slight reduction in the ultimate flexural strength. Fracture development of the specimens was closely monitored using AE for enhanced characterization. It is seemingly evident that the measured AE parameters could be effectively processed to distinguish different modes of fracture. The collected AE data was utilized to quantify stiffness reduction in the specimens due to progressive damage.No Full Tex

    CONSOLIDATION AND RESTORATION OF HISTORICAL HERITAGE: THE FLAVIAN AMPHITHEATER IN ROME

    Get PDF
    Abstract. The recovery and retrofitting techniques adopted for historical structures and archaeological sites face an apparent dichotomy between conservation of constructions and the safety of users. Literatures show several examples where the current day structural safety of historical constructions, gets defined by the nature of past interventions, the compatibility of materials and elements used in retrofitting. The adopted interventions were, in their time, considered innovative, but over the years their compatibility and reversibility leave the historic constructions structurally vulnerable. For these reasons, a careful understanding of the structural systems is fundamental for the implementation of appropriate retrofitting solutions. Especially for monuments and Archaeological sites the objective to be achieved has to be clear, avoiding destructive investigation tests. In this work the instabilities caused by a consolidation intervention on some travertine columns in a sector of the Flavian Amphitheatre, better known as "Colosseum" in Rome, are critically analysed. The current consolidation operations are compared to the previous one. The restoration activity involves in-depth diagnosis process: the historical analysis of the failures and restorations of that area of the Colosseum, a survey of the crack pattern and an indirect investigation on the travertine of the columns. Subsequently the various data coming from the knowledge phase are elaborated, in order to have a correct interpretation of the causes triggering the failure and guide the choice of the most correct retrofitting techniques

    Crack detection in "as-cast" steel using laser triangulation and machine learning

    Get PDF
    We describe a high-accuracy inspection system designed to automatically detect cracks in "as-cast" steel slabs. Real-time slab inspection requires instrumentation capable of withstanding high temperatures above the steel surface as well as coping with the dirty and dusty environment present in a steel mill. Crack detection is also challenging due to the presence of oxidation scale on the slab surface. A bespoke laser triangulation system has been developed, providing images at 250 fps with a calibrated surface resolution of 97 ÎŒm from a 1m standoff distance. Cracks are detected using a combination of morphological detection and SVM classifier. Results are reported from laboratory testing and from extended trials at a production steel mill

    A review of the effects of chemical and phase segregation on the mechanical behaviour of multi-phase steels

    Full text link
    In the drive towards higher strength alloys, a diverse range of alloying elements is employed to enhance their strength and ductility. Limited solid solubility of these elements in steel leads to segregation during casting which affects the entire down-stream processing and eventually the mechanical properties of the finished product. Although it is thought that the presence of continuous bands lead to premature failure, it has not been possible to verify this link. This poses as increasingly greater risk for higher alloyed, higher strength steels which are prone to centre-line segregation: it is thus vital to be able to predict the mechanical behaviour of multi-phase (MP) steels under loading. This review covers the microstructure and properties of galvanised advanced high strength steels with particular emphasis to their use in automotive applications. In order to understand the origins of banding, the origins of segregation of alloying elements during casting and partitioning in the solid state will be discussed along with the effects on the mechanical behaviour and damage evolution under (tensile) loading. Attention will also be paid to the application of microstructural models in tailoring the production process to enable suppression of the effects of segregation upon banding. Finally, the theory and application of the experimental techniques used in this work to elucidate the structure and properties will be examined.Comment: 53pages, 34 figures, 4 table

    Characterization and performance of eco and crack-free high-performance concrete for sustainable infrastructure

    Get PDF
    The main objective of this study is to develop, characterize, and validate the performance of a new class of environmentally friendly, economical, and crack-free high-performance concrete referred to as Eco and crack-free HPC that is proportioned with high content of recycle materials. Two classes of Eco-HPC are designed for: (I) pavement (Eco-Pave-Crete); and (II) bridge infrastructure (Eco-Bridge-Crete). Eco-HPC mixtures were designed to have relatively low binder content up to 350 kg/m3 and develop high resistance to shrinkage and superior durability. A stepwise mixture design methodology was proposed to: (i) optimize binder system and aggregate skeleton to optimize packing density and flow characteristics; (ii) evaluate synergy between shrinkage mitigating materials, fibers, and moist curing duration to reduce shrinkage and enhance cracking resistance; and (iii) validate performance of Eco HPCs. The composition-reaction-property correlations were developed to link the hydration kinetics of various binder systems to material performance in fresh state (rheological properties) and hardened state (strength gain and shrinkage cracking tendency). Results indicate that it is possible to design Eco-HPC with drying shrinkage lower than 300 ”strain after 250 days and no restrained shrinkage cracking even after 55 days. Reinforced concrete beams made with Eco-Bridge-Crete containing up to 60% replacement of cement with supplementary cementitious materials and recycled steel fibers developed significantly higher flexural toughness compared to the reference concrete used for bridge applications. In parallel, autogenous crack healing capability of concrete equivalent mortar mixtures was monitored using microwave reflectometry nondestructive testing technique. Research is in progress towards analyzing life cycle assessment of Eco-HPCs under field condition --Abstract, page iii

    Développement des bétons nano-modifiés aux performances améliorées

    Get PDF
    In light of the well-established multi-scale nature of flaws in concrete, it follows that existing diverse attempts in fiber-reinforced concrete (FRC) technology-intended to mitigate the inherent tendency of concrete to cracking-remain relatively inefficient. This is majorly attributed to the fact that the large inter-fiber spacing in conventionally used macrofibers does not promote an effective bridging of multiscale cracks. As a result, increasing research and development are currently being invested to develop concretes incorporating nanoscale particles. Thus, nanoscale fibers emerged as a promising tool for manipulating concrete nanostructure towards a controlled macrobehavior necessary for enhanced overall performance. In this context, while carbon nanostructure (CNS) such as carbon nanofibers (CNF) and carbon nanotubes (CNT) have gained a relative popularity, it should be noted that eco-efficiency incentives would favor the currently emerging nanocellulose materials (NCM) extracted from cellulose-based systems, the most abundant and renewable resource on the planet. NCM have been demonstrated as a means to engineer superior composite properties necessary for versatile applications including optics, biomedical applications, and transparent electronics. The current study is aimed at disclosing the possibilities of re-engineering concrete properties using a new type of NCM, namely, cellulose filaments (CF) in order to achieve superior concrete performance necessary for specific applications. CF are cellulosic fibrils with a nanometric diameter (30–400 nm) and micrometric length (100–2000 ”m), thereby exhibiting the highest aspect ratio (100–1000) among all currently available NCM. The study focuses on the influence of CF as a tool for nano-tailoring the properties of concrete in its three major states (fresh, hardening, and hardened). As a result, three applications in relation to the above concrete states were identified through intensive experimentation: (i) enhancing the properties of fresh concrete by using CF as a viscosity modifying admixture (VMA), (ii) enhancing the properties of hardening concrete by using CF as a shrinkage reducing admixture (SRA), and (iii) improving the performance of concrete at the hardened state by using CF as a nanoscale reinforcement. The study further aims at leveraging those different enhancements in concrete properties obtained with CF towards developing a new concrete formulation that optimizes the advantages of CF. The enhancement of concrete properties at fresh state was undertaken in the context of valorizing the hydrophilic and flexible nanoscale CF to function as a VMA in self-consolidating concrete (SCC) whereby the design of flowable (yet stable and robust) mixtures requires a delicate balance between flowability and stability. For this, CF were incorporated at concentrations ranging from 0.05 to 0.30% per weight of binder in cement pastes and SCC. CF were demonstrated as a valuable tool not only for rheology modification, but also to impart collateral positive effects on mechanical performance (strength enhancement of 12–26% in compression, splitting-tension, and flexure) when compared to commercially available VMA of Welan Gum type. CF were found to serve as a VMA due to the buildup of flexible nanoscale networks as demonstrated by a geometry-based percolation model as well as by microstructure investigations. Interestingly, this effect was found to be accompanied by a shear thinning effect attributable to the streamlining of flexible nanocellulose fibrils in the direction of flow under increasing shear rates, thereby potentially enhancing pumpability. The potential of CF to enhance the properties of hardening concrete was attempted in the context of exploiting the hydrophilic and hygroscopic characters of CF to mitigate autogenous shrinkage (AS) in ultra-high-performance concrete (UHPC). While s such, when UHPC formulation was adjusted to accommodate CF at rates of 0-0.30% per cement mass, and silica fume content was varied (from 15 to 25%), CF were found to be more beneficial in reducing AS at early-age with a reduction of up to 45% during the first 24 hours and 35% at 7 days. On the other hand, adjusting SF content from 25 to 15% had a negligible effect on AS at early-age (0–4% reduction at 1 day) but a higher effect at later-age (28% reduction at 7 days) attributable to the time-dependent pozzolanicity of silica fume. However, this alternative was found to have adverse effects on mechanical performance (32% lower flexural capacity). Finally, the potential of CF as a nanoscale reinforcement was investigated on cement pastes and on concrete. In the former, strength enhancement in engineering properties (compressive strength, flexural capacity, and elastic modulus) of up to 25% were achieved. In the latter, strength improvements of up to 16% (in compression), 34% (in splitting tension), 22% (in flexure), and 96% (in energy absorption) were obtained. To disclose the mechanisms underpinning the effect of CF on strength of cement systems, the above findings were supplemented by microstructure investigations, namely, degree of hydration and micromechanical properties (indentation modulus M, hardness H, and contact creep modulus C) of major microstructure phases using nanoindentation coupled with quantitative energy-dispersive spectroscopy (NI-QEDS). As a result, the improved macromechanical performance was found to sprout from a twofold microstructure change, i.e.: an increased degree of hydration and higher micromechanical properties of C-S-H gel matrix (~12–25%). To leverage the above different advantages offered by CF on cement and concrete composites, particularly the nanoreinforcing effect and the potential synergy between the nanoscale CF and macrofibers, a novel multi-scale fiber-reinforced strain-hardening cementitious composite (SHCC) was developed. The design of this SHCC followed a new approach that couples packing density optimization with micromechanical tailoring. Thus, high-volume ground-glass pozzolans (HVGP) were incorporated under the guidance of particle pacing optimization to replace fly ash (FA) commonly used in SHCC such that composite strength can be increased. The newly formulated SHCC was further improved in terms of ductility and strain-hardening capacity by the incorporation of CF whereby the latter was a useful tool to nanomodify SHCC matrix and interface properties towards enhanced strain-hardening behavior. In outcome, HVGP-SHCC formulations with GP replacement of fly ash of up to 100% were developed. The resulting formulations have self-consolidation ability (mini-slump dimeter in the range of 250 mm) and exhibited (at 28 days) 60-75 MPa compressive strength, 9-15 MPa flexural capacity, 3-6 MPa tensile strength, 2-5% tensile strain capacity, and a significantly increased electrical resistivity (up to 60% enhancement). Thus, the mechanical properties of the newly developed HVGP-SHCC exceed those reported in the commonly used high-volume fly ash (HVFA)-SHCC. Nevertheless, while the strength enhancement obtained with GP does not jeopardize composite ductility up to 40% GP content, a reduced ductility was noticed at GP>40%. As a result, CF were used to impart a nanoreinforcing effect to HVGP-SHCC as well as to nanomodify the interface properties of PVA fibers. In outcome, a twofold effect was obtained by nanomodifying SHCC with CF: (i) CF imparted higher elastic modulus to the bulk cementitious matrix (Em) thereby contributed to attenuating the crack tip toughness (J_tip=K_m^2/E_m) with Km being matrix fracture toughness, (ii) CF led to attenuating the excessive frictional bond encountered at higher GP content (densifying the matrix and increasing its strength, but limiting strain-hardening behavior) and imparted a characteristic slip-hardening effect (ÎČ) which contributed towards improving composite strain-hardening capacity and ductility. Thus, enhancement in ultimate strain-capacity above 200% as compared to systems without CF were obtained. Therefore, with the incorporation of CF, it was possible to produce SHCC with up to 100%GP replacement of FA while exhibiting higher strength and ductility. To scale-up the enhanced mechanical performance (particularly the high strength and ductility) demonstrated by the new SHCC, the latter was used as a topping to develop a novel type of composite deck slabs at full-scale (dimensions of up to 2400 × 900 mm). The composite deck slabs thus constructed are intended to benefit from the improved strength and ductility of nanomodified HVGP-SHCC topping such that better compatibility between the steel deck and its concrete topping can be obtained. This has the potential to increase the performance of composite deck slabs under shear bond failure, a major failure mode in composite deck slabs. Results indicated that, compared to composite deck slabs with a high-strength concrete topping having similar compressive strength as the nanomodified HVGP-SHCC, the slabs constructed with the SHCC exhibited up to 35 and 42% enhancement in ultimate load-carrying capacity and ductility, respectively. Furthermore, composite deck slabs with nanomodified HVGP-SHCC exhibited higher shear bond capacity. Considering theses results, it is perceivable that the newly developed SHCC (implemented from the material level at the nanoscale to the structural level at the macroscale) has benefited from a twofold ecoefficiency perspective. The first concerns the valorization of post-consumer recycled glass into the development of high-performance concrete, thereby contributing to relieve a significant socio-economical burden created by landfilling post-consumer glass. The second concerns exploiting the power of cellulose, the most abundant naturally occurring polymer on the planet, towards a biomimetic design of high-performance multiscale-reinforced cement composites necessary for sustainable and resilient concrete infrastructure systems.Compte tenu de la nature multi-Ă©chelle des dĂ©fauts dans le bĂ©ton, il s'ensuit que les diverses tentatives existantes en technologie de bĂ©ton fibrĂ© (BF)-visant Ă  attĂ©nuer la tendance intrinsĂšque du bĂ©ton Ă  la fissuration-demeurent toujours relativement inefficaces. Ceci est attribuĂ© non seulement au fait que le grand espacement interfibrillaire des macro-fibres (dans un BF) ne favorise pas un pontage efficace des fissures multi-Ă©chelles, mais aussi au fait que le phĂ©nomĂšne de fissuration commence tout d’abord Ă  l’échelle nanomĂ©trique. En consĂ©quence, des travaux de recherche et de dĂ©veloppement considĂ©rables ont Ă©tĂ© investis au cours de la derniĂšre dĂ©cennie pour dĂ©velopper des bĂ©tons incorporant des particules nanomĂ©triques. Ainsi, les nanofibres ont Ă©mergĂ© comme un outil efficace permettant la manipulation du bĂ©ton au niveau de sa nanostructure tel que celle-ci soit conçue de maniĂšre Ă  contrĂŽler le comportement du bĂ©ton Ă  l’échelle macroscopique pour obtenir des bĂ©tons Ă  performances amĂ©liorĂ©es. Dans ce contexte, bien que les nanomatĂ©riaux Ă  base de carbone tels que les nanofibres de carbone et les nanotubes de carbone ont acquis une popularitĂ© relative, certaines prĂ©occupations reliĂ©es Ă  leur coĂ»t actuel ainsi qu’à la santĂ© humaine et environnementale favoriseraient plutĂŽt les matĂ©riaux nano-cellulosiques. Ces derniers ont apparu rĂ©cemment comme un enjeu permettant de confĂ©rer des propriĂ©tĂ©s composites amĂ©liorĂ©es nĂ©cessaires pour des applications aussi variĂ©es telles que les adhĂ©sifs, les nano-composites, et les Ă©lectroniques transparentes. La prĂ©sente Ă©tude vise Ă  explorer les possibilitĂ©s d’amĂ©liorer les propriĂ©tĂ©s du bĂ©ton Ă  l'aide d'un nouveau type de matĂ©riaux nano-cellulosiques, notamment, les filaments de cellulose (FC), afin d'obtenir des performances amĂ©liorĂ©es nĂ©cessaires pour des applications ciblĂ©es. Les FC sont des fibrilles cellulosiques de diamĂštre nanomĂ©trique (30 Ă  400 nm) et de longueur micromĂ©trique (100 Ă  2000 ”m), prĂ©sentant ainsi le ratio d’aspect le plus Ă©levĂ© (100 Ă  1000) parmi tous les matĂ©riaux nano-cellulosiques actuellement disponibles. L'Ă©tude se concentre sur l'impact de FC comme un outil permettant d’amĂ©liorer les propriĂ©tĂ©s du bĂ©ton dans ses trois principaux Ă©tats (frais, durcissant et durci). En consĂ©quence, trois applications en relation avec ces Ă©tats du bĂ©ton ont Ă©tĂ© identifiĂ©es grĂące Ă  un programme expĂ©rimental comprĂ©hensive: (i) amĂ©lioration des propriĂ©tĂ©s du bĂ©ton frais en utilisant le FC comme agent modificateur de viscositĂ© (VMA), (ii) amĂ©lioration des propriĂ©tĂ©s du bĂ©ton durcissant en utilisant le FC comme un agent rĂ©ducteur de retrait (iii) amĂ©lioration de la performance du bĂ©ton Ă  l'Ă©tat durci en utilisant le FC comme un renforcement nanomĂ©trique pour confĂ©rer un pontage de fissures Ă  l'Ă©chelle des hydrates. L'Ă©tude vise, en outre, Ă  mettre en vigueur ces diffĂ©rentes amĂ©liorations (en propriĂ©tĂ©s du bĂ©ton) apportĂ©es par l’utilisation de FC pour dĂ©velopper une nouvelle formulation de bĂ©ton, ainsi optimisant les apports de FC. L’amĂ©lioration des propriĂ©tĂ©s du bĂ©ton Ă  l’état frais a Ă©tĂ© entamĂ©e dans le cadre de valoriser l’aspect hydrophile des FC, leur taille nanomĂ©trique et leur flexibilitĂ© afin de confĂ©rer un effet VMA dans les bĂ©tons autoplaçants (BAP) dont la formulation nĂ©cessite un Ă©quilibre dĂ©licat entre la fluiditĂ© et la stabilitĂ©. Dans ce contexte, les FC ont Ă©tĂ© incorporĂ©s Ă  des concentrations de 0,05-0,30% en masse de liants dans des pĂątes de ciment et des BAP. Les rĂ©sultats dĂ©montrent que les FC peuvent servir d’un adjuvent VMA permettant non seulement d’amĂ©liorer la rhĂ©ologie, mais aussi de confĂ©rer des effets positifs collatĂ©raux aux performances mĂ©caniques (amĂ©lioration de 12–26% de la rĂ©sistance en compression, traction brĂ©silienne et flexion) par rapport aux bĂ©tons contenant de VMA conventionnels de type Welan Gum. L’effet VMA des FC est attribuĂ© Ă  la formation des rĂ©seaux de fibrilles de FC nanomĂ©triques et flexibles permettant de percoler les particules cimentaires et accroitre la stabilitĂ© des mĂ©langes tel que dĂ©montrĂ© Ă  travers un modĂšle de percolation gĂ©omĂ©trique ainsi que par les Ă©tudes de la microstructure. A ce propos, Il est Ă  noter que l’effet de VMA confĂ©rĂ© par les FC est Ă©galement accompagnĂ© d’un effet rhĂ©ofluidifiant attribuable Ă  la tendance des FC flexibles Ă  s’aligner dans la direction de l’écoulement du mĂ©lange sous un cisaillement croissant. La potentialitĂ© des FC d’amĂ©liorer les propriĂ©tĂ©s des bĂ©tons durcissant a Ă©tĂ© Ă©valuĂ©e dans le contexte d’exploiter les caractĂšres hydrophiles et hygroscopiques des FC pour attĂ©nuer le retrait endogĂšne dans les bĂ©tons fibrĂ©s Ă  ultra hautes performances (BFUP). Ainsi, alors que les BFUP peuvent contenir jusqu’à 25% de fumĂ©e de silice (pour accroitre la compacitĂ© et maximiser la rĂ©sistance mĂ©canique), cette teneur Ă©levĂ©e en fumĂ©e de silice rend la matrice vulnĂ©rable au retrait endogĂšne. Cependant, la rĂ©duction de la teneur de la fumĂ©e de silice jusqu’à 15% rĂ©sulte Ă  une matrice moins vulnĂ©rable au retrait endogĂšne, nĂ©anmoins prĂ©sentant une faible rĂ©sistance mĂ©canique. Dans ce sens, l’incorporation des FC Ă  des taux de 0-0,30% par masse de liant a permis produire des BFUP ayant 25% de fumĂ©e de silice et prĂ©sentant une rĂ©duction en retrait endogĂšne allant jusqu'Ă  45% et 35% au cours des premiĂšres 24 heures et 7 jours, respectivement. Enfin, la potentialitĂ© des FC en tant que renforcement nanomĂ©trique a Ă©tĂ© Ă©tudiĂ©e sur des pĂątes de ciment et sur des bĂ©tons. Dans le premier cas, des propriĂ©tĂ©s mĂ©caniques amĂ©liorĂ©es (rĂ©sistance Ă  la compression, rĂ©sistance Ă  la flexion et module d'Ă©lasticitĂ©) allant jusqu'Ă  25% ont Ă©tĂ© obtenues. Dans le deuxiĂšme cas, des amĂ©liorations de rĂ©sistance allant jusqu'Ă  16% (en compression), 34% (en traction brĂ©silienne), 22% (en flexion) et 96% (en tĂ©nacitĂ©) ont Ă©tĂ© obtenues. Pour identifier les mĂ©canismes sous-jacents Ă  l'effet des FC sur la rĂ©sistance mĂ©canique des composite cimentaires, les observations ci-dessus ont Ă©tĂ© supplĂ©mentĂ©es par des Ă©tudes de la microstructure, notamment le degrĂ© d'hydratation et les propriĂ©tĂ©s micromĂ©caniques (duretĂ©, module d'indentation, et le fluage par contact) de phases de microstructure en utilisant la mĂ©thode de Nanoindentation coupled with quantitative energy-dispersive spectroscopy (NI-QEDS). Ainsi, il a Ă©tĂ© constatĂ© que les performances macro-mĂ©caniques amĂ©liorĂ©es dĂ©coulaient d’un double effet des FC sur la microstructure, Ă  savoir : un degrĂ© d’hydratation augmentĂ© (15%) et des propriĂ©tĂ©s micromĂ©caniques supĂ©rieures dans la matrice de C-S-H (~ 12-25%). Pour une mise en valeur des diffĂ©rents apports de la nano-modification des composites cimentaires par l’incorporation des FC, en particulier l’effet nano-renforçant et la synergie entre les FC Ă  l’échelle nanomĂ©trique et les macro-fibres, une nouvelle formulation d’un bĂ©ton de haute performance de type bĂ©ton Ă©crouissant (Strain-hardening cementitious composites) a Ă©tĂ© dĂ©veloppĂ©e. La conception de ce nouveau bĂ©ton a suivi une nouvelle approche articulant l’optimisation de la compacitĂ© granulaire avec les modĂšles micromĂ©caniques. Ainsi, la poudre de verre (PV) provenant du concassage des bouteilles de verre a Ă©tĂ© incorporĂ©e en remplacement de la cendre volante (CV) – souvent utilisĂ©e dans cette application – de manier Ă  optimiser la compacitĂ© de la matrice pour amĂ©liorer la rĂ©sistance mĂ©canique. Pa la suite, les FC ont Ă©tĂ© introduits comme un renforcement nanomĂ©trique permettant d’obtenir un bĂ©ton renforcĂ© Ă  multi-Ă©chelle. Les rĂ©sultats dĂ©montrent que les FC ont permis de nano-renforcer la matrice ainsi que d’amĂ©liorer les propriĂ©tĂ©s d'interface entre la matrice et les macro-fibres d'alcool polyvinylique (PVA), permettant ainsi d'amĂ©liorer le comportement d'Ă©crouissage. Ainsi, des bĂ©tons Ă©crouissant contenant jusqu’à 100% de PV en remplacement de CV ont Ă©tĂ© dĂ©veloppĂ©s. Les formulations obtenues ont un caractĂšre autoplaçant (≈250 mm d’étalement) et prĂ©sentent (Ă  28 jours) une rĂ©sistance Ă  la compression de 60-75 MPa, une capacitĂ© de flexion de 9-15 MPa, une rĂ©sistance Ă  la traction de 3-6 MPa, une capacitĂ© de contrainte en traction de 2-5% et une rĂ©sistivitĂ© Ă©lectrique amĂ©liorĂ©e. Les bĂ©tons formulĂ©s prĂ©sentent, alors, des performances mĂ©caniques supĂ©rieures Ă  celles des bĂ©tons Ă©crouissants contenant la CV. NĂ©anmoins, bien que l’amĂ©lioration en rĂ©sistance mĂ©canique obtenue avec la PV ne compromette pas la ductilitĂ© du composite jusqu’à une teneur de 40% de PV, une ductilitĂ© rĂ©duite a Ă©tĂ© observĂ©e quand la teneur en PV dĂ©passe 40%. Pour ce, le FC a Ă©tĂ© utilisĂ© pour confĂ©rer un effet nano-renforçant ainsi que pour amĂ©liorer les propriĂ©tĂ©s d'interface entre la matrice et les macro-fibres. L’incorporation des FC a dĂ©montrĂ© un double effet sur le comportement des bĂ©tons Ă©crouissants : (i) le module d'Ă©lasticitĂ© de la matrice plaine des bĂ©tons Ă©crouissant est trĂšs important en prĂ©sence des FC. Ceci a contribuĂ© Ă  rĂ©duire la tĂ©nacitĂ© de la fissuration, (ii) les FC ont attĂ©nuĂ© la friction excessive – entre les macro-fibres et la matrice – rencontrĂ©e Ă  des teneurs Ă©levĂ©es en PV (limitant la ductilitĂ© du bĂ©ton). Les FC ont aussi confĂ©rĂ© un effet Ă©crouissant Ă  l’arrachement des macro-fibres de PVA permettant ainsi d’accroitre la capacitĂ© de contrainte en traction. Une amĂ©lioration en capacitĂ© de dĂ©formation et en ductilitĂ© au-delĂ  de 200% par rapport aux bĂ©tons Ă©crouissants sans FC a Ă©tĂ© obtenue. Ainsi, avec l’incorporation de FC, il Ă©tait possible de produire des bĂ©tons Ă©crouissant contenant jusqu’à 100% de PV en remplacement de CV tout en prĂ©sentant des rĂ©sistances mĂ©caniques et ductilitĂ©s plus importantes. Pour une mise Ă  l’échelle des performances mĂ©caniques amĂ©liorĂ©es (particuliĂšrement la ductilitĂ© importante) dĂ©montĂ©es par la nouvelle formulation de bĂ©ton Ă©crouissant, cette derniĂšre a Ă©tait utilisĂ©e comme un surbĂ©ton pour dĂ©velopper un nouveau type de dalles composites Ă  Ă©chelle rĂ©elle (allant jusqu’à 2400 × 900 mm). La nouvelle dalle composite est envisagĂ©e de bĂ©nĂ©ficier de la ductilitĂ© amĂ©liorĂ©e de son surbĂ©ton Ă©crouissant de maniĂšre Ă  accroitre la compatibilitĂ© structurale entre le tablier mĂ©tallique et son surbĂ©ton. Ceci a pour but d’amĂ©liorer la rĂ©sistance Ă  la dĂ©tĂ©rioration de l’adhĂ©sion d’interface tablier-bĂ©ton, un des principaux types de ruptures des dalles composites. Les rĂ©sultats indiquent que, comparĂ©ment Ă  des dalles composites construites de bĂ©ton Ă  haute performance ayant la mĂȘme rĂ©sistance en compression que le nouveau bĂ©ton Ă©crouissant, les dalles composites au bĂ©ton Ă©crouissant ont dĂ©montrĂ© une amĂ©lioration de 35 et 42% en capacitĂ© maximum de chargement et en ductilitĂ©, respectivement. De mĂȘme, les dalles composites au bĂ©ton Ă©crouissant ont dĂ©montrĂ© une rĂ©sistance plus Ă©levĂ©e Ă  la dĂ©tĂ©rioration de l’adhĂ©sion d’interface tablier-bĂ©ton, autrement dit, une amĂ©lioration Ă  la capacitĂ© cisaillement-adhĂ©sion connue par shear-bond capacity. À cet Ă©gard, la nouvelle formulation du bĂ©ton Ă©crouissant dĂ©veloppĂ©e dans le cadre cette Ă©tude (et implĂ©mentĂ©e de l’échelle nano/micro jusqu’à l’échelle structurale rĂ©elle) s’est vue bĂ©nĂ©ficiĂ©e de deux aspects liĂ©s Ă  l’éco-efficacitĂ©. Le premier concerne la valorisation du verre recyclĂ© dans un bĂ©ton Ă  haute performance, contribuant ainsi Ă  allĂ©ger le fardeau socio-Ă©conomique important crĂ©Ă© par l’enfouissement de verre de post-consommation. Le deuxiĂšme concerne la mise en exergue de la cellulose-le polymĂšre naturel le plus abondant et le plus renouvelable sur la planĂšte-vers le dĂ©veloppement de bĂ©tons Ă  haute performance (renforcĂ©s Ă  multi-Ă©chelle) nĂ©cessaires pour des infrastructures en bĂ©ton plus performantes

    Characterization of concrete materials using non-destructive wave-propagation testing techniques

    Get PDF
    Non-destructive testing (NDT) of concrete members has been widely used for characterisation of material and assessment of functional structures without impairing their functions and performances. This thesis focuses on addressing critical challenges related to the practical implementation of NDT techniques based on wave-propagation approaches for characterisation of concrete members used in civil infrastructures. Specially, this research aims to achieve three interdependent objectives related to developing NDT techniques with piezoceramic-based transducers: monitoring of very early-age concrete hydration process, detection, and monitoring of cracking in concrete members of different complexity under loading. The concept of piezoceramic-based Smart Aggregate (SA) transducers is central to this research. Embedded SA transducers with an active sensing method have shown great potential for characterisation of construction materials such as concrete and concrete-steel composites. Based on the developed SA based approaches, an active sensing approach with appropriate arrangement of SAs in and on concrete members, and analysis of the received signal using the power spectral density, total received power and damage indexes is developed and applied in this thesis. To confirm its applicability for characterisation of very early-age concrete, a systematic investigation is performed into concrete specimens with different values of water-to-cement ratio due to slightly different initial water amounts, and different separation distances between the embedded SAs. For the detection and monitoring of cracking in concrete members under loading the mounted SA based approach is proposed and applied. It is shown that NDT systems, based on this approach, provide detection and monitoring of cracking in a variety of concrete members under loading, including relatively simple concrete beams and reinforced concrete beams under bending, and reinforced concrete slab as a part of a complex composite member under cyclic loading. Comparisons are provided between the proposed system and conventional load cell and strain gauge systems with each tested member
    • 

    corecore