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Abstract—We describe a high-accuracy inspection system
designed to automatically detect cracks in “as-cast” steel slabs.
Real-time slab inspection requires instrumentation capable of
withstanding high temperatures above the steel surface as well
as coping with the dirty and dusty environment present in
a steel mill. Crack detection is also challenging due to the
presence of oxidation scale on the slab surface. A bespoke laser
triangulation system has been developed, providing images at
250 fps with a calibrated surface resolution of 97 µm from a
1m standoff distance. Cracks are detected using a combination
of morphological detection and SVM classifier. Results are
reported from laboratory testing and from extended trials at
a production steel mill.

Keywords-laser triangulation, challenging environment, 3D
reconstruction, crack detection;

I. INTRODUCTION

Continuous casting accounted for an estimate of over 96%
of crude steel production worldwide in 2014 and over 98%
of UK steel production1. In comparison to ingot casting,
where molten steel is poured into a stationary mould, con-
tinuous casting produces sections of metal, typically slabs
or billets, with indeterminate length. The resulting lengths
of metal may then be processed into a variety of derivative
products such as plates, construction beams, rail sections or
tubes.

Due to the wide variety of thermal and mechanical stresses
involved in continuous casting, there is a risk of cracking
and other defects at almost every stage in the process [1].
If defects are found in a slab, the defective surface is
removed in a process called scarfing. Manual inspection
of each individual slab is labour intensive, offline and
efficient manual detection requires experienced operators.
The alternative, scarfing every slab as a precaution provides
a firmer guarantee on product consistency, but is resource
intensive and wasteful as most slabs are defect-free. Even
scarfing does not guarantee defect-free steel as there may
be control issues with the scarfing equipment [2]. Ideally, a
defect detection system should be able to identify problems
during the casting process before the steel has fully cooled.

1World Steel Association Steel Statistical Yearbook 2015, aggregate of
65 countries comprising >99% of worldwide steel production.

Figure 1. Major defect types found on “as-cast” semi-processed steel slab.

The TATA Scunthorpe plant sought a reduction in waste of
31,000 metric tons (t) per annum (1% of annual plant yield,
2012) . Considering total TATA liquid steel production in the
UK, (estimated at 8 Mt per annum), a 1% yield improvement
corresponds to 80,000 t per annum, worth £1.77 M assuming
a value of £30/t and also equates to a saving of £4.5 M CO2

(150,000 t CO2).
The Innovate UK High Temperature Process Control

(HTP-C) project investigated the possibility of using laser
triangulation, in combination with high resolution optical
imagery, for automated crack detection in “as-cast” steel.
The developed instrument is capable of mapping the surface
topology of hot moving steel at sub-mm resolution. These
data are then passed to an algorithm that combines low level
image processing with machine learning to detect cracks.

A. Slab defects

Figure 1, adapted from [1], shows a range of defects that
can occur in continuously cast steel.

This project only considered surface defects as deep inte-
rior cracks are impossible to detect using visible wavelength
light. Defects can range in size from sub-mm pinholes
to mid-face cracks that may be several millimetres wide.
Due to the presence of oxide scale on the steel surface
[3], many of these defects are extremely difficult to detect
in optical imagery alone. In as little as 30 seconds after
exposure to oxygen-rich air, scale can form complex 3D
structures on the slab surface such as blisters [4]. These
structures do not necessarily indicate defective steel and



Figure 2. Continuously cast steel slab, imaged using the HTP-C instru-
ment. The red box highlights scale blisters forming on the side of the slab.
The laser stripe is visible in the left half of the image.

detection systems should be able to differentiate between
scale features and slab defects [5]. Figure 2 shows a top-
down view of a continuously cast steel slab, captured using
the HTP-C instrument. The presence of scale is clearly
visible as discolouration and 3D scale structures are visible
on the side of the slab, such as the region marked by the
red box.

B. Related work

General process inspection using both laser triangulation
and optical imagery is well established [6], [7] and many
COTS profiling systems are available. See, for example,
products by Micro Epsilon2, MTI Instruments3 and LMI
Technologies4. However most off-the-shelf 2D triangulation
systems are not suitable for harsh environments.

As cracks are surface discontinuities, edge detectors are
a natural choice for segmentation in images. Inspection
systems for cast steel defect detection have been reported
several times in the literature using morphological operations
[8], [9], Wavelet [10] or Gabor filtering [11]. Both edge
detection and morphological operations are fast and simple
to implement on modern hardware. The main drawback to
this approach is the lack of contextual information which is
critical when analysing scale-contaminated surfaces.

Machine learning offers an alternative solution to this
problem by allowing positive or negative feature classifica-
tion. Martin et al. [12] proposed combining low-level edge
detectors with a variety of machine learning techniques,
from which logistical regression was found to have the
best trade-off between speed, space and accuracy. Machine
learning usually requires extensive training data which has
historically been an issue for slab analysis [8], as there is
little publicly available imagery to train on. Pernkopf [5],

2http://www.micro-epsilon.co.uk/laser-scanner/index.html
3http://www.mtiinstruments.com/products/lasertriangulation.aspx
4http://lmi3d.com/products
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Figure 3. Typical horizontal-output continuous caster (not to scale). The
HTP-C system was installed at the exit of the straightening rollers.

Table I
HTP-C INSTRUMENT GOAL REQUIREMENTS. THRESHOLD

REQUIREMENTS SHOWN IN PARENTHESES.

Parameter Specification
Range measurement accuracy (mm) 0.1 (0.3)
Depth of field (mm) 25 (15)
Capture speed (fps) 250 (150)
Spatial resolution at steel surface (mm) 0.1 x 0.1 (0.5 x 0.5)
Size of features to be determined (mm) 0.1 x 5 (0.5 x 10)
Field of view on steel 300 (100)
Laser Eye safe

[13] suggested using laser triangulation to monitor (cold)
milled steel blocks, avoiding intensity imaging entirely.
After acquiring profile data, slab sections were classified
using a Bayesian network with an accuracy of 98%.

Landstrom and Thurley [9] applied morphological op-
erations (off-line) to 3D profile data acquired using laser
triangulation. The segmented cracks were then classified
using logistical regression. They reported segmentation ac-
curacy of over 80%. Typical cracks in their data were several
millimetres wide and up to 60 mm long.

Alvarez et al. [14] presented a system that has been used
on-line at the ArcelorMittal plant in Avilas, Spain over a
period of two years. The system used conoscopic holography
to reliably detect defects over 100 mm in length, but a
detailed description of the classification process was not
provided.

II. MEASUREMENT SYSTEM

A. System requirements

System requirements, agreed with TATA, are shown in
Table I. It was assumed that the casting speed was 0.9 m/min
which, along with the resolution requirements, implies a
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Figure 4. HTP-C system geometry. The system is angled such that the
path length from the surface to each camera is the same.

minimum frame rate of 150Hz (0.9 m / 0.1 mm / 60 s).
However at higher casting speeds, up to 1.5 m/min, a higher
frame rate of 250 Hz is necessary.

The location for the instrument was chosen to be at the
straightener exit as shown in Figure 3. This site allowed
access to the instrument during plant downtimes and allowed
imaging of the steel with as little scale as possible. Initial
thermal measurements, suggested an air temperature in ex-
cess of 200 ◦C at a height of 1m above the slab surface.

B. Mechanical and optical design

The HTP-C system consisted of a blue/violet (405 nm)
laser stripe projector and associated triangulation camera.
The system geometry is shown in Figure 4. Unlike a
conventional laser triangulation system, HTP-C included
an additional overhead (nadir) camera positioned at the
laser beam exit, approximately coaxial with the beam. The
triangulation camera is positioned along a baseline and
angled towards the laser line. The nadir camera recorded
full-resolution images with minimal perspective distortion.

The cameras employed were IDS (Obersulm, Germany)5

UI-3370CPs mated with Schneider-Kreuznach (Rhineland-
Palatinate, Germany)6 Unifoc Modular lenses with an effec-
tive focal length of 80mm. The cameras have a nominal reso-
lution of 2048×2048 px. They were operated in a windowed
mode to allow higher frame rates whilst sacrificing vertical
field of view. The cameras were temporally synchronised
using their onboard triggering capability.

The projected pixel size and depth resolution (px, py,∆Z)
is given by:

(px, py,∆Z) ≈ (∆P,
∆P

tanα
,

∆P

sinα
). (1)

Where ∆P is the size of one pixel projected onto the
steel. The chosen triangulation angle, α = 45◦, gave a depth
resolution of 67 µm and a projected pixel size of 97 µm in
both horizontal axes.

5https://en.ids-imaging.com/
6http://www.schneiderkreuznach.com

Figure 5. HTP-C cooled housing with apertures for two cameras and
a laser stripe projector. The exterior shows extensive marking after being
suspended above the caster for a period of several weeks.

The laser line generator was an Osela (Lachine, Canada)7

SL-405-35-S-C-15.0 operating at 405 nm with an output
power of 35 mW and a fan angle of 10 ◦C. This generator
has a working range of 920-1000 mm. Over the required
depth of field, the laser line was expected to be less than
150 µm wide on the steel.

Slabs exiting the straightener emit large amounts of in-
frared and near-infrared light. Dichroic blue filters manu-
factured by UQG Optics (Cambridge, UK) were fitted in
front of the lenses. The filter cut off was at 480 nm.

Due to the harsh environment, a custom cooled enclosure
(Figure 5) was used to house the optical components. The
housing was a modified furnace probe, commissioned from
SVA Industrie Fernseh GmbH (Hilden, Germany)8, and
featured a water-cooled outer sheath and internal air purging
to prevent dust build-up. Three apertures were placed into
the probe for the laser line generator and two cameras.

A rugged, fanless PC supplied by Logic Supply (Rijswijk,
Netherlands)9 was used to control the cameras and run the
crack detection software. The CPU was an Intel i7-3610QE
with 4 physical cores running at 3.3GHz.

C. Robust laser line detection

The problem of laser stripe detection is well known and
several algorithm choices are available [15]. A simple centre-
of-mass peak detection method was chosen. Given a list of
intensities and considering them in turn, if the first pixel
number above the threshold is at x1 and the last pixel above
the threshold is at x2 then the peak location, xp is simply
xp = (x1 + x2)/2.

Most stripe detection algorithms assume that the signal
is not saturated and rely on a number of known-intensity
points from which the peak centre is determined. This is
not a valid assumption when imaging hot steel. Exposure

7http://www.osela.com
8http://www.furnace-monitoring.tv/
9http://www.logicsupply.com/
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Figure 6. HTP-C data product example (a) Raw ”linescan” image. (b) Uncalibrated laser peak location (c) Laser backscatter intensity. The frame contains
a large longitudinal crack.

times were chosen to minimise laser overexposure, typically
below 2 ms, but saturation was still observed during casts. In
practice this method was capable of accurately determining
the laser line position even if saturation occured.

The threshold accuracy for spatial resolution was approx-
imately 5 pixels on the steel surface. The width of the laser
beam on the steel surface tended to be between 5-10 px. The
algorithm was found to have an error of 1-2 px compared
to a reference Gaussian fit. Storing sub-pixel peak locations
was not performed due to storage considerations.

D. Acquisition Software

The minimum requirement of operation at 150 fps implied
that each frame must be acquired and processed within 6.7
ms, the goal requirement of 250 fps gave a frame processing
time of 4 ms. Operating the cameras in a windowed mode,
with reduced vertical resolution of 256 px, allowed reliable
image capture at up to 450 fps.

The acquisition software was developed in C++ using a
multithreaded, pipeline approach. Processing times of < 3
ms per frame were achieved.

E. Data Products

Four data products were stored for each captured image:
an internet synchronised UNIX timestamp, a row of raw
image data, the laser line location for every column in the
image and the height of the detected laser peak (backscatter
intensity). The data for each frame was added to a stack.
After a number of frames, the stack was stored to disk.

Examples of each stack of data products are shown in
Figure 6. The steel image shown is a partial top surface view
of a 300 mm wide mini-slab with a large centreline crack
clearly present. The data were acquired at the Materials
Processing Institute (MPI) on a 7 tonne pilot caster, primarily
used for research.

The raw image data, Figure 6a, is formed from the first
row in each image stacked over time to produce an image
like that of a linescan camera. In this image, the crack

appears brighter than the slab surface due to the exposed,
hotter, slab interior. Figure 6b shows the laser line location,
a 2D representation of the topology of the surface. Note that
there are a wide variety of surface features visible in the raw
image which might be mistaken for defects. However, these
regions are shown by the laser to be homogenous and mostly
flat. Where the laser line falls on the crack, recovery of the
peak is challenging and this is observed as missing data
in the crack region. Finally the backscatter intensity image,
Figure 6c provides insight into the reflectivity of the surface
and allows monitoring for saturation of the laser line.

F. Crack detection algorithm

The crack detection algorithm was developed at UCL’s
Mullard Space Science Laboratory (MSSL). The algorithm
combines texture feature based detection and supervised
machine learning. Morphological and adaptive (Otsu) thresh-
olding [16] were used in the first stage, texture feature based
detection, and Support Vector Machine (SVM) was used as
the classifier [17].

In the first stage, morphological edge detection and Otsu’s
adaptive thresholding combined with median and speckle
filtering were used to detect potential cracks, labelled L0
(level 0) results. This first stage detection aimed to capture
100% of defects, regardless of false detection. Meanwhile,
all potential cracks marked in the first stage were extracted
and stored as a crack training database for supervised clas-
sification. In the second stage, an SVM classifier used the
L0 results and user-selected training data (positive/negative
samples) to output a refined list of cracks, labelled L1
(level 1). A flowchart of the processing pipeline is shown in
Figure 7.

The crack detection process is per-pixel, so the output
from the algorithm can be laid on top of the input imagery
to be displayed to the user. The time to process a single
2048 × 2048 px data stack was 1.5 seconds. As this is less
time than it takes to stack the data (4 seconds at 250 fps),
the processing is effectively real-time.



Figure 7. HTP-C crack detection algorithm flowchart

Figure 8. HTP-C calibration

G. Calibration

In order to produce a metric model of the steel surface,
calibration was performed to convert line location in pixels
to depth. The calibration was performed using a 3D stepped
structure, printed using a Formlabs (Somerville, MA, USA)
10 Form1+ stereo-lithography printer with a print resolution
of 50 µm. The height between each step was 5mm.

The target was placed at the focus of the laser line and
positioned so that 5 steps, corresponding to 25mm of depth
variation, were visible. A stack of 1280 frames of data was
captured. The mean laser line location for each step was
used as the calibration value. The data were fitted using
a 2nd order polynomial. The intercept of the curve was
not important as the point of zero-depth can be chosen
arbitrarily. A plot of the calibration curve is shown in
Figure 8.

The fit equation was P = 0.14Z2 − 13.29Z + 229.1.
Taking the derivative with respect to Z and setting Z = 1 m
gave a value of ∆Z/∆P = 77 µm/px. Considering the peak

10http://formlabs.com/

Figure 9. Defective steel samples placed on a carriage for imaging with
the HTP-C instrument.

detection error of 1-2 px, the depth accuracy was therefore
estimated to be between 77-144 µm/px, within the threshold
specification.

III. SOFTWARE VALIDATION

A series of initial trials were performed at MSSL to
evaluate the acquisition and crack detection software. Three
samples of defective steel were provided by TATA Steel,
shown in Figure 9.

The samples contained a variety of defects including
longitudinal and semi-spider cracks. The instrument was
positioned similarly to the expected configuration in the
production steel plant. The samples were moved in a linear
motion under the HTP-C instrument at a speed of 15 mm/s.

Figure 10 shows L0 and L1 crack detection results applied
to the test images. Cracks are labelled as red pixels.

Although the smaller defects in the samples were not
detected, the larger cracks were. The reason for this is likely
due to under-exposure in the triangulation camera imagery.
The crack detection algorithm relies on there being a large
number of positive crack samples to train on. As more on-
site trials are carried out, the training database will become
more comprehensive and improve the true detection rate.



(a) (b)

Figure 10. HTP-C crack detection algorithm applied to test imagery. (a) L0 detection results (b) L1 (refined) detection results. The vertical artefacts at
the top of the image are due to acquisition while the slabs were stationary. Detected cracks are labelled as red pixels.

Figure 11. HTP-C system installed on a slab caster at the Concast facility
at TATA Steel, Scunthorpe. (a) Nadir camera and laser. (b) Triangulation
camera. Casting direction is from right to left as shown.

IV. FIELD TRIALS

The HTP-C system was installed at the continuous casting
(Concast) facility at TATA Steel, Scunthorpe, UK. The in-
strument was attached to a water-cooled metal frame which
was spot-welded to a site near the first set of rollers. The
acquisition PC was situated nearby behind a heat-resistant
screen. Data and power cables were housed in an air-purged
insulated sheath. Figure 11 shows the system in operation.

This image highlights a number of features of interest.
First, there is a strong thermal gradient near the edge of the
slab due to the increased surface area where heat is radiated
away. Secondly, there is significant brightness variation on
the upper surface of the slab due to scale. On the sides of
the slab, there are several patches of scale which are peeling
away or blistering as the steel cools.

The system was focused at a distance of 1 m, coincident
with the expected surface height of the slabs. The depth of
focus is in shown in Figure 12. The backscatter intensity
image shows the leading edge of a new slab. The object
at the top of the image is the dummy bar, a piece of steel
used to draw the new slab down from the mould. Below the

Figure 12. Laser backscatter image of the leading edge of a slab, acquired
at the start of a cast. The dummy bar is visible at the top of the image with
the slab below.

surface, the substructure of the slab is clearly visible.
Three widths of slabs were produced with this caster:

1610 mm, 1830 mm and 1970 mm. Given that all three are
routinely produced and the instrument was to be installed
for a minimum of 6 weeks, with no possibility of removal,
the instrument was adjusted such that useful data might be
acquired in all three cases. In principle, the instrument could
have been positioned to view the centre of the slab regardless
of width. It was decided that viewing the edge of the slab
would yield more useful data, since there was a wider variety
of defects that might be visible. Figure 13 shows the fields
of view for each slab width. The images were captured using
the same exposure time of 1 ms. When imaging 1970 mm
slabs, the thermal gradient caused the images to saturate
towards the centre of the slab. When imaging the wider
slab widths, the laser module intermittently overheated and
turned off.

A. Results

The instrument acquired data over several casts. Intermit-
tent overheating of the laser module meant that, in some
cases, only partial casts were imaged. Raw images were
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Figure 13. HTP-C instrument field of view for three slab widths at the
Concast facility. (a) 1610 mm (b) 1830 mm (c) 1970 mm. For (a) and (b),
the slab edge is marked with a dashed line.

still captured regardless of the operational status of the laser.
There was no indication of damage to the camera modules
and the system remained in alignment throughout the trial.

The most promising results were from the 1610 mm
width slabs as these did not cause overheating. Data from
the 1830 mm width slabs were also acceptable when the
laser was functioning. Data from the 1970 mm width slabs
suffered from very high background intensities and were
mostly unusable.

In almost all images, scale was visible. The effect on the
data varied. In some cases it was possible to discern the
scale topology. Figure 14 shows an example of this.

Close to the slab edge (left of image) the scale topology
was captured, visible as intensity variations in the depth im-
age. Towards the slab centre (right of image), the laser line is
either not detectable by the system or is spuriously detected.
This is a similar response to that expected of a crack, i.e.
the laser line not being visible, so any classification result
should also consider the shape of the feature.

Potential cracks were identified both by software and
through manual analysis of the data. Figure 15 shows one
example found via manual search (highlighted). There are
prominent scale bubbles visible near the slab edge. Each
bubble appears as if it is illuminated from one side. This
effect is due to specular reflection of the laser beam rather
than actual shadowing. The depth image clarifies that these
features are raised compared to the surrounding surface, and
hence confirmed as scale. However, further processing with
the crack detection algorithm did not yield positive results. A
typical example of L0 potential cracks detected in a different
data stack is shown in Figure 15c.

The L0 cracks are found in locations with strong edges,
mostly around the edge of scale. The SVM classifier is able
to correctly filter these as false positives.

(a)

(b)

Figure 14. Effects of scale on (a) laser backscatter and (b) corresponding
depth image.

The L0 results demonstrate the difficulty of detecting
cracks directly using image edges only. The data returned
from the instrument was hard for a naive algorithm to
interpret due to the presence of scale. In the backscatter
imagery, scale blistering appears as regions with strong
intensity gradients. The detected edges caused scale to be
mis-identified as potential cracks as we intended to further
classify features in the L1 stage. In the depth data, par-
ticularly towards the middle of the slab, scale prevented
detection of the laser line. In wide slabs, this region was
often overexposed with the problem exacerbated by a strong
thermal gradient across the slab. No cracks were discovered
after the classification stage (L1).

An important cue for accurate defect detection is the rel-
ative depth of surface features. Scale, by definition, forms a
layer above the surface of the steel and effects like blistering
and bubbling also form above the surface. Depth information
is therefore useful for robust filtering of potential defects.

V. CONCLUSIONS

This project demonstrated an inspection system capable
of profiling and analysing hot “as-cast” steel in real time.
The software recovers sub-mm surface topology, detects and
verifies cracks using morphological operations and SVM
classification. The crack detection algorithm was verified
on ground truth samples provided by TATA steel. The
instrument was installed at a production steel mill and
captured data over several casts.

In real-world testing, no cracks were found after the
second stage of filtering (L0 to L1). The lack of L1 cracks
detected is not necessarily due to poor performance of the
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Figure 15. Manually identified potential crack (a) laser backscatter image (b) depth image. (c) Potential L0 cracks located using the crack detection
algorithm before being filtered with the SVM classifier.

detection algorithm. It was only possible to acquire data over
a sshort period of time and there was no indication from
TATA Steel that any defective steel had been cast during
testing.

Future work will aim to improve the quantity and quality
of training data, as this is necessary for reliable crack
detection. This may involve extensive manual ground truth
generation.
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