52 research outputs found

    Morph-to-word transduction for accurate and efficient automatic speech recognition and keyword search

    Get PDF
    © 2017 IEEE. Word units are a popular choice in statistical language modelling. For inflective and agglutinative languages this choice may result in a high out of vocabulary rate. Subword units, such as morphs, provide an interesting alternative to words. These units can be derived in an unsupervised fashion and empirically show lower out of vocabulary rates. This paper proposes a morph-to-word transduction to convert morph sequences into word sequences. This enables powerful word language models to be applied. In addition, it is expected that techniques such as pruning, confusion network decoding, keyword search and many others may benefit from word rather than morph level decision making. However, word or morph systems alone may not achieve optimal performance in tasks such as keyword search so a combination is typically employed. This paper proposes a single index approach that enables word, morph and phone searches to be performed over a single morph index. Experiments are conducted on IARPA Babel program languages including the surprise languages of the OpenKWS 2015 and 2016 competitions

    ALBAYZIN 2018 spoken term detection evaluation: a multi-domain international evaluation in Spanish

    Get PDF
    [Abstract] Search on speech (SoS) is a challenging area due to the huge amount of information stored in audio and video repositories. Spoken term detection (STD) is an SoS-related task aiming to retrieve data from a speech repository given a textual representation of a search term (which can include one or more words). This paper presents a multi-domain internationally open evaluation for STD in Spanish. The evaluation has been designed carefully so that several analyses of the main results can be carried out. The evaluation task aims at retrieving the speech files that contain the terms, providing their start and end times, and a score that reflects the confidence given to the detection. Three different Spanish speech databases that encompass different domains have been employed in the evaluation: the MAVIR database, which comprises a set of talks from workshops; the RTVE database, which includes broadcast news programs; and the COREMAH database, which contains 2-people spontaneous speech conversations about different topics. We present the evaluation itself, the three databases, the evaluation metric, the systems submitted to the evaluation, the results, and detailed post-evaluation analyses based on some term properties (within-vocabulary/out-of-vocabulary terms, single-word/multi-word terms, and native/foreign terms). Fusion results of the primary systems submitted to the evaluation are also presented. Three different research groups took part in the evaluation, and 11 different systems were submitted. The obtained results suggest that the STD task is still in progress and performance is highly sensitive to changes in the data domain.Ministerio de Economía y Competitividad; TIN2015-64282-R,Ministerio de Economía y Competitividad; RTI2018-093336-B-C22Ministerio de Economía y Competitividad; TEC2015-65345-PXunta de Galicia; ED431B 2016/035Xunta de Galicia; GPC ED431B 2019/003Xunta de Galicia; GRC 2014/024Xunta de Galicia; ED431G/01Xunta de Galicia; ED431G/04Agrupación estratéxica consolidada; GIU16/68Ministerio de Economía y Competitividad; TEC2015-68172-C2-1-

    End-to-end named entity recognition for spoken Finnish

    Get PDF
    Named entity recognition is a natural language processing task in which the system tries to find named entities and classify them in predefined categories. The categories can vary, depending on the domain in which they are going to be used but some of the most common include: person, location, organization, date and product. Named entity recognition is an integral part of other large natural language processing tasks, such as information retrieval, text summarization, machine translation, and question answering. Doing named entity recognition is a difficult task due to the lack of annotated data for certain languages or domains. Named entity ambiguity is another challenging aspect that arises when doing named entity recognition. Often times, a word can represent a person, organization, product, or any other category, depending on the context it appears in. Spoken data, which can be the output of a speech recognition system, imposes additional challenges to the named entity recognition system. Named entities are often capitalized and the system learns to rely on capitalization in order to detect the entities, which is neglected in the speech recognition output. The standard way of doing named entity recognition from speech involves a pipeline approach of two systems. First, a speech recognition system transcribes the speech and generates the transcripts, after which a named entity recognition system annotates the transcripts with the named entities. Since the speech recognition system is not perfect and makes errors, those errors are propagated to the named entity recognition system, which is hard to recover from. In this thesis, we present two approaches of doing named entity recognition from Finnish speech in an end-to-and manner, where one system generates the transcripts and the annotations. We will explore the strengths and weaknesses of both approaches and see how they compare to the standard pipeline approach

    Towards multi-domain speech understanding with flexible and dynamic vocabulary

    Get PDF
    Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2001.Includes bibliographical references (p. 201-208).In developing telephone-based conversational systems, we foresee future systems capable of supporting multiple domains and flexible vocabulary. Users can pursue several topics of interest within a single telephone call, and the system is able to switch transparently among domains within a single dialog. This system is able to detect the presence of any out-of-vocabulary (OOV) words, and automatically hypothesizes each of their pronunciation, spelling and meaning. These can be confirmed with the user and the new words are subsequently incorporated into the recognizer lexicon for future use. This thesis will describe our work towards realizing such a vision, using a multi-stage architecture. Our work is focused on organizing the application of linguistic constraints in order to accommodate multiple domain topics and dynamic vocabulary at the spoken input. The philosophy is to exclusively apply below word-level linguistic knowledge at the initial stage. Such knowledge is domain-independent and general to all of the English language. Hence, this is broad enough to support any unknown words that may appear at the input, as well as input from several topic domains. At the same time, the initial pass narrows the search space for the next stage, where domain-specific knowledge that resides at the word-level or above is applied. In the second stage, we envision several parallel recognizers, each with higher order language models tailored specifically to its domain. A final decision algorithm selects a final hypothesis from the set of parallel recognizers.(cont.) Part of our contribution is the development of a novel first stage which attempts to maximize linguistic constraints, using only below word-level information. The goals are to prevent sequences of unknown words from being pruned away prematurely while maintaining performance on in-vocabulary items, as well as reducing the search space for later stages. Our solution coordinates the application of various subword level knowledge sources. The recognizer lexicon is implemented with an inventory of linguistically motivated units called morphs, which are syllables augmented with spelling and word position. This first stage is designed to output a phonetic network so that we are not committed to the initial hypotheses. This adds robustness, as later stages can propose words directly from phones. To maximize performance on the first stage, much of our focus has centered on the integration of a set of hierarchical sublexical models into this first pass. To do this, we utilize the ANGIE framework which supports a trainable context-free grammar, and is designed to acquire subword-level and phonological information statistically. Its models can generalize knowledge about word structure, learned from in-vocabulary data, to previously unseen words. We explore methods for collapsing the ANGIE models into a finite-state transducer (FST) representation which enables these complex models to be efficiently integrated into recognition. The ANGIE-FST needs to encapsulate the hierarchical knowledge of ANGIE and replicate ANGIE's ability to support previously unobserved phonetic sequences ...by Grace Chung.Ph.D

    Out-of-vocabulary spoken term detection

    Get PDF
    Spoken term detection (STD) is a fundamental task for multimedia information retrieval. A major challenge faced by an STD system is the serious performance reduction when detecting out-of-vocabulary (OOV) terms. The difficulties arise not only from the absence of pronunciations for such terms in the system dictionaries, but from intrinsic uncertainty in pronunciations, significant diversity in term properties and a high degree of weakness in acoustic and language modelling. To tackle the OOV issue, we first applied the joint-multigram model to predict pronunciations for OOV terms in a stochastic way. Based on this, we propose a stochastic pronunciation model that considers all possible pronunciations for OOV terms so that the high pronunciation uncertainty is compensated for. Furthermore, to deal with the diversity in term properties, we propose a termdependent discriminative decision strategy, which employs discriminative models to integrate multiple informative factors and confidence measures into a classification probability, which gives rise to minimum decision cost. In addition, to address the weakness in acoustic and language modelling, we propose a direct posterior confidence measure which replaces the generative models with a discriminative model, such as a multi-layer perceptron (MLP), to obtain a robust confidence for OOV term detection. With these novel techniques, the STD performance on OOV terms was improved substantially and significantly in our experiments set on meeting speech data

    Speech Recognition

    Get PDF
    Chapters in the first part of the book cover all the essential speech processing techniques for building robust, automatic speech recognition systems: the representation for speech signals and the methods for speech-features extraction, acoustic and language modeling, efficient algorithms for searching the hypothesis space, and multimodal approaches to speech recognition. The last part of the book is devoted to other speech processing applications that can use the information from automatic speech recognition for speaker identification and tracking, for prosody modeling in emotion-detection systems and in other speech processing applications that are able to operate in real-world environments, like mobile communication services and smart homes

    音声翻訳における文解析技法について

    Get PDF
    本文データは平成22年度国立国会図書館の学位論文(博士)のデジタル化実施により作成された画像ファイルを基にpdf変換したものである京都大学0048新制・論文博士博士(工学)乙第8652号論工博第2893号新制||工||968(附属図書館)UT51-94-R411(主査)教授 長尾 真, 教授 堂下 修司, 教授 池田 克夫学位規則第4条第2項該当Doctor of EngineeringKyoto UniversityDFA
    corecore