
Towards Multi-Domain Speech Understanding with Flexible

and Dynamic Vocabulary

by

Grace Chung

S.M., Massachusetts Institute of Technology (1997)
B. Eng., University of New South Wales (1995)
B. Sc., University of New South Wales (1993)

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2001

@ Massachusetts Institute of Technology 2001. All rights reserved.

Author ...

Certified by..A

Departrlent of Elet*rical Engineering and Computer Science
June, 2001

.....................
Stephanie Seneff

Principal Research Scientist
Thesis Supervisor

)

Accepted by ..................

Chairman, Departmental Committee on

MASSACHUSETTS INSTITMl
OF TECHNOLOGY

JUL 1 20

LIBRARIES
BARKER

. . . . . . . . .. . ..

Arthur Smith
Graduate Students

i/) j(0



2



Towards Multi-Domain Speech Understanding with Flexible and

Dynamic Vocabulary

by

Grace Chung

Submitted to the Department of Electrical Engineering and Computer Science

on June, 2001, in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Abstract

In developing telephone-based conversational systems, we foresee future systems capable

of supporting multiple domains and flexible vocabulary. Users can pursue several topics

of interest within a single telephone call, and the system is able to switch transparently

among domains within a single dialog. This system is able to detect the presence of any

out-of-vocabulary (OOV) words, and automatically hypothesizes each of their pronuncia-

tion, spelling and meaning. These can be confirmed with the user and the new words are

subsequently incorporated into the recognizer lexicon for future use.

This thesis will describe our work towards realizing such a vision, using a multi-stage

architecture. Our work is focused on organizing the application of linguistic constraints in

order to accommodate multiple domain topics and dynamic vocabulary at the spoken input.

The philosophy is to exclusively apply below word-level linguistic knowledge at the initial

stage. Such knowledge is domain-independent and general to all of the English language.

Hence, this is broad enough to support any unknown words that may appear at the input,

as well as input from several topic domains. At the same time, the initial pass narrows

the search space for the next stage, where domain-specific knowledge that resides at the

word-level or above is applied. In the second stage, we envision several parallel recognizers,

each with higher order language models tailored specifically to its domain. A final decision

algorithm selects a final hypothesis from the set of parallel recognizers.

Part of our contribution is the development of a novel first stage which attempts to

maximize linguistic constraints, using only below word-level information. The goals are

to prevent sequences of unknown words from being pruned away prematurely while main-

taining performance on in-vocabulary items, as well as reducing the search space for later

stages. Our solution coordinates the application of various subword level knowledge sources.

The recognizer lexicon is implemented with an inventory of linguistically motivated units

called morphs, which are syllables augmented with spelling and word position. This first

stage is designed to output a phonetic network so that we are not committed to the initial

hypotheses. This adds robustness, as later stages can propose words directly from phones.

To maximize performance on the first stage, much of our focus has centered on the

integration of a set of hierarchical sublexical models into this first pass. To do this, we utilize

the ANGIE framework which supports a trainable context-free grammar, and is designed to

acquire subword-level and phonological information statistically. Its models can generalize

knowledge about word structure, learned from in-vocabulary data, to previously unseen

words. We explore methods for collapsing the ANGIE models into a finite-state transducer

(FST) representation which enables these complex models to be efficiently integrated into
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recognition. The ANGIE-FST needs to encapsulate the hierarchical knowledge of ANGIE and

replicate ANGIE's ability to support previously unobserved phonetic sequences. The result

is the column bigram ANGIE-FST which captures ANGIE probability parse scores on the FST
arcs, and treats a parse tree as a sequence of vertical columns.

During the course of our work, we conceived of a new phoneme-level inventory of symbols

called letter-phonemes which codify both spelling and pronunciation. These are a set of

grapheme units annotated with pronunciations, as well as linguistic properties such as stress.

They are embedded in the ANGIE parse tree at the pre-terminal layer, so that the ANGIE

probability models encode spelling along with other sublexical phenomena. We have found

that augmenting with letter-phonemes leads to a reduction in perplexity. Additionally, a

hypothesized spelling for an unknown word can be retrieved directly from the parse tree

during recognition simply by extracting the letter-phonemes, proposed at the pre-terminal

layer.

The final implementation of stage one comprises an FST that incorporates ANGIE mod-

els with grapheme information, together with constraints from a lexicon of automatically

derived morph and sub-morph units. These new units are optimized from an iterative pro-

cedure employing the column bigram FST and letter-phoneme units. They are altered in

terms of spelling and syllabification from the original morph lexicon. The result is a more

compact final FST stemming from a smaller ANGIE grammar that has improved probability

likelihoods.
Also in our thesis work, we designed a second stage to search over a phonetic network

employing the original ANGIE parser to process the phonetic sequences and identify possible

unknown words. The control strategy couples ANGIE parsing with word-level models, and

probabilistic natural language (NL) models are an option. In the later part of our work,

we experiment with a third stage which shifts the application of NL to the final stage on a

small word network produced during the second pass.
A final set of recognition experiments is performed on sentences containing unknown

city names, from the JUPITER weather information domain. We evaluate on recognition

and understanding compared with a baseline system with no OOV handling capability.

Using a three-stage system, we produced up to 67% relative improvement in understanding

performance. We also demonstrate a preliminary ability to instantaneously extract spelling

hypotheses of the unknown word at recognition time.

Thesis Supervisor: Stephanie Seneff
Title: Principal Research Scientist
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Chapter 1

Background

1.1 Introduction

In recent years, large numbers of spoken dialog systems1 are being developed around the

world, both as research prototypes and commercial applications [107, 26]. These are increas-

ingly employed as human-computer interfaces used for retrieving information, conducting

transactions and performing various interactive problem-solving tasks. In most cases, sys-

tems function within highly restricted domains. Typically, a user interacts with a system in

order to seek some information from local databases or from the Web. Some examples are

flight scheduling [111], air travel information [85], train timetable information [22], weather

information [110] and direction finding [27]. The extent to which a system takes an active

role during conversation can vary. While some are machine-directed, that is, very restric-

tive, other dialog systems use a mixed-initiative approach, permitting greater flexibility for

a user to specify demands for a task.

The emergence of the above applications can be directly attributed to advancement in

speech recognition and language understanding technology, and their integration in recent

years. Meanwhile, there remain many challenging research problems in order to meet with

increasing demands of these applications. In the future, spoken dialog systems will need to

access information from a broad variety of sources and services, such as on-line databases,

and to operate on not one but across several restricted domains. A system must then allow

users to switch automatically among several domains in a seamless fashion in order for users

'We use the terms spoken dialog system, spoken language system and conversational interface
interchangeably.
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to perform multiple unrelated tasks in a single call. One core problem arising from such a

system is the ability to handle unknown words. In real-world applications, particularly with

mixed-initiative dialog systems, the presence of out-of-vocabulary (OOV) items is inevitable.

Previous research has shown this to be true, even for very large dictionary vocabularies [38].

OOV items may arise from queries that stretch beyond the range of information known to

the system, such as an unknown city name; they may be queries that are entirely out of

scope (e.g. a traffic information query in a weather information domain); or they may simply

occur as artifacts of spontaneous speech such as word fragments and disfluencies. In fact,

it is impossible to anticipate all the potential words, the partial words or even the nature

of queries that could be posed by the many potential users. Moreover, as the information

being accessed is likely to change frequently and unpredictably, the vocabulary on the part

of the system is bound to constantly evolve in response to the dynamic information content.

This would apply for domains that include vast numbers of proper names such as surnames,

restaurant names or place names. Thus, this scenario calls for future systems to routinely

extend vocabularies on-the-fly without the need for a human to explicitly enter the new

words, with their pronunciations, retrain the models and restart the system.

With conventional systems, vocabularies tend to be closed or fixed. When unknown

words emerge at the spoken input, these systems can either reject the utterance altogether

or alternatively, propose at the unknown word an erroneous hypothesis with an acoustically

similar profile. Frequently, one unknown word engenders several subsequent errors so that

the sentence is completely misunderstood. This often happens because the error at the

unknown word perturbs the probability scores from the language model, ultimately favoring

additional errors on surrounding words. Yet the system continues the discourse, unaware of

any errors committed, whereas immediate failure or backtracking would have been a more

appropriate route. The result is user frustration and confusion, eliminating any hope for

error recovery. The user remains unaware that the query resided outside the boundaries of

system knowledge, and the system is unable to inform the user which portion of the query

was out of scope for the topic domain.

A more ideal scenario is an architecture that supports a flexible and dynamically ex-

tensible vocabulary. Here, when an input sentence contains a previously unseen word, the

system detects its presence, provides appropriate feedback, and attempts to infer the word's

meaning, spelling as well as acoustic and phonological properties. After confirming these
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properties with the user, the system then increments its vocabulary with the new word

which can be used at any time during future conversations.

1.2 Conceptual Vision

Conceptually, we envision a telephone-based 2 spoken language interface which is capable

of supporting multiple domains simultaneously, while a dynamic and flexible vocabulary

resides within each domain. This enables users to pursue several topics of interest within a

single telephone call, and, in response, the system switches transparently from one domain

to another without explicit notification.

A vocabulary that is flexible and dynamic would mean that the system can cope with

unknown words both at the user voice input as well as from the information source. An

ideal scenario, for example, could involve a user query containing a previously unseen word.

Here, we assume that, for this domain, it is not possible to anticipate and include all words

that can be spoken into the speech recognizer. An example would be a general directory

assistance application where the number of place names and surnames that could be queried

is very large and constantly changes over time, while directories themselves may not be up

to date. The system is able to detect the presence of the OOV and, following this, uses

acoustic, phonological and linguistic knowledge to hypothesize a set of phonemic sequences

for pronunciation and a set of letter sequences for plausible spellings. Additionally, from

the dialog context, the system deduces the semantic class, such as a city name. The system

then proceeds to browse its information databases for the closest match to its hypotheses

and to respond to the original user query. Furthermore, in the ideal scenario, the system

may choose to verify with the user on the proposed pronunciation and spelling. Having suc-

cessfully arrived at a representation for the new word, the system immediately incorporates

it into the lexicon.

This scenario can have several variants. For example, the system can learn new words

via a spell-mode where the user enters the spelling and pronunciation of the word verbally

at the input. Alternatively, as the system retrieves information from a database in response

2 Our work is not confined solely to telephone-based systems, and the proposed architecture can be adopted
for all spoken dialog systems. However, effective dynamic vocabulary acquisition plays a more important
role in a spoken language interface environment that is impoverished of alternative modalities such as a
keyboard input and visual display.
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to a user query, such as a list of cities in California, the system may notice certain cities

absent from its own lexicon and decide to add those incrementally. It does so with the

knowledge that all new words are city names, and specifically, those located in California.

This information is noted for use in higher order language models, including natural lan-

guage (NL) models. Because built-in flexibility in the system obviates the need to retrain

lexical and language models, large numbers of words can be easily added in this way.

1.3 Thesis Goals

This thesis addresses the design issues surrounding the realization of our conceptual vision.

One major challenge lies in conceiving a modeling framework where, upon encountering

unknown words, the system detects them as such and appropriately deduces their linguistic

properties. These functionalities must be performed without compromising accuracy on

understanding in-vocabulary or in-domain data. Our main point of interest is the organiza-

tion of the linguistic model, which needs to offer both flexibility and tight constraint. The

philosophy of our strategy centers on the existence of a linguistic hierarchy that spans from

the phone to the discourse level. And, in order to exploit this, we formulate our language

models around these multi-level constraints which we intend to apply in a tightly coupled

manner. But this inevitably causes the size of our search space to balloon and demands us

to manage the search process more intelligently.

In light of these issues, we envision a solution that comprises the following elements.

First of all, the combination of many disparate sources of linguistic knowledge necessitates

the use of a multi-stage paradigm. In particular, we advocate the application of low-level

and domain-independent linguistic constraints as early as possible in order to prune the

search space. That is, the first stage exclusively utilizes low-level knowledge of generic

English3 . Meanwhile, the use of word-level and higher order language models is delayed

until later stages. These later stages will also support multiple domains. This can be done

for instance by using several recognizers in parallel, each with its own set of domain-specific

models. The obvious alternate solution for this is to implement a single monolithic system

that accommodates for all possible sentences that can be spoken, with coverage spanning

3 This thesis will only address a system based on English. It is beyond our scope to evaluate our system

on other languages, although we postulate that all of our methodologies can be viably applied towards other

languages.
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over all the topic domains. It may be possible that a future system can accomplish this.

However, it will have to grapple with an enormous search space and complexity issues

in terms of time and space. When dealing with several possible disjoint conversational

topics, that is the spoken queries are largely unrelated, we suspect that multiple separate

recognizers would provide better constraint, and ultimately afford better performance. We

will elaborate on these concepts in Chapter 2. Much of our research then focuses on the

problem of capturing and organizing the knowledge derived from below that of the word

level. This is directed towards building an effective first-stage recognizer. Our success

will hinge large!y upon the combination of two recent innovative advances: (1) ANGIE, a

computational model designed to capture word substructure from the bottom-up, lending

itself to possibly extrapolate OOV information from in-vocabulary knowledge, and (2) finite-

state transducer (FST) technology, which has gained popular acceptance in recognition

systems for efficiency and potential computational savings. The concept of merging these

two technologies will be discussed further in Chapter 3.

During the course of this thesis, we will evaluate the feasibility of each aspect of our ideas

through a series of experiments with prototypical systems. In the beginning, we will show

that the integration of complex models in a two-stage configuration can be effective, and

can yield high performance compared with a state-of-the-art single-stage system. A major

contribution will be the transformation of the ANGIE framework into an FST representation,

allowing this complex set of sublexical models to integrate with the recognizer search. We

will introduce and evaluate different methods for constructing ANGIE-based FSTs. Further

on, we will show that grapheme 4 information can be valuable both for enhancing low-level

linguistic constraint as well as allowing automatic access to spelling hypotheses. Moreover,

we develop a stage-one system that both incorporates grapheme information and employs

automatically generated lexical units with optimized sublexical probabilities. We demon-

strate that these ideas make potentially significant progress towards a multi-domain flexible

vocabulary system that handles OOV words intelligently.

4 A grapheme is a character used in writing. It may have varying realizations or allographs. For example,

the grapheme "a" subsumes the variants or allographs "A" and "a." See a glossary in Appendix A for a

detailed definition.

23



1.4 Experimental Domain

Ideally, we envision a first stage that utilizes information drawn from large corpora of gen-

eral English, to maintain domain independence, while later stages support several distinct

recognizers developed for different domains. But the scope of this thesis is limited to inves-

tigating the feasibility of our designs. Therefore, all of the experiments are confined to the

JUPITER domain.

JUPITER [28, 110] is a telephone-only mixed-initiative spoken dialog system for weather

information for more than 500 cities worldwide. The weather information is obtained from

on-line sources on the Web, and is updated several times daily. The most recent version

contains up to 650 cities, 166 countries and about 2000 words in the vocabulary.

One reason for choosing this domain is that it is a real-world application in which the

spoken input, characteristic of highly spontaneous speech, frequently contains OOV words

and out-of-domain queries, responsible for major performance degradation in the state-of-

the-art system. A first attempt towards exploring issues in flexible vocabulary would be

to examine the OOV set. The JUPITER domain is very suitable due to (1) its richness in

proper nouns such as place names and (2) its highly restrictive task goal so that a semantic

category for an unknown word is relatively predictable, for example a city name. Our results

will be compared with a baseline system, similar to one that is available for public use.

The training of the first stage models on a large general corpus and the implementation

of several restricted topic domains are reserved for future work. It is also beyond the scope

of this thesis to address the issue of switching between several domains.

1.5 Previous Research

1.5.1 Introduction

Over the next subsections, we review some of the background material to our work, including

previous approaches to various aspects of the research problem and past research that has

inspired and contributed to our own. While previous research has not directly addressed

the design of a system such as ours, researchers have touched upon some of the individual

issues that are relevant in this thesis. Here, we summarize some work performed with regard

to handling unknown vocabulary in speech recognition, strategies for integrating linguistic
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knowledge with the recognition search, and techniques for representing syllable knowledge

in recognition. Each of these topics has been part of our consideration; our own work has

largely entailed integrating disparate linguistic knowledge at multiple stages, particularly

syllable information, towards the goal of handling unknown words.

1.5.2 The Unknown Word Problem

Hetherington's work [38] established that even in systems with a very large dictionary

vocabulary (exceeding 100,000 words), the OOV rate can exceed 1%. Assuming a sentence

length of twenty words, this translates to one or more OOV words in nearly one in five

sentences. His work revealed that each OOV word causes on average 1.5 recognition errors;

that is, the presence of an unknown word leads to additional errors for surrounding in-

vocabulary words. When the recognizer is forced to substitute the unknown word with an

acoustically similar in-vocabulary word, thereby introducing an error, the language models

cannot be relied upon to predict correctly the surrounding words, hence engendering more

errors. It can be concluded that the presence of unknown words significantly impairs overall

understanding accuracy for spoken dialog systems. In fact, in the JUPITER domain [110],

word error rates for out-of-domain sentences escalate to more than double the in-vocabulary

error. These sentences range from legitimate queries containing unknown words such as city

names to out-of-domain queries, as well as utterances with spontaneous speech artifacts such

as word fragments.

At present, most conventional recognizers use only a few rudimentary methods to cir-

cumvent this problem. For instance, some simply attempt to maximize coverage and min-

imize the OOV rate by increasing the number of entries in the lexicon. In reality, this is

not practical. Not only are many unknown words actually proper names, not listed in large

dictionaries, but also a portion constitutes word fragments which cannot be covered by a

finite dictionary. Many systems resort to utterance rejection techniques [6, 7], whereby the

objective is to classify the recognized output as correct or misrecognized, via some confi-

dence measures [7, 91]. While this technology is commonly used to provide user feedback

of any difficulties that a system may be experiencing with the spoken input, it falls short of

offering opportunity for the system to identify or learn a new word. Others [37, 6] attempt

to locate a possible unknown word by essentially operating a word and a phone recognizer

in parallel, and comparing their respective scores. Classification techniques are used to
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determine a threshold for rejecting a word as an unknown. While this obviates the need for

an explicit unknown word model, its reliability is limited, and performance improvements

have been small.

Other work has primarily modeled OOV items via a generic word or garbage model as

an extension to the in-vocabulary lexicon. Usually, this acoustic model is a concatenation

of phonemes with some constraints imposed on the sequence. This then competes with

other in-vocabulary items, and is hypothesized if its a posteriori probability exceeds that

of the others. The work of Asadi et al. [3, 4] first used this technique to model unknown

words on the Resource Management corpus, an artificial domain, and experimented with

various strategies for transcribing the new word with the aid of a letter-to-sound system,

subsequently adding the new word to the vocabulary. This early work did not impose any

word structure knowledge to the phoneme sequence in the garbage model, although there

were some attempts to model the pronunciation rules of the unknown word. Through the

years, others have embraced and further investigated this approach [100], but have achieved

little in terms of bridging the performance gap between sentences with and without unknown

words, and even less in terms of transcribing and learning a new word.

Some have attempted to incorporate syllable knowledge in hopes of exploiting phono-

tactic constraints. Kemp [52] proposed the use of a syllable-based method for the acoustic

modeling of new words for a German corpus. He built a generic syllable model for un-

known words but met with limited success. Similar to our ideas, De Mori [18] envisioned

a vocabulary-independent recognizer, and considered basic lexical units such as syllables

that encompassed more constraining information on the search space than pure phonemes.

He proposed generating a network in a first stage consisting of "pseudo-syllable" acoustic

units. A second pass decoded the network into word hypotheses. A pilot experiment in

detecting new words from data extracted from the Wall Street Journal task was conducted.

He demonstrated some success by detecting half the OOV words from a twenty sentence

test set. Recently, Klakow [57] demonstrated more success by augmenting the lexicon with

automatically generated word fragments. Like previous work, these fillers were variable-

length phoneme sequences but several hundreds of them were generated and trained on

some artificial data prior to recognition time. Their goal was to reduce the performance

degradation incurred by OOV items, and also possibly propose a phonetic transcription

for the OOV region. This filler approach was reminiscent of that used in word-spotting
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tasks, and was also undertaken by Meliani [68]. Meliani had also found marginally better

performance in using syllable-based fillers.

Thus far, we have surveyed research in acoustic modeling of unknown words. As is

important in our system design, there remains the aspect of handling the language model

upon an unknown word hypothesis. Jelinek et al. [46] studied the problem of incorporating

new words into a statistical n-gram model. Such a model requires a large amount of training

data to estimate all the word n-tuple frequencies. Their solution was to assign a new word

to word classes based on context. Most others have followed along similar lines. However,

the rigidity of the n-gram modeling paradigm and the generally poor estimation of language

model parameters have contributed to mediocre performance on the handling of unknown

words. Some have attempted to overcome these barriers. Damnati et al. [17] discussed

an island-driven parser which extracts a conceptual class for the unknown word before

determining the word class. Boros et al. [5] addressed issues in dealing with OOV items in

the semantic processing and the dialog manager. As akin with our objectives, Boros was

concerned with improving usability, and building a more cooperative spoken dialog system,

upon encountering OOV data.

Little previous work has addressed issues of enrolling new vocabulary words into a

recognizer and eliciting phonetic baseforms automatically. Researchers [86] have reported

simple techniques such as generating the baseform using acoustics alone and expanding that

with phonological rules. In order to increase robustness, systems may require users to enter

multiple samples of the new word, offering a system a better chance of proposing the correct

phonetic transcription [34].

Some work which has experimented with acquiring new word spellings directly from

acoustics was that of Alleva and Lee [2]. This was a first study of an acoustic-to-spelling

transcriber, aimed at automatically acquiring both the phonetic and orthographic tran-

scriptions for new words. It is of particular interest to us because our work shares the

same objective of deducing spellings from unknown words. Their novelty stemmed from

using actual letter spellings in their context-dependent Hidden Markov Model (HMM) in-

ventory instead of phoneme units, such that the spelling of unknown words could be directly

extracted from the acoustic model representation. Although this strategy was highly innova-

tive, the experiments carried out were mostly preliminary, and results seemed unpromising.

This drove the authors to recommend the alternative of using a separate sound-to-letter
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module for deriving spellings instead. In [92], Schillo et al. attempted a grapheme-based

recognizer whereby graphemes replaced phonemes in the acoustic models. They reported

grapheme and word accuracies on a German corpus of 10,000 city names.

1.5.3 Integration of Linguistic Knowledge with Speech Recognition

It has been argued by some [69, 96, 107] that human speech understanding involves inte-

grating numerous knowledge sources such as discourse, semantics, syntactics and prosodics.

These knowledge sources can be organized into a linguistic hierarchy. When these con-

straints are applied in concert in a tightly coupled fashion, they can provide mutual feed-

back to guide and aid the search process during recognition. In particular, it is important

to pay careful attention to the interaction between linguistic components and the speech

recognition component. While the NL component serves to extract a meaning representa-

tion for an utterance, it also needs to tolerate errorful recognition hypotheses and artifacts

of spontaneous speech such as false starts and repairs. However, it should also constrain the

recognition search to penalize unlikely hypotheses based on their meaning and grammat-

ical structure. Thus, there is potential to steer the acoustically driven recognition search

based on factors such as syntax and semantics. The main obstacle here is that limitations

in computational resources preclude the simultaneous deployment of rich but cumbersome

higher order language models. In many instances, we are forced to apply each constraint

sequentially.

In the past, the most popular integration strategy has been the N-best interface [9,

73, 108, 39], where the NL component acts as a post-processor, filtering on whole sentence

hypotheses from the recognizer. Analyzing one sentence at a time, the NL component will

stop at the first sentence when a meaning is successfully extracted. The NL component can

help identify misrecognized sentences, that is, act as a rejection mechanism, by discarding

sentences that do not parse grammatically. Furthermore, NL systems that can output

probability scores [39] can combine these acoustic and linguistic scores to re-order the N-

best list, and choose the most likely hypothesis, based on the various combined knowledge

sources. However, this process, in its entirely feed-forward nature, is suboptimal, in that

the NL system cannot interact with and provide feedback to the recognition search. In

an effective integration strategy, the NL component could potentially eliminate portions

of the search space much earlier using syntactic and semantic analyses, while promoting
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linguistically meaningfid candidates.

More recently, word graphs have become a popular alternative to N-best lists as the

interface to a language processing module, following the first-pass recognition stage [53].

Word graphs are both easily generated [75, 76], and a more compact representation than the

N-best list representation. They are now widely employed for post-processing by a variety

of knowledge sources, from higher order n-gram language models to dialog [102] and prosody

modules [58]. The flexibility allows multiple simultaneous information sources as well as

multiple-stage architectures. In many instances, researchers [32, 9, 35, 47] have developed

technology to parse sentence hypotheses directly from word graphs, applying semantic and

syntactic constraints. They have proven that understanding accuracy can benefit when the

NL knowledge, aided by trained probability scores, promotes those hypotheses which are

more meaningful, and this can be better achieved when the integration enables the search

to probe deeper via a word graph. Some [35, 47] have also discovered that applying higher

order constraints using a word graph can speed up overall computation time.

Nonetheless, much has yet to be explored in the way of tighter coupling between NL

and recognition, beyond the word graph paradigm. After all, the word graph technique

inflicts hard decisions by irretrievably removing portions of the original search space. In

principle, it still appears more desirable to incorporate some NL analysis directly within the

recognition search, with minimal prior pruning. And for a spoken dialog system, it is even

more convenient if a full meaning representation can be generated at the same time. But

clearly, the extraction of a full or partial meaning representation early in the recognition

process presents difficulties, such as requiring a prohibitive amount of computation. This

then has spurred researchers to seek alternative strategies [30, 72, 101, 24] with varying

degrees of complexity.

In [30], Goddeau formulated a probabilistic language model based on an LR parsing

algorithm, and applied this to a speech understanding task. The shift-reduce parser was

integrated with an A* search, and yielded an increase in the number of utterances correctly

understood. With only modest performance results, this work suffered some main draw-

backs: (1) it was unable to generate a full meaning representation and (2) upon the event

of a parse failure, it resorted to the use of the word n-gram model. In Ward's work [101],

the goal was to exploit longer span language constraints in the decoding process by using

methods that are sufficiently robust in order to cope with spontaneous speech. He described
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a collection of recursive transition networks (RTN) each representing semantic fragments.

The A* decoder would prefer but not require hypothesized sequences that comply with the

RTN grammar. Although there was no stochastic component, a significant understanding

improvement was attained. In Jelinek's recent work [45], the Structured Language Model

(SLM) used a hierarchical structure to extract meaningful information from word sequences,

and was intended to outperform an n-gram model because of the presence of longer distance

language constraints.

Much of the abovementioned work, in actuality, meant enhancing the language model

with limited syntactic/semantic information. By contrast, our work strives for a complete

NL analysis together with a meaning representation, generated during the integrated search

phase. In Chapter 4, we will introduce our hierarchical NL processor, TINA, and describe

how it has been tightly incorporated within the acoustically driven search.

1.5.4 The Use of Syllable Knowledge in Speech Recognition

For years, phonologists have come to understand the importance of the syllable as a linguis-

tic unit and its indispensable role in phonotactic constraints '. For example, Randolph [87]

completed a comprehensive study of the acoustic realizations of data, and concluded em-

pirically that the syllable was instrumental in explaining realizations, particularly in stop

consonants. More recently, many speech researchers [78] have argued the inadequacy of

the phoneme as a representational unit for recognition because of its apparent dependence

on higher-level structure. Disappointing gains in phone pronunciation modeling for con-

versational speech [88] have further suggested that a flat model relying exclusively on the

phoneme is inherently flawed. Many are beginning to espouse more linguistically-motivated

approaches, mostly from an acoustic modeling point of view. By contrast, our ideas will at-

tempt to capture in the language models those constraints that occur within the framework

of the syllable.

Fujimura [20] first proposed using the syllable for speech recognition. Since then, there

has been growing interest for using subword units larger than phones but smaller than words

in acoustic modeling. This interest is motivated by mounting evidence that syllable-level

timings are perceptually more meaningful, more attuned with the function of the human

3We will discuss this point in greater detail later as part of the theoretical motivations of ANGIE.
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auditory system, and therefore less susceptible to speaking rate effects than phonemes [33].

This would also imply that syllable-level representations are more robust in noisy environ-

ments. In conventional recognizers, boundaries of phoneme-level units are often difficult to

elicit, in spite of the existence of powerful context-sensitive models. On the other hand,

syllable units with their longer time windows are better equipped to capture dynamic coar-

ticulatory effects and pronunciation variations. In fact, syllable units are claimed to form

natural representations for capturing suprasegmental, prosodic and metrical information as

well as pihonotactic information [106, 42].

Current research is beginning to embrace the use of syllable-level acoustic units. In gen-

eral, the inventory of subword units is derived via a variety of methods, from automatic data-

driven approaches to more empirical or knowledge-driven approaches. The main challenge

lies with the difficulty of syllabification 6 , and arriving at an appropriate set of units. Hu [41]

merged phones together into larger "syllable-like" units at locations where segment bound-

aries are difficult to discern. Her experiments, conducted on a small-vocabulary recognizer,

yielded results comparable to those of a recognizer using phone-like units. Jones [49, 50]

implemented a syllable recognizer for a 1300-word read speech task. His results affirmed

that comparable word recognition accuracy can be achieved using syllable units. Yet, the

lack of training data, given that the inventory of syllables was much greater than phones,

posed a problem. To alleviate this, Jones varied the number of Gaussian mixtures in his

models according to the amount of data available.

Similar work was also undertaken by Hausenstein [36]. Hausenstein applies syllables as

the unit for classification in a hybrid neural network HMM recognition system on various

digit corpora. He lengthened his window of analysis to capture syllable-level acoustic events

but kept the feature set the same.

Alternatively, one could use a hybrid system with units ranging from phones to words.

This idea was adopted by Shukat-Talamazzini in [99], in which the subword units, referred to

as context-freezing units (CFUs), were derived from a hierarchical decomposition of a word

representation. This exploited structural knowledge more effectively than triphone units.

Similar work was carried forth by Pfau et al. [84] where "macro-demisyllables" (MDS) were

automatically created. The procedure started with demisyllables and successively concate-

6Ambisyllabicity and determination of syllable boundaries remain subjects of debate among phonolo-
gists [93, 51].
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nated them using a global optimization criterion at each iteration. Other innovative work

includes that of Kirchoff, in using speech-production motivated phonetic features in syllable

models [56]. Here, acoustic syllable models were described by a host of speech articulatory

features. Similar goals were pursued by King et al. [54] who envisioned entirely abandoning

current phone-based HMMs, and ultimately using syllable models with parameters that

explicitly describe trajectories for syllable phonetic features.

So far, the most success has been attained when syllable information is not a substitution

for other models but used in conjunction with them. The work of Jones et al. [48] used

a small set of syllable-sized HMMs to model syllable effects, resulting in 23% reduction in

word error rate on the TIMIT corpus. They applied syllable knowledge to the N-best output

of a recognizer that used conventional knowledge sources. The syllable HMMs utilized stress

information and prosodic features. Wu et al. [105, 104] used both syllable- and phone-scale

information by combining HMM recognizers each with different feature representations.

This work employed the modulation spectrogram, a new feature extraction method that is

motivated by recent findings in speech perception and psychoacoustics, highlighting the role

of a portion of the frequency spectrum (2-16Hz) most pertinent to syllable timings [33]. Her

results reported that syllable-based systems failed to outperform phone-based systems under

clean conditions. When she combined hypotheses of the phone and syllable recognizers at

the syllable level during decoding, performance gains were achieved, and this was most

pronounced under reverberant conditions.

These trends suggest a potential for the syllable to play an even greater role in recogni-

tion in the future. Yet developments have tended towards the acoustic modeling perspec-

tive where this knowledge is encoded, by and large, in a flat and unstructured probabilistic

framework so that little control can be exercised. While it is certain that syllable-level

information in acoustic modeling offers benefits, our work promotes an alternative but not

exclusive path. In the first place, the ANGIE framework is an engineering solution which

aims to capture formally the hierarchical nature of sublexical information. Central to this

is the encapsulation of phonotactic constraints which occur with respect to the syllable

unit. This is independent of the choice of acoustic units, relying entirely on the linguistic

models to represent syllable-based phenomena. Secondly, as will be further explicated in

Chapter 2, our first-stage recognizer employs syllable-sized lexical units defined as morphs.

These also partially encode syllable-based knowledge among other linguistic factors such as

32



spelling and lexical stress.

1.6 Overview

Now that the reader is acquainted with both the major ideas of this thesis and some related

previous research, the following outlines the remainder of the thesis. The next two chapters

serve to lay out the foundation of our work. We hope the reader will glean from these an

understanding for the origin of the composite of ideas we have assembled. The later chapters

provide full expositions of our algorithms, the properties of our symbolic representations,

our experimental methods and results. The chapters are delineated as given below.

* Chapter 2: The Linguistic Model Design

We will explore in greater detail (1) issues concerning the design of a multi-stage

architecture, (2) the organization of hierarchical linguistic models within this con-

figuration, and (3) considerations for selecting linguistic constraints that contribute

towards a low-level and domain-independent first stage.

" Chapter 3: The Representation of Hierarchical Sublexical Knowledge

This is an introduction to our hierarchical sublexical model, ANGIE. This chapter

will trace the development of ANGIE and present its theoretical underpinnings. It will

also explicate the probability framework and outline the benefits of an ANGIE-based

system. We then pose some of the engineering problems that were encountered in

the past, and introduce the possibility of solutions utilizing FST technology. After

providing an overview of properties of FSTs and their current applications, we will

argue for the potential merits for adopting an FST representation. In particular, we

introduce the concept of (1) translating the ANGIE framework into an FST and (2)

augmenting the ANGIE-based FST with grapheme information.

* Chapter 4: A Preliminary Two-Stage System

Our first recognition experiment is presented. An initial two-stage system which

integrates ANGIE with TINA, the NL module, is developed. We explore the feasibility

of two basic design elements: (1) the use of syllable knowledge in the first stage and

(2) the use of a phonetic network as the interface between stages.

* Chapter 5: A Finite-State Transducer Based System
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We show further progress towards building a domain-independent first stage, by en-

hancing the current syllable-based first-stage with ANGIE-based sublexical knowledge.

This is accomplished by an FST-based implementation of the first-stage recognizer.

The new configuration proves to further benefit performance, and can be computed

in near-real-time. We will discuss the advantages of using the new FST paradigm

but emphasize the inadequacies that remain for this architecture when addressing the

flexible vocabulary problem.

* Chapter 6: Improvements for the First Stage

We next present some breakthroughs in designing our initial stage which are directed

towards solving the problem of supporting OOV without sacrificing performance. We

are principly interested in improving our first stage by introducing greater generality

yet optimizing on low-level linguistic constraints. This prevents phone sequences

of unknown words from being pruned away during the search. We elucidate on a

novel method for constructing an ANGIE-based FST called the Column Bigram. And

secondly, a new device for simultaneously modeling phonological and letter-to-sound

phenomena within the ANGIE framework is introduced. We detail the characteristics

of a set of Letter-Phoneme units, that are invented to encode spelling, pronunciation

and other contextual properties. And we describe the new improved two-stage system

combining these elements.

* Chapter 7: Automatic Lexical Generation

This chapter is devoted to the idea of generating a novel subword lexicon. We will

describe the considerations which have driven us to this point. This is followed by an

explication of an iterative procedure for generatively deriving novel syllable-sized lexi-

cal units for the first-stage recognizer. We present the final results upon implementing

the iterations to convergence and give an analysis on this novel set of units.

* Chapter 8: Unknown Word Experiments

A summary of the final system will be given. We evaluate two and three-stage versions

of our design by testing on JUPITER sentences with unknown city names. We also

attempt to extract spelling hypotheses for these unknown words instantaneously. We

shall discuss the implications of the success of these experiments.

* Chapter 9: Conclusions

Finally, we revisit the findings of this thesis, and provide some suggestions for future
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experiments.

A glossary of our definitions for the terminology used in this thesis has been included in

Appendix A to facilitate the reader in resolving any uncertainties that may arise. And in

Appendix B, we have provided explanations to the annotations used in denoting linguistic

units throughout this thesis.
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Chapter 2

The Linguistic Model Design

2.1 Introduction

In the previous chapter, we defined our vision for the capabilities of a flexible vocabulary

system in Section 1.2, and in Section 1.3, we broadly introduced the scope of our work that

will further us towards this goal. Here we address an issue that is central to our objectives:

the selection and organization of various sources of linguistic constraints. In selecting the

types of constraints, it would be necessary to determine the symbolic representations that

the modeling framework must employ.

The major challenge is a reliable method for the detection and recognition of OOV items.

This is difficult to accomplish without causing degradation in recognition performance on in-

vocabulary data. As it is often used, a catch-all or generic OOV word model can be deficient

in terms of constraint for capturing an unknown word but can also disrupt recognition on

the surrounding adjacent portions of the sentence with known words. Moreover, current

systems lack the mechanisms to deduce the linguistic properties of a detected unknown

word.

In fact, the main dilemma we are faced with stems from an inherent trade-off between

a need for increased flexibility versus tighter linguistic constraint. Higher-level domain-

specific knowledge can provide the necessary constraint. However, when an OOV word

occurs, the system's models will naturally favor the hypothesis of an in-vocabulary item

with an acoustically similar profile. The reason is that zero or very low probabilities are

allocated to unknown words whose phonetic sequences are generally previously unobserved.

But incorporating more flexibility will enable a system to recognize or license sequences of
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phones that (1) do not occur in words existing in the pre-determined dictionary and (2)

have not been instantiated in the training corpus. If the acoustic and linguistic models

incorporate sufficient generality, they would offer probability support despite the lack of

training realizations. However, there now emerges a conflict wherein large amounts of

flexibility necessarily leads to a relaxation of language constraints. But general recognition

demands the application of more tightly constrained language models as early as possible

to prune away unlikely hypotheses. Hence, increased flexibility often compromises the

performance on in-vocabulary and in-domain input.

In the following, it is shown that once various sources of linguistic information are

arranged in the form of a hierarchy, these can be applied successively within a multi-stage

architecture. With this in mind, we propose one possible conceptual solution in Section 2.3.1

that could implement a flexible vocabulary system. This serves as a starting point for

developing our ideas throughout this thesis. Of primary importance is the design of the

first-stage linguistic framework. We proceed to discuss some of our key ideas for assembling

the initial stage, and conclude with some comments on the second stage.

2.2 The Linguistic Hierarchy

In Meng's thesis [69], it was argued that speech and language processes can be arranged

under a hierarchy which spans from the acoustic level up to the paralinguistic and discourse

level. Meng conceived of a hierarchical scheme, illustrated in Figure 2-1. The hierarchy

takes into account phenomena such as phonological processes, syllabification, prosodics and

semantics. As this structure is said to reflect the human communication process, it can also

be seen as an array of knowledge sources available to a speech recognizer. It is crucial to

take into consideration the elements of this hierarchy and their possible interactions when

encoding linguistic knowledge.

Let us consider low-level or sublexical constraints, that is, those which reside below

the word level and which capture patterns within general word substructure. These are

valuable because they express phenomena relevant to all of the English language'. And in

'By all of the English language, we refer to the entire set of English words, many of which are borrowed
from foreign languages. One example is the word "schlerosis." Our below word-level models are expected

to learn from the training data the characteristics of all English words including those influenced by other
languages. We note that a language such as German or Mandarin Chinese with fewer foreign borrowings
and more regular subword structures could perform even better with our modeling framework.
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Phonemics
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Figure 2-1: A Proposed Linguistic Hierarchy for Speech[69].

consequence, they are not exclusively applicable to the current topic domain. The intrinsic

domain-independence is useful because in principle, such models would not discriminate

between in-vocabulary data and OOV data. In fact, this model could even support recog-

nition of partial words. In our work, we have regarded low-level constraints as the key to

linguistic support for OOV items. On the other hand, high-level constraints such as those

describing syntax and semantics could be used to determine where an unknown word is

more likely to occur.

Given the abovementioned scheme, we envision an architecture which fulfills the follow-

ing:

" When multiple constraints in the linguistic hierarchy are applied, they are tightly

coupled with one another and with the acoustics-based search. This promotes mutual

interaction by positive feedback while guiding the exploration of the search space.

" Constraints are applied in a configuration where hypotheses, corresponding with pre-

viously unobserved data, are not prematurely pruned away.

* Allowing the system to propose unknown words and sequences that are unsupported

by training data does not impair recognition accuracy on input which falls within the
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current topic domain.

e All the above is accomplished without placing intractable demands on computational

resources.

The final point above is one of major challenge because the combination of models that

encode the rich hierarchy of language represents an explosively large search space2 . At

this point, this issue precludes their combined integration within a single-stage recognition

engine.

2.3 A Multi-Stage Architecture

Our proposal is to use a multi-stage system architecture. As remarked in Section 1.5.3,

integrating multiple knowledge sources has been possible in the past using N-best lists

and word graphs which represent a pruned-down search space constructed from a first-pass

recognizer.

In our case, we propose specifically to use a multiple pass approach that applies knowl-

edge sources from the linguistic hierarchy successively from the bottom layer upwards.

Thus, each pass utilizes information from higher levels in the hierarchy, and reduces the

overall search space by some amount. This philosophy implies that only low-level linguistic

information is used at first while the application of high-level constraints is delayed. It also

implies the separation of domain-independent from domain-dependent components. We

illustrate this general strategy further by presenting a conceptual multi-stage architecture

in the next section.

2.3.1 A Conceptual Solution

Consider the multi-stage architecture depicted in Figure 2-2. The initial stage is a core

recognition engine which only utilizes low-level domain-independent models. These models

draw upon general acoustic and linguistic knowledge that are representative of all of the

English language. In particular, the linguistic component codifies properties such as phono-

tactic, phonological, syllable and morphological information. The probability models can

be trained on several large and general corpora. On the one hand, we believe that sublexical

2This point is demonstrated in our past experience in working with integrating our hierarchical language
models ANGIE and TINA. We will discuss more about each of these later on.
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Figure 2-2: A Multi-Stage Multi-Domain Speech Understanding System.

knowledge can constitute a powerful language model to facilitate recognition. But it is also

a general source of constraint whereby OOV but plausible English word constructions can

be given probability support. One way to realize this, for instance, is to construct a lexicon

for a large number of subword-sized units. These subwords may be syllables, although the

exact lexicon design is subject to further investigation. Doing so frees us from the confines

of a fixed domain-dependent word lexicon, and could ultimately cover much of the English

vocabulary, including even partial words. We will further elaborate on these ideas in the

next sections.

The output of the first stage is a subword lattice which is then processed by a suite

of domain-dependent speech understanding modules, operating in parallel. With a smaller

search space, each of these second-stage modules can apply an array of higher-level linguistic

information without an explosion in computational requirements. These richly embedded

linguistic models will be domain-specific, accounting for word-level knowledge as well as

natural language processing and dialog context. The key to this architecture is an effective

domain-independent first stage which eliminates significant portions of the search space.

Consequently, the later stage can enlist powerful long-distance models and apply them in

an integrated manner. The final decision for the best meaning representation is mediated by
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a top-level decision algorithm. This allows the user at the input to switch among domains

at any time without prior notice.

2.4 Linguistic Modeling Issues of Stage One

The previous sections have established the role of a domain-independent low-level first stage.

Much of this thesis will investigate the multiple issues arising from the linguistic design of

this first stage. It is certain that the lower echelons of the linguistic hierarchy have much to

offer in terms of constraint, but it is still indeterminate how this knowledge can be captured.

We grapple with the following issues:

* What lexical units best enforce constraints that are sufficiently low-level and can

generalize across the English language?

e What symbols can be incorporated into our lexical representation to optimize on

contextual knowledge?

The ANGIE framework will be critical in providing a mechanism for describing and

predicting sublexical phenomena. This will be detailed in Chapter 3. But for now, we

introduce and motivate some novel concepts that underlie the development of the first

stage. Thcae will operate in conjunction with ANGIE models. The engineering effort in

implementing these ideas and the experiments which verify their feasibility will be presented

in detail in the later chapters.

2.4.1 The Morph Unit

In considering the design of the recognizer lexicon, our investigations have led us to the

inception of a linguistically motivated syllable-like unit which we refer to as the morph3 . As

intimated earlier, many phonotactic constraints occur within the context of the syllable unit,

and using only local phonemic context would not exploit the internal structures embedded

within English words. If we erected a recognizer using only phonemic level information, this

would satisfy our criterion for generality but longer distance contextual information would

be lost. Without higher level information to disambiguate between confusable phonemic

3We refer to the morph unit exclusively given by our definition. This may differ from the usage of this
term by others in the literature. Please refer to the glossary, given in Appendix A, for more definitions of
terminology used in this thesis.
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hypotheses, the result is likely to cause a large number of competing hypotheses. Subse-

quently, an unacceptable compromise on performance, particularly for in-vocabulary words,

would occur. By contrast, using word-level units soon becomes unwieldy. No word-level

recognizer can be truly domain-independent, and cover all novel constructions and partial

word possibilities. At the syllable level, the inventory is much smaller and tractable.

Yet, as mentioned in Section 1.5.4, the syllable remains an elusive unit of representation.

It is a natural means of representation in Asian languages, but is still difficult to capture

in English because of issues such as ambisyllabicity. Here, we believe that a syllable-

level lexicon would be most appropriate given our dual goals for achieving generality and

constraint. Our engineering solution is to formulate the notion of a morph unit. We define

this as a syllable-sized unit augmented with additional linguistic properties such as spelling,

stress, morphology and position. Like the syllable, a morph can be decomposed into the

constituents such as nucleus, onset and coda. In fact, these morphs are represented by

the spelling of the unit, and variations in letter casings encode variations in pronunciation.

Other annotations denote morphological properties. For instance, a "+" translates to a

stressed root. For an example, the morph car+ is a stressed root that occurs in the word car.

But the morph cAr+ is a stressed root that occurs in the word caribou. The determination

of the morph inventory and the diacritics used have been fine-tuned during the course of

our experiments, in an attempt to improve probability modeling and constraint4 . In effect,

an actual syllable is mapped to multiple morphs for different instantiations in varying word

positions and spelling. The resultant expanded lexicon incorporates more linguistic context

than that offered by the syllable unit alone, leading to enhanced constraint. In addition,

here is a first step in merging pronunciation and spelling into the same representation. It

will be clear later that this aids us in combining models for pronunciation and spelling so

that ultimately hypotheses for letter-spellings can be accessed directly.

2.4.2 The Phonetic Network

The second feature of our system is the use of a phonetic network. More traditionally, word

hypotheses from a first-stage recognizer are output into a word graph for processing by

higher order language models in a later stage. The second pass is restricted to the words

4 See Appendix B for a guideline on the morph notation.
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hypothesized by the initial stage. Effectively, much of the search space has been eliminated

irreversibly by the first-stage models. In our general vision, the output of the first stage is

a subword network in which we are free to select the type of symbols situated on the graph.

Indeed, the system may gain from reducing the morph hypotheses of the first stagc back

into arguably the most elementary atomic units of representation 5 , the phonetic units. This

is undertaken regardless of the set of morphs defined in the lexicon and proposed in the first

stage. The network will encompass acoustic model and language model scores, the latter

being derived from the morph lexicon. The network also omits all information pertinent to

time. We advocate for the use of a phonetic network for several reasons:

* By returning to the phonetic unit, the second stage is not confined to'the hypotheses

stipulated in the first stage. This lessens the chance of committing irrecoverable errors

by the first stage where the search space is significantly reduced.

* Morph constraints of the first stage exert influence via the scores embedded in the

network. Although this perturbs the second stage search, the second stage is endowed

with the flexibility to select any hypotheses favored by its own language models which

can be entirely independent of the first stage.

* In building from phonetic units in the second stage, word-level language models can

be applied in concert with sublexical models rather than using the word-level models

alone. This is a means for coupling different models from the linguistic hierarchy

within a single search but over a smaller search space. The second-stage search is

described in Chapter 4.

* This scheme is more amenable to handling OOV words. When an unknown word oc-

curs, the first stage should be equipped to produce the correct phones of the unknown

word. This requires its models and lexical units to support the previously unseen

phonetic sequence in question. But at this point we suspect that, with only partial

knowledge, the actual morph sequence of an unknown should not be committed.

5Whether phonetic units are the most basic linguistic units in speech is a subject of contention in the
literature. We have used phonetic units in the terminal layer of the ANGIE parse tree as these coincide with
the basic units used in our speech recognizer acoustic models.
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2.4.3 Lexical Generation

An implication of using the phonetic network output in stage one is that its lexical repre-

sentation no longer needs to correspond with the domain-specific word lexicon of the second

stage. Loosely speaking, the set of morphs in the first stage are not required to define or

express the words of the second stage. Then, by breaking ties to the word lexicon, a key

corollary is that the stage one lexical units can be redefined. What is most intriguing is

that these units can be re-invented with a number of criteria in mind. These can pertain to

optimizing constraint in the language models or promoting compactness. Algorithms can

be applied to improve modeling in the first stage by synthesizing and fine-tuning the lexical

representation.

More specifically, our philosophy is a generative one. We rely on learning for the system

to generate its own lexicon, and it alone discovers automatically a more optimal but novel

representation given the probability framework. A new lexicon is constructed given phonetic

sequences of training data. One way to determine the added utility of a new lexicon is

to consider the constraint of the models derived from it. This can be done by measuring

perplexity, for instance. Given that it remains undetermined which set of units best capture

syllable-level constraints, we believe that an automatically determined set of units may

facilitate our modeling more so than one that is exclusively engineered by a hand-selection

procedure. In Chapter 7, we detail how we begin with the original symbolic representations

of the domain and depart significantly from them in an iterative algorithm. At each turn,

perplexity is reduced. The algorithm is continued until convergence, indicating that the

lexicon is "optimal" in the sense of perplexity reduction. An added benefit is also greater

compactness in the overall representation. Chapter 7 will provide results of the generation

algorithm and analyze the implications of those experiments.

2.5 A Comment on Stage Two

Our efforts have mainly focused on designing an effectively constraining low-level first stage.

In the second-stage decoder, a combination of higher-level domain-specific linguistic knowl-

edge is applied over a reduced search space. Historically, this decoder has evolved from

earlier work by Lau [59] who made early attempts on flexible vocabulary speech understand-

ing, using the ANGIE framework. In later chapters, we will elaborate on the second-stage
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architecture and experiments using this.

It should be noted that, in order to ultimately support a flexible vocabulary, this second

stage needs to satisfy a number of criteria. In the following, let us briefly outline the

ingredients of our second-stage design.

* Processing a phonetic network, the second stage primarily applies knowledge above

the phone-level, up to and including the word-level.

e Ideally, it performs this by tightly integrating the information, derived from all the

linguistic levels in use.

* As the decoder traverses a phonetic network, it inherently adopts a bottom-up philoso-

phy in the search algorithm. That is, the recognizer refrains from applying word-level

linguistic models and proposing any in-vocabulary word until the end of a phonetic

sequence which may constitute a word. In this way, the acoustics and the low-level

or phonotactic linguistic models steer the search so that OOV sequences are not pre-

maturely pruned. A more conventional top-down strategy would allow higher order

or n-gram models to favor the likely domain-specific words at the outset, pushing the

unknown word hypotheses to the bottom of the stack where they risk being pruned.

But in precluding early pruning, the bottom-up approach intrinsically invites a more

expensive search; its success hinges on a more compact space to begin with. Our

answer to this is a small phonetic network at the search input while the decoder un-

dertakes the delicate balance between narrowing the search space as early as possible,

and accounting for the possibility of OOV.
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Chapter 3

The Representation of Hierarchical

Sublexical Knowledge

3.1 Overview

This chapter will be a discussion on the relevant issues in modeling hierarchical sublexical

knowledge. It will begin by introducing ANGIE and the underlying motivations behind its

design philosophy. We will be visiting some theoretical claims that inspired ANGIE's model.

This is followed by a detailed explication of the framework, including the grammar and the

probability model. We will uncover the engineering obstacles which have prevented the full

deployment of ANGIE in a speech understanding system. Next, we trace the development

of finite-state transducers in computational linguistics, and discuss our vision of merging

this technolog .,&th ANGIE to form the ANGIE-based FST. We debate the possible benefits

that FSTs might deliver, and the routes one could take for transforming a hierarchical

paradigm into the flattened FST. In the process, some of the ideas that have been conceived

will be summarized, setting the stage for the experiments presented in later chapters. To

conclude our discussion, we present one more beneficial outcome of our ANGIE-based FST:

the integration of grapheme information within the recognizer.

3.2 An Introduction to ANGIE

First introduced in [97], ANGIE is a hierarchical paradigm for modeling sublexical phe-

nomena such as phonology, syllabification and morphology, useful for speech and language
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applications. It is much inspired by theories that advocate the hierarchical organization of

speech understanding, especially below that of the word level. The vision is to capture these

phenomena in a data-driven computational engineering framework for speech applications.

The framework would model language structures from the bottom up, sharing common

information about internal structures of words, and encoding linguistic knowledge within

and between each of the hierarchical layers. The result is trainable and probabilistic, mod-

eling phonological processes by simple context-free rules. Its power and novelty lies with an

ability to predict phone sequences of the language without explicit ties to a particular vo-

cabulary, because the models are designed specifically to codify generic linguistic knowledge

from data. The probabilistic models allow it to discover the linguistic patterns from train-

ing data and in-vocabulary sequences, and extrapolate that knowledge to previously unseen

data. ANGIE was first applied to a letter-to-sound/sound-to-letter conversion system [69].

Since then, it has been used in the syllabification of large lexicons [79], hierarchical duration

modeling for speech recognition [10] and word recognition experiments [59]. Encouraging

results to date have motivated the work here, which extends past experiments further in

several respects. Our work hopes to apply ANGIE in a near-real-time conversational inter-

face for a real-world task, and aims to capitalize on ANGIE's power to model subwords, for

unknown word scenarios, in an unprecedented fashion.

Before explicating the ANGIE paradigm and its applications to date, we would like to

delve into the background issues that ANGIE has come to address. In particular, we highlight

two issues that have been the driving factors towards the inception of ANGIE:

1. The modeling of sublexical phenomena such as pronunciation variation for speech

applications, and

2. The use of a formal linguistic hierarchy in a computational approach.

3.3 Motivations of ANGIE

3.3.1 Sublexical Modeling

Sublexical modeling refers to the modeling of pronunciation variability of words. This is

one issue that ANGIE strives to achieve. It also, as some researchers believe [66], forms a

critical part of a speech recognizer, as pronunciation variability exists inherently among
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speakers and within speakers due in part to contextual effects. Moreover, words can have

alternate pronunciations e.g., "either" may be pronounced as /iy dh ax r/ or as /ay dh ax

r/1 . Phonological effects are particularly difficult as they can be influenced by higher-level

sublexical context such as syllable position or adjacent phonetic context. Thus, a sublexical

model is required to predict these phenomena.

In the past, pronunciation graphs have been a popular means of sublexical model-

ing [77, 64, 109, 23, 14]. Based on techniques developed by phoneticians, these rely on

rewrite rules that transform phoneme sequences into phonetic sequences in order to ac-

count explicitly for phonological effects, such as devoicing or flapping. Typically, they are

pre-compiled into a lexicon and later expanded to yield a set of alternate pronunciations in

the form of a graph. However, this method suffers some disadvantages. Generally, a large

number of ordered rules is required to adequately capture allophonic variations within and

across words. As the ordering is critical for producing the correct output, incrementally

adding new rules is therefore difficult due to interactions that arise with existing rules.

Researchers [103] have also attempted to attach probabilities to rule productions, that is,

computing a probability estimate based on the number of times a rule is applied. But the

probabilities generally assume that the ordered rules are independent of one another, which

is clearly invalid. Sometimes, decision trees [88] are used to systematically generate phone

realizations in context. Graphs consist of arcs connected via nodes, representing permissible

phone sequences. Weights on the arcs can be computed via an iterative training process. A

shortcoming of this method is the lack of sharing of common sublexical structures within

the probability space, and this directly leads to a lack of robustness due to sparse data

problems. It also demands retraining at every instant that a new word is added to the

vocabulary.

Recognition systems which are based on HMMs [15, 62] do not confront pronunciation

variability issues directly. They capture phonological processes implicitly by a variety of

methods. Some examples are the use of context-dependent acoustic models such as triphones

and the use of larger phonetic inventories that include units embedded with specific contexts.

'Throughout this thesis, we will use a modified ARPAbet nomenclature for phonetic units. These units
will be depicted with enclosign "//"s.
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3.3.2 Theoretical Background

The classical model of generative phonology [8] recognized only the segment as a structural

unit in phonological representations. The syllable as a contributor to the organization of

speech was notably absent. But compelling evidence suggests that phonological processes

as well as suprasegmental phenomena such as stress and tone are described more succinctly

with reference to syllable structure. In phonology, the last two decades have seen many

proponents for the syllable as a hierarchical unit in phonological representation. These have

included Clements and Keyser [13], Kiparsky [55], McCarthy [67], Selkirk [93], Kahn [51]

and Fujimura and Lovins [21].

A formal definition of the syllable and rules for determining syllable boundaries have

been sources of controversy. Selkirk [93] defines the syllable in terms of "well-formedness"

on a sonority scale that ranks speech sounds according to their sonority, a notion related to

glottal excitation and vocal tract opening [19]. For example, vowels are the most sonorant

and voiceless stops are the least. It was hypothesized that each syllable contains a sonority

peak, and a set of rules stipulates the syllabification. For instance, the Maximum Onset

Principle attempts to maximize the number of consonants in the initial consonant cluster

while Stress Re-syllabification assigns segments to the preceding syllable if it is stressed.

An important notion is that the syllable is a hierarchical unit that can be internally de-

composed into an onset (the initial consonant cluster) and rhyme (the rest). The rhyme is

further subdivided into the nucleus and the coda (final consonant cluster). It was postulated

that phonotactic constraints are tightest within these constituents. In his seminal thesis,

Kahn [51] showed that a number of phonological processes such as flap formation, glottal-

ization and r-deletion, which interact in intricate ways, can be resolved by a small number

of simple statements when accounting explicitly for the syllable. He formulates rules for

assigning syllable structure but stops short of proposing a general theory of phonotactics.

Church [12] carried on Kahn's theoretical proposition to construct a sublexical compu-

tational model based on a phrase-structure parsing technique. Phonological constraints are

then expressed in terms of context-free phrase-structure rules. Church succeeded in discov-

ering syllables for words by using phonological constraints, when given a phone sequence.

This type of bottom-up computation was an early inspiration towards the conception of

ANGIE because it validated that allophonic and phonetic cues are sources of information
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that can be utilized to recover syllable structure. Church also pioneered the use of context-

free grammars to characterize subword phenomena, which is adopted by ANGIE. This plays

an important role in easing the computational demand and therefore makes the application

for recognition purposes a possibility. In Church's thesis, there is cursory mention that the

same framework might be useful in the lexical retrieval component of a speech recognizer,

and that augmenting with probabilities would cope with the inherent ambiguities of errorful

recognition hypotheses.

In a similar vein, Meng's work [69, 70] used a hierarchy for modeling subwords but

incorporated a probability model that could be trained. Letter-to-sound rules are encoded in

a linguistic hierarchy that represented morphological, syllabic, phonotactic and graphemic

constraints which act in concert. However, the framework was designed solely for the

purpose of reversible letter-to-sound/sound-to-letter generation, with relatively error-free

inputs. But not unlike our own visions, Meng pictured the concept of entering words orally

into a speech recognizer and dynamically updating spellings and/or pronunciations, using

the bi-directional functionality of her system. This initial work played a significant role as a

predecessor to ANGIE which, by contrast, was designed with errorful recognition hypotheses

in mind, and with the hopes of being incorporated into a real-time recognizer.

3.4 The Framework of ANGIE

3.4.1 Introduction

ANGIE [97, 59, 96] characterizes morphological and phonological substructures of words us-

ing a hierarchical representation, composed of multiple regular layers. This multi-layered

representation is viewed as a parse tree, and is derived from a set of context-free rules

that are designed by hand 2. Overlayed on the hierarchical representation is a trainable

context-dependent probability model. The dependencies are based on the neighboring and

surrounding nodes on the ANGIE parse tree. ANGIE is designed to learn and characterize

linguistic patterns pertaining to the internal structures of words of a language. In our case,

we have only dealt with English thus far. Its underlying philosophy is to marry statistical

modeling with a framework founded upon linguistic theories regarding the hierarchical ar-

rangement of structures from the phone level up to that of the word. It is hoped that this

2The concept of learning and generating these rules automatically is beyond the scope of this thesis.
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SENTENCE

WORD WORD

FCN SROOT UROOT DSUF ISUF Morphology

A A I A I
FNUC FCODA NUCLAX+ CODA NUC DNUC UCODA PAST Syllabification

I I I ANI I AlI
ayI m 1h+ n t er eh a t d*ed Phonemics

IT lii Ir ,IlA
ax m Ih n sn axr Ix 8 t Ix dx Phonetics

Figure 3-1: Sample Parse Tree for the Phrase "I'm interested..." Below the word level are
layers representing morphology, syllabification, phonemics and phonetics. At morphology
layer are nodes for: function word (FCN), stressed root (SROOT), unstressed root (UROOT),
derivational suffix (DSUF) and inflectional suffix (IsuF). At the syllabification layer are

nodes for: nucleus and coda in a function word (FNUC and FCODA); vowel nuclei that

are (1) stressed and lax (NUCLAX+), (2) unstressed (Nuc), and (3) in a derivational suffix
(DNUC); stressed and unstressed coda (CODA and UCODA); a past tense PAST. The phonemic

layer contains pseudo-phonemic units with contextual markers such as "+" for lexical stress
and word context such as "JL" and suffix context such as "*ed" for the past tense suffix.
The terminal layer consists of phonetic symbols. A /-n/ marks the deletion of the parent
phoneme /t/, tied to the left context /n/.
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knowledge can be exploited as linguistic constraints for speech recognition, especially for

unknown words. The reason is that an ANGIE parse tree can be formulated from a sequence

of phones from an unknown word and the probability model can produce a likelihood. Given

an input sequence, the context-free grammar dictates whether a parse is permissible. If this

is the case, a hierarchical structure can be obtained and the probability model generates

a corresponding score, assigning low scores to parses which seem less likely to occur in

English, in accordance with the model.

In the next sections, we expound on the elements that make up the ANGIE framework.

In assemblying a system using ANGIE, it is necessary to perform the following:

" Define the grammar.

A developer needs to define a set of context-free rules covering the patterns of subword

structures. This will embed the linguistic knowledge that we attempt to utilize. We

discuss the grammar in Section 3.4.2.

" Define the lexicon.

ANGIE requires a lexicon which defines the set of in-vocabulary words for training

and learning the subword patterns. The lexicon is arranged in a two-tier structure,

discussed in Section 3.4.3.

* Train the ANGIE models.

We briefly overview the parsing operation and the probability models in Section 3.4.4.

More information regarding the training and search procedures, and further engineer-

ing issues were investigated in [59]. We choose not to detail these issues here as they

have not been the focus of our work.

Detailed examples will be drawn from the grammar implemented in the JUPITER domain.

The development of this grammar has constantly evolved through iterations over training

data from JUPITER but the characteristics of the grammar itself remain domain independent.

3.4.2 The Grammar

Depicted in Figure 3-1, is an ANGIE parse tree example representing the partial utterance,

"I'm interested ... " The context-free grammar, which mandates the tree structure, is written

such that, when a left-hand category corresponds with one layer, the right-hand categories

refer to the layer immediately below. This forms a very regular multi-layered structure. In
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total, there consists of six layers. The top layers contain the WORD and SENTENCE nodes 3 .

The remaining layers from the bottom up refer to phonetics, phonemics, syllabification and

morphology. The bottom terminal layer can dually represent letters or phones, depending

on the application 4 .

The phonetics layer contains the most basic segmental units for recognition, the phone

set. In the past, these have directly corresponded with the acoustic models applied to the

speech signal during recognition. However, as the acoustic models are ultimately indepen-

dent of the ANGIE language model, our recognizer now utilizes context-dependent diphones.

The phonetic segment hypotheses are extracted from these. In addition, a "-" preceding

a phone, as in the /-n/ in "interested" shown in Figure 3-1, functions as a placeholder

signifying the incidence of deletion. In the case presented here, the /t/ phoneme following

the /n/ has been deleted6 . There are approximately 100 units at the pre-terminal phoneme

layer. They can be considered "pseudo-phonemes" because these phonemic units have been

annotated with additional linguistic context. These phonemic units embody distinctions

among the following characteristics:

* Stressed vowels marked by a "+" versus unstressed vowels, e.g./ih+/ is the phoneme

/ih/ in a stressed syllable.

* Consonants in syllable onset position denoted by "" versus those in non-onset posi-

tion, e.g./b/ for a /b/ in onset position.

* Units specific to certain inflectional suffixes, e.g. /d*ed/ for /d/ in past tense.

* Units specific to certain function words, e.g. /ayI/ for /ay/ in the word I, as seen in

Figure 3-1.

Furthermore, there are additional "double phonemes" such as /nk, nt, ts/ and "pseudo-

diphthongs" such as /er/ shown in Figure 3-1. More examples are /ihl, aer/.

3 These two categories are simply place-holders, but could later be replaced by alternatives such as syn-
tactic/semantic units which may also have a bearing on pronunciation and stress patterns of words.

4Past implementations have allotted the terminal layer for grapheme units for the purposes of letter-to-

sound/sound-to-letter conversion. By contrast, this thesis will only employ phonetic units as terminals, as

these are the basic acoustic units used by our speech recognizer. But we explore other means for incorporating

grapheme information.
tPhoneme units from the preterminal layer are enclosed in "/j" in the text. To distinguish from pho-

netic units of the terminal layer, phoneme units are italicized. Refer to Appendix B for a comprehensive
explanation of all notation used in this thesis.

8We consider the deletion to have occurred when acoustic evidence for the /t/ phoneme is absent or too
weak to have been detected by the recognizer.
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Processes that govern phonological rules are captured by the phoneme-to-phone layer.

From Figure 3-1, the following context-free rule has instantiated:

er = axr

This states that the unstressed diphthong /er/ has reduced to a retroflkxed schwa. Under

this scheme, the probability model is set to learn context-specific pronunciation rules from

the training data. For instance, consonants in the syllable onset position are subject to

different constraints from those in the coda position. Phonological reduction is also more

likely in function words, which are therefore modeled separately.

During development, the phone and phoneme sets were determined and have evolved

based on a number of engineering decisions, made in the interest of overcoming sparse data

problems together with optimizing the probability models. In fact, the actual units chosen

were fine-tuned via many iterations of closely examining recognition outputs and forced

alignments.

The syllabification layer describes sub-syllabic structures; examples include ONSET, NUC

and CODA. Special units are defined for structures in various contexts. These include

function words, for example FNUC and FCODA, as in Figure 3-1. In some cases, distinctions

are made for stressed and unstressed syllable, such as CODA versus UCODA. In other cases,

the context is dependent on the above morphological layer, for example DNUC for a vowel

nucleus under a derivational suffix, and PAST for an instantiation of an inflectional suffix.

Additionally, we can place context dependencies stemming from the layer below: an example

is NUCLAX+ for the subset of stressed vowels that are lax7 .

The morphology layer governs the word's morphemic breakdown. All words either con-

tain a stressed root (SROOT) or are categorized as function words (FCN). For non-function

words, morphological units include prefixes (PRE), unstressed roots (UROOT), "derivational"

suffixes (DSUF) and "inflectional" suffixes (ISUF) 8 .

As lexical stress potentially influences multiple levels of the linguistic hierarchy, its

information is distributed throughout the morphology, syllabification and phonemics layers

7See glossary in Appendix A for a definition.
8To a first approximation, ISUF is a category which, if omitted, would leave behind a fully formed lexical

entry. Our utilization of DSUF is pragmatic, and only loosely affiliated with the formal linguistic definition.
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Word Lexicon

barbados : bar+ bAd+ -os
islamabad : is- lam+ a bAD+
predict : pre- dict+
predicted pre- dict+ =ed
cambridge cAm+ -brige
camden cam+ -den

Morph Lexicon

Stressed Roots

baD+ : b! aa+ d
bAd+ : b!ey+ d
bar+ : 5! aar+
cAm+ : k! ey+ m
cam+ . k! ae+ m
dict+ . d! ih+ k t
lam+ : ! aa+ m

Prefixes
is- : ih z
pre- : p! r iy

Derivational Suffixes

-bridge : b! r i/ jh
-den : d!len
-os : ow s

Inflexional Suffixes

=ed : d*ed
Unstressed Roots

a : ah

Table 3-1: Example of a Two-Tier Lexicon of ANGIE. See text as well as Appendix B for
explanation of the meanings of the diacritics.

by explicit "+" markings. Currently, lexical stress is not included in the terminal layer.

Our preference is to omit explicit stress markers from the acoustic model units, and to allow

the models to discover tendencies for phonetic realizations related with stress patterns. One

example is schwa reduction.

3.4.3 The Lexicon

The ANGIE lexicon is arranged in two tiers: first the pseudo-phonemic sequences define

a set of morphemic units and secondly, words are given by their morphemic baseforms.

Table 3-1 gives some examples of baseforms taken from the two-tier lexicon. Multiple
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alternative pronunciations are also allowed in each of these baseform definitions 9 . During

the recognition process, lexical access takes place at the phonemic layer. It was alluded to

earlier in Section 2.4.1 that a possible set of units for a recognizer lexicon are syllable-based,

and additionally codify spelling and pronunciation. We have utilized precisely these in the

intermediate morphemic lexicon 1 0 . The following summarizes their characteristics:

* Morph units encode positional constraints with a set of diacritics. These tie them

directly with nodes from the morphological layer in the ANGIE tree. For example,

the morph appended with a "- "denotes a prefix such as re-. Meanwhile, context-free

rules serve to restrict the prefix to only occur in the initial syllable position.

* Letters of the morph correspond with the actual spellings.

* Capital letters are a device to distinguish between homomorphs.

Although ambisyllabicity poses a major unsolved issue whenever one is using syllable-level

lexicons, our working philosophy is to choose the morph or syllable boundaries in accordance

with the dual principles of (1) striving for consistency and (2) ensuring minimal sparse

data problems. Note that, in many instances, the actual syllabification may differ from

more popular choices advocated in linguistic theory, but our decisions are justified by the

abovementioned engineering principles. Compared with using a single lexicon of phonemic

sequences for each word, a two-tiered lexicon can help distinguish ambiguous parses and

supply improved constraint. This is because the morphs dictate the placement of the

boundary positions as well as other linguistic context.

3.4.4 The Dynamic Parse Mechanism and Probability Models

The parsing operation proceeds in a bottom-up and left-to-right manner, in a breadth-first

search. Given an input sequence of phone terminals, it tries to generate one or more parse

trees. The details are given in [59].

During the same process, the parser also applies the probability model. Traditionally,

context-free rule formalisms incorporate probabilities based on rule production frequencies.

But ANGIE's probability distributions are spacio-temporal, and are designed intentionally to

9 Multiple pronunciations can be modeled either as phonological processes or offered as alternatives at
the baseform definition level. The choice is made by the grammar developer based on engineering decisions
to optimize the predictive power of the models.

'OIt will be seen later that the same morphs form the first-stage lexicon, and are therefore conveniently

well-matched to the ANGIE sublexical model which operates above the n-gram model.
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SENTENCE

WORD WORD

FCN SROOT UROOT DSUF ISUF

FNUC FCODA NUCLAX+ CODA NUC DNUC UCODA PAST

ay-1 M ih+ n t er eh s t d*ed

ax Inih n -n axr ix s sclIt ix dx

Figure 3-2: Tabular Schematic of a Parse Tree. The phrase is I'm interested..

be able to predict the probability of the next input unit given the very localized history.

They are determined by the internal node relationships, and are made possible by the

regularity of the parse tree. The parse tree can be treated as a table which consists of a

sequence of vertical columns. The tabular format depicted in Figure 3-2 is equivalent to the

parse tree from Figure 3-1. A column can be defined as the nodes along the path from the

root to a leaf node of a tree while each row of the table represents a layer of the parse tree.

Traversing the tree from left to right involves sweeping the table from one vertical column

to the next. Two types of probabilities are compiled:

1. Advancement Probabilities: These are the conditional probabilities of a leaf/terminal

phone node in the parse tree given its entire immediate left column context.

2. Trigram Bottom- Up Probabilities: These conditional probabilities are specified for

internal nodes which are non-terminal units in any layer above the bottom most.

Within the parse tree, each internal node's probability is given by the context of

its immediate left sibling node and its immediate child node. For example, from

Figure 3-2, P(FCODAIFNUC, /m/) specifies the probability of the FCODA11 node.

By summing the log advancement probability and all log trigram bottom-up probabilities

for the current column (up to the point where it merges with the left column), we yield a

total column score. The probability score of a parse table or tree, which essentially represents

the score for a single word or an entire sentence, is computed as the sum of the individual

column scores. For reasons of sparse data, the advancement probability between columns

at a word boundary is simply computed as a phone bigram estimate conditioned on the

"This node can be interpreted as the part of the syllable in coda position and one that only occurs in
function words.
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word transition context. At other points of sparse data, standard smoothing techniques are

incorporated.

The ANGIE column can be viewed as a phone unit embedded with long-distance con-

textual information encoded in the upper layers. From such a viewpoint, the advancement

probability is highly constraining. Essentially, the probability models will learn phonolog-

ical rules from the phonetic realizations, given a host of contextual properties, guided by

the context-free rules. For instance, in Figure 3-2, the trained grammar will learn that the

/t/ phoneme is likely to be deleted following a /n/ phoneme in the coda position. This

information is derived from:

P(/-n/IWORD, SROOT, CODA, /n/, /n/)

and

P(/t/ I/n/, /-n/)

The grammar also learns the subsequent reduction of the retroflexed vowel by:

P(/axr/IWORD, SROOT, CODA, /t/, /-n/)

These models together encode implicitly the rule that /t/ can be delted in the coda

position after /n/ and before a reduced vowel. The training procedure involves first creating

phonetic-orthographic sentence pairs for the corpus. Usually, this is done by computing

forced alignments seeded from an initial speech recognizer. Lau [59] measured the per

phone perplexity of ANGIE on ATIS flight domain data, and found that ANGIE performs

better than a trigram on unseen test data.

3.4.5 Discussion

A major novelty of the ANGIE framework is its ability to generalize towards new or pre-

viously unseen linguistic patterns from the trained grammar. Sublexical phenomena are

initially specified by the hand-written rules for the grammar, and their manifestation is

documented during training. While any parse tree not licensed by the grammar will not be

permissible, the grammar itself encompasses a large number of parse trees. The probability

model is relied upon to favor the correct parses, by assigning higher scores to them, and also
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I

WORD SWORD

STRESSED ROOT ISUFF STRESSED ROOT

ONSET NUC+ PLURAL ONSET NUC+ CODA

d! ey+ s*pl p!'lI ey+ s
d ey z p IlIey s

Figure 3-3: Tabular Schematic of ANGIE Parse Trees. The words represented are days and
place.

automatically learn the more subtle constraints that are peculiar to the context-sensitive

properties of English phonology, not explicitly covered by the context-free rules. Most im-

portantly, the framework is intended to enable knowledge gathered at the training phase

to generalize towards previously unseen sequences upon testing. Generalizing particularly

benefits speech recognition tasks because the probabilistic framework will tolerate errorful

input phone hypotheses without parse failure. Yet errors will be discouraged by low prob-

abilities, as is required by a recognition algorithm. This over-generalization actually relies

on the ability to share common word substructures by way of common subtrees in a parse.

Probabilities are pooled across training data for similar substructures within different words

or, alternatively speaking, sublexical phenomena with similar contexts.

Consider the following example. The words preventable and predictable share a common

prefix pre-, and thus will share frequency counts that correspond with their respective

common subtree structures. The model will learn that pre- is a frequently occurring prefix;

it will learn the phonological rules that tend to occur within this subword; and it will

also learn to some extent the types of structures which are likely to follow this prefix' 2 .

Consequently, rare words can benefit from observations of common words that have the

same local phonetic environments. Phonological rules learned from more common words

can be applied to rare words with full probability support.

Moreover, words that are completely unknown to the recognizer can be generated with a

non-zero probability as long as the parse is admitted by the grammar rules, and the subtree

fragments, representing localized sublexical patterns, are individually supported with non-

zero probability. More specifically, let us examine two more examples depicted in Figure 3-3.

"The probability framework restricts the model to predict only the following column from the previous
left. But much redundant information associated with linguistic context resides within these columns, hence
revealing even longer distance linguistic information.
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Shown are the parse trees (in tabular format) for the words days and place. If these two

parse trees are instantiated in the training corpus, other words with tree structures partially

in common with these words can share training data. For instance, the parse tree for the

word plays is illustrated below in Figure 3-4. ANGIE's probability models can predict this

parse entirely from the training instances of days and place. This is because all the model

components, that is, the advancement and trigram probabilities, can be extracted from

those within days and place. This can be achieved even with zero instances of the word

plays.

WORD

STRESSED ROOT ISUFF

ONSET NUC+ PLURAL

p. 1 ey+ s*pl
p 1 ey z

Figure 3-4: Tabular Schematic of ANGIE Parse Trees. The word depicted is plays.

In principle, ANGIE can (1) provide a linguistic score for OOV words that are encoun-

tered during recognition and (2) easily acquire new words without lexical retraining, as

probabilities for phonological rules can be leveraged from the trained models for existing

words. These capabilities have been envisioned since the beginning of ANGIE's inception.

And our research aims to exploit these features in a flexible vocabulary system.

One critical caveat is that ANGIE's power to over-generalize from a finite amount of

training data translates to a coverage spanning an infinitely large probability space. This is

attributable to the probability framework. For a single word, there are multiple ambiguous

parses, and the total number of parsable words covers an arena much wider than even that

of general English. It is up to the probability models to exercise preference for parses most

likely to conform to an English vocabulary word. Thus the parsing operation is required to

traverse a large space in order to find the correct parse. In past experiments [591, even when

exclusively recognizing in-vocabulary sentences, this has proven to be too computationally

demanding for integration with a real-time recognizer. We will discuss this obstacle further

and propose an alternative representation in Section 3.7.
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3.5 Past Applications of ANGIE

Before furthering our discussion on new ideas for applying ANGIE, we devote this section to

reviewing previous results. Past successes have highlighted ANGIE's strength as an effective

multi-purpose tool that encapsulates sublexical phenomena.

3.5.1 Letter-to-Sound

The first application of ANGIE was in letter-to-sound generation [97], quite similar to the

experiments conducted with its predecessor in [70]. The probabilistic parsing algorithm was

used to parse letters of an input word in a breadth-first search, and the pronunciation was

derived from the phoneme sequence at the pre-terminal layer. Experiments were conducted

on the Brown corpus and a test set accuracy of 68.9% per word and 89.7% per phoneme

was achieved. The system was also used in sound-to-letter generation. Here 53.2% per word

and 88.5% per phoneme accuracy on a test set was achieved.

3.5.2 Duration Modeling

ANGIE has also been applied to a probabilistic duration model designed to enhance speech

recognition [11, 10]. The hierarchical framework captured duration phenomena at multiple

levels of the linguistic hierarchy simultaneously. At the core of the idea was a normalization

scheme, performed on the ANGIE parse tree nodes, which accounted for durational variability

at each successive level of the tree. This strategy was very effective at dealing with sparse

data problems and yielded both a robust measure of rate of speech and duration models that

were normalized with respect to speaking rate. In addition, this framework was used as a

basis for exploring and discovering speech timing phenomena such as the secondary effects on

relative duration due to variations of speaking rate, the characteristics of anomalously slow

words and prepausal lengthening effects. In phonetic recognition, a relative improvement

of up to 7% (from 29.7% to 27.4% phone error rate) was achieved. In word-spotting, the

addition of a duration model increased performance from 89.3 to 91.613. These encouraging

results demonstrated the utility of durational information for recognition applications. As

a consequence, it was concluded that the hierarchical paradigm was very compatible for

"These numbers were quoted using a standard metric for word-spotting called Figure of Merit. See [10].
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capturing the nature of segmental effects on duration, and, in fact, the application could

be extended to other types of prosodic phenomena.

3.5.3 Subword Modeling and Flexible Vocabulary

In his thesis [59], Lau applied the ANGIE framework in a number of recognition experiments

trained on ATIs data [112]. In an effort to focus on assessing the sublexical model itself,

Lau first implemented a phonetic speech recognizer which, in entirely omitting the word

lexicon, circumvented immediate computational issues. Although a lexicon was not used,

it implicitly trained the ANGIE subword models. The ANGIE parser proposed pseudo-words

bottom-up from the rules, and periodically proposed completion of a word, at which point

scores computed from higher-level language models were added. ANGIE achieved a phone

error rate of 36% against a baseline result of 40%, where the baseline system utilized a

phone bigram. These positive results were attributed to both the improved phonological

modeling and the more powerful language model in the upper layers of the hierarchy.

Given that encouraging results were ascertained, Lau proceeded to explore the impact of

varying sublexical constraints for word-spotting tasks where ANGIE provided the constraints

for the keyword as well as the filler space [60]. The task was to spot city names in the ATIS

domain. Results validated that greater sublexical constraints imposed by ANGIE in the filler

model delivered better word-spotting performance than constraints supplied by a phone

bigram model. Again, this would indicate that ANGIE is effective in modeling phonological

rules probabilistically where the words are not known, such as in the filler of a word-spotting

task.

The next application for ANGIE to tackle would naturally be continuous word recog-

nition. This was accomplished in [61]. Although, results were comparable to baseline, a

significant performance improvement was not found to be the case, and the computational

load decreased speed significantly. More importantly, Lau was exploring the integration of

the ANGIE framework with TINA [95], our context-free grammar based NL understanding

system. Combining the bottom-up sublexical model of ANGIE with the top-down supra-

lexical model of TINA into a single search, Lau implemented a stack decoder which consults

the two parsers for scores and maintains total scores in a stack of partial paths. The NL

component offers feedback at every putative word ending, instead of at the end of a sen-

tence, as is conventionally the case. This ANGIE-TINA configuration yielded a 21.7% error
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rate reduction when compared with a system using a word bigram only. In comparison,

if the NL constraints were used via the N-best resorting method, a smaller improvement

(18.7% error rate reduction) was found. This work utilized phonetic networks, an extension

of the conventional method of generating word graphs, that pruned down the search space

after an initial "fast match" stage. This core method has been carried through to our work

in two-stage systems which are also interfaced with phonetic networks. Unfortunately, Lau

never solved fundamental computational issues, despite results that established the benefits

of ANGIE sublexical models for both in-vocabulary and unknown words. He was grappling

with the problem of devising an effective search strategy while controlling the computational

complexity in terms of space and time, which was necessarily large due to the number of

competing ANGIE theories generated. See [59] for details. To this end, his architecture,

which preceded the availability of an FST-based system, seemed unwieldy and impractical

for real-time recognition. Moreover, little success was obtained in exploiting syllable-sized

units which were mentioned but not extensively investigated.

As an extension to his experiments in ATIs, Lau made first attempts to demonstrate

the addition of new words dynamically to a recognizer vocabulary. A set of city names in

the corpus were set aside as "unknown." In the baseline recognizer, using a pronunciation

graph, lexical arc weights were set to zero for the "new" words. By comparison, in the

ANGIE system, models were trained with the data, omitting the set of "new" words. It was

hoped that ANGIE would support the lexical probabilities of the new words without actually

training on them, facilitating the recognizer to propose them anyway. That is, given the

transcription of a new vocabulary word, ANGIE should not require additional training data

to support its pronunciation models. Unfortunately, the results did not surpass those of

the baseline, nor could it be established that ANGIE's results were superior to those of a

standard pronunciation graph. In any case, this experiment involved simulating highly

artificial conditions because it failed to address the most challenging aspects of a flexible

vocabulary system: detecting the presence of a previously unseen word, and automatically

acquiring its baseform and spelling.

The above experiments have set the stage for our continued development of ANGIE

applications in recognition. While prior experiments asserted the feasibility of the ANGIE

framework and grappled with pruning and control strategy issues, we will direct our efforts

towards assembling a workable multi-domain architecture for real-world applications. Using
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real data, we set out to explore optimal ways for integrating hierarchical constraints, which,

for the first time, can be accomplished at manageable computational speeds. As will be

seen, our more sophisticated methods of integrating ANGIE leave us better equipped to

utilize its powerful models for a flexible vocabulary system.

3.6 Finite-State Transducers

Finite-state devices [1], such as finite-state automata, graphs and finite-state transducers,

have been extensively used throughout the field of computer science. For many years, finite-

state devices in computational linguistics were regarded as inferior to the more powerful

context-free and unification grammars. But recently, we have witnessed a re-emergence

of finite-state technology due to advances in the mathematical algorithms [90]. With a

growing number of applications in natural language processing, finite-state automata are

increasingly being adopted for speech recognition. They enhance the performance of search

algorithms by offering uniformity and efficiency when used to combine multiple information

sources with disparate representational units.

Finite-state machines (FSM) or finite-state automata (FSA) are automata that can

accept regular languages only. An FSM contains a finite number of states and a function

that determines transitions from one state to another as symbols are read from an input.

The machine starts at an initial state and the input is positioned at the first symbol of an

input string. The machine transitions from state to state as we proceed across inputs of

a string until the end, and we finish at one of the designated final states. A transducer

is an extension of an FSM in that it has the added feature of outputting a symbol upon

transition from a state. At the termination of input, an output string is produced. This

constitutes the mapping of symbols of an input alphabet to symbols of an output alphabet.

Upon every transition taken, a weighted FST also emits a cost for taking the transition. In

our recognition models, this represents a probability score. The mathematical definitions

of FSAs/FSMs and FSTs are given in the glossary in Appendix A.

One primary feature is that FSTs admit a composition operation which allows the com-

bination of multiple complex transducer mappings into one transducer structure and ulti-

mately one operation. And furthermore there exists a collection of standard algorithms for

manipulating and optimizing these transducers. For example, the determinization algorithm
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eliminates large redundancies that often prevail in FSTs used in applications such as speech

recognition. Non-determinism refers to the phenomenon where multiple outgoing arcs with

identical input labels emanate from a single state. As in most applications, a suitable path

through a large transducer needs to be found efficiently, but non-determinism will adversely

affect the speed with which the transducer can be searched. Following the application of

the determinizing algorithm, every state in the transducer will have at most one transition

labelled with a given input string, thus reducing the time and space required to process the

input sequence. Mohri and Riley [71] reported large improvements in running time due to

applying determinization. Pereira et al. [83] also relates a weighted minimization algorithm

that collapses further redundancies in the transducer structure, reducing the storage size

of an FST. The algorithm first redistributes weights towards the initial state as much as

possible, followed by the application of classical automata minimization.

In speech recognition, FST-based recognizers [89] have been successfully implemented for

medium-sized vocabulary tasks and proven to offer many advantages. They present a uni-

form representation for information sources and data structures such as context-dependent

units, pronunciation dictionaries, language models and search lattices. Concisely, the recog-

nition task is modeled as a composition:

T = (S o A) o U (3.1)

o is the operator representing FST composition of two FSTs. S represents the acoustic

segmentation graph'4 . A represents the acoustic model scores based on observations at

recognition time. During the search, the algorithm performs a composition between (So A)

with U which is treated by the search as a single FST. In fact, U is a successive cascade of

transductions from acoustic labels through to the language models. U is a complete model

of the search space, and can be the transduction of any number of models and knowledge

sources used in recognition. Usually, it is computed as follows:

U =CoPoLoG (3.2)

where C maps context-dependent labels to context-independent labels, P applies phonolog-

"This is strictly applicable for segment-based recognizers. S is generally not included in the standard

literature.
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ical rules, L is the lexicon mapping pronunciations to words, and G is the language model.

Any of these transductions can be weighted. At the final composed FST, an observation

sequence is transduced to the sentence hypothesis with some negative log probability, com-

puted as the sum of log probabilities associated with the various intermediate transducers.

While, practically speaking, it is sometimes not possible to pre-compose the entire trans-

ducer U, the composition operations are performed a priori on some or all of the various

language constraints, and additional knowledge sources may be composed "on-the-fly" at

recognition run-time. For a pre-composed FST, subsequent optimization ensures that U can

be searched as efficiently as possible, leading to a faster search. Alternatively, "on-the-fly"

operation affords greater flexibility and requires less memory storage. The role of a decoder

is to find the best path through the transducer U, which is treated as an ordinary search

lattice.

In our experience, pre-loading a pre-composed and optimized FST affords excellent effi-

ciency for run-time operation, but requires some craftsmanship, especially when attempting

to compose together several cumbersome FSTs. In general, at each composition stage the

following operations are undertaken:

min(det(A o B))

But the risk of failure at determinization persists because this algorithm expands the number

of arcs, at each time when several arcs of the same input label exit a single node. Upon

failure, of course, further composition cannot proceed. In addition, determinization itself

directly impacts on the search speed. Its success can be critical in the practicality of a

system. Hence, designing determinizable FSTs is an integral issue.

The FST framework is an intrinsically flexible and powerful framework in that multiple

knowledge sources can be applied at different cascade levels and in novel ways. Intermediate

models may have widely different sets of representational units. Yet from the point of view

of the search algorithm, there is one uniform and optimized network.

In this thesis, we shall see that the FST, with its algorithmic advantages, offers a solution

for approximating ANGIE models, by folding the rich hierarchical knowledge into a flattened

data structure, thereby easing computation. It gives us the opportunity to experiment with

different levels of sublexical constraints, and to incorporate novel sets of intermediate lexical
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units into our recognition engine.

3.7 ANGIE and the FST Representation

Section 3.4.5 first raised the issues of computation associated with employing a hierarchical

model such as ANGIE in a recognition scheme. And past attempts [59] have persistently en-

countered computational issues. The problem stems from using the dynamic parser which

inevitably involves a computationally intensive search process. This then is only feasible

when conducted on a limited subset of the search space, thereby preventing the full ex-

ploitation of ANGIE's benefits. These issues are particularly pressing for us because our

objective is to use ANGIE maximally to support both in-vocabulary and OOV words. The

availability of a recognizer using the FST data structure opens up the possibility of trans-

lating ANGIE's models towards a flattened FST format' 5 . Cast in this light, new questions

will arise regarding how the transformation can best be accomplished.

FSTs have proven their versatility through the years, with extensive applications in

computational linguistics, namely in dictionaries, morphology, phonology and so on. In the

field of capturing probabilistic context-free grammar (CFG) formalisms in an FST, there

has been much previous work. FSTs can represent regular languages exactly, and approxi-

mations to phrase structure context-free grammars are commonly used [90]. Unfortunately,

because we have chosen to replicate the unique probability structure of ANGIE, we cannot

simply draw upon these well-established algorithms. Nonetheless, the FST seems to be a

natural mode of representation for us.

Consider the issues at hand for designing an FST that can express ANGIE's language

constraints. We are faced with the need to account for two conflicting interests:

1. A compact or tractable representation of the vast probability space.

2. Optimal coverage of ANGIE's probability space.

The major obstacle is that, from a practical standpoint, it is impossible to output all

allowable ANGIE parses within a single FST of reasonable size. It simply necessitates an

algorithm that approximates ANGIE's coverage by selecting a subset of the space. In doing

'5 The FST recognizer which we have employed is outlined in Chapter 5. More information regarding the
development of the core JUPITER recognizer adopting an FST paradigm can be found in [110].
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so, we must consider how ANGIE's probability likelihoods are best emitted. On the other

hand, restricting the coverage compromises the original unique features that are central to

ANGIE. That is, the flexibility required to support previously unseen OOV words may be

hampered. Hence, the key concern is how to optimally engineer the trade-off of outputting

a portion of the probability space and emitting partial ANGIE parse information.

From the outset, our objective has been to devise a medium where ANGIE is folded

into an FST, fulfilling all the above qualifications. Naturally, there exist many alternative

solutions. Some of these have been given careful consideration in this thesis. But first of

all, a solution will need to determine the following factors:

* General structure of the FST.

* Output symbol representations. This includes the problem of how the internal struc-

ture of a parse tree can be accessed upon conversion to the FST structure.

* Probability assignment on the FST arcs. Scores assigned to the FST arc weights

exactly replicate ANGIE's probability estimates of each parse. As probability values

perturb the paths taken during search, the distribution of these scores impacts upon

the search efficiency and outcome.

* The algorithm for generating the FST. We have chosen to begin with a fully trained

set of ANGIE models and explore different ways of transforming them into a single FST.

All the algorithms described here will involve starting with ANGIE and subsequently

generating an FST from the grammar. A central issue to the generation algorithm is

coverage of ANGIE's probability space. We expound on this at length further on.

It is also assumed that the FST input alphabet will be the phonetic sequences proposed by

the acoustic models. In the following, we provide a synopsis on the two main ANGIE-FSTs

which were implemented in our experiments. The algorithms used to generate these are

detailed in Chapters 5 and 6. The experiments evaluating their relative utility are also

described there.

3.7.1 A Tree-like Graph Structure

In Chapter 5, our first attempt is to construct an FST as a tree-like structure. Being a

tree that represents all the alternative pronunciations of vocabulary words, this resembles

the commonly used pronunciation network. And it seemed to be the most obvious way
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Figure 3-5: Schematic of a Left-to-Right Branching FST.
sequences advancing from the left, will share common arcs.

Words with common phonetic

Figure 3-6: Schematic of a Right-to-Left Branching FST. Outputs are emitted from the left,
and arce are successively merged together from left to the right.
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to capture ANGIE which in itself essentially models pronunciation. For such a structure,

all phonetic sequences that were realized in the training data are observed and collapsed

together. This may either be in a left-to-right branching style, illustrated in Figure 3-5, or

in a right-to-left branching style, illustrated in Figure 3-6. In the left-to-right style, words

with common phonetic sequences advancing from the left, will share common arcs. Reading

from the left, branching occurs where the phonetic sequences first differ for the particular

words. Outputs are emitted at the end of the sequences or at the right most arcs. In a

right-to-left style, outputs are emitted at the beginning in time, and arcs are successively

merged together from left to the right. That is, common phonetic sequences share arcs from

the right hand side.

The philosophy of a tree representation rests upon building a collapsed data structure

after examining the training data and assigning pre-computed ANGIE probabilities on the

arc weights. The outputs are the vocabulary from a fixed lexicon. The compactness is

gained from collapsing identical partial phone sequences together onto the same FST nodes

and arcs. But these sequences often differ in ANGIE parse structure so that essentially,

this strategy amounts to the loss of parse information. In fact, the entire process relies

on memorizing training data instances, so that sequences that have not been realized in

the training corpus are excluded from the FST. Despite having been allocated probability

within ANGIE itself, they are not admitted by the FST.

In Chapter 5, we eventually select the right-to-left branching implementation because

the outputs are emitted first. This results in a significantly more tractable computation

during the search, as the n-gram language model scores are evaluated early. However,

ultimately, the final composed FST overwhelmingly biases the recognizer towards exclusively

recognizing fixed vocabulary items. In all, it turns out that this methodology fundamentally

relied too much on the training data and did not reflect ANGIE's ability to generalize at all.

A thorough discussion and an analysis of alternatives are offered in Section 5.7.

3.7.2 An FST Structure Based on ANGIE Columns

At this point, we must seek an alternative which does not bind sequences to those of a

fixed lexicon. One could conceive of an FST which allows alternative pathways for OOV

sequences in addition to in-vocabulary data which have been generated from training in

a similar manner as that described above. This is illustrated in Figure 3-7. Ultimately,
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ln-Vcabary FST

Figure 3-7: Schematic of One Type of FST Supporting OOV Words. There are alternative
pathways supporting 00 V sequences in addition to in-vocabulary data.

the recognizer opts to enter the search space where sequences belong to known words or

a space for OOVs. The latter can be a phone loop, among other ways to model OOVs

as opposed to in-vocabulary words. Ultimately, such a methodology does not embrace an

ANGIE philosophy of modeling phonetic sequences from the bottom upwards; that is, treating

OOVs and in-vocabulary words the same way and using general sublexical knowledge.

Cast under these considerations, we are driven to ponder on FSTs that capture the

ANGIE parse structure succinctly. It seems then that some of the compactness must be

sacrificed in order to build an FST which encompasses more ANGIE structure. In turn,

the ability to recover some of the parse may be advantageous. Chapter 6 documents an

entirely different approach to generating an FST. This is a structure which portrays each

unique ANGIE column as a state or node on the automaton. Transitions on the FST are

representative of transitions from one column to another. This approach directly takes

account of the internal parse structure. Chapter 6 relates an algorithm which approximates

ANGIE by compiling bigram probability estimates on these columns produced from ANGIE.

The bigram probabilities are recorded on the FST arc weights, and symbols from the pre-

terminal or phoneme layer are selected as output. This method is considerably more flexible

in its ability to support unseen data, and becomes our method of choice for the final flexible

vocabulary system.
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3.7.3 Additional Comments

The technology to generate an FST from ANGIE eventually empowers us to efficiently aug-

ment the first-stage recognizer with sublexical modeling. For one, effective integration of

ANGIE in stage one substantially enhances the power of the language models, directly trans-

lating to performance improvement. And using an FST affords much savings in computation

and speed. However, the ANGIE-FST does not render the dynamic parser obsolete. First,

the dynamic parser is essential for training the probabilities of the ANGIE models. Further-

more, the ANGIE parser is employed during the second stage, as another constraint. Here,

we trade-off a significantly pruned-down search space for the full use of ANGIE's rich models

that can generate multiple alternative parses for an unknown sequence. The dynamic parse

mechanism seems more appropriate here, as part of its role is to provide a best guess at the

complete sublexical structure of the unknown word.

3.8 Incorporating Grapheme Information

Let us briefly introduce our final major design consideration: the utilization of grapheme

information. Two factors drive us to explore this:

1. Grapheme information may offer valuable low-level constraints over and above the

existing language models. This may additionally reinforce the first stage. For example,

the letter sequence chr appear exclusively at the onset of a syllable and the letter

sequence pt is diallowed at the syllable onset in English.

2. This could facilitate access to spelling hypotheses of any unknown words directly upon

their detection. We particularly favor this scheme because we argue for unknown word

detection and transcription within the single framework.

There have been few previous attempts to incorporate graphemics into recognition,

as this generally undermines recognition performance. But the concept of learning large

numbers of new words from spoken input with the assistance of instantaneous sound-to-

letter conversion remains attractive. At this point, some of the necessary mechanisms

appear to be in place for fulfilling this goal:

1. ANGIE is suitably structured to model multiple sources of knowledge residing below the

word level. In fact, grapheme units have been incorporated at the terminal layer in pre-
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vious implementations for the purpose of bi-directional letter/sound conversion [69].

Although such a solution precludes the simultaneous modeling of pronunciation and

grapheme rules, an alternative method will be presented.

2. The FST conducts string mappings from one alphabet to another. Hypothetically,

the FST could be configured such that providing a phonetic sequence input leads to

a set of letter hypotheses for an unknown word, emitted at the output.

3. Once constructing an ANGIE-FST becomes a viable path, we can envision a data struc-

ture that produces probabilities expressing constraints that include spelling ones. This

is collapsed into a compact and efficient format, and the spelling hypotheses are easily

accessible.

The key strategy is the invention of a new set of units for modeling purposes, to be placed

at the pre-terminal layer in the ANGIE parse tree. These are termed "letter-phonemes"

due to their dual purpose for capturing spelling and pronunciation. We expand on their

characteristics in Chapter 6 and also assess their utility. Essentially, the ramifications of

this modeling device are the following:

* There now exists a larger phoneme-level symbol set embedding more linguistic context,

leading to tighter constraints and lower perplexity measurements. Any interactions

or phenomena related to graphemics and phonological processes are modeled in the

lower layers of the ANGIE tree.

" These symbols can be combined in novel ways to form new words where their spellings

and pronunciations are clearly defined. The latter feature will aid us in making hy-

potheses corresponding with unknown word sequences.

* As introduced in Section 2.4.1, our lexical units, called morphs, already merge pronun-

ciation and spelling information together in a syllable-sized unit. It will be apparent

soon that representing these morphs in terms of letter-phonemes is a natural strat-

egy. These two modes of representations are well-matched, and letter-phonemes in

conjunction with intermediate morphs give intuitive representations for new words.
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3.9 Final Remarks

Over the last three chapters, we have thoroughly covered (1) the research challenges along

with the previous attempts addressing them, and (2) the visions behind our strategy, their

motivations and underlying ideas. The next chapters of our thesis detail a series of experi-

ments which will validate each of these novel concepts. Each experiment will build upon the

findings of the previous one, and establish the feasibility of a novel feature in contributing

towards a near-real-time flexible vocabulary speech understanding system.
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Chapter 4

A Preliminary Two-Stage System

4.1 Overview

This chapter traces the implementation and evaluation of a preliminary system. We study

the feasibility of ideas that will eventually form some of the fundamental building blocks

for our envisioned flexible vocabulary system. We begin by defining the motivating fac-

tors. This is followed by a description of the two-stage architecture, along with the various

modeling components employed in each stage. Next, a set of recognition experiments on

JUPITER-based (in-vocabulary) sentences is presented. The chapter concludes with an anal-

ysis of the findings and their consequences, and suggests the possible directions from here

on.

4.2 Motivation

Our first experiment assembles a simple two-stage system to test some basic hypotheses

that were first proposed in Chapter 2. An initial two-stage system has been designed to

embody the following ideas:

* The first stage prunes the search space significantly through exerting powerful acoustic

and tightly constrained language models.

* The interface between the first and second stages is a network containing the hypothe-

ses of the first stage reduced back to their phonetic sequences.

* The second stage attempts to tightly couple together the application of several higher-

level knowledge sources.
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Part of our endeavor is (1) to demonstrate the possible gains harnessed from a tightly

coupled integration of disparate knowledge sources that are derived from rich hierarchical

language models; and (2) to show that this can be effectively implemented by a two-stage

solution with a phonetic network interface. We posit that reducing the hypotheses back to

the individual phones constitutes a more compact way of representing the search space.

Another critical point of interest is the effect of relaxing linguistic constraint at the

first stage. This will be an investigation on the possible adverse impact of departing from

word-level knowledge at the initial pass, and whether the potential information loss can be

recovered using an effective second stage. This will be accomplished by breaking away from

the word lexicon in the first stage and using a less constrained morph lexicon. We shall

draw comparisons in our experiments.

Furthermore, the system design will entail combining the major frameworks of ANGIE

and TINA' with a segment-based speech recognizer. It has long been envisioned that, given

a tightly coupled integration scheme, ANGIE and TINA can form powerful language models

by operating in concert.

Although this simple implementation is conducted in the JUPITER domain only, the

two-stage paradigm is intended to be an initial step towards separating the application

of information that can be considered as domain-independent or domain-specific. Further

steps will need to be taken later directing the first stage towards more domain independence.

4.3 System Architecture

Figure 4-1 displays the initial configuration for a two-stage system. The first stage consists

of a segment-based recognizer which employs context-dependent acoustic models. This first-

stage core recognition engine is based on the SUMMIT [28] system developed for the JUPITER

weather information domain. The relative performance of using a word-level lexicon against

an alternative lexicon using morph units is assessed here in this stage. Both lexicons are

supported by n-gram language models on the respective units. The output of the first stage

is an N-best list of word hypotheses. These are decomposed back to the original phonetic

sequences from which a very compact acoustic-phonetic network is created. The second

stage loads this network, and conducts a search coordinating the joint application of multiple

'Further explanations on TINA, the natural language module, is provided in Section 4.6.2.
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knowledge sources. This primarily consists of the ANGIE and TINA frameworks together with

a word bigram model and an ANGIE-based duration model [11]. The second-stage search

ultimately yields the final sentence hypotheses. The following sections will elaborate on

the details of both stages as well as the intermediate network creation procedure. These

include the lexicon, acoustic and language models of the first stage, and the ANGIE and

TINA integration process in the second stage.

4.4 Stage One

4.4.1 The Lexicon: Words versus Morphs

In the experiments of this chapter, part of our intention is to discover the degradation in

performance affected by partially stripping away word-level information in the first stage,

shifting word and above word-level modeling entirely towards the second stage. In Sec-

tion 2.4, we have weighed the various alternative choices of lexical representation available

from the linguistic hierarchy. It has been determined that a unit at the syllable layer has

many desirable properties for our modeling purposes. Section 2.4.1 first introduced the con-

cept of a morph lexicon. We have argued that using these morphs imposes the necessary

phonotactic constraints and also enhances predictive power by adding contextual knowledge

associated with spelling and position within the word. At this preliminary phase, it must

be noted that these morph units retain a high degree of domain dependence. This is due in

part to the fact that (1) rich linguistic context is encoded and (2) experiments are strictly

undertaken in the JUPITER domain where the total number of morphs is limited.

A measure designed to better capture long-distance constraints is the use of multi-word

units. Words which commonly co-occur in adjacency are assigned together as a single word.

They are represented by the component words connected with an underscore. These include

word pairs in common city names such as New..York. The subset of function words that

contain multiple components is displayed in Table 4-1 below.

In the word lexicon, these were originally included to (1) improve perplexity for the

language model and (2) enable alternative pronunciations specific to these word pairs2 . We

have simply retained the function word subset in the morph experiments for reinforcing

2 Note that these units were empirically determined, rather than via some automatic process. They have
evolved during the fine-tuning and development of the JUPITER system.

80



constraints in the morph lexicon. This subset is a list of 19 compound function words.

Certainly, as Table 4-1 reveals, these multi-word units commonly arise, and we expect that

collapsing them into single entities in the morph lexicon will greatly boost the language

model. This can be justified though, as many of these words do not pertain specifically to

the topic domain, and could conceivably be kept as part of any domain-independent lexicon.

Table 4-1: Set of Compound Function Words in the JUPITER Domain.

All the lexical units are given by their respective phonetic baseforms which allow for

alternate pronunciations. The mechanism for modeling pronunciation variations among

lexical units is the pronunciation network that is generated from the list of baseforms [109].

During this process, a set of hand-written phonological rules are successively applied in

sequence to each word on the network. As part of the SUMMIT recognizer, this has been

the conventional approach to pronunciation modeling. Such a rudimentary method suffers

from some major drawbacks:

" For each word, the alternate pronunciations have to be determined individually. None

of the rules can be shared among the words or generalized to apply to new words.

" The system of rules require sequential application, and are hand-crafted in such a way

that adding or altering rules becomes a complex procedure.

" The rules are strictly applied on the basis of local phonetic context, and fail to observe

a longer distance effect.

" The pronunciation network does not utilize probability modeling.

In spite of these obvious shortcomings, the current set of initial experiments retain this

approach for simplicity while we focus on other issues. Improved phonological modeling in

the first stage will be addressed in Chapter 5.
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4.4.2 Acoustic Modeling

Our segment-based recognizer, SUMMIT, performs segmentation by postulating boundaries

between phonetic segments at "landmark" regions wherever the rate of change in the spectral

features reaches a local maximum. A network of possible boundaries forms the segmenta-

tion lattice. For acoustic models, it utilizes context-dependent diphone boundary models.

These are categorized into two types: internal or transitional. Both types are trained from

examples of boundaries proposed by the segmenter during training. The internal ones cor-

respond with boundaries that are not at endpoints of actual phonetic segments; that is,

they are regions of acoustic change within the same phone. A transitional model is trained

on the actual boundaries between phonetic segments. These models capture coarticulatory

effects from speaking one phone to the next. Hence, modeling a particular phone segment

will require a number of internal models as well as the boundary models that capture the

left and right contexts at the endpoints of the segment.

In total, there are 68 phonetic units. Due to the lack of sufficient amounts of data, many

of the acoustically similar diphone units are collapsed together into equivalence classes, pool-

ing the data to form a single model. The combined set of transitional and internal units

total 631 models. For acoustic features, 14 Mel-scale cepstral coefficient (MFCC) measure-

ments are computed at every 5 msec frame interval. Subsequently, 8 different averages of

these MFCCs are taken from regions within a 150 msec window surrounding each boundary.

Using varying length time windows on both sides of the boundary serves to capture more

acoustic context. The result is a 112-dimensional vector. Principal components analysis is

used for reducing the number of dimensions to a total of 50. The classifier uses diagonal

Gaussian mixtures with a maximum of 50 Gaussian kernels.

4.4.3 Language Modeling and Search

For language modeling, the system incorporates a bigram in a forward Viterbi search. This

yields a Viterbi lattice and the best scoring hypothesis. An A* search is applied backwards

on this Viterbi lattice, extending the path hypotheses by one word at a time. An A* search

is a best-first search that increments the score with a look-ahead estimate that examines

the path from the current node to the end. In the backward search, the estimate refers to

a path from the current node to the beginning in time. This estimate must be an upper-
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bound, or an over-estimate for the search to be admissible. The score from the forward

Viterbi search, at each Viterbi node is the best partial path so far from the beginning in

time, and is therefore the highest score. This constitutes the over-estimate required for

the A* search. In cases where two paths arrive with the same word sequence at the same

boundary, the inferior path is pruned away. Because the Viterbi search itself is ill-suited

for applying longer distance models, the backwards A* search is the mechanism by which

a reversed trigram is applied. Ultimately, the N highest scoring sentences are generated at

the output. For the word recognizer, the bigram and trigram models use equivalence classes

to improve perplexities. The equivalence classes number at around 200.

4.5 Network Creation

The first stage outputs a small N-best list. From this, the phonetic sequences of the

candidate words are retrieved. The algorithm performs a lookup for the associated phonetic

segment and recovers the context-dependent acoustic scores. Subsequently, an acoustic score

for each segment is composed by accruing the left-context transitional and internal diphone

acoustic scores for a segment. Whenever a segment has multiple candidates for left phonetic

contexts, the context producing the highest score will be chosen to approximate a context-

independent acoustic score. The next step entails collapsing segments with start and end

points that coincide in time. Nodes on the network denote time boundaries, and every arc

is linked with a phone candidate and its associated acoustic score. Note that the first-stage

language model scores have been excluded entirely.

This generation phase is a heuristic means for constructing phonetic networks in a post-

processor to stage one, applied without altering the existing components of the SUMMIT

recognizer. It allows us to probe the feasibility of the phonetic network in an initial effort.

Besides, ensuring a short N-best list will avoid heavy or redundant demands on computation

imposed by creating the network.

It is possible that converting the N-best list to a network will engender a cross-pollination

effect. Under such circumstances, even candidates not contained in the original N-best list

can be hypothesized by the second stage. This is due to an expansion in search space when

phonetic segments extracted from the N-best list are collapsed together and connected.
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4.6 Stage Two

4.6.1 The ANGIE Parse Mechanism

The original ANGIE parse mechanism is employed here within the integrated search. As

mentioned in Chapter 3, the lexicon is configured into two tiers by a word and a morph

lexicon. During the s' )nd-stage parsing, the operation is expedited by imposing constraints

from the ANGIE morph lexicon. It should be noted that the morph lexicon is identical to that

used in the stage-one morph experiments. Hence, the phonetic hypotheses passed from the

first to the second stage originated from the same morph inventory, and are well-matched

to potential ANGIE parses here.

There are approximately 100 "pseudo-phoneme" categories, 40 categories in the syllabi-

fication layer and 8 categories in the morphology layer. The JUPITER grammar also includes

a large set of multi-word units which includes the subset stipulated by the first-stage lexicon.

The rules of ANGIE have been engineered to treat these designated words as multi-syllabic

single words. This is justified because these clusters (generally pairs) of words are frequently

uttered together.

One ramification is that some effects of sentential stress are captured as lexical stress in

ANGIE. For instance, new york is designated as a single word with lexical stress bestowed on

york and new is assigned as an (unstressed) prefix morpheme. For compound words such as

what.is and what-will, ANGIE subsumes the respective contractions, what 's and what'1, under

the one compound unit. And these contractions are modeled as alternate pronunciations,

contributing to the statistical models that describe sublexical patterns. This is an artificial

way of encapsulating some word-level information within ANGIE's models.

4.6.2 The TINA Framework

TINA is a natural language system developed for spoken language applications, first in-

troduced in [95]. It models natural language using a framework that shares a number of

common features with ANGIE. First of all, the model forms a hierarchical parse tree based

on a context-free grammar, defined by hand-written rules. Underlying the framework is a

statistical model that is trained by parsing a set of training sentences. Just as in ANGIE,

probabilities learned during the training phase capture knowledge in addition to the con-

straints which have been engineered by the hand-written rules. Conditional probabilities
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are computed on the context of internal tree nodes, rather than the production of the as-

sociated rules. More specifically, within a parse tree, the probability of a node depends on

sibling-to-sibling transitions conditioned on the parent node context. This is the top-down

equivalent of the philosophy adopted by ANGIE. Consequently, the probability scores are

conveniently designed to predict the next-word candidates, given the previous word hy-

potheses for the current sentence. One advantage is that a recognizer can easily access an

NL score for the next probable word. TINA implements a top-down control strategy, and is

augmented with: (1) a set of features that enforce both syntactic and semantic constraints,

including number and verb tense agreement, and (2) a trace mechanism used to handle

movement phenomena. The latter refers to the incidence of gaps commonly associated with

wh-queries in English.

TINA has been developed especially to cater to processing speech recognizer outputs

which are riddled with recognition errors and artifacts of spontaneous speech such as agram-

matical constructions and speech disfluencies. These would generally ler 1 to parse failures.

However, in the event of a failure to construct a full parse tree, the robust parse mecha-

nzsm [94] takes over, and retains a partial parse that carries the admissible sentence frag-

ment. In this way, a partial meaning representation can be generated.

With the abovementioned list of attributes, TINA has long been envisioned to aid recog-

nition both as an NL processor and a linguistically motivated language model endowed with

long-distance constraints. When faced with an unknown word, TINA can be configured to

support its occurrence under a number of specified categories such as a proper name3 . At

the same time, a meaning representation can be generated. This affords significantly more

functionality when compared with traditional n-gram models. The latter are ill-equipped for

supporting unknown words, are difficult to update and deficient at capturing long-distance

information.

A major obstacle that remains then is the direct integration of TINA into the active search

process. The goal is to couple TINA closely with the acoustics-driven search so that as early

as possible, exploration of paths can be perturbed on the basis of higher-level information.

Some previous work has investigated this issue using TINA. In [98], TINA was employed

in an A* search over a word network of hypotheses, parsing the candidate sentences and

re-ranking them for the best scoring one afterwards. Our work here investigates the use of

3 This will be put to use in our experiments. See Chapter 8.
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TINA integrated with ANGIE. It is ambitious in its attempt to apply information from above

and below the word level in a control strategy that allows them to mutually interact. Our

hope is that the quality of the output is enhanced under this tightly coupled environment.

The compromise will be the need for a small phonetic network at the input in order to keep

the search computation tractable.

4.6.3 The Integrated ANGIE-TINA System

Central to the second stage is the control strategy that coordinates the application of mul-

tiple word-level knowledge sources along with ANGIE under a single search. As reiterated

above, the primary challenge is to tightly couple together the disparate sources of linguistic

information. We choose to configure the search so that it begins in a bottom-up manner

and proceeds to apply high-level models. By this, we mean that the search is guided by

the phonetic hypotheses of the first stage, and those hypotheses are processed by ANGIE.

When ANGIE discovers a potential word candidate along a phonetic sequence, the putative

word is processed by subsequent models, namely, the NL analysis via TINA, word bigram

and duration model. This strategy necessitates an algorithm that monitors large numbers

of possible paths, and ANGIE and TINA each individually maintain large numbers of par-

tial theories. Naturally, this calls for large computational and storage requirements. Our

solution is to begin with a small phonetic network as input and to utilize the stack decoder.

The stack decoder is a one-pass, left-to-right algorithm, described in [44, 80, 82, 81]. Our

version of the algorithm is illustrated by the diagram in Figure 4-2, and was first employed

in Lau's work [59]. A data structure maintains a stack of all partial paths. These are sorted

by increasing order of time and then by decreasing order of score. The path, pending for the

next removal from the stack, is always at a boundary that is the furthest behind in time,

where the boundary is yet to be completed. This path is the highest-scoring one at that

boundary. A new phone candidate, dictated by the phonetic network, extends the current

path that has been popped from the stack. (Refer to step [1] in diagram.) The top-level

procedure will intermittently consult various modules, and maintain the total score of the

extended path. Stacks of ANGIE and TINA partial parses corresponding to this path are

also stored. First, the ANGIE module will advance the corresponding partial parses by the

new phone. If ANGIE succeeds in proposing a parse, the corresponding linguistic score is

returned and incremented to the total score. Additionally, if a word ending is possible, the
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word candidate is also returned. (Refer to step [2] in diagram.) At this point, the decoder

retrieves a duration and bigram score for this hypothesized word. (See steps [3] and [4] in

diagram.) Finally, it will enlist the TINA parser. Each of the TINA partial parse candidates

are extended by the new word. (See step [5] in diagram.) The path may be eliminated if

failure is encountered for every possible parse. Otherwise, an NL score is returned to the

top-level decoder, and the total score is re-computed. To further ease computational load,

the robust parse handling within TINA has been shifted from the parser into the recognizer

search. Along a given partial path, TINA will attempt to parse, from the left, as many

words as possible, only using full parse theories. When a failure occurs, the algorithm then

backtracks leftwards to the first word where a sentence ending is permitted, and where

the right adjacent word can begin a new sentence. The parsing will proceed forward from

then on. This heuristic method will improve speed by restricting TINA's internal search to

support only full parse theories. Pruning is conducted at multiple levels by each module

individually. For stack pruning, a fixed constant n number of ;paths are allowed for a

given time boundary. In our implementation, the application of TINA models is optional.

This will allow us to switch the integrated NL component on or off for comparisons during

experimentation.

The stack decoder has the advantage that all theories which end at a particular point

in time are explored together as a group. Thus, the theories competing against each other

during the search process all cover the exact same acoustic space. This is opposed to

previous work by Lau [59] where the search procedure extended paths of varying lengths

in time. To ensure fair comparisons among scores, elaborate normalization constants need

to be factored in. Also, tighter coupling occurs because scores are unified at any proposed

word boundaries, while the search progresses from left to right. This is distinctly different

from word graphs where all possible word hypotheses are generated for the entire sentence

prior to the application of external information. Finally, it is a future goal to also generate

meaning representation directly at each step during the search but, at this juncture, it is

beyond the scopp of our work.
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4.7 Recognition Experiments

4.7.1 Experimental Method

This JUPITER implementation utilizes a 1341-sized word lexicon. There are 1603 items in

the morph lexicon. The first stage is set to produce an N-best list with N = 10. The ANGIE

grammar and the hierarchical duration model are both trained on 11677 utterances. These

were forced alignments obtained a priori, seeded from a SUMMIT recognizer. Ih the training

data, 62.4% of the words are fully specified as a single unit in the morph lexicon either

because they are monosyllabic or they are part of the subset of multi-word units. The TINA

word grammar is separately trained on 6531 utterances. All experiments are evaluated on

an independent test set of 352 utterances.

For baseline comparison, we use a single-stage SUMMIT system, which outputs an N-best

list (with N = 10). At the time of undertaking this experiment, this baseline system was

competitive with the state-of-the-art system being deployed for JUPITER. It is also identical

to the first stage of the two-stage architecture, with the same context-dependent acoustic

models. We enlist the word-level lexicon, along with the bigram and trigram language

models.

We present two variations of the baseline system:

" System I SUMMIT Top 1: The best scoring sentence candidate is chosen.

" System 2 SUMMIT N-Best: An elementary algorithm processes the N-best list

to select from one of the N sentences. By applying TINA as a post-processor, the

procedure will seek the highest-ranked sentence that satisfies a full parse. Failing

that, it will repeat on the entire N-best list using the robust parse mode. If again this

does not succeed, a parse failure has resulted, and none of the sentences are selected.

This method does not incorporate the NL scores computed by TINA but prefers the

most likely sentence where a meaning representation can be extracted. If parse failure

ensues, no meaning representatior is produced. This reflects that the understanding

component cannot make sense of the recognizer output. The SUMMIT N-best mode

was used by the real-time JUPITER system at the time this experiment was undertaken.

We report on the performance gains derived from using the two-stage system with ANGIE

only in System 3, and the fully deployed ANGIE-TINA in System 4. Systems 3m and 4m
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Table 4-2: Typical Examples of Utterances and their Key- Value Pairs Used in the Under-
standing Evaluation.

refer to the two-stage systems with the word lexicon replaced by morphs in stage one. For

further examination, the first stage morph recognizer is isolated from the two-stage system.

This is referred to as System 1m. It is equivalent to a single-stage SUMMIT system using a

morph lexicon and morph-based language models.

4.7.2 Understanding Evaluation

Before proceeding to present the experimental results, we highlight the importance of an

appropriate evaluation method. In dealing with a speech understanding system, it is natural

to look beyond word error rate. Ultimately, the gc I is to maximize the completion for each

task, and to achieve user satisfaction. At present, we move closer in this direction by

attempting to quantify understanding rate or concept accuracy. We feel this is critical

because an improvement in the system's ability to comprehend spoken input may not be

entirely reflected in the raw word recognition accuracy.

We have devised an evaluation measure which captures the salient points of meaning

from each sentence, discounting the less significant recognition word errors in the process.

This is based on the semantic representation, derived from the TINA moduk. Given a

recognition hypothesis as input. TINA gerierates a parse tree which can be automatically

translated to a semantic frame representation. From this, we employ GENESIS [29], a lan-
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Sentence Key-Value Pair

Yeah, can I find out what the temperature WEATHER: temperature
is going to be like in Boston Massachusetts CITY: Boston
tomorrow morning REGION: Massachusetts

DATE: tomorrow
TIME-OF.DAY: morning

What is the average rainfall in June QUANTIFIER: average
WEATHER: rain
DATE: June

Help, what do you know about tornado CLAUSE: help
advisories it;h .u.sas WEATHER: crisis

CRISIS.TYPE: tornado
REGION: Kansas

That's all, thanks CLAUSE: close off
What do you know besides weather CLAUSE: help

BESIDES: weather



guage generation module, to paraphrase the frame into a set of pre-defined key-value pairs.

These pairs are empirically determined by judging which information in the semantic frame

is important in completing the JUPITER inquiry. As a result, the semantic frame is trans-

formed to a simpler, collapsed meaning representation that encompasses only the essential

information required to process the query. Examples of key-value pairs are given in Ta-

ble 4-2.

To compute the final understanding error of a test set, we precompute the key-value

pairs corresponding to the original orthographies of the set as reference. In cases of parse

failures in TINA, this may be due to TINA's incomplete coverage, in which case the transcrip-

tion is manually rephrased such that a parse can be generated while preserving the original

meaning. In other cases, this may not be possible, because a percentage of the utterances

lie outside the domain; that is, the spoken requests cannot be handled by the system, and

no alternative phrasing would be interpretable by the dialog component. These reference

key-values are deemed missing. The final understanding or concept error rate is a percent-

age calculated from the total number of mismatches, deletions and insertions against the

reference key-values:

Understanding Error Rate (%) = 100 * Subs + Dels + Ins (4.1)
Chances

For missing key-values, in either the reference or hypotheses, deletions are counted.

Because this TINA evaluation module is identical to the NL module deployed in the

recognizer, we feel that the evaluation method is a fair reflection of overall understanding

performance. It simulates the situation where the system in evaluation is integrated with

the dialog module, and will reveal whether the recognizer sentence outputs contain the

important words required for extracting meaning. Utterances with mismatched key-values

would be interpreted erroneously by the dialog component of the real system; that is, a

wrongful action would result.

4.7.3 Results and Analysis

We will begin by reporting results for the integration experiments using the word-based

first-stage recognizer, followed by results for the morph experiments. Recognition and

understanding errors for the Systems 1-4, mentioned above are reported in Table 4-3.
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Table 4-3: Recognition and Understanding Performance. Errors are given for systems de-
scribed in Section 4.7.1. Systems 1 and 2 represent single-stage baselines, and Systems 3
and 4 represent two-stage systems with word lexicons at the first stage.

When ANGIE is applied in System 3, the WER reduces by 15.4% (from 12.3% to 10.4%)

compared with the baseline System 1. This system, without the aid of any NL knowledge,

achieves an UER of 16.2% compared with 17.0% achieved by System 2, which employs NL

processing. When ANGIE-TINA is fully deployed in System 4, 11.1% is achieved on WER

and 14.1% is achieved on UER. These outperform both Systems 1 and 2. In particular,

this translates to a 17.1% relative reduction in UER compared with System 2, which also

employs NL.

It is clear from the results for System 3 that performance benefits significantly from

the combined probabilistic sublexical models of ANGIE and its duration model. While the

baseline system lacks any kind of statistical pronunciation model, the ANGIE framework

applies probabilistic reasoning to both word-internal sublexical phenomena as well as cross-

word phonological and coarticulatory effects. The lattar is due in part to the inclusion of

multi-word units that observe effects between adjacent words. These factors alone have

contributed to a superior understanding performance prior to introducing NL information.

Secondly, an integrated ANGIE-TINA in System 4 has exhibited superior understanding

performance compared with the more conventional N-best list post-processing in System 2.

As we postulated, an integrated search strategy enables more meaningful partial paths to

proceed.

When N is raised to 100, the ANGIE System 3 dues not improve significantly, although

for the ANGIE-TINA System 4, the understanding error improves to 13.6%. We can conclude

that the ANGIE-TINA guided search retrieves a greater number of correct paths from the

deeper network.

Final results for the morph-based experiments are tabulated in Table 4-4. It can be

observed that the WER of 11.8% in System 3m outperforms that of System 1 with 12.3%.

System Word Error Understanding
Rate (%) Error Rate (%)

1. SUMMIT Top 1 12.3 19.4
2. SUMMIT N-Best 13.4 17.0
3. ANGIE only 10.4 16.2
4. ANGIE-TINA 11.1 14.1



System Word Error Understanding
Rate (%) Error Rate (%)

3M. ANGIE only 11.8 18.1
4M. ANGIE-TINA 13.9 17.3

Table 4-4: Recognition and Understanding Performance for Two-Stage Systems. These use

morph lexicons instead of word lexicons at the first stage.

Similarly, for System 4m, understanding performance of ANGIE-TINA, at 17.3%, is compara-

ble to that of System 2 at 17.0%. From this, we infer that the sophisticated language models

of ANGIE and ANGIE-TINA recover most of the loss in performance in stage one incurred by

the morph lexicon.

It is noteworthy that in comparing the word-based systems against their morph-based

counterparts, the former utilize a word trigram at an early phase, in the first pass, whereas

the latter do not employ this information. Instead, at the word-level, they rely solely on

the bigram and ANGIE-TINA, applied only in stage two. We claim that performance would

further improve if a word trigram were incorporated.

An additional caveat is the observation that WER does not necessarily fall in accor-

dance with UER. This is apparent when we compare System I with System 2, System 3

with System 4 and System 3m with System 4m. In fact, a slight rise in WER emerges upon

imposing NL constraints for the following reason. Under some circumstances, the NL mod-

ule favors a candidate hypothesis which involves inserting an additional word error. This

hypothesis associates with a lower recognition score (derived from the acoustic and n-gram

language models alone). But this ultimately results in a more likely parse and the correct

intended meaning. The implication is that some word accuracy may need to be sacrificed

for the sake of improving understanding rate when considering the underlying objective of

extracting the true meaning or intent behind the spoken input.

We gauge the drop in performance from switching to morphs in stage one by computing

the morph error rate (MER). This is calculated in the same way as WER but at the level

of the morph unit. Equation 4.2 below defines MER.

Morph Error Rate (%) = 100 *Substitution + Insertions + Deletions (4.2)
Total Number of Morphs

From the single-stage morph recognizer, System 1m, the highest scoring hypothesis is se-
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System Morph Error

I Rate (%)

1. SUMMIT Top 1 10.8

im. Morph SUMMIT Top 1 12.8
3m. ANGIE only 10.9

Table 4-5: Comparison of Morph Error Rates for Selected Systems. See text for explanation.

lected. This is compared with (1) the morph decomposition of the best-scoring output of

the baseline word recognizer, and (2) the morph decomposition of the sentence output of

System 3m, using ANGIE only in stage two. Results are shown in Table 4-5. There is an

18.5% deterioration in MER (from 10.8% to 12.8% error) comparing the morph output of

System 1m with System 1. As these recognizers are identical except for the lexicon and n-

gram models, the degradation has directly resulted from relaxation of language constraints.

But MER falls to 10.9% for the morph output of System 3m, the two-stage ANGIE system.

That is, at the morph level, errors incurred by using morph units only in stage one have

largely been recovered by the ANGIE-only second stage.

Although we did not conduct comparisons on the basis of computation, note that all sys-

tems operate within near-real-time. Minimal effort was devoted to optimizing the computa-

tional speed, although it is a primary endeavor to take approaches that impose manageable

computational demands.

4.8 Discussion and Summary

These experiments have contributed to some encouraging results for an initial investigation.

We are led to conclude the following points:

* We have succeeded in incorporating NL, phonological and durational constraints un-

der a tightly coupled control strategy. By limiting an explosion in the size of the

search, it has been possible to apply the rich hierarchical linguistic knowledge in con-

cert, allowing the mutual interaction and feedback. This has significantly enhanced

performance.

* The phonetic network has been an effective means of interfacing the two stages. This

stands despite the fact that it was formed by a heuristic method from a very small

N-best list. The network contains only context-independent acoustic scores that are
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computed by an approximation, and all language model scores from the first stage

have been omitted. Furthermore, returning to the more basic atomic units enables

the second stage to propose an entirely new set of words. These are not tied to the

word or morph hypotheses selected by the first stage.

* Consequently, the second stage is a natural phase for applying the ANGIE parse mech-

anism over a small pruned-down set of phones. The results indicate that ANGIE's

powerful probabilistic sublexical framework accounts for much error reduction over a

system with no probabilistic phonological modeling.

" At this preliminary phase, our attempt to distinguish between low-level and high-level

information under a two-stage paradigm has proven to be viable. The performance has

been comparable with a state-of-the-art system. We attribute the positive results to

the predictive power of the morph units and their respective language models. These

encode the necessary syllable-level information as well as other valuable linguistic

context. However, under the narrow topic domain of JUPITER, there are in fact a

greater number of morphs than words. But for very large corpora, the number of

morphs will eventually be dwarfed by the number of words they map to. In any case,

a much larger set of words can be generated from the current set of morphs in use.

This sort of generality will be advantageous when we encounter OOV words.

This chapter has dealt with an initial experiment but has served to successfully validate

some of our fundamental ideas. There is an array of issues associated with this current sys-

tem that we will proceed to tackle. First of all, the first stage remains far from being domain

independent. The morph units are intentionally designed to preserve as much contextual

information as possible, and as a consequence, they are inextricably intertwined with the

topic domain. We have yet to show that a more general set of units could possibly afford

comparable predictive power. By the same token, the high performance of the two-stage

architecture is linked with a heavy reliance on contextual knowledge used in the first stage.

When morphs are used, the morph trigram exerts a large degree of linguistic constraint.

This system would be ill-equipped to handle unknown words because the powerful n-gram

constraints, exercised by the first stage, are centered on the fixed vocabulary of morphs.

Therefore, we will address the issue of introducing more flexibility and generality in the

upcoming chapters. To do so, we ensure that more domain-independent yet constraining

knowledge is allotted in the first stage. This will begin by the integration of ANGIE models
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in the first-stage recognizer, examined next in Chapter 5.
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Chapter 5

A Finite-State Transducer Based

System

5.1 Overview

This chapter introduces some improvements from the two-stage architecture of Chapter 4.

First of all, we recapitulate some of the main concerns of the previous two-stage system,

and motivate the features of the new FST system. This is followed by a description of

the system architecture. We give an overview of the re-implementation of the first stage

under the FST paradigm. After this, we elaborate on our ANGIE-FST engine, the ANGLE

grammar developed for the FST, and the method used to generate the FST structure. The

main characteristics of the second stage will be briefly highlighted. This two-stage system

is used in a set of recognition experiments. Finally, we present the results and discuss some

implications for them.

5.2 Motivation

Now that a two-stage architecture with a phonetic network interface seems a feasible solu-

tion, let us focus on the remaining issues of the first stage. It has been seen that the previous

first stage in Chapter 4 still relies to a large extent on domain-specific contextual informa-

tion. This holds in spite of using a morph lexicon which embodies greater generality than

words. As already stated in Section 2.4, resorting to the most generic units such as those at

the phone or phoneme level would offer maximal domain-independent generality. But this
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entails a sacrifice on word accuracy, by confounding the recognizer with too many alterna-

tive hypotheses. Our strategy is to amend our first stage by gradually introducing more

domain-independent low-level knowledge. At each step, we must ensure that performance

is not compromised beyond acceptability.

With this strategy in mind, our next goal is set to augment the first stage with ANGIE

sublexical probabilities. Doing so brings us increased linguistic constraint and enhanced pre-

dictive power, but it is also compatible with the objective of using only domain-independent

knowledge. As explained in Chapter 3, the problem of integrating the ANGIE framework

early into the recognition search has been formidable. Fortunately, we are facilitated here

by (1) the use of a smaller set of units, namely the morphs, and (2), more importantly, the

advancement of FST technology in our segment-based recognizer. Let us revisit the main

advantages in adopting an FST framework:

1. FSTs supply us with a parimonious means of representation for partially capturing

ANGIE's models among other knowledge sources. When multiple disparate knowledge

sources are all represented as FSTs, their combination and application is transparent

to the recognition search.

2. They allow the entire language search space to be compiled into a single data structure

prior to recognition time. The FST is subsequently optimized via standard routines

for efficient run-time operation.

The FST paradigm folds ANGIE seamlessly and efficiently into an existing segment-based

recognizer. It turns out that this flexibility will be a great asset when more complexity is

added to the representation. Our last point will become more apparent to the reader in

later chapters.

5.3 System Architecture

The new two-stage architecture is a natural extension of the preliminary system introduced

before. It is illustrated in Figure 5-1. Again, the first stage is a syllable-level recognizer.

The recognition engine employs the same segment-based recognizer, SUMMIT. But this has

been upgraded to use weighted FSTs to represent all the search constraints. A single pre-

computed FST will embed the combined linguistic information. These include the ANGIE
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Figure 5-1: Block Diagram of FST-Based Two-Stage System.

sublexical probabilities and a trigram language model on a lexicon of morphs. This will be

explained in Section 5.4. The first-stage morph hypotheses are reduced to their phonetic

sequences, and an optimized phonetic network is automatically generated. Note that the

network generation phase of the previous system has been eliminated. The second stage,

described in Section 5.5, is similar to our previous work integrating ANGIE and TINA together

in a single search, and outputs sentence hypotheses.

5.4 Stage One: The FST-Based System

The current first stage is the same segment-based recognizer used in the previous experi-

ment. It has been modified to utilize weighted FSTs to define its search space. This work

has been previously described in [110]. As first introduced in Chapter 3, the recognition

task is now modeled in terms of an FST composition. We defined an FST, U, which mod-

els the entire search space via a series of transductions. A recognizer's role is to seek the

highest-scoring path through a space covered by U. Conventionally, it is computed as:

U = C o P o L o G
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where

* C maps context-dependent diphone labels of the acoustic model to context-independent

labels,

* P applies phonological rules,

* L is the lexicon mapping pronunciations to words, and

* G is the language model.

In our work, one single FST is generated to transduce context-independent phone labels

to morph labels. This is the role of the ANGIE-FST which embeds ANGIE probabilities in

its arc weights. Thus, it functions to perform phonological and sublexical modeling along

with lexical access, P o L, within a single step. For G, these experiments will consider both

bigram and trigram models on the morphs. FSTs are easily generated from n-gram models

from standard algorithms.

In striving to work under near-real-time conditions, we optimize on efficiency as much

as possible. And so it is preferable to work with pre-composed FSTs whereby all the possi-

ble search paths and the linguistic scores are computed a priori. Greater efficiency is also

achieved when a standard optimization is run beforehand. As remarked earlier, the routine

involves determinization followed by minimization, which redistribute the scores without

altering the overall search paths. These routines generally lead to more compactness. But,

in our experience, caution must be taken to design FSTs that are actually determinizable 1

Determinization allows arcs of the prefixes of sequences to be shared, thereby delaying the

outputs. This may cause an initial expansion in the size of the FST. Minimization promotes

sharing of arcs at the ends of sequences, and pushes outputs from the end towards the be-

ginning. In cases where determinization causes an expansion in the FST size beyond that

which can be handled by the computer, subsequent manipulation including minimization is

no longer feasible. Alternatively, "on-the-fly" operation requires less memory but will slow

down the recognition search process significantly. Hence, with the trade-offs between mem-

ory requirements and run-time speed, designing determinizable and compact pre-composed

FSTs has been a principal consideration. The experiments in this chapter all deal with a

system that uses the pre-computed FST U. This is pre-loaded into the recognizer prior to

recognition.

"Discussions of determinization are available in the literature [71].
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Figure 5-2: Morph-Based ANGIE Grammar Parse Tree. This represents the morph bos+

for the word boston. The morphology layer simply categorizes the morph bos+ as a stressed

syllable.

The first stage outputs phonetic networks that conform with the FST format. They

are optimized via the same minimization and determinization algorithms. These networks

contain context-independent phone labels along with scores (derived from both the acoustic

and language models) as the arc weights. These scores are added to the second stage scores

with a weight which is empirically determined during development. The next sections will

examine the ANGIE-FST in greater detail, beginning with the ANGIE grammar that is tailored

for this system.

5.4.1 The ANGIE Grammar

The ANGIE grammar for the JUPITER domain has been re-designed to contain only up to

the syllable-level. This is intended to create a leaner ANGIE grammar that would be more

suitable for converting to a compact FST2 . As the syllable-level first stage uses a morph

lexicon that coincides with the ANGIE second-tier morph lexicon, a convenient way to prune

down the ANGIE grammar is to discard information above the morph level, using only the

single lexicon of morphs.

Figure 5-2 depicts a typical parse tree for this grammar. It represents a realization of

the morph bos+ which is manifested in the word boston. Notice that the morphology level,

which previously encoded morphemic identity such as PREFIX, STRESSED ROOT, and so on,

2 This also reduces dependence on the word lexicon.
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bc : bos+

b:
bo: bos+

ao :

bcl : bos+
<Pau>;'<pau>

aa :
b : bos+

Figure 5-3: A Simplified FST for the Morph "bos+" in Boston. Labels on the arcs denote
the inputs and outputs, separated by a ":". Situated in the self-looping arc, a "#" is a special
symbol denoting a morph boundary, as the arc returns to begin another phonetic sequence
belonging to the next morph. The pause marker, "<pau>", marks the beginning and end of
a sentence.

has been altered. This now only distinguishes between stressed and unstressed syllable and

consequently, knowledge of position within a word is omitted. We believe that this grammar

preserves a large portion of the constraint of the original because the important knowledge

such as the syllable phonotactics and phonological phenomena are retained. The loss in

morphological information will be partially recovered with the use of a tightly constraining

morph trigram model. At the same time, the grammar size will be significantly reduced,

benefiting the FST implementation.

5.4.2 The ANGIE FST

There are many ways in which the context-free formalism of ANGIE could be represented

in FST form. We contend with the need to capture the ANGIE spacio-temporal probability

space succinctly, maximizing both flexibility and compactness. Here, we describe an initial

approach that was selected for its ease of implementation. In Section 3.7.1, we mentioned

that a tree-like FST branching structure can capture all the alternative pronunciations of

each vocabulary word. This FST which transduces phonetic sequences to their matching

morphs, would enumerate multiple pronunciations associated with alternate ANGIE parses

of each morph in a compact structure. All the pronunciation variants of each morph are
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gathered from the training data. The FST arc weights are compiled from ANGIE probabilities

pre-computed during the training stage. The tree-like configuration allows for sharing of

the FST arcs by common phonetic sequences, thereby reducing space required to represent

all the allowable alternatives.

Recall from Section 3.7.1 that in this FST structure, two options are available to us:

a left-to-right or a right-to-left branching network. In the left-to-right branching style,

common phone sequences are shared advancing from the left, with the lexical symbols being

emitted at the end of a sequence. The opposite occurs in the right-to-left branching style

where sequences are shared from the right and lexical symbols are emitted at the beginning

of the phone sequence. During the course of our investigations, we felt that it was more

intuitively pleasing to choose a left-to-right configuration. As the recognizer proceeds left to

right, it indeed seems more natural to assume a left-to-right branching framework where the

lexical units are only known with certainty at the end of the phonetic sequence. However,

we ultimately adopted the right-to-left style due to computational concerns. During FST

composition of the ANGIE-FST with the morph n-gram model, the delayed output of the

left-to-right network caused the creation of many superfluous dead-end states which, due to

the specifics of the algorithm, could only be cleaned up at the termination of composition.

Thus, this over-generation of extraneous states excessively consumed memory resources,

causing the FST composition to fail. This did not occur in the right-to-left branching

alternative.

Constructing the FST involves an initial phase of training the ANGIE grammar and

compiling ANGIE probabilities in the usual manner. Then, all possible phone transition

for all morphs are discovered from the training data, and collapsed into a right-to-left

branching tree structure. Figure 5-3 depicts an example FST for the bos+ morph whose

parse tree was illustrated in Figure 5-2. As analogous with a standard pronunciation graph,

the structure will map out all the allowable variations on pronunciation for each lexical

morph during recognition time. Which transitions can take place in the FST is entirely

mandated by the existence of training instances, and the scores will be dictated by the

trained ANGIE grammar. ANGIE phone terminals are utilized as the input alphabet, and

the output strings comprise the morph lexicon. In the left-to-right branching structure,

common phone sequences from the right end are collapsed onto common arcs. And morph

labels are emitted at the beginning (on the left-most end of a branch). A self-looping arc
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Figure 5-4: Step by Step Summary of FST Generation Procedure.

brings the path back to the start of the next morph to begin the next phonetic sequence.

A guide to the FST generation algorithm is provided in the next section.

5.4.3 FST Generation Procedure

To begin with, a set of automatically generated forced alignments is required both to attain

a trained ANGIE grammar and as training data for the FST generation. As done previously,

this is obtained by seeding on a baseline SUMMIT recognizer. The step-by-step procedure

(illustrated in Figure 5-4) used to compute the scores and phonetic transitions is set out

below.

1. Train grammar.

An ANGIE grammar is trained from a set of training utterances.

2. Compute allowable phone transitions.

A second pass through this training set is performed to compile a structure that

accounts for all phonetic sequences that occurred within training. For each morph,

an ANGIE parse tree is obtained for the respective phonetic realization. The columns
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of the parse tree are recorded from the rightmost end. A left-branching structure is

successively compiled by collapsing columns of the same phone terminals, advancing

backwards (from right to the left).

At the same time, the score for each partial phonetic sequence as we traverse from

the right across the graph is recorded in an array. The score for any partial phonetic

sequence is computed by summing the corresponding column scores. Identical partial

phonetic sequences may differ in score because, where the corresponding morphs dif-

fer, the associated ANGIE parse trees are also different, and therefore the respective

columns score3 differently.

3. Compute FST arc weights from ANGIE scores.

Successively compute the arc scores from right to left in a recursive algorithm:

Initialization.

Compute-scores-for-leftarcsof(R):

foreach (A = left-arc-of (R)):

arc-score(A) = max.score(A) - arcscore(R)

Computescoresfor-left-arcs-of (A)

where

maxscore(A) = max{sjj = 1,2,..} (5.1)

and sj is the jth score for a particular phonetic sequence that is found by traversing

the FST backwards from the end phone up to arc A. Essentially, this algorithm

computes the best incremental score, among all the different ANGIE partial parses, for

choosing the arc transition as we traverse from right to left. At any arc within the

FST, the score of a path to the end will be the best score among all parses recorded.

As we complete a phonetic sequence of a particular morph, the total path score will

sum towards the total morph score from an ANGIE parse tree.

4. Compute inter-syllable arc transitions.

3 Definition for a column score is found in Chapter 3.
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The transition from the end of a syllable to the first phone of the next contains an arc

weight that is a simple phone bigram probability computed at syllable boundaries.

This is identical to ANGIE's treatment of syllable boundary probabilities.

After the construction of the ANGIE-FST, it is composed with the language model FST.

The subsequent FST is determinized and minimized. This resultant FST combines both the

language model and ANGIE probabilities, and is uploaded by the recognizer at recognition

time.

5.4.4 Additional Comments

As the recognizer traverses the ANGIE-FST, the search space is perturbed by the FST arc

weights which encapsulate the hierarchical constraints of the original ANGIE. Along a single

branch or path, the arc weights are redistributed among the arcs, although the total score

will exactly replicate the highest ANGIE parse score found for this phonetic sequence. The

resulting score will reflect the likelihood of that particular pronunciation. Note that the

compactness has been achieved by discarding much information such as the nodes in the

ANGIE hierarchy and multiple alternate parses. Most of all, only the observations realized

in the training data are recorded, and sequences that have not been previously manifested

will not be supported. In fact, we have essentially ignored the remainder of ANGIE's vast

probability space, and foregone its powerful generalizing abilities. An immediate problem

is that of data sparsity. As a short-term solution, we have ensured adequate coverage

by generating additional phonetic sequences to artificially boost the training data. Using

the trained grammar, ANGIE is operated in generation mode to output sequences for each

morph in its lexicon. These sequences are licensed by the dynamic parser but may not have

occurred in training. Hence, we expect this to aid robustness to our FST. We shall return

to the discussion on the FST structure and its shortcomings later in this chapter.

5.5 Stage Two

The second-stage system is very similar to the one previously described in Chapter 4. Again

the algorithm can be run in two modes (1) the ANGIE system only and (2) the ANGIE-TINA

integrated search. For the search routine, the same stack decoder is used to coordinate
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the partial theories proposed by both of the TINA and ANGIE parsers. As described in

Section 4.6.3, the search directly implements a robust parse mechanism for TINA.

The fundamental difference from the previous system is the nature of the acoustic-

phonetic network input. These networks are now in FST format and devoid of timing

information4 . The FSTs are topologically sorted such that each node corresponds with one

time boundary, and arcs beginning/ending at the same node correspond with segments that

begin/end at the same boundary. This does not impact upon the stack search which simply

proceeds from left to right along these sorted nodes, though, loss of timing information

forces us to abandon the use of duration models. On the other hand, by applying the FST

optimization algorithms prior to the search, the network sizes are optimized, contributing

to the search efficiency.

Let us highlight the difference in the application of ANGIE in the first versus second

stage. In the second stage, a full word-level ANGIE grammar is used which therefore pro-

vides additional information from the morphological layer, not supplied in the earlier stage.

Secondly, the dynamic ANGIE parser can generate a much richer probability space than the

ANGIE-FST employed in stage one. Given a small phonetic network as input, a more com-

plete set of hypotheses is supported by the ANGIE parser than by an ANGIE-FST. Hence, it

is in our interest not to convert the second stage into an FST paradigm but to allow the

full dynamic parse mechanisms of both ANGIE and TINA to interact and perturb the search

space.

5.6 Experiments

5.6.1 Method

As we did in Chapter 4, a set of recognition experiments in JUPITER is conducted. The

training corpus, the word lexicon and the second stage ANGIE and TINA grammars are

identical to the ones used earlier. For the first stage, the morph-level grammar is much

smaller than the word-level grammar. The number of unique ANGIE columns that are

instantiated by the training data for the word grammar is 748, whereas this is only 413

in the morph-level grammar. A smaller number of columns indicates a smaller grammar

"If timing information were retained, it would decrease opportunities for merging identical theories, and

therefore balloon the search space.
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and a reduced number of parameters in our probability model. An ANGIE-FST is generated

from the morph-level ANGIE grammar. It contains 7873 arcs and 1540 states. There are

approximately 2.3 alternate pronunciations per morph. The phonetic networks from the

first stage are restricted to a maximum of 1000 arcs.

These experiments will be compared with the single-stage SUMMIT baseline systems used

in the previous chapter. To recapitulate, these are:

" System 1 SUMMIT Top 1: The best scoring sentence candidate.

" System 2 SUMMIT N-Best (N = 10): The most likely sentence according to a

TINA-based NL post-processor.

As for the evaluation, we report on both understanding error rate (UER) and word error

rate (WER). Experimental results under several conditions are ascertained for the same 352-

sized set that was quoted in Chapter 4. For now, we refer to this set as a development set.

Note that the parameters for this system were determined on another held-out development

set. Finally, in order to ensure the validity of our results, the system is tested on a second

previously unseen test set of 362 utterances.

For comparison purposes, we compose the ANGIE-FST with both a bigram (Systems 3

and 4 in Table 5-1) and a trigram (Systems 5 and 6). In both cases, the ANGIE-FST is

pre-composed and optimized with the language model, leading to faster computation at

run-time. The pre-composed FST with a bigram contained apprcximately 450,000 arcs and

the one with a trigram contained approximately 2 million arcs. For the second stage, we

compare the successive gains from augmenting with ANGIE only (Systems 3 and 5) and with

ANGIE-TINA fully deployed (Systems 4 and 6).

5.6.2 Results and Analysis

Table 5-1 depicts results for the development set. In our previous work in Chapter 4, it was

shown that a second ANGIE-TINA stage can enhance understanding performance on a word-

level first-pass recognizer as well as recover performance losses incurred when the first stage

was stripped of word-level constraints. The current results also reflect the same trends.

System 3, using ANGIE only and a morph bigram, already performs comparably with the

baselines, Systems I and 2. This is in spite of the relatively weak constraints of the morph

bigram model of the first pass. In particular, System 3 equals the baseline System 1 in
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System WER (%) [UER (%)]
1. SUMMIT Top 1 12.3 19.4
2. SUMMIT 10 Best 13.4 17.0

3. ANGIE (Bigram) 12.3 17.0
4. ANGIE-TINA (Bigram) 12.6 14.5

5. ANGIE (Trigram) 10.4 13.4
6. ANGIE-TINA (Trigram) 10.7 12.2

Table 5-1: Word and Understanding Error Rates for the Development Set.

System MER (%)
1. SUMMIT Top 1 10.8
5 & 6. Trigram First Stage Top 1 9.7
5. ANGIE only 9.3

Table 5-2: Morph Error Rates for the Development Set. The first line, the SUMMIT top 1,
is the top scoring sentence from the single-stage baseline. The second line gives the morph
output of the first-stage recognizer that is used in the two-stage architecture of Systems 5
and 6. A morph trigram is used in the first stage. The third line is the second stage output
of the two-stage system of System 5, where ANGIE is used without TINA.

WER but improves on UER. This would suggest that the ANGIE-enhanced first stage has

an even greater impact on understanding than word accuracy. When TINA is added in the

second stage, UER drops significantly. This offers a 14.7% relative reduction to UER (from

17.0% to 14.5%) compared with System 2.

When a morph trigram is used in the first stage, even more improvement is achieved with

both ANGIE only (System 5) and ANGIE-TINA (System 6). Again examine the Systems 1 and

5 which do not employ NL. System 5 gains 15.4% relative reduction in WER (from 12.3%

to 10.4%) and, much more substantially, a 30.9% relative reduction in UER (from 19.4%

to 13.4%). This reinforces the observation that the ANGIE sublexical models have greatly

benefited understanding. The best understanding performance is achieved by System 6,

with a 28.5% relative reduction to UER (from 17.0% to 12.2%), compared with System

2. Systems 5 and 6 outperform all the results quoted in the previous chapter. Also, to

further validate our observations in Chapter 4, adding TINA in the second stage consistently

decreases UER, accompanied by a small WER degradation.

These encouraging performance gains can largely be attributed to the ANGIE scores

incorporated into stage one. This is further substantiated when we consider the morph
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System WER (%) UER (%)
2. SUMMIT 10 Best 14.9 20.8
6. ANGIE-TINA (Trigram) jF 11.2 15.9

Table 5-3: Word and Understanding Error Rates for the Test Set.

error rates (MER) in Table 5-2. MER is computed as defined in Chapter 4. We report the

MER for the baseline System 1 and for the best scoring hypothesis in the first pass when a

morph trigram is used. There is a 10.2% improvement (from 10.8% to 9.7%.) This suggests

that considering the first stage alone, a morph-based ANGIE-FST recognizer is superior to a

word-based baseline recognizer, a reflection on the power of ANGIE's sublexical constraints

when combined with a morph trigram. When we consider the MER of the second stage

output (in ANGIE only) at 9.3%, we can directly infer that the word-level ANGIE grammar

still contributes additional knowledge, and enhances performance through its use of higher-

level information, even though much performance improvement was already reaped in the

first stage by the morph-based ANGIE.

The acoustic scores on the ANGIE-FST arcs are weighted by a scaling constant which

is determined on a separate held-out development set. During the investigation, we no-

ticed that an excessively large scaling factor causes the recognizer to proliferate hypotheses

of commonly occurring subword structures, such as morphs pertaining to mono-syllabic

function words. By contrast, an overly small scaling factor translates to a significant per-

formance degradation. Although the bigram and acoustic models supply the constraint,

multiple alternate pronunciations presented by the FST confound the recognizer search. Of-

ten wrongful hypotheses associated with unlikely pronunciations are selected. We conclude

that the ANGIE probabilities are crucial in steering the search through many possibilities of

pronunciation variation. This is most beneficial for recognizing spontaneous speech.

To further validitate our findings, we attained more results on an independent test set

of 362 utterances. The results are set out in Table 5-3. When comparing with the 10-best

baseline, a 23.6% relative reduction (from 20.8% to 15.95%) in UER was achieved using a

morph trigram ANGIE-FST first pass with ANGIE-TINA second pass.
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5.7 Discussion

The above experimental results have established a promising start to a powerful low-level

recognition engine. Most of our gains are centered on augmenting the first stage with ANGIE.

In part, we have overcome the hurdle of incorporating a highly complex set of hierarchical

models efficiently into the recognizer. And this was accomplished within near-real-time.

As a result, the first stage is endowed with a highly effective probabilistic mechanism for

modeling pronunciation variability embedded in a much more tractable FST structure. In

summary, this system has exhibited performance gains over the baseline for the following

reasons:

" Subword patterns including phonological processes have been automatically learned

from the training data and modeled statistically.

" Then, compared with the baseline, a larger number of alternative pronunciations are

allowed. The probability models effectively guide the recognizer to select the correct

one.

* Furthermore, the ANGIE-FST implicitly encompasses constraint from the longer dis-

tance information that ANGIE embodies.

The above points hold even when using the smaller syllable-level ANGIE grammar. This

demonstrates that much relevant contextual information resides at the syllable phonotactics

and phonological levels. To our satisfaction, the results indicate that benefits gleaned

from ANGIE are reflected more so in terms of understanding performance. In our view,

understanding improvement is critically more important than word accuracy.

However, let us proceed to identify a key remaining issue: the FST generation relies

on memorizing observations in precise sequences from training data. This has gained us

compactness in representation by only recording a portion of the ANGIE probability space.

Nonetheless, it is fundamentally at variance with the philosophy of ANGIE's design, which

is to predict the likelihood of sequences that are not instantiated during training using

implicit knowledge gathered from training. The FST does not fulfill this as it fails to accept

phonetic sequences that have not been previously encountered. It explicitly captures only

patterns from the training set. Instead of generating probabilities on-the-fly like ANGIE,

probabilities are pre-computed and assigned to the FST arcs. A temporary solution to

address this has been to utilize additional training data, attained from using ANGIE in
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generation mode. The artificial training data simulate realizations that capture a larger

piece of the ANGIE probability space, thereby enhancing FST coverage. Although this is an

ad hoc method, it suffices in the meantime for alleviating sparse data problems associated

with alternative pronunciations of in-vocabulary data. And this has been reflected by the

successful results in our experiments. But nevertheless, it inherently lacks the dynamic and

generative characteristics underlying ANGIE.

On closer examination, some fundamental limitations revolve around the right-to-left

branching configuration. Observe that all the vocabulary items (in our case, morphs) are

emitted at the beginning in time. This was designed in the interest of optimizing the

composed FST size. During composition with the n-gram model FST, ANGIE and n-gram

scores are combined at the beginning of the phonetic sequences. In this way, early in

the search path, the recognizer is forced to propose in-vocabulary word candidates, and

is precluded from considering an unknown word possibility. It translates to a top-down

approach, as opposed to the bottom-up method where ANGIE is called to propose likely

word candidates, at the end of phonetic sequences.

Moreover, the structure embodies none of the sharing of common subword structures

performed within ANGIE. Quite the opposite, it "undoes" this, as all the morphs, including

the numerous homomorphs, are represented by distinct branches in the FST. The size of

the FST grows in proportion with both the size of the morph vocabulary and the training

data. Such redundancy seems to contribute to inefficiency.

Ultimately, this FST is inextricably confined to the pre-determined recognizer vocab-

ulary which in itself is a contextually rich set of morph units, with too much reliance on

the topic domain. In order to support OOV words, more flexibility would inevitably be

necessary. This should necessarily be achieved by both introducing more generality in the

lexical units, and rethinking the way the FST paradigm portrays ANGIE.

5.8 Final Remarks

In the next chapters, we pursue the path of placing more domain-independence in the front-

end towards the goal of adding more flexibility and generality. The first stage will need to

support novel word constructs, that are independent of any fixed word lexicon. Chapter 6

will focus on a new enhanced ANGIE grammar and a re-implementation of the ANGIE-FST.
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These will enrich the contextual information of the first stage, while moving away from

dependence on high-level domain-specific knowledge.
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Chapter 6

Improvements for the First Stage

6.1 Overview

This chapter will examine in depth the development of two innovative ideas for the first

stage. These are (1) the use of ANGIE to simultaneously model grapheme information in

conjunction with phonological and other sublexical knowledge, and (2) a new method for en-

capsulating ANGIE in an FST which can support previously unseen sequences. In Section 6.2,

the principal motivating issues underlying these ideas are highlighted. In Section 6.3, our

methodology for incorporating spelling into the ANGIE grammar is detailed. This is ac-

companied by an explanation of the letter-phoneme units, invented for this grammar. The

following section will proceed to explicate the new FST structure, the column bigram. Here,

we outline the algorithm used to generate this FST, and explore the implications of this

new flexible design. Section 6.5 considers a revised two-stage system with the new features

incorporated. We present some preliminary results from a JUPITER recognition experiment

using only in-vocabulary data.

6.2 Design Considerations

Let us identify two remaining design issues:

1. Maximizing linguistic constraint: introducing more low-level language constraints to

improve performance.

2. Increasing flexibility and generality: allowing the recognition of phonetic sequences
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that have not occurred during training as they pertain to OOV words.

These are dual goals that critically impact our system's capability to handle unknown words

or dynamic vocabulary. Yet they are conflicting. Tightening constraints, such as by using

more contextual knowledge, usually hampers flexibility by heightening domain specificity.

(This would oppose our goal for a domain-independent first stage.) Alternatively, allowing

more flexibility in the linguistic models, such as through using more general units (for

instance syllables), usually involves a relaxation of constraints. In doing so, we forego

some contextual information, leading to deterioration in performance on in-vocabulary data.

For the systems presented in previous chapters, excellent performances on in-vocabulary

sentences have been observed. But these designs would poorly handle the incidence of

unknown words, let alone dynamic vocabulary. Hence, the focus needs to be on adding

more flexibility without losing these performance gains.

Our first measure is to augment the linguistic constraints with more low-level domain-

independent knowledge. One such source of knowledge can be found in grapheme informa-

tion. In Chapter 1, we mentioned that grapheme information has rarely been used in the

past to build acoustic models directly. On these occasions, the graphemic symbol set was

used in place of the phoneme set. Naturally, this led to an unacceptable drop in performance.

In our case, we argue for using a set of linguistic units that embody both graphemic and

phonemic properties. By loading our mode of representation with richer contextual knowl-

edge, we attain finer-grained models which remain, to a large extent, domain-independent.

These units are integrated within the ANGIE framework in such a way that the pre-terminal

to terminal layer serves to characterize phonological processes as before but also models

sound-to-letter rules. The result is that the grapheme information is combined seamlessly

with sublexical information to predict phonetic sequences.

In Chapter 5, we demonstrated the success of using an ANGIE-FST, but it was clear that

a new FST structure is needed for our purposes. In particular, we desire an FST structure

which firstly covers the space of possible parses that is spanned by ANGIE, and secondly

allows some access to the elements of the internal parse structure. The first point is critical

in accepting previously unseen sequences from unknown words that would be supported by

the ANGIE parse mechanism. As will be seen, this is accomplished by adopting an ANGIE

column bigram method.

116



A third point of consideration is the set of lexical units in the first stage. Thus far, we

have relied upon a set of highly context-rich morph units. As these potentially combine to

form many novel words not set out in the existing JUPITER word lexicon, they offer some

generality. But in actuality, they are inadequate in supporting sequences from the vast

possibility of unknown words. We will see in Section 6.5 that a new set of sub-morph units

are derived by splitting stressed root morphemes into smaller component units. This will

preserve much of the predictive power afforded originally by this lexicon but also expands

its power to generalize where it is most necessary.

Finally, it must be noted that the first stage outputs a phonetic network. That is, the

morph hypotheses of the first stage are reduced to the corresponding phonetic sequences.

This can be viewed as particularly beneficial as the system is not committed to the early

hypotheses derived solely on low-level linguistic knowledge. Although these knowledge

sources need to be reliable to select the correct portion of the search space, the contextual

information, including the morph sequences, the spelling hypotheses and the ANGIE parses,

is abandoned. The function of the first stage is simply to partially prune the search space,

whereas the second stage has the opportunity to recover any errors by returning to the

phones, the most basic atomic units of the recognizer, and using more powerful, word-level

information from the outset.

6.3 A Spelling-Based ANGIE Grammar

6.3.1 Introduction

There are two potential benefits for incorporating grapheme information. First, by equip-

ping models with spelling knowledge, we could directly deduce spellings from phonetic

hypotheses at unknown words. Spellings can be accessed within the recognizer models,

thus obviating the need for a separate sound-to-letter module. We imagine that having

quick access to putative spellings for an unknown word can provide intuitive guesses for its

possible identity. Secondly, as already mentioned, we may exploit spelling information as

another form of low-level domain-independent linguistic constraint.

Given ANGIE's rich probabilistic structure and its potential to be integrated seamlessly

within our recognizer, we intend to use it as a mechanism to encode the grapheme informa-

tion. This will allow graphemics to combine and interact with other sublexical phenomena
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to predict phonetic sequences. In the past, ANGIE has already been applied to the dual

tasks of sound-to-letter/letter-to-sound conversion, in which letter units are used in lieu of

phones at the terminal layer of the parse tree. The success gained there has reaffirmed that

orthography can systematically exhibit cues that reflect structural information such as mor-

phology, syllabification and phonemics. And this relationship between sublexical patterns

and graphemics can be captured and exploited in the ANGIE parse tree. Moreover, this was

achieved in spite of the extent of irregularities in English, which contains many variations

from dialects, borrowings from other languages and so forth.

We surmise that graphemics can aid prediction of phonetic sequences when combined

with the multi-layer sublexical models in ANGIE. In fact, our strategy is to incorporate

grapheme information in the context-free grammar of ANGIE, effectively integrating the

knowledge within the pre-terminal units. This differs from past uses of graphemics [2, 92]

as it does not replace phoneme-based models but enhances the existing linguistic frame-

work, preserving the terminal layer for incoming phonetic sequences. The resulting parse

tree characterizes generic word substructures, phonological processes and sound-to-letter

conversion within the same probability models. The units of the pre-terminal layer now

form a new set of symbols called letter-phonemes that embody both pronunciation and

spelling, in place of the more conventional phonemic set that was previously used. The

next section will comprehensively detail the development of the letter-phonemes.

6.3.2 Letter-Phonemes

In the ANGIE grammar, the phoneme set, that resides at the pre-terminal layer, has been

expanded and molded into a new symbolic representation, the letter-phoneme set. These

letter-phonemes are designed by annotating letter units with carefully chosen characteristics

that distinguish phonemic correspondence and other linguistic properties, including stress,

context and syllable position. To familiarize the reader, we provide two initial examples

below.
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Stressed Long Vowels aJI+, ai-l+, ay-l+, eAl+, eal+, eaux-l+, ee-l+, ei-l+, eigh-l+,
eille-l+, ew-l+, ey-l+, i-l+, iew-l+, igh.l+, ioux-l+, is-I+, o-l+,
oa-l+, oe-l+, oh..l+, oo-l+, oudl+, ow-l+, u-l+, ue-l+, uLl+,

y-l+, yedl+, yu-l+
Stressed Lax Vowels a-x+, at-x+, e-x+, ea-x+, iLx+, o-x+, oo-x+, orvx+, otax+,

u-x+, y-x+

Stressed /I/ and aal+, ahr+, air+, aire+, al+, all+, ar+, are+, arr+, aul+,

/r/ Colored Vowels aw+, e+re+, ear+, eir+, el+, elh+, ell+, elle+, eoul+, er+,

ere+, eur+, il+, ill+, ille+, ir+, ol+, ole+, oll+, oor+, or+,
ore+, orr+, oul+, our+, owl+, r+, re+, uer+, ur+, urr+,

yr+

Other Stressed Vowels a+, ah+, ao+, as+, au+, aw+, eh+, o+, oi+, ois+, ou+,
ow+

Unstressed Rhymes a-uns, ah-uns, ai-uns, air.uns, aluns, an-uns, arvuns, au-uns,

ay.uns, e-uns, ea-uns, eau-uns, ee-uns, eigh-uns, etuns, eltuns,

en.uns, ersins, es-uns, eu-uns, ew-uns, ey-uns, Luns, ia-uns,

ieuns, iLuns, ille-uns, in-uns, inguns, iratns, ire-uns, le-uns,
o-uns, oe-uns, oLuns, on-uns, oo-uns, oruns, ou-uns, our-uns,
ow-uns, rauns,reuns, u-uns, utuns, uriuns, ureauns, y-uns,
yLuns, yu-uns

Onset Consonants b, cI, ce!, ch!, cs!, dl, er!, f!, g!, ge!, gil, h, jI, jul, k!, knl, 1!,

1h., m!, n!, ol, p!, ph!, pp!, qul, r, rhl, s!, shl, ss!, sul, tI, ich!,

thl, ti!, twl, ul, vI, w!, whl, y!, zI, zh!

Non-onset Consonants +ve, b, bb, be, c, ce, ces, ch, ck, ct, d, d*ed, de, dge, dne, f, fe,

if, g, ge, 99, gh, gi, is, k, ke, 1, le, L, m, me, mm, n, n+t, nch,
nd, ne, ng, nk, nn, nt, p, pe, ph, pp, r, s, s *pj, se, sh, she, sk,

ss, st, t, tch, te, th, the, ti, tt, tte, tts, u, v, ve, w, x, y, z,

ze

Function Words a.ey, a.fcn, ai-fcn, arejfcn, ejfcn, edthe, eahjfcn, ee.fcn, enfcn,

ere-fcn, ey-fcn, Zi', Lfcn, iajfcn, ilLfcn, ofcn, odto, oe-fcn,

orfcn, ouLfcu, ourfcn, ro-fcn, u-fcn, uhfcn, yfcn, you.fcn

Table 6-1: A List of Letter-Phoneme Categories. These are arranged in the major phonemic

categories. Stressed vowels are appended with a "+". '"L" appends a long vowel. "x"

appends a lax vowel. "uns" appends an unstressed rhyme. "!" appends a consonant in

onset position. "-fcn" appends vowels in function words. See text for further explanation

and see Appendix B for a list of meanings of annotations.
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The letter-phoneme /ti!/' represents a consonant in the onset position (annotated by

an "!") which is spelled with the letter sequences ti. This is exemplified by words such as

condition, precipitation and question. Hence, the phonemic representation can be the palatal

fricative /sh/ or the affricate /ch/. As with the original grammar, a set of hand-written

context-free rules specifies the allowable phonetic realizations of each letter-phoneme. The

rule associated with /ti!/ is given by2:

ti U>[h] (sh ch)

[tcl] ch

This rule restricts the phonetic realization to a /sh/ or /ch/ phone, where each can be

optionally preceded by a /jh/ phone. The /ch/ phone may be preceded by the stop closure

/tcl/.

The letter-phoneme is also associated with a high-level rule:

UONSE T => (. .. ti! ... .)

which specifies that this unit can be a child node of the category UONSET, for an onset

consonant in an unstressed syllable.

'Letter-phonemes are depicted much like phonemes in our notation. They are italicized and enclosed in
"//"s.

2In our notation for a context-free rule, alternative symbols are enclosed in parentheses ("()"s), and
optional symbols are enclosed in brackets ("O"s). Enclosing "//"s are omitted on the units on the left and
right hand sides of the rule. This is done for clarity.
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Another example is the letter-phoneme /ear+/. Phonemically, this unit covers two

adjacent units, representing a vowel followed by an /r/ phoneme. The "+" indicates that

this letter-phoneme appears in a lexically stressed syllable. The context-free rule associated

with /ear+/ is shown below by:

ear+ => ihr (rx r)

ehr (rx r)

er [r]

On the right-hand side are the phonetic units that correspond with those in the acous-

tic models used in the recognizer. /ihr/ is a context-dependent /ih/ phone followed by

retroflexion. Similarly, /ehr/ is a context-dependent /eh/ phone followed by retroflexion.

The first line of the rule is applicable when /ear+/ appears in the word pearson. The second

line is applicable in the word wear. And the last line is applicable for /ear+/ in the word

heard. /ear+/ is also associated with the following high-level rule that specifies that it can

only appear within a stressed nucleus:

NUC+ .. . /ear+/ ... )

Effectively, these letter-phonemes are subdividing the phoneme space into more specific

units, resulting in finer-grained probability modeling. Previously the phoneme-to-phone

layers, by and large, capture phonological processes. But now the functionality of the pre-

terminal to terminal layers has widened to capture sound-to-letter rules as well, thereby

exerting tighter constraint.

As the lexicon in ANGIE is organized into two tiers, vocabulary words are defined in terms

of their morph baseforms, whereas morphs are defined by their phonemic sequences. For the

new grammar, every morph is associated with a letter-phoneme sequence in the baseform.

In some cases, a morph can be associated with more than one letter-phoneme sequence

to represent multiple alternate pronunciations. Table 6-2 exemplifies a morph lexicon for

the stressed roots rain+, cane+ and can+, and a suffix -tion. From the lexicon, both
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Morph Lexicon

can+ : c! a+ n
cane+ : c! a..+ ne
rain+ : r! ai-l+ n
-tion : ti! on-uns

Table 6-2: An Excerpt from the Letter-Phoneme Morph Lexicon. Example morphs are the
stressed roots can+, cane+ and rain+ and the derivational suffix, -tion.

the morph spelling and pronunciation can be directly inferred. As observed in the table,

letter-phoneme sequences can be stripped of their annotations and concatenated together

to synthesize the orthography. Meanwhile, the annotations encode phonemic associations 3 .

This attribute would be particularly useful during recognition time. It is envisioned that

a system may encounter a novel letter-phoneme sequence from an unknown word, and a

potential spelling is instantaneously deduced.

All the categories for the 289 letter-phonemes are listed in Table 6-1. These categories

are chosen by hand in an attempt to reduce perplexity and improve predictive performance

in both letter-to-sound and pronunciation variation. More examples of their associated

context-free rules are provided in Appendix C. Following are some properties that these

units describe:

* Vowels:

* Lexically stressed vowels are denoted by a suffix marker, "+".

* Long stressed vowels are appended with a "-+". For example, /i1+/ is the

letter i which is phonetically realized as a long stressed vowel, that is, it maps to

either /ay/ or /iy/ in a stressed syllable.

* Lax and stressed vowels are denoted by a "-x+". For example, /ea-x+/ is the

grapheme ea which is realized as a lax stressed vowel, that is, it maps to /eh/,

in a stressed syllable, as in the word head.

* Some units correspond with syllable nuclei or rhymes that are not lexically

stressed. These are annotated by an appending "-uns".

* A subset of letter-phonemes correspond with pseudo-diphthongs. These include

3 The next subsection will elaborate on the range of poperties that the letter-phonemes covered in their
diacritics.
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/r/ and /1/-colored vowels. Some examples are /out+/ and /owl+/.

* As with the original phoneme grammar, some vowels within function words are

modeled separately. For example, /ee.fcn/ appears as the vowel within the func-

tion word been. Some vowels are specific to the word-context. Examples are

/o..to/ for the vowel in to and /Li/ for the vowel in the word I.

" Consonants:

" Consonants that occur in the syllable-onset position are marked with a "I".

* Some letter-phonemes capture diphone contexts within a single unit. Some ex-

amples are /nch, nd, nk, ck, ch/.

" As in the phoneme grammar, some units are specific to the associated inflectional

suffix. These are /d*ed/ for a past tense, spelled with a /d/ or /ed/ and /s*pl/

for the plural suffix.

* It is worth noting that some letter-phonemes have distinctly differing phonemic corre-

lates such as the coda /gh/ which can be realized phonemically as /1/ or /9/. We will

see further on that the correct phonemic realization is learned through the probability

models.

" Multiple letter-phonemes may have the same phonetic realization. For example, /n/

and /ne/ are different spellings for /n/ in the coda position. Similarly /s/ and /ss/

also translate to the same phonemic pronunciations.

It is apparent that the letter-phoneme representation is much more expansive, accom-

modating many more contextual properties when compared with a phoneme set. This also

invites some sparse data problems. In the instances where training incidences are sparse,

some graphemes are collapsed together into a single letter-phoneme, forming a more generic

model. For example, /ain/ and /oln/ (that appear in the words mountain and lincoln, re-

spectively,) are spelling variations of an unstressed rhyme realized as /en/. They are merged

together into one model due to insufficient data. In doing this, some spelling information

is discarded and cannot be recovered. This amounts to a compromise on the part of the

sound-to-letter predictive power.

It must be highlighted that the ANGIE framework can uniquely exploit the enhanced

features of this letter-phoneme set. We have especially fine-tuned by hand our selection of

these units so that the probability models can optimally predict both pronunciation and
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spelling during parsing. Let us illustrate this with some examples. Referring to Table 6-2,

consider the baseform sequences for the morphs can+ and cane+. According to the context-

free rules /a+/ can be realized by an /ae/ or /aa/, and /a-+/ can be realized as an /ey/

only. The rules are specified as follows:

a-+ => ey

a+ = (ae aa)

Also the letter-phonemes reside at the right-hand side of the following high-level rules:

LNUC+ = .. a-l t...

NUC+ => (... a+ ... )

The last two columns of the parse trees that correspond with the rhyme in can+ and cane+

are depicted adjacent to each other below.

STRESSED ROOT STRESSED ROOT

NUC+ CODA LNUC+ CODA
a+ n a-+ ne
ae n ey n

As explained in Chapter 3, the parsing proceeds one column at a time and examines

trigrams from the bottom upwards. The probability of a letter-phoneme is given by a letter-

phoneme from the left column and the child phone. Comparing parses in can+ and cane+

above, observe that ANGIE will automatically learn from training data through probabilities

P(/n//a+/, /n/) P(/ne/A/a-l+/, /n/), that a long vowel will predict the next consonant n

to be followed by an e. Alternatively speaking, the presence of the e ending in the spelling

is an indicator for the vowel pronuncation. This is not specified in the context-free rules

but is learned via the training procedure. Similarly in rain, the vowel has the associated

rule given by

ai-l+ => (ey ay)

and the rhyme portion of the parse tree is given below. ANGIE learns from training that
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STRESSED ROOT

LNUC+ CODA

ai.J+ n

ey n

in the context of a long vowel spelled with /ai/, the letter n in the coda is not likely to be

followed by an e.

6.4 The Column-Bigram FST

6.4.1 Introduction

In the previous chapter, the ANGIE-FST has demonstrated the utility of incorporating ANGIE

knowledge in the first stage. But our remaining concern is the reliance on pre-computing

ANGIE scores and memorizing training observations. Within this FST, allowable paths

are limited to entire phonetic sequences that have been instantiated, precluding previously

unseen sequences or rare pronunciation variants.

The new column bigram FST method is designed to align more closely with the under-

lying ANGIE philosophy. The desired FST must accept previously unobserved sequences in

the same manner that ANGIE can parse OOV words. Furthermore, unseen or rare combina-

tions must be supported as in ANGIE, which generalizes from the well-trained probabilities

of word substructures observed at training time. With this in mind, the FST configuration

should reflect the parse structure, and distribute ANGIE probabilities along the arcs accord-

ingly. Equally important is the ability to access the ANGIE parse structure via the output

symbols of the FST. A flexible algorithm can generate additional contextual information

which may be useful in enforcing more long-distance constraints.

In the previous chapter, the right-to-left branching structure computed an FST repre-

sented by P o L in the overall equation for the recognition task. Described below is the

column bigram which will only compute the transducer P. This conducts a mapping from

the phonetic sequences, hypethesized by the acoustics-driven search. We will see that the

output alphabet of P can be determined with some flexibility. And P is composed with

L which sets out the lexical units of the recognizer. Effectively, we distinguish between

the transducer which performs the sublexical modeling P and one that specifies the lexical
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units L, whose determination is also somewhat flexible.

6.4.2 Column Bigram Structure

With the column bigram method, the ANGIE parse tree must be viewed as a sequence of

columns, with phones at the terminal. Proceeding from one phone to the next in time

corresponds with transitioning across columns from left to right. Effectively, the FST

expresses bigram statistics on transitions of the columns of the ANGIE parse. In order to do

this, it is necessary to compute the probability of generating one column given the previous

left column context, while keeping in mind that we wish to replicate the probabilities in

the original ANGIE probability models. Recall that ANGIE parse probabilities are given by

(1) trigram bottom-up probabilities where the probability of a node is given by its left

sibling context and child node context, and (2) advancement probabilities that produce

probabilities for a phone terminal given the entire left column context. Recall also that

the probability of a parse tree is composed of (log) summations of the abovementioned

statistics. Consider that the probability of generating a column C given the previous C_ 1

can be given in the following:

P(CijCiq_) = P(n E Cilm E Ci- 1) (6.1)

where n and m are nodes in columns Ci and Ci-1 respectively. Then, given the independence

assumptions taken that a terminal node is dependent on the previous column and the non-

terminal nodes are only dependent on the left node contexts and child node contexts:

P(CjIC.i-) = fi P(nln,rn) x P(pCi1) (6.2)
nECi

where n is a non-terminal node, ni, situated within column Ci_1 , is the left node context of

n, n, is a child node context of n and p is the terminal phone node of the Ci. Alternatively,

in terms of log probabilities:

LogP(CjC _1 ) = j LogP(njn1, n) + LogP(pjC_1) (6.3)
nEC,

The first term is the logarithmic sum of the trigram probabilities in the column and the

second translates to the advancement probability.
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Essentially, Equation 6.3 is a formulation for bigram probabilities on adjacent column

pairs. As bigram models are commonly represented in FSTs, it is easy to construct an FST

for column bigrams, upon computing the requisite column transistion probabilities. Let us

describe the steps involved during the training phase.

1. Train Grammar:

The first iteration through the training data trains up the ANGIE grammar and com-

putes the ANGIE parse probabilities. Note that in the previous chapter, we dealt with

a syllable-level grammar where information at the morphological layer was largely

stripped away, and ANGIE was trained from a single lexicon of morph units. These

morphs were precisely matched with those of the first-stage recognizer lexicon. In

our new method, we are able to train up the original word-level grammar from word

orthographies and phonetic alignments. And this ANGIE grammar uses the two-tiered

lexicon structure introduced in Chapter 3. We will see soon that the units of the

recognizer are related with the ANGIE lexicons but not confined to be the actual top

tier words, defined and used by ANGIE in training.

2. Compile ANGIE Columns and Transition Probabilities:

The second iteration reparses the training and enumerates all the unique ANGIE

columns (with distinct nodes derived from the parse) that have been instantiated.

For all adjacent column pairs that are observed, column bigram probabilities are

computed and recorded.

3. Construct Bigram FST:

Finally the bigram FST is constructed. This FST will consist of phonetic sequences

defined for its input alphabet and pre-terminal sequences defined for its output al-

phabet. We selected the pre-terminal layer for output as this is the layer at which the

lexical units are specified in ANGIE. These pre-terminal units can be either phonemes

or letter-phonemes but, from here on, our experiments will involve using the letter-

phoneme units exclusively. Moreover, at selected boundaries, additional information

regarding the parse structure is emitted. We chose to output the morph class label at

every morph boundary. At a stressed root, instead of emitting the morph class label,
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the component sub-syllabic labcls, ONSET and RHYME 4 are emitted following the as-

sociated column. Outputting information extracted from the parse structure provides

more linguistic context and exerts additional long-distance constraints. In fact, this

information will disambiguate paths that correspond with distinct ANGIE parses, en-

suring that the FST closely emulates ANGIE's models. A simplified schematic of the

FST of one phone sequence is depicted below in Figure 6-1.

dd 8y.&y-4+ :*P1

onst #rhymn #:hff

Figure 6-1: Schematic of an FST for the Word Days. The input and output labels, given
at the arcs, are delineated by a ":". The phonetic realization is given by /d ey z/, and the
letter-phoneme baseform is given by /d! ay..l+ s*pl/. The "isuff" label is emitted indicating
the inflectional suffix at the column associated with the plural and the /s*pl/ letter-phoneme.

During the actual construction of the bigram FST, a new state is created for every

unique ANGIE column. For a particular column, the outgoing arcs of that state rep-

resent transitions to other columns, and the respective bigram probabilities reside on

the arc weights. Additional states are created to accommodate the emission of the

morph class labels. Extending from every column that can termirate a word5 are

arcs that are connected with all columns which are allowed to begin words. On these

arcs are simple word-boundary phone bigram probability estimates, as in the original

ANGIE. Figure 6-2 illustrates a portion of an actual column bigram FST.

6.4.3 Coverage and Smoothing

The column bigram method is a significant departure from our previous FST generation

method. Our foremost consideration in the re-design has been to obtain maximal coverage

of the vast probability space of ANGIE, while preserving compactness in the FST represen-

tation. Let us assess our success in attaining this goal. The resultant FST is a flattened

partial imprint of the complete grammar. All the distinct columns that have been instanti-

ated by the training are recorded by the FST, and direct connections are drawn between the

4 We define rhyme as the part of the stressed root that follows the consonant onset. Therefore all stressed
roots contain a rhyme, even though the consonant onset may be absent. The rhyme contains a single vowel
nucleus with an optional subsequent coda. See the glossary in Appendix A for a full list of definitions of
linguistic terms.

sWe are referring to a word as found in the top tier ANGIE word lexicon.
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#:onset

d.-dl ey-say4+

C1 
.sP

ddl #:rhyme
C2

IM lx+ ow.-o 1+

Figure 6-2: Schematic of the Column Bigram Structure. A path for the word "days" has been

captured in this FST. C1 is the state that corresponds with a column with phone terminal

/d/ and C2 is the state that corresponds with a column with phone terminal /ey/. The

state marked with "*" is the back-off state connecting from an onset column to other rhyme

columns.

states belonging to column pairs that have occurred in adjacency during training. Yet, this

only constitutes a subspace of ANGIE's coverage, that is designated for the over-generalizing

sublexical patterns. The reason is that, for one, the parse mechanism is capable of gener-

ating novel columns that are permitted by the context-free rules and are supported by the

trigram probabilities. Our decision is to omit these for the time being, on the grounds that

these columns would be unlikely and this would be reflected by very low scores. However,

a second point of concern is the many transitions between column pairs that have not been

manifested in training. This is a possible source of a sparse data problem, and calls for a

solution to circumvent this. In the previous chapter, we implemented the temporary solu-

tion of using the parser to generate artifical training data in the hopes of covering more
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transitions. But here, a more robust strategy is to focus on addressing sparse transitions

where it is most critical: at boundaries between morph units.

From preliminary investigations, many novel morph transitions are disallowed due to

lack of training observations. It will become apparent that these transitions are particularly

important because ultimately, our lexical units are morphs,6 and it is crucial that novel

sequences of morphs are permitted. To overcome any sparse data problems that may prevail

at these boundaries, a simple back-off or smoothing mechanism has been implemented.

A back-off state corresponding with every morph class is created. This provides path-

ways for all the missing bigrams at morph boundaries. The schematic in Figure 6-2 includes

a back-off state denoted by a "". At any morph-final column C, the probability of tran-

sitioning to the back-off state Sb is computed as follows:

P(SblICO) =1 - ZP(CICO (6.4)

where P(CjjCE) represents the probability assigned to column C3 given its left context

column Ci. In practice, the summation is computed by seeking the total probability of arcs

exiting a column node, C, and assigning the remainder probability space to the transition

towards the back-off node. This space corresponds with that which has been allocated

towards unseen data by the ANGIE parse mechanism. As for exiting the back-off state, a

maximum likelihood estimate for the probability of the next column given by left morph

class context is computed. Although these smoothing probabilities are not part of the

scheme in the original parser, they ensure that the important transitions are supported

probabilistically. The back-off mechanism does not extend to function words nor does it

connect between columns that are disallowed by the ANGIE rules. An example would be to

directly transition from a prefix to a suffix, omitting a stressed root. This would constitute

a parse failure in the original parser.

6.4.4 Discussion

The column bigram offers us many advantages over our previous approach to FST gen-

eration, because it shares with the original parser many important characteristics. The

6 More precisely, we will see later that the lexical units are composed of unstressed morph units and
stressed onsets and rhymes.
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WORD WORD

STRESSED ROOT ISUFF STRESSED ROOT

ONSET NUC+ PLURAL ONSET NUC+ CODA

d! ey- s *pl p! 1 ey+ s_
d ey z p 1 ey s

Figure 6-3: Tabular Schematic of ANGIE Parse Trees. The words represented are days and

place.

bigram structure resembles that of a phone bigram with the distinguishing property that

the phones are embedded with entire column contexts that encompass much valuable long

distance information. Some of this is emitted at the morph boundaries, and directly ex-

erts constraint. Unlike our previous right-to-left branching FST, a full word grammar can

be used for the training. That is, implicit word-level information trains up the sublexical

models, even though at the lexical level, morphs will be used. (We explain the lexicon in

the next section.)

Most importantly, the FST is trained from in-vocabulary data but extends that learned

knowledge in order to apply to sequences that are previously unobserved. This is accom-

plished by memorizing column pairs rather than entire phone sequences. For example, in

Figure 6-3, the parses for days and place are depicted. Earlier in Figure 3-4, we alluded to

the idea that ANGIE can support the word "plays" because all the requisite substructures

are in place. This is also true for the FST because all the columns and column transitions

required to form the parse for "plays" have been instantiated in days and place. When the

FST is augmented with the back-off states, even more novel paths will exist thoughout the

FST to support novel sequences. These permissible sequences correspond with some parse

tree in the original ANGIE, and the parse score is distributed throughout the weights on the

FST. From the output symbols, the novel letter-phoneme sequence can be extracted and

both pronunciation and spelling can be deduced. That is, we can propose the underlying

phonemic baseform as well as some letter-spelling hypothesis. By examining the morph

class labels, partial information from the underlying parse tree can be recovered. This

scheme is highly suitable for handling unknown words.
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Morph prince+ : pr= =ince+

Onset pr= : p! r
Rhyme =ince : i-+ n ce

Table 6-3: Example of a Morph and its Decomposition into the Onset and Rhyme. illustrated
is the stressed root "prince+." An appended "=" annotates an onset and a prepended "="

annotates a rhyme.

6.5 A Revised Two-Stage Architecture

At this point, let us revisit the two-stage architecture which consists of the same components

as with our previous system in Chapter 5, with some modifications to incorporate the column

bigram FST trained on a new letter-phoneme grammar.

6.5.1 Stage One

In stage one, the FST-based morph-level recognizer uses the same context-dependent acous-

tic models. Recall that the aim is to compute the precomposed FST U prior to recognition

time:

U =CoPoLoG

Under the current architecture, the column bigram FST corresponds with P, transducing

phones to letter-phonemes. A lexical FST L will map letter-phoneme strings to a set of

lexical units. And G imposes n-gram model constraints on these units.

It must be underlined that emitting just letter-phoneme sequences at the FST has

allowed greater flexibility for us in designing a set of lexical units. Defined in terms of

these letter-phonemes and morph class labels, the lexicon is not required to coincide with

the ANGIE lexicon used during training 7 . In the meantime, we begin by investigating the

original set of morphs used in the ANGIE lexicon. Our intuition is that the stressed roots are

characteristically specific to the fixed vocabulary, and do not generalize well to unknown

words. In other words, stressed roots of unknowns are unlikely to be supported sufficiently

by the current limited set of morphs. From an alternative viewpoint, many stressed roots

are also sparsely supported in the training data. From a training set of over 47k sentences,

more than half of the stressed roots are associated with 20 or fewer tokens. Stressed roots

7 This point will be further reinforced in our discussions in the next chapter.
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Table 6-4: Complete List of Syllable Onsets Decomposed from Stressed Roots. (An appending
"=" denotes the stressed syllable onset.)

also constitute the majority morpheme category in the morph lexicon (numbering 1259

units out of 1927). One measure is to decompose the original set of stressed roots into

their respective onsets and rhymes, while keeping the original set of morphs that fall in

the lexically unstressed categories. The result is a lexicon of morph and submorph units.

From here on, we refer to this as the morph lexicon, although, strictly speaking, the set

contains sub-syllabic units. An example of the morph decomposition is given in Table 6-

3. In breaking up the set of stressed roots, the number of unique morph units is greatly

reduced from 1927 to 1213 units. The set of stressed roots is collapsed to a set of onsets and

rhymes. There are 545 items only, of which 455 are rhymes. These are also much better

supported by the training data. The full set of onsets are given in Table 6-4 and the set of

rhymes are given in Table 6-5.

Splitting into a set of onsets and rhymes and licensing novel sequences of these in the

linguistic models will greatly improve flexibility and generalizing ability compared with using

the original stressed root units. With 90 onsets and 455 rhymes, over 40k unique stressed

roots can be synthesized by their concatenation, and this is supported in the smoothed

linguistic models, in both the column bigram P and the trigram G. However, this does

translate to a trade-off in the constraints by using more general units in the lexicon. But

we hope that the degradation is moderated by the selective process in which we engineer

more flexibility while cautiously maintaining much of the constraint.
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b= bl= br= bu= c= cc=
ch= chr= cl= cr= cs= cz=
dj= dr= f= fl= fr= g=
ge= gh= gi= gl= gr= gu=
h= ju= k= kn= kr= ku=
1= lh= 11= m= mm= n=
0= ph= phn= phr= pp= ppr=
py= qu= qu" = r= rh= rr=
s= sc= sch= scr= sh= shr=
sk= sl= sm= sn= sp= sph=
spr= squ = ss= st= str= su=
sw= t= th= thr= tr= tw=
vl= wh= wr= z= zh= zu=



=^ once+ =^ one+ =a+ =aalt+ =aam+ =ab+ =ac+ =ace+
=ack+ =act+ =ad+ =add+ =ade+ =adh+ =af+ =aff+
=ag+ =agh+ =ague+ =ah+ =ahr+ =ai+ =aign+ =ail+
=ain+ =aine+ =aint+ =air+ =ait+ =aj+ =ak+ =ake+
=al+ =ale+ =alis+ =alk+ =all+ =alm+ =alt+ =alz+

=am+ =amb+ =ame+ =an+ =anc+ =ance+ =anch+ =and+
=ane+ =ang+ =ank+ =ann+ =annes+ =ans+ =ant+ =ao+
=aos+ =ap+ =ape+ =app+ =aq+ =ar+ =arb+ =arc+

=arch+ =arck+ =ard+ =are+ =arge+ =arl+ =arm+ =arn+
=arr+ =art+ =as+ =ase+ =ash+ =ashe+ =ask+ =ass+
=at+ =atch+ =ate+ =ath+ =ati+ =att+ =atte+ =au+

=auck+ =aud+ =aul+ =aus+ =ause+ =ave+ =aw+ =awk+
=awr+ =ax+ =ay+ =aych+ =az+ =azz+ =e+ =each+
=ead+ =eak+ =eal+ =ean+ =eant+ =eard+ =earth+ =ease+
=east+ =eat+ =eath+ =eau+ =eaux+ =eav+ =eb+ =ec+
=eci+ =eck+ =ect+ =ed+ =edne+ =ee+ =eece+ =eed+
=eek+ =eel+ =een+ =eep+ =ees+ =eet+ =eeze+ =ef+
=eg+ =ei+ =eid+ =eight+ =eim+ =eir+ =eit+ =eive+
=eke+ =el+ =elf+ =elh+ =ell+ =elle+ =elp+ =elph+
=else+ =elve+ =em+ =eme+ =emp+ =en+ =ench+ =end+
=ene+ =eng+ =enh+ =enne+ =ent+ =eop+ =eoul+ =ept+
=er+ =ere+ =erg+ =erke+ =erm+ =ern+ =erre+ =erse+

=erst+ =ert+ =erz+ =es+ =ese+ =esh+ =esque+ =est+
=et+ =ete+ =eth+ =ett+ =ette+ =eur+ =ev+ =eve+
=ew+ =ex+ =ext+ =ey+ =eyk+ =hou+ =i+ =ib+
=ibb+ =ic+ =ice+ =ich+ =ici+ =ict+ =id+ =idd+
=ide+ =idge+ =iew+ =if+ =ife+ =iff+ =ig+ =igh+
=ight+ =igi+ =ign+ =ik+ =ike+ =il+ =ile+ =ill+
=ille+ =ilt+ =im+ =ime+ =in+ =inc+ =ince+ =inch+
=ine+ =ing+ =inh+ =ink+ =inn+ =insk+ =inst+ =int+

=ioux+ =ip+ =ipp+ =ique+ =irm+ =is+ =ise+ =ish+
=isle+ =iss+ =ist+ =it+ =ite+ =ith+ =iti+ =itts+
=iv+ =ive+ =ix+ =ize+ =izz+ =0+ =oa+ =oad+

=oak+ =oast+ =oat+ =ob+ =oc+ =och+ =ock+ =ode+
=odge+ =oe+ =oeur+ =of+ =off+ =og+ =ogg+ =ogne+
=oh+ =ohn+ =oi+ =oines+ =oint+ =ois+ =oit+ =oix+
=ok+ =old+ =ole+ =ol+ =olm+ =om+ =on+ =one+
=ong+ =onn+ =ont+ =oo+ =ook+ =ool+ =oom+ =oor+
=oot+ =op+ =ope+ =or+ =orces+ =ord+ =ore+ =orf+

=orge+ =ork+ =orld+ =orm+ =orn+ =orp+ =orr+ =ors+
=orse+ =ort+ =orth+ =orthe+ =orts+ =os+ =ose+ =oss+
=ost+ =ot+ =oth+ =ott+ =ou+ =oub+ =ouge+ =ough+

=ought+ =oul+ =ould+ =oun+ =ound+ =ount+ =oup+ =oupe+
=ourg+ =ourne+ =ourse+ =ous+ =ouse+ =out+ =outh+ =outhe+
=ove+ =ow+ =oward+ =owl+ =own+ =ox+ =oze+ =r+
=re+ =u+ =ub+ =uch+ =uck+ =ude+ =ue+ =uer+

=ues+ =uff+ =ul+ =ulf+ =ull+ =um+ =un+ =unc+
=und+ =une+ =unn+ =uns+ =up+ =uque+ =urch+ =urf+
=urg+ =urgh+ =url+ =urr+ =urs+ =urt+ =us+ =use+
=uss+ =ust+ =ut+ =utch+ =utt+ =ux+ =uz+ =uzz+
=ym+ =yp+ =yr+ =ys+ =yu+

Table 6-5: Complete List of Syllable Rhymes Decomposed from Stressed Roots. (A prepend-
ing "=" denotes the stressed rhyme.)
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In summary, following is a concise outline of linguistic constraints interleaved within the

final composed FST structure:

* Phonological and Phonotactic constraints: These are embedded in models captured

by the ANGIE-FST.

" Grapheme constraints: Knowledge derived from spelling information is captured in

the ANGIE models in conjunction with sublexical phenomena and transformed into

the ANGIE-FST.

" Morph-level constraints: Longer distance constraints are partially encoded by the

ANGIE-FST which is trained from a word-level ANGIE grammar. These are also encoded

in the trigram language model on the morph and submorph units.

6.5.2 Stage Two

As before, in the second stage, the search space is constrained by the phonetic networks

output by the first stage. The arc weights on these networks consist of acoustic scores

and language model scores. One modification is that a reduced weighting is imposed on

language model scores. This scaling is determined on a held-out developrzent set. This

should aid performance, by enabling us to place less importance on the first-stage language

models after the search space has been pruned, particularly as the second stage has the

benefit of more powerful full word-level models.

As described in Chapter 5, the control strategy integrates together a word bigram and

the ANGIE sublexical models, with the option of adding NL via the TINA module. We will

not activate the NL in the experiments described in this chapter. We have modified the

algorithm into a best-first search augmented with future estimates. These are potentials

computed during the first stage Viterbi search, on the FST nodes. These alterations on the

search are responsible for significant gains in running speed.

6.6 Recognition Experiments

The following experiments have been undertaken with a larger set of training data (which

became available during the course of our research), and an expanded JUPITER vocabulary.

The new JUPITER domain contains 1957 words encompassing 650 cities and 166 countries.
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FST J Number of Arcs Number of StatesrP without back-off smoothing 1 10175 2167
P with back-off smoothing T[12093 2175
U without back-off smoothing 6.1m 341k
U with back-off smoothing 10.2m 690k

Table 6-6: A Comparison of FST sizes, using the Column Bigram as the ANGIE-FST.
FSTs with and without smoothing are included. P represents the ANGIE-FST with ANGIE
derived probabilities as the arc weights. U represents a final composed FST embedded all
language model constraints.

All models are retrained using more than 47k utterances, a four-fold increase from our

previous experiments.

For the ANGIE phoneme-based grammar retrained over the new data, there are 115

phoneme categories. This grammar is used in the second dynamic parse mechanism. For

the ANGIE-FST, the letter-phoneme grammar is used. There are 289 letter-phoneme cate-

gories in total. On an independent test set of 1806 utterances, the per phone perplexity is

computed using the phoneme grammar and the letter-phoneme grammar. The result is a

7.0% reduction in perplexity from 5.7 to 5.3. We anticipate that the reduction in perplexity

will benefit recognition performance.

The FST compositions described in this chapter are implemented for JUPITER. The

resultant FST sizes for the column bigram ANGIE-FST with and without the back-off mech-

anism are tabulated in Table 6-6. Also the final composed FST, U, is given, with and

without the smoothing in the column bigram.

Observe that implementing a back-off mechanism increases the column bigram FST

significantly, but the increase is even more pronounced in the final composed FST U. In

our optimization procedures, determinization was unsuccessful on the final FST with back-

off implemented, due to an explosion in the storage memory requirements demanded by the

determinization algorithm for this FST8 . In this case, the undeterminized FST, with large

numbers of redundant paths intact, has a detrimental impact on the running time of the

first-stage recognition search. Hence, for now, we abandon the back-off mechanism in these

experiments but will return to it in the next chapter. The recognition experiments below

'Note that inherently, the FST is determinizable but its size and complexity at this stage precluded a
successful implementation without consuming all the available memory storage. Our optimization schemes
were conducted on a single 500MHz Pentium III machine with 1 gigabyte of memory.
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System WER(%) UER(%)
Single-stage SUMMIT with trigram 8.0 8.8
Single-stage SUMMIT with bigram 9.2 11.3
Two-stage system 9.4 10.9

Table 6-7: Performance on In- Vocabulary JUPITER data. Word (WER) and understanding

(UER) error rates (%) are quoted for an independent test set of 1806 utterances, comparing
two single-stage SUMMIT baseline systems with bigram and trigram language models and the

two-stage system described in this chapter.

will utilize a final pre-computed FST U which is composed from an ANGIE-FST P without

the use of any back-off smoothing at the morph boundaries. Here, a limited determinization

was possible; that is, an upper bound (of 8) on the number of arcs emanating from a node

with identical input labels was placed. Optimal search speeds are not achieved owing to

the lack of a fully determinized FST but, currently, running times remain satisfactorily

near-real-time. We return to address this in the next chapter.

Recognition performance is ascertained from an in-vocabulary test set containing 1806

sentences. At this stage, our intention is to confirm the feasibility of the current two-stage

configuration, which possesses much greater flexibility for supporting unknown words. It is

compared with a state-of-the-art single-stage baseline which uses the same acoustic models

and a word bigram and trigram. The baseline system is similar to that described in previous

chapters. Our hope is that our two-stage system produces comparable results to the baseline,

which has been optimized on in-vocabulary data, and establish that the flexible linguistic

models can handle in-vocabulary data competently.

Performance results are shown in Table 6-7. As before, evaluation is conducted on an

understanding error rate (UER) as well as word error rate (WER). The results show that

the two-stage system performs most comparably with the single-stage baseline which applies

a word bigram, and the performance loss remains small on both WER and UER. This is

consistent, as the two-stage system here does not embed word trigram or NL knowledge, but

only a word bigram in the second stage. A small degradation in performance is expected,

as our scheme, compared with that in Chapter 5, is markedly more flexible. We have

abandoned the multi-word units as well as full stressed root morphs, for a more general

lexicon, resulting in less constrained language models. Underlyingly, the ANGIE-FST differs

from the right-to-left branching method in relying less on memorizing training data, but
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rather, it emulates ANGIE's ability to predict unseen data. By comparison, the baseline

system only performs marginally better here, whereas its accuracy plunges to below 50% on

OOV sentences9 . In conclusion, we are confident that we have arrived at a better position

to cope with sparse data and rare pronunciations as well as tackle flexible vocabulary.

6.7 Final Remarks

At the conclusion of the last chapter, we established that the ANGIE probability model

can be effectively encapsulated in an FST structure and deliver superior performance in

the two-stage architecture. Our system exhibited favorable results but we identified some

attributes that were divergent with our penultimate goals for a dynamic and flexible vocab-

ulary system. This chapter has implemented a number of advances in the first stage in an

attempt to progress towards that direction. The features introduced here bring us closer

to a more general domain-independent first stage, with generic linguistic knowledge. The

basis of these ideas has centered around the use of the ANGIE framework and FSTs to weave

together disparate sources of linguistic information.

At this juncture, experimental results described above merely verified competence on

an in-vocabulary test set. Naturally, the next step is to demonstrate an ability to handle

data with OOV words. However, one stumbling block remaining is the implementation

of an optimized and compact FST. As alluded to earlier, we encountered problems when

composing the ANGIE-FST augmented with back-off states with the language model FSTs.

The root of the problem lies at the combinatorial expansion of possible paths when a

smoothing mechanism is incorporated, causing the optimization procedures to fail, under

reasonable memory and computational resources.

Evidently, disabling the back-off mechanism is not detrimental to the recognition of

in-vocabulary sentences because these sequences are well-supported during the training

process. But the back-off mechanism would play a more important role in supporting

unknown data. Hence, we must strive to conceive of a solution that affords an even greater

degree of efficiency without recourse to alternatives that undermine the current level of

flexibility and generality, achieved here. In the next chapter, we adopt a novel strategy for

combating this issue, whereby a single algorithm can reap dual gains of improved probability

9 This will be further discussed in Chapter 8.
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modeling and memory efficiency, over and above the existing FST scheme.
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Chapter 7

Automatic Lexical Generation

7.1 Overview

In this chapter, in addressing the issues of the current first stage, we describe the devel-

opment of a new breakthrough approach: automatic lexical generation. We will explore

the motivation and conception of optimizing the lexical space, and entertain the possible

advantages. Following this, we present an iterative procedure that builds upon marrying

together technological elements introduced in Chapter 6: the letter-phoneme grammar and

the column bigram FST. The results of implementing the iterative algorithm are examined,

while the novel lexical units are analyzed in depth. Finally, we will discuss the consequences

of utilizing these in our first stage.

7.2 Motivation

With the advent of the column bigram FST capturing ANGIE's power to generalize, and the

expansion of the ANGIE grammar to embody grapheme information, the need for greater

compactness and efficiency in combining these linguistic models persists. This is ever more

pressing in light of our vision to eventually train on larger and more general vocabulary

corpora. And this is only possible in the first stage if the FST data structure achieves

sufficient memory efficiency to enable a tenable recognition search speed to take place. As

we intimated at the conclusion of Chapter 6, the pre-composed final FST is encumbered

by a multitude of arcs and extraneous outputs. In order to attain maximal coverage and

enhance contextual information, in comparison with the previous left-to-right branching
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method, the current FST has grown in size due to a host of new features. First of all,

the new letter-phoneme grammar has more than doubled the size of the pre-terminal layer,

thereby significantly expanding the ANGIE probability models. As the column bigram covers

all adjacent pairs of ANGIE columns that have instantiated, coupled with the new letter-

phoneme grammar, many more arc transitions are licensed. Extraneous nodes are created to

indicate the position of morph and sub-morph boundaries. Although, the decomposition of

stressed roots into onset and rhyme constituents has resulted in smaller sized trigram mod-

els, the smoothing mechanism that supports all combinations of (sub-)morph sequences

(with all their associated pronunciation variants) opens many new pathways in the final

FST, beyond practical proportions. It is now incumbent upon us to seek a solution without

compromising the delicately interleaved linguistic constraints. In other words, it is unde-

sirable to resort to looser forms of constraints, and forego the current lexical organization

that, we surmise, is well-suited for OOV modeling as well as in-vocabulary recognition.

Let us ponder further the nature of our modeling approach that exploits probabilistic

learning over symbolic representations that are fused with expert linguistic knowledge. This

symbol set is seeded from a process whereby our intuitive knowledge is used to discern the

most valuable information for our model constraints. Subsequently, the ANGIE models and

letter-phoneme set are crafted and fine-tuned as best as possible to improve probability

modeling. This is intrinsically a labor-intensive process, heuristic in nature, involving trial-

and-error procedures and close analyses of data over time. What could benefit from this

modeling philosophy is the application of automatic learning, optimizing on the probability

likelihood while circumventing sparse data problems. During our experience, it became

apparent to us that optimization is possible and indeed desirable at the lexical level. The

organization of the lexical space in the first stage can be re-optimized. We explicate this

concept in the next section.

7.3 Lexical Space Optimization

Core to the idea of re-optimizing the lexicon of morphs and sub-morphs is the fundamen-

tal insight that these morph units are not required to directly correspond with the word

units of the later stages. In our prior systems, each word lexical unit of the second stage

can be broken down to a sequence of constituents each of which appears exactly in the
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first-stage lexicon. But this is not strictly necessary. The reason is that the first stage

decomposes all the morph hypotheses back to their phones to form a phonetic network,

thereby abandoning those original morphs entirely. Our goal then is merely to maximize

the quality of the phonetic network. The underlying morph units are free to be extracted

or newly created from other means, as long as, ultimately, the phones that are eventually

proposed by the first stage can formulate into the JUPITER words from the spoken utterance.

Consequently, the words need not be associated with a single unique syllabification nor do

the intermittent word boundaries between phones, dictated by the orthography, need to

be preserved, because a different syllabification can be selected in the second stage when

higher-level information becomes freely available. We posit that our chances for producing

correct phonetic sequences for both known and unknown data may improve upon imple-

menting some optimization on the lexical space whereby the language model probability

likelihoods improve, yielding better perplexity measurements. It is our hope that, in the

process, the overall models become more compact.

This leads us to pose the question of how to creatively manipulate the lexicon to im-

prove perplexity. The key is to improve the ANGIE grammar by redefining the lexicon that

implicitly trains the ANGIE models. By our definition, this also coincides with the lexicon on

which the first-stage units and trigram models are based. An iterative algorithm has been

conceived where a novel set of lexical units and a new ANGIE grammar are generated at

each iteration. As in training ANGIE, the procedure uses forced aligned training data. The

mechanics of the procedure hinges upon the following key features of the letter-phoneme

column bigram ANGIE-FST:

1. Given any phonetic sequence, multiple paths can be found within the FST, emitting

distinct letter-phoneme sequences at the output. This is attributed to the column

bigram FST's over-generalizing property, enhanced with the back-off mechanism in

place to counter missing or incomplete data. As a result, many novel output sequences

in addition to the "correct" one co-exist, all accepting the phonetic sequence that was

actually realized. These competing letter-phoneme outputs correspond to alterna-

tive ANGIE parses for the entire sentence, when restrictions to the underlying word

baseforms are lifted and the original word boundary locations no longer apply. The

cumulative FST scores correspond exactly to the scores computed by an ANGIE parser,

with the exception of where the smoothing mechanism has been applied. It became
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apparent then that among all the competing paths, the highest scoring one would not

necessarily produce a letter-phoneme sequence that exactly matches the morphs as-

serted in the original orthography. But in fact, the letter-phonemes are juxtaposed to

form novel alternate morphs. Under these circumstances, an alternative set of lexical

units yields higher probabilities, translating to reduced perplexity measurements.

2. At the FST output, the letter-phoneme sequences and peripheral information can

be pieced together to derive novel morphs. When stripped of their diacritics, the

letter-phonemes concatenate to form novel spellings, offering a potential orthographic

transcription. In fact, the operation of the parse mechanism is simulated via the FST

insofar as information regarding the underlying parse can be ascertained from the

FST output labels. We deduce the placement of morph boundaries along with the

underlying morph class.

Hence, we shall develop an iterative procedure where, at every iteration, we seek the

most likely paths through the ANGIE-FST given the K onetic realizations of the training

data, arriving at a new lexicon each time. We emphasize that the lexical space will be

optimized but the phonetic space remains a constant. The procedure does not engage the

acoustic models, assuming that these are accurate, producing high quality alignments

Under this assumption, the lexicon is optimized to facilitate the linguistic models in order

to predict the given phonetic realizations.

7.4 The Iterative Procedure

Here, we provide a full exposition of the iterative algorithm. At the beginning of each

iteration, an ANGIE grammar is trained from the current word and morph lexicon and

phonetic alignments. The column bigram FST is then compiled. The next pass involves

seeking the highest scoring path in the FST for the phonetic sequence of each training

utterance. Subsequently, the FST outputs are collected. At this point, the new set of morphs

and words must be determined; these are necessary to train up the ANGIE grammar for the

next iteration. The morph spellings are inferred from the letter-phonemes themselves,

and the morph class label outputs indicate the position of the morph boundary and the

'This assumption is flawed inasmuch as the acoustic alignments may suffer small errors. It is possible
that these limitations in the alignments may adversely affect our results.
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appropriate annotations to append to the morph. As for the formulation of words, these

are not mandated by the FST outputs. The morph sequences can be creatively combined in

multiple ways to form novel words of any numbers of syllables. For the sake of simplicity, we

impose some empirical rules for concatenating morph sequences into new words. These will

restrict the words to contain at most one stressed root or one function morph, in addition to

conformance with ANGIE's original rules on ordering. For instance, a word boundary must

be placed before a PREFIX morph, ensuring that the morph is in syllable-initial position.

At the end of this pass through the training data, all the words and morphs are compiled

into the two-tier ANGIE lexicons. The next step is to generate a new ANGIE grammar

via retraining with the new lexicons. Note that the context-free rules remain unchanged

throughout. And the next iteration can proceed with the new ANGIE grammar in the same

way. A concise step-by-step summary is listed below:

1. Initialization:

Begin with an initial set of rules that incorporate letter-phoneme units.

2. Train grammar:

Use the forced aligned set of orthographic and phonetic transcriptions to train an

ANGIE grammar.

3. FST Generation:

Use the forced alignments and trained ANGIE grammar to generate a column-bigram

FST.

4. Search:

For the phonetic sequence of each training utterance, use a best-first search to find the

highest scoring path through the column-bigram FST, and output the corresponding

letter-phoneme sequence along with morph class labels at morph boundaries.

5. Construct morphs:

For each morph, infer the spelling by concatenating the letter-phoneme sequence, after

removing contextual markers. The morph class is deduced and the relevant diacritic

is added. For example, if the FST output consisted of the sequence, d! ONSET ay+
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RHYME, we can elicit that the underlying morph is the stressed root, day+. If this

morph has not been previously encountered, add it to the lexicon.

6. Construct words:

Construct the underlying "word" by concatenating morph sequences using some sim-

ple rules. Each word must contain only one stressed morph, and word boundaries

are inserted whenevor permissible according to ANGIE. For example, if day+ and =s

appear in sequence, these can be concatenated together to form the word days. If the

word has not been previously encountered, add it to the lexicon.

7. Go to step 2:

Upon completion with compilation of the new lexicons, generate a new alignment file

with the same phonetic sequences but with new orthographies. We can now return

to Step 2 to train a new ANGIE grammar.

At every iteration, the probability likelihoods improve by some amount, because each

time, the highest scoring path in the FST is sought for the same phonetic sequences. Let us

highlight that searching for alternative viable paths for each individual sentence is entirely

possible owing to the ANGIE-FST, which encapsulates the space of alternate parses. Yet this

is done under a limited search space. Attempting to search through all alternate parses

using the dynamic parse mechanism for each sentence would be quite formidable.

7.5 Results of Iteration

The above algorithm is implemented with the JUPITER corpus. It was found that after

four iterations, the ANGIE grammar converges (in the sense that both the word and morph

lexicons did not change further.)

In the final converged grammar, the total lexicon size actually grew. The number of

words increased from 1957 to 3516; the number of morphs increased from 1927 to 2071.

Prior to iteration, there were 1259 stressed roots, but this number rose to 1589 after the

procedure. Thus, the percentage of stressed roots in the morph lexicon increased from

65.3% to 76.6%. With the increase in the ANGIE word inventory, multiple mappings exist

from the lexicon to each underlying spoken word. At each distinct phonetic instantiation,

the highest scoring path in the ANGIE-FST may be unique, yielding a different parse with
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Grammar Arcs IStates

Original Phoneme 9385 1488
-Letter-phoneme 12k 2175
FinalIterated 9741 1717

Table 7-1: Size of FSTs with Different ANGIE Grammars.

different higher-level morph or word structures 2 . In examining the search more closely, we

discovered that many preferred paths visited the back-off mechanism, whose role is critical

in enabling many novel sequences with favorable probability estimates to be produced.

While the number of lexical units expanded, the actual ANGIE grammar size progressively

shrank at every iteration. The number of unique columns in ANGIE decreased from 1439 to

1164. At each iteration, in searching for the highest scoring paths for all training sentences,

some portion of the probability space in the ANGIE-FST is never visited even though that

space has been allocated by the grammar. In a sense, these uncharted paths in the FST are

unnecessary, and are to be eliminated in the following iteration. We interpret this to suggest

that a smaller ANGIE-FST, stemming from a smaller ANGIE grammar, is sufficient to model

the same phonetic space. By convergence, the number of letter-phonemes in use from the

original inventory is 264 (from 289). This can be viewed as an automatic elimination of the

ones that were sparse, producing unlikely probabilities. In Table 7-1, the sizes of the column

bigram FSTs for different grammars are displayed. The final iterated ANGIE-FST exhibits

an 18.8% reduction in the number of arcs and a 21.1% reduction in the number of states,

in comparison with the pre-iterated grammar. The final size of this column bigram letter-

phoneme based FST is marginally larger than one that is derived from a phoneme-based

grammar.

When the stressed roots are decomposed into their constituents, there is only a total

of 418 onset and rhymes, compared with the 545-sized prior set. This constitutes a drastic

reduction. Along with another 482 unstressed morphs, there is a total of only 900 units

in the lexical FST and the trigram models. Compare this with 1213 units of the original

pre-iterated grammar.

When the ANGIE-FST is composed with the lexical and trigram FSTs, the final optimized

2 We examine the lexical units in greater detail in the next section.
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FST U is fully determinized. As a result, U contains 4.3 million arcs and 440,000 states,

occupying 90 megabytes of memory. This is less than half the size of the full pre-composed

FST using a pre-iterated ANGIE-FST.

7.5.1 Perplexity Measurements

Oue way to gauge the success of the algorithm is to measure perplexity on the ANGIE

grammar 3 . Again, per phone perplexity is measured on the same 1806-utterance test set.

We witness a steady fall at every iteration. The final perplexity number is 4.9. This is

a 7.5% reduction from the pre-iterated grammar which measured 5.3. Compared with

the phoneme-based grammar whose perplexity is 5.7, there is a 14% relative perplexity

reduction.

Another computation that may provide some insight on the effect of this algorithm is to

closely examine the total probability space in the ANGIE-FST that has been visited. These

results are tabulated in Table 7-2. First of all, we consider the likelihood score on all the FST

arcs. An average is computed after weighting the numbers with the frequencies that the arc

transitions were taken, during a pass through the training data. As expected, it is discovered

that this weighted average increases successively comparing the phoneme-based ANGIE-FST,

the letter-phoneme ANGIE-FST and the iterated ANGIE-FST. Furthermore, we consider the

sum of probability on the arcs exiting each node in the FST. Again, we compute a weighted

average based on the frequencies that the arc transitions were taken. The results also

exhibit a small increase with the final iterated ANGIE-FST. Like perplexity, these numbers

may suggest that the new iterated grammar better predicts the data. Whether all these

positive results translate to improved recognition performance will be seen in the next

chapter.

7.5.2 The Novel Lexicon

Let us conduct an in-depth perusal of the nature of the novel units from the final iterated

grammar. A portion of the morphs and words from the original lexicons are preserved in

the final iterated lexicon. 630 words (32.2% of the original inventory) remain unchanged,

3Note that the perplexity number is not an entirely precise measurement, because in ANGIE, a portion
of the probability space has been allotted to ambiguous or alternate parses. These parses are not easily
recoverable. Hence, the real perplexity is probably lower than what is attained by computing likelihoods
from the single highest scoring parse.
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Grammar Weighted Average Score Weighted Average Sum of

Ijof Transitions Probability Exiting Nodes]

Original Phoneme 0.42 0.89
Letter-phoneme 0.47 0.89

Final Iterated 0.52 0.91

Table 7-2: Probability Measurements of Column Bigram ANGIE-FSTs. Various ANGIE
grammars are compared. See text for explanations.

whereas 1087 morphs (56.4% of the original inventory) remain unchanged. Characteristics

of the new units that have emerged are documented below.

9 Changes in Spelling:

Some words and morphs have changed in spelling because the algorithm preferred

an alternative letter-phoneme sequence to the original designated one. Examples are

listed below.

Original Words Original Morphs New Words New Morphs

Beijing => bei+ jing+ bay ging => bay+ ging+

difference => diff+ er -ence diference => dif+ er -ence

difference = diff+ er -ence difurence = dif+ ur -ence

Edmonton => ed+ mon =ton edmanton => ed+ man =ton

flying => fly+ =ing flighing => fligh+ =ing

Kuwait => ku- wait+ kuwate = ku- wate+

London => lon+ -don lundon => lun+ -don

marine =* ma- rine+ mareen =* ma- reen+

Ottawa => ott+ a -wa audowa => aud+ ow -a

SriLanka = sri- lank+ -a shree lonca => shree+ lonca+

through = through+ throo => throo+

Table 7-3: Examples of Modified Spellings for Words and their Morph Decompositions.

Some words and their corresponding morphs before and after the application of our iterative

procedure are shown.

It is apparent that the algorithm selects a preferred spelling on the grounds that it

better reflects the actual pronunciation, yielding higher probabilities. The particu-

lar realization may vary in spelling, depending on the phonetic pronunciation whose

variations may be attributed both to different inherent ways to pronounce the word

and/or phonological rules. Some of these amount to subtle differences in phonetic

realization. This is exemplified in the different new spellings for the word difference:
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diference, difurence. In one sense, this shifts the role of modeling alternate pronuncia-

tions into the level of the lexicon and alternate orthographies, by forcing the creation

of new lexical units.

e Changes in Syllable or Word Boundaries:

In many instances, the syllable or word boundaries of the original sentence have been

altered. There exist several scenarios. Syllabification of some words can change where

a consonant switches syllable affiliation, indicating that the new parse gives better

probability estimates. One example is Antarctica shown below. For this particular

case, it is interesting to note that this particular re-syllabification favors maximal

onset over stress dominance.

Original Words Original Morphs New Words New Morphs
Antarctica => an- tarct+ i -ca I Antarctica =t an- tarc+ ti -ca

Table 7-4: Example of Re-syllabification. The syllabification of the word Antarctica before
and after the application of our iterative procedure is shown.

At times, letter-phonemes that reside at word boundaries switch word affiliation,

creating novel words. That is, individual consonants switch between the onset and

coda position across word boundaries. Examples are given below.

Original Words Original Morphs New Words New Morphs
ask thank = ask+ thank+ askth ank => ask+ =th ank+
for Quebec = for* qu^ e- bec+ fork abec => fork+ a- bec+
your name => your* name+ yorn ame => yorn+ ame+

Table 7-5: Modification of Word Boundary Affiliations for Consonants. Examples of words
and their corresponding morphs before and after the application of our iterative procedure
are shown.

Another related phenomenon occurs when entire morph units switch word affiliation

intact. This may suggest that, for instance, a suffix of one word is better modeled

as the prefix of the following. For example, the -ta suffix is converted to a to- prefix

in atlanta georgia shown below. In Ivory Coast, the -y suffix of Ivory is re-spelled

and transformed to the prefix re- for the next word. Evidently, re- is more commonly

occurring.
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Original Words Original Morphs New Words New Morphs

Atlanta Georgia => at- lan+ -ta geor+ -gia atlan togeorgia = at- lan+ to- geor+ -gia

Ivory Coast => i+ vor -y coast+ ive recoast = ive+ re- coast+

Table 7-6: Modification of Word Boundary Modifications for Morphs. Examples of words

and their corresponding morphs before and after the application of our iterative procedure

are shown.

Effectively, this data-driven method has chosen a more optimized syllabification in

terms of likelihoods compared with the original, hand-crafted one. The learning in

the algorithm winnows out those hand-selected units that yield poor modeling.

* Foot-like Compound Units:

Some instances of novel word creation are exemplified by the clustering of several ad-

jacent mono-syllabic words into new multi-syllabic ones. Under these circumstances,

a single word associated with one of the syllables is assigned lexical stress, whereas

the surrounding ones no longer contain lexical stress and are identified as prefixes or

suffixes. Examples are listed below.

Original Words Original Morphs New Words New Morphs

a good day = a* good+ day+ agoodday => a- good+ -day

to rain = to* rain+ torain => to- rain+

at Wimbledon => at* wim+ ble -don atwimbleden =* a- twim+ ble -den
I'm interested => iam* in+ ter -est =ed aminterested => a- min+ ter -est =ed

Table 7-7: Examples of Foot-like Compound Units Derived from Iterative Procedure.

On close examination of these results, these new word units seemingly characterize the

rhythmic properties of the sentence realization. In abandoning the original demarcation

mandated by the underlying orthography, we have generated new ones that only account

for phonetic, syllabic and stress patterns, albeit using a representation that utilizes creative

spellings. Intuitively, focusing at the sentential level, these bear some semblance to rhythmic

foot units, described in metrical phonology, [31, 40, 63] which studies the theory of stress

and espouses the use of syllables and higher-level units to capture stress patterns and

rhythms. The notion of constituents called rhythmic foot units was raised to characterize the

alternating strong and weak stress patterns in spoken English that some argue contribute
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to a perceived regularity in rhythm. That is, at roughly equal intervals, it is possible

to discern certain rhythmic beats that cause an "isochronal" movement, stemming from

stress and prominence patterns. Although the exact definition of a rhythmic foot is under

dispute, a stress foot is provisionally defined as a string containing as its first element a

stressed syllable followed by zero or more unstressed syllables. It is also said that foot

boundaries can coincide with prosodic boundaries. Most intriguingly, Giegerich [25] went

so far as to suggest that the foot unit has influence on phonological processes. We argue

that our novel units capture succinctly rhythmic patterns of the spoken input in the same

way, and our units were automatically discovered via examining sublexical and phonological

patterns in the data. More examples can be observed in the table below, where the original

orthographies are compared against the new ones with novel spellings. In each case, every

"pseudo-word" marks the location of a single stressed syllable.

Old: Mineapolis
New: miny apolis

Old: Wyoming
New: wai oming
Old: January
New: jan you ari

Old: how about Dominican Republic
New: howa boutda minne can republic
Old: who created you
New: who cree eightidge you
Old: expected in Samoa
New: expectidence amoi
Old: I'd like to check another city
New: id like tocheca nother city

Old: the average relative humidity
New: the ave rejanual relative humidity

Table 7-8: More Examples of Sentences with Novel Words Compared With Their Original
Orthographies.

7.6 Final Remarks

We have enjoyed success in designing and implementing a novel algorithm that has served

the dual purpose of reducing final FST size and improving probability likelihoods or per-

plexity. This is achieved without major compromises on the two crucial factors of our
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design: flexibility and linguistic constraint.

More interesting are some of the characteristics manifested by the final lexical units.

These ranged from modifications in spelling to syllabification. The automatic algorithm

appears to have learned the rhythmic properties of a sentence and synthesized units that

express these patterns of alternating stress. We claim that the learning process has dis-

covered a set of prosodically motivated linguistic units. This can be interpreted as another

promising indicator, possibly leading to better recognition performance.

At this point, we have arrived at an innovative recognition engine that possesses many

of our original criteria for a low-level generic first stage. The next step is to assemble a full

multi-stage system, and investigate performance on handling flexible vocabulary. We seek

answers to whether our system can salvage unknown words from queries, process them and

propose possible spellings.
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Chapter 8

Unknown Word Experiments

8.1 Introduction

In the preceding chapters, we have identified the criteria for a flexible domain-independent

first stage, and have set out to satisfy these, using technologies based on ANGIE and FSTs.

On the way, we have endeavored to infuse our design with the conflicting factors of generality

and constraint. In Chapter 6, we have witnessed that a version of our first stage performs

competently on sentences containing only in-vocabulary data. And, in the last chapter, we

took further steps to improve the probability models by adopting an entirely novel lexicon.

The previous developments have culminated to the point where we are now in a position

to assemble a full system, and conduct experiments on data with OOV items. At the time

of this experiment, the state-of-the-art system [110] in the JUPITER domain, performs at

around 9.9% WER for a test set with only in-vocabulary words. This more than doubles to

19.1% for the entire test set, where OOV and out-of-domain sentences constitute over one

quarter of the entire set. These sentences are the culprit for a large plunge in the overall

accuracies. By themselves, the WER stands at 54.0%. For every utterance with an out-of-

domain component, more than 3 errors are committed on average. This signifies that the

system breaks down in the face of sentences outside of its range of handling, notwithstanding

its superior accuracy on in-vocabulary data for which it has been tailored and optimized.

We posit that significant gains may emerge for utterances containing some unknown words

when our system is applied. Particularly, in detecting the unknowns, our system can salvage

those OOV sentence that would have been otherwise misunderstood in their entirety. The

result will somewhat narrow the large performance gap that exists between in-vocabulary
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and out-of-domain utterances.

In the following, we present a three-stage architecture that consists of some enhance-

ments from the original two-stage concept. The original two-stage arrangement is subsumed

as one mode of operation in the three-stage arrangement. For each stage, we will outline

the components which have been drawn from the technologies developed in the previous

chapters. Recognition experiments have been undertaken on a test set with OOV words.

For the moment, we address the portion of our data that involves queries for unknown

city names only. This is particularly apt, as in such queries, the system's usability can

immediately benefit when a reference to an unknown city at the spoken input is detected.

An appropriate response can be generated, but also, a hypothesis for the city name can be

confirmed with the user, and the subsequent city can be used to extend the lexicon. The

experiments quoted here will aim to recognize and understand queries regarding unknown

cities. Secondly, we attempt to automatically extract spelling hypotheses for the unknown

city names. We emphasize that the system has not been fine-tuned for its sound-to-letter

capabilities. And the task of recognizing unknown words, their underlying phones and pos-

sible orthography is an ambitious feat. This will be a first attempt to investigate whether

this is at all a possibility. Results will be ascertained for both a two-stage and a three-stage

variant of our system configuration, comparing their respective merits. This chapter will

conclude with a series of analyses and discussions about the results of our experiments,

implications for our design and efficacy of the overall system.

8.2 Three-Stage System

In this new configuration, an additional search pass, designated for applying natural lan-

guage models, is appended to the original two-stage architecture. This enables us to in-

vestigate the relative merits of applying above word-level linguistic models at an isolated

final stage, in comparison with our current integrated scheme. The practicality of these two

modes needs to be evaluated under the context of handling real data that contain OOV

words interspersed with in-vocabulary words. We anticipated that, ideally, applying vari-

ous sources of linguistic knowledge under a tightly coupled control strategy would empower

the models to mutually interact in a way that would increase accuracy. Nonetheless, this

may remain untenable, particularly when the search space is opened to accept unknown
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words and novel word constructions at any time. The alternative is to postpone the natural

language models to the final stage.

Figure 8-1 depicts the three-stage architecture which we shall describe in this section.

In essence, linguistic knowledge is applied from the bottom upwards as we successively

proceed from one stage to the next. Acoustic knowledge drives the initial recognition pass,

which is aided by the low-level largely domain-independent ANGIE-FST models that were

developed in Chapters 6 and 7. The second pass primarily adds word-level information with

the ANGIE parse mechanism. Its role is to determine possible locations for unknown words,

and to propose in-domain hypotheses. Although one option is to apply natural language

information here, a third stage is designated to traverse an even more slimmed down search

space, enlisting TINA NL models to determine the final sentence hypothesis and meaning

representation.

8.2.1 Stage One

In stage one, the acoustic model and search aspects of the recognition engine are as previ-

ously explained in Chapter 5. The FST recognizer loads in the precomputed and optimized

FST U, as described in Chapter 7. In summary, let us highlight the major features in this

FST, where U = C o P o L o G (also depicted in Figure 8-1):

* P is a column bigram ANGIE-FST trained from a letter-phoneme based grammar that

has been iterated to optimize on the lexical units.

* L transduces the letter-phonemes to the novel morph units, further decomposing the

stressed roots into onsets and rhymes.

* G is a trigram FST on the novel morphs.

The recognizer outputs an optimized phonetic network whose arc weights consist of the

acoustic scores and language model scores with reduced weighting.

8.2.2 Stage Two: The ANGIE-Based Search

The role of the second stage is to traverse the pruned search space defined by the phonetic

network from stage one, and identify potential word hypotheses as well as possible locations

of unknown words. As in the two-stage system explained in Chapter 6, the integrated search
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Figure 8-1: Block diagram of Three-Stage System.
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strategy utilizes a best-first search using future estimates, coordinating the ANGIE dynamic

parse mechanism, a word bigram and, optionally, TINA.

As in the previously described second stage, ANGIE seeks to discover words from the

bottom-up along phonetic sequences. Generally, a phonetic sequence has to parse suc-

cessfully, as stipulated by the context-free rules and probability models. When operating

exclusively to support in-vocabulary words, the mechanism needs to access a lexicon asso-

ciated with the pre-terminal (letter-phoneme or phoneme) layer of the parse tree and to

find a matching entry. However, if OOV words are allowed, and the pre-terminal sequence

of the proposed parse cannot be matched in the lexicon, an unknown word is proposed.

ANGIE returns an OOV flag along with the current theory and score, which are returned

to join the stack. Under this bottom-up scheme, all theories that contain word hypotheses

with successful parse trees are pursued, and compete among one another. This prevents

the phonetic sequences that score favorably in both the acoustics and the ANGIE parse from

being pruned away prematurely. To counter the over-generation of unknown word hypothe-

ses, and the ballooning of the search by too many competing paths, various measures have

been erected.

While bigram scores are expected to discourage the proliferation of unknown word hy-

potheses, an empirically determined constant is used to penalize each unknown word hy-

pothesis. As we only deal with utterances with unknown city names, we further impose the

restriction that unknown words can only occur following a short list of words. These are

found to be words preceding city names in the training data. They are provided here: in,

for, uh, oh, um, on, at, is, about, what-about, like.

In preliminary investigations, we discovered that the tendency for ANGIE's flexible gram-

mar to generate excessively long unknown words needs to be curbed. Therefore, each un-

known word is restricted to only one stressed root and one derivational suffix. This disables

the grammar's ability to recursively build single-word parses with prohibitively large num-

bers of syllables. In case where the unknown city is multi-syllabic with more than one

stressed root, the grammar is forced to start a new word, incurring an additional unknown

word penalty. At the output of stage two, multiple adjacent unknown word tags are col-

lapsed into a single one. They are treated as a single unknown city name.

As previously described, when ANGIE locates a word boundary and returns the word

identity, the higher-level language models are applied. Here, TINA can be optionally applied
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to parse the current string of words in the partial sentence hypothesis. TINA is trained

to handle unknown words exclusively as unknown city names in the sentence. If other

unknown words such as other proper names are to be handled, TINA could be extended to

accept unknowns under other categories. We will descibe this further.

The second stage outputs a list of N-best scoring sentences. The unknown word hy-

potheses are tagged as <unknown> among the in-vocabulary hypotheses. However, it is

also possible to extract spelling hypotheses for the unknown words. This necessitates the

use of the letter-phoneme grammar in the ANGIE parse mechanism. Then, the sequence

of pre-terminal letter-phonemes in the unknown word parse is retrieved. The annotations

are stripped and letter-phonemes are concatenated to form a possible spelling. This word

appears in the N-best list.

8.2.3 Stage Three: TINA Parsing

Instead of applying TINA in conjunction with ANGIE in stage two, our new scheme postpones

NL processing to the final third stage. We expect this strategy to lighten the computational

load in stage two, and yet, the third stage will also be efficient due to a highly pruned search

space.

In an approximate algorithmi, the N-best output of stage two is converted into a word

network, collapsing words that occur in the same relative position of the sentence. Goodness

scores for each word are computed by ranking hypotheses according to their frequency of

occurrence in the list. Sweeping the network using a Viterbi search with beam pruning, TINA

parsing, with the robust parse handling enabled, is applied. The highest scoring sentence,

with TINA and the goodness scores combined, is sought by the search. Another benefit is

that a meaning representation can be obtained directly during this stage, to be used for

further dialog processing.

'Note that this approach was taken for a fast and simple implementation. The scores from the second
stage are not retained, but, in principle, they can be combined with the TINA scores in the third stage.
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8.3 Experiments

8.3.1 Training

56k sentences are made available for training language models. For the recognition ex-

periments, a phoneme-based ANGIE grammar is used in the second stage ANGIE parser.

This, being smaller than the letter-phoneme grammar, should ease computation during the

search process. In order to train TINA to handle unknowns appropriately, we employed a

heuristic approach. During training, one out of every ten training sentences containing city

names is selected at random. These city names are replaced by an "unknown" tag so that

in the next training pass, the TINA models treat these as unknown cities. Consequently,

the probabilities for encountering unknown city names are artificially boosted. Within the

56k training sentences, there were approximately 2000 sentences that were artificially aug-

mented with the "unknown" marker. We did not attempt to employ more sophisticated

training, though, in actuality, system performance may benefit if the unknown city rate in

the training is made to match closely to that of real usage.

A development set of 430 utterances was set aside for determining other parameters.

8.3.2 Recognition

In the recognition experiments, performance is evaluated on an independent test set of

425 utterances. This set is specially chosen such that all sentences pertain to weather

information queries regarding unknown cities. Each test utterance contains exactly one

unknown city name.

The baseline recognizer is a single-stage SUMMIT [110] recognizer which does not have

the capability to handle OOV items. It uses the same context-dependent acoustic models as

the three-stage system, and a bigram and trigram word model trained on the same training

corpus. This baseline system has been described in previous chapters.

For comparison, experiments are conducted on three variations of our system. We

consider:

" System 1 Two-Stage ANGIE only: A two-stage only version where the top scoring

sentence hypothesis of the second stage is evaluated and NL processing is omitted.

* System 2 Two-Stage ANGIE-TINA: A two-stage version which employs both

ANGIE and TINA in stage two.
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Key Example Values

TIME.OF-DAY afternoon, morning
WEATHER temperature, pollen count, windspeed, pressure, rain

CURRENT yes
REGION massachusetts
UNK.CITY timbuktu
QUANTIFIER average..rain, accumulation
CITY boston
CLAUSE time, info
CARDINAL south, west
DATE sunday, today
CRISIS..TYPE hurricane flood

Table 8-1: List of Concepts and Example Values for Understanding Evaluation.

o System 3 Three-Stage System: the full-fledge1 three-stage system.

In the three-stage system (System 3), the third-stage word network is constructed from

the N-best list of stage two with N = 20. Results are reported for word (WER) and

understanding (UER) error rate. The latter is computed on a set of concept-value pairs.

There are 11 concept types, tabulated in Table 8-1 along with example values for each. When

an unknown city is detected in a parse, the UNK.CITY concept is proposed. A sentence is

recognized/understood correctly if all the known words are recognized/understood, and an

unknown flag is proposed at the correct location in the sentence where the unknown city

name is spoken.

8.3.3 Results and Analysis

WER and UER for the baseline and the three experimental systems are illustrated graph-

ically in Figure 8-2. The breakdown of the WER and UER numbers are tabulated in

Tables 8-3 and 8-4.

The baseline system achieved a WER of 24.6% and UER of 67.0%. Upon closer ex-

amination, in spite of the incidence of exactly one unknown city per utterance, the system

committed on average 1.9 recognition errors per utterance. This evidence reinforces our

notion that the prevalence of unknowns multiplies the difficulties in recognizing the sur-

rounding in-vocabulary words. Due to the complete absence of OOV handling ability,

sentence error rates are 100%. That is, the system's responses to all of the test sentences

162



System
17.41

System 2

S UER

System 1 [ WER

Baseline

0 10 20 30 40 60 60 70

Percentage Error (%)

Figure 8-2: Bar Graph of Word and Understanding Error Rates.

would have been incorrect. This is true despite the UER of 67% where some concepts such

as weather and temperature were understood correctly. Large deletions are incurred in the

UER, as the unknown city category is never detected. Usually an in-vocabulary word is

proposed in its place, incurring an insertion. Deletions are also caused by large numbers

of parse failures in the understanding evaluation. 78 utterances or 18.35% of the test set

failed as the recognizer tends to propose nonsensical words at the unknown spoken input.

(See Table 8-2 for a comparion of the number of failures for each system.)

Significant improvements are made using System 1 with a WER of 15.6% (36.6% relative

improvement) and UER of 31.3% (53.3% relative improvement). The two-stage system

substantially reduces the number of substitutions (from 15.2% to 5.0%) in word errors,

and the number of deletions in UER is almost halved. On average, there are 1.2 errors

committed per utterance, compared to 1.9 in the baseline. We computed the unknown

word detection error rate by seeking all the unknown words that were discovered in the

correct location. It was found that a detection error rate of 21.2% stands. This is composed

of 2.6% false alarms and 18.6% misses.

These results are encouraging, particularly because NL constraints have yet to be uti-

lized. However, at this point, the number of failures in understanding evaluation remains

high, at 44 or 10.35% of the test set. In these utterances, parse failures prevent the gener-

ation of a meaning representation. This translates to a total lack of understanding on the
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part of the system. We expect the utilization of NL constraints to favor utterances that are

meaningful, thereby lifting performance on this subset.

For System 2, coupling TINA and ANGIE within the recognition search, while licensing the

proposal of unknown words, has proven to be an expensive computational overhead. The

time required to run a test set increased over tenfold for the second stage when compared

with System 1. However, some gains in understanding are reaped, with UER at 24.3%.

Compare this with 31.3% in System 1 and 67.0% in the baseline. The number of utterances

that failed to parse is reduced to 13 (3.1% of the test set). As consistent with observations

in previous experiments, the WER slightly degrades despite improved understanding, upon

addition of NL models. Although these performance gains are significant, they were accom-

panied by an escalation in the running times. TINA was employed in full-parse mode only.

This is suboptimal, as a realistic application would certainly require robust parse handling.

The best UER and WER performance was derived from System 3, the full-fledged

three-stage system, employing TINA in robust parse mode in the final search pass2 . The

WER stands at 17.4% (29.3% relative improvement from baseline) and the UER stands

at 21.8% (67.5% relative improvement from baseline). Major reductions in the number of

substitutions, deletions and insertions resulted. And a total of 7 utterances (1.6% of the

test set) failed in understanding evaluation. These substantial gains signify the efficacy

of the three-stage architecture and the word network interface. On close analysis of the

recognizer outputs, we observed some tendency for the recognizer to identify portions of in-

vocabulary words following unknowns as OOV, thereby causing an increase in the number

of in-vocabulary deletions. But the number of substitutions and insertions in the WER has

plunged compared with the baseline. The computation time is markedly shorter than in

System 2. See Section 8.3.5 for details.

The above systems have manifested substantial gains in WER and UER, particularly

when compared with a baseline that is not equipped with OOV handling capability. By and

large, it has been demonstrated that our strategy has achieved the balance of preserving high

in-vocabulary recognition accuracy along with successful unknown word detection. These

gains are reflected in the error rate numbers, but during a real dialog, our three-stage system

can potentially greatly improve usability, in recovering from a situation where an unknown

city has been queried. All this is accomplished at near-real-time speeds, comparable with

2 TINA is omitted from the second stage here.
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System No. of Fails] % Fails

Baseline System 78 18.35
1. Two Stage 44 10.35
2. Two Stage with TINA 13 3.1
3. Three Stage 7 1.6

Table 8-2: Comparison of Parse Failures During Evaluation for 4 Systems. Results given

for the 425-utterance test set. A marked drop in the number of failures is observed for the

systems that employ TINA (System 2 and 3).

System WER(%) Subs (%) Ins (%) ] Del (%) SER (%)

Baseline System 24.6 15.2 6.5 2.8 100
1. Two Stage 15.6 5.0 3.2 -7.4 59.8
2. Two Stage with TINA 17.2 10.7 2.2 4.3 59.3
3. Three Stage 17.4 2.8 1.9 12.7 57.2

Table 8-3: Breakdown of Word Error Rates (WER) for baseline system and three experi-

mental systems on a 425-utterance test set with unknown city names.

the baseline configuration. Section 8.3.5 further investigates this aspect.

8.3.4 Spelling Extraction

In a pilot experiment, we test the feasibility of instantaneously proposing letter spellings

for new words. As the purpose is simply to investigate viability, we did not attempt to

implement spelling extraction with the three-stage system. Instead, a two-stage architec-

ture is used, omitting the application of TINA. The letter-phoneme grammar is used in the

second-stage ANGIE parser. As this is substantially larger than the original phoneme-based

grammar, the search computation is accordingly increased. When a final sentence hypothe-

System UER(%) Subs (%) Ins (%) Del (%) SER (%)
Baseline System 67.0 2.4 16.9 47.7 100
1. Two Stage 31.3 2.0 3.3 26.3 49.4

2. Two Stage with TINA 24.3 1.2 3.3 19.9 45.6
3. Three Stage 21.8 0.9 2.3 18.6 44.2

Table 8-4: Breakdown of Understanding Error Rates (UER) for baseline system and three

experimental systems on a 425-utterance test set with unknown city names.
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ISubsIInsIDels1 Err

%1 29.7 9.5 18.6 57.8

Table 8-5: Error rates for Letter Recognition of Unknown Cities. There were 164 cities in
total.

sis contains an unknown word, the ANGIE parse for the word is accessed and the pre-terminal

letter-phonemes are retrieved. These underlying spelling hypotheses are deduced.

In this experiment, the two-stage system attains a WER of 16.5% and a UER of 32.5%.

This is a slight degradation compared with the original System 1 (15.6 WER and 31.3 UER)

that uses a phoneme-based grammar in stage two. We only examine the spelling hypotheses

for the subset of sentences that are correctly recognized. This ensures that the unknown

words are detected in the correct location and the surrounding hypotheses are also accurate.

Our evaluation is focused on the system's ability to propose correct spellings in spite of the

chance that the underlying phones are incorrectly recognized. The letter error rate is then

computed on the unknown words of 164 sentences. The result is a 57.8% error rate. The

composition is given in Table 8-5.

Although these results remain preliminary, they nonetheless demonstrate that spelling

extraction of unknown words is feasible at recognition time. Furthermore, these results

were ascertained without any optimization on the sound-to-letter capabilities. Table 8-6

tabulates the top 20 letter confusions among the individual letter errors.

Number of Confusions Number of Confusions
Confusions Confusions

13 E=>A 5 K=>C
13 A O 5 N =R
11 0=> A 4 P T
8 A 1d 4 P F
8 U>O 4 C=0
7 S=>C 4 O=>E
7 E I 4 E=>U
6 O=U 4 S=>T
5 1tE 4 M => N
5 I=A 4 _K = T

Table 8-6: Top 20 Confusions for the Letters Hypotheses.
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Let us explore further by analyzing the characteristics of the errors made for this test

set. In Table 8-7, some examples of the unknown word hypotheses are given. We did not

examine the actual phonetic hypotheses nor attempt to quantify a phonetic recognition

accuracy. However, by inspection, many of the spelling hypotheses suggest that the under-

lying phonetic sequences appear to be correctly or almost correctly proposed. This seems

to be true in spite of some errors in the letter spellings. Some notable examples from Ta-

ble 8-7 are Madagascar, Mapleton, Montebello, Montclair, Qatar, San Ramone and Sedona.

We are particularly encouraged by this, as even though the quantitative letter error rate is

rather high, the unknown word hypotheses may still be induced from the errorful machine

hypotheses. This can perhaps be performed by matching a hypothesis with a long list of

city names or alternatively one can enlist a human operator to guess the city name by

examining the proposed letter sequence. Or the hypothesis can simply be used to shortlist

some possible unknown city names given the state. Many possibilities exist in a real world

application, where city names that are not previously encountered are expected.

8.3.5 Running Times

In further evaluations, we assess the computational requirements of the system. Given the

425-utterance test set, the average computation time per utterance is measured on a single

500MHz Pentium III machine. The computation time of each stage is measured separately.

On average, there are 7.9 words in every sentence in the test set. Results are given in

Table 8-8.

It should be noted that, although the baseline is equivalent to the state-of-the-art

JUPITER system, real-time operation requires more aggressive pruning, whereas our baseline

employs minimal pruning. Evidently, the three-stage system in total operates at a speed

similar to that of the baseline. The FST-based first stage yields only 4.63 seconds per utter-

ance, which is almost twice as fast as the time for the single-stage baseline word recognizer

at 8.1 seconds per utterance. In the second stage, the ANGIE only system yields 3.1 seconds

per utterance, whereas adding TINA into the search increases running time significantly.

But in the third stage, running time for a TINA-based search is virtually negligible. This

is attributed to the compact word graphs computed from only the top 20-best sentences in

stage two.
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Reference => Hypotheses

Alameda alumida
Buford befurt

Franklin frankfor
Gettysburg catlsburgh

Hanover anover
Hatteras sateras
Hillsboro hillsburow

Homestead hontstead
Huron juran

Madagascar => madigasgar
Mapleton => mapelton

Montebello => montabellow
Montclair => monclar

Mountainview = mountonvue
Napa => napid

Parsippany => parcetone
Qatar katar

Rancho bernardo => raktulburghargo
San ramone => sanromon

Sedona sydona
Texaco texico

Youngstown => janston

Table 8-7: Examples of Letter-Spelling Hypotheses from the Two-Stage Recognizer. Spellings
were extracted from the letter-phonemes at the pre-terminal layer of the ANGIE parse tree.

8.4 Final Remarks

In this chapter, we have assembled a three-stage system that draws upon the developments

that have been charted throughout this thesis. We sought to initially establish the validity

of our notions regarding linguistic modeling and our set of novel design solutions via an

experiment on recognizing and understanding JUPITER sentences with unknown city names.

As we have hoped, our three-stage system has exhibited an ability to recognize the

presence of an unknown word, without adversely affecting the recognition of other parts of

the sentence. Moreover, we believe that eliciting the spelling of an unknown word instan-

taneously is a real possibility. It is also important to emphasize that we have accomplished

this with a very efficient system that operates no slower than our baseline word recognizer.

The next chapter will recapitulate the contributions of this thesis and ponder on directions

for the future.

168



System Seconds per Utterance

Single-Stage Baseline 8.1
First Stage Only 4.63
Second Stage with ANGIE Only 3.1
Second Stage with ANGIE-TINA Only 5.0

Third stage with TINA Only n/a

Table 8-8: Average Computation Time Per Utterance. The test set averages 7.9 words in
length.
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Chapter 9

Conclusions

9.1 Summary of Contributions

In this thesis, we have addressed how one could implement a multiple domain system with a

flexible and dynamic vocabulary. Our foremost vision has been one of a system that allows

a user to switch among multiple topic domains automatically and seamlessly within a single

conversation. In addition, the system learns any new words encountered at the spoken

input. When the system is presented with a query regarding an unknown place or person,

it identifies the presence and exact location of the unknown word within the sentence. At

the same time, the system proposes a phonetic baseform and orthography for the new

word. Once these hypotheses are verified with the user, the system can automatically add

them into the lexicon. The new word is instantaneously available to the system for future

recognition.

A major challenge in implementing this vision is in tackling one of the most elusive

problems present in speech understanding systems today: the OOV problem. The presence

of unknown words tends to multiply errors within the in-vocabulary regions of the sentence.

This may lead to a compounding of errors in the continuing dialog, often inciting user frus-

tration. Thus, it is most important to handle OOV words in an intelligent manner. In our

research, we focus on exploring the application and organization of various linguistic knowl-

edge sources. These need to reckon with two conflicting demands: to increase flexibility in

order to support sequences associated with unknown words, and to maximize constraints

in order to preserve high performance on in-domain, in-vocabulary data.

In this thesis, we have combined a composite of novel ideas for combining disparate
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linguistic constraints. These are:

* Developing a multi-stage architecture in which the core recognition engine at the first

stage focuses on exploiting low-level linguistic knowledge.

* Folding a complex hierarchical sublexical model into a novel FST representation for

integration with the recognition search algorithm, thereby enhancing a low-level first-

stage recognizer.

" Improving the low-level first stage with novel context-dependent linguistics units that

dually encode spelling and pronunciation. These are utilized both at the phonemic

level with letter-phonemes and syllabic level with novel morph units.

We will summarize these main points below.

9.1.1 A Multi-Stage Approach

We have conceived of a multi-stage architecture in which information from the linguistic

hierarchy is applied successively from the bottom up, proceeding from one stage to the next.

At each stage, the interface is a network or lattice. In an initial recognition engine, we utilize

only low-level linguistic models to capture generic English domain-independent knowledge.

The models draw upon general acoustic and linguistic knowledge, codifying phonotactic,

phonological, syllable and morphological information. This information is general enough

to support both out-of-vocabulary and in-vocabulary words. The first stage is envisioned

to narrow the search space, outputting a subword network. The network serves to steer a

second stage which consists of several parallel domain-specific recognizers. Each of these

utilize higher order language models tailored exclusively to each individual topic domain.

Throughout our thesis, we have experimented with several multi-stage systems. In

Chapter 4, we conducted an initial experiment where the first stage of a two-stage system

utilized only syllable-level information. Meanwhile a second-stage integrated models from

the subword level to the natural language level. This two-stage system demonstrated the

feasibility of a multi-stage architecture. In particular, it was shown that a phonetic network

served as an effective interface between the first and second stage. The phonetic network

is a compact way of representing hypotheses favored by the first-stage models but does not

force later stages to commit to any selections of the earlier stage, avoiding irrecoverable

errors incurred by making hard decisions. Furthermore, in Chapter 5, when we enhanced
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the low-level first stage with hierarchical sublexical models, more evidence pointed to the

viability of the two-stage paradigm. In fact, adding such models in the first stage boosted

gains such that the overall performance of the two-stage system significantly outperformed

that of a single-stage baseline.

9.1.2 Sublexical Modeling and Finite-State Transducers

For a number of years, we have envisioned a system which can predict structures of unknown

words using a hierarchical sublexical framework known as ANGIE. ANGIE has been designed

to characterize phenomena such as phonology, syllabification and morphology via a trainable

context-free grammar. In the past, it was used in a number of speech applications. Here,

we have enlisted it to predict phonetic sequences of an unknown word by generalizing the

knowledge it has learned from in-vocabulary training data.

Our contribution has been to devise an effective architecture in which these rich hier-

archical models can best be exploited to enable the recognition of unknown words within a

sentence. The computational demands of the ANGIE parsing mechanism have been a stum-

bling block towards full integration with a traditional recognition system. In our design, the

dynamic parser is integrated in a second stage where the search space has been significantly

pruned down. This reduction in space renders the second stage computation much more

tractable, and additionally, allows an integrated search that fully couples ANGIE parsing

with the application of word-level models.

Another breakthrough has been the transformation of ANGIE models into a flattened FST

structure. This was conceived with the notion that the context-rich and low-level models

of ANGIE can benefit the performance of the first-stage recognizer, in affording tighter con-

straints. FSTs constitute a versatile and parsimonious representation for expressing ANGIE

constraints, enabling their integration with other more conventional language constraints.

During our work, it became evident that the task of translating the powerful ANGIE models

to an FST representation would pose many challenging questions. We determined that the

FST structure would need to encapsulate the vast ANGIE probability space in an efficient

manner without foregoing ANGIE's ability to generalize knowledge towards unobserved pho-

netic sequences. This left us with the task for configuring an underlying FST structure that

is compact yet replicates ANGIE's probability modeling. In Chapter 5, we first adopted an

FST-based stage one where an initial attempt was made to incorporate ANGIE probabilities
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into the FST weights. A right-to-left branching FST captured all pronunciation variants

found in training data, and pre-computed ANGIE probability scores were assigned on the

FST arcs. In experiments with in-vocabuLry test data, results revealed that both recog-

nition and understanding accuracy were improved by enhancing the first stage with ANGIE

probabilities, compared with a baseline that was devoid of any statistical pronunciation

modeling. This indicated that the ANGIE probabilities can be an effective pronunciation

model, producing additional gains over and above conventional n-gram models in a system.

However, we determined that our initial ANGIE-FST effort fell short of satisfying the

criterion to support previously unobserved phonetic sequences. But in Chapter 6, we de-

veloped the innovative approach of a column bigram FST in which the ANGIE parse tree is

viewed in terms of generating a sequence of vertical columns. This new approach allowed us

to construct a bigram FST where the FST arcs represent transitions from one ANGIE column

to another. The resultant FST accepts phonetic strings and emits pre-terminal phoneme

or letter-phoneme strings as well as additional information extracted from the parse tree or

columns. This method fundamentally differs from our previous in that paths in the FST are

no longer strictly confined to the lexicon of the training data. In the same way that ANGIE

parse trees trained on in-vocabulary data can be generated for novel phonetic sequences,

novel sequences can be admitted in the colurm bigram FST, generating corresponding novel

phoneme or letter phoneme sequences along with other parse information. Eventually, this

became our method of choice for converting ANGIE into an FST structure, and we proceeded

to use these FSTs to automatically generate a new set of subword lexical units.

9.1.3 Novel Symbolic Representations involving Graphemes

Another important contribution of our work has been the development of novel symbol rep-

resentations that account for spelling as well as pronunciation. This involved experimenting

with units at the phoneme level, as an intermediate representation embedded in the parse

tree, as well as at the lexical level for our first-stage recognizer. Our initial motivation

was to incorporate spelling information into the first stage, as it has the potential to en-

hance constraints as a source of low-level linguistic knowledge. Secondly, we were inspired

to introduce grapheme information into the recognizer so that the spelling of a detected

unknown word could be inferred instantaneously upon recognition. The following revisits

some of these novel units of representation adopted in our work.
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Letter-Phonemes

A major contribution has been the development of letter-phonemes, which amalgamate

phonemes and graphemes into a single mode of representation. A single letter-phoneme

captures the underlying phoneme and grapheme along with other contextual factors such

as lexical stress and syllable position. A direct consequence has been the enhancement

of the ANGIE models so that grapheme information is melded together with phonological

and other subword constraints. Our experiments showed a drop in perplexity, suggesting

a potential benefit in their adoption. Moreover, when an unknown word is detected, the

letter-phoneme sequence can be extracted from the parse tree, and, immediately, a spelling

hypothesis is generated. Our strategy turned out to be a particularly convenient way of

representing in-vocabulary items by making the spelling accessible at the baseform. And

the letter-phonemes later played a critical role in automatically generating new morphs with

novel spellings.

The Morph Unit

The morph unit was conceived as a linguistically motivated syllable-like unit that embeds

not only syllable information but also spelling and other contextual properties. Some of

these are lexical stress information and the underlying morphological unit such as prefix

and suffix. Like the syllable, the morph unit is more general than the word, and therefore

more likely to support an OOV item. Yet, with the additional context, a morph supplies

significantly more constraint than the syllable, and is more likely to ensure the correct

recognition of in-vocabulary items. We have used morph units in the first pass throughout

our various multi-stage systems. Eventually, our morphs were automatically generated as

described in Chapter 7, and in our final systems described in Chapters 6 and 8, the stressed

roots were decomposed into their constituent onsets and rhymes. In other words, we made

use of an inventory of sub-morph and morph units in stage one. This was our solution

for achieving a compromise between optimizing generality and constraint while making the

resultant FSTs more compact.
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Novel Subword Units

One key feature in our architecture has been a first stage that outputs a phonetic network.

This meant that the first-stage subword lexicon is transparent to that of later stages, and

our primary focus should center on the quality of the phonetic network. Hence, we set out

to re-optimize our morph lexicon in the first stage in order to simultaneously improve the

probability models and reduce the size of the ANGIE-FST.

To achieve this, we devised a procedure for implementing this generative lexicon, by

building on the technology developed during the earlier part of the thesis. More specifically,

an iterative algorithm was designed to discover novel subword units by processing the letter-

phoneme outputs of the column bigram ANGIE-FST. After a small number of iterations,

convergence was achieved. The result was a decrease in perplexity and overall reduction in

the size of our FSTs.

The more intriguing outcome of this work was the nature of the novel morph units

themselves. These lexical units were modified in terms of spelling and placement of syllable

boundaries. Each unit contained at most a single stressed syllable. At the sentential

level, a sequence of these then seemed to characterize the alternating stress properties

in the sentence realization. In capturing the rhythmic patterns of the sentence, this was

reminiscent of rhymic foot units described in metrical phonology. It was of interest to us

that such units could be automatically discovered and possibly beneficial for recognition.

9.1.4 Demonstrating Flexible Vocabulary

This research culminated towards a final set of experiments on some test data containing

unknown words. The above ideas were assembled together to build a final three-stage

system. Here, the first stage utilizes the column bigram FST along with a letter-phoneme

ANGIE grammar. The lexical units are precisely those derived from the automatic generation

algorithm. A second stage searches through a phonetic network, applying the ANGIE parse

mechanism. This stage determines possible locations of unknown words. The hypotheses

are output in the form of a word graph, which is processed by a third stage where natural

language information is utilized.

In experiments undertaken with JUPITER sentences containing unknown city names, we

found significant reductions in understanding and recognition error when compared with
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a baseline that lacked any OOV handling capability. We achieved success in improving

recognition of the in-vocabulary regions surrounding the unknown words, and detecting the

unknown words themselves. Our ability to process a query regarding an unknown city was

greatly increased. In another pilot experiment, we also demonstrated that instantaneous

spelling extraction of the unknown word was a possibility.

9.2 Future Directions

The work described in this thesis has only touched upon some of the issues we are attempting

to address. The results we attained have been encouraging and have opened up many

possibilities for further experimentation, particularly in applying the system to a real-world

speech application where flexible vocabulary is a critical issue due to the prevalence of

unknown words, and automatic domain switching becomes a practical necessity.

Let us consider the results gleaned from this research and ponder the next steps one could

take towards realizing a truly multi-domain flexible vocabulary system. The following will

provide a flavor for some direct extensions or applications to this thesis, and give a number

of suggestions for further experiments in the immediate future.

9.2.1 A Multi-Domain System

We believe that the current system is only a small step from a truly multi-domain system in

terms of implementation. In order to advance further towards a multi-domain system, we

would like to assemble a second stage consisting of several individual recognizers in parallel,

each with its own domain-specific models. We feel that this is feasible because of the small

amount of computation required in the second-stage search. Further research can focus on

how to combine the outputs of each of these recognizers to reliably determine the spoken

input utterance and the domain of the query. This allows for switching automatically to a

different topic during the dialog. Experiments will need to study ways to combine scores

output from each recognizer, and devising an algorithm that determines strategic points

during the dialog for permitting domain switching while preventing spurious switching at

inappropriate times.

To optimize the performance of such a system, the first stage needs to fulfill some

of the requirements identified early on in this thesis. That is, the linguistic knowledge
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sources need to be sufficiently constraining to ensure high recognition accuracy, yet they

need to be adequately flexible and general in order to cover all the topic domains that are

served, as well as to cater to possible unknown words, which will be more probable and

varied once multiple topic domains are possible. Hence, one could train the first stage on

a larger, more general corpus. For instance, one could combine the data from all the topic

domains involved, and generate using the techniques described here a new subword lexicon

for the first stage. It remains to be answered whether a real domain-independent first stage

which may require up to 10,000 morph or syllable units, can maintain a comparable level

of performance. Experiments in this area can help determine the extent to which domain

independence is possible, in a competitive system.

9.2.2 Flexible Vocabulary

Meanwhile the lessons that we have learned from this thesis can be applied to many differ-

ent immediate applications where we expect to encounter unknown words in many types of

queries. For instance, this can range from new users who are enrolling their names into a

system to queries associated with newly emerged or unknown place names such as restau-

rants. One can imagine that these are frequent scenarios in domains such as travel planning,

directory assistance or city guides.

Then how can we realize the automatic acquisition of new words in a real state-of-the-art

system? Following are some suggestions for future work that may allow our system to be

incorporated, producing real gains within the foreseeable future.

Combining with Confidence Scoring or a Rejection Mechanism

In an alternative strategy, the highest performance on in-domain utterances can be ensured

only by exclusively processing sentences which have been rejected from any state-of-the-art

system. In some applications, the priority is to process the in-domain queries correctly when

very few OOV sentences are expected. Many systems do currently employ confidence scoring

methods to reject sentences. These act to screen out sentences for which the recognizer is

uncertain for various reasons. A subset of these sentences may be queries which could

be salvaged by our system by accurately pinpointing the location of the unknowns, and

subsequently learning their phonetic and orthographic transcriptions.
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Learning an Unknown Word

Our research has only begun to address the concept of instantaneously learning the unknown

word upon detection. We conducted a single experiment in which we extracted the highest

scoring letter spelling hypothesis, from the proposed phonetic sequence of the unknown

word. Consequently, the spellings proposed are errorful, due in part to the errorful phonetic

hypotheses. As yet, our ANGIE grammar has not been formally evaluated for its sound-to-

letter accuracies. In future, we hope to experiment further in processing N-best hypotheses

of both letter sequences and phonetic sequences or both, in the unknown word location. It

may be possible to integrate with a second ANGIE-based sound-to-letter module based on

the same inventory of letter-phonemes. This can be done by an ANGIE grammar with letter-

phonemes at the pre-terminals and a grapheme set as the terminal units. This grammar can

be trained to generate alternative confusable spellings with probabilities given a possibly

error-ridden letter-phoneme sequence.

What remains is still a reliable method to ascertain the correct spelling for the new word

with certainty, which then allows subsequent incorporation into the recognizer dictionary.

In the absence of a keyboard, the user cannot enter this new word herself, and the process

has to be completed within the dialog. First of all, we can process the N-best list of letter

spellings by comparing with a long list of possible unknown words. For instance, imagine an

application where a large list of place names is easily accessible, perhaps on-line, although

their baseforms are not available to the recognizer1 . One can compute using a distance

metric the best matching name between the long list and the N-best output. A more

practical and robust strategy may be to find a small list of matching names and to present

them to 1he user. With a displayful mode, the user can select the correct name from a

long list. More problematic is a displayless application such as in telephony. A workable

solution is then for the system to ask a user to key in the unknown name on the keypad.

This will constrain the number of spelling hypotheses significantly. Upon acquisition of the

new word, the various models need to be updated so that the new word can be recognized

the next time it is used. More investigation is required to establish if recognition of a newly

acquired word can operate effectively in an application.

'In most applications, it is certainly impossible to regularly update the recognizer dictionary to match

items in constantly changing on-line databases.
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9.2.3 Continuing Research in ANGIE Integration

Early in this thesis, we introduced the issue of incorporating ANGIE into a recognition sys-

tem. Conventional recognizers do not employ any powerful low-level constraints resembling

those offered by ANGIE, but instead they rely heavily on higher-level language models that

are inextricably tied to the topic domain. While we believe ANGIE models can improve recog-

nition performance, the most challenging problem has been handling the added computation

that ANGIE imposes. Throughout our work, we have demonstrated that ANGIE constraints

improve accuracy, and ANGIE can be substantially compacted into an FST structure. Our

column bigram structure was a novel method for partially enumerating the probability space

covered by ANGIE. But we pose the question of whether ANGIE can be better incorporated.

Currently, in using FSTs, we are somewhat at the mercy of the optimization procedures

mandated in the generic algorithms. They dictate how the probability scores are to be dis-

tributed, and how those paths are laid out. Perhaps philosophically, the ANGIE-FST lacks

the elegance of the ANGIE framework. Our current FSTs instantiate the entire possible

search space prior to recognition time, which is diametrically opposed to the sharing that

occurs in the dependencies of the probability model in the original ANGIE mechanism.

In the future, we can keep pursuing the route of integrating the ANGIE hierarchical model

into the initial stage, given that computational resources will continue to grow more abun-

dant. In recent work, Mou [74] has suggested a unified environment for generally applying

hierarchical linguistic mdoels, employing an FST framework. Using the full coverage of a

hierarchical model should produce better performance, particularly in the face of unknown

words. But for now, it may be wise to ponder on alternative methods to represent ANGIE

efficiently in the recognizer.
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Appendix A

Glossary

The following is a list of terms that have been used in this thesis. We have included this to

aid the reaaer with some of the terminology where definitions may be ambiguous. Although

this is by no means a complete list of terminology relevant to our work, we hope this short

glossary will serve to clarify difficulties the reader may encounter. Many of the definitions

are quoted directly from [16] and (65].

* Ambisyllabicity

A principle in metrical phonology which allows intervocalic consonants to be members

of both adjacent syllables in the underlying syllabification of a language, conforming

to the language's syllable structure template. See [40).

* Coda

A term used in phonetics and phonology to refer to the element of a syllable which

follows the syllable nucleus.

* Constraint

In Artificial Intelligence, a constraint is a restriction on the search space.

* Context-free Grammar

A grammar in which all the rules apply regardless of context, i.e. they would be all

of the type, "Rewrite X as Y", no further conditions being specified.

* Deletion

When a phoneme has been deleted in its phonetic realization, little or no evidence of

the phoneme can been observed in the speech signal. For example, by a rule of gener-

ative phonology, the phoneme /t/ might be optionally deleted from the phonological
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representation of the word interested in the following phonetic representation: /ih n

rx eh s tcl t ax dcl/.

* Dernisyllable

This refers to units smaller than the syllable. It can refer to units ranging from the

size of a phone to a constituent of the syllable. These are sometimes employed as

units for modeling in engineering approaches in speech recognizers, and have not been

formally defined in linguistics [84].

" Diacritic

In phonetics, a mark added to a symbol to alter its value. In this thesis, diacritics are

used to augment units with contextual properties. For example, the letter phoneme

/b!/ is the /b/ phoneme denoted with "" for syllable onset position.

* Finite-State Automaton / Machine

A finite-state automaton (FSA) or a finite-state machine (FSM) can be seen as a di-

rected graph with labels on each arc. Mathematically, (from Roche and Schabes [90]),

an FSA is a 5-tuple (E, Q, i, F, E) where E is a finite set called the alphabet, Q is

a finite set of states, i E Q is the initial state, F C Q is the set of final states and

E C Q x (E U {E}) x Q is the set of edges.

" Finite-State Grammar

A grammar in which sentences can be characterized in terms of the transitions of an

automaton from one state to another, known as a finite-state machine. Finite-state

grammars are also known as regular grammars.

* Finite-State Transducer

A finite-state transducer (FST) can be seen as a finite-state automaton, in which each

arc is labeled by a pair of symbols rather than a single symbol. Mathematically, (from

Roche and Schabes [90]), an FST is a 6-tuple (Ei, E2 , Q, i, F, E) such that:

" E is a finite alphabet, namely the input alphabet,

* E2 is a finite alphabet, namely the output alphabet,

* Q is a finite set of states,

* i E Q is the initial state,

* F C Q is the set of final states,

* E C Q x (EU {}) x Q is the set of edges.

* Foot
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A term used by some phoneticists and phonologists to describe the unit of rhythm

in languages displaying isochrony, i.e. where the stressed syllables fall at approxi-

mately regular intervals throughout an utterance. The term has particular relevance

in metrical phonology where it refers to an underlying unit of metrical structure (or

stress-foot), consisting of syllable rhymes, and organized constituents that make up

phonological words. Feet are classified as left-headed (the leftmost rhyme is stressed)

or right-headed (the rightmost rhyme is stressed).

" Grapheme

The minimal contrastive unit in the writing system of a language. The grapheme e,

for example, is realized as several allographs or variants including A and a.

" Inflectional Suffix

Inflectional suffixes in linguistics generally signify grammatical relationships such as

plural, past tense and possession, and do not change the grammatical class of the stems

to which they are attached. In our ANGIE grammar, we have defined an inflectional

suffix set more generally to include the plural (=s), the past tense (=ed) as well as

other common endings such as =ful, =able, =ness and =ing.

* Isochrony

A term used in phonetics and phonology to refer to the rhythmic characteristics of

some languages. In isochronous rhythm, the stressed syllables fall at approximately

regular intervals throughout an utterance. An implication of this is that the theory

predicts that unstressed syllables between stresses will be uttered in similar periods

of time. If there are several unstressed syllables, accordingly they will be articulated

rapidly, to get them into the time span available. Isochrony is said to be a strong

tendency in English which is accordingly referred to as a stressed-timed language.

The units of rhythm in such languages, i.e. the distance between stressed syllables,

are called feet by some phoneticians.

* Lax

One of the features of sound set up by Jakobson and Halle [433 in their distinctive

feature theory of phonology, to handle manner of articulation. Lax sounds are those

produced with less muscular effort and movement, and which are relatively short and

indistinct, compared with tense sounds. Examples are vowels articulated nearer the

center of the vowel area (as in the phoneme /ith/ in bt and the phoneme /uh/ in put.)
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* Metrical Phonology

A theory of phonology in which phonological strings are represented in a hierarchical

manner, using such notions as segment, syllable, foot and word. Originally introduced

as a hierarchical theory of stress, the approach now covers the whole domain of syllable

structure and phonological boundaries. The underlying metrical structure of words

and phrases may be represented in the form of a metrical tree, whose nodes reflect the

relative metrical strength between sister constituents. These are described in [40, 31].

* Morph

While morpheme units are abstract (see next entry), in linguistics, morphs are the

real forms that represent morphemes. For example, in the word unhelpful, /ah n/

realizes the negative morpheme, /h eh 1 p7 realizes the root and f uh l/ realizes the

adjective. Morphs have been adopted in this thesis as lexical units in the recognition

engine. While they loosely correspond with the linguistic definition, they are more

precisely seen as syllable-sized units encoding spelling, position within word (rather

than a precise morphemic function) and stress. Each morph corresponds with one or

more phonemic pronuncations. One example is the word directions which consists of

four morphs: a prefix di- with phonemic representation /d ay/, a stressed root rec+

with phonemic representation /r eh k/, a suffix -tion with phonemic representation

/sh! en/ and the inflectional suffix s with phonemic representation /. The suffix

-tion can also have an alternate pronunciation in /ch! en/ as in the word question.

* Morpheme

The minimal distinctive unit of grammar, and the central unit of morphology. The

morpheme is seen as the smallest functioning unit in the composition of units. This

concept is used to iaterrelate notions such as root, prefix, etc. In the English word

unhelpful, three components of meaning are present: negative plus help and adjective.

* Morphology

The branch of grammar which studies the structure or forms of words, primarily

through the use of the morpheme construct. The study of the meaningful parts of the

words.

* Nucleus

This refers to the central element of a syllable, usually consisting of a vowel or a

diphthong.
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" Onset

This refers to the part of a syllable that precedes the vowel nucleus, e.g., the phoneme

/k/ in /k ae t/ for the word cat.

* Parse free

In traditional grammar, parsing refers to the pedagogical exercise of labelling the

grammatical elements of a sentence, e.g. subject, predicate, past tense etc. The term

parse identifies the breakdown of a text in terms of syntactic, semantic and referential

information, as presented in the form of a parse tree. In this thesis, we often refer to

an ANGIE parse tree which labels constituents smaller than a word, from the phonetic

level upwards. We also refer to a column of a parse tree which is defined as the

collection of nodes along the path from the root to a leaf or terminal node, arranged

into a vertical column.

" Phone

A term used in phonetics to refer to the smallest perceptible discrete segment of

sound in a stream of speech. From the viewpoint of segmental phonology, phones are

the physical realization of phonemes. Phonic varieties of a phoneme are referred to

as allophones. In our speech recognizer, the phonetic inventory directly corresponds

with the acoustic models used. Phone units are also represented in the terminal layer

of the ANGIE parse tree.

" Phoneme

The minimal unit in the sound system of a language, according to traditional phono-

logical theories. Phoneme units are represented in the pre-terminal layer of the ANGIE

parse tree, although we prefer to refer to the representation as pseudo-phonemes as

they have been augmented with other contextual markers. For example the phoneme

/b/ in the onset position appears as /1/.

* Phonetic Network / Phonetic Lattice / Phone Graph

This refers to a lattice, or directed graph, where each edge or arc of the network

represents a phonetic event. An edge runs between two nodes which mark the begin

and end points of a segment. When used in a speech recognizer, the phonetic network

restricts the entire search space to a portion that the recognizer search can visit. The

network thereby steers the search towards only those hypotheses that are embedded

in the network. Generally scores are also stored on the edges corresponding to the
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probability of the phonetic event at that segment.

* Phonetics

The study of the nature, production, and perception of sounds of speech, in abstraction

from the phonology of any specific language.

* Phonology

A branch of linguistics which studies the sound systems of languages. The aim of

phonology is to demonstrate the patterns of distinctive sound found in a language,

and to make as general statements as possible about the nature of sound systems in

the languages of the world.

* Phonotactics

A term used in phonology to refer to the sequential arrangements of phonological units

which occur in a language. In English, consonant sequences such as /fs/ and /spm/

do not occur initially in a word, and there are many restrictions on the possible

consonant and vowel combinations which may occur, e.g. /ng/ occurs only after

some short vowels /ih eh ae/. These sequential constraints can be stated in terms of

phonotactic rules.

* Prosody

A term from suprasegmental phonetics used to refer collectively to pitch, loudness,

tempo, rhythm, stress and intonation.

* Rhyme

In metrical phonology, a term referring to a single constituent of syllable structure

comprising the nucleus and coda; sometimes it is called the core. The notion postulates

a close relationship between these two elements of the syllable, as distinct from the

syllable onset.

* Rhythmic Foot

See the entry for Foot.

* Root

The root is a part of the word left when all the affixes are removed. (Affixes are simply

morphological elements other than the root. These include prefixes and suffixes, for

instance.) It is a base form of a word which cannot be further analyzed without total

loss of identity. From the semantic point of view, the root generally carries the main

component of meaning in a word.
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" Stress

A term used in phonetics to refer to the degree of force used in producing a syllable.

Stress may be correlated with observable parameters such as length, energy and so

forth. It is considered a phonological feature by which a syllable is heard as more

prominent than others.

* Sub-morph

This term is used exclusively in this thesis to refer to constituents that are directly

derived from our morph inventory. More precisely, they are the decomposition of

stressed root morphs into constituent onsets and rhymes. Consequently, we refer to

the onsets and rhymes collectivelly as sub-morphs. Like the morphs, they jointly

encode their position in the word and spelling.

* Sublexical / Subword Modeling

In [59], Lau refers to modeling the sequence of phones permitted for different sequences

of words as subword lexical linguistic modeling, alternatively coined sublexical mod-

eling. He divides up the approaches of sublexical modeling into either an explicit

pronunciationgraph modeling or implicit modeling of variation.

" Syllable

A unit of pronunciation larger than a single sound and smaller than a word. Syllabi-

fication is the division of a word into syllables. The basic structural possibilities of a

syllable in a language are described in templates. The opening segment of a syllable

is called the onset. The closing segment of the syllable is the coda and the central

segment of the syllable is the nucleus.

* Word Graph / Word Lattice / Word Network

This refers to a lattice, or directed graph, where each edge or arc of the network

represents a word hypothesis. An edge runs between two nodes, which mark the

beginning and end points of a word segment. When used in a speech recognizer,

the word network restricts the entire search space to a portion that the recognizer

search can visit. The network thereby steers the search towards only those chosen

word sequences that are embedded in the network. Generally, scores are also stored

on the edges, corresponding to the probability of a word at that segment, given the

surrounding allowed transitions.
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Appendix B

A Guideline on Notation

In the following, we will provide a complete list of the meanings of the annotations pertaining

to our morph and letter-phoneme units. This is intended to aid the reader in deciphering

the contextual markers encoded in our units, given in examples throughout this thesis.

B.1 Morphs

The following table lists each type of morph and the associated annotation.

Morph Class Marker Example

Stressed Root "+" suffix bos+

Stressed Onset "=" suffix b=

Stressed Rhyme " prefix and "+"suffix =os+

Prefix "-" suffix re-

Derivational Suffix "-" prefix -tion

Inflectional Suffix "=" prefix =ed

Unstressed Root none a

B.2 Letter-Phonemes

The following table lists the meanings of each type of marker for the letter-phoneme set.
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Suffix Markers Meaning Example
"-l+" stressed long vowel /a-I+/
"..z+"stressed lax vowel /ea-i+/
"+" stressed vowel but not long or lax /a+/
"Quns " unstressed vowel nucleus or rhyme /en-uns/
"9" consonant in onset position /bI
"Qfcn" vowel in a function word context /ee.fcn/

Other Special Symbols Meaning

/s *pl, d*ed/ specific to the inflectional suffix
/+nt, n+t/ + for the apostrophe punctuation

^ / Indicator of letter being consumed by the
preceding morph. E.g., o ne+ is a stressed
morph where o= denotes the onset and =^ *ne+
denotes the rhyme. The vowel in the rhyme is
associated with the letter that was consumed in
the preceding onset.
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Appendix C

Example Context-free Rules for

Letter-Phonemes

Included below are excerpts of the context-free rules used in the letter-phoneme ANGIE

grammar. These details are intended to facilitate the reader in gaining a better under-

standing of the ANGIE mechanism. The rules are divided into two groups, low level and

high level. The low level rules govern the pre-terminal (letter-phoneme units) to terminal

(phone units) transition, whereas the high level rules describe the derivation from the start

symbol down to the phonemics or letter-phoneme layer. Conventions for the rules are as

follows:

" Lines starting with a semicolon (;) are comments.

* Rules are separated by blank lines.

" The left-hand symbol (LHS) of a rule appears on its own line, prefixed by a period

(.).

* Lines following the LHS are alternative right hand sides. The alternatives are sepa-

rated by either new lines or double vertical bars (I1s).

* Alternative symbols are enclosed in parentheses (()s).

* Optional symbols are enclosed in brackets (os).

C.1 Low Level Rules
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(aa ae)

. a_x+

eh

. aifcn

oh

.airuns

ehr (r r

.anuns

(nn n nx

.arefcn

aa (rx r

. aul+

(aw aa)

x) I(er rx)

ax) (I eh aeax ix) (n nx ng)

) II rx Er] H r

11 [1] II (aw aa) El II aa

.b!

EbclJ b I I bcl

.ce

(s sh)

. ck

[kcl] (k k-) 1 kcl

.d*ed

(dx dcl tcl tq d -n -nx) ii [dcl] d II ix (dcl dx) II tcl t

. e_fcn

Ciy eh)

.eal+
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(iy ey)

. oau.uns

ow

.eh+

(eh ehr)

.eir+

ehr (rx r)

.el_uns

(ax 11 1

.er!

(r ax

-11) I 1ax 11 [1] II ax 1

-rx -r) I I rx [r]

.esuns

(eh ax)

. eyjfcn

ey

.fe

f

. ge!

EdcI] jh

.h!

(hh ax y rx ow)

.ix+

ih

. igh.j+
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ay

.ille+

ih 11 [11 11 ih [ll

. ir+

er (rJ

.J!

(hh zh y) I [dcl] jh II (sh ch jh) y

.kn!

(n -n -nx nx -nn)

.ih!

(1 11 -11 -1) 11 11 1

in

.nd

(n nx ng -nn dcl) In a (dcl dx)

.nt

n [tcl] t I I (n nn nx ng tq tcl)

II n [dcl) (d dr)

I (n n) (dx tcl txtq)

.o to

(ax uw ux)

.oel+

iy

.ol+

ow 11 [1] 1I ow (1] II 11 II aa 11 [1] II aa [13

.oo.1+
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(uw ux)

. orjf cn

ow (r rx) II rx Er] II (r er)

. ou+

(aw aa)

.oulfcn

(uh ax)

. ow_l+

ow

.pe

[pci]

. qu!

(-k k

.re+

(ihr

. S!

(z s

.she

sh

. su!

[jh]

(p P-) II pcl

k- kcl) |1 kcl (k- k)

uh) (rx r) II er Er]

sh zh -s -z)

(sh ch) 11(-sh -z)

.te

(dx tx tq tcl) II [tcl] (t t- tr ch)

.ti!
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[jhJ (sh ch) I I -sh I I [tcl] ch

V

(ah uh ux)

.uluns

(ax 11 1 -11) II ax 11 [1] II ax 1

.V

*vI. wh!

(w hh)

ay

.youdfcn

y (uw ux ax) II (ch jh) y uw

.z!

(z S)

C.2 High Level Rules

.sentence

word

.word

[pre] sroot [dsuf) (isuf] I1[pre] sroot uroot [dsufJ [isuf] 1 1 cn (isuf] 11 f cn [uroot]

. cn

[f onset] fnuc [fcoda] [fsuf)
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. suf

iuns nt I Iilljfcn I1n+t

. sroot

[onset] nucjlax+ coda

.dsuf

[uonset] dnuc [ucoda)

11 [onset) nuc+ [coda] I I[onset] Inuc+ lcoda I Inuc+

11 dnuc nuc [ucoda]

. pre

[uonset] nuc [ucoda)

.uroot

[uonset] nuc

.isuf

^ly (^est -er) I [pl] ^ville -~son I- ̂y I- -ton I ^ing ^ton H ^pl ^ton

-th (Cly ^pl) I I(Cth ^ly 'past ^pl ^ing ^est ^er) I I[Vpi] ^past (p1 ^1y)

^ing ('pl fly ^est) -er (pl ^past)

* fly

1! yjuns

er

erjuns

.'ton

t! on-uns

.^son

s! on-uns

.^y

y-uns
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. ^th

[e.unsJ th

. 'past

d*ed

.^p1

s*pl

. ^ing

ing-uns

. ^est

3uns st

.^ville

v! illejuns

. lnuc+

oh§l+ al+ I 1ee§l+ | el+ I Iul-l+ 1 ul+ | ail+ I| i-l+ I Iool+

ol+ igh.l+ II eil+ ay§l+ I Ioul+ | Ieal+ I ue-l+ I ow§l+ I I1isjl+

ye.l+ I Ieyl+ I Ioa-l+ | yl+ I ew§l+ I IeighJl+ I Ioe§l+ I Iiouxl+

.fnuc

uhjfcn I| ufcn ajfcn | a-ey I ifcn I t.ay I Iarejfcn I Iee-fcn

youfcn I e-fcn I e.the I Ioulkfcn I o-fcn 1I o-to I1oejfcn I1orjfcn

rofcn I Iiafcn I Iilljfcn II ai-fcn | Ien-fcn erefcn I Ieydfcn I Ieahdfcn

ourfcn

.fcoda

m II n II nd II s |I t II n+t 11 d II 11 II ve II t If se II nk II nt II ch
th I +ve

.nucjlax+

e Ix+ ax+ | ox+ I i-x+ II aLx+ f1 ea-x+ u-x+ 1 1ou-x+ oo-x+ II y.x+

^ox+ ;ee-j+ 1 or-x+
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. coda

m 11 t If b It n 11 ve I1 c 11 v I1 ti 11 d If ss 1If t11 th It k 11 s 11 ng

st If nt It g II nch II nd It nk II nn 11 p 11 pp It x it 1 11 she 11 sk It ck

ct If gh II sh I| me t ke II dge II n s II ff It nn s II tt It bb II se I1 nce

ch It gi I ne II 11 II c t II pt II gg It nch It d s If ge I 1 f If m p It z

mm If tch It tte in risk | x t the II ce ft ph II tts I is 11 dne 1 nst

ces 1 I d I| m b

.nuc+

a+ If ou+ It or+ II air+ II al+ II er+ I r+ If o+ If ar+ I all+ It ow+ 11 ill+

ere+ ff as+ It au+ II are+ ft ah+ ft ore+ It eir+ ft el+ ff elle+ If ell+ If ir+

oi+ ft oul+ It owl+ I| il+ It ur+ If ear+ ft ol+ It ao+ If urr+ 11 elh+ It our+

eur+ ahr+ I Ioll+ arr+ ois+ I Iole+ I fuer+ orr+ f1yr+ I Iaul+
eoul+ ille+ 1 re+ f eh+ I Ie+re+

.dnuc

enuns f le-uns !I i-uns It ouns f1 euuns ft onuns ft yuns f1 aluns 11 auns

erjuns f f ujuns I fan-uns I ingjuns I fiauns inuns f Ieluns I oruns

arjuns olsuns If ai-uns I Iowuns f frejuns I ouruns f fayjuns I Ioouns
ilsuns I felluns I 1ire-uns I Ieajuns 11 runs f furejuns uruns

.onset

d! 11 1! 11 b! 11 p! 11 c! ||V ! | d! r 11 v! | n! 11 g! |w! qu! ^

p! 1 1 1qu! ft ge! ft gi! ft r! If s! 1 1m! It 1h! 1 wh! I1 pp! r If z! It s! t
c! 1 ft t! r If j! ft f! It k! It g! r ft th! ft t! w || b! I If b! r l b! u
ch! If ch! r ft c! r II tch! ft s! c r II f! 1 t 1knI! II s! m If f! r II g! 1

s! k ItI s! pr II s! 1 II g! u ft zh! I1 s! ph II p! r II s! p II sh! II Ik! u

y! I s! c II o! II ph! II pp! tf p! u II p! y II ph! r II s! k II s! ch II sh! r

s! i n I s! t r II su! It s! w I1 th! r II tw! II Ik! r ft z! u ft v! 1

.Icoda

n I ne If te If de 11 ce li t I me t li mi 1 II ch It ke If se |I ge ft s
ze It th II z If le II tte It pe II n ge f st I| ve I the II g ft p II be

ss I Ind I I III d I fe I I1 d || v 11 ti I I r gi f int I If
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. nuc

i-uns auns || u-uns II onuns | e-uns or-uns | Ier-uns I Iair-uns
anuns I Iinuns I Ien-uns | Iar-uns || r-uns I Ioluns || y.uns II iluns

ow-uns aujuns I o-uns I eluns I Iey.uns I Ial-uns I Iur-uns I Iesuns
oouns I|I rauns I ul-uns I Iay.uns I Iou-uns 11 ell-uns I le-uns | Iai-uns

ewuns || ylhuns I Ieighsuns 11ir-uns

.uonset

b! 11 c! Im i If ti! 1| t! II s! I|

s! te I1 1! II g! u |1 th! II p! ri

gi! II b! r v .r! I w! 11 ch! |11c!

tch! II g! r II h! || c! 1 II sh! It

s! r II su! r |I z!

r! II k! II

I g! II ge!

r II zh! I I

s! t II ph!

n! II qu!

I p! I t!

u! II er!

1| k! 1 11

I| d! r

r IId!

II y! 11

s! 1 H|

II qu!

II f!

j! H f! r

o! II s! p

.ucoda

nt 1 c ve I s || d I

st m I in dge I Ine II sh

ss || ch I z I k I| n ce

.fonset

b! | c! I im! li d! I|f!

f 11 1 II x II ge II n II te 1I b II ce II t Ii nd

II ck II tte II c t 11 pe II pt II tt II th II tts

I g II ke | p I I1se I1me

f|t! If h! If w! I1 s! I1 th! f sh! | wh! I y!
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