&
5

-, *
Nay
Vo
APOMHOEVS .
X2l
nVPPopo

National Technical University of Athens
SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING
D1visioN OF SIGNALS, CONTROL AND ROBOTICS

COMPUTER VISION, SPEECH COMMUNICATION AND SIGNAL PROCCESSING

GROUP

An Exploration of Deep Learning Architectures for
Handwritten Text Recognition

Diploma Thesis

Vasiliki Tassopoulou

Supervisor: Petros Maragos, Prof NTUA

06-11-2019

N
&

$

S ime
(1 o]
=7 : |l &
Y {EE:
C
’F

National Technical University of Athens
SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING
D1vISION OF SIGNALS, CONTROL AND ROBOTICS
COMPUTER VISION, SPEECH COMMUNICATION AND SIGNAL PROCCESSING

GROUP

An Exploration of Deep Learning Architectures for
Handwritten Text Recognition

Diploma Thesis
Vasiliki Tassopoulou

Supervisor: Petros Maragos, Prof NTUA

Approved by the examining committee:

Mogoayxode I1. Tlagéotac K. Yuldnne X.
Koadnyntic E.M.IL

Av. Kadnyntic E.M.IL Aéxtopoac E.M.IT

Vasiliki Tassopoulou
Electrical and Computer Engineer
(©2019 - All rights reserved.

This work is copyright and may not be reproduced, stored nor distributed in whole or in part for
commercial purposes. Permission is hereby granted to reproduce, store and distribute this work
fornon-propfit, educational and research purposes, provided that the source is acknowledged
and the present copyright message is retained. Enquiries regarding use for profit should be
directed to the author. The views and conclusions contained in this document are those of the
author and should not be interpreted as representing the official policies, either expressed or
implied, of the National Technical University of Athens.

[epiindn

To avtixelyevo autic tng Btmhopotixic ebvar n Avayvdpion Xelpdypopwv Kelpévwy pe yeron uedddwy Baddc
pdinone. Lta mhaiotor authc melpopati{OPAOTE PE plat TANUMEa LBEMY TOU apopoly OhoL Tal ETLUEPOUS TUAUOTAL TLV
EPYAOLOY TOU GLVYETOUY TO TEAXS pog oVOTNUN. Apyixd, doyONOUPAGTE YeE TNV Vhomoinoy tne Baocxhc
APYLTEXTOVIXNC EVE TopdAANAa LAoTololUe B0o emnAéov yetddoug Suvouixic enadEnone dedouévmy, Tov ToTxo
OUPIVLXO UETACYNUOTIOUS X0l TOV TOTUXS UOPPONOYIXG UETUOY NHATIONS, uE Bootxd xivnted Wwog vo Ty uhomoinon
HETOOY NHATIOMGY TTou Bev Yo dpdoouv oe OAn Ty exdva ahhd Vo petaoynuoticovy xou Yo emoawHoouvy Tomxd ta
yeduparta e xdde exdvac. EEdyoupe to yevind cuumépaopa 4Tt 1 duvaxt enadEnom twv dedopévmy evioy Vel
TNV IXVOTNTA YEVIXEUONC TOU HOVTENOL pag xo 0dNYEl O XUAUTERO TOCOGTA AVAYVOPIONS. LTNV CUVEYELN
nelpopatilopacTe pe TNV axoroudio yopaxthpny tou yadaivel to povtého pag pe yenomn tov CTC alyoplduou.
Enauv&dvouue tnv axohovdia pe Siypdupora emnédou yopaxtipny. Thomotolue autd 10 cOvIeTo oy rua Ue

AW TERO OXOTO TNV ANOXTNGY) EVOS OTTLXOU CTATIOTIXOV HOVTEAOU Tou €xel amoxtniel TopdAANAc Ue TNV
exnaldevor Tou dxthou, xou TN Yenowonolnon autol oe dVo véeg exdoyéc ahyoplduwy CTC anoxwdixomoinong
yioe TV Behtiwon touv TococTol avayvoplone. Eneito, UAOTOOUUE dpyITEXTOVIXT) TOMATAGY EPYACLOY UE TO
CTC yenoteomoldvios w¢ XAACELS Xl hovols YopaxThees xou dlypduuota ahid ot Slapopetixd CTC enlneda
omou xou Aopfdvouue onuavtxy BeAtiworn 6to TocooTd avayvodplong. Me autd Tov TedT0, EXUETAAAEVOUUCTE TNV
yAwoouxn tAnpogopio 800 Qopéc xoddE TNV EVOWUATOVOUUE Xou oTNY dladxacia pdinone tou poviéhou, péow
TWV OLYQOUUATODY, 0ANE xon oTny dLadixacior anoxwdixononong autod Ue Yo TV CTATICTIXMY YAWCOLXOY
povtédwy. Ernlong, ocuyxplivovtog tor wovtéla TOAMATAGY €pYUOLOY TOGO UE TO 86 Uoc HOVTENO Wlog epyaoiog
600 xau ue e BBAoypapiag cupnepdvaue Tl AUt 1 TPOGEYYLON Elvor XAhOTEPT XU GTIC BVO MEQLTTHOOELS.
‘Enettot VAOTOLOVUE Uit apYITEXTOVIXY) TAHEWS CUVENXTIXY TOCO OTO ONTIXO WO LOVTEAO OCO %ol GTO
oxohoudoxd. Kivnrpo pag elvon vor amogiyoupe tor avadpopxd Sixtua paxponpddeoune uviune (LSTM) nou
(PEPOUV HEYENO LTOAOYLOTIXG X6GTOC Xou epavilouy Buoxoiio otn olYxXhion xou oty exnaidevon. To pového

Tou avamTOEoUE CUYXAIVEL YENYORATERA EVE) EYEL XOU CNUAVTIXG AYOTEREC TUPUUETEOUC U6 TA TEOAVAPERUEVTAL.

AgZec Khewdid: Avayvapion Xelpodypapwy Kewévov, ‘Opacn Troloyiotdv, Babid Mdinon, Xuvekictind Neu-
pwvxd Aixtua, Movtehonoinon Axokoududy, Connectionist Temporal Classification, Akydprduol Anoxwdixono-

mong, Avvapii EnadZnon Aedopévov, Statiotind I'hwooind Movtéha, Mdadnon Ilorariodv Egyaotidv

Abstract

The objective of this thesis is the study of the Handwritten Text Recognition problem with the use of deep
learning models. In this thesis, we experiment with a variety of tasks that apply to the whole pipeline that
synthesizes our final model. At first, we implement the baseline architecture and then we experiment with
dynamic data augmentation. We implement two new augmentation techniques, the local affine transform, and
the local morphological transform. Our incentive behind this is the implementation of transformations that
will augment the letters and not the whole text line. Generally, we deduced that dynamic data augmentation
makes the model more able to generalize and improves recognition rates. Then, we experiment with the CTC
alignments that our model learns. We augment the target sequence with bigrams, except for unigrams. We
train such complex alignments so as to obtain a bigram level visual language model and we utilize it in two
new CTC beam search decoding algorithms, extended in such way so as to support the integration of obtained
bigram information, in order to improve the recognition rates. Thereinafter, we experiment with multitask
architectures with CTC, both hierarchical and block. Our experiments culminate in significant improvement
in the recognition rate. With the multitask approach we exploit the language information (domain knowledge)
in two ways. We integrate it both in the learning procedure via the ngrams, that are selected as target units,
and the decoding process via the statistical language models. Finally, we implement a fully convolutional
architecture where both the optical and sequential models were composed of convolutions. We show that the
CTC layer can be successfully employed on top of a CNN network. Also, we found out that one-dimensional
convolution can model sufficiently the temporal relationships among the features. Finally, our fully
convolutional model converges fast, has significantly lower training and inference time and has also

respectfully fewer parameters than the aforementioned architectures.

Keywords: Handwritten Text Recognition, Computer Vision, Deep Learning, Sequence Modeling, Convolu-
tional Neural Networks, Sequence Transduction, Connectionist Temporal Classification, Decoding Algorithms,

Dynamic Data Augmentation, Statistical Language Models, Multitask Learning

Euyoplotieg

H napotoa dimhwypatxn epyacio extovidnxe oto Epyaotrplo ‘Opaone Troloyiotdy, Enxowvwviag Adyou xou
EneEepyaotac Yuatog e Uyorhc Hiextpohdywy Mnyavixddv xon Mnyavixdyv Hiextpovindy Troloylotdy tou
Edvixol MetooBlou IloAuteyvelou.

Oa fideha va euyaploTHow Wintépne Tov emBAénovta Kodnynty pou x. IIétpo Mapayxd yia tnv euxanpla mou
HOU EBWOE VoL TEAYUATOTOOwW TNV DITAWUATIXY HOU Epyasia 6 oaUTd TO EPYUOTARLO AAAS XU TIC ONUOVTIXES
GUPPBOVAEC TOU xal TORATNENOELC TOL XaTd T Sudpxelo avthg e dimhwyatixic. Ilépa and tn Simhwuaten, el
ELYVOUWY YL TS YVOOELS ToL anéxtnoa otov Touéa tng ‘Opoaone YTroloyiotdyv xan tng Avayvapeione Hpotinwy,
avTixéeva tou emuu epBadive oty cuvéyela TN oxadnuaLxic wou mopelog. Lnuavtixo pbho otn
diexmoupéwon authc Tne epyaoiog xatahauBdver o Trodhgioc Adxtwe I'ideyos Petowde. H napandve and
oLV emxovwviag Yo, 1 xadodrynon xou 1 oTthelln Tou 1600 ot YewpnTnd 660 xon ot TEaxTXd {nTAUATA
AmOTENECUY XATUAVTIXG TapdyovTa IOV GUVEBNRE 0TV ohoxArpwon awtod Tou épyou. Oa Kieha va Tov

ELYAELOTAOWL BNUOGIWE ol VT TUEATEVE A0 EVYVOUWY YLOL QUTYH LOC TN CUVERYACTAL.

H mopela pou oto Ilohuteyveio xhelvel ye moANY cuyxivnon adld xan xuplwg aoTEEELTN EVYVHOUOGUVY Yid TOUG
avlpdTOUG PE TOUG 0ToloUC GUUTORPEVTNXA X oNUEdeday TV @oltnTixy wou mopela. Autol eivon oL gihol mou to
TTohuteyvelo pou €dwoe. Log suyoPLOT® OAOUC Yiot OAES TIC OTIYHES OV €xoule (HOEL Xl YLoL OAEC TIC ETOUEVES

nou Yo épBouv map'dAn v andotaon Tou unopel va pog ywellet.

Afywe tny ovidlotedr) oTApLn TNg ouxoyévelag pou dev Yo umopoloa Vo €xw @Tdoel we £8¢. Toug euyaplotd yia

O XL TOUC YEWOTAW ToL TAVTAL.

Baouxh Tacoonoliov,
OxtddBerog 2019

A comfort zone is a beautiful place, but nothing ever grows there

Contents

1 Extetopévn Ilepiindn

L1 Ewooyoyh . o oo e
1.2 Avvauu Enadgnon Aedopévev xon Baow Apyttextovixyo
1.2.1 Médodor Enad&none AeBopévey . . . o o o oo
1.2.2 Boaow] ApYLTeEXTOVIXT] .« .« .« v v ot e e
1.23 TIEpQUamor . o o o v v e e e e
1.3 NGram Audonaon Axohovdlog o o oo oo
1.3.1 Movtého Unigram-Bigram Lo e
1.3.2 Ilpotewodyevor Akyodprduol Amoxwdonolnong o o v oo oo
1.3.3 Avahuon-Tlelpduomo-XOpmEQEOUOTO v v v v v v v v e e e e e e
1.4 Md&inon IIoAATADY LTOYWY .« v v v v v v v v e e e e e e
1.4.1 Iewdpoto - Tehe ApYITEXTOVIXY .« v v v v v oo e e
1.4.2 X0yxpion Movtéhwv Mg Epyaoioc ye Movtéha HlohhamAedyv . . . o o o o oo oo oo oL
1.5 II\pwe Xuvehwtin Apyttextovin ue CTC yio Avaryvapion Xelpdypapwy . . . o o o oo oL .
1.5.1 IIMjpwg BuvehTe) AQYLTEXTOVIXN « .« o v v v it
1.5.2 TIEQOUOTOL - o v v o ot i e e e e
1.5.3 ZuVOLOOHOC LUVEAXTIXGY HOVTEADY « . v v v v v v o e e e et e e e e e e
1.5.4 X0yxpwon CNN4-CTC ye 10 Paoind WOVTEAO oot oo o
15,5 BUURMERAOUOTO .+ v v v v o v v v e e e e e e e
1.6 Xuveiogopée, Yuunepdoporta xon Melhovtin) Aouked oo
2 Introduction
2.1 Problem Definition L e e e e e
2.2 Related Problems in the Document Analysis field
2.2.1 Keyword Spotting e
2.2.2 Verification-Identification oL
2.2.3 Layout Analysis e
2.3 TAM Database e
2.4 Thesis Outline L 0 e
3 Theoretical Background
3.1 Theoretical Background L
3.2 Machine Learning Preliminaries oo Lo
3.2.1 Supervised Learning e e
3.2.2 Unsupervised Learning L e
3.3 Neural Networks o o e
3.3.1 Learning Algorithms e
3.4 Deep Neural Networks o o o e e e

13
14
15
15
17
20
23
23
24
26
29
30
32
34
34
35
37
38
39
41

43
44
45
45
45
48
48
50

3.5

3.4.1 Convolutional Neural Networks 0 0 e e e

3.4.2 Sequence Modeling : Recurrent Neural Networks
Connectionist Temporal Classification 0 o
3.5.1 CTC Decoding Algorithms
3.5.2 N-Gram Language Models in CTC Decoding

Previous Work

4.1
4.2
4.3

4.4

Previous Work L e e e e
Preprocessing Techniques for HTR 0 0 o o
Probabilistic Models for HTR e e e
4.3.1 Hidden Markov Models e e e e e
4.3.2 Hidden Markov Models for Handwritten Text
Neural Models for HTR e e e e
4.4.1 Multidimensional RNN for HTR
4.4.2 One-dimensional RNN for HTR

Data Augmentation for HTR and Baseline Model

5.1
5.2

5.3

5.4

Data Augmentation and Baseline Model for HTR
Data Augmentation L e
5.2.1 Global Affine Transform L
5.2.2 Global Morphological Transform L .
5.2.3 Local Affine Transform e e
5.2.4 Local Morphological Transform
5.2.5 Other Transforms L e
Baseline Architecture L L e
5.3.1 Experiments L e e e
Decoding the Network Outputs o o e
5.4.1 External Language Model
5.4.2 Decoding Experiments L e e

Ngram Models

6.1
6.2
6.3

6.4

NGram Models o . o e
Unigram-Bigram Model e
Shared CTC Layer Architecture for Unigram-Bigram Model
6.3.1 Proposed Algorithms for Decoding Unigram-Bigram Model
6.3.2 Output Analysis for Revision of Proposed Algorithms
6.3.3 Decoding Experiments Lo e e e e e

Conclusions o e e e e

Hierarchical and Multitask Learning in HTR

7.1

7.2

7.3
7.4

Hierarchical and Multitask Approaches in HTR
7.1.1 Possible Architectures for Multiscale-Target Models
7.1.2 Hard Parameter Sharing for Unigram-Bigram Model
Hierarchical Multitask Learning with CTC - An Application to HTR
7.2.1 Multitask Learning L. e
7.2.2 Experimenting with Multitask Architectures
Single Task Vs Multi Task Architectures for HTR

ConclusionsS o v o e

74
(0]
(0]
(s
7
i
78
78
79

82
83
83
83
84
85
85
86
88
90
92
92
92

94
95
95
95
99
104
112
112

8 Deep Convolutional CTC Network for Handwritting Recognition 133

8.1 Imtroduction e 134

8.2 Motivation oL e e e e e 134
8.3 Fully-Convolutional Architecture e 135
8.3.1 Experiments e e 136

8.4 An Enseble of CNN Models for HTR o e 138
8.5 Comparing CNN4+CTC with Baseline 138
8.6 Conclusions e e e e e e e e e e 140

9 Contributions, Conclusions and Future Work 142
9.1 Contributions, Conclusions and Future Work 143

A Appendix 145
A.1 Examples of Greedy Decoded Alignments of Unigrams and Bigrams 145

List of Figures

L1 Apywah Ewdvar .o o
1.2 Affine MetaoymMUaTlopol . . o o o oo
1.3 Apyuwag BEucdvor .o o oo e
1.4 Tomxol Agixol MetaoyMUaTIolol o v o v o
1.5 Tomxol Mopgohroyixol Metaoynuatiouolo oL
1.6 Xuvohuxn) Boaoixr) apyiTEXTOVIXY VLol TNV AVAYVORLOY) YELROYRUPOY XEWEVWV « + v v o o v v v o v
1.7 Metoatponh yoptov eVepYomoinone o€ axoAoudal BIVUCUATOY « « v v v v v v v
1.8 Alingments yia to xowvé Unigram-Bigram povtého und to xowd CTC framework [27]
1.9 THopddetyPor 1o e
110 TIOdBEty[or 2 o v v v e e e e e e e e
1.11 Tehwnr) apyrtextoviny) Block-toAhamhdv otéywy ywelc BILSTM eninedo oe xdlde otéyo
1.12 Avanopdotaon tng CNN-CTC apyitextovixic. O CNN Encoder mopopéver wg €yel xan 1 uovn
ahharyn Tou TpaypaTonoleltal 6To Bixtuo evon N aviixatdotaoy twv BILSTM emnédwv pe yenon
1-D UVENEEWY e
1.13 IIwoavédtnteg nou to xdie yovtéro avadétel oe xde AEEN TNC TEOTAONG. « v v v v v v v v v o v e
1.14 Andxion Kullback-Leibler AMé€ewv oot avayvewpiouévmy and to woviého CNN, LSTM pe oxond

T OOYREIOT GUTEY o o o v v e e e v e e e e e e e e e e e

2.1 Image Samples that showcase the uncostrained and cursive nature of human handwritting.
2.2 Objective of Layout Analysis [3]
2.3 Train Samples of TAM Database
2.4 Test Samples of IAM Database e e e e

3.1 Graphical illustration of bias and variance [5] Lo o
3.2 The Model Complexity as a function of Bias and Variance [5]
3.3 For a different type of intuition, consider the following figure, in which x’srepresent positive
training examples, 0o’s denote negativ etraining examples,a decision boundary (this is the line
given by the equation 7z == 0, and is also called the separating hyperplane). A, B and C are
sample POINES. L e e e e e e e e e e e e
3.4 The perceptron of Rosenblatt
3.5 The input, hidden, and output variables are represented by nodes, and the weight parameters are
represented by links between the nodes, in which the bias parameters are denoted by links inputs
coming from additional input and hidden variables zy and zy . Arrows denote the direction of
information flow through the network during forward propagation. [54]
3.6 Neural Network Activations Functions [24] o
3.7 Convolution Operation in Input Image [22]
3.8 Convolution Operation in Input Image [22] o
3.9 Unrolling the Recurrent Neural Networks [7]

3.10 Bidirectional Recurrent Neural Network [7]o . o

3.11
3.12
3.13

3.14

3.15

3.16
3.17

4.1
4.2
4.3

4.4
4.5
4.6

4.7

4.8
4.9
4.10

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11

6.1
6.2

6.3
6.4
6.5

Internal Structure of LSTM Layer [7] o o 0 i it e e 65
The cell state of LSTM [7]« o 0 o o e e e e 66
The Forget-Gate of LSTM. In this step, the LSTM decides what information will be thrown away
from the cell state. This is implemented by a sigmoid layer which looks at the h;_; and the xy
and assigns a number of 0 or 1 on each of the untits of C,—q1. [7] 66
The Input-Gate of LSTM. In this step, the LSTM decides what new information will be stored.
This has two parts. First, a sigmoid layer called the “input gate layer” decides which values we’ll
update. Next, a tanh layer creates a vector of new candidate values, C,, that could be added to
the state. In the next step, we’ll combine these two to create an update to the state. [7] 67
The Output-Gate of LSTM. In this step, the LSTM updates the C;_; value with the new one C;

and its synthesized by how much information will be abandoned and what new information will

be stored in the cell. [7] o o e 67
Example of a possible alignment for word "cat" [8] Lo o 68
Graphical explanation of the recurrent equation of forward variable 70
Bleed-Through removal example [34]o 75
Image Binarization Example in Historical Handwritten Documents [49] 76

Example of the alignment produced by a character HMM modeling the letter “a”. The HMM is

composed of four states in a left-to-right topology. The probabilities in the arcs represent the

transition probabilities [52] L 7
Forward Pass in MDRNN [26] o0 0 78
Backward Pass in MDRNN [26] 000 e 79

A two dimensional sequence can be processed in various directions. The internal arrows inside
the rectangle indicate the direction of the propagation in forward pass. [26] 79
The basic network architecture used in this paper. The input image on the left is processed

pixel-by-pixel usinga cascade of convolutional, max-pooling and MDLSTM layers, and finally

transcribed by a CTC layer on the right [74]o o o 79
Randomly selected features extracted after a 2D-LSTM and after a convolutional layers[53] . . . 80
One-Dimensional LSTM Architecture for HTR [53] 80
Reported Results on One Dimensional LSTMs [53]o oo 81
Linear Transformation - Affine Transform Case 83
Non Linear Image Transformations based on Morphological Filtering 85
Local Affine Transform Samples 0 e 86
Local Morphological Transforms o 0 86
Gaussian Blurring L L e 87
Horizontal Cutout e 87
Vertical Cutout o o o oo e e e 87
Noise Induction oL e e e 87
Unigram Agnments o oo ittt e e e e e e 88
End-to-End Baseline Architecture for HTR o o ... 90
Map-to-Sequence Operation o L e e e e 90
Alingments for Shared Unigram-Bigram Model under the standard CTC Framework [27] 95
Computation of forward variable a’ for Unigram-Bigram Alignments under the standard CTC

framework oL e e e 96
Example 1. . . . o o o 104
Example 2 oL 106
Example 3. . . . oL e e 107

6.6
6.7
6.8
6.9
6.10
6.11

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13
7.14
7.15
7.16

8.1

8.2
8.3

Example 4 o L L e 108

Example 5. . . . oL e e 109
Example 6 oL e e 110
Both Directions Mismatcho 0 111
Backward Mismatch e e e e 111
Forward Mismatch 0. 0 L 111
A taxonomy of implemented architectures for HTR 114
Alignments for Bigrams oL 115
Train loss in bigram model trainingo L Lo 115
Comparison WER/CER in proposed bigram decoding schemes 116
Unigram Greedy Alignment e 117
Bigram Greedy Alignment e e e e 117
Unigram and Bigram Alignments 118
Hierarchical multitask learning with CTC for ASR [66] 121
Block multitask learning with CTC for ASR [66] o . 121
Block multitask architecture for HTR o o oo 122
Hierarchical multitask architecture for HTR o 00 o .. 123
Bigram level tokens L e 124
Trigram level tokens oL e 125
Fourgram level tokens oL L 126
Fivegram level tokens L e 127

The final proposed architecture for multitask learning. Block multitask without task-specific
BiLSTM layer o o o o e e e 130

Tlustration of the CNN-CTC Architecture. The CNN Encoder remains as it is and the only
change that is applied in the whole network is the substitution of BiLSTM Layers with the 1-D

Convolutions L e e 135
Posterior Probabilities that each mode assigns to each word of the sentence 139
KL of words for comparing CNN LSTM models for HTR 140

10

List of Tables

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

1.10
1.11

1.12
1.13

1.14

1.15

1.16

1.17

1.18
1.19
1.20
1.21
1.22
1.23
1.24
1.25

3.1

5.1
5.2
5.3
5.4

BUVORXA GOYLTEXTOVIXT] .+« o v v v v i o e e e e 18
Awpoéppwon melpopdtwy ot eninedo BILSTM . . o oo o 0oL oo 20
Iewpdpata otov aprdud Twv emmédwy Tou BILSTMo o oo 20
Alopbop@woT TELUUETLY BUVOIXAG ETAVENONC SEBOUEVV .« . . v v v v v v 21
H enidpaon tne enduénong 6edopévemy 0To anddoon TOU WOVTENOU . . o v v o v v v ot 21
Anoteréopata CTC anoxwdixonoinong pe yeRon oTtatoTikolh YAOWooo) HOVTENOL 21
Awopoppwon Hewpopdtowy Unigram-Bigramo 000 o oo oo 24
ITocootd avayvoplong oto Unigram-Bigram povtého uévo e yerion miovotritwy unigrams 24
Iewpdpata otoug mpotevouevoug alyoplduoug arnoxwdxonoinong yia o xowd poviého Unigram-

Bigram 28
Tepopyiny) apyitextovixy TohhamAwy otdéywy - Greedy amoxwdxonomon 30
Block opyttextovixr] ntohhaniwy otoywy ye 1 BiLSTM eninedo oe xdde otoy0 - Greedy Amoxwodi-

XOTOMNOT « + o v v v e o e e e e e 30
Block Multitask apyitextovixr diywe task-specific LSTM eninedo - Greedy Amoxwdixonoinorn . . . 31
Alopetduior TELpaUdTwy Yia TN cUYXELOT JEYLTEXTOVIXTC TOAUTADY EQYUCLMY UE UPYLTEXTOVIXN

HLOG ERYUOIOG v v v v v o o e e e e e e 32
STL-vs-MTL opyttextovixés yior avoryvoplor Yelpdypapwy ot eninedo unigram - CTC 4-Gram

Char LM . . o o e e e 32
STL-vs-MTL apyttextovixéc vyl avayvoplon yewpdypapwy oe eninedo unigram - CTC 4-Gram

Char LM o o e 32
STL-vs-MTL cpyttextovixés yior ovory vodplom Yelpdypapwy ot eninedo unigram - CTC Word LM

A-Graml .« . v v v e e e e e e e e e e e 33
STL-vs-MTL opyttextovixég yiol avory vaelor Yelpdypapwy pe greedy omoxwdixononon emédou

YOROMTADUIV + v v v v v v i e e e e e e 33
CONN-CTC GpylTEXTOVIXT « v v v v v v v e e e it e e e e e e e e e e e e e e e 35
Alopdppwon Exmalevone Lo oo 36
Iewpdpora Suvaxhc enadEnone SeSOUEVLY O TAHEMC CUVERLXTIXES UPYITEXTOVIXES 36
Arnoteréoporta anoxmdixonoinong ue yenon eEwtepixol YAwoowxol Lovtéhou - eninedo ypouuurs . . 36
Enidoon tev amhev cLUVEAXTIXGY OIXTOMY XoL TOU GUVBUAOUOD OUTMOY . . o o v v v o o 37
SOyxplon enidoone anhédvy povtédwy pe Ensemble povtéha - Char/Word LM anoxwdixonoinon . . 38
Yoyxeion v opyttextovxdv CNN-LSTM-CTC xou CNN-CTC 38
Yoyxpion petald CNN-LSTM-CTC xar CNN-CTCo o o o 39
Learnable Parameters per Layer ina ConvNet 62
End-to-End Architectureo o o 89
Configuration of Data Augmentation Experiments 91
Experiments on BILSTM Layers o e 91
Configuration of Data Augmentation Experiments 91

11

5.5
5.6

6.1
6.2
6.3
6.4

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8

The effect of Data Augmentation 92

Results of decoding with external language information in line level 92
Configuration of Unigram-Bigram Experiments 98
Greedy decoding performance utilizing only unigrams and ignoring bigrams 98
Bigram scoring algorithm effect Lo 105
Experiments on proposed algorithms for shared unigram-bigram model 112
Configuration of data augmentation experiments on bigram model 116
Data augmentation in bigram Model - greedy decoding (Greedy-Old) 117
Hierarchical multitask architecture - greedy decoding 129
Block multiscale learning with 1 task-specific BILSTM layer - greedy decoding 129
Block multitask learning without task specific LSTM - greedy decoding 129
Configuration of Multitask Experiments oo 131
STL-vs-MTL architectures for HTR in unigram Level - CTC 4-Gram Char LM 131
STL-vs-MTL architectures for HTR in unigram Level - CTC 4-Gram Char LM 132
STL-vs-MTL architectures for HTR in unigram level - CTC Word LM 4-Gram 132
STL-vs-MTL architectures for HTR in unigram level - greedy decoding 132
CNN-CTC End-to-End Architecture ittt 135
Train Configuration o L e e 136
Data Augmentation Experiments on Fully Convolutional Neural Network 137
Results of Decoding with external Language Information - Line Level 137
Performance of Multiple Single CNN Models and the Ensembling 138
Performance of Ensemble Models - Char/Word LM Decoding 138
Comparison of CNN-LSTM-CTC and CNN-CTC 139
Comparison of CNN-LSTM-CTC and CNN-CTC 140

12

Kegpdiaio 1

Extetopevn Ieplindn

13

1.1 Ewaywyn

Oplowde ITpoBAAuatog

H Avayvapion Xepoypapwy Ketpnévmv oplleta we 1 Swobixacio yetatponhc wac dnetoxic
OVATOEAOTAGTG TOU YROUTTOU YEIROYRU(POU AOYOU GE PMeLoxd XEUEVO UE GTOYO TN BIEXTERUIWOT) EPYAUCLOY OTWG
eupetnploot, Ta&vounon 1 HETEPEAoT).

H andxtnon yewpdypoapou xewwévou unopel va yivel ye 80o tpémoue. Elte péow dmeroxdv mAat@oputv Tou
dlordETouy 0VOVN g xat PECW ELCAYOYNE YRPATTOU XEWEVou, elte ue oxavdplopa HO1 LTapyOVTKY eYYedpwy. H
TEOTN TEPITTWOY OUGLAGTIXE XUAUTITEL TNV OVOLY VORLOT XEWEVOU amtd YnpLoxd Yéoa, eved 1 BEVTERY CUVIETA TNV
VALY VOPLOT] YELROYPAPWY XEWEVWY omd (Pn@Laxés exoves. LNy TpdTy tepintwor, Aopfdvetar ut'od 1 tpoyLd
ToU avamTOOCETAL Ud TOV YRUPEN Xl TEEAY QUTHS UETEMVTAL X0l GARaL YapaxTnploTtixd mou Bondolv otny
avayvoplon 6nwe 1 tieon oty méva Tou YenoTn, Ty xhion authc xou T Yéon tne. Lty dedtepn xatnyopla,
drardéoun mpog Pnelotoinom elvon H6VO 1 OUAVAPLOPEVT EXOVAL. DUVETMS, 1) avory vodpLon and Pnplaxés etxdveg

evéyel YeyohlTepng Buoxollag amd TNy avay vapeloT) Yedantol Aéyou and (nplaxd uéoa.

Ogpotin? avTAC TS dimhwpatxne epyactiag elvon 1 extetapérn-aveédpTnTn ypapéa, avayvapion Xepoypapwy

Keuévwy ané Yneiaxés eikove.

14

1.2 Avvopixn EnadEnon Acdopevwy xow Baouxr Apyitextovini

Ye autd to xe@diaio xataoxeudloupe TNV Baocwr apyltextovixy woc. Emmiéov, uhonoiolue 600 véoug

HETUOY NHATIOROUE ETOOENONE YIol TNV TEPITTWON TV XELROYPUPLY EXOVeY, Tov Tomixd Agivixd
Mezacynuoatiopd (Local Affine Transform) xou tov Tomuxéd Mopgohoyixd Metacynuotiono
(Local Morphological Transform). ITpaypatonowoiye mepduata epuppdlovide toug yia va dobue tnv enidpoon
TOug oTNY an6d0an ToL poviéhou. TéNog, BIEXTEPAULOVOUNE XATOL TELRPSUATO ETOL OOTE VoL XUTAANEOLUE OTNV
Baoixh dpylTEXTOVIXT X0l OTIC UTERPTAPAUETEOUE Tou ot GUVIESOUY Tol UTONOLTIOL TELPGUATE oG O O} TNV EXTOOT

TG TNG SLTAWUATIXAC.

1.2.1 Meédodor Enadinong Acdopévwy

Agvinode MeTaoynUuaTtiopnos

A MOVE o shoe Mr. Gaubkell fromm

Eyhua 1.1: Apyue Ewdva

| MOVE o Shop My Goi o la L frenm

\ MOVE do sdoe Mr. Galblell from

Syfua 1.2: Affine Metooynuotiopol

Moggoloyixdc MatacyNrationos

H wéa niow amd v xpnorn TV HopQOoROYIXGOY PETUCY NUATIOUNDY Xl EWWd Tou erosion xau dilation agopd tnv
OnuLovpylol AETTOTEPWY 1) T OTERWY YEOUUATWY TOU OVTWS CUVAVTAUE OF TEOYUATIXES TEPLTTWOELS YEATTOV

AoYov.

XENOWOTOLOUUE GUVOAOL YLOL VOL AVATUPAUOTHCOUIE BUUBIXES ELXOVES Xl TRAEELS CUVOAWY WOTE VOl
AVATORAGTHCOUUE TOUS HETACY NUATIOHOVS TNE BUABIXAG EOVAG. LUYXEXPUUEVA, BEBOUEVNC UL BUABLXC EXOVAC,
unoYétoupe 6Tl 1 n6la To avtixelévou cuPoriletar ye X xon to undPodpo Tou UE TO GUUTANPEOUATIXG GUVOAO

X¢. To Sopukd ororéo cuuBorileta we B.

Xy &2 {z+y:2 € X} elva n petardmon tou Q xatd pixoc Tou daviopatoc y xou B £ {x: —x € B} ebvau

OUUUETPIKS TOU B ye avapopd Ty apyn. [13]

15

Dilation : X @ B2 {z: (B%).. N X #0} = Uyen X+y

Erosion : X © B2 {2:(B%),+ C X} =NyepX—_y

e Opening: XoB=(X6B)®B

Closing: XoB=(X®B)oB

Ye epapuoyéc, to B ovoudletar cuviidwe Sopixd otouyeio xou €xel éva amhé YEWUETES oy Tiua xot Uéyedog
UxpoTERO amd TNV exdva X. Av 10 B éyel oyRua xavovixod, Yo Topddetypo ixpol dioxou ToTE xou To opening
xou o closing Spouv wg un yYeouwxd @iAtea Tou amahdVoLY Ta TEPLYPAUUAT TN aEY S extdvac. Anhadn, av 1
exova X unopel va nopopolaciel we éva eninedo vnol tote 0 opening Yo €xel we ouvéneia T peiwon Twv

UYMUNEWY OOV XAl TOUS aTevols loduole, eved to closing yeuilel tic wixpés TeONES XU TOUG GTEVOUE XOATOUC.

Tomxdg Apixéc MeTaoyNUaATIoROS

H Bialodnon mlow and v emhoyn awtod Tou Yetacynuatiopol eivon vo Teoxkndoly Topotop@poels oL otnv
ONOXATIEN Yo TOU XEWEVOU 0ANS ToTuxd ota Ypdppata. T to Adyo autd, ywellovue TNy ewmdva o TAEYHA
ATOTEAOUUEVO Ul XATAXOPUPES YRUUUES DNULOVEYMOVTIC £TOL UTOTUAUATA GTNY EXOVA. XE xdde éva and autd
eTAEYOUYE, OUOLOHOPQI, oMUl EAEYYOL TV oTa ontolo ETOREA EVOC APVIXOG PETACY NUUTIOUOS. Aol
unohoyloouye dho o onueia eEREYYOL xou Ta HETACY NUATICOUE UE BAOT XATOLOV APVIXOC UETATYNUATIOUO
dropopeTind oe xdle tuhua, yenowonowlpe v texvixd; Thin Plate Spline [69] yio extrapolation ¢ote vo

OTMOXTHOOUPE TNV TEAXT] EXHVAL.

A MOVE o shoe Mr. Golb ke Q0 Pronm

Syua 1.3: Apyuer) Ewxdva

(MOVE 4o o Mr. Goaublll por

4 MOVE 4o obze A ik b dL o

Synua 1.4: Tomxol Agvixol Metaoynuotiopol

16

Tormxéc Moppoloyixds MetaoyNiatiopnos

O tomdg LoPPOoAOYIXOS UETAOY NUATIONOC UAoTolelTal Ue Topdpota Aoyixy) 6nwe o Tomixog apvixde. H exdva
ywelletor ot xddeto mAypota xou o xdde éva and autd mpayuatonoleitar éva and ta dilation , erosion, opening
xau closing. Ilpoxeévou vo unv undpyouy andtoues YetaBdoels Tdyoug HaTagd TV YEUUUSTWY ETLAEYOUPE GTa

oUvVopo UETAED TV TAEYUATWY VO THPOUUE €V UEGO OpO od To ETUXAUNUTITOUEVO Tapdiupa.

A MOVE o shoe Mr. Goubo ke Q0. frennm

A MOVE o shoe Mr. Goulhs L QL [rena

A MOVE o ddee Mr Gacklkell fyom

Synua 1.5: Tomxol Moggoloyixol Metaoynuotiopol

1.2.2 Baowr Apylttextovixm

H Avayvapion Xewpdypagpov Kewévwy eivon, teyvind, po daduoscio povotovixnc yetatpomhc wag oaxohouvdiog
OTUTIXAY YORUXTNEIOTIXWY ot oxohoudia yapoxThpwy, UTohéEewy 1 Mé&ewv. Anotelel dnhadt éva npdBinua

petatponrc axoloudiac-oe-oaxorovdia. ot tétola mpofhuota undpyouv dldgope Tpooeyyioel OTwe:
o Xprion tou akyoplduou Connectionist Temporal Classification

o Apyttextovinf xwdwonomti-anoxendxotomth (Encoder-Decoder) ue yefion avobpouxdv VELpeWIXGY di-

®TOWV.

Ané tic npoavagepieioes apyitextovinég emhéyouue auth Tou xdvel yeron tou CTC yia v amhdTnTa Tng
ped6d0ou ahhd xon emeldy| elvan amd Tic e€éyovoes oe TpoBAfuaTa HETATEOTNG oxohoUILMY, Eupéne dladedouévn ot

XOWOTNTOL TNG oVOLY VORLONG QPWVAC.

O CTC ahydprduoc Bacileton 0Tov duVXd TEOYROUUATIOUS YIol TOV UTOAOYIGHO OAWY TV SUVITOV GUVBLACUMY
YOOUUATOV TIOU UTOPOLY VoL Amod)coouy o {ntoduevn axohoutha. T'al Tov UTOAOYIoUS OAWY TWV BUVATHOY
cLVBLACUOVY omoLTelTol, TP Amd TIC XAACELS TV YEuUUUdTwY Tou Jéhoupe Vo avayvepioouue, évae entnpéoietoq
yopoxthpac, o xevoc (blank). O povadixde hoyoc yphone awtold tou yopaxtipa otov CTC ahydprduo elvon yia
VOL EMITEENETOL 1) EXPEACT, GUVEYOUEVLY GUOLLV YoeaxTipwy dTwe yia Topdderypa ot yapoxthpes 1 1 otny Aédn
Hello. Av dev unfipye 0 xevog yapoxtripos tote T0 dInAd yeduua 1 dev Yo exppaldtay agod Va elye yivel éva ye

TO YELTOVIXS TOU XATd TN BLdpxela TNS amdxTnong g TeAxhc Aééng and To alignment ouvtic.

Egboov éyoupe xadoploel tnv cuvdptnon pe tny onola Yo BEATIOTONOCOVUE TO HOVTENOD pog, YeetdleTon Vo
xadopioovye to povtélo mou Yo utoroyioel Ty deopeuvuévn mbavétnta pc|z,t) mou amotehel xatavour Twy
YOEUXTHEWV-OTOY WYV ¢ BEBOUEVNC TNG ELXOVAS EL06D0L T TNV Yeovixh) otiyun t. H ¢@born tou npofifuatoc pog, dmou
UTEY0LY YEoViXES eapTHOELS LETAEY TWV DVUCUETWY OTTIXMY YAUPUXTNRIOTIXGDY, anatTtel TNV yenowdotonon

v Sty paxponpddeounc uvAune (LSTM) xou ydhiota autdy Sithie xatevdnvone (BILSTM)[67].

17

H apyitextoviny| pag meptypdpeTtal mopaxdte :
1. ZuvehxTixd 3ixTLo Yot EEAY WYY ONTIXDV YoEAXTNELCTIX®OV (OTTIXO ROVTENO)

® YENOWOTOLOVUE CUVENXTIXG BIXTUO (OGTE VA THPAYOUPE Evary apldUd YoPTMV EVEpYOTONoNG

(activation maps) tnec ewmdvac eloddov.

2. MeTtatponf (oeT®V eVERpYONOinong o axolouvdia StavuoudTwy

o Metatpénel Toug ddLdoTatoug Tivaxee oe axoloudlec AauBdvovtag TNy YEyLoTy eEvepyonolnon otny

didoTtacT Tou Ldoug xdde Tivaxa evepyomnoinomng.

3. Awnthfg xatevBuvone dixtuo LSTM (axoloudiaxd povtélo)
4. CTC Eriredo

o Dpouund eninedd mou mpofdiel Ty €é€0d0 tou BiLSTM otny bidotaon twv xAdoewy e£680v.

I va emthyouye yevixevon xou Bedtiowon enidoong tou povtéhou pog nepthopBdvouue To mapaxdte:
e Batch Normalization [38] ota eninedo Tou CUVEALXTIXOU ATOXMIXOTOMNTA
o duvouxt) Endugnon Acdouévwv

e Dropout [70] osto CTC eninedo

H ypnon tou Batch Normalization ypnowwonoleitar evpéwe otny avdntuln povtéhwy Podidc pdinong diot
npohauBdvel To dixtuo and To va elvol EMEEETEC O TN SLoOUOVOY) TwV SedoUévwy elo6dou. Autd €yel wg
AMOTEREOUOL VOL XAVEL TO HOVTENO TO ELEWOTO, EVG ToEdAANAa emiToryOvel TV Bladixacia exnaidevone. Ilpdxeiton
vt To normalization twv e€68wv evepyomoinong pe Bdon tn Yéomn T xou TNV AnOXAICY) TOU TEOXUTTEL and OO
To batch.

To Dropout cuvictotar oty tuyaio agolpecn XAV VELEMVKY, UE TOV UNBEVICUS QUTWY, XAUTA TN SLdpxeld TN
exnafdeuong. Me autév tov Tpomo o dixtuo dev haufBdvel Ohn TNV TAnpopopla, ahhd xokelton vo e€dyel Eva
AMOTENECUOL UE [LoL UELWHEVT EXBOYN auThG. (¢ amoTéAeaual, TO LOVTERO YEVIXEDEL XAAVTEQO EVE) AMOPEUYETOL

nopdAnAa to overfitting oto dedopéva exmaidevone.

H Aentoyepnc apyttextovixn tou dixtdou eivan 1 oxdhoudn:

2 Conv Layers - 32 Kernels 2x2 - ReLU
Max Pooling

4 Conv Layers - 64 Kernels 2x2 - ReLU
Max Pooling

6 Conv Layers - 128 Kernels 2x2 - ReLU
Max Pooling

2 Conv Layers - 256 Kernels 2x2 - ReLU

2 Conv Layers - 256 Kernels 2x2 - ReLU

Max Pooling - Kernel Size 256x1
3 Layers BiLSTM - Hidden Size 512 - Input Size 256

Iivaxag 1.1: Xuvolunr) apyltextovixn

18

]
J

_j__l'

. W
LSTM
l CTC Layer

Sequence of Contextual Visual l
Features

Sequence of Probability
Distributions

] Bidirectional LSTM Encoder

Sequence of Visual
Features
\\ 1 sg_ Tl " |
......... _ 3
Z s2 (8 | €
Column Max-Pool .l
LSTM LSTM S é [20
' . = 2
! =
T . 4 =,
A i
w

CNN Encoder

[

I
| WOVE b0 odop Mr. Gochlell from

Yyhuor 1.6: Xuvolunr| Baoinn] dpyiteXTtoviny Yior TRV ovory VORLOT) YELOYRIPWY XEWEVWY

“ — : 256

Max Pocling h h
x1

w

Yyfua 1.7 Metatponn yaptov evepyomoinong oe axoloudo Slavuoudtey

19

1.2.3 Ileipapata

H a€lohdynon twv poviéhwy éyive ye ypron tov petewedv Word Error Rate xou Character Error Rate. Av
oUUPOMGCOUYE UE Yiee TNV ATOXWINOTOMNUEVT oxohoudor Tou Bivel TO HOVTEAD Xal UE Yy; TNV TEayHoTixy

axohoudia Xelwévou xou pe wq ot wy o TAdoc twv AMéEewv ot xdlde mpdtaoy ToTE €youye:

editdistance(Ygec, Yyt)
length(Yy:)

CER =

editdistance(wq, wy)
WER = Nwg € Ygee, Vwy €Y,
g;u length(wy) o decy VIt 9t (1.2)
O petpuéc autée Pacilovton otny andotaor Levenshtein [10] . H andotaocy Levenshtein petpd v dupopd d0o

axoroutav. T topddetypa av uo axohouvdies Slapépouv xatd €vor yedupa, ToTe 1 andotoot elvar 1. Luvenode 7
pete) CER elvan ovolaotind o Aéyog tou mARloug twv yopaxtipwy mou Slagépouy, UETHED TwV BU0
axohoLLWY, TEo¢ T0 cLVOAXS TAAdoC YopaxTHpwy TNe Teaypatixic oaxoloudiog. H petoxne WER epunveteton

ouolwg, pe TN uévn dlaopd oTL eqopuoleton ot dheg Tic AéEelc Tng mpdTaoNe Eeywplotd xau énetta adpoileton.

Enineda BiLSTM

Epochs 70
Learning Rate 1073
Optimizer RMSProp
Pretrained Model None
batch size 8

IMivaxag 1.2: Awopodppuon nelpopdtwy oto enineda BILSTM

H BiLSTM Layers =~ WER CER H

1 0.2454 0.0708
0.2155 0.0631
0.2047 0.0599
0.2058 0.0612
0.2062 0.0615

(SN OV) V)

IMivoxag 1.3: Iewpdpota otov aptdud twv emnédov tou BILSTM

Ané ta mopoamdve metpdpata, xatohfyouue 6t 3 BILSTM enineda andteholv éva xohd cupfiBocuo petald e

AnOBOONE TOU HOVTENOL X0l TNE UTOAOYLOTIXNC TOANUTAOXSTNTAC AuTOV.

Avvouixr) Endugnorn Acdopévwyv

ITparypotonolotye xdmota TELRGUATE TNV PoCIXT| AEYITEXTOVIXY UE TIC TUEOXATE CUVIAXES EXTALDEVCTG:

Aoxwdoope tohhaniole cuvduocuols duvopxic enadinone dedopévmy xou AdPoue ta xahbTepa anoTEAECUOTA
OTNY TEPIMTWOT TWV APIVLXDY X0 LOPPOROYIXOY YETACY NUATIOUWDY EQUPUOCUEVKY OE OAO TO TAYTOC TNG ELXOVAC.

X1y cuvéyEl TV TEWAUUATWY pag o TopeuolUEe YE TNV XPNON TOV OPVIXMY UETACY UATIOUMY.

20

Layers 3

Epochs 70
Learning Rate 1073
Optimizer RMSProp
Pretrained Model None
batch size 8

Ilivaxag 1.4: Aopodppoon nelpopdtey duvauixic enadinone dedouévmy

H Data Augmentation WER CER H
None 0.22185 0.0655
Global Affine 0.1951 0.0577
Global Morphological 0.2107 0.0624
Global Affine + Global Morphological 0.1913 0.0568
Local Affine 0.2034 0.0623
Local Morphological 0.2143 0.0690
Local Affine + Local Morphological 0.2109 0.0621
Nested Global Affine + Morphological 0.1925 0.0568
Nested Global Affine + Morphological Randomly applied to each frame in the batch 0.2006 0.0581

IMivaxag 1.5: H enidpaomn g enduénone dedopévwy oto anddoor) tou govtélou

CTC Arnoxwdixonoinon pe xeHorn otatiotixenyv Mwoowdy MovigAwy

H yerion CTC oe eninedo yopoxthpwy €xel Quotxd Ayotepeg xhdoelc 6To Tehxd eninedo e£650L xou

avTeTw{lel To TEOBANU Twv MLewy extéc Aedixol Wwag xou onotadrnote AEN unopel va oynuatiotel. To
YEYOVOG OUnC OTL omoladinote AEEN unopel vo oynuatiotel elvon BuvnTixd oevnTxd agod umopel va exppdlel
havdaouéveg hé€eig. Luvenag, 1 yerion CTC ywelc) yeron swtepixric YAwoouxrc mAnpogopiag odnyel oe

umAé Tocoatéd Aaddv héEng xou yopaxthpa (word error rate (wer), character error rate (cer)).

Yo mewpdpotal o ond 8k xou 0To ENC YENOUOTOLOUUE OTATICTIXG YAWOOIXE HOVTENN OE ETUTESH YopoX THRWY Xou

MEewv. Ta povtéla autd mopdyovion amd ta Brown xow LOB xewévev pe) yprion tou epyodeiov KenLM [30].

O aryoprduoc CTC anoxwdixomoinone mou yenopwonoolye elvor o [25] pe vhonoinon [1].

H Decoding Algorithm WER CER H

Greedy 0.2068 0.0608
CTC Beam Search 2 Char-LM 0.2050 0.0608
CTC Beam Search 3 Char-LM 0.1972 0.0590
CTC Beam Search 4 Char-LM 0.1814 0.0564
CTC Beam Search 4-Word LM 0.1481 0.0460

IMivaxog 1.6: Anoteréopata CTC anoxwdixonoinone pe yeRon otatiotikol YAOooxol HoVTENOUL

Tevixd napatnpodye 6Tl 660 avdveta 1) TEEYN TOL GTATIOTIXOU YAWOOLXOU UOVTEAOU TGO BEATLOVETOL XU TO
T0606TO avayvaelone. Autd ogelleton oTo YeYovog 6Tl xadieg avgdveton 1 TdEN YAWGoo) 1660 TEPLOGOTEPO
aw&dveton 1 otoplar Tou AauBdvouue VTGPV Yiol TOV UTOAOYLOUS TWV cLYVOTHTWY eupdviong. o topdderyua,
elvon BLaPORETIXY 1) SLUYVOTNTA EUPAVIONE TOU o DEBOPEVOU Tou B %o BLOPORETIXT] 1) CUYVOTNTA EUPAVIONS TOU o
dedoyuévou tou Byd. Ltny deltepn neplntwor, 1 TAnpogopla eival EUPUVOS UEYIADTERT XAl YLo TO AOYO oUT
BLXALOAOYOVVTA TOL TUO TOLOTIXE AmoTEAEGUATO TTOL AdUPBEVOUPE UE TN YXeNoN YAWOOWWY UOVTEAWY LmAdTERNS

TaEng.

21

H peyohOtepn Behtiwon enépyeton pe v xeHon TV YAWOOW®OY LoVTEAwY emnédou hé&ewv. Autd elvon
duonohoynuévo xadie euvoolvtal AEEelg mou untdpyouy oto Ae&ind xou dpo €xouy PeYdhn TdavoTnTa Vo

XUTACHEVAGTOVY HATA T1) DIAEXEL TNE ATOXWOLXOTOMNOTC.

22

1.3 NGram Awdonacy, Axolovdiag

Ye autéd 10 xePdhono VENOUYE VoL DIEQEUVHCOUUE TOl TTHPAXATG:

o Av 1 ddonaon tne axohoudiog otéyoL oe n-gram unopel va €yel xdmowa Yetnt| entdpoon oty CTC

ATOXWOLXOTIO(NCT| XA 0T TOCOG T AVALY VEOPLOTS.

o Kotd néco 1 Onapén labels oto eninedo e£680u oe molhomhéc whipoxes (unigrams, bigrams, trigrams)

unopel va BeAtitdoet Ty dladixacio pdinone.

1.3.1 Movtéro Unigram-Bigram

Apywd vhomnololpe) Baour apyitextoviny pe Slaotdoelc 256 oo xpu@és povddee tou BILSTM. Oewpolye ot

emapxoly Yo Vo hovTtehonondouy t6co To unigrams 600 xou tar bigrams yiog xou poledlovton xowy) Thnpogopia.

O CTC podaiver oaxohoutdieg yopoxtipwy TNe Topoxdte Hop@ng:

Yyfua 1.8: Alingments yio to xowéd Unigram-Bigram povtélo und 1o xowéd CTC framework [27]

IMTwg emAéyovpe ta bigrams ;
H emhoyn twv bigrams nou da cugpetéyouvv oto xowéd CTC eninedo Boocileton oo mopandte :

o ‘Onwe xoL 670 oTATIETINS YAWOOWXE HoVTEAA O ETINEDO YopaxTHEWY evilapepouacTte wévo yio ta telolq

YOPAUXTHEEC.

o Ta bigrams and 6houc toug 79 yopaxthpes Yo abEave T0 UTOAOYLOTIXG XOGTOC TOGO GTO BIXTUO GGO Ko
otov ohyoprduo anoxwdonoinone. Enlong, nohhol and autolc toug cuvduacuoic epgaviovtar omdvia xou

0eV €YOLUV XATOLO VONUA YIoL TNV YAGOO.

o TTopatnedvtag Tic EXOVES YELROYEUPLY, OL YUPUXTAPES OV elval BUOXOAO Vo oVOY VWELGTOUY GWaTd efvol
outol mou Peloxovron wéoa oe uior AeEN dmou dev Slaxplivovtor ebXoAa omd Tol YELTOVIXE TOUS AOYO TNg

CUVEYOUEVNC YRUPHC.

Yuvende, vy bigrams emiéyoupe autd tou oynuatilovtar cuvdudlovtac ta teld unigrams. And autd
nelpouaTillOpaoTe Ue SLdpopa oyfuaTo 6w Yo tapdderyuo ta 50 cuyvotepa tou epgavilovian oe éva xeluevo 1

Ta 50 cLYVOTEPD TOU TO UOVTEAD WO UTEEDEVEL.

T va ehéyEoupe mde 1 Uman Twy drypaupdtony ot olvieteg axoloudies yopaxtipwy €youv Behtudoet Ty
enidoon Tou PoVTENOL Vol TEAYUATOTOICOUUE ATOXWBIXOTOMON YPNOWOTOLWVTAS Wévo Tig mdavotnteg twv 80

unigrams.

23

Layers)

Epochs 60
Learning Rate 1073
Optimizer RMSProp
Pretrained Model GA3layers
batch size 8

ITivaxag 1.7: Awopoppuon Iepaudtov Unigram-Bigram

[CTC Layer WER CER |

Unigram 0.2068 0.0608
Unigram + 50 Bigrams 0.1903 0.0570
Unigram + 100 Bigrams 0.1988 0.0593
Unigram + 150 Bigrams 0.1995 0.0593
Unigram + 200 Bigrams 0.1974 0.0583
Unigram + 676 Bigrams 0.2002 0.0601

IMivaxag 1.8: TTocootd avayvwplong oto Unigram-Bigram povtého uévo e yprion mdavoritwy unigrams

Ané o Topomdve: TESUATO CUUTIERUVOUUE OTL TO LOVTEAO ogele(Ton and TNy mpooUnxn Twv bigrams, aAAd autd
oupPaiver otov xahitepo Bardud yio wa wxer) tocdtnTa VTV, Toe 50 bigrams. Xuunepafvoupe hoindv ot ta
ouvédeta alignments mou 1o wovtéro podafvel, BeEATIOVOUY xaTd XdTOLO TEOTO TNV IXAVOTNTA YEVIXEUGTS TOU
Hovtéhou, apol autéd padaiver vor TunUoTtoTolel TNV exdéva L WOVo ot HovoUC YopaxTrpeg unigrams aAAd xa oc
bigrams. IHoapoxdtw Ve e€etdooupe nwe 1 bigram minpogopio uropel va yenowonowmdel otny dradixactio tne

CTC anoxwdixonoinonc.

1.3.2 TIIpotewoépevolr Ahyoprdpor Atoxwdixonoinong

Axoloudolpe 800 mpooeyyioelg yio Toug alyopliuoug anoxwdixonoinone. H pla agopd ™ yeron e bigram
TIVOTNTAS WS ECWTERPXS YAWoOWS Hovtélo bigram. 3ty deltepn npocéyyion ypnowonololue Ty bigram
mdavoTnTo Ue 6Uolo TEOTO 6TWE TNV unigram, Snhad Yo EnExTaoT TS KO Undpyouoas axoloudlag e va

unigram 1 bigram.

O npwtog alydprduog yenowonotel Tic miavotnTeg Uunigram yio enéxtoct e oxoroudiog xan Tic TavdTnTES

bigram vy scoring tng exdotote enéxtoomng Ye ddpopec TOMTIXEC OTwS Yo SOUUE TOROXATE.

YupBoiilovye ye u; tov TEAELTOLO YaEaX TN IOV TNS AVATTUCCOUEVNC oxohoudiag, s, o onolog emhéydnxe tnv
YOOV OTUYHN 5 XU OC Ujq1 TOV YAUPOXTHEA EXEXTACNC TNV Yeovixh) TN tit1. ¢ BSoupfolileton Brypau
Xgope v Ty enéxtaon e axolouvdoc s Pe Tov YopoxThpd uit1. Autéd opiletan we edic:

BS = max(Pr(uiwiy1,t; : tix1]z)) (1.3)

To Bigram Score unopel va €yel xou Toug axéhoutoug oplouoie:

Opilouye we u; Tov YopaxTipa ETEXTAONG TNV YpoVixh oty & xou pe w éva ypovixd mapdiupo. LupPoiilouvue
pe B 1o obvolo twv bigrams mou exivoly and u; xol we C 10 olvoho twv bigrams mou tehewdvouy ot u,. To

BS Bigram Score opileton w¢ e€fc: Se@ved oc porlowe:

24

1n Ilepintwon : Forward

BS = max max Pr(b, t| X) (1.4)
t beB
27 Iepintwon : Backward
BS = Itnjaqicr;r:leachr(c,ﬂX) (1.5)
3n Ilepintwon : Both Directions
BS = max (rtrfalic(r?gchr(c, #X), r%ta%’g(r&agpr(b, £X)) (1.6)

H napouacioor tou aiyopiduou yiveton avolutixd oto Kegpdhowo 6.

Ytov deltepo alyoprduo dnuloupyolUe TNV AmoXwIXOTONUEVT axohou (o EXYETOANEVOUEVOL Xou Tal Unigrams o

T bigrams.

O€touue TOUC TAPAXATL HAVOVES :

e ‘Otav o emduevog yopouxthpac elvon bigram, téte enexteivouye ye bigram xon tpocopu6lovue avdloya e

1oN oynuatiopévn axorovdio.
o ‘Otav o tehevtaloc yopoxthpac elvon unigram tdte awtéd Ga €xel mpoéAdel and enéxtaon unigram povo.

o Otav o tehevtafoc yapaxthpac elvar bigram téte autde Vo €xel npoéhdel and enéxtaor bigram.

H meprypagn tou odyoplduou yivetoaw avohutixd oto Kegdhawo 6.

25

1.3.3 Avdivorn-Ileipduoto- S UUnepdoUoTo

Topodetypata andé to Unigram 4 50 Bigrams Movtého

Test Set Example 1

Original : He rose from his breakfast-nook bench
Greedy Decoded : He lose from his bieakfit-nook bench

10

0.8

0.6

probabilities

0.2

0.0

1.0

0.9

0.8

0.7

posteriors

0.6

0.5

0.4

He rose from his breakfast-nook bench

He rose from his breakfast-nook bench

e = L e
. [. o .o o . 1.0 H em
. .
L]
« E 08 J i °
. L]
. . £m
* . L 40
. C @06 e
. =
L] . %
. ¢ (] g
e~ . . g 0.4 J
o = . * .
. L C P
. . . 0.2 AT
. * O
. . L] L] ° L] .
Al ad s O Jan a o .
0.0 &
0 50 1_00 150 200 25 50 75
timesteps

(o) Top 2 Probabilities

He rose from his breakfast-nook bench

i~ ke
d
£a
d
ot
s e
o
L .
L] -it
d
5 -
i (%
d
$ & @

100 125 150

timesteps

pL
L=

175

&h
L
£N

200

(B") Mdavédtnree petadd 0.55-0.98 xou n anoxwdixononcy

Rl skl Lid Ph
. - p .

d
. J
Jo
b
[
o
0 50 100 150

time

(Y") Greedy Alignments

0 He o Jiowe Ly ieatfari-noot Decd

Syduo 1.9: Topdderypo 1

26

(¥) Ewdva 1

Test Set Example 2

Original : Heather and Steve stood aghast at
Greedy Decoded : Heatler and Meve ood aglan at

Heather and Steve stood aghast at Heather and Steve stood aghast at

1.0
10 . . T Py . o 8 ";m‘j & = ISJ L TEr
o s °* . © - £ b [N
. . o . s ten ¢
0.8 - '. . 0.8 FA o
L]
. = . . - > - #n
3 0.6 S . 0.6 * at
=] . = P
= ° ° . =
a 4 a
(] m
o . i<} -
g 0.4 = . » g 0.4 < o
. " . - at Ve rd ~
0.2 * b~ . 0.2 . s " 4
L] L] - L]
e
. . . *o o - I P P J ! 4
0.0 s 'Y 2a 2 * o 0.0 - ﬁP 5 - g0
0 50 100 150 200 25 50 75 100 125 150 175 200
timesteps timesteps
(o) Top 2 Probabilities (B") Mdavétnres petadd 0.55-0.98 xou 1 anoxwdixononcy
Heather and Steve stood aghast at
10 x Ho.edy odesry ijL L@‘L&”_gfo LAL@LAL@?}@XL By
e x~ oE -
. ; L - =
< . x
06 *
. 0
2 |y sestungams . -
§ o Bestbigmms
§ A Second Best Character x A -
04 le
“
At Vye o
. . L d
n
“
C = e ~ d
oo B Wed teell wuno. . lemel BMo P L, 2 BJetw SA,
0 © 100 0 20

timesteps

(Y") Greedy Alignments

Heallhf anat Newe Ylooo! Qg{)@ﬁ o

(3") Ewéva 2

Syhua 1.10: TTopdderypor 2

27

Model Algorithm WER - CER
Bigram-Scoring 0.2100-0.0626
Unigram-Bigram Extension | 0.2090-0.0591

Unigrams + 50 Bigrams

IMivaxoc 1.9: Tlepdyota otoug mpotevouevoug ahyopliuoug amoxwdixomoinone yio 1o xowd yovtého Unigram-
Bigram

I v yeron tou CTC ahyoptdpou anouteiton, Tépa and TIC YAGOEIC TV YROPUUATWY oLV VEAOUPE Vo
avaryvwpioouye, évag emnpbodetog yopaxthpas, o xevoe (blank). O povadixde Adyog yprione autod Tou
yopaxthpa otov CTC alydprduo elvon yia vo ETITEETETOL 1 EXPEOCT] CUVEYOUEVLY OUOLWY YORUXTHOWY OTWS YLa
napdderypo ot yopoxtipes 11 otnv Aén Hello. Av Sev unrpye o xevdc yapaxtiipac tHTE 0 Smhd yeduuo 1 Sev do
exgppaldtav apol Ha elye yivel éva Ue o yelTovnd Tou %ot TN Bidpxeia TG andxTnong e Tehxrg AéEng and to
alignment autrc. Xtnv nepintwon enadénone xatoavoolye 6Tt 1 Unapen twv bigrams dpo w¢ €vac xeVHe
Yopaxthpac ylotl, T 6mola cuveydUEVa YedupaTa UTdpyouy Sloywellovton ye to avtioTolyo bigram toug. I to

npoavapepéy mapddetyua, to bigram Yu etvon to 1l

Tiveton Aowmdy xatavontéd 6t 1 yeron tou xavovixod CTC yia Ty avayvdpelon t6co unigrams éco xat bigrams

yopaxtneiletan mepttTh plog xou tar bigrams Spouv we xevoc yopoxthpac. Ta to Aéyo autd, oe GUVBLUCUS PE TNV
un dapoponolnon twv bigrams and ta yeltovixd Toug unigrams oe nepinTON TOL XANOLO ond AUTA EXEL

avary voploTel Aaviaopéva, pog 0dnyoly oto cupmépacpa 6T 1) Yerion Twv bigrams ¥ 6mowwy dAAevY ngrams, uné

tov xhoacowd CTC ohydprduo, dev Eyel enldpacy 6T0 TOGOGTO VALY VEORLONG.

Extéc 6hwv twv napamdve cupnepacudtwy, tapatneolue 6t 1o CTC ouyxevtpdverl 0 peyahibtepa pdla
mdavoTNToC YHOVO OE EVal CUYXEXPWUEVO LOVOTETL YEYOVOS Tou eunodilel To exploration mou Vélope vo

UAOTIOLACOUNE GTNY Y.

Suunepaivouue Aowndy 6TL qUTY 1) TEOCEYYLON pog Bev anogépel Bektiwon und auth T povielononon. M
enéxtaon authc Tou evdeyouévee va Bondoloe eivon 1 npocéyyion tou CTC dnwe xou €8¢ [12] dnou mopéyetan To

Gram-CTC nou emitpénet xdde @opd vo exppaotel wdvo éva and to unigrams, bigrams ¥ yevixd xdnolo ngram.

28

1.4 Mddnor IlIoAhanAwy Xtoywyv

Y10 napyv xe@dhono, houBdvovtoc TGPV o ATOTEAEGUATA TOU TPOTNYOUPEVOL, anogacilouue Vo YElploTOUUE Ta
target units moAhamhic xhipaxag, yio topddelyuo bigrams, trigrams, ngrams, SLQOPETIXG. LUYXEXQUIEVA, T
emAéyouue w¢ target units oAid oe dragopetixd CTC eninedo and to unigrams. SuVEnOC AOT6Y LAOTOLO0UE

LEQOPY T OEYLTEXTOVIXY TOMNTAGY €pyactdy (Uddnon unigrams, bigrams ».0.x).

Trdpyouv 800 Bacuxég apyltexTovixég Ue TiC omoleg melpauaTioThxope. AuTtég etvan 1) tepapywxr xau 1 block
OEYLTEXTOVIXY) TOMNNATAGY OTOYWY. Apyixd YeNoWonoloUpe we ¥ doelc xou unigrams xou dtypdpparto. To
By pdupota TEoXOTTOUY ¢ cUVBLACUSS Twy 26 unigrams xodoe elvon aLTd TOL T0 YOVTERD Uog YEAoLUE Vo UddeL

xohOTEPAL.
H Block apyitextovinf) Tolamhédv otdywy eivon 1 e€hg :

Av cupPolicoupe pe E ta yopoxtneiotind mou e€dywvton amo tov CNN Encoder poli pe to Max Pooling mou

TEQLYPAPEL 1) Baolxr] dpyLTEXTOVIXT] X0 Ue X TNV EOVA EL0OB0U, EYOUUE :

E = SharedCN N Encoder(X)

Bunigrams = BiLST Muynigrams(E)

Ebvigrams = BiLST My, grams(E)

Yunigrams = Softmax(Denseunigrams(Eunigrams))

}/bigram = Softmax(Densebigrams (Ebig'rams))

H epapyiny) opyttextovixr] ToAamAGyY otoywy elvan 1 e€ig:

E = SharedCN N Encoder(X)

Eunigrams = BiLST Mynigrams(E)

Eintermediate1 = BiLST Mintermediate1 (E)
Evigrams = BiLST My, grams(Eintermediate1)
Yunigrams = Softmax(Denseunigrams(Eunigrams))

Y'l-iigram = Softmax(Densebigrams (Ebigrams))

29

1.4.1 TIIepdpota - TeAixr Apylttextovixi

e auté to onpeio teopaTilouacTe pe xdnoles unepmopauéteous (layers, units) étol Mote vo oploTIXOTOWCOUYE
™ Baoweh apyitextovixf. O CNN amoxomdixonomtic Tapopéver wg €xel 6Twe xou 6o Boowxd poviélo (udidnon
o xornyoplioc 6toyov). ‘Ocov agopd to oxoroudoxd povtého and LSTM eninedo, awtd mopauévouv 3, dtou 1o
xadéva amotehéiton amd 256 xpupéc povades. Auth uag 1 emoyT Baotleton oto YeYOVOS 6Tt epdoov YéNoupe va
xdvoupe xadopr] odyxplom YETOED TNE OEYLTEXTOVIXNE EVOC OTOHYOU UE TIC UPYITEXTOVIXEC TOMNATAWY OTOY WY, TO
%OLWVO TOUG XOUUATL XAk TWV EV SLUYXEIOEL LOVTEAWY TEENEL VoL £yl Ta (Blar yopaxtneloTixd. Ilépa and autd, mou
amotelel xevtpid pog d€ova, doxwwdoope TNy adEnomn twv xeupny LSTM yovddwy, yio tapddetypo and 256 o
300. Qot600 dev napatnerioope Bertinon xo v TEAEL xpaThRooUE TO TANIWE TWV XEUPWY LoVAdWY oTa 256.

‘Ocov agopd Tic povddeg oTéy0oL, TIC EMAEYOUUE UE éva Baoind XEiTHELO, TN CLUYVOTNTA TOUS OTa dedouéva
exnaldevone. I'evixd oo avgdvouue tnv xAlwaxa xou enextelvopacte oe trigrams, fourgrams xou ev yévn ngrams,
TO00 UEUWVETOL 1) CUYVOTNTU TOUS OTA DEDOUEVA EXTIAUDBEUOTNE. LUVETWS, EMAEYOUUE Vol TELQOUATIOTOVHE HEYPL TNY
iMoo Ty fourgrams yiott and auty| xon Téve YeldveTon apxeTd To TARtog Tou exdoToTe ngram oo SedOUEVA
exnaldevone. ‘Ooov agopd to Thdog twv trigrams xou fourgrams emAéyouue to 1000 cuyvotepa and éva xelpevo

yioth 0 CLYOAXOC AP OAWY EVOL ALY OPEVTIXA PEYENOC.

‘Ocov agopd ta oyfuata exnaidevong, undpyouv 8Vo twvd. H mpdtn emhoyy elvan xdde @opd vor emhéyoupe to
dixTuo va del wovo éva and tar unigrams, bigrams x.o.x. H deOtepn emhoyn elvon va BAénel 6o Tor ngrams mou
éyouvue emhéel pali uéow e ddpotone dAwv twv avtiotorywv CTC cuvapthcewy xdotovs. Emhéyouue va
nopeutolyue ye TNy deltepn emhoyT| EXTABEVCTC HLOC Yo OL OTOYOL IOV TEETEL TO dixTUO Vo uddel elvon cuyyevn
xou Sev Yo tpoxakécouy oy yuoT oto pUluloud TV TUPUUETEnY Onws Yo yivdTtay otny tepintwon twy

AVTLXPOUOUEVWY OTOYWV.

H Scale WER Unigram CER Unigram H
Unigrams + Bigrams 0.1772 0.05210
Unigrams + Bigrams + Trigrams 0.1770 0.05372
Unigrams + Bigrams + Trigrams + Fourgrams 0.1758 0.05293

IMivacag 1.10: Iepoapyint| apyitextoviny) TOAATAOY 0Toywy - Greedy amoxwdixonolnon

H Scale WER Unigram CER Unigram H
Unigrams + Bigrams 0.1796 0.05280
Unigrams + Bigrams + Trigrams 0.1790 0.05302
Unigrams + Bigrams + Trigrams + Fourgrams 0.1768 0.05183

ITivaxoc 1.11: Block apyttextovixd molhanAodv otoywy ye 1 BILSTM eninedo oe xdde otdyo - Greedy Anoxwoi-
xomoinon

Eniong, oto xoppdtl tne opyltextovinnc, UOTERA and Lo OELRE TEWPUUETWY TOU UNOTIOLCOUE, XATUANEAUE OTL 1)
LEQUIOYLXY) CPYLTEXTOVIXY] TOANATAGY EQYACLOY EYEL TO oNUAVTIXG UelovEXTNUO OTL Bev umopel va enextadel, xoddt
aw&dveton ToAY og Bddog pe amoTéAeouol Vo BUCYERALVEL TNV GUVOAIXY) EXTIA(BEVGY Xou PUGLXE THY GUYXALOT.
Erlong, and ta nopandve neipdpota etvar Eexddopo 6Tl dev umdpyel xdmota onuavtixy dlapopd uetal Twv 500
apyLTEXTOVIXGY, ue TNV block vo xatohauBdvel Tohd AydTepe TapaPéTEous. LUVENWS, XatoAryouue otny block

QPYLTEXTOVLXY) TOMNAATALY EQYAUCLOV.
Enépevo Brpa yia tnv nepantépry Behtiotonoinomn g apyltextovixic uag eivon 1 apolpeo twv eminédwy mou
apopoly TiC emuépoug epyaoieg. Emxevipnvouaste otny neplntwor tev unigrams xou bigrams émou 1 xow

TAneopopla HETAED TOug elvon aEXETA UEYEAT Wag xou €vag and Toug Blo yopoxTrpes eival xowoq.

30

H tehuen pog apyitextoviny] etvon 1 block toAamAcdv gpyaoiddv ywelc ouyxexpiuéve avd epyaocio enineda.

E = SharedCN N BiLSTM Encoder(X)
Yunigrams = Denseunigrams (E)

Ybigrams = Densebigrams (E)

Aopfdvoupe ta e€n¢ anotehéopotd

H Scale WER Unigram CER Unigram H
| Unigrams + Bigrams 0.1774 0.05218 |

IMivaxag 1.12: Block Multitask apyttextovixy| diywe task-specific LSTM eninedo - Greedy Amoxwdixonoinon

o) o
o ~
8 q 3
S 22
b 23
a2 o
@ @
-!3 -‘E
vy w
BiLSTM s

B
[)
([BilsTM: |
[]

BiLSTM 1

|
I

[CNN Encoder]

I
|| WU ooy N Cublell o

Shared Encode re—

]_Sequence of Visual Features

Eyhua 1.11: Tehwry apyrtextovixy Block-toAhamhov otdywy ywelc BILSTM eninedo oe xdde otdyo

31

1.4.2 X0yxpion Movtéhwyv Mg Epyacioag we Moviéla IToANanAwmy

Ye auté 10 onuelo Vo cuyxplvoupe T PAoXr) LOC OEYLTEXTOVIXY TTOU APORE TNV avay VipLoT ©¢ Teog €va task, ta
unigrams, Ue TG ApYITEXTOVIXEC UE TeploabTepa amd €va task, omwe yia mopddelypa tor unigram, bigrams.

Yuyxexpyéva, ouyxplvouue tig block apyitextovixéc ye) Baoixy apyltextovixy mou napouctdletal oTo

Kegdhawo 5.
Layers 3
Epochs 70
Early Stopping 25
Learning Rate 1073
Optimizer RMSProp
Pretrained Model 3 BiLSTM layers
batch size 8

IMivaxoc 1.13: AloppOduion nelpadtwy yior T oUYXELOY OPYLTEXTOVIXAC TOANUTADY EPYOUCLOV UE APYLTEXTOVIXY
Lo epyaotoc

I v vhomolon tou early stopping, aroutolue ot av o povieho dev Bpet xahltepo word error rate xou

character error rate and to non undpyov, N exnaldeuvon va otapatrioel. Autde o heyyog yivetar avd 5 emoyéc.

AopBdvoupe MooV To TUPUX AT OUTOTEAEGUOTA ©

H Architecture WER CER parameters M H

STL 0.1814 0.0564 5.3
BMTL (UB) 0.1669 0.0515 7.85
BMTL (UBT) 0.1669 0.0532 10.45

BMTL (UBTF) 0.1668 0.0519 13.05

ITtvocag 1.14: STL-vs-MTL apyttextovinég o avory voplon yeledypapoy ot eninedo unigram - CTC 4-Gram Char
LM

H Architecture WER CER parameters M H
STL 0.1814 0.0564 5.3
Lincar BMTL (UB) 0.1672 0.0528 5.68

ITtvaxog 1.15: STL-vs-MTL apyttextovixég ylo ovory vodplom xetpdypagwy ot eninedo unigram - CTC 4-Gram Char
LM

‘Enetta ouyxpivoupe v apyLtextovixic woc epyasioc ot [53] ye Ty Suh pac TOAATAGY EpYAUCLOV.

‘Olec ol mo npbogpateg state-of-the-art mpooeyyioewc elvan apyltextovixés plag epyoaoiog/cTdyou YENOLOTOKOVTAS
pévo unigrams w¢ xhdoeig oto CTC eninedo. Iap” dha awtd, elvar BéRaro, péoa amd o melpduota pog, Ot
emnAéov xhdoels udmhbtepne xhpaxas (bigrams, trigrams x.0.x) Unopolv vo GUVELCPEPOLY oTNV dladixacia
uddnone eunroutilovtoc tov encoder pe neplocdtepn TANEo@opio xou TEAMXE vor 0dnyndel oe xaAdTERA OTTLIXG

YOEAXTNELOTIXG.

32

H Architecture WER CER parameters M H

STL 0.1481 0.046 5.3
Linear BMTL (UB) 0.1392 0.0460 5.68

ITtvaxog 1.16: STL-vs-MTL opyttextovixéc yioo avay vopetor yewpdypopwy o eninedo unigram - CTC Word LM
4-Gram

H Architecture % WER % CER parameters (M) H
STL [] 2020 6.20 9.30
BMTL Linear CTC Layer (UB) 17.74 5.21 5.68

Iltvocag 1.17: STL-vs-MTL apyttextovixéc yior avary voplon Yelpdypapwy Ue greedy omoxwmdixomoinor emnédou
YOO THEWY

Anéd) pehétn xou T metpdpata TG dixic pag mpocéyylone cuvodilouye Tor mopodTe

o Xonowonololpe PeyohiTtepo ouveAxtixd dixtuo and to [53]. Hpotwolpe vo ddooupe neplocdtepo Pépoc

oto ouvehxtixd (CNN) anét oto axohovthaxd LSTM mou elvor o unohoyiotixd Bop.

e Tlonowolue to Map-to-Sequnce pe yerion Max-Pooling otn didotacn tou Udoug yia xdde ydptn
evepyonomong. Lnyv BiBhoypapla, autn 1 Asttovpyla UAomoleltan oelplony] GOVOEST) OAWY TWV GTNAWMY OAWY
TV YOETWV evepyonolnong pe anotéheopa vo emPBoapivetal ToAd tepiocdtepo o lo LSTM eninedo. Me tnv
BT LOIG TEY VXN XATOANYOUPE VoL €YOUUE €V DIAVUCUAL YUPUXTNRLOTIXGY Yol x80e GTAAT Tou YdpeTn

evepyonolnorng.

e Evoopotdvouye emnhéov eEmteptn) YVOOY 0T0 dIXTUO PEGK TWY BIYpoUdTey Ta OToL OPEAOLY TO BiXTUO

Oyt povo oty draduxdota wdinone oAl xon otn dadixacio anoxwdxonolnong.

o Amogelyouye to TEOBANUL TG oLy VOTHTOC TwV UPNAGTEPWY Xhdoewy (trigrams, fourgrams) emhéyovtag

o 1000 cuyvétepa and ouTd.

33

1.5 IIMjpwg Xvuvehutinn Apyrtextovixn he CTC yio Avayvopet-
on Xelpodypapwy

O CTC ypnowomoieiton eupéng Yo gpyasieg wovotovixig uetatponic axoloudog 6Twe 1 avary voplo
YELROYQUPWY XEWEVWY XOL 1) AUTOUITY) vy vadeloT guwvic. Eivar évac alydprduog mou emtpénet tny
anoxwdixomoinom axoloudndy ywelc vo yvwpellel v axplBy) totodeoio éxppoaone tou xdlde yapaxtipa, elte
TEOXELTOL YLOL VoY VORLOT) PWVAC lte yior avaryvadpion xewévav. O CTC yenowonoteiton cuvidng mdve amd éva
avadpoutxé RNN ¥ LSTM 8ixtuo. Xto nopdv xepdhono e€epeuvoipe tnv cuvepyia petald CNN xa CTC yio tny
onpovpyio evéc povtélou 6mou 1o o OnTind xopudtt 660 xar to Axolouthaxd Vo elvol XATUGHEVACUEVO Ao
ouvehi€elg. Tlaupaxdtw, cuyxplvouue v anddoor tou CNN oe cOyxpion e too LSTM ye Bdon ta xptthpla Tou
TOGOGTO) AVAYVOPIONE, TOU XPOVOL EXTAUBELOTNE Xl TOu YpedVou amoxwdonoinong. Katalfyoupe ot nopdro
mou to CTC dev gtdvel To 0600t avaryviplong Tou TV TuTixwy LSTM yovtélwy, ivon mohu mo edxolo va

EXTIOUBEUTOVY ol VoL amoxwdxonolndoly yenyopdtepa.

Trdpyouv noAkéc xatayeypaudpéves tpoondieleg 6mou 1N yivetow avtixatdotaon twv LSTMs pe andhuta
CUVEAXTIXES UPYLTEXTOVIXEC XLRIWEC 0TOV ToUEN TNE avaryvaetone @wvic [65] [79] [75] [11]. Ltov touéa tne
VALY VOPLOTG YELROYRUPLY XEWEVLV Dev Exel Yivel xdmola avtioTtolyn eEepelvnon O TATPELC CUVEALXTIXES
apyrtextovixéc. Lo to Aéyo autd, expouctovue TNV euxonpiot ol TELRUUATIOUACTE UE TAHPWS CUVENXTIXEG

AEYLTEXTOVIXEG.

1.5.1 IIMjpwg JuvelxTixr) ApYLlTEXTOVIXT

Tpw ene€nyRoovue TNV TEOTEWVOUEVY OPYLTEXTOVIXN Wog, YpetdleTon TedTo vor eENYHOOUPE Yol UTOPOUUE Vol
yenownotioouue Connectionist Temporal Classification pe tn yerjon cuvekxtixwy dixtbwy. o va to

ATV TACOUPE oUTH TEETEL TEWTAL VoL cUAAOYLoTolpE Tt amoutel we eloodo o CTC arydprduoc. Autod elvon pio
axohoudla xatavoumy TdavotnTtey ot évol GUVORO yapaxthpwy e€6dov. Yta LSTM auty 1 xatavour| anoxtdton
e TeoPol oTic xAhdoels e€680L xau softmax, Wote va amoxtrhicoupe mdovdtnTes, o xdle éva and ta Sloviouarto
nou tpoxUnTouy and neoBolr. Me tnv (Bia oxptBog Aoy o xatactedcoupe Ty ocuvepyio ueta€d Tou CTC xau

TOU GLUVEAXTIXOU BtxTVOU.

Av 9éhovye va amopidyouue t yerion LSTM vty yovtehonolnomn twv ypovixov e€upthoewy UETOED TwY
BLAVUOUATOV YR TNELO TNV Vo yeelaoTel vo Bpolue €vay GAAO TEOTO VoL LOVTEAOTIOCOUUE TIC YPOVIXES
elopthoelc petadld autdy. Ta Suaviopata YopoxTneloTxmy eivar ovctactixd ewdvee didotaone (1, w) mou eivou
opyavwpéveg oe 256 xavdhio. Kdde éva amd autd tor xavahiar €xel XOXOTONUEVL YopUXTNELETIXG AndAO TO
TAAITOG TNG EXGVOC TTOL TRETEL XaTd Eva TpoTo va cuoyeTiotolv. Eivon yvwotéd 6t 1 npdén tou tne cuvélEng
onwe opiletar otar mAaioto Tou cUVEAXTXOU deThoL elvor Wi TEdEn avtocuoyétiong. Io awtéd T0 Adyo
yenotomoloVue ocuvelZele wiag didotaone, dnhady tuprva oyfuoatos (1, k) nouv unoloyilel autoouoyetioelc og

6Mo 10 Unpog xdie daviopaTog xa yior To 256 SaviouaTa.

34

80

w
1
[Softmax J
‘ [Projection Layer }
——— ™ t
256 [1D CNN }
k1 w [Map-to-Seq]
Y 4 [CNN Encoder]

1
\ MOVE o doe M. Gathlell frowm

Syduo 1.12: Avanopdotaon tng CNN-CTC apyitextovixric. O CNN Encoder nopopével o¢ €xel xat 1 tovn aAhorymn
ToUL Tpaypatonoleltal 6To dixTuo ewvon 1 avtixatdotaon twv BILSTM emnédwy pe ypron 1-D cuveliZewy

2 Conv Layers - 32 Kernels 2x2 - ReLU
Max Pooling
4 Conv Layers - 64 Kernels 2x2 - ReLU
Max Pooling
6 Conv Layers - 128 Kernels 2x2 - ReLU
Max Pooling
2 Conv Layers - 256 Kernels 2x2 - ReLU
Max Pooling - Kernel Size 256x1
1-D Convolutional Temporal Modeling

IMivaxog 1.18: CNN-CTC opyitextovixn

1.5.2 TIleipdporta

Exnowdedoupe 1o CNN-CTC dixtuo ue tnv mopaxdte Slotép@wat) :

Xpnowonowolyue early stopping Booiopévo oto WER/CER tou validation set. Avéd 5 enoyéc amoutolue to
100066 Aoty v elvon auoTnEd wixpdtepo amd To xaAlTepo mou €xel onuewwdel. Alvoupe oto dixtuo 5 euxanpleg

va Bpel To Uixpdtepo tocootd hadwyv. Av dev to Peel péoa oe 5 ehéyyouc tote 1 Bladacio exnaidevong oTouatd.

35

Learning Rate 1073

Optimizer RMSProp
Pretrained Model None
batch size 8

ITivaxag 1.19: Awopdppuon Exnaidevone

H Data Augmentation WER CER H
None 0.3003 0.0891
Global Affine 0.2670 0.0778
Global Morphological 0.3182 0.0976
Global Affine + Global Morphological — 0.3032 0.0911

ITivacoc 1.20: TTewpdporta duvaixhc enadénong SeBOUEVLY GE TANPMC CUVEAIXTIXES HPYLTEXTOVIXEG

2T0l TELPGUATOL ATOXWOIXOTIONONE YENOWOTOLOUUE OTATIOTIXG YAWOOWE UOVTEAN OF ETUMEDA YULUXTAPWY Xol
M€ewv. Ta povtéla autd mopdyovtan and tic Brown xoaw LOB Bdoeic xewévwy ye) xehon tou epyaheiov
KenLM [306].

H Decoding Algorithm WER CER H

Greedy 0.2693 0.0794
CTC Beam Search 2 Char-LM 0.2680 0.0785
CTC Beam Search 3 Char-LM 0.2577 0.0753
CTC Beam Search 4 Char-LM 0.2452 0.0732
CTC Beam Search 4-Word LM 0.1620 0.0536

IMivaxoc 1.21: Anotehéopota amoxmdixononone e yenorn e€wtepxod YAwoool LovTéNou - enlnedo ypuuunc

36

Word Error Rate

Character Error Rate
0.14
042 P WER

‘ 013 |
|

01z |
|

CER

0.09

032 | 0.10 I'\
0.30 \/\/h \\/ \/ \\/

0.26
5 10 15 20 25 10 15 20 25 30
Epochs Epochs

-

() Word Error Rate in Validation (") Character Error Rate in Validation

Mean Train Loss per Epoch

TrainLoss
700

600 ‘

CTC Loss

0 20 40 60 80 100 120
Epochs

(¥') Mean Train Loss per Epoch

1.5.3 Xuvduaopog JUVEMXTIXOY LOVTEAWYV

Thonowolye éva anid late fusion oyrua 6mou cuvdudlouue e€680Ug GUVEAXTXOY BIXTOWY 6TOL €Y 0UV
exnoudeutel Eeywplotd. Enedr) xdde éva and ta povtéha podalvel xdde popd xdmola povomndrtior xaAbTepa and ta
Mo, ouvdudlovtog Tig e£6d0ug OAwY woli hauBdvouue IOy dheg emhoyég Tou propel vo uny €xouv Yivel
owoTd and To €va BixTLo CANE Vo Eyouv Yivel cwoTd amd 16 dAko. O cuvduoouos yivetal OUCLIGTIXG UE TO Vo

TAEOLYE TNV PEOT TN OAWY TOV TEAIXMY TVAXWY EVERYOTOINONE XAl ETELTA VoL EQPUPUOCOVYE OE AUTO eNinedo
softmax ®ote vo Mfouue xatavoués miavotitwy oe xdlde Ypovixh oTiyun.

H Model WER CER H

cnn-model 1 0.2689 0.0788
cnn-mode] 2 0.2691 0.0799
cnn-model 3 0.2628 0.0771
cnn-model 4 0.2890 0.0865
cnn-ensemble 0.2443 0.0704

IMivoxag 1.22: EnlSoorn twv anAdy GUVEAMXTIXOY BIXTUWY X0l TOU GLYBLAGHOU HLTEV

TTopdho mou 0 GUVBUNCUOE TWV CUVERXTIXOY UOVTEAWY BeV EEMEQVA OE TOCOGTO avayVelong To Pacixd wovtélo,

napatnEoVUE 0Tl TPoadidel onuovTixy| Behtlnon oe oyéor e Tol Ahd CUVENMXTIXG LOVTENA.

37

|| Ensemble Technique WER CER ||

averaging 0.1514 0.0520
single CNN-CTC 0.1620 0.0536
single CNN-LSTM-CTC 0.1490 0.0460

Iivaxag 1.23: Loyxplon enidoong anhédv poviéhwv pe Ensemble povtélo - Char/Word LM anoxwdixonoinon

1.5.4 3X0yxpwon CNN+CTC pe to Baocixd poviélo

|| Model train time(c) inference time Parameters (M) WER CER ||
CNN-LSTM-CTC 370.1 102.1 5.73 0.1481 0.046
CNN-CTC 149.3 22.2 2.34 0.1620 0.0536

ITivaxag 1.24: X0yxeion wwy apyttextovix®y CNN-LSTM-CTC xou CNN-CTC

he

their heads like ternis spectators as walked up
Words

mmm Full Convolutional
mmm Baseline

and

Yyfuo 1.13: IIdavétnteg mou 1o xdie yoviého avadétel oe xdde AéEn Tng mpdTaoNg.

P(Word|X)
° ° °
S B @

e
N}

o

.0

38

= Full Convolutional
mm Baseline

0.3
M | | |
he

.0

o
o

o

their heads like ternis spectators as walked up and

Words

Yyfuo 1.14: Anoxon Kullback-Leibler hé€ewv dpolar avoryvewpiouévev and ta povtédo CNN, LSTM ue oxond
™ oLYXELOT AUTHDY

To nopoandve Topddetypa anodelxvieL 0Tl Eva XOAS TOCOGTO AVaYVMPELONS DEV ONUOLVEL AToEA(TNTA OTL TO LOVTENOD
€YEL LOVTEAOTIOLACEL (it XOAT| avamoipdiotaot tne xotavouis mdavotnras. Ta 800 povtéla , napdro mou Bydlouvy
10 (Bl0 owotéd anotéheopa, To CNN-LSTM anodeixvieton 6t €yel pddel o xoahdTepn ovanopdoTtosy) g

xaTovouric avapopdc eneldr €xet yauniotepn KL andxhion.

H Model % WER/CER Greedy % WER/CER WordLM WER/CER % Improvement H
CNN-LSTM-CTC 20.68/6.8 14.81/4.60 28.3 /32.4
MTL 17.74/5.22 13.92/4.63 21.53 /11.30
CNN-CTC 26.7/7.77 16.20/5.30 39.33/32.08

ITivaxag 1.25: X0yxpion petad CNN-LSTM-CTC xaw CNN-CTC

Ané tov nopandve mivaxa mapatneolue ot 1 yeyalvtepn Bertinon Aoyw e CTC andxwdixomonone e yeron
e€wTepol YAwoowol poviehou onueidvetoar oto CNN-CTC povtého. Autn n napathenon oe cuvduooud ue
yoapix napdotacn e KL andxhione pac odnyel oto cuunépaopa ot 1o Yhwooixd povtého emnédou AEEne €xel
peyohuteen entdpoaon oto CNN-CTC dixtuo. Autéd onuaiver 6t ye 1o CNN-CTC povtého evolhoxtixd LovormdTio
unopolV elxohd Vo ovoxahu@doly BLOTL TO HOVTERD BEV CGLUYXEVTROVEL Telelwe TNy mdavdtnTa ot éva

ouyxexpiévo povordtl. To Bdpog Tou YAwooxo) wovtéhou €xel o ToAL enidpacT oe autr TNV Tep(nTwao).

1.5.5 Xvuunepdopata

Ye autd o nepdiono xivnirixaye éva Biua Teov TV xatebinvon va PTIEEoUUE TANPWS GUVENXTIXY] HPYITEXTOVIXT
yia To TeoBAnua e Avayvopione Xewpdypapwy Kewévov. To CNN-CTC poviého pag ebvan ehapenc mo miow
oTa T0c0oTd avaryvoptore ond T avitiotoryo twv CNN-LSTM-CTT. To yovtélo poc wotdoo napouctalet 60 %
hybtepo ypbvo exnaidevone avd endyrn, 78 % uelwon otov ypdvo inference xou €xet 60 % Aydtepec
nopopéteoug and Tov CNN-LSTM-CTC povtéro. Eniong, n mAiipws cUVENMXTIX dpyLTEXTOVIXY 0VOlYEL TOV

dpopo yio tepautépw e€epelivon TEXVIXWY Yo BeATiwon Tou TococTol avayvaetong. To yeyovée ot Ta

39

CUVEAXTIXG BixTuaL €ival ocovoxd amd Yéuo ypodvou exnaldeucrnc xou yedvou inference pog divel T duvatdtnta
VoL XEVOUE Wi eTLtAéoV Slepebvnon ot pedédouc ensembling. Eyelc nepapatiotixope pe to bagging (uéooc époc
TV e€600V TV ETUEPOUS LOVTEAWY. e auTh Ty epintwon eldaue mocootéd peinone 3.5 % oto Word Error

Rate xou 3 % oto Character Error Rate

40

1.6 Xvuvewogopeg, Jupnepdopata xar MeAhovTixr, AovAeld

H nopoloa dimhopotixn epyooio yeAétnoe 61e£6dd tnv obvieon g dourg tou CTC emnédou ye oxond va
xadoploel T duvopxr g xdde emhoyrc va BeATidoEL To T0000TO avaryvadetone. H mpddtn yog mpooéyyion
apopoloe Ty pdinom, and to dixtuo, cUVieTwy oTtdywy amotelolueve and unigrams xon diypdupore. Apyde
oxomdE QUTAHS TNG MEAETNE elvol XAt TOCO Tal BLypdUoTal HTOPOLY VoL GUVELSPEPOLY GTNY Beltiworn Tou TococToL
avayvoplong péoo and Tt dioptnoT xdnowwy havdaouévewy unigrams. H opyh pag urnddeon nou otipile to
%©YNTEO UoC YL QUTH TN TPOCEYYLOT] EIVOL OTL XATOLOL YUPAUXTHPEES UTOREL VoL EVOL EUXOAOTERA avary Vwplotuol 6Ty
elvon oe Lebyog andtl pévol toug. Xe autd To mAaiolo, avortiZaue 800 Baoixols alyoplipous anoxwdxoroinong
TOU EVOWUATOVOLY TNV TANRoPopia TV Blypapdtey Ue SlopopeTind Tpono ot xdde nepintwon. H mpdtn
TROGEYYLOT Yenoulomotel Tic THAVOTNTES TKV SLYPUUUATWY (S GXO0p ETEXTAONG TNS axoAoLDiog XoTd Eva YpaUud.
Ovuotaotind auth 1 Tpocéyylon avtetonilel autéc we évo otatlotxnd Yhwoowxd poviého. H deltepn npocéyyion
yetpileton Tor bigrams émwe axeBde tor unigrams otov xhacowd ahydprduo CTC Beam Search Decoding. Epelc
UAOTIOLOUYE OLUCLICTIXG Widl EMEXTACY) QUTOV Tou aAyopiduou wote va urtootnellel TNy enéxtaon Tng
avanTUEOPEYNS axohoudiog Oyl wovo and unigrams ohhd xou Siypdupota. Ta mewpduoto pag wotdoo €del&ay ot
T Slypopor dev TPoGPEROLY BEATIWOT GTO TOGOGTO AVAYVPIoNS. APEVOS auTd OPelleTal GTO OTL OL MEQITTWOELG
TOU To EVOLAUECO Blypopua dev etvar SlapopeTind amo o 500 YeLTOVIXE Tou unigram. Autéd onuaivel OTL axoud xou
oV ToL YELTOVIXG unigram Moy Adidog téte xan to evdidueco dlypopua Yo etvar xou oawtéd havdoouévo. Agetépou
nopotnerooue 6t 1o CTC ouyxevtpwvel Ty yeyahitepn udla mdavotnTog o évo WOVo HOVOTETL, UELDVOVTUS
€TOL TN BUVTOTNTO TEPAULTERL TEPLAYNONS OE HOVOTATIOL YounAdtepne mdavoTnTog Tou elvol EVBEYWUEVLE OWATY,

xon Yot Umopolcay XATWS VoL EXPRAGTOVY.

To cuUTEPAOUTA UAC UG TNV TEONYOVUEVT] LOEX MG 0BTy MooV VoL BLOYELOLOTOVUE UE DLUPORETIXG TEOTO Tl
drypduparta. Oewprioope Aoméy 0Tl Ta unigrams xan o Storypdporta Yo npene vor ity oe Eeywplotd enineda,
ondte xan odNyNMixope oty pdinon TOAATAGOY oTé wY. Aedopévou oTL (ol TETola HEAETY deV elye Yivel otov
Topéd TWV YELROYPAUPWY XEWEVKY, ToEE UOVO GTOV TOUEN TNG AUTOUATNG oVOY VORLOTG QWVAC, adpdEoue Tny
euxanpiot Vo TEROUATIOTOVUE YE TETOLES APYITEXTOVIXES. T OTERA OO EXTEVY HEAETN O TELRAUATA, XUTOANENUE OE
apyLtextovixy mou cuvdLdlel Tic 800 xatnyoplec xAdoewy ot Eeywpiotd CTC eninedo. Yuyxpivovtag tny
OPYLTEXTOVIXY) HOG UE TNV avTIoTOLYY) oeyLTEXTOVIXY WS epYaoloc Tou elyoe UAOTIOLACEL GE TEOTYOUUEVO
XEQAAULO X EBUUE OTL UE EAYLOTO TAUPATAVE TOPOPUETEOVS TO LOVTEAD Woc AopPdvel onuavtxr Bektiworn oto
TOCOOTO AVAYVOPIONG. LUYHEVOVTOS TNV TOMATADY OTOYWY UEYLTEXTOVIXY LoC YE 1HDT) UTdPY OV BNUOCLEUMEVT
€peuva [53] xatahfape OTL 1) B oS, HE NYOTEPES TOPUUETEOUS GUVONXA, EXHOLELOVTOS TANpopopio T6o0 and
unigrams 6co xat and bigrams anogépel xohUTepo anoteréopata Ye 10600t Behtivone 15% tou nocostol
AVOLY VORIONG TNG EVOG OTOYOU OEYLTEXTOVIXNG. LUUTEQAIVOUNE, AOLTOY, OTL UECW AUTAC TNS APYLTEXTOVIXNS
UTOPOUUE VO EXPETUAEUTOVUE Tt SLypdpparta 500 Qopés. Apevog 1 wo apopd T Yeror Toug and 10 ewTepnd
oToTIOTXG YAWOGIXG HOVTEND XaTd T Bidpxelo TNE amoxwdixonoinons. APeTEQOU UE TO VAL TOL ELGAYOUUE GTO

CTC eninedo wg éva emmiéov 0ToY0 TETUYAVOUUE TNV EVOOUATWOT EEWTEPXNE YVWONE GTO HOVTENO.

Y7o tehevtalo xepdhato tng mapoloag Bovkelag LAOTOLOUUE Uiol TAHEKE cuveRXT apyttextovixt|. ‘Eyovtog
XATOVONOEL TNV BuoxoAio Tou magouctdlouy ta Avadpouixd Nevpwvixd Alxtua 6T vor exToudeutody xon va
ouyxAivouy, Yehioope vor amahAGEOUUE TNV CUVONXA LG oEYLTEXTOVIXY omd ouTd. Ot TAHEMC CUVERXTIXES
aEYLTEXTOVIXES €youv uehetniel extevdc atov Topéa e Avayvoplone Pwvrc. 201600 uio TéTolo dpyLTEXTOVIXT
oev €yel BoxooTel GTOV TOUER TwV XEPOYPUPWY XEWEVWY Xol VLol TO AOYO auTo abpdEope TNV euxotpla VoL TNy
vhonojooupe. Apyxd, odnyninxaue oto cuunepaopa ott o CTC alybdprduoc uropel vo yenotponoumnde! téve
and éva TAeKS CUVEAXTIXS BixTuo. AuTo yiatl poviehonololue Théov ToC Ypovinég eapTHoels UETAED TWY
BLAVUOUATOV YApaXTNELOTIXADY e Yerion ouvelllewy wag didotaonc. H Behtiwon mou anogépet oe uvAun xat oe
Tary 0T EXTOUBEVONG o GUYXALONG Lo ETITEETEL VO TEWRUUTIOTOOUE UE TEYVIXES ensembling xou cuyxexpéva

hoPdvovtog xou tolpvevtag wéom T and Tic eE650UC TOMMATAMY GUVEMXTIXGDY LOVTEAWY. LUUTEPACUATIXG, TO

41

TAHPES CUVEAXTIXO HAC LOVTEND, GE GUVOLAOUS, UE EVA OTATIOTIXG YAWOOoWS poviého oto otddo e CTC
anoxwdixomoinone o divel anotehéopota Tohd xovtvd pe owtd tou BiLSTM ahAd mapdhhnia elvon ToAd mo
YeYopo TG0 OTO YpOVOo EXTUBEUCTC 600 XA OTO YPOVO ATOXWOLXOTOMONG %o YUOLXA TOND PUXEOTERO OE

TOEOUETEOUC.

H avéntuin tou mifpwe cuvelxtixold wovtéhou yac avolyel To dpduo yio ueAhovTixXY) Bouleio Tdvew o HEAETT TwV
pnyoviopwy Self-Attention mou yenotponowobviar oo cuvehxtind dixtua [77]. Mia tetolo Tpocéyylon Yo
avolYeL TOV BEOUO YIOL TNV EQUQUOYT| TIO CLYYEOVWY UOVTEAWY UETATEOTAS oxohoudiwy e axohoudieg dmwe elvou
ot Transformers [72] avtixeipevo mou exel eEoupeTind epeUVNTIXG EVOLOPERLY BLOTL Eval TETOLO LOVTELD DeV ExEL
e@apuootel o xdnolo npolinua tng ‘Opaone YTrohoyiotwy. To npdBAnua Tng avayvoplong xelévewy lowe elvou

Lo okt apy) yior vor vhomoiniel xdtt tétoto.

Erlong, undpyouv mokéc xateudfivoeic épeuvag ev e€ehiel mou Yéhouy Beltiwon. Mia and autéc agpopd to
xouudTL Tou post-processing Tou anoxwdxomoinuévou xewévou. Lo nopdderyuo 1 yenomn Suxtiou
xwdixonounth-anoxwdixonomt Bactouévo eite oe cuvelTnd (Ue tn Aoy Tou denoising autoencoder) eite oe
LSTM ue 1} yoplc attention yio tnv epyacio g avayvidpeiong AEewyv pe oxomd tny ddpdwon Aadoy
avayvapetong. Tétoleg Sovleleg €xouv yivel ota mAalolo Tng avaryvaplong Tutouévou xewévou. Ihiotebouue ot 1)
HEYAAOTERY) TTEOXANON TOU AVTIIETWTIONUE O OUTA ToL HOVTENX APORE TO XOUUATL TNE ToEay WY TS BESOUEVLY Yia
v exmaldeuor) wovtéhwy mou Yo vAonoicouy To text denoising. Ilapdho mou undpyouv xdnota Booixd A& tou
TOEATNEWVTOL OTOL YELROYPAPA XEUEVA, Tol UTOAOLTOL AdDT) XaTovEUOVTOL TUY LA UE AMOTEAECHA 1) ATOTOYLAL TWV
HOVTEAWY TOU €YOUUE DOXUAOEL EOC THPA O aUTO To task va opeiheTton oTo AMd EUAC XATACKEVACUEVO DEDOPEVAL
exnaldevone. Mia mo mpooextix| ueAétn oty Sladloxacio tapaywyhHc TwV BEBOUEVKOV Hog, T600 and Yéua

noldTNTac 660 oL TocoTNTAC, elval alyoupa Lol amto T MEANOVTIXES XATeVITVOELS UaC.

Mo emnAéov xatedinvon elvon 1 ntepautépw BEATIOTONOMOT TOV TOTUXOV UETACYNUATIOUDY Yiol TNV dUVAULXY
enadEnon dedopévwv. Ilioteboupe ot 0 Adyog mou dev divouy apxety Bedtivon elvar yiati dev elvan xatd xdmoto
TEOTO EAEYYOUEVOL OL TUPIUETEOL UETACYNUATIOUDV TOU AoBAvouV Yopd 0TI EXOVES, ToR OAO TN UEAETNUEVT,
EXTOON TV TOPUUETEWY oUTOV. AUTO EYEL (S ATOTEAEGUA 1) EXOVAL VoL ahhowdvetan ot Badud mou ducyepaivel To
dixtuo oty exnaidevor. M Aon oe autd Yo Aoy Tpocéyylon duvaxic enduénong dedoyévev e yprion
VELPWVIXOY BLxTOOL ToL Yo cuunEpalvel Xdde POoPd TIC TUPUUETEOUE TWV UETUCY NUATIOUMY UE XELTHPLO TNV

BeAtiotonolnon Tou T0G0CTON AVaY VEOELOTC.

Téhog, po evahAdxtixny xatebdnvon otnv onola €youue 10T epyaoTel xou e€dyel xdmoLo CUUTERAoUATA Elvol oUTY
e yeromne tou poviédou BERT [20] v tnv Siépdwon onpactohoyixdy Aaddv tou yivovtow xotd tny
amoxwdxonoinon. Ilicteboupe otL N evowudtwon onuactohoyxic Thnpogopluc urnopet va emipépet BeAtiowon ota
TOGOOTE Avary VOELOMG ToU XeWEvou. Mdhiota, €youpe cLAEEEL Tapadelyota oL pog To EMPBERUMVOLY aUTO.
Tt v emtuyy egapuoyy) Tou BERT xohobuoaote vo Eenepdcouye xdmoleg TpOXANCELS TS VLol TUPADELY oL VoL
AVTIETWTIOOLUE TO YEYOVOC OTL éva Tpoexnatdeupévo poviého BERT éyel exnaudeutel oe éva xhelotd he€ixd 1o
omnolo dev ouvddel pe 1o dxd pog. Kdti tétolo da uropoloe va anogeuydel ue tnv enavexnoldeuoy Tou HOVTEAOU
BERT oe xelyeva mou €y0oUupe HO1] YENOLOTOACEL Yiot TNV ECXYWYT TV OTATIOTIXMV LoVTEAWY. Mia evohhaxtixi
TPOCEYYLoN Elvol VoL Yenolponoliooupe TNy apyttextovixy Tou BERT ®ote va xataoxeudoouye wa eviofo

OPYLTEXTOVLXT] AVOLY VPLOTC X0l OTUACLONOY XS BLopdnang.

42

Chapter 2

Introduction

43

2.1 Problem Definition

Handwriting Recognition is the process of transforming a digital representation of the physical result of
handwriting into a digital text, generally for further treatments, such as indexing, classification, or translation.
One may acquire handwritten text in different manners. For example, with the advent of tablets, touchscreens
or digital pens, it is now possible to have access to many physical parameters of the writing process.
Therefore, we can know the pen position at every time, and possibly the pen pressure, inclination, and so on.
On the other hand, without such tools, we may only have the result of handwriting in the form of a scanned
document. The handwritten text must be extracted from the image, using image processing techniques or

relevant feature extraction.

The first case is called online recognition, and the second one offline recognition. Historically, the two have
been separated, and a clear distinction is made is some surveys [51], while others are only focused on one
branch [73]. While their nature makes them suited to different applications, e.g. touchscreen input for the
former, and cheque processing for the latter, the techniques employed nowadays to perform the recognition
tend to be similar. Namely, they attempt to turn a sequence of feature vectors into a sequence of characters or
words, modeling an input signal at lower levels and the language at higher levels. In this respect, these
methods are also close to those applied in speech recognition. Offline handwriting recognition is also related to
the recognition of printed text from document images, a problem known as Optical Character Recognition
(OCR). While both recognize text from images, printed text tends to be much more regular than handwriting,
hence generally easier to process. In this thesis, we are concerned with the offline recognition of handwritten

text.

Why is this task difficult?

The difficulty in the HTR task lies behind the nature of the human handwriting. There is a great variation in
the size, the shape and the intensity in the letters of each individual. Also, the handwriting is unconstrained.
That means that letters are not written following a strict positioning, in contrast with the typewriting. Not
only the text line but also the single characters may have an inclination. And if one line is inclined, may the
other be completely straight. And this burdens, even more, the processing of full-page handwritten

documents, such as text segmentation and layout analysis.

What is more, there is a large variability of identical symbols. Factors that synthesize such variability is the
writing style of each individual. Another reason is the stroke width and the quality of it. For example, the
space among the characters may vary among not only different characters but also among writing instances of

the same writer. Below are some examples that delineate such variance.

The cffect of botton congesfion duc to

o cogn aed copn N e e cand apalves
e A

Figure 2.1: Image Samples that showcase the uncostrained and cursive nature of human handwritting.

What are the its applications?

e Automation Purposes in Document Processing : Archiving and Retrieval, Analysis of Forms

44

e Communication : Human-Machine Interaction (Online Handwritten Recognition) via Smartphones and
tablets

e Digitalization and Preserverance of Historical Documents

2.2 Related Problems in the Document Analysis field

2.2.1 Keyword Spotting

Keyword Spotting is the task of searching, locating and retrieving specific words of interest in a set of

documents. It stems from the analogous task of Spoken Term Detection in a speech segment.
Numerous are the applications of KWS, but not limited to:

e assisting human transcribers in identifying words in degraded documents, especially those appearing for
the first time.

e word spotting in graphical documents such as maps
e keyword retrieval in prehospital care reports
e automatic sorting of handwritten mail containing significant words

e searching online in cultural heritage collections stored in libraries all over the world
There are two dominant archetypes when it comes to searching a keyword in a set of documents.

e Query-by-Example (QbE) paradigm assumes that an exemplar image, containing the query keyword of
interest, is given to the system, and it has to find the instances of the same keyword within the collection

of document images. Samples of work [13] [56] [63]

e Query-by-String (QbS) paradigm assumes that the query keyword is presented to the system as an in-
dividual symbol part of a vocabulary lexicon or, alternatively, as a sequence of charac- ters of a given
alphabet.

The first approach of KWS through QbE poses certain limitation in practical applications as the uses hat to
identify a query word image from the document image collections. Thus extended research has been
conducted in the domain of KWS through QbS [13] [12] [61]

In KWS task the predominant features that have been used to represent a word image are SIFT descriptors,

Geometric Features and HOG-based descriptors.

Recent works incorporate Deep Neural Networks for obtaining the representations of word images. [71] [58]

2.2.2 Verification-Identification

Biometrics technology is used in a wide variety of security applications. The aim of such systems is to
recognize a person based on physiological or behavioral traits. In the first case, the recognition is based on
measurements of biological traits, such as the fingerprint, face, iris, etc. The later case is concerned with
behavioral traits such as voice and the handwritten signature. Biometric systems are mainly employed in two
scenarios: verification and identification. In the first case, a user of the system claims an identity, and
provides the biometric sample.The role of the verification system is to check if the user is indeed who he or she
claims to be. In the identification case,a user provides a biometric sample, and the objective is to identify it

among all users enrolled in the system.

45

Signature Verification

The handwritten signature is a particularly important type of biometric trait, mainly due to its ubiquitous use
to verify a person’s identity in legal, financial and administrative areas. One of the reasons for its widespread
use is that the proces sto collect handwritten signatures is non-invasive, and peopleare familiar with the use of
signatures in their daily life. Signature verification systems aim to automatically discriminate if the biometric
sample is indeed of a claimed individual. In other words, they are used to classify query signatures as genuine
or forgeries. Forgeries are commonly classified in three types: random, simple and skilled (or simulated)
forgeries. In the case of random forgeries, the forger has no information about the user or his signature and
uses his own signature instead. In this case, the forgery contains a different semantic meaning than the
genuine signatures from the user, presenting a very different overall shape. In the case of simple forgeries, the
forger has knowledge of the user’s name, but not about the user’s signature. In this case, the forgery may
present more similarities to the genuine signature, in particular for users that sign with their full name, or
part of it. In skilled forgeries, the forger has access for both the user’s name and signature, and often practices
imitating the user’s signature. This result in forgeries that have higher resemblance to thegenuine signature,

and therefore are harder to detect. [33]

The problem of automatic handwritten signature verification is commonly modeled as a verification task:
given a learning set L, that contains genuine signatures from a set of users, a model is trained. This model is
then used for verification: a user claims an identity and provides a query signature X, ew. The model is used
to classify the signature as genuine (belonging to the claimed individual) or forgery (created by someone else).
To evaluate the performance of the system, we consider a test set T, consisting of genuine signatures and
forgeries. The signatures are acquired in an enrollment phase, while the second phase is referred to operations

(or classification) phase.

If a single model is used to classify images from any user, we refer to it as a writer-independent (WI) system.
If one model is trained for each user, it is referred as a writer-dependent (WD) system. For WI systems, the
common practice is to train and test the system with a different subset of users. In this case, we consider a
development set D (which is used to train the WI model), and an exploitation set E, which represent the users

enrolled to the system (and is further divided in L and T, as indicated above).

Related literature in Signature Verification [59] [21] [32] [55] [78]

Writer Identification

Writer Identification is the process of finding the genuine writer from a list of other registered candidates
based on the similarity between their handwriting. This task has many challenges due to the intra-variance of
the visual features extracted from ones handwritting. This variance appears since our handwritting depends
on our mood, the conditions that we are writting, the place etc. For example, when we are writting fast the
letters tend to be more skewed and edgy. On the contary, If we are writting slowly, the letters are different

comparing to the first case.

The data aquisition for such task resembles the one of Handwritten Text Recognition. It can be either online
or offline. In the first case the are recorded more than the sequence of two-dimensional trajectories of the
writer, such as the writting speed, the position of the pen, the angles, the pressure etc. Such dynamic features
are used for the identification. On the othe hand, offline writer identification is based only on scanned text of
each writer and thus is consider a more challenging task due to the afforementioned intra-variance of human

writting.

The general pipeline of the Writer Identification task consist preprocessing of the text image such as

binarization, normalization, noise removal and segmentation in the level that the writting is going to be

46

performed, such as line, paragraph or word level. The next step consists of feature extraction from the sample
test and finaly the feature vector from this step is utilized so as to perform classification. Since we have

multiple writers in a database, we talk about multiclass classification.

In the terms of feature extraction the image is converted in a feature vector with the use some of statistical
methods. global features and local features. The global features describe the global traits of entire text image.
It represents texture features, contour representations, and shape descriptors in theentire image. Some
example of global features are Invariant Moments like Hu, Zerinke,Shape Matrices like perimeter, area,
compactness etc., texture matrices like local binary patterns, Histogram Oriented Gradients (HOG). The local
structure and topology of characters or writing suchas Edges, loops, dots and diacritics, vertical and

horizontal lines, start and end point, directionof writing, thickness or thinness of strokes and corners. [57]

The emerging sector of Machine Learning in Computer Vision brought the automated feature extraction from
text images. Convolutional Neural Networks and Reccurent Neural Networks could be utilized. The
automated features in comparison with the hand-engineered features show higher performance and provide

better recognition rate.

Concerning the classification, the algorithms utilized can be divided into three categories. The first one is
distance based classification applying distances such as Eukleidian, Manhattan, hamming etc. The second one
is machine learning which includes Naive bayes, Hidden Markov Models, KNNs, SVMs etc. The final category
is the classification using deep learning such as CNN with on top a Linear Layer, LSTM etc.

47

2.2.3 Layout Analysis

Document Layout Analysis is the process of identifying and categorizing the regions of interest in the
scanned image of a text document. The content of a document page is categorized in textual and non-textual
content such as images, plots, math symbols and tables. Also, text zones hold a crucial semantic role in the
structure of the document. Thus, semantic labeling of all the parts of the document, such as the title, the

captions and the footnotes are part of the logical layout analysis. [2]

Figure 2.2: Objective of Layout Analysis [3]

2.3 ITIAM Database

The TAM database [14] consists of images of handwritten pages. They correspond to English texts extracted
from the LOB corpus [39], copied by different writers. The database consists of text images in different scales
such as line, paragraph and document level. In our case we utilize the line level format. This format is also

been used in other publications such as [74] [53] [17].
The IAM Database is structured as follows.

e 657 writers contributed samples of their handwriting

1’539 pages of scanned text
e 5’685 isolated and labeled sentences

e 13’353 isolated and labeled text lines

115’320 isolated and labeled words

48

For the Task of Large Writer-Independent Text Line Recognition there are :

H Set Name Number of Text Lines Number of Writters H

Train 6161 283
Validation 1 900 46
Validation 2 940 43

Test, 1861 128

Total 9862 500

BoAres of Nsrlown Rleckerci e agread b
w Mo b Wooren yg/ﬂ/e/w %/J m

wﬁu&/ /9/0:«'04 an @mﬁ{/ﬁnée (ﬁlfr’!'ce /é* /%e aéfa/afe%

(ood\ °C)--Q_M.Q\ . \" WICas Mo;,\\-*chl\&o_d\ M‘l“&
Figure 2.3: Train Samples of IAM Database

Wtu“ ,{—(u. alol Hoanik Pomw decces Ag&«\-‘\ prov v\JbL o .}d('

o M. Hardo Mecmilon 1o SB\N\ the
Ayt Raw # ;4/”/'4'//#46

Figure 2.4: Test Samples of TAM Database

49

2.4 Thesis Outline

In this Thesis we explore the whole end-to-end Handwritten Text Recognition (HTR) pipeline.

At the Chapter 3 (3) we make a detailed presentation of the rudimentary theoretical background needed to
clarify the basic blocks of this thesis.

At the Chapter 4 (4) we present the previous work that is conducted in the domain of Document Analysis

and Information Retrival so as to showcase the importance and the applications of the so far work.

At the Chapter 5 (5) we develop the backbone Optical Model, two Data Augmentation Techniques for the

HTR task and experiments are conducted.

At the Chapter 6 (6) we explore the potential of decomposing the target sequence into n-gram in the

learning and decoding process.

At the Chapter 7 (7) we propose a novel Multitask Architectures for HTR. and we deduce crucial

conclusions about it.

At the Chapter 8 (8) we implement a novel deep architecture based only on Convolutional Neural Networks

and conduct several experiments on data augmentation and decoding under an ensemble framework.

At the Chapter 9 (9) we discuss the overall contributions of this Thesis, the ongoing steps and the future

directions that are going to extend our current work.

50

Chapter 3

Theoretical Background

3.1 Theoretical Background

This chapter provides the background material needed for clearly explaining the parts of our work that follows
in the next chapters. Section 3.2 briefly reviews the basic ideas of Machine Learning with extended details in
Supervised Learning. Section 3.4 covers details about the main blocks that were used all along this Thesis.
Finally, section 3.5 constitutes a thorough presentation of Connectionist Temporal Classification for Sequence

Transduction which in the inherent nature of our task.

3.2 Machine Learning Preliminaries

Machine Learning (ML) is the form of applied statistics with an inclination of creating models that estimate a
function rather than calculating confidence intervals around this function. Solving a ML problem requires a

set of components. That is, an optimization algorithm, a cost function, a model and a dataset.
According to Tom Mitchel [4]:

A computer program is said to learn from experience E with respect to some class of tasks T and performance

measure P, if its performance at tasks in T , as measured by P , improves with experience E.

Some examples of the task T is problems like Classification, Regression, Sequence Transduction like Machine
Translation, Speech/Handwritten Recognition etc. In order to calculate the performance of the ML algorithm,
we need to design metrics that numerically interpret its ability to perform the specific task that was trained to.
The experience E refers to the way the data are exposed to ML Algorithm. If the data are ’consumed’ by the
model in the form of features in some N-dimensional space, then we talk about Unsupervised Learning. If
the data are accompanied by labels or targets then we refer to Supervised Learning. Some machine learning
algorithms do not just experience a fixed dataset. For example, Reinforcement Learning algorithms

interact with an environment, so there is a feedback loop between the learning system and its experiences.

3.2.1 Supervised Learning

The subject of this thesis, namely Handwritten Text Recognition, falls in the general category of Supervised
Classification Task. Consequently, we are going to provide the substantial context for Supervised Learning in

the following paragraphs.

Definition: Given a dataset of N, trainning samples D = {f(@y,¥Yn),n =1,..., Ny} , the task is to learn a
function mapping the input X to the output Y. How well the function fits the training data, i.e. how
accurately it maps X to Y, is quantified by a loss function L : Y x Y — R¢. For instance, given a training

example(x;, y;) the loss of predicting the value y; = f(x;) is computed by L(:;y;) -

The accuracy of a learning algorithm is measured by its ability to make an accurate prediction ¥;, when it is

estimated with a novel input & ¢ D . This is referred to as the generalization ability of the algorithm.

In order to estimate the generalization ability of our model we split the entirety of our data into the trainning
set and the test set. The one is used for training the model and the later is reserved for evaluating the one.
The training error is calculated on the training data set and it is minimized by an optimization algorithm.
The generalization error is formally the expectation of the model’s error if we apply it to an infinite set of

unseen inputs. In practice, it is approximated by the model’s error on the test set.

52

No Free Lunch Theorem and the Inductive Bias

The “no free lunch” (NFL) theorem [70] states that all optimization problem algorithms perform equally well
when averaged over all possible problems. This implies that none algorithm works best for learning all
possible target functions. Note that the NFL theorem only applies to problems drawn uniformly from the
space of all problems, which is actually not the case for real-world problems. This highlights the importance of
inductive bias, i.e. making assumptions about the nature of the target function when selecting an algorithm
for a particular problem. Some other factors to consider when choosing a learning algorithm are accuracy,

model complexity, training time, number of parameters and number of features.

Inductive Bias : The inductive bias (also known as learning bias) of a learning algorithm is the set of

assumptions that the learner uses to predict outputs given inputs that it has not encountered.

In machine learning, one aims to construct algorithms that are able to learn to predict a certain target output.
To achieve this, the learning algorithm is presented some training examples that demonstrate the intended
relation of input and output values. Then the learner is supposed to approximate the correct output, even for
examples that have not been shown during training. Without any additional assumptions, this problem
cannot be solved exactly since unseen situations might have an arbitrary output value. The kind of necessary

assumptions about the nature of the target function is subsumed in the phrase inductive bias. [17] [23]

Bias and Variance Trade-off

The bias-variance tradeoff [37] is a fundamental tradeoff between reducing the two sources of errors due to
which learning algorithms fail to estimate the target function (or generalize on unseen data). The expected
generalization error of a learning algorithm can be written as the sum of these two sources of errors, namely

the bias and the variance

Consider an independent variable denoted by X and a dependent variable denoted by Y which are related to

PN

each other by a relation like Y = f(X) + e. Using a learning algorithm, we estimate a model f(z) of f(z) ,

whose expected error can be written as :

~ ~

Bias(f(x)) = Ef(x)) - f(x)
) = Elf ()] - Bf(z)]2 (3.1)

~ PN

Err((f(z) — f(z))?) = Bias(f(z))* + VaTiance(f(:c)) + 0?2

(
(

Variance(f(x

The first term is called bias, which pertains to erroneous simplifying-assumptions in the learning algorithm.
The second term is the variance, which corresponds to sensitivity to inputs (and hence noise) in the training
data. The third term is irreducible error, which corresponds to noise in the true function itself. An algorithm
with high bias might not have enough flexibility to model the target function f(z) (underfitting).On the other
hand, a model with high variance tends to model the random noise in data along with the target function

(overfitting).

53

Low Variance Hi gh Variance

.
uw
-
==]),
= .
]
-
-
D
L o
.
uw
o
@
=
Lo
e

Figure 3.1: Graphical illustration of bias and variance [5]

The above presents a bulls-eye diagram to visualize the bias and variance in a 2-dimensional space. As we
move away from the bulls-eye, our predictions get worse and worse. Imagine we can repeat our entire model
building process to get a number of separate hits on the target. Each hit represents an individual realization
of our model, given the chance variability in the training data we gather. Sometimes we will get a good
distribution of training data so we predict very well and we are close to the bulls-eye, while sometimes our

training data might be full of outliers or non-standard values resulting in poorer predictions.
Overfitting vs Underfitting

At its root, dealing with bias and variance is really about dealing with over- and under-fitting.

Total Error

Variance

Oplimum Model Complexity

Error

&

Model Complexity

Figure 3.2: The Model Complexity as a function of Bias and Variance [5]

Bias is reduced and variance is increased in relation to model complexity. As more and more parameters are
added to a model, the complexity of the model rises and variance becomes our primary concern while bias
steadily falls. For example, as more polynomial terms are added to a linear regression, the greater the
resulting model’s complexity will be 3. In other words, bias has a negative first-order derivative in response to

model complexity 4 while variance has a positive slope.

54

Support Vector Machines

Support Vector Machines is considered the best off-the-shelf supervised learning algorithm. In order to explain
briefly the algorithm we need first introduce the idea behind the margins in the binary (and in general

multiclass) classification problem.

Consider a classification task, where the posterior probability p(y = 1|x;) is modeled by the function

ho(x) = g(Tx). We would then predict “1” on an input x if and only if hg(x) > 0.5 , or equivalently, if and
only if #7x > 0. Consider a positive training example (y = 1). The larger 7z is, the larger also is

0Tz = p(y = 1|z;w,b), and thus also the higher our degree of “confidence” that the label is 1. Thus,
informally we can think of our prediction as being a very confident one that y = 1 if 72 >> 0. The same
holds for the case of y = 0 and 0Tz << 0

A
A.
et
|
. B*
\\,\H\.C - e
\“-\. \ /
I S X
O “ .
L "
@] gy
o 8] O ~
o o g
o .

A

Figure 3.3: For a different type of intuition, consider the following figure, in which x’srepresent positive training
examples, o’s denote negativ etraining examples,a decision boundary (this is the line given by the equation
9Tz == 0, and is also called the separating hyperplane). A, B and C are sample points.

From the above figure, we can observe that A is far from the decision boundary. Thus, if we make a prediction
about the A our model will be confident enough for this prediction. On the contrary, the models’ confidence
drops for sample C which lies very close to the separating hyperplane. Sample B lies in between and has the
ideal distance from the hyperplane. So, informally we think it would be nice if, given a training set, we
manage to find a decision boundary that allows us to to make all correct and confident (meaning far from the
decision boundary)predictions on the training examples. This is formalized with the geometric margins and

functional margins.

One key innovation associated with support vector machines is the kernel trick. The kernel trick consists of
observing that many machine learning algorithms can be written exclusively in terms of dot products between
examples. For example, it can be shown that the linear function used by the support vector machine can be

rewritten as :

9T-:c+b:b+2ai~a:T-wi (3.2)

=1

where 2(¥) is a trainning example and a is a vector of coefficients. Rewriting the learning algorithm this way

allows us to replace x by the output of a given feature function ¢(x) and the dot product with a function

55

K(z,z®) = ¢(x) - p(z?) called a kernel. This function is nonlinear with respect to a, but the relationship
between ¢(x) and f(x) is linear. Also, the relationship between a and f(x) is linear.The kernel-based function
is exactly equivalent to preprocessing the data by applying ¢(x) to all inputs, then learning a linear model in

the new transformed space. [10]

3.2.2 Unsupervised Learning

For completeness, we will sketch out a foundamental outline for Unsupervised Learning.

The learning process involves observing several examples of a random vector x, and attempting to implicitly

or explicitly learn the probability distribution p(x), or some interesting properties of that distribution.

In unsupervised learning, algorithms learn to infer patterns within a dataset without being presented with
target values for each learning example. This leaves the algorithm to discover the underlying structure or
distribution of the data. Two of the most common unsupervised learning problems are clustering and

representation learning.

e Clustering is the task of finding groupings in the data based on a predesignated similarity measure such
that objects that belong to the same group are more similar to each other than to those in other groups.
Clustering is often used for exploratory data analysis, which aims at providing insight into a dataset by

identifying patterns, trends and outliers.

e Representation learning comprises a set of techniques for discovering representations of raw data that
are conducive to classification or prediction tasks. This replaces manual feature en- gineering, which can
be a difficult and expensive process since it requires domain knowledge. Moreover, unsupervised
methods for representation learning often perform dimensionality re- duction, i.e. finding representations

of the input that lie in a low-dimensional space.

3.3 Neural Networks

The term ‘neural network’ has its origins in attempts to find mathematical representations of information
processing in biological systems [45] [60] [62]. Indeed, it has been used very broadly to cover a wide range of
different models, many of which have been the subject of exaggerated claims regarding their biological
plausibility. From the perspective of practical applications of pattern recognition, how-ever, biological realism
would impose entirely unnecessary constraints. Our focus in this chapter is therefore on neural networks as
efficient models for statistical pattern recognition. In particular, we shall restrict our attention to the specific
class of neural networks that have proven to be of greatest practical value, namely the multilayer

perceptron][1 (]

The Perceptron

The simplest possible type of ANNs is the perceptron [60]. The perceptron is a network with a single unit that
can be used to for binary classification problems assuming that the two classes are linearly separable. The
algorithm was developed in the 1950s by Frank Rosenblatt. As it is illustrated in Figure 3.4, the perceptron
first sums up the weighted inputs and a bias, and then applies to the weighted sum an activation function

such as the sign or the sigmoid function.

56

J— out(t)

wo(t) = 0

Figure 3.4: The perceptron of Rosenblatt
The basic Neural Network (NN) model can be defined by the following equation.

N
aj = (Wi)M -2’ + Wi (3.3)

i=1

where j and the superscript (1) indicates the correspoding parameters of the 1! layer of the network. The
parameters W;; are the weights and the parameters W are the biases. The quantities a; are the activations.
Each of them are tranformed with the use of a non linear, differentiable function, the activation function h(-)

and are transormed into the so called hidden units :

Zj = h(aj) (34)

The hidden units are combined linearly so as to give the output units activations :

M
a =Y (W)@ -2 + W) (3.5)

j=1
where k = 1...K is the total number of outputs

The choice of the activation function is determined by the nature of the data and the assumed distribution of
target variables and the problem that we wish to solve. Thus for standard regression problems, the activation
function is the identity so that yi = aj . Similarly, for multiple binary classification problems, each output

unit activation is transformed using a logistic sigmoid function so that :

yr = o(ag)
| (3.6)

o) = T

Now, it is demandable to denote that except the sigmoid activation function, pivotal role in the Multiclass
Classification Problems, which is our case, is the Softmaz Activation Function. It is a function that takes as
input a vector of K real numbers and normalizes it into a probability distribution consisting of K probabilities
proportional to the exponentials of the input numbers. That is, prior to applying softmax, some vector
components could be negative, or greater than one and might not even sum to one. However, after applying

softmax, each component will be in the interval (0,1). [0]

The equation of the softmax activation function o : RX — R¥is the bellow :

o7

ola) = 725(:1 = (3.7)

By combining all the above equations we get the final one that describes the so called Multilayer Perceptron

hidden units

YK
outputs

Y1

Figure 3.5: The input, hidden, and output variables are represented by nodes, and the weight parameters are
represented by links between the nodes, in which the bias parameters are denoted by links inputs coming from
additional input and hidden variables zy and zy . Arrows denote the direction of information flow through the
network during forward propagation. [54]

-§.5

" s o

o 1 ’

l.l/ u.h‘ s 0.5
T | 7 ™ =% T iy 7 = =

1.4 =05

24 -1

A =1
linear piecewise linear tanh(x)

gt ot eut

1 — 1 e
5.8
0.5 0.5
0.8
1 1. FB =3 - s LR 4
-0.5} 0. 0.3

ke En =N : » rs
threshold sin(x) till saturation logistic 1/(1+exp(-x))

Figure 3.6: Neural Network Activations Functions [2/]

58

3.3.1 Learning Algorithms
Batch Gradient Descent

Vanilla Gradient descent computes the gradient score of the objective function to the parameters 6 of the

entire training dataset.

0=0—n-VyJ(0) (3.8)

The batch gradient descent algorithm needs to calculate the gradients of the whole train set. This is very slow
and can evoke technical impediments such as memory insufficiency. Also, Batch gradient descent does not

allow to train our model online.

Stohastic Gradient Descent

On the contary, Stochastic Gradient Descent (SGD) performs a parameter update for each trainning example

z' and 3 :

0=0—n-VoJ(b:;2'y") (3.9)

Comparing both batch gradient descent and stohastic gradient descent algorithms, we conclude that the first
implement abudant computations of the gradients. In large datasets it is possible that some examples will be
similar. On the contary, Stochastic Gradient is eschews the redundancy by updating the parameters per one

training sample. Also, SGD can also be utilized in online learning.

While batch gradient descent converges to the minimum of the basin the parameters are placed in, SGD’s
fluctuation, on the one hand, enables it to jump to new and potentially better local minima. On the other
hand, this ultimately complicates convergence to the exact minimum, as SGD will keep overshooting.
However, it has been shown that when we slowly decrease the learning rate, SGD shows the same convergence
behaviour as batch gradient descent, almost certainly converging to a local or the global minimum for

non-convex and convex optimization respectively

Mini-Batch Gradient Descent

The Mini-Batch Gradient Descent Algorithm combines both BGD and SGD ideas. For one update it takes

into consideration only n samples from the training set.

0=0—mn-VeJ(B;z" T ymtm) (3.10)
However Mini-Batch Gradient descent does not guarantee good convergence and some emerging challenges

must be addressed.

e The selection and initialization of the suitable learning rate is a difficult task and may demand lots of

experiments so as to deduce the appropriate one.

e A defined learning rate applies to all the data no matter what is the nature of them. If our data is sparse
and our features have very different frequencies, we might not want to update all of them to the same

extent, but perform a larger update for rarely occurring features

59

Adaptive-Moment-Estimation

Adaptive Moment Estimation [10] is a method that computes adaptive learning rate for each parameter.
Adam keeps an exponentially decaying average of past gradients my, similar to momentum. Whereas
momentum can be seen as a ball running down a slope, Adam behaves like a heavy ball with friction, which
thus prefers flat minima in the error surface [15]. We compute the decaying averages of past and past squared

gradients mt and vt respectively as follows:

my=B1-mi_1+(1—51) g

) (3.11)
up = P ug—1 + (1= B2) - g;
m; and u; are estimates of the first moment (the mean) and the second moment (the variance) of the
gradients respectively. For shunning the bias of m; and v; towards zero, authors [10] introduced the unbiased
first and second moments.
— my)
my =
1-p¢
R u | (3.12)
U =
t 1 — ﬁé
Opy1 =0t — AL -y (3.13)
Vi +¢€

60

3.4 Deep Neural Networks

3.4.1 Convolutional Neural Networks

Motivation and Properties of CNN

Fully Connected Neural Networks cause three problems in practice. First and foremost, traditional NNs use
matrix multiplication to describe the interactions of neurons between two layers. Every output unit interacts
with every input unit. In fact, this imposes a significant computational burden when it comes for image data
where the dimension of a single image is of that shape, that one vector will be too big for the NN to efficienty
process. What is more, a NN demands fixed-size image in spatial dimension and only this sets significant
limitations. Secondly, in NNs each element of the weight matrix is used exactly once when computing the
output of a layer. It is multiplied by one element of the input and then never revisited. As a synonym for
parameter sharing, one can say that a network has tied weights, because the value of the weight applied to one
input is tied to the value of a weight applied elsewhere. Last but not least, some kinds of data cannot be
processed by neural networks defined by matrix multiplication with a fixed-shape matrix. An example of such

are the image data.[22]

All the above limitations of the NNs are surpassed by the Convolutional Neural Networks (CNN). Convolution
leverages three important ideas that can help improve a machine learning system: sparse interactions,
parameter sharing and equivariant representations. Moreover, CNNs provide a means for working with inputs

of variable size. We now proceed with describing each of these ideas.

CNNs have sparse interactions (also referred to as sparse connectivity or sparse weights). This is
accomplished by making the kernel smaller than the input. For example, when processing an image, the input
image might have thousands or millions of pixels, but we can detect small, meaningful features such as edges
with kernels that occupy only tens or hundreds of pixels. This means that we need to store fewer parameters,

which both reduces the memory requirements of the model and improves its statistical efficiency.

Parameter sharing refers to using the same parameter for more than one function in a model. In a
traditional neural net, each element of the weight matrix is used exactly once when computing the output of a

layer.[19]

The parameter sharing causes the layer to have a property called equivariance to translation. For
example, let I be a function giving image brightness at integer coordinates. Let g be a function mapping one
image function to another image function, such that I;,, = g(I) is the image function with . This shifts every
pixel of I one unit to the right. If we apply this transformation to I, then apply convolution, the result will be

the same as if we applied convolution to I;;, , then applied the transformation g to the output.

Convolutional Operation

S,) =(K=*1)(i,§) = Z Zf(r —m,j—n)K(m,n).

m n

Figure 3.7: Convolution Operation in Input Image [22]

CNN Modules

Before digging into what a CNN learns, we need to clarify the basic modules that are used in a basic CNN.

e Convolutional Layer

61

Input

Kernel
a b e d

[| w x
e f g h
y 2
i j k]
' Qutput
_’.
aw + br + bhw + o 4 cw 4+ dr 4+
ey + [z fy + gz gy + hz
ew + fr + fw 4+ gr + gw + hr 4+
iy 4+ jz jy o+ kz ky + Iz

Figure 3.8: Convolution Operation in Input Image [22]

e Non Linear Activation Function

In Computer Vision Tasks, it is widely used the Rectifier Linear Unit (ReLU) which performs a

thresholding to zero.
e Pooling Layer
Performs a downsampling in the spatial dimensions of height and width.
e Fully Connected Layer
An ordinary Neural Network, which usually performs the classification task.

Stacking all the above components concecutive, we obtain a Convolutional Network.

H Layer Learnable Parameters H
Convolutional Layer Yes
Non Linear Activation Function No
Pooling Layer No
Fully Connected Layer Yes

Table 3.1: Learnable Parameters per Layer in a ConvNet

The Convolutional Layer’s learnable parameters are spatially small kernels which convolve through the
entire width and height of the input image. As we slide the filter over spatial dimensions of the input volume
we will produce a 2-dimensional activation map that gives the responses of that filter at every spatial position.
Intuitively, the network will learn filters that activate when they see some type of visual features. Now, we will
have an entire set of filters in each CONV layer (e.g. 12 filters), and each of them will produce a separate
2-dimensional activation map. We will stack these activation maps along the depth dimension and produce

the output volume.

62

Local Connectivity :

Input Images are high-dimensional inputs and so it is impractical to connect all neurons from the previous
level with the neurons of the next level. Instead we are going to connect each neuron with a subset grid of the
input image. This size of the grid actually defines the kernel size, also the so called receptive field. The
kernel size is a hyperparameter. The Result of a Convolutional Operation between an Input Volume and a

Kernel is called Feature Map.

The term convolution does not correspond strictly to the convolution that is defined in the signal processing
domain. In ConvNets the Convolutional Operation does not contain any kernel 180 degrees flipping. Instead is
a simple dot product between the image grid and the kernel. The sliding of the kernel reminds the signal

processing convolution and that is why is called so.

The Avoidance of Feature Map Shrinking:
This need actually demands the need of another hyperparameter of the convolutional layer, which is the
zero-padding. If we thing that Feature Map always shrinks after a convolutional layer, without zero padding

we would not be able to create deeper architectures.

The size of the kernel defines actually the receptive field and is consider one of the hyperparameters of the
ConvLayer. The zero-padding and the stride are consider the other two hyperparameters. The output of a
CovOp is often called Feature Map. Zero-padding is used so as to avoid the elimination of the spatial
dimensions of the Feature Maps. Stride defines the step of the kernel in the spatial dimensions when it comes

to apply the Convolution.

Pooling Layer :

It is common to periodically insert a Pooling layer in-between successive Conv layers in a ConvNet
architecture. Its function is to progressively reduce the spatial size of the representation to reduce the amount
of parameters and computation in the network, and hence to also control overfitting. The Pooling Layer
operates independently on every depth slice of the input and resizes it spatially, using the MAX operation.
The most common form is a pooling layer with filters of size 2x2 applied with a stride of 2 downsamples every
depth slice in the input by 2 along both width and height, discarding 75% of the activations. Every MAX
operation would in this case be taking a max over 4 numbers (little 2x2 region in some depth slice). The

depth dimension remains unchanged.

63

3.4.2 Sequence Modeling : Recurrent Neural Networks

Recurrent neural networks or RNNs [61] are a family of neural networks for processing sequential data. Much
as a convolutional network is a neural network that is specialized for processing a grid of values X such as an
image, a recurrent neural network is a neural network that is specialized for processing a sequence of values
T1,...,Z¢ - Just as convolutional networks can readily scale to images with large width and height, and some
convolutional networks can process images of variable size, recurrent networks can scale to much longer
sequences than would be practical for networks without sequence-based specialization. Most recurrent

networks can also process sequences of variable length. [22]
RNN Structure

Recurrent layers (RNNs) are a type of neural network layer with an internal state for each unit. These were
originally designed to process sequences of vectors instead of a single vectors, as fully connected neural
networks. At each time-step, the output of of layer depends on the current input and the previous state. In its
simplest form, the state of each neuron in a recurrent layer is just its output. Thus, for a sequence of T
elements of m-dimensional (row) vectors, 1, ..., 2, the output of a simple RNN, parameterized by the

matrices W € R™*" and R € R™" is a sequence of n-dimensional vectors yi,ya, ..., Yn, given by the equation :
Y = U(xfW + yf_lR)

® (hy ®)
- II—»I?H?%
(x)

& 6 © e

Figure 3.9: Unrolling the Recurrent Neural Networks [7]

Bidirectional RNNs

All of the recurrent networks we have considered up to now have a “causal” struc- ture, meaning that the
state at time t only captures information from the past, x1,...,2;—1 , and the present input x; . Some of the
models we have discussed also allow information from past y values to affect the current state when the y

values are available.

However, in many applications we want to output a prediction of y; which may depend on the whole input
sequence. For example, in speech recognition, the correct interpretation of the current sound as a phoneme
may depend on the next few phonemes because of co-articulation and potentially may even depend on the
next few words because of the linguistic dependencies between nearby words: if there are two interpretations
of the current word that are both acoustically plausible, we may have to look far into the future (and the
past) to disambiguate them. This is also true of handwriting recognition and many other sequence-to-sequence

learning tasks, described in the next section.

Bidirectional Recurrent Neural Networks (BiRNNs) were invented from [(67] and hold numerous applications

in fields like Handwritting Recognition and Automatic Speech Recognition[25] [29] [28] [30]

64

Figure 3.10: Bidirectional Recurrent Neural Network [7]

Long Term Depedencies

One of the appeals of RNNs is the idea that they might be able to connect previous information to the present
task, such as using previous video frames might inform the understanding of the present frame. Sometimes, we
only need to look at recent information to perform the present task. For example, consider a language model
trying to predict the next word based on the previous ones. If we are trying to predict the last word in “the
clouds are in the sky,” we don’t need any further context — it’s pretty obvious the next word is going to be sky.
In such cases, where the gap between the relevant information and the place that it’s needed is small, RNNs

can learn to use the past information.

But there are numerous cases, such as in the Languge Modeling domain, where in order to deduct safe
conclusions about the next word in a sentence we need to go many words back since the earliest context does
not give a discernible result. For example, suppose the example "l grew up in France and I lived there for
twenty years. I speak fluent French. If we wanted our model to predict the last word of the presented
sentence, It is understandable that in order to do so correctly should wide the context window and search for
older history in the sentence and not just the last words in the row. Thus, it is understandable that as the
information explodes the context window and the history to be models grows. In such cases, RNNs become

unable to learn and to connect the information.

Long Short Term Memory Networks [37], called LSTMs in abbreviation, are a special kind of RNN, capable of

learning long-term dependencies.

() (?D)
|

o TEAT

® ©

Figure 3.11: Internal Structure of LSTM Layer [7]

®_

65

Jt = o(Wylhi—1,2¢] + by)

iy = o(Wilhi—1, 2] + b;)

Cy = tanh(We b1, 4] + be)
Ci=fr-Co1+ip - Cy

0y = o(Wylhi—1,] + bo)

hy = o4 - tanh(Cy)

(3.14)

i Cy

<
@

Figure 3.12: The cell state of LSTM [7]

The key to LSTMs is the cell state, the horizontal line running through the top of the diagram. The cell state
is kind of like a conveyor belt. It runs straight down the entire chain, with only some minor linear

interactions. It’s very easy for information to just flow along it unchanged.

The LSTM does have the ability to remove or add information to the cell state, carefully regulated by
structures called gates. The information is controlled through three gates.

e Input Gate
e Forget Gate

e Output Gate

Figure 3.13: The Forget-Gate of LSTM. In this step, the LSTM decides what information will be thrown away
from the cell state. This is implemented by a sigmoid layer which looks at the h;_; and the z; and assigns a
number of 0 or 1 on each of the untits of Cy_1. [7]

66

Figure 3.14: The Input-Gate of LSTM. In this step, the LSTM decides what new information will be stored.
This has two parts. First, a sigmoid layer called the “input gate layer” decides which values we’ll update. Next,
a tanh layer creates a vector of new candidate values, C’t, that could be added to the state. In the next step,
we’ll combine these two to create an update to the state. [7]

®
@
v

Figure 3.15: The Output-Gate of LSTM. In this step, the LSTM updates the C;_; value with the new one C}
and its synthesized by how much information will be abandoned and what new information will be stored in
the cell. [7]

67

3.5 Connectionist Temporal Classification

In this section we present the Connectionist Temporal Classification (CTC) introduced first by Alex Graves

[31] [28]. CTC is a novel output layer for temporal classification with RNNs.

CTC is a segmentation-free and alignment-free framework for sequence-to-sequence transduction. The input
image does not need to be segmented to tokens or characters so as to be recognized. With this framework, we
are surpassing Sayre’s Paradox. The latest supports that cursively written word cannot be recognized without

being segmented and cannot be segmented without being recognized.[27]

For a sequence labelling task where the labels are drawn from an alphabet L, CTC consists of a softmax
output layer [18] with one more unit than there are labels in L. The activations of the first |L| units are used
to estimate the probabilities of observing the corresponding labels at particular times, conditioned on the
training set and the current input sequence. The activation of the extra unit estimates the probability of
observing a ‘blank’; or no label. Together, the outputs give the joint conditional probability of all labels at all
timesteps. The conditional probability of any one label sequence can then be found by summing over the

corresponding joint probabilities.

A counter example that proves the necessity of the blank character is the below.

Suppose that the input has length 6, let it be X = [z : 5] and the ground truth is Y = [c,a,t]. One possible

way to align the input sequence with the output sequence is the below :

X Xy X3 Xy X5 Xg input (X)
ccaaat alignment
C a t output (Y)

Figure 3.16: Example of a possible alignment for word "cat" [3]

From the above example, it is clear that the transformation between the output transcript and the alignment
is the concatenation between the identical characters. The problem with this approach is that we cannot
produce words that have double letters, such as the word “Hello”. So, we are inserting the blank character in

order to permit the same consecutive characters.

More formally, let X be an input sequence of length T and Y be the output sequence that contains the
probability distribution for all labels for all time points till T. We denote as y}, as the probabibity of observing
label k at time t. These probabilities come from the network output, after being softmaxed. Let a be an
alignment for some input X. With L; we symbolize the initial set of labels, our vocabulary, and with

L, = L;|Jblank the augmented one. The conditional probability of a is the defined below :

T
p(a|X) = Hyfh,Va € Lz (3.15)
t=1

Implicit from the above equation is the assumption that the network outputs at different times are
conditionally independent, given the internal state of the network. This is ensured by requiring that no

feedback connections exist from the output layer to itself or the network.

68

Finally, we need to calculate the conditional probability of a specific labeling Y. But first, we need to convert

any alignment to labeling.

We define a many-to-one map, let it be B. This operation maps all the possible alignments in a specific
sequence. So, it concatenates all the same consecutive characters between two blank characters and the

removes all the blank ones.
For example B(—aa-abb) = B(—a-a-b) = aab

We are utilizing B so as to calculate the conditional probability of a given labeling L by summing up the

probabilities off all the possible alignments for this labeling to occur.

p(YIX)= > plaX) (3.16)

a€B-1(Y)

The CTC forward-backward Algorithm

Now that we have determined how the output layer must be formulated so as to be trained with CTC, we

need to define the objective function for trainning CTC Networks with gradient descent.

We need an efficient way for calculating the conditional probabilities of all the alignments that correspond to a
specific labeling. Thus, we make use of dynamic programming and specifically an algorithm that is similar
with the HMM forward-backward algorithm [54]. The key idea is that the sum of paths over a labeling can be
broken into an iterative sum over paths corresponding to prefixes of that labeling. The iterations can be

computed efficiently with the forward and backward variables.

Let @ be a sequence of length r, N be the set of the target units and T the length of the input sequence. All
the posible allignments that can be formulated are N7 Let Q1., be a subsequence containing the first p

symbols of the (). The remaining sequence is Q..

For a labeling I, the forward variable as(t) is the probability of the labeling I1.s at time t.

a; = Z Hyzt (3.17)

aeNT. t=1
B(a)=l1:s

The forward variable aj is calculated recurrently.

For calculating the forward and backward variables we increment the initial labeling with the blank character

placed at the start, at the end and between the target units.
For example the word "CAT’ becomes ~-C-A-T-. Where lo = —,l; = C,ly = —,l3 = A etc.

The string can eithe begin with the blank character of with the ;. That means :

lo _ .0 i _ .0
aO _pb Orao _pb

The recursion is defined as follows :

. (ai_y+a;21) -y if Iy = blank or ls_o = s
aj =)

s—1 s—2 .
(ai_y +ai"y +ai7)- y}f otherwise

69

;
;

o O O
¢ @ @ L e o 0
O O o O
A @ .. Lo &= |- .- ®
O OY O OY O
T® @ e @
o O O o O O
1 2 3 T-2 T1 T 1 2 3 T-2 T1 T
(a) Different Consecutive Characters (b) Same Consecutive Characters

Figure 3.17: Graphical explanation of the recurrent equation of forward variable
The backward variable is calculated as if we read the lattice of propabilities from the right to the left. So,
thinking with the same way as above, we have:

The string can either end with the blank character of with the [j;. That means :

U 0 l 0
by =py or by = p;

The recursion is defined as follows :
0§y +b511) -t if [y11 = blank or lyyo = I,

by =
(b1 +bif1 +b577) - yf, otherwise

Due to underflow, a rescale is performed both to forward and backward variables.

Rescaling factor :

Ci=> a; eR"

(3.18)
D= b eR"

The C; represents actually the greatest propability of each timestep t. It works like an 'or’ gate that lets the
highest probability to be expressed. Same interpretation for the D;. Thus it is clear that the vector Cy
encapsulates the probability of the most possible alignment at time t.

To evaluate the maximum likelihood error, we need the natural logs of the target labelling probabilities.

T

In(p(l|z)) = > In(Cy) (3.19)

t=1

Note 1 : From the above equation, we conclude that the CTC Loss is independent of the number of target

units. This is significant for the following work.

70

3.5.1 CTC Decoding Algorithms

Decoding a CTC network-that is, finding the most probable output transcription for a given input
sequence-can be done to a first approximation by picking the single most probable output at every timestep

and returning the corresponding transcription. [28]

More accurate decoding can be performed with a Beam Search algorithm, which also makes it possible to
integrate language model. The algorithm is similar to decoding methods used for HMM-based systems, but
differs slightly due to the changed interpretation of the network outputs. In a hybrid system the network
outputs are interpreted posterior probabilities of state occupancy, which are then combined with transition

probabilities provided by a language model and an HMM.

With CTC the network outputs themselves represent transition probabilities (in HMMterms, the label

activations are the probability of making transitions into different states, and the blank activation is the

probability of remaining in the current state). The situation is further complicated by the removal of repeated

label missions on successive time-steps, which makes it necessary to distinguish alignments ending with blanks

from those ending with labels.

e Blank Probability : Blank(y,t) is the probability of substring y to end up with blank character at time ¢

@

e Non Blank Probability : NonBlank(y,t) is the probability of substring y end up with a non blank

character at time ¢ (II)

e Total Probability of substring y at time ¢ : Total(y,t) = Blank(y,t) + NonBlank(y,t) (III)

Algorithm 1 Vanilla CTC Beam Search

1: procedure CTC BEAM SEARCH(P, W) © P is the Posterior Probabilities’ Matrix, W is the Beam Width
2 B « {0}, Blank(®,0)

3 for t=1...T do

4 D <+ BestBeams(B, W)

5: Beams < {}

6 for b in D do

7 if b != 0 then

8 NonBlank(b,t) + NonBlank(b,t — 1) - P[b°,t,|X]

9: end if
10: Blank(b,t) «+ Total(b,t — 1) - P[blank,t|X]
11: AddBeam(newbeam, b)
12: for character in Characters do

13: NewBeam < b+ character

14: Blank(newbeam,t) <+ 0

15: if k = b° then

16: NonBlank(newbeam,t) = Plk,t|z] - Blank(b,t — 1)
17: else

18: NoneBlank(newbeam,t) = Plk,t|x] - Total(b,t — 1)
19: end if
20: AddBeam(newbeam, b)
21: end for
22: end for
23: end for
24: return maz,ecpeamsI otal(y,t)

25: end procedure

71

3.5.2 N-Gram Language Models in CTC Decoding

The effects of the independence assumption made by the CTC algorithm can be mitigated by combining the
output distribution of the NN with an additional language model. A language model is just prior distribution

over all (meaningful) sequences of words (or characters) of a given language, or collection of documents.

Statistical N-Gram Language Models

Models that assign probabilities to sequences of words are called Language Models (LMs). The simplest
model that assigns probabilities to sentences and sequences of words is the n-gram. An n-gram is a sequence
of N n-gram tokens. For example the bigram is a sequence of 2 words such as "turn on". The n-gram tokens
can be either word level or character level. The previous example was a word level language model. An

example of a character fourgram model is "lish" .

Statistical Language Models are used to model the prior distribution of the language. This idea was first
adopted by the Shannon [68]. The assumption that the probability of a word depends only on the previous
words is called Markov Assumption. Markov models are the class of probabilistic models that assume we
can predict the probability of some future unit without looking too far into the past. We can generalize the
bigram (which looks one word into the past)to the trigram (which looks two words into the past) and thus to
the n-gram, which looks n — 1 words in the past. Thus, the general equation for this n-gram approximation to

the conditional probability of the next word in a sequence :

P(w,|wi™") ~ P(wn|w) "5) (3.20)
This N-gram probabilities are estimated with Maximum likelihood estimation or MLE. We get maximum
likelihood estimation for the parameters of an n-gram model by getting counts from a corpus, and normalizing

the counts so that they lie between 0 and 1. So in case for a n-gram LM we have the bellow:

O(wﬁi}wlwn)

C(wzzll\ul) (3.21)

P(wn‘wn_zlw-ﬂ =

CTC Beam Search Decoding Integrating Character Level and Word Level Language Model

CTC Beam Search can support the integration of a Language Model, either Character Level or Word
Level Language Model. For this reason we introduce the LM Probability :

LM (y, k) = NGramProb(y, k) (3.22)
In this case we want to optimize the selection of each Beam at every step by taking into consideration not only
the Total Score (III), but also the LM Score. That means, at every timestep we select sequence of characters

that have the best CTC Score (what the model says) and the best score from a Language Model (how

language supports it - domain knowledge)

72

Algorithm 2 CTC Beam Search + LM Integration

1: procedure CTC BEAM SEARCH(P, W) © P is the Posterior Probabilities’ Matrix, W is the Beam Width
2 B « {0}, Blank(®,0)
3 for t=1...T do
4 D <+ BestBeams(B, W)
5: Beams < {}
6 for b in D do
7 if b != 0 then
8 NonBlank(b,t) + NonBlank(b,t — 1) - P[b°,t,|X]
9: end if
10: Blank(b,t) «+ Total(b,t — 1) - P[blank, t|X]
11: AddBeam(newbeam, b)
12: for character in Characters do
13: NewBeam <+ b+ character
14: Blank(NewBeam,t) < 0
15: if k = 0 then
16: NonBlank(NewBeam,t) = Plk,t|z] - Blank(b,t — 1)
17: else
18: NoneBlank(NewBeam,t) = P[k,t|z] - Total(b,t — 1)
19: end if
20: LM (NewBeam,t) + NGramLM (NewBeam,b)
21: NoneBlank(NewBeam,t) = NoneBlank(NewBeam,t) * LM (NewBeam, t)
22: AddBeam(NewBeam, b)
23: end for
24: end for
25: end for

26: return max,peams? otal(y, T) - LM (y,T)
27: end procedure

73

Chapter 4

Previous Work

74

4.1 Previous Work

In this chapter, two families of models used to represent the text (and its alignment) written in images are
reviewed: Hidden Markov Models and Recurrent Neural Networks. Both models have been widely and
successfully used, for Handwritten Text Recognition, Keyword Spotting and other document related

applications.

4.2 Preprocessing Techniques for HTR

As we have already seen in the Chapter 2 (2), most of the tasks in the Document Analysis field were tackled
with machine learning algorithms or probabilistic models and the features extracted were based on statistics.
Such feature extraction demanded some processing techniques at first in order to reduce the variance of the

text regions. Below we will refer to the most significant preprocessing techniques such as Binarization, and

Line Normalization.

Other preprocessing steps that are carried at page level are the removal of bleed-through and other ink noise,
the correction of rotated pages or contrast normalization. Some of these steps play a less significant role under
controlled environments, but they are very important if the page images were not obtained using good

scanning equipment

Fip b L 3 .- L
My B 1
. |
L]
| -
el

b
el
Figure 4.1: Bleed-Through removal example [3]

Binarization

Document image binarization refers to the conversion of a color or grayscale image into a binary image. The
main goal is not only to enhance the readability of the image but also to separate the useful textual content
from the background by categorizing all the pixels as text or non-text without missing any useful
information.Document image binarization techniques are usually classified intwo main categories, namely
global and local thresholding. Global thresholding methods use a single threshold value for the entire image,
while local thresholding methods detect a local (adaptive) threshold value for each pixel. Global techniques
are capable of extracting the document text efficiently in the case that there is a good separation between the
foreground and the background. Several historical binarization methods have incorporated background

subtraction in order to cope with several degradations.

(0]

22T PG CF
Z, et @ Faeos
: a /[).((17 Px 21 crj

ZE //[ét 2.0

.ob((7‘1 e(x L)

» 4&(}1’(Coresr ied
- %v@au f'f 2,

Figure 4.2: Image Binarization Example in Historical Handwritten Documents [19]

Text Line Normalization

After text is segmented into text lines, it is crucial to apply several normalization techniques that are going to
decrease the variance among the different writting styles. Often, text lines do not follow a strict vertical
orientation and this is a usual phenomenon in the handwritten text since it is unconstrained. This one is
called skew. The second distortion that needs to be restored is the slant where the letters have an inclination

either left or right, namely an italic-like effect.

Feature Extraction

Statistical Models such as Hidden Markov Model are not able to model images, even after the processing that
have gone through such as binarization, deslanting etc. Images, is demanded to be converted into feature

vectors that then will be used as input in Hidden Markov Models.

In the early days of Handwritten Text Recognition research, researchers where utilizing simple statistics from

every image including :
e number of white and black pixels
e number of white and black pixels on each column
e the average value of pixel in the rectangular area
Later, high level features enrich the simpler ones. These were:
e the derivative of pixel intensity in each dimension in a rectangular cell in the image
e Speeded Up Robust Features (SURF)

e Scale-Invariant Feature Transform (SIFT)

76

4.3 Probabilistic Models for HTR

4.3.1 Hidden Markov Models

A Hidden Markov Model (HMM) describes a stochastic process involving two random variables: the random
variable representing the sequence of observed values, denoted by X, and the random variable representing the
sequence of states that produced such values, denoted by S. In particular, Hidden Markov Models are
probabilistic graphical models of the joint likelihood of the two variables P(X,S).

Hidden Markov Models are typically defined using the following elements:
Definition :

e A set of emitting states S = sy, ..., s, and a special non-emitting state final state spg.
e A probability distribution over initial states: P(S; = s),Vs € S*

e A probability distribution describing the transition model between states: P(Siy1 = §'|S¢ = s),Vs €
S,Vs' € SUsp

e And a probability mass or density function describing the likelihood of an observed value according to
each non final state : P(X; = z|S; = s),Vs € &’

We will refer to a particular sequence of observed values with the notation z1.7 = 1, ..., x7. Notice that a
sequence of observed values of length T is emitted by a sequence of states of length 7"+ 1, since all valid
sequences of states must end at the non-emitting final state, s F . Thus, a particular sequence of states of

length T+ 1 is represented by si.741 = s1, ..., ST, SF -

4.3.2 Hidden Markov Models for Handwritten Text

As depicted in the picture bellow, most works that need to model handwritten text choose to use an
individual HMM to represent each character in the alphabet. There are some works that represent full words
by a single HMM, however this becomes problematic when dealing with vocabularies of a large number of

words, since the number of parameters required to estimate grows significantly.

0.7 0.4 04 0.6

&03@\0.6%06&&@
A&

Figure 4.3: Example of the alignment produced by a character HMM modeling the letter “a”. The HMM
is composed of four states in a left-to-right topology. The probabilities in the arcs represent the transition
probabilities [52]

The number of states in each HMM can be fixed (i.e. all characters have the same number of states), or can
be variable, since the length of each character is expected to be different from one class to the other. For

[13})

instance characters like ”i” or “1” are typically much shorter (horizontally) than characters like “m* or “n”.

7

Finally, regarding the emitting states, we will use Gaussian Mixture Models (GMM) with diagonal covariance
matrices as the probability density functions used to model P(X; = z4|S; = s;) . Although this is the common
choice in the handwritten text and speech community, the reader should be aware that it is not the only

option, and models for sequences of discrete observed values have also been used in the past.

4.4 Neural Models for HTR

During many years recurrent artificial neural networks based on Mul- tidimensional Long-Short Term

Memories dominated the state-of-the- art solutions to model handwritten text [30] [74] [18]

4.4.1 Multidimensional RNN for HTR

Recurrent neural networks (RNNs) have proved effective at one dimensional sequence learning tasks, such as
speech and online handwriting recognition. Some of the properties that make RNNs suitable for such tasks,
for example robustness to input warping, and the ability to access contextual information, are also desirable in
multidimensional domains. However, there has so far been no direct way of applying RNNs to data with more
than one spatio-temporal dimension. This paper introduces multidimensional recurrent neural networks
(MDRNNS), there by extending the potential applicability of RNNs to vision, video processing, medical
imaging and many other areas, while avoiding the scaling problems that have plagued other multidimensional

models. Experimental results are provided for two image segmentation tasks. [20]

The basic idea of MDRNNSs is to replace the single recurrent connection found in standard RNNs with as
many recurrent connections as there are dimensions in the data.During the forward pass, at each point in the
data sequence, the hidden layer of the network receives both an external input and its own activations from
one step back along all dimensions. illustrates the two dimensional case.Note that, although the
wordsequenceusually connotes one dimensional data, wewill use it to refer to data examplars of any
dimensionality. For example, an image isa two dimensional sequence, a video is a three dimensional sequence,

and a series off MRI brain scans is a four dimensional sequence

Multidimensional recurrent layers are a derivative of recurrent units designed to process signals of an arbitrary
size and an arbitrary number of dimensions. For the simple, one-directional RNNs/LSTMs the output at a
given time step depend on the hidden state of the previous timestep. However, It is not absolutely clear what
means "previous timestep" in the two dimensional case. As the following images 4.4 and 4.5 show, the pixel

(,7) depends on the previous pixels on each dimensions, namely pixels (i,5 — 1) and (i — 1, 5).

hidden layer -
¢ {-1.) (i) /’gi_j-n

input layer

[l-J]‘.

Figure 4.4: Forward Pass in MDRNN [2(]

78

output layer
L
(i)

hiddan layear

:-.i+13,~"iu.p i+1.0)

Figure 4.5: Backward Pass in MDRNN [2(]

It is crucial to mention that the sequence of multiple dimensions can be processed with various ways. The
afforementioned way described sequence processing in a vertical and horizontal scheme. However, a
2-dimensional sequence, or any with greater number of dimensions, can be processed with many various ways

such as a diagonal as the below image depicts.

(0,0} — x1 x1 «—— (0,0)
., -

- 11
x2 . o x2
x‘2 o " %2

-~ . [

(0,0} — x1 x1 +— (0,0)

Figure 4.6: A two dimensional sequence can be processed in various directions. The internal arrows inside the
rectangle indicate the direction of the propagation in forward pass. [20]

CTC

N

AN, e

Convolution

Input Image MDLSTM +Max Pool Average MDLSTM Collapse
+Tanh
Convolution Convolution
+Max Pool Average MDLSTM +Max Pool Average
+Tanh +Tanh

Figure 4.7: The basic network architecture used in this paper. The input image on the left is processed pixel-
by-pixel usinga cascade of convolutional, max-pooling and MDLSTM layers, and finally transcribed by a CTC
layer on the right [74]

Various research works have adopt the usage of MDLSTM networks such as [50] [71] and have reported

state-of-the-art results.

4.4.2 One-dimensional RNN for HTR

The Multidimensional Reccurent Neural Networks may denote state-of-the-art results but they hold some

critical drawbacks related with the computational cost. The calculation cost is due to the depedency among

79

the current point and the history that needs to be calculated for its computation. This burden is multiplied

when the current point depends on history from two directions.

The recent work [53] of J. Puigcerver puts into question the necessity of the MDLSTM networks for the
Handwritten Text Recognition and showcases that the synergy of a CNN with one-dimensional LSTM network

can culminate to satisfactory recognition rates.

The author initially, argues that visual features that are constructed through a MDLSTM are of equal quality
with the ones obtained from a CNN. And after that, supports that MDLSTM can be substituted by CNNs
and then one dimensional LSTMs are enough to model the dependencies among characters.

(b) Convolutional

Figure 4.8: Randomly selected features extracted after a 2D-LSTM and after a convolutional layers[53]

The recommended architecture from [53] is the bellow :

Convolution +

Input i i
|ng " BatchNorm + 0021:;2::% BLSTM g:n‘f;t ;2::.;;
LeakyReLU +
Max Pool
Conv. Block Recurrent Block

Figure 4.9: One-Dimensional LSTM Architecture for HTR [53]

80

CER (%) WER (%)

System Validation Test Validation Test

Baseline 5.1 8.2 17.9 254
el [4.6-5.7] [7.6-8.9] [16.3-19.7] [23.9-27.0]

52 83 185 249

+ BN

[4.7-5.8] [79-8.6] [16.9-20.2] [23.4-26.4]

saiiatss 44 6.4 15.5 20.8
: : [3.949] [58-69] [14.0-17.0] [19.6-22.1]

R & | 6.2 14.6 20.2
+BN + Distortions 13 ¢ 451 [57-6.8] [13.1-16.1] [19.0-21.4)

Figure 4.10: Reported Results on One Dimensional LSTMs [

81

5

)]
J

]

Chapter 5

Data Augmentation for HTR and
Baseline Model

82

5.1 Data Augmentation and Baseline Model for HTR

In this chapter, we build up the baseline architecture for our Optical Model. Moreover, we implement two new
augmentation techniques for the HTR case, Local Affine, and Local Morphological, and test them on how they
can improve the Learning Outcome. Finally, we make various experiments so as to find the ideal set up of our

problem and perform decoding by utilizing external language resources.

5.2 Data Augmentation
5.2.1 Global Affine Transform
Affine Transform

An affine transformation is an important class of linear 2-D geometric transformations which maps variables
located at position (z1,y1) in an input image into new variables (x3,y2) in the output image by applying a
linear combination of translation, rotation, scaling and/or shearing (i.e. non-uniform scaling in some

directions) operations.

If X and Y are affine spaces, then every affine transformation f : X — Y is of the form x — M - = + b, where
M is a linear transformation on the space X, z is a vector in X, and b is a vector in Y. Unlike a purely linear
transformation, an affine map need not preserve the zero point in a linear space. Thus, every linear

transformation is affine, but not every affine transformation is linear.

A MOVE o stoe Mr. Goubo ke Q0. frern

| MoVE o stoe Mr. Gauklill from

\ MOVE 1o sdoe Mr. Galblell from

Figure 5.1: Linear Transformation - Affine Transform Case

83

5.2.2 Global Morphological Transform

The intuition behind the utilization of Morphological Transforms and especially Dilation and Erosion is to

create thinner and denser letters, that we also meet in real-time cases.

We use sets to represent binary images and set operations to represent binary image transformations.
Specifically, given a binary image, let the object be represented as X and its background by the set

complement X°¢. The structural element is symbolized with B.

Xiy 2 {2 +y:x € X} is the translation of X along the vector y and B* £ {z : —x € B} is a symmetric of B
with respect to the origin. [43]

Dilation

X@®BE{z: (B4 (X A0} = Xuy (5.1)
yeB

Erosion
XOB2{z:(B%).; CX}=NyenX_, (5.2)

Opening
XoB=(XoB)®B (5.3)

Closing
XoB=(X®B)eB (5.4)

In applications, B is usually called a structuring element and has a simple geometrical shape and a size
smaller than the image X. If B has a regular shape, e.g., a small disk, then both opening and closing act as
nonlinear filters that smooth the contours of the input image. Namely, if X is viewed as a flat island, the
opening suppresses the sharp capes and cuts the narrow isthmuses of X, whereas the closing fills in the

thingulfs and small holes.

84

A MOVE o svoe Mr. Goaublkell from

S

A MDDV E A S o .h- (' '?—T'T-l 1_. o i"{..'__L'_ ' l-"\ el |
A MOVE o s'oe Mr. Gathhkell fromm
L MOVE o :\t:a{o My Gauta ka.ﬁ.!L Fvcmft

4 AT - _-.\-_-_.; ?-h" ."L'-L-I".T.-..h'_'l.:'l;_ j.-v..;.nu

ir

Figure 5.2: Non Linear Image Transformations based on Morphological Filtering

5.2.3 Local Affine Transform

The intuition behind the selection of this algorithm is to create local distortions on the letters and not in the
line alone. For this reason, we split the image into a random number of vertical grids. On each grid a control
point was chosen uniformly since we wanted all the points on it to have an equal probability to be selected as
control points. After that, we apply an affine transform in each of these points and by utilizing the Thin Plate

Spline Interpolation Technique [69] we obtain the final image.

5.2.4 Local Morphological Transform

The Local Morphological transform is simply made by spliting the image in a grid and applying randomly
morphological filtering with random values in the kernel each time. So the resulted image has variations in the

letter’s width.

85

A MOVE o svoe Mr. Goaublkell from

{ HOVE Ao .?b(v Mr. G::u(aﬁ.q.(w. ﬂ/ﬂﬂ‘

4 MOVE 47 obze Ads CHre bm oo IE. fverr

Figure 5.3: Local Affine Transform Samples

A MOVE o shoe Mr. Gou b ke Q0. frennm
A MOVE o ohoe Mr. Goubk il frema

A MOVE o déme Mr. Gauto lea 0 frorne

Figure 5.4: Local Morphological Transforms

5.2.5 Other Transforms
Gaussian Blurring

The Gaussian Blur is a type of image-blurring filter that uses a Gaussian function (normal distribution in

statistics) for calculating the transformation to apply to each pixel in the image.

1 z2 492
G(z,y) = o (5.5)

T 2.702

where x is the distance from the origin in the horizontal axis, y is the distance from the origin in the vertical
axis, and o is the standard deviation of the Gaussian distribution. When applied in two dimensions, this
formula produces a surface whose contours are concentric circles with a Gaussian distribution from the center
point. Values from this distribution are used to build a convolution matrix that is applied to the original
image. This convolution process is illustrated visually in the figure on the right. Each pixel’s new value is set

to a weighted average of that pixel’s neighborhood. [9]

86

Noise Induction

Cut Out

MOVE

0

MUV E

MOVE

o

A ==
G

Yo

shoe My Gadko ke Q0

Figure 5.5: Gaussian Blurring

I S | g o 11 fAAn
-i'l-\.-ﬂ'i‘-" [L ——— L U L e .

Figure 5.6: Horizontal Cutout

::"l::lf:u]"-'lq‘" . f:"ﬂL = l{{ILﬂ_E-

Figure 5.7: Vertical Cutout

::":::{n My Gobs ke 0 0

Figure 5.8: Noise Induction

87

[WA,

frona

5.3 Baseline Architecture

Handwritten Text Recognition is by its nature a monotonical sequential problem where we have to convert a
sequence of visual features to a sequence of target units, either character level or ngram level etc. There are

many sequence-to-sequence transduction approaches such as:

e Connectionist Temporal Classification
e Recurrent Neural Network Encoder-Decoder

e RNN Transducer

Among the three aforementioned end-to-end methods, CTC enjoys its training simplicity and is one of the

most popular methods used in the contemporary HTR models and in speech community.

Our first goal is to implement a baseline architecture for HTR and perform experiments on it, so as to find a
good configuration for the model. A single training example is an image of a text line and its corresponding

transcript (ground truth). We make use of the CTC objective function to train our model. *

TAM corpus consists of 79 different characters. As we have mention in a previous chapter, CTC demands an
additional character, the blank, so as to distinguish indentical repetitive characters. So, overall we have 80

classes.
For example, the word "Hello’ is written as "H-e-1-1-0’.

So the alignments have this appearance:

SN

Figure 5.9: Unigram Alignments

Since we have determined the objective function, we need to compute p(c|z,t), the predicted distribution over
output characters c given the image features X at time ¢. While there are many function approximators, the
recurrent nature of the task and the need to model long term dependencies leads to the use of Long Sort Term
Memory Networks (LSTM). Specifically, we make use of Bidirectional LSTM Network since we care for the

context from both sides when processing a feature [(7].

'We utilized the warp-ctc [10] [14]

88

Our architecture is described bellow :

1. Convolutional Neural Networks for feature extraction (Visual Model)
e We are utilizing CNNs so as to generate a number of Activation Maps of the current image.

2. Map-to-Sequence

e Converts the maps into feature vectors by taking the maximum activation in the dimension of height

in every Feature Map.

3. Bidirectional LSTM (Sequence Model)
4. CTC Layer

e A Dense Layer that projects the output of LSTM layer into the dimension of our labels’ space

For improving the performance we :
e add Batch Normalization Layer [38]
e perform Dynamic Data Augmentation (Affine,Morphological etc)

e Apply Dropout in the CTC Layer [70)]

The use of Batch Normalization is widely used in the development of deep learning models because it prevents
the network from being prone to fluctuating input data. This has the effect of making the model more robust
while accelerating the training process. This is the normalization of activation costs based on the mean and

the deviation resulting from the whole batch.

Dropout consists of randomly removing some neurons by resetting them during training. This way the
network does not receive all the information but is required to output a result with a reduced version of it. As

a result, the model generalizes better while avoiding overfitting in training data.

The detailed configuration of the total architecture is :

2 Conv Layers - 32 Kernels 2x2 - ReLU
Max Pooling

4 Conv Layers - 64 Kernels 2x2 - ReLU
Max Pooling

6 Conv Layers - 128 Kernels 2x2 - ReLU
Max Pooling

2 Conv Layers - 256 Kernels 2x2 - ReLU

2 Conv Layers - 256 Kernels 2x2 - ReLU

Max Pooling - Kernel Size hx1
3 Layers BiLSTM - Hidden Size 512 - Input Size 256

Table 5.1: End-to-End Architecture

89

Sequence of Visual s
P . R T
Features :
H : o
i i i H 9,
e j 5 > Bl 2
i : : : = =+
£ 1 : i B o
: : 15| *
‘ L = : ! i 2
[] : : H : T H
[. H 5 e : :
25 l ‘ i i : : -
w ! ¢ : : —
1 H H i s W
]
I
i LsT™ Sequence of Contextual Visual l
h Features
256 Sequence of Probability
t w Distributions
|
[CNN Encoder }

I
| WOVE b0 odop Mr. Gochlell from

Figure 5.10: End-to-End Baseline Architecture for HTR

. B
" —_— : 256

Max Pocling h h
75 x1 w
w
Figure 5.11: Map-to-Sequence Operation
For the decoding process we utilize the CTC Beam Search Decoding implementation. [1] The decoding

algorithm is described here [283]

5.3.1 Experiments
The models are evaluated using the Word Error Rate (WER) and the Character Error Rate (CER) metrics.

Let the decoded transcription be Yye. and the ground truth text Yy, of a text line and wq and w; the

correspondent words on each text line.

The metrics are defined below:

editdistance(Yaec, Ygt) (5.6)
length(Yy:) ’

CER =

90

editdistance(wgq, wy)
WER = ,VYwg € Yyee, Vwy € Y,
Z length(wy) Wd d Wi gt (5.7)
Wd, W
These metrics are based on Levenshtein distance [16]. The Levenshtein distance measures the difference

between two sequences. For example, if two sequences differ by one letter, then the distance is 1. So the
metric CER is essentially the ratio of the number of characters that differ, between the two sequences, to the
total number of characters in the actual sequence. The metric WER is interpreted similarly, except that it is

applied to all the words of the sentence separately and then summed.

BiLSTM Layers

Epochs 70
Learning Rate 1073
Optimizer RMSProp
Pretrained Model None
batch size 8

Table 5.2: Configuration of Data Augmentation Experiments

H BiLSTM layers WER CER H

1 0.2454 0.0708
0.2155 0.0631
0.2047 0.0599
0.2058 0.0612
0.2062 0.0615

U | W N

Table 5.3: Experiments on BiLSTM Layers

From the above experiments, we consider that 3 bidirectional LSTM layers ensure a good trade-off between

the performance of the model, regarding the recognition rate, and the complexity.

Data Augmentation

Then, we applied all data augmentation techniques that we have implemented, in the overall system. The

train and architecture configuration in the same for all the experiments bellow.

Layers 3
Epochs 70
Learning Rate 1073
Optimizer RMSProp
Pretrained Model 2LSTM no augm
batch size 8

Table 5.4: Configuration of Data Augmentation Experiments

91

H Data Augmentation WER CER H

None 0.22185 0.0655

Global Affine 0.1951 0.0577

Global Morphological 0.2107 0.0624

Global Affine + Global Morphological 0.1913 0.0568

Local Affine 0.2034 0.0623

Local Morphological 0.2143 0.0690

Local Affine + Local Morphological 0.2109 0.0621

Nested Global Affine + Morphological 0.1925 0.0568

Nested Global Affine + Morphological Randomly applied to each frame in the batch ~ 0.2006 0.0581

Table 5.5: The effect of Data Augmentation

5.4 Decoding the Network Outputs

5.4.1 External Language Model

A character-based CTC, with significantly fewer targets comparing to higher in scale target units, can
naturally solve the OOV issue as the word output sequence is generated by collapsing the character output
sequence. Because there is no constraint when generating the character output sequence, a character-based
CTC, in theory, can generate any word. However, this is also a drawback of the character-based CTC because
it can generate any ill-formed word. As a result, a character-based CTC without any LM and complex

decoding usually results in very high word error rates (WER)

Moreover, CTC Loss holds property of conditional independence. The model assumes that every output is
conditionally independent of the other outputs given the input. This is a bad assumption in
sequence-to-sequence problems such as HTR/ASR because the outputs are dependent on one another since

they are connected with either visual or language information.

So, we utilize a statistical character-level n-gram language models generated from the LOB and the Brown
corpuses. We note that the Test Set that is contained in the LOB corpus was removed for the Word LM and
Character Level LM generation. The probabilities of this model are inserted during the CTC Beam Search
Decoding [28][1]

Except for the character-level language models, we also created statistical word-level language models with the
KenLM Tool [36]. KenLM tool provides a library that implements two data structures for efficient language

model queries, reducing both time and memory costs.

5.4.2 Decoding Experiments

Below we perform decoding of the same model’s posteriors with different algorithms, utilizing external

language information, character and word level language model.

H Decoding Algorithm WER CER H

Greedy 0.2068 0.0608
CTC Beam Search 2 Char-LM 0.2050 0.0608
CTC Beam Search 3 Char-LM 0.1972 0.0590
CTC Beam Search 4 Char-LM 0.1814 0.0564
CTC Beam Search 4 Word LM 0.1481 0.0460

Table 5.6: Results of decoding with external language information in line level

92

In general, we observe that the higher the level of the statistical linguistic model, the better the recognition
rate. This is due to the fact that as the language model’s class grows, so does the history we take into account
in calculating frequency occurrences. For example, the incidence of a given b is different and the incidence of a
given bed is different. In the latter case, the information is obviously larger and therefore justifies the more

qualitative results we obtain using higher-order language models.

The biggest improvement is with the use of word-level language models. This is justified as words in the

dictionary are favored and are therefore very likely to be constructed during decoding.

93

Chapter 6

Ngram Models

94

6.1 NGram Models

In this chapter we want to explore the below:

e Whether n-gram decomposition of the target sequence can be usefull as a constrain in the decoding

process

e How the existence of multiscale target units in a common CTC Layer can affect the CTC Learning

process.

6.2 Unigram-Bigram Model

In our study, we focus on the case of unigram and bigrams. We are incrementing the target units with
character level bigram classes. The number of bigrams selected and the way selected will be a hyperparameter

for the problem and we are going to examine the effect of it in the model’s performance.

Our motivation for studying this case is to examine whether or not the model can learn better visual features
of letters when it is forced to learn more complex alignments. Secondly, we want to examine whether the

bigram posteriors, used properly in the decoding, can correct some OCR errors.

6.3 Shared CTC Layer Architecture for Unigram-Bigram Model

At first we implement a simple architecture, as the baseline one, since we consider that the sequential model
with 256 dimension hidden units is sufficient enough so as to learn bigram probabilities since bigram and

unigrams hold common information.

The target alignments are formulated as bellow :

(OO

Figure 6.1: Alingments for Shared Unigram-Bigram Model under the standard CTC Framework [27]

95

ol Jol J1o] 10
el Jol Jo] 10

- 0000000

O
o
O
o
O

Figure 6.2: Computation of forward variable a! for Unigram-Bigram Alignments under the standard CTC
framework

What does it mean for the CTC Loss to calculate the probabilities over this specific alignment ?
We know that the CTC Loss marginalizes over the possible alignments that can be created from the target
units, given a specific target text. When the number of target units increases, that means that more possible
alignments will be formulated and the array a! will have stored probabilities for more possible alignments s.

However, the final probability p(l|x) is the sum of all possible alignments, as this equation 3.5

What does the model learn ?
The aim of maximum likelihood training is to simultaneously maximise the log probabilities of all the correct

classifications in the training set. That means minimising the following objective function:

— Y in(p(ela)) (6.1)

(z,y)€S

So, for evaluating the train loss, we need to keep in mind that the smaller the better. And when the loss gets

smaller means that higher probability is asigned in the alignments that correctly fall into the groundtruth text

Why do we select these types of alignments ?

We want to constrain the choice of the next unigram, based on the bigram that appeared between them.
How do we select bigrams ?

The Intuition behind the bigram selection policy is the bellow.

e Just like a character level LM, we care only about the lower case letters, so we will focus on these

bigrams.

e Bigrams from all the 79 unigram classes will be a computational overhead both for the network and the

decoding algorithm.

e Observing handwritten datasets, the cursive nature of them is mainly spotted in the words, neither in

numbers nor in symbols.

96

Thus, our targets for constraining the unigrams, are the bigrams formulated from lowercase letters. These

bigrams are totally 26 * 26 = 676. From them, we can explore different schemes, such as the n most frequent
etc. Bellow are some examples :

So, bellow we can see all the alignments of word "Hello’ for different number of bigrams.
e 50 Bigrams : H-e-el-1-1l-1-0
e 100 Bigrams : H-e-¢l-I-1l-1-lo-o0
e 150 Bigrams : H-e-el-1-1l-1-lo-o
e 200 Bigrams : H-He-e-el-1-11-1-lo-0
e All Bigrams : H-He-e-el-1-1l-1-lo-o

Training Plots of Shared CTC Layer

Mean Train Loss per Epoch
10
e CTC Train Loss

Mean Train Loss per Epoch
1000

—— CTC Train Loss

600

T LA
2 \//&\\/ \//\

Train Loss
Train Loss

w0 |

50 52 54 % B
Epochs Epochs

(a) Mean CTC Train Loss for 100 Bi- (b) Mean CTC Train Loss for 100 Bi-
grams + Unigrams grams + Unigrams in last epochs

Mean Train Loss per Epoch

Mean Train Loss per Epoch
~%— CTC Train Loss —— CTC Train Loss
2000 A

G
8

Train Loss

1000 |

Train Loss
|
/

500 \

e,

o ettt e e seertertrrrrrererereeseseeee

0 10 20 30 40 50

60 54 55
Epochs

Epochs

(¢) Mean CTC Train Loss for 150 Bi- (d) Mean CTC Train Loss for 150 Bi-

grams + Unigrams grams + Unigrams in last epochs

From the above plots, we conclude that CTC Loss is slightly affected from the number of target units in
Unigram-Bigram Case.

97

Then, we have to test whether the model’s performance has changed with the addition of bigrams as target
units. One possible way to prove this is, is to perform simple greedy search in the decoding, by expressing

only the unigram and ignoring the bigrams.

Layers)
Epochs 60
Learning Rate 1073
Optimizer RMSProp
Pretrained Model GA3layers
batch size 8

Table 6.1: Configuration of Unigram-Bigram Experiments

CTC Layer WER CER
H |

Unigram 0.2068 0.0608
Unigram + 50 Bigrams 0.1903 0.0570
Unigram + 100 Bigrams 0.1988 0.0593
Unigram + 150 Bigrams 0.1995 0.0593
Unigram + 200 Bigrams 0.1974 0.0583
Unigram + 676 Bigrams 0.2002 0.0601

Table 6.2: Greedy decoding performance utilizing only unigrams and ignoring bigrams

From the above experiments, we can conclude that the model benefits from the addition of bigrams, but this
happens only for a small amount of them. So, from the one side, it can learn some bigrams at the same time
with unigrams but not all bigrams since it cannot encode them in the same CTC Layer. This can be seen from
both the train plots and decoding. In the train plots we see that the CTC Loss finds it difficult to converge to
a smaller value and from the decoding, the WER/CER recognition is getting better only with a small number

of bigrams.

98

6.3.1 Proposed Algorithms for Decoding Unigram-Bigram Model

Now that we have used additional classes in the output, and these share common information with the
unigram classes we need to implement algorithms that are adapted to this change and also utilize the bigram
information in several ways. There are two ways of utilizing bigrams in the decoding. The first one is to utilize
bigram probability for extending the bigrams and bigram probability for scoring each unigram extension when
applied.

The first step that we need to perform before start writing down the decoding algorithm, is to think about
what the network has trained to learn. In our case, we feed in the CTC Loss, alignments that between
unigrams, place a bigram if it exists. For example, the word "Hello’ is converted into "H-He-e-el-11-1-1-1o-0’. In
our case though, where we do not consider all bigrams in the target units, a missing bigram is represented by
the blank character.

So, we conclude that after a unigram we should observe either blank characters or a bigram. In this idea we
will support the first algorithm which utilizes bigram posteriors as a score for enhancing the transition

between two unigrams through the probability of the contained bigram.

Note: We are developing algorithms with the assumption that the networks does not ignore in the output
more than one target units. That means that we take into account all the cases of alignments that one

unigram or one bigram is ignored, although existed in the targets classes.

Example :

e a-ab-b-cd-d : In this case, unigram c is not expressed

e a-b-bc-cd-d : In this case, bigram ab is not expressed

The first algorithm utilizes the unigram posteriors for extending at each time step every unigram and the
bigram posteriors for scoring the extension of each unigram. The bigram scoring can be defined with several

different ways.

Let us denote as u; the last character of the already formed string, s, that was selected at time t; and as wu;41
the character to extend at time t;11. Let BS be the Bigram Score for the extension of string s with the

character u;y1. This is defined as follows:

BS = maz(Pr(uiui+1,ti : tH_l\x)) (62)
The bigram score can also have alternative definition as follows:

Let us denote as u; the character to extend at time ¢ and w a window size in the time dimension. We
symbolize B the set of available bigrams starting from u; and as C the set of bigrams ending with u;. The BS

Bigram Score is defined as follows: defined as follows:

1st case : Looking Forward

BS = max max Pr(b, t| X) (6.3)
t beB

99

2nd case : Looking Backward

BS = rtrfax max Pr(c,t|X) (6.4)
3rd case : Looking in Both directions
BS = max (mtax max Pr(c, t|X), Ak max Pr(b, t| X)) (6.5)
t—w ceC t beB

Algorithm 3 CTC Beam Search - BigramScoring

1: procedure CTC BEAM SEARCH(P, W) © P is the Posterior Probabilities’ Matrix, W is the Beam Width
2 B « {0}, Blank(®,0)

3 for t=1...T do

4 D <+ BestBeams(B, W)

5: Beams < {}

6 for b in D do

7 if b != 0 then

8 NonBlank(b,t) + NonBlank(b,t — 1) - P[b°,t,|X]

9: end if

10: Blank(b,t) < Total(b,t — 1) - P[blank,t|X]

11: AddBeam(newbeam, b)

12: for character in Characters do

13: NewBeam + b+ character

14: Blank(newbeam,t) <+ 0

15: if k = b° then

16: NonBlank(newbeam,t) = Plk,t|z] - Blank(b,t — 1)
17: else

18: NoneBlank(newbeam,t) = Plk,t|z] - Total(b,t — 1)
19: end if
20: AddBeam(newbeam, b)
21: BigramScore(newbeam, b, t)
22: end for
23: end for
24: end for

25: return mameBeamsTOtal(y7 T) . BS(y7 T)
26: end procedure

Algorithm 4 BigramScoring Procedure

1: procedure BIGRAMSCORE(NewBeam, b, t)

2 bigram = b[—1] + NewBeam|[—1]

3 if bigram € Bigrams then

4: TransitionProb = BackwardBS (bigram)
5: end if

6 for bigram in Forward Bigrams do

7 ForwardProb = ForwardBS (bigram)

8 end for

9: return max(TransitionProb, ForwardProb)
10: end procedure

100

In the second algorithm we create the substring exploiting all the possible cases that a transcript can be

created from, either unigrams or bigrams.

The second algorithm that exploits both unigrams and bigrams for extending each time is more complex and

we need to define some rules first in order to make it work properly.

e When the next character is a bigram, we only extend by bigram and properly adapt the already formed
string. This is due to the fact that when we need to copy the bigram in the next step we need to find it
as a last character (Insted of extending unigram and annotating that this unigrams has come from a
bigram)

e When the last character is unigram, we will now that it will be the outcome of a unigram extension only.

Last Unigram is always result of a unigram Extension.

e Last Bigram is only result of a bigram extension.

A common extension in the algorithm is to first extend by unigram and then substitute this unigram with the
correspondent bigram. This is legit, since the alignments are formulated like this a-an-n, and so the algorithm
meets firts the highest probability in the ’a’ character and then in the ’an’. So, we conclude that a unigram
can be substituted by bigram and a bigram can be substituted by unigram since the last unigram if the

bigram can be wrong. (Case : c-a-an-m-e for came, ’an’ bigram is wrongly recognized here)

During the development of the algorithm we observed that probabilities where downgrading after a bigram
extension. Because bigram plays the role of blank character we end up that for keeping hight the probability
of the bigram as a non blank character we need to include in the Non Blank Probability a portion of the
Blank. And that is due to the dual role of the bigram. So, a conlusion is that the existence of both bigrams
and blanks is redundant. This will lead to the final proposal of a new ngram ctc that will learn alignments
without blank character.

101

Algorithm 5 CTC Beam Search - Unigrams and Bigrams Extension

procedure CTC BEAM SEARCH(P,W) © P is the Posterior Probabilities” Matrix, W is the Beam Width

B <« {0}, Blank(0,0)
for t=1...T do
D < BestBeams(B, W)
Beams « {}
for b in D do
if b != 0 then
if lastchar is Bigram then

NonBlank(b,t) < NonBlank(b,t — 1) - (P[b,t|X] + P[b°,t|X]) + a -

Plblank,t| X]
else

NonBlank(b,t) < NonBlank(b,t — 1) - P[b%,t|X]

end if
end if
Blank(b,t) « Total(b,t — 1) - Plblank,t|X]
AddBeam(NewBeam, b)
for k in TargetUnits do

if k is Unigram then

if ¢ is Unigram then
ExtendUnigramByUnigram(b, k)

Total(b,t — 1) -

> Copy Beam

> Extend Beam
> By Unigram

else
ExtendBigramByUnigram(b, k)
end if
else > By Bigram
if b° is Unigram then
ExtendUnigramByBigram(b, k)
else
ExtendBigramBigram(b, k)
end if
end if
end for
end for
end for
return maz,cpeamsT otal(y,t)
end procedure
Algorithm 6 Unigram-Bigram Procedure 1
1: procedure EXTENDUNIGRAMBYUNIGRAM(b, k)
2 NewBeam < b+ k
3 Blank(NewBeam,t) < 0
4 if k = b° then
5: NonBlank(NewBeam,t) = Plk,t|z] - Blank(b,t — 1) > aa
6 else
7 NonBlank(NewBeam,t) = Plk,t|z] - Total(b,t — 1) > ab
8 AddBeam(NewBeam, b)

9: end if
10: end procedure

102

Algorithm 7 Unigram-Bigram Procedure 2

1: procedure EXTENDBIGRAMBYUNIGRAM(D, k)

2 if b = k then

3 continue > th h is th
4 else

5: NewBeam <~ b+ k > ab c is abc
6 NonBlank(NewBeam,t) < Pk, t|x] - Total(b,t — 1)

7 AddBeam(NewBeam, b)

8 end if

9: end procedure

Algorithm 8 Unigram-Bigram Procedure 3

1: procedure EXTENDUNIGRAMBYBIGRAM(D, k)

2 a] = k[O]

3 as = k‘[l]

4: if b¢ = a; then > a ab is ab
5: NewBeam = b+ as

6 NonBlank(NewBeam,t) < Pk, t|x] - Total(b,t — 1)

7 AddBeam(NewBeam, b)

8 end if

9: NewBeam =b+k > a bc is abc
10: NonBlank(NewBeam,t) < Plk,t|z] - Total(b,t — 1)

11: AddBeam(NewBeam, b)

12: NewBeam = b[: —1] + k > a be is be
13: NonBlank(NewBeam,t) < Plk,t|z] - Total(b,t — 1)

14: AddBeam(NewBeam,b)

15: end procedure

Algorithm 9 Unigram-Bigram Procedure 4

1: procedure EXTENDBIGRAMBYBIGRAM(b, k)

2 a] = k[O]

3 as = k[l]

4 if b° = a; then

5: NewBeam <+ b+ as > ab bc is abe
6 Blank(NewBeam,t) < 0

7 AddBeam(NewBeam,b)

8 else

9: NewBeam <~ b+ k > ab cd is abed
10: NonBlank(NewBeam,t) < Pk, t|x] - Total(b,t — 1)

11: AddBeam(NewBeam, b)

12: end if

13: end procedure

103

6.3.2 Output Analysis for Revision of Proposed Algorithms

Probabilities comes from the Unigram 4+ 50 Bigrams Model.

Test Set Example 1

Original : He rose from his breakfast-nook bench

Greedy Decoded : He lose from his bieakfit-nook bench

10

0.8

o
o

o
'S

probabilities

0.2

0.0

1.0

0.9

posteriors
I3 =] o
[=3] ~ W

o
n

o
IS

He rose from his breakfast-nook bench

He rose from his breakfast-nook bench

WW.
° L] ° - ® ™ L 1.0 L] -
L] ‘ .I H i - J(i
. .
« 1 ° . . . 0.8 s &0 i ‘
. . . pn:
* . o* ¢ (o] b
. . ¢ 0.6 < ¢ -
. g »
. . g
. ¢ L) g 0.4 -
[] . . = U
n. . . i & IL . ot
. . @ g
* . * . . 0.2 b .
. * a . &
. . * * . L . & u 4
PRpT | P L & o A s el JRu
0 50 100 150 200 25 50 75 100 125
timesteps timesteps

(e) Top 2 Probabilities

He rose from his breakfast-nook bench

< RaRipndin @kl Lo fegh
L e P =

d
. i
do
b
o
0 50 100 150
time

(g) Greedy Alignments

L

150

s
-«

175

&h
L
&N

200

(f) Probabilities between 0.55-0.98 and their transcripts

200

Figure 6.3: Example 1

104

(h) Test Image 1

He jove Jiowe Uy bigakfa-neot Decd

Problem Detected 1 : In timestep approx 30 [holds a big probability as a unigram. However, looking
forward in a window size of 20 we do not see any bigram probability starting from [, although there are
bigrams starting from [in the target units. This case outlines misrecognition, and this should be surpassed by

our proposed algorithms.

Timestep | Text | Next Char | CTC Score | Bigram Score | Total Score

35 He |1 6.86-107% [3-1071 2.058 - 103
He r 3.43-107% | 0.0329 0.1128

37 He 1 1.0898 3.107% 3.2694 - 1074
He |r 0.0104 0.0329 3.4216 - 1074

Table 6.3: Bigram scoring algorithm effect

However, because at the next timestep the [probability was high - the model was 100% sure about this

expression - the [finally was expressed in the output target.

105

Test Set Example 2

Original : Heather and Steve stood aghast at
Greedy Decoded : Heatler and Meve ood aglan at

Heather and Steve stood aghast at

Heather and Steve stood aghast at

1.0
1o o e & . eee a & e 7 ohee
. . « * . £ . a .
. . o o ten &
0.8 . b . . 0.8 ¢ . .)
. - . . - £ - &
4] . 1) . ﬁt
g 06 - . g 0.6 e
= . (I =
a 4 a
[. o
o L] fe] -
g 0.4 ., » g 0.4 < o
. " . - at Ve rd ~
0.2 * HES . 0.2 . s " 4
L] L] - L]
e
* YA ° . . * . - = - ’ Je o & #
0.0 s 'Y 2a 2 * g0 O 0.0 - ﬁP 5 - g0 @
0 50 100 150 200 25 50 75 100 125 150 175 200
timesteps timesteps

(a) Top 2 Probabilities

posteriors.

> e x

(b) Probabilities between 0.55-0.98 and their transcripts

Heather and Steve stood aghast at

« T xx « x «
Hooedy ey ijL LR & éj‘_p w Mo B AL AR B
e x~ oE -
£n .
s A =
x . «
0
estUnirams x -
Second Best Character x a -
Jle
“
At Vye o
< L d
n
. 2 " ne " d
A Wed tewell cun. . lumel B L L aplool 8

Hoaotlef

50 100 150 200

timesteps

(c) Greedy Alignments

ondl Newe Yoo Qﬁ[)ﬁ)ﬂ o

(d) Test Image 3

Figure 6.4: Example 2

106

Probabilities comes from the Unigram 4+ 100 Bigrams Model.

Test Set Example 1

Original : He rose from his breakfast-nook bench
Greedy Decoded : H e 1 loo ssee f rooomm h hiiiss b i iecea a k f aas sst t - n noo o k b eenn nc cchh

He rose from his breakfast-nook bench He rose from his breakfast-nook bench

1.0
1.0 o oy ", o anéh
o _.f- . * o = L - fo o5 ne 1S — i
[1) L] L] -
L ([
08 * 0.8
a Ll
. .
w L wn m
g 0.6 . g 0.6 1
= L] =
) . . E
o] L] = .
204 204
(=} . [=} o
L] . p
0.2 . 0.2 o
° . S J F toe
. . Og5 .
0.0 NS Y S L R 0.0 AN S e ¥ ae
0 50 100 150 200 50 5 100 125 150 175 200
timesteps timesteps
(a) Top 2 Probabilities (b) Probabilities between 0.55-0.98 and their transcripts

He rose from his breakfast-nook bench

P He, o5, g xS bR KL« e 0D 0k Qxeﬁnw%%

f
- = = nc
-
0
a n
0
o X BestUnigrams =
s © BestBigrams N
2 A Second Best Unigram '
g + Second Best Bigram R
0
yel
02 a
R
Jo
1 £a . .
oo IS He fu wo, o s b oo d kS, itheme k. b M ngh

0 50 150 200
timesteps

(c) Greedy Alignments

e 1o Jiowe Ly Dieatfer -neot Decd

(d) Test Image 1

Figure 6.5: Example 3

107

Probabilities comes from the Unigram 4+ 150 Bigrams Model.

Test Set Example 1

Original : He rose from his breakfast-nook bench
Greedy Decoded : H e 1 looos s see f fii iooon n hhi iis s b iieeea aac k f faaai iit t - n nooos s k b een n nc ¢

chh

He rose from his breakfast-nook bench He rose from his breakfast-nook bench

1.0
1.0 = vy — g N i TG I
o
et ° ° a. | -
0.8 0.8
. % d .
n B " & It
2 0.6 . 2 0.6
= ° = .
o o
[o
o L =) -
204 . 204 s
=3 . Q &
. . - Jic
0.2 ., 0.2 .
] ® . . e § & Py
~ [=
0.0 [} A a2 88 ‘ 0.0 40 . - pq) 'y
0 50 100 150 200 60 80 100 120 140 160 180 200
timesteps timesteps
(a) Top 2 Probabilities (b) Probabilities between 0.55-0.98 and their transcripts
He rose from his breakfast-nook bench
10 H Lo BB BN MLIB DI L it B ED K < R @i
= x
« - .
os
di ~
k
os
2 x sestungmns
£ | o ebyums
K A Second Best Character
c
o nc
o2
s z h
jo)
w M £ deose, f fBOD Ahies s b wusmec k ol J1 S AR3 K L b uemel
o © 50 20

timesteps

(¢) Greedy Alignments

He 1oxe Jiowe Ly Dieatfevi-neot Lecd

(d) Test Image 1

Figure 6.6: Example 4

108

Probabilities comes from the Unigram 4+ 200 Bigrams Model.

Test Set Example 1

Original : He rose from his breakfast-nook bench
Greedy Decoded : H He e llo oos ssee fIr rro oom m L iiss bbr rre eea aak k ffa cci iit t - nno oos s k b een

nnc cch h
He rose from his breakfast-nook bench He rose from his breakfast-nook bench
10 o v Lo Jpo'" L P
¢ et oy . £ o o A
. da 'y
L] L ; §
¢ . 08
0.8 ® - [N
. [=
3 . 8 06 5
g 0.6 ° - ~ . L] L] g : ak '} . Jc
o . © K i
© A . ©
2 .) a o o
204 204
a a
L] ‘ 'S
. * o a
i
0.2 . . LS 0.2 Pl = —p
L3 L] .
0.0 hd * e, .' SERERCIN N P 0o ﬂe . .fJOL J :e & %@ (8 « &
0 50 100 150 200 25 50 75 100 125 150 175 200
timesteps timesteps
(a) Top 2 Probabilities (b) Probabilities between 0.55-0.98 and their transcripts

He rose from his breakfast-nook bench

woox QEUMXL%QH&XE_;&L&,@@LLJM Worolho x x K, o« B 8Bl
4o i

& 0
= “
n
£ s
as N
os
as o
A Jc
5 R e A £ en
I J L _ e
0
E o
02 i . <o
2 7 J P ~ a
00 N H B dagme o frQomm ~ LS, Wbr fleaakk cai dtusnoosakke . by nghh

0 50 100 150 200

timesteps

(¢) Greedy Alignments

He 1oxe Jiowe Ly Dieatfevi-neot Lecd

(d) Test Image 1

Figure 6.7: Example 5

109

Probabilities comes from the Unigram 4 676 Bigrams Model.

Test Set Example 1

Original : He rose from his breakfast-nook bench

Greedy Decoded : H e llo oos sse e fIr rro oon n L iis s bbr iie eea aak kdf ffo oos iit t- nno oos ook k bbe
eea aac cch h
He rose from his breakfast-nook bench He rose from his breakfast-nook bench
1.0
1.0 = == (g v, - o (N 'y s re K
L]
L] L] . e = pr
0.8 -~ 0.8 o
d o
o P . & B
206 . x L2106 d ac
= . L] [] =
5 * . E
S04 ° = S04
s . = . g Jd JC
. e
t
02 .- ¢ 02 . g
. . . ° ? I i en
. .
0.0 L Semank S 0.0 & oo | ok
0 50 100 150 200 50 75 100 125 150 175 200
timesteps timesteps
(a) Top 2 Probabilities (b) Probabilities between 0.55-0.98 and their transcripts

He rose from his breakfast-nook bench

10 x H e loasee .ffitogn xn,u& Lp&%;&op_x&-y_ mqg_ﬁk# « obg .Eh h

X

x br
o N
i 0
it =
Ny ac
g * s a
2 A Second Best Unigram os 00
g [—— re
04 oi a
' nc
s
. s &
! 3
w wp H e femmef gicgm T U gss |) relegats a1 mo, Bk . Jhesaacch n
: . i =

timesteps

(¢) Greedy Alignments

He 1oxe Jiowe Ly Dieatfevi-neot Lecd

(d) Test Image 1

Figure 6.8: Example 6

110

Further Analysis of Alignments
What are our target errors that we want to correct?

Bellow we showcase a problematic case that we target to solve by utilizing our proposed algorithms. This is

when a unigram has a mismatch with bigram, either looking forward or looking backward or in both directions.

That means that we have 3 kinds of mismatches.

¢‘

Figure 6.9: Both Directions Mismatch

—

Figure 6.10: Backward Mismatch

30/

Figure 6.11: Forward Mismatch

?

So, in order to see some improvement in the decoding we need to find cases that bigrams can correct a

wrongly recognized unigram. So we need to count all the mismatch cases.

After calculating the mismatch instances, we found out that only a very small percentage of mismatches occur

in the test set. That explains why our proposed algorithms lead to same results as decoding only unigrams.

111

6.3.3 Decoding Experiments

Model Algorithm WER - CER
50 Bierams Bigram-Scoring 0.2100-0.0626
& Unigram-Bigram Extension | 0.2090-0.0591

Table 6.4: Experiments on proposed algorithms for shared unigram-bigram model

6.4 Conclusions

We can conclude that bigrams, the way modeled, were not helpful in the decoding process since in most
amount of cases the bigrams were always following the unigrams although both or one of them were wrongly
recognized. So, there was no additional information to leverage from bigrams that could lead to an

improvement.

This approach has the drawback that the alignment between unigrams and bigrams demand a blank character
since CTC Loss is this way implemented. This is unnecessary if we keep in mind the reason that the blank
character was invented. Blank Character was utilized so as to allow consecutive identical characters to appear
in the decoding. However, when we are utilizing unigrams and bigrams this is not valid since the presence of

bigrams allows the existence of consecutive identical unigrams.
For example :
e H-e-el-l-l-lo-o. I’ bigram absent from bigrams’ set. So blank character is needed in the alignment.

e HHeeelllllloo. Bigram Set contains all the possible bigrams created from the unigrams. Here the

blank character is not needed.

The last case generates the need of the creation of a modified CTC Loss where the presence of blank character

into the alignment will be depended on the set of bigrams.

All in all, the future directions of this part of the work may include the development of a new CTC Loss
similar to the Gram-CTC [12] approach for learning a hybrid segmentation of a word into unigrams, bigrams,

trigrams etc.

112

Chapter 7

Hierarchical and Multitask Learning in
HTR

113

7.1 Hierarchical and Multitask Approaches in HTR

As we saw in the previous chapter, forcing the network to learn more complex alignments that are composed
of higher level scale target units do not lead to a significant improvement neither in the decoding process nor
in the learning one. In this chapter we focus on decoupling the higher level target units from the unigrams and
study how the additional information can affect the learning process by learning better representations that

will be more able to discriminate optically identical cursive characters.

A different approach for combining multiscale target units in an end-to-end neural architecture are the
Multitask Architectures and the Transfer Learning Technique. In the first one we utilize pretrained models
that are taught to recognize smaller, in scale, target units and transfer this knowledge for learning higher level

at scale ones. In the second approach, we train simultaneously all the target in all the scales.

7.1.1 Possible Architectures for Multiscale-Target Models

e Multitask Architectures, includes models that are trained jointly to different scales of target units.

e Transfer Learning. That means, training a network to learn unigram alignments and then utilize

Transfer Learning from the unigram level so as to be trained the with bigrams etc.

HTR
Single Task Multi-Task
Transfer Learning Hierarchical
Shared CTC Layer Block

Figure 7.1: A taxonomy of implemented architectures for HTR

114

7.1.2 Hard Parameter Sharing for Unigram-Bigram Model

The second architecture for the Unigram-Bigram model applies Transfer Learning for trainning a Bigram

HTR model. The pretrained model is a unigram-level 3 Layer BiLSTM. The model is forced to learn
"sliding-window" alignments.

For the bigram layer, our classes are all the possible bigrams, that can be created from all the IAM unigrams

plus the blank character. That means, that the output CTC layer has 79*79 + 1 classes, so 6242 classes.The
alignments are formulated as bellow :

Figure 7.2: Alignments for Bigrams

So, the alignment for word "Hello’ is : He-el-1l-lo

Trainning and Decoding the Network Outputs

For Trainning Bigram Models we utilize Transfer Learning from a Unigram Model and apply Data
Augmentation Techniques. We train the models for 20 epochs, since we believe that there needs a small

number of epochs for the Bigram Model to infer the bigram posteriors from the Unigram ones

Train Loss

2000

1750

1500

5
]

1000

~
a
=}

250

—f+— Train Loss

Mean Train Loss per Epoch
Mean Train Loss per Epoch

—'\’— Train Loss

Train Loss
T~

‘.‘ ” \/-/”{{_4 \
o+

\
. 28
.
I R It U GRS B
25 5.0 75 100

Epochs

12.5 15.0 17.5 20.0 13 14 15 16 17 18 19
Epochs

(a) Train Loss at all Epochs (b) Train Loss at last Epochs

Figure 7.3: Train loss in bigram model training

—

20

In the terms of Decoding, in the learned alignment there are 3 different decoding schemes that can be applied.

If the consecutive selected units share a common unigram (He - el), we merge. However if they do not, there
are the choices bellow :

e Accept them both, for example Ha — el < Hael

115

e Accept the already existed character and extend by the last unigram of the new, for example
Ha — el + Hal (Greedy-2)

e Accept the new unigram, substitute the old one with it and extend by the last unigram of the new

target, for example Ha — el < Hel (Greedy-3)

e Decide what to accept based on the Character Level LM probability. (Greedy-4)

We perform decoding experiments on the above trainned bigram model based on these schemes.

Comparison of CER in different Decoding Schemes Comparison of WER in different Decoding Schemes
-4+ CER-Simple Decoding CER-OId ~4%— WER-Simple Decoding WER-Old
016 —A— CER-New —— CER-Im —+A— WER-New —— WERIm
\ 040

0.14

r 012 o
]
3 S
0.30
0.10
0.08 0.25
= .
—
0.06 25 5.0 75 10.0 12.5 15.0 17.5 20.0
25 5.0 75 10.0 125 15.0 17.5 20.0 } : . E h : : . :
Epochs pochs
(a) CER (b) WER

Figure 7.4: Comparison WER/CER in proposed bigram decoding schemes

Layers)
Epochs 20
Learning Rate 1073
Optimizer RMSProp
Pretrained Model 3 Layers Unigram Model
batch size 8

Table 7.1: Configuration of data augmentation experiments on bigram model

116

H Data Augmentation Technique WER CER H

Global Affine 0.2459 0.0720
Global Affine + Global Morph 0.2512 0.083
Global Augmentation per image frame on batch 0.2171 0.0651

Table 7.2: Data augmentation in bigram Model - greedy decoding (Greedy-Old)

Visualization of Bigram Alignments Comparing Unigrams

In this section we want to compare the relative position between bigram and unigram alingments, in order to
see whether a bigram is expressed between unigrams when the network has not learned it this explicitly

through the trainning.

He rose from his breakfast-nook bench

W . He oot .l oo b i8R kR judiy @ w0 b &5
n

[

s

0 50 100 150 200
timesteps

Figure 7.5: Unigram Greedy Alignment

He rose from his breakfast-nook bench

10 . Hel lo pge.f loon . kb bie acle glkgao . .b o be pgh
£ T di ° £n

k

probabilities

ok
Ji

0 50 100 150 200
timesteps

Figure 7.6: Bigram Greedy Alignment

117

He rose from his breakfast-nook bench

. I HHelloopse. L Lo o ifh b bRe kol plkgeo o .b b ke ot
e T I an

sk

probabilities

kk

Ji

0 50 100 150 200
timesteps

Figure 7.7: Unigram and Bigram Alignments

Probabilities come from the bigram model with the best scores from the table.

From the above plots, we can see that although bigrams are not trained to appear between unigrams, we see

that CTC localizes them in the same place as when they where trained in the shared CTC Layer.

This approach has several drawbacks and due to them we will not keep on experimenting.

e LLSTM and in general RNNs need task-specific fine tuning when pretrained models are used. This can
lead to the so called catastrophic forgetting. That means that it is probable to lose the unigram
information so as to perform a simple decoding. If we want to perform decoding with higher level target
units such as bigrams we need to include them all as target units and this is kind of exploding in the
amount of target units. Moreover, this approach is difficult to scale in trigrams, fourgrams etc for the

same reasomn.

e Greedy bigram decoding do not perform as good as unigram decoding.

118

7.2 Hierarchical Multitask Learning with CTC - An Application to
HTR

Introduction

In Machine Learning (ML), we typically care about optimizing for a particular metric, whether this is a score
on a certain benchmark or a performance indicator. In order to achieve this, we generally train a single model
or an enseble of models that combined all together with one way we succeed a desirable outcome.While we can
generally achieve acceptable performance this way, by being focused on our single task, we ignore information
that might help us do even better on the metric we care about. Specifically, this information comes from the

training signals of related tasks. By sharing representations between related tasks, we can enable our model to

generalize better on our original task. This approach is called Multi-Task Learning (MTL).

Advantages of Multitask Learning

MTL effectively increases the sample size that we are using for training our model. As all tasks are at least
somewhat noisy, when training a model on some task A, our aim is to learn a good representation for task A
that ideally ignores the data-dependent noise and generalizes well. As different tasks have different noise
patterns, a model that learns two tasks simultaneously is able to learn a more general representation.
Learning just task A bears the risk of overfitting to task A, while learning A and B jointly enables the model

to obtain a better representation F through averaging the noise patterns.

e Attentions Focusing : If a task is very noisy or data is limited and high-dimensional, it can be
difficult for a model to differentiate between relevant and irrelevant features. MTL can help the model
focus its attention on those features that actually matter as other tasks will provide additional evidence

for the relevance or irrelevance of those features.

e Eavesdropping : Some features G are easy to learn for some task B, while being difficult to learn for
another task A. This might either be because A interacts with the features in a more complex way or
because other features are impeding the model’s ability to learn G. Through MTL, we can allow the
model to eavesdrop, i.e. learn G through task B. The easiest way to do this is through hints [11], i.e.

directly training the model to predict the most important features.

e Representation bias: MTL biases the model to prefer representations that other tasks also prefer.
This will also help the model to generalize to new tasks in the future as a hypothesis space that performs
well for a sufficiently large number of training tasks will also perform well for learning novel tasks as long

as they are from the same environment [15].

e Regularization : Finally, MTL acts as a regularizer by introducing an inductive bias. As such, it
reduces the risk of overfitting as well as the Rademacher complexity of the model, i.e. its ability to fit

random noise.

119

The Hierarchical Structure of Human Language and Learning

Human Language, either spoken or written, is hierarchical. It is generated from smaller units, can call them
language quantums. In spoken language, the correspondent quantums are the phonemes. In written languge,
the fundamental quantums are the simple characters, called unigrams. Combining the quantums on each case,
we take higher level tokens in both forms. If we keep on building finally we will see formed sounds and words
and if we going on, whole spoken and written sentences will be formed. And sure, when whole sentences are
formed, further information is generated and this refers to the syntactic and the semantic information of
language. If we keep on unzooming, we go beyond recognition. And beyong recognition is language

understanding.

This hierarchical structure is also observed in the learning process a human learns a language. We begin from
the quantum units that form each language. This is the alphabet. We learn both how to write them and how
each letter is pronounced. Then we learn how to combine them so as to form written and spoken words.

Going even higher in the scale, we learn how to give meaning to words by reading or hearning many words in
context. However, most of the times in our early years mainly we have someone to give meaning to our words

and label them in order to learn their meaning or their position in sentence.

So we can motivate multi-task learning from the Human Learning process by imitating the way we learn to
read. Our task is focused on recognizing the handwritten lines and not understanding the content of them.
Moreover, the TAM database was built this way. To go beyond recognition we need have vast amount of

Handwritten Documents that will have semanticaly rich content. Maybe understanding or semanticaly rich

content would help in recognition.

7.2.1 Multitask Learning

In this section, we implement Multitask Models that the are going to be trained jointly with the
correspondent task-specific train objective. By sharing representations between related tasks, we can enable

our model to generalize better on our original task. This approach is called Multi-Task Learning (MTL)

This approach is inspired by the ASR domain and the paper "Hierarchical Multitask Learning with CTC"
from [66]. The author implements a hierarchical architecture as depicted below. The number of target units is
considered a hyperparameter and these are extracted with the Byte Pair Encoding Algorithm (BPE), an
unsupervised subword segmentation algorithm. For Decoding, he utilizes simple greedy search or shallow

fusion with unit-specific LM composed of two unidirectional LSTM layers.

Each BPE step/operation performs a unit merging. For that reason, the number of BPE operations roughly
defines the number of units of the target set. For instance, if two targets in our vocabulary are ‘HELL’ and
‘O’ and they appear together frequently, by applying a BPE operation we can merge them in a new target

unit: ‘HELLO’This operation can be repeated an arbitrary number of times until converging to a target set

that contains all words of the vocabulary.

Then he makes a comparison between Hierarchical Multitask Architecture and Single Task Architecture. He
concludes that at lower level the model predicts few and general targets, such as characters, and at the higher
layers the model predicts highly specific and abstract targets such as words. The success of the model, is due
to the fact that the model has learned better feature represeantations and thus it can recognize better each

target.

120

L]

//]
e
. BILSTM g—*; gg i
=2,M (M L | U U=z R
§ b2) P
§00 e o g
- (o —E(d| £33
e,y tttrt U u-_“i‘g
'y =
EH S
EE_)J) Shared
— Encoder

Figure 7.8: Hierarchical multitask learning with CTC for ASR [(0]

Except from the HMTL, author also refers to the Block Multitask Architecture.

Char ‘ Subword300 ‘ ‘ Subword 1k ‘ Subword10k ‘

CTC Loss '. CTC Loss CTC Loss CTCLoss

= \(= @

(masm) C _.sru)] (mru) (msm)
~. 7

"\'I'ask-spaclﬂc/ Task-specific \ Task-speclﬂc \ Task-specific

BILSTM n

Figure 7.9: Block multitask learning with CTC for ASR [66]

We are going to adapt the Multitask Approach for Handwritten Recognition since to the best of our
knowledge we do not know any published work that investigates the Multitask framework in the HTR domain.
We are optimistic that this approach will bring gain to the recognition rate. It encapsulates the idea of
curriculum learning and also mimics the way that we, humans, learn to read. In our case, it is critical to study
till which specific extend this hierarchicity can be applied since data play a crucial role when it comes to the

extending further the scale.

We experiment with both HMTL and BMTL Architectures. At first we use as target units in the first level

the unigrams and in the second level all the bigrams formed by the 26 unigrams.

121

Our Block Multitask Architecture is descibed above :

Let E be a sequence of features extracted from the CNN Encoder and the Max Pooling Operation as

described in Baseline Model in section 7?7 and X the input volume.

E = SharedCN N Encoder(X)

Eunigrams = BiLST Mypnigrams(E)

Ebpigrams = BiLST Mpigrams(E)

Yunigrams = Softmax(Denseunigrams(FEunigrams))

)/bigram = Softmax(Densebigrams (Ebigrams))

- - — —

= = @ o]
Q——Gq— 1——E G =
— — - —_— —
ot
tr

BIiLSTM 1

I

[CNN Encoder }

I
| | WU o s M Godkkll frow

Shared Encoder—

]_Xequence of Visual Features

Figure 7.10: Block multitask architecture for HTR

Note: The BiLST My;gram is actually an extension of BiLST Mynigram. So there is also a shared recurrent

encoder between unigrams and bigrams.

Our Hierarchical multitask architecture:

E = SharedCN N Encoder(X)

Eunigrams = BiLST Munigrams(F)

Eintermediater = BiLST Mintermediate1 ()
Ehigrams = BiLST My grams(Eintermediate1)
Yunigrams = Softmaz(Denseynigrams(Eunigrams))

)/bigram = Softmax(Densebigrams (Ebigrams))

122

BiLSTM

BiLSTM

1SsTg
1

§Hi

il
)
=
w
el
[}
2
=
[}
q
' §

BILSTM » e

NLST'E

ol
g
=
w
o]
w
z
=
E
q
(o]

BiLSTM 1
Shared Encoder

}Sequence of Visual Features

I

[CNN Encoder }

h I
| WOVE o sbop M. Gacklell o

Figure 7.11: Hierarchical multitask architecture for HTR

The above Hierarchical and Block Multitask Architectures are defined for Unigrams and Bigrams only. These
architectures can also accept higher level target units such as trigrams, fourgrams etc in the ngram level or
even subwords and words as target units. Before proceeding in scaling up the models, we need to carefuly

select the high level target units.

In the HTR problem the data are limited, comparing to the ASR/Language where models are trainned for
days and the data are hundreds of hours of speaking. In HTR, this is absulutely not the case. The IAM
database is created this way, so as to provide the model visual variety of characters. This is decent, since the
database was implemented for developing robust visual models. The IAM database contains text that is not

semanticaly rich and the word level tokens are really sparse in the total dataset.

Current Deep Learning Models are trainned with Gradient-Descent-like Learning Algorithms and Back
Propagation. A limitation in this approach is that the developing model need to ’see’ every sample many
times in order to learn it sufficiently. From this observation, stems also the need for balanced datasets when it
comes to regression and classification tasks. In our tasks, high level tokens do not appear freaquently. That
means, that we cannot scale up in word level target units when some words appear only 2 or 3 times in the

total corpus. For this reason we focus on the subword units and specifical trigrams and fourgrams.

123

Frequency of 50 Bigrams in the Train Corpus

0.0200
0.0175
0.0150
0.0125
>
3
g
5
g
g
£ 0.0100
0.0075
0.0050
0.0000
T 14 TegLe2gdgsmehr 2 85 8=$ 2geeg8T5E
Elgrams
(a) Frequency
Number instances of 50 most frequent Bigrams in the Train Corpus
5000
4000
3000
2
8
g
H
£
g
-]
2000
0 IIIIIIIIIIII
B cgzeggssLupED s ggeg=e
Elqrams

(b) Number of Instances

Figure 7.12: Bigram level tokens

124

Frequency of 50 Trigrams in the Train Corpus

0.014

0.012

0.010

0.008

Frequency

0.006

0.004

b “III
0.000
2256 E

c
g
13

o

3

583588

TR EAREE BELESEEEBSEEFIFENEFIE

@
53

ati

§§;§§i§ 5§ &

Trigrams

(a) Frequency

Number instances of 50 most frequent Trigrams in the Train Corpus

3000

2500

2000

Instances

1500

1000

ont [
—
]
=
whi ...

Trigrams

(b) Number of Instances

Figure 7.13: Trigram level tokens

125

Frequency of 50 Fourgrams in the Train Corpus

0.0025

0.0020
0.0015
0.0010
0.0005
0.0000

fousnbaiy

Fourgrams

(a) Frequency

Number instances of 50 most frequent Fourgrams in the Train Corpus

s S 3 s s °
& g R 8 B
seduelsy]

Fourgrams

(b) Number of Instances

Fourgram level tokens

Figure 7.14

126

Frequency of 50 Fivegrams in the Train Corpus

0.0014

0.0012

0.0010

0.0008
0.0006

fousnbaiy

0.0004

0.0002

punos
22Ut
ubno
102
anp
owwo)
oy
noge
Inoge
s
ones
uedu
st
jealb
uree
12358
uowwo
|doad
[
Jeuor
Jsiu
sjusw
euon
12381
ybnos
uasg)
sy
fasal
5916
saibu
aibuy
1dos
19109
juswa
13pun
aleyy
suon
buisq
wusen
uop
vaww

euwzy
Juawu
uszno

pInom
s
a0
wim
uone

0.0000

Fourgrams

(a) Frequency

Number instances of 50 most frequent Fivegrams in the Train Corpus

300

250

200

2
3

a
seduelsu

100

50

punos
@dua1
wbno
102
anp
owwoy
uopy
noge
noge
S
ones
uedy
st
jealb
ujee
12358
uowwo
1doad
[
leuol
Jsiul
sjuaw
euon
1281
ybnos
uasgy
sy
fasal
5016
sajbu
aibuy
aidos
1209
juswa
13pun
aley
suon
6uisq
wusen
o
uawu
swup
ewssn
juawu
wano

pinom
pIEhy
13y
Wy
uone

0

Fivegrams

(b) Number of Instances

Fivegram level tokens

Figure 7.15

127

7.2.2 Experimenting with Multitask Architectures

In this section we performed extended experimentation so as to select the final architecture, selecting network

hyperparameters (layers, units etc), training schemes and target units.

Tranning Schemes:
e Sum of CTC Losses backpropagates in every iteration.

e One CTC Loss, either from Unigram Level or from Bigram Level backpropagates every time. The
decision is made from a uniform distribution in (0,1) so as both CTC Losses have equall opportunities to

backpropagate.

After experimentation we saw that is better for the model’s optimization to take into consideration all the
tasks at each back propagation and not only one of them. What is more, tasks are not contradictive so as to
Also, both tasks that we want to optimize are not contrandictive, which means that we can train them

simulatneously and not only one by one.

Target Units :
e Bigrams
e Trigrams
e Fourgrams

e Fivegrams

As it is known as frequency decreases, sparcity increases. Thus when we scale to fivegrams, network does not
converges easily since both the network has grown too much and the target units are sparce. Frequency really

matters because when scalling up the models does not seem to scale in fivegrams.

One drawback of Hierarchical Multitask Architecture is that it is difficult to scale. As a result, it grows in
depth by adding more LSTM Layers for Task Specific Modules and Intermediate Layers that it is difficult to

train, it takes a lot more epochs.

After Experimentation we come up to the bellow conclusions:

e Scaling the target units above fourgrams, does not offers an improvement to the network and that is due

to the frequency of Fivegram Units. They appear less in the train set.

e We focus only in the 1000 most frequent ngram-tokens in the train corpus. We want the model to learn

well the most frequent ngram tokens.

e Intermediate LSTM layers, do not offer improvements in the Model’s performance. On the contary, they

make slower the convergence during training.

128

Are task specific LSTM layers really needed?

No, they do not really need since high level target units integrate long term dependences that do not need to

be modeled sequentially. At least in the case of Unigram and Bigram Target Units.

H Scale WER Unigram CER Unigram H
Unigrams + Bigrams 0.1772 0.05210
Unigrams + Bigrams + Trigrams 0.1770 0.05372
Unigrams + Bigrams + Trigrams + Fourgrams 0.1758 0.05293

Table 7.3: Hierarchical multitask architecture - greedy decoding

H Scale WER Unigram CER Unigram H
Unigrams + Bigrams 0.1796 0.05280
Unigrams + Bigrams + Trigrams 0.1790 0.05302
Unigrams + Bigrams + Trigrams + Fourgrams 0.1768 0.05183

Table 7.4: Block multiscale learning with 1 task-specific BILSTM layer - greedy decoding

From the above plot we can deduce that as we increase the scale of target units we get an improvement in the
recognition rate. However, the obtained improvement does not provide a satisfactory trade off between the
number of parameters and the recognition rate. Thus, instead of scaling up the target units, that may need
task specific BILSTM layers, we focus in the case of Unigrams and Bigrams only by keeping up at the same

time the network architecture simple.

Our Architecture is now comprised of the shared CNN + BiLLSTM layers with and Linear Task Specific Layer
for the Bigrams and Unigrams that projects the BILSTM outputs in the corresponding classes of unigrams and

bigrams. Linear layers are selected so as not to further put computational and memory burden in the network.

E = SharedCNN BiLSTM Encoder(X)

Yunigrams = Denseunigrams (E)

Ybigrams - Densebigrums (E)

After trainning the network with the identical configuration of trainning epochs, learning rates and optimizers

we obtained the bellow results:

H Scale WER Unigram CER Unigram H
H Unigrams + Bigrams 0.1774 0.05218 H

Table 7.5: Block multitask learning without task specific LSTM - greedy decoding

After intense experimentation about the set up of our Multitask Architecture, our efforts culminated to an
architecture, that although is not significantly greater than the single-task one, succeeds to achieve better

performance in the recognition rates by incorporating additional external domain knowledge.

129

Jake1 010
swesdiun 08

Jahe1210
sweuBig ££9

BiLSTM s

A N
[]
(BILSTM .]
[)

BiLSTM 1

|
I

[CNN Encoder]

I
|| WU ooy N ulell o

Shared Encode re—

]_Sequence of Visual Features

Figure 7.16: The final proposed architecture for multitask learning. Block multitask without task-specific
BiLSTM layer

7.3 Single Task Vs Multi Task Architectures for HTR

In this section we compare the Single Task Approach with the Multitask one. Models in both single task and
multitask scheme have been trained with the same train configurations. The encoder network shares also the
same architecture in both cases. For Decoding, we utilize simple CTC Beam Search Decoding in Unigram

Level augmented with a 4-Gram character level Language Model.

Parameter Calculation in Convolutional Neural Networks
We need to think about what a Convolutional Model learns. It learns through backpropagation the filters that

perform the convolutions to the input images. So the number of the learnable parameters on each layer is the

filter shape on this layer.
e Input Layer provides the input image and has zero learnable parameters
e Convolutional Layer Parameters are : kernel Height - kernelWidth+ 1) -inputChannels - outputChannels

e Max Pooling Layers and Activation Function have no parameters

So, our Convolutional Encoder that is both common for STL and MTL Architectures has :
(334 1)%32x1)*x2+((3:34+1)%x64%32) x4+ ((3-3+1)*128%64) 6+ ((3-3+1) %256 128) %2 =
640 + 81920 + 491520 + 655360 = 1.3M parameters

Parameter Calculation in LSTM Layers
Since we utilize LSTM units, we have 4 gates. So g = 4. The hidden size is h = 256 and the input size is

i = 256. The formula that describes the number of parameters in one LSTM Layer is :

130

params =g - (h-(h+1i) + h)

If the LSTM is Bidirectional the number of parameters are twice as the above. So in our shared LSTM
encoder we have 2 BiLSTM Layers. The first one has 2 - 4 - (256 - (256 + 256) + 256) = 1.050M parameters.
The second layer has input size 256 - 2 = 512 that means that parameters in the second layer are
2-4-(256 - (256 + 512) 4 256) = 1.5M parametes.

So the three BiLSTM Layers that compose the shared recurrent decoder have overall 4M parameters. The

total convolutional and recurrent encoder has parameters 1.3M + 4M = 5.3M parameters

A linear layer that projects an input of size I to an output of size O has parameters I - (O + 1). The 1 is for
the bias parameter.

So the parameters of task specific linear layer are 512 - (targetUnits + 1)

Each Task Specific Layer that is composed from 1 BiLSTM layer and one Linear Layer has parameters:

Unigram Targets : 2.5M + 512-81 = 2.5M

Bigram Target : 2.5M + 512 - 676 = 2.55M

e Trigram Target 2.5M + 512 - 1000 = 2.6 M

Fourgram Targets : 2.5M + 512 - 1000 = 2.6 M

Layers 3
Epochs 70
Early Stopping 25
Learning Rate 1073
Optimizer RMSProp
Pretrained Model 3 BiLSTM layers
batch size 8

Table 7.6: Configuration of Multitask Experiments

For implementing Early Stopping, we demanded that at every test that happens every 5 Epochs, if the model
does not gives WER and CER both less that the already minimum WER and CER, the persistence of the
model will increase. If it becomes equal to early stopping the model will stop the trainning process. Because
this early stopping criterion is strict, we give the Model a chance of 25 epochs to find the next best WER and
CER.

Under these configurations, both STL and MTL Approaches were trained.

H Architecture WER CER parameters M H

STL 0.1814 0.0564 5.30
BMTL (UB) 0.1669 0.0515 7.85
BMTL (UBT) 0.1669 0.0532 10.45

BMTL (UBTF) 0.1668 0.0519 13.05

Table 7.7: STL-vs-MTL architectures for HTR in unigram Level - CTC 4-Gram Char LM

131

H Architecture WER CER parameters M H

STL 0.1814 0.0564 5.30
Linear BMTL (UB) 0.1672 0.0528 5.68

Table 7.8: STL-vs-MTL architectures for HTR in unigram Level - CTC 4-Gram Char LM

H Architecture WER CER parameters M H
STL (Ours) 0.1481 0.0460 5.30
Linear BMTL (UB) 0.1392 0.0460 5.68

Table 7.9: STL-vs-MTL architectures for HTR in unigram level - CTC Word LM 4-Gram

7.4 Conclusions

Most current state-of-the art approaches perform Single Task Learning for Handwritten Text Recognition by

utilizing only unigram character level target units in the CTC Layer. However, it is undeniable that higher

scale target units can also contribute to the learning process, by enriching the neural encoder with higher level

information and eventually with better visual feautures.

H Architecture % WER % CER parameters (M) H

STL (Ours) 19.10 5.6 5.30
STL 7] 20.20 6.2 9.30
Linear BMTL (UB) 17.74 5.2 5.68

Table 7.10: STL-vs-MTL architectures for HTR in unigram level - greedy decoding

From the above experiments we conclude that our approach holds some advantages:

Bigger CNN network that is forced to encode the input image. CNNs are easier and faster to train than

the LSTMs that have slower convergence and sure are more computationaly heavy.

We implement Map-to-Sequence with Max Pooling over the dimension of columns, so as to take the max
out of them. In the Literature, they concat all the columns of the feature maps into one and they
burden the first LSTM layer with no reason.

We integrate domain knowledge in the learning process and we show that the model can learn better
when higher level target units. For example, utilizing only unigrams and bigrams we can overcome the
state of the art (of 1D LSTM approach) WER/CER with less parameters.

High level target units incorporate long term dependencies and so in some cases no LSTM is needed, like

in the Unigrams and Bigrams case.

We surpass the problem of the frequency of high level tokens by utilizing in all scales the 1000 most

frequent.

132

Chapter 8

Deep Convolutional CTC Network for

Handwritting Recognition

133

8.1 Introduction

Connectionist Temporal Classification (CTC) is commonly used in monotonical sequence transduction tasks
such as Handwritten Text and Automatic Speech Recognition. CTC is a segmentation-free and alignment-free
algorithm that allows model training without indicating the position of each target unit either on an image or
a speech segment. CTC is utilized on top of a Recurrent Neural Network and most commonly on top of an
LSTM. Working in the Handwriting Recognition field, in this Chapter, we make an investigation of CNN
encoders for modeling the temporal relationships among feature vectors that represent finally our initial image.
In contrast with LSTM, CNNs do not hold memory and cannot model, directly, long-term relationships that
sequential tasks demand. Below, we make an investigation in a fully Convolutional Network for Handwriting
Recognition with CTC on top. We compare the performance of our CNN based models against typical LSTM
models in the terms of training time, decoding time and recognition performance. We find that our CNN-based
HTR models, with the use of a word-level language model, can obtain a performance close to the LSTM one.

While not, reaching the exact performance, the all-convolutional models are faster to train and to infer.

There have been several recorded attempts that are substituing the LSTMs with fully-Convolutional
Architectures mainly for Automatic Speech Recognition [65] [79] [75] [11]. To the best of our knowledge there
has been no exploration in the fully-convolutional architectures for HTR. Thus, we seize the opportunity to

implement and experiment with such architecture for our case.

8.2 DMotivation

In order to present our motivation for building a fully-Convolutional Neural Network as our Optical Model, we

underline bellow some of the drawbacks of LSTM neural nets that burden the training process in general.

The power of Long Short Term Memory Networks is the ability to successfully model long-term dependencies
in tasks such as Speech/Handwriting Recognition, Activity Recognition, Image Generation, Language

Modeling, Image Captioning, and Sentiment Analysis.

However, when they also hold some crucial disadvantages that cannot be ignored. At first, LSTM suffer from
the vanishing gradient problem. This problem refers to the difficulty found in training artificial neural
networks with gradient-based learning methods and backpropagation. Generally, adding more hidden layers
tends to make the network able to learn more complex arbitrary functions, and thus do a better job in
predicting future outcomes. Although, when it comes to training such networks early layers, that are
significant for a model, tend to be trained slower comparing to a shallower network. This is because, when we
perform backpropagation, i.e moving backward in the Network and calculating the gradient of the Loss
function with respect to the weights, the gradient tends to get smaller and smaller as we keep on moving
backward in the later layers in the hierarchy. Additionally, there is also the exploding gradient problem,
where the gradient that accumulates can lead up to very large gradients. As a result, the network weights are

updated by large gradients and this can lead to an unstable network.

One more disadvantage of Recurrent Neural Network is the fact that hidden units have temporal
dependencies among them. The calculation of the next hidden unit demands the calculation of the
previously hidden unit. Thus, LSTM calculation cannot be parallelized in GPUs. So, training time is much
more time-costly. On the contrary, Convolutional Neural Networks can be easily parallelized since the
convolutional operations that are performed on different channels are independent and thus can be easily

parallelized in CUDA environments.

134

8.3 Fully-Convolutional Architecture

Before diving into our proposed architecture, we need first to explain why we can still utilize Connectionist
Temporal Classification with Convolutional Neural Networks. For answering this question we need to think
about what CTC demands as input so as to calculate the probabilities of each path. That is actually a grid of
probability distributions over a set of target units per each timestep. LSTM neural network emits these
probabilities by softmax the network outputs. An LSTM network, the output is emitted at every time step

and depends both in the current input and the previous hidden state.

If we want to avoid the LSTM Modeling we need to find other way to model the temporal relationships
between the feature vectors. Feature vectors are actually images of shape (1,w) that are organized in 256
channels. Each of these channels have encoded features from all the width of the image that in some way need
to be correlated. As it is known, Convolutional Operation is in fact a cross-correlation since the kernel is not
flipped because it is learnable. For this reason we utilize 1-Dimensional Convolution, namely a Convolution

where the kernel is of shape (1,k) and thus operates each distinct feature map from the 256.

80
w
1
[Softmax J
‘ [Projection Layer }
256 [1D CNN }
:,': w [Map-to-Seq]
[CNN Encoder]

1
\ MOVE o doe Mr. Gathlell frowm

Figure 8.1: Tllustration of the CNN-CTC Architecture. The CNN Encoder remains as it is and the only change
that is applied in the whole network is the substitution of BILSTM Layers with the 1-D Convolutions

2 Conv Layers - 32 Kernels 2x2 - ReLU
Max Pooling

4 Conv Layers - 64 Kernels 2x2 - ReLU
Max Pooling

6 Conv Layers - 128 Kernels 2x2 - ReLU
Max Pooling

2 Conv Layers - 256 Kernels 2x2 - ReLU

Max Pooling - Kernel Size 256x1
1-D Convolutional Temporal Modeling

Table 8.1: CNN-CTC End-to-End Architecture

135

8.3.1 Experiments

We train the CNN-CTC Network with the following configuration.

Learning Rate 1073
Optimizer RMSProp
Pretrained Model None
batch size 8

Table 8.2: Train Configuration

We utlized Early Stopping based on WER/CER on validation set. Per validation interval, every 5 epochs, we
demanded both the WER and CER be strictly less than the least noted WER/CER. The persistancy was 5.

That means, that if the validation WER/CER, performance did not improved for 5 concecutive times the
training would stop.

Word Error Rate

Character Error Rate
014
042 P+ WER

0.38 |

01z |
\

0.10

009 \/

=
5 10 15 20 25 10 15 20 25
Epochs Epochs

WER
o s o
w w w
o] B~
CER
[=]
[
=

(a) Word Error Rate in Validation (b) Character Error Rate in Validation

Mean Train Loss per Epach

TrainLoss
700

CTC Loss

0 20 40 60 80 100 120
Epochs

(¢) Mean Train Loss per Epoch

136

Dynamic Data Augmentation Experiments

We perform experiments utilizing dynamic data augmentation techniques as on the . The term dynamic
means that every time we extract a batch of images we randomly select whether augmentation is going to be

applied or what augmentation is going to be used.

H Data Augmentation WER CER H
None 0.3003 0.0891
Global Affine 0.2670 0.0778
Global Morphological 0.3182 0.0976
Global Affine + Global Morphological 0.3032 0.0911

Table 8.3: Data Augmentation Experiments on Fully Convolutional Neural Network

From the above experiments we conclude that global affine transform gives the most boost in recognition rate

comparing with all the others. Thus, we will utiilize it for the all of our experiments bellow.

Decoding Network Outputs with External Language Knowledge

The experiments below are done with the utilization of Statistical Character Level and Word-Level Language
Models. The Word-level Language Model is the same as the one from the so as to be fair in our comparisons.
It has been built with the use of the LOB [39], after the removal of the test lines, and Brown Corpuses. The
Word-LM is generated with the KenLM tool [36].

H Decoding Algorithm WER CER H

Greedy 0.2693 0.0794
CTC Beam Search 2 Char-LM 0.2680 0.0785
CTC Beam Search 3 Char-LM 0.2577 0.0753
CTC Beam Search 4 Char-LM 0.2452 0.0732
CTC Beam Search 4-Word LM 0.1620 0.0536

Table 8.4: Results of Decoding with external Language Information - Line Level

137

8.4 An Enseble of CNN Models for HTR

We implemented a simple late fusion technique that sums all the feature maps before proceeding them to the
time convolutional module. With this way we allow that multiple models may have optimized on different

paths, thus combining them all together we take all the possible paths.

H Model WER CER H

cnn-model 1 0.2689 0.0788
cnn-model 2 0.2691 0.0799
cnn-model 3 0.2628 0.0771
cnn-model 4 0.2890 0.0865
cnn-late fusion 0.2443 0.0704

Table 8.5: Performance of Multiple Single CNN Models and the Ensembling

H Model WER CER H
CNN Late Fusion 0.1514 0.0520
CNN-CTC 0.1620 0.0536

CNN-LSTM-CTC 0.1490 0.0460

Table 8.6: Performance of Ensemble Models - Char/Word LM Decoding

Although the ensemble model still does not outperform the baseline (CNN-LSTM-CTC) we observe that the

difference in the recognition rate is even more abridged.

8.5 Comparing CNN+CTC with Baseline

Below we make a comparison on Trainning Time, Inference Time and Number of Parameters. The calculation

of training and inference time occured under the same computational resources and conditions for both models.

Both CNN-CTC and CNN-LSTM-CTC share the shame CNN-Encoder that accepts the input image and
encodes it into a set of Feature Maps. Thus, both they will have the same number of parameters till then.

The number of parameters of the Convolutional Encoder is:
[(3:341)-1-32]-24+[(3-3+1)-32-64]-4+[(3-3+1)-64-128]-6+[(3-3+1)-128-256]-2=1.55M

The parameters of parameters of Temporal Convolutional are :
[(1-541)-256-256] 4+ (1-5+1)-256-256+ (1-5+1)-256-256 =0.79M

Thus, the overall parameters for CNN-CTC are 0.79 4+ 1.55 = 2.34M

The formula that describes the number of parameters in one LSTM Layer is :
params =g - (h-(h+14) 4+ h)
If the LSTM is Bidirectional the number of parameters are twice as the above.

Now in the LSTM layers applies:
e 1st BiLSTM Layer : 2-4(256 - (256 + 256) + 256)
e 2nd BiLSTM Layer : 2-4(256 - (256 4 512) + 256)

e 3rd BiLSTM Layer : 2 - 4(256 - (256 + 512) + 256)

138

Thus the overall parameters in the BiSTM Layers are 1.06M + 1.57M + 1.57M = 4.19M

In the CNN-LSTM-CTC on top of the BiLSTM Layers there is a Linear layer that projects the BiLSTM
outputs to the target units. The parameters for this layer are 512 - 80 = 0.04M. Overall parameters for
CNN-LSTM-CTC model are 1.50 4+ 4.19 4+ 0.04M = 5.73M

|| Model train time (s) inference time (s) Parameters (M) WER CER ||
CNN-LSTM-CTC 370.1 102.1 5.73 0.1481 0.046
CNN-CTC 149.3 22.2 2.34 0.1620 0.0536

Table 8.7: Comparison of CNN-LSTM-CTC and CNN-CTC

he

their heads like ternis spectators as walked up
Words

mmm Full Convolutional
mmm Baseline

and

Figure 8.2: Posterior Probabilities that each mode assigns to each word of the sentence

P(Word|X)
° ° °
S S ®

I
N}

3

.0

139

= Full Convolutional
mm Baseline

0.3
M | | |
o .I I | I I I I I . -
he

their heads like ternis spectators as
Words

o
o

e

walked up and

Figure 8.3: KL of words for comparing CNN LSTM models for HTR

An example illustrating that achieving a good recognition accuracy does not necessarily imply having a good
representation of the target probability distribution. The two models will achieve a perfect recognition
accuracy, but the first model is a better approximation to the reference distribution (has a lower
Kullback—Leibler divergence).

Additionally to the above plot, we observed something pretty interesting that is underscored in the table

below.
H Model % WER/CER Greedy % WER/CER WordLM % WER/CER Improvement H
CNN-LSTM-CTC 20.68/6.8 14.81/4.60 28.30 /32.40
MTL 17.74/5.22 13.92/4.63 21.53/11.30
CNN-CTC 26.7/7.77 16.20/5.30 39.33/32.08

Table 8.8: Comparison of CNN-LSTM-CTC and CNN-CTC

As we can observe above, the highest difference on improvement, due to the CTC Beam Search with Word
LM, appears in the CNN-CTC model. This observation shows that word LM has more impact on CNN-CTC
networks and combined with the Kullback-Leibler plot we may identify why this is the case. As we see in the
KL-plot, CNN-CTC has greater KL-divergence in recognizing a correct word. That means that alternative
paths are easily to be explored since the models does not concetrates probability in a specific path. The

weight in the Language Model is more impactful in that case and this is why we see the such an improvement
in the CNN-CTC Model.
8.6 Conclusions

In this Chapter, we made a step towards making the architecture of Handwritten Text Recognition
all-convolutional. In particular, we explored that 1-D Convolutions can greatly cooperate with Connectionist

Temporal Classification. Our final model is slightly behind the LSTMs performance but it offers 60 % percent

140

decrease on the training time per epoch, 78 % percent decrease on the inference time and has 60 % less
parameters than the CNN-LSTM-CTC Model. Furthermore, the all-convolutional model opens a way for
further exploration of the improvement of the recognition rate. The fact that the purely-Convolutional model
is fast and cheap to train and to infer makes it possible to experiment with ensemble techniques. In our case,
we experimented with a simple addition of multiple grids of probability distributions and we saw a percentage
improvement of 3.5 % in the Word Error Rate and 3 % in Character Error Rate.

The fully-convolutional architecture provides opportunities for incorporating other ideas in the CNN networks
such as the self-attention mechanism [77] or even Transformer-based models [72] for the sequence modeling
part on top of the CNN Encoder. Thus, one of the future steps towards employing fully Convolutional
Architectures for HTR is to experiment and compare the different self-attentions schemes and transformer

models for sequence transduction.

141

Chapter 9

Contributions, Conclusions and Future
Work

142

9.1 Contributions, Conclusions and Future Work

This Thesis has studied extensively the CTC output layer so as to identify whether the augmentation of the
output layer with bigrams, except for unigrams, could have the potential to improve the recognition rates.
Our initial goal was to examine whether the bigrams could improve the recognition rates by correcting some
wrongly classified unigrams. In this context, we implemented two algorithms that were utilizing the bigram
information in different ways. The first one utilizes bigram information as an extension probability that scored
at each time step the extension of unigrams in the CTC Beam Search Decoding. The second algorithm
utilized bigrams as unigrams, namely bigrams were also used for the string extension. After experimentation
with both decoding algorithms, we concluded that we had no improvement at all. We found out that the main
reason for this was the fact the approximately every bigram was in accordance with its neighboring unigrams.
Thus, there was no different information that could correct any wrongly classified unigrams. The second
reason is that CTC assigns the whole probability mass into one path and in this way it obstructs the

investigation of several alternative paths.

The conclusions from our previous work lead us to operate the bigrams in an utterly different manner. We
considered that bigrams and unigrams should exist in different layers and so we lead up to Multitask
Learning. Given that such an approach is not been conducted in the sector of Handwritten Text Recognition,
we seized the opportunity to experiment on this. After long experiments and further investigation, we
concluded to the optimal architecture that combined both unigrams and bigrams. Comparing this multitask
architecture with our single task, we deduced that the multitask with a slightly greater number of parameters
yield a significant decrease in the Word and Character Error Rate. Comparing our multitask architecture with
published research [53] we lead up to the conclusion that with significantly fewer parameters we achieved
crucial improvement in the recognition rate. Finally, we conclude that we can leverage the benefits of bigrams
in two ways. The first one is from the usage of the external character-level language model in the CTC
Decoding process. The second one is from the integration of domain knowledge (language) in the model by

forcing it to recognize bigrams in the image.

In the last chapter of the present work, we implement a fully convolutional architecture. Having
comprehended the computational burden and the difficulty in the convergence of the LSTMs, we wanted to
remove such structures from our model. The fully convolutional architectures are studied in the sector of
Automatic Speech Recognition, but to the best of our knowledge, in the sector of Handwritten Text
Recognition, such experimentation is not been implemented. At first, we explain why we can still utilize CTC
on top of a fully convolutional layer. Temporal dependencies can be modeled with one-dimensional
convolutions. The improvement we obtain in memory usage in training and inference speed allows us to
experiment with ensembling techniques and specifically bagging. In conclusion, the full convolutional model,
in combination with a word-level statistical language model yield recognition rates close to the LSTM ones

and is faster both in inference, train and convergence time and of course with significantly fewer parameters.

The development of the fully convolutional opens the way for extended future work in since a fast and small
model is an exceptional basis for building up any module in the HTR domain. Except from such general
benefit, a specific direction is the study and the integration of the Self-Attention Mechanism in the computer
vision domain [77]. Such study opens also the way for the exploration of the newly defined models for
sequence transduction, the Transformerms [72] in the Computer Vision Field. The problem of Handwritten

Text Recognition is a good start for such implementation.

An additional direction is to further optimize local transformations for dynamic data enhancement. We
believe that the reason they do not improve greatly is because the parameters of the transformations in the

images are not controlled in some way, despite the studied extent of these parameters. This results in the

143

image being distorted to the extent that the network makes it difficult to educate. One solution to this would
be a dynamic neural network data enhancement approach that will always incorporate transform parameters

to optimize the recognition rate.

Finally, an alternative direction in which we have already worked and drawn some conclusions is that of using
the BERT [20] model to correct semantic errors made in decoding. We believe that incorporating semantic
information can improve the recognition rates of the text. In fact, we have collected examples that confirm
this. For the successful implementation of BERT we have to overcome some challenges, such as facing the fact
that a pre-trained model BERT has been trained in a closed dictionary that is not compatible with ours. This
could be avoided by retraining the BERT model in texts that we have already used to extract statistical
models. An alternative approach is to use the architecture of BERT to construct a unified recognition and

semantic correction architecture.

144

Appendix A

Appendix

A.1 Examples of Greedy Decoded Alignments of Unigrams and Bi-

grams

145

50 Bigrams

He rose from his breakfast-nook bench
He rrmossee frrooom_m__hhiiiss brreeeaakfaassstt-nook beenncchh

H.e 1 osjsele_ frroj_o_Jom|m_ hihilijis|_s _b_r|re|_e Jeala_c_fa ilitlt -n o s k_ b e |en|_n_c|ch]h_

and came into the livingroom , where

a_an_n_nd_d c_a m_me_e_ _iin_n_ntt to_o__ th_ h hee_ |liiviinnnggrroooomm_ _, whheeerrree
alan|n|nd|d__c_a_m_|mele_ _ilin|n_|nt|tlto]o_ _t_[th|h|hele_ 1 |Ii|_i_v_ilin|n_|ng|g_i_o_o_lon|jou|n_, _w_I_|le|ejer]_r_|rele_
Then , abruptly , he drew himself up

Thheeenn , abruptly , hhee drreew_ hhiimsseeellf up

T 1 |lele_|en|n_, a b uplly , llle|_e__d |de|_e w__l|lilin__s_|sele|el|_|Lf up_

and walked on the very tips of

aannndd wwaaallkeedd oonn_ tthhhee vveeerry ttiips ooff

_a_lan|n_|ndj_d__v ajal|_i_k eled|_d__o_Jon|_n__jth|h_e_ v |veleler| r_y__I[liji_p_s__o|of_f_

his toes . He stretched his arms

hhiiiss ttooeess . He s t_t_r_re etcch hheeedd hhiiiss aarrms

i dis|_s_ _|_o_eles|.s_. H.e Pl elclieleledi_d__iiilis|s__o_s_

over his head and yawned agape ,
ovveeerr hhiiiss hheeeaad aannndd yawnneeedd agape

v_|neleler|_r__h|hi|ilis|_s I[lele_|eala_d__alan|n_|nd|d__y a w_n_|ne|e|ed|_d

(a) 50 Bigrams

100 Bigrams

He rose from his breakfast-nook bench
H_e_rroossee frrooom. m__hhiiiss brreeeaakfaassstt-nnoook beennnccchh

_H e 1 |lojo_s|sele_ f |rojojom|m_ _h_|hili[is|s_ _b_i_|ie|eeal_a_k f_alas|_s|st|_t - n_jnojo_o k__b_el|en|n_|nc|_cjch|h_

and came into the livingroom , where

a_an_n_nd d__ccaam_mee_ _iinnntttoo tthhhee _|liiviinnnggrroooomm__, wwhhheeerrree
alan|n|nd|d_ ¢ |cala_m_|meje_ _ilin|n_|nt] t JtoJo__h |hele_ I |iijiv_i|in|n_|ng|g_iliolo ofon|n_, “w I|le|ejes| s_|sele_

Then , abruptly , he drew himself up

T_Th h he_ e en_n_ . ,abruptllyy , hhee drreew hhiiimmsseeellf up

T L]lelelenjn_, _a b_i_u_p | NMyl_y_. I lele_ _d_|dejew_ _Iiijilin|]m__s_|selelel| 1 f U p_

and walked on the very tips of
aannndd wwaaallkeedd oonn tthhhee vveeerry ttiips ooff

alan|n|nd|_d__w |wa| alal| | k e|ed| d_ olonjn_ || Jlele__v_|ve|eler|r y | |lili p_s _o]|of|f_

his toes . He stretched his arms

h h|_|_|s_s ttooeess . He_ _sstttrr re_e ett c ch h he eedd hhiiiss aarrm_s
R ilis|.s__1 0 eles| s_. H_e__i lliifijiele]ell_l_c_I Jle[e|e d| d_1[iijilis| s_ _oon|n_|us|_s_

over his head and yawned agape ,
ovveeerr hhiiiss hheeeaaadd _aannndd _yawnneeedd agappee_

_r

7o|on|n7|ne|e|er|r77 7|h|||||s|7577I7|Ie|e|ea|7a|ad|7d77a|an|n7|nd|7d77yio|ow|w7n7|ne|e|ed|7d ~a g op |peleled| d_

'

(b) 100 Bigrams

146

150 Bigrams

He rose from his breakfast-nook bench
He rrooosssee ffrrrooomm__hhiiiss brreeeaakffaaassstt-nnoooook beennnccchh

H_e_ | |lojojos|_s_|se|e__f |fi]i_liojojon|_n__hhi|_ijis|_s__b_ilie|e|ea|_alac|_k_f_|fa|a]ai|_i[it|_t_-_n_|no|ojos|_s_k__b_ejen|_n_|nc|_c_|ch|h_

and came into the livingroom , where

a_an_nndd_ ccaaammmee _iinnntttoo_ tthhhee |liiivvviiinnngggrrroooooomm__, wwhhheeerrree
a_lan|_n_|nd|d_ _c_|calalam|_m_|mel|e__ilin|_n_|nd|d_o_ _M_e_ _I_[ii]ijiv]v_|vililin|n_ng|g_i_|iojo]oo|_ojom|_m_, _w_I_|le[eles|_s_|sele_

Then , abruptly , he drew himself up

T_Th h he e enn__,__aabbruptllyy _, hhee_ _drreew_ h hi_i_im_m_s se_e el | f_ _u_p

T 1 |lefelen| n_, alab| b_|buju_p_|pl_iiiyly . I [lele_ d_|di[i_|iele w__I |lijiin] n__s |selelet| t f up_

and walked on the very tips of
a_an_n_nd._d wwaaallkkeeeddioonn tthhhee vveeerrryy ttiips ooff
|

a_lan|_n_|nd|d_ _w_|wo]o|ol|_I_k_|ke|e|ed|_d_ _ofon|_n_ _I_I_|lele_ _b_eler|_r_|ryly_ _I_|ii|i_p_s__olof|_f_
his toes . He stretched his arms

h_hi_iiss__ttooeess . He sstttrrreeettcchhheeedd _hhililiss _aarrm_s
Iilis] s 19 eles|s_. He v I |iijielelel| I cI Jieleled]| d_ l|iijilis|s_ o cs

over his head and yawned agape ,
oovvveeerr hhiiiss hheeeaaadd aannndd yawnneeedd aaggaapppee

0 n_|neleler|_r_ _hihil_ilis|s__I [le|e|ea|_alad] d__alan|_n_|nd|d__y aJow| w n_|nele|ed| d__a|ag| g alap| p_ |pe|e|ed| d .

(c) 150 Bigrams

200 Bigrams

He rose from his breakfast-nook bench
H He e_ rrooosssee ffrrrooom. m_ _hhiiiss bbrrreeeaaakkffaaassstt-nnoooook beennnccchh

H_|He|_e__llio|_olos|_s|sele_ _f[fr|_rlrol_olom|_m__L_iis|s__blbr| rire|_e|eal_alak]_k_fifal_c|ci|_ilit_t_-_n|no]_ojos|_s_k__b elen|_n|nc|_c|ch|_h_

and came into the livingroom , where

a_an_nnd d__ccaaam_mmee_ _iinnntttoo tthhhee _|liiivvviiinnnggagrrroooooomm__, wwhhheeerrree
_alan|_n_|nd|_d_ _c|cal_a_|am|_m_|me|_e__iJin|_n_|nt|_tjto|_o_ _b_e_ _I[li|_iliv|v|vi|_i[in|n|ng|_glgr|_r|ro|_cloc|_olon|_n_, _w_l|le|_e|er|_r|se|_e_
Then , abruptly , he drew himself up

T_Th h _he_e_en_n__,_ _a ab b_br_r ru_u_up_p_t_tl_lly.y _.__h_he_e__d_drr_re e ew w__h hii_im_m_s_se_e el |_f_ _uup_p

T llie|_elen|_n_", “aJab]_b_i u_Jup]_plpl|_T|_T[y]_y_. I|\e| e _d_|di] ilie] elew]| w_ I[li]ijic|_c|cu|_u_|us|_s|se| e|et] t]tt] t__ujup|_p_

and walked on the very tips of
a_an_nnd d_ _w wa_a al lkkeeedd oonn tthhihee vveeerrryy ttiips ooff

_alan|_n_|nd|_d__b|ba|_a|al|_l k|ke|_e|ed]_d_ _oJon|_n_ _b_l|le|_e_ _h|he|_eler|_r|ry|_y_ _I|li|_i_p_s__olof|_f_

his toes . He stretched his arms

h_hi_i_is s _ttooeess_ _.__HHee_ _sstt tr_r_re_e_et t c_ch_h_he_e_ed_d__h_hi_i_is_s__a_ar_r_rm_m_s
i Jilis| g__1 o eles| s . H_[He|_e_ M_elei] I c[cl|_Ifie]_efed| d__I]ii|_ilis|.s__ocs_

over his head and yawned agape ,
0_OV_V_ve_e_er_r hh\uss hheeeaaadd_aannndd y_a_w_wn_n_ne_e_ed d_ aagggaaapp pe_e

_olon|_n_|ne|_efer| r__h_[hi[_i]is|_s__T|le|_e|ea|_alad] d__a Jan| n_[nd] d__y a w_|wn|_n_|ne| eled] d__alag| g|go| o|op| plpel_eled| d_,_

(d) 200 Bigrams

676 Bigrams

He rose from his breakfast-nook bench
He rrooosssee_ ffrrrooomm__hhiiiss bbrrreeeaaakkkfffaaassstt-nnooooookk bbeeennnccchh

H_e _Ijlo]_ojos|_s|se|_e _f[fr|_rlro[_ojon|_n L ilis|_s _blbr|_ilie]_e|ea|_ajak|_k|df|_fifo|_ojos|_ilit|_t-_n|no|_o|os|_ojok|_k _bbe|_elea|_alac]_c|ch]_h

and came into the livingroom , where

aannndd_ _ccaaam.m_mee_ _iinnntt t0707 tthhhee _|li_iivvyviiinnngggrrroooooomm__, wwhhheeerrree
_alan|_n|nd|_d _c|ca]_a]am|_m|me|_e i[in|_n|nt]_0__b|be|_e _l|ii|iliv|_v]vii]in|_n|ng|_g|gililio]_olou]_ojou]_u , _w|we|_l|le|_eler|_r|re|_e

Then , abruptly , he drew himself up

T_h_he_e_enn__,__a_ab b_br_r_ru_u_up_p_pt t th_[_ly y_ ,__h_he e__ddrr_re_e_ew w__h_hi_i im_m_ms_s_se_e_el_|_If f__u_upp

T ijle|_elen|_n,”_aJab]_bjbm|_m[mp|_ plpll 11| iyl y . _Iile] e _d_ilie| _elev|_v [l ilic|_n ‘s[se|_e|et| t|ifi f uup| p

and walked on the very tips of
aannndd wwaaalllkkkeeedd oonn_ _tthhhee vveeerrryy ttiiipppss ooff

_alan|_nind|_d _v|va|_alal|_I[Ik]_k|ke|_e|ed|_d _bJbul_u _h|he|_e _vive|_eler]_rlryl_y Iiifilip|_plps|_s _o|of|_f

his toes . He stretched his arms
h h\ iiss__t to ooeeess . He sstttrrreeetttccchhheeedd hhiiiss aarrrmm.mss

0 eles| s . H e N_I|Ii]_i[ie]_e[et]_t]tc| c[cI|_l[le[_e|ed| d D ilis] s O r|rc| ¢ n[ns| s

over his head and yawned agape ,
oovvveeerr hhiiiss hheeeaaadd aannndd yyaaawwwnnneeedd aaggugaaapppee

_q|qu|_u|ue|_e|er|_r _h[hi]ilis|_s _I|Ie|_e|ea|_a|ad|_d _a|an|_n|nd |_d _y|ya|_alau|_ulun|_n|ne|_e|ed|_d _a|ag|_g|ga|_alap|_p|pe|_eled|_d_,

(e) 676 Bigrams

147

Bibliography

ORI

s

o = — = = —
S © v N o

[—
B o O ¥ N & O

[16]

[17]

URL: https://github.com/parlance/ctcdecode.

URL: https://en.wikipedia.org/wiki/Document_layout_analysis.

URL: http://cdn.iiit.ac.in/cdn/cvit.iiit.ac.in/SSDA/slides/SSDA_Jaipur_BhabatoshChanda.
pdf.

URL: http://www.cs.cmu.edu/~tom/.

URL: http://scott.fortmann-roe.com/docs/BiasVariance.html.

URL: https://en.wikipedia.org/wiki/Softmax_function.
http://colah.github.io/posts/2015-09-NN-Types-FP/.

URL: https://distill.pub/2017/ctc/.

URL: https://en.wikipedia.org/wiki/Gaussian_blur.
https://github.com/baidu-research/warp-ctc.

Yaser S. Abu-Mostafa. “Learning from hints in neural networks”. In: J. Complexity 6 (1990), pp. 192-198.

David Aldavert, Margal Rusifiol, Ricardo Toledo, and Josep Lladds. “Integrating Visual and Textual
Cues for Query-by-String Word Spotting”. In: Proceedings of the 2013 12th International Conference on
Document Analysis and Recognition. ICDAR ’13. Washington, DC, USA: IEEE Computer Society, 2013,
pp- 511-515. 1SBN: 978-0-7695-4999-6. DOI: 10.1109/ICDAR.2013.108. URL: https://doi.org/10.1109/
ICDAR.2013.108.

Jon Almazan, Albert Gordo, Alicia Fornés, and Ernest Valveny. “Word Spotting and Recognition with
Embedded Attributes”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence 36 (2014),
pPP- 2552-2566.

Dario Amodei, Rishita Anubhai, Eric Battenberg, Carl Case, Jared Casper, Bryan Catanzaro, Jingdong
Chen, Mike Chrzanowski, Adam Coates, Greg Diamos, Erich Elsen, Jesse Engel, Linxi Fan, Christopher
Fougner, Tony Han, Awni Y. Hannun, Billy Jun, Patrick LeGresley, Libby Lin, Sharan Narang, Andrew Y.
Ng, Sherjil Ozair, Ryan Prenger, Jonathan Raiman, Sanjeev Satheesh, David Seetapun, Shubho Sengupta,
Yi Wang, Zhigian Wang, Chong Wang, Bo Xiao, Dani Yogatama, Jun Zhan, and Zhenyao Zhu. “Deep
Speech 2: End-to-End Speech Recognition in English and Mandarin”. In: CoRR abs/1512.02595 (2015).
arXiv: 1512.02595. URL: http://arxiv.org/abs/1512.02595.

Jonathan Baxter. “A Model of Inductive Bias Learning”. In: J. Artif. Int. Res. 12.1 (Mar. 2000), pp. 149—
198. 18sN: 1076-9757. URL: http://dl.acm.org/citation.cfm?7id=1622248.1622254.

Christopher M. Bishop. Pattern Recognition and Machine Learning (Information Science and Statistics).
Berlin, Heidelberg: Springer-Verlag, 2006. 1SBN: 0387310738.

Theodore Bluche and Ronaldo Messina. “Gated Convolutional Recurrent Neural Networks for Multilingual
Handwriting Recognition”. In: 2017 14th IAPR International Conference on Document Analysis and
Recognition (ICDAR). Vol. 01. 2017, pp. 646-651. DOI: 10.1109/ICDAR.2017.111.

148

https://github.com/parlance/ctcdecode
https://en.wikipedia.org/wiki/Document_layout_analysis
http://cdn.iiit.ac.in/cdn/cvit.iiit.ac.in/SSDA/slides/SSDA_Jaipur_BhabatoshChanda.pdf
http://cdn.iiit.ac.in/cdn/cvit.iiit.ac.in/SSDA/slides/SSDA_Jaipur_BhabatoshChanda.pdf
http://www.cs.cmu.edu/~tom/
http://scott.fortmann-roe.com/docs/BiasVariance.html
https://en.wikipedia.org/wiki/Softmax_function
http://colah.github.io/posts/2015-09-NN-Types-FP/
https://distill.pub/2017/ctc/
https://en.wikipedia.org/wiki/Gaussian_blur
https://github.com/baidu-research/warp-ctc
https://doi.org/10.1109/ICDAR.2013.108
https://doi.org/10.1109/ICDAR.2013.108
https://doi.org/10.1109/ICDAR.2013.108
http://arxiv.org/abs/1512.02595
http://arxiv.org/abs/1512.02595
http://dl.acm.org/citation.cfm?id=1622248.1622254
https://doi.org/10.1109/ICDAR.2017.111

[18]

[22]

23]

[24]

[25]

[26]

[27]

[28]

[29]

[31]

[32]

John S. Bridle. “Probabilistic Interpretation of Feedforward Classification Network Outputs, with Rela-
tionships to Statistical Pattern Recognition”. In: Neurocomputing. Ed. by Francoise Fogelman Soulié and
Jeanny Hérault. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990, pp. 227-236. 1SBN: 978-3-642-76153-
9.

Convolutional Neural Networks for Visual Recognition,Stanford CS2831n. http://cs231n.github.io/.
Accessed: 2019-05-3.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. “BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding”. In: CoRR abs/1810.04805 (2018). arXiv: 1810.
04805. URL: http://arxiv.org/abs/1810.04805.

George Ekladious, Robert Sabourin, and Eric Granger. “Hybrid writer-independent—writer-dependent
offline signature verification system”. In: Biometrics, IET 2 (Dec. 2013), pp. 169—181. DOI: 10.1049/iet~
bmt.2013.0024.

Tan Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http://www.deeplearningbook.
org. MIT Press, 2016.

Diana F. Gordon and Marie Desjardins. “Evaluation and Selection of Biases in Machine Learning”. In:
Mach. Learn. 20.1-2 (July 1995), pp. 5-22. 1SsN: 0885-6125. DOI: 10 . 1007 /BF00993472. URL: https :
//doi.org/10.1007/BF00993472.

Alex Graves. “Supervised sequence labelling with recurrent neural networks”. In: Studies in Computational
Intelligence. 2008.

Alex Graves. “Supervised sequence labelling with recurrent neural networks”. PhD thesis. Technical Uni-
versity Munich, 2008. URL: http://d-nb.info/99115827X.

Alex Graves, Santiago Ferndndez, and Jirgen Schmidhuber. “Multi-Dimensional Recurrent Neural Net-
works”. In: CoRR abs/0705.2011 (2007). arXiv: 0705.2011. URL: http://arxiv.org/abs/0705.2011.

Alex Graves, Santiago Fernandez, and Faustino Gomez. “Connectionist temporal classification: Labelling
unsegmented sequence data with recurrent neural networks”. In: In Proceedings of the International Con-
ference on Machine Learning, ICML 2006. 2006, pp. 369-376.

Alex Graves and Navdeep Jaitly. “Towards End-To-End Speech Recognition with Recurrent Neural Net-
works”. In: ICML. 2014.

Alex Graves and Jirgen Schmidhuber. “Framewise phoneme classification with bidirectional LSTM net-
works”. In: Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005. Vol. 4.
2005, 2047-2052 vol. 4. DOI: 10.1109/IJCNN.2005.1556215.

Alex Graves and Jiirgen Schmidhuber. “Offline Handwriting Recognition with Multidimensional Recurrent
Neural Networks”. In: Proceedings of the 21st International Conference on Neural Information Processing
Systems. NIPS’08. Vancouver, British Columbia, Canada: Curran Associates Inc., 2008, pp. 545-552. ISBN:
978-1-6056-0-949-2. URL: http://dl.acm.org/citation.cfm?id=2981780.2981848.

Alex Graves, Santiago Ferndndez, Faustino Gomez, and Jirgen Schmidhuber. “Connectionist Temporal
Classification: Labelling Unsegmented Sequence Data with Recurrent Neural Networks”. In: Proceedings
of the 23rd International Conference on Machine Learning. ICML ’06. Pittsburgh, Pennsylvania, USA:
ACM, 2006, pp. 369-376. ISBN: 1-59593-383-2. DOI: 10.1145/1143844.1143891. URL: http://doi.acm.
org/10.1145/1143844.1143891.

Luiz G. Hafemann, Robert Sabourin, and Luiz S. Oliveira. “Learning Features for Offline Handwritten
Signature Verification using Deep Convolutional Neural Networks”. In: CoRR abs/1705.05787 (2017).
arXiv: 1705.05787. URL: http://arxiv.org/abs/1705.05787.

149

http://cs231n.github.io/
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://doi.org/10.1049/iet-bmt.2013.0024
https://doi.org/10.1049/iet-bmt.2013.0024
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.1007/BF00993472
https://doi.org/10.1007/BF00993472
https://doi.org/10.1007/BF00993472
http://d-nb.info/99115827X
http://arxiv.org/abs/0705.2011
http://arxiv.org/abs/0705.2011
https://doi.org/10.1109/IJCNN.2005.1556215
http://dl.acm.org/citation.cfm?id=2981780.2981848
https://doi.org/10.1145/1143844.1143891
http://doi.acm.org/10.1145/1143844.1143891
http://doi.acm.org/10.1145/1143844.1143891
http://arxiv.org/abs/1705.05787
http://arxiv.org/abs/1705.05787

[33]

[34]

Luiz G. Hafemann, Robert Sabourin, and Luiz S. Oliveira. “Offline Handwritten Signature Verification
- Literature Review”. In: CoRR abs/1507.07909 (2015). arXiv: 1507 .07909. URL: http://arxiv.org/
abs/1507.07909.

Muhammad Hanif, Anna Tonazzini, Pasquale Savino, Emanuele Salerno, and Gregory Tsagkatakis. “Doc-
ument Bleed-Through Removal Using Sparse Image Inpainting”. In: 2018 13th IAPR International Work-
shop on Document Analysis Systems (DAS). 2018, pp. 281-286. DOI: 10.1109/DAS.2018.21.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learning. Springer
Series in Statistics. New York, NY, USA: Springer New York Inc., 2001.

Kenneth Heafield. “KenLM: Faster and Smaller Language Model Queries”. In: Proceedings of the Sixth
Workshop on Statistical Machine Translation. WMT ’11. Edinburgh, Scotland: Association for Compu-
tational Linguistics, 2011, pp. 187-197. 1SBN: 978-1-937284-12-1. URL: http://dl.acm.org/citation.
cfm?7id=2132960.2132986.

Sepp Hochreiter and Jiirgen Schmidhuber. “Long Short-Term Memory”. In: Neural Comput. 9.8 (Nov.
1997), pp. 1735-1780. 1SsN: 0899-7667. DOI: 10.1162/neco.1997.9.8.1735. URL: http://dx.doi.org/
10.1162/neco0.1997.9.8.1735.

Sergey loffe and Christian Szegedy. “Batch Normalization: Accelerating Deep Network Training by Re-
ducing Internal Covariate Shift”. In: CoRR abs/1502.03167 (2015). arXiv: 1502 . 03167. URL: http :
//arxiv.org/abs/1502.03167.

Stig Johansson. “The LOB corpus of British English texts: Presentation and comments”. In: 1980.

Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimization”. In: CoRR abs/1412.6980

(2014).

Kalpesh Krishna, Liang Lu, Kevin Gimpel, and Karen Livescu. “A Study of All-Convolutional Encoders
for Connectionist Temporal Classification”. In: CoRR abs/1710.10398 (2017). arXiv: 1710.10398. URL:
http://arxiv.org/abs/1710.10398.

Hairong Liu, Zhenyao Zhu, Xiangang Li, and Sanjeev Satheesh. “Gram-CTC: Automatic Unit Selection
and Target Decomposition for Sequence Labelling”. In: CoRR abs/1703.00096 (2017). arXiv: 1703.00096.
URL: http://arxiv.org/abs/1703.00096.

Petros Maragos and Ronald W. Schafer. “Morphological filters-Part I: Their set-theoretic analysis and
relations to linear shift-invariant filters”. In: IEEE Trans. Acoustics, Speech, and Signal Processing 35
(1987), pp. 1153-1169.

Urs-Viktor Marti and Horst Bunke. “The IAM-database: an English sentence database for offline hand-
writing recognition”. In: International Journal on Document Analysis and Recognition 5 (2002), pp. 39—
46.

Warren S. McCulloch and Walter Pitts. “Neurocomputing: Foundations of Research”. In: ed. by James A.
Anderson and Edward Rosenfeld. Cambridge, MA, USA: MIT Press, 1988. Chap. A Logical Calculus of
the Ideas Immanent in Nervous Activity, pp. 15-27. 1SBN: 0-262-01097-6. URL: http://dl.acm.org/
citation.cfm?id=65669.104377.

Frederic P. Miller, Agnes F. Vandome, and John McBrewster. Levenshtein Distance: Information The-
ory, Computer Science, String (Computer Science), String Metric, Damerau?Levenshtein Distance, Spell
Checker, Hamming Distance. Alpha Press, 2009. 1sBN: 6130216904, 9786130216900.

Thomas M. Mitchell. Machine Learning. 1st ed. New York, NY, USA: McGraw-Hill, Inc., 1997. ISBN:
0070428077, 9780070428072.

150

http://arxiv.org/abs/1507.07909
http://arxiv.org/abs/1507.07909
http://arxiv.org/abs/1507.07909
https://doi.org/10.1109/DAS.2018.21
http://dl.acm.org/citation.cfm?id=2132960.2132986
http://dl.acm.org/citation.cfm?id=2132960.2132986
https://doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1710.10398
http://arxiv.org/abs/1710.10398
http://arxiv.org/abs/1703.00096
http://arxiv.org/abs/1703.00096
http://dl.acm.org/citation.cfm?id=65669.104377
http://dl.acm.org/citation.cfm?id=65669.104377

[48]

[54]

[55]

[56]

[60]

[61]

Bastien Moysset, Theodore Bluche, Maxime Knibbe, Mohamed Faouzi Benzeghiba, Ronaldo Messina,
Jerome Louradour, and Chistropher Kermorvant. “The A2iA Multi-lingual Text Recognition System at
the Second Maurdor Evaluation”. In: 2014 14th International Conference on Frontiers in Handwriting
Recognition. 2014, pp. 297-302. por1: 10.1109/ICFHR.2014.57.

Jon Parker, Ophir Frieder, and Gideon Frieder. “Robust binarization of degraded document images using
heuristics”. In: vol. 9021. Dec. 2013, 90210U. poI: 10.1117/12.2042581.

Vu Pham, Christopher Kermorvant, and Jérome Louradour. “Dropout improves Recurrent Neural Net-
works for Handwriting Recognition”. In: CoRR abs/1312.4569 (2013). arXiv: 1312 .4569. URL: http:
//arxiv.org/abs/1312.4569.

Rejean Plamondon and Sargur Srihari. “Online and off-line handwriting recognition: a comprehensive
survey”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence 22.1 (2000), pp. 63-84.
DOI: 10.1109/34.824821.

Joan Puigcerver. “A Probabilistic Formulation of Keyword Spotting”. PhD thesis. jpuigcerver@google.com:
Polytechnic University of Valencia, Nov. 2018.

Joan Puigcerver. “Are Multidimensional Recurrent Layers Really Necessary for Handwritten Text Recog-
nition?” In: 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR).
Vol. 01. 2017, pp. 67-72. DOI: 10.1109/ICDAR.2017.20.

Lawrence R. Rabiner. “A tutorial on hidden Markov models and selected applications in speech recogni-
tion”. In: Proceedings of the IEEE 77.2 (1989), pp. 257—-286. 1sSN: 0018-9219. DO1: 10.1109/5.18626.

Hannes Rantzsch, Haojin Yang, and Christoph Meinel. “Signature Embedding: Writer Independent Offline
Signature Verification with Deep Metric Learning”. In: ISVC. 2016.

Tony M. Rath and R. Manmatha. “Word Spotting for Historical Documents”. In: Int. J. Doc. Anal.
Recognit. 9.2-4 (Apr. 2007), pp. 139-152. 1ssN: 1433-2833. DOI: 10. 1007 /510032~ 006~ 0027 - 8. URL:
http://dx.doi.org/10.1007/s10032-006-0027-8.

Arshia Rehman, Saeeda Naz, and Muhammad Muhammad Razzak. “Writer Identification Using Machine
Learning Approaches: A Comprehensive Review”. In: Multimedia Tools Appl. 78.8 (Apr. 2019), pp. 10889—
10931. 18sN: 1380-7501. DOI: 10.1007/s11042-018-6577-1. URL: https://doi.org/10.1007/s11042~
018-6577-1.

George Retsinas, Giorgos Sfikas, and Basilis Gatos. “Transferable Deep Features for Keyword Spotting”.
In: Proceedings 2 (Jan. 2018), p. 89. DOL: 10.3390/proceedings2020089.

Dominique Rivard, Eric Grange, and Robert Sabourin. “Multi-feature Extraction and Selection in Writer-
independent Off-line Signature Verification”. In: Int. J. Doc. Anal. Recognit. 16.1 (Mar. 2013), pp. 83-103.
ISSN: 1433-2833. por: 10.1007/510032-011-0180-6. URL: http://dx.doi.org/10.1007/s10032-011~
0180-6.

Frank Rosenblatt. “The Perceptron: A Probabilistic Model for Information Storage and Organization in
The Brain”. In: Psychological Review (1958), pp. 65-386.

David Rumelhart, Geoffrey Hinton, and Ronald J. Williams. “Parallel Distributed Processing: Explo-
rations in the Microstructure of Cognition, Vol. 1”. In: ed. by David E. Rumelhart, James L. McClelland,
and CORPORATE PDP Research Group. Cambridge, MA, USA: MIT Press, 1986. Chap. Learning In-
ternal Representations by Error Propagation, pp. 318-362. 1SBN: 0-262-68053-X. URL: http://dl.acm.
org/citation.cfm?id=104279.104293.

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. “Learning Representations by Back-
propagating Errors”. In: Nature 323.6088 (1986), pp. 533-536. DOIL: 10 .1038/323533a0. URL: http:
//www.nature.com/articles/323533a0.

151

https://doi.org/10.1109/ICFHR.2014.57
https://doi.org/10.1117/12.2042581
http://arxiv.org/abs/1312.4569
http://arxiv.org/abs/1312.4569
http://arxiv.org/abs/1312.4569
https://doi.org/10.1109/34.824821
https://doi.org/10.1109/ICDAR.2017.20
https://doi.org/10.1109/5.18626
https://doi.org/10.1007/s10032-006-0027-8
http://dx.doi.org/10.1007/s10032-006-0027-8
https://doi.org/10.1007/s11042-018-6577-1
https://doi.org/10.1007/s11042-018-6577-1
https://doi.org/10.1007/s11042-018-6577-1
https://doi.org/10.3390/proceedings2020089
https://doi.org/10.1007/s10032-011-0180-6
http://dx.doi.org/10.1007/s10032-011-0180-6
http://dx.doi.org/10.1007/s10032-011-0180-6
http://dl.acm.org/citation.cfm?id=104279.104293
http://dl.acm.org/citation.cfm?id=104279.104293
https://doi.org/10.1038/323533a0
http://www.nature.com/articles/323533a0
http://www.nature.com/articles/323533a0

[63]

[66]

[67]

[68]

[69]

[71]

[72]

(73]

[74]

Marcal Rusinol, David Aldavert, Ricardo Toledo, and Josep Lladods. “Efficient Segmentation-free Keyword
Spotting in Historical Document Collections”. In: Pattern Recogn. 48.2 (Feb. 2015), pp. 545-555. ISSN:
0031-3203. poI: 10.1016/j.patcog.2014.08.021. URL: http://dx.doi.org/10.1016/j.patcog.2014.
08.021.

Margal Rusinol, David Aldavert, Ricardo Toledo, and Josep Lladés. “Towards query-by-speech handwrit-
ten keyword spotting”. In: 2015 13th International Conference on Document Analysis and Recognition
(ICDAR) (2015), pp. 501-505.

Tara N. Sainath, Brian Kingsbury, Abdel-rahman Mohamed, George E. Dahl, George Saon, Hagen Soltau,
Tomas Beran, Aleksandr Y. Aravkin, and Bhuvana Ramabhadran. “Improvements to deep convolutional
neural networks for LVCSR”. In: CoRR abs/1309.1501 (2013). arXiv: 1309.1501. URL: http://arxiv.
org/abs/1309.1501.

Ramon Sanabria and Florian Metze. “Hierarchical Multi Task Learning With CTC”. In: CoRR abs/1807.07104
(2018). arXiv: 1807.07104. URL: http://arxiv.org/abs/1807.07104.

Mike Schuster and Kuldip K. Paliwal. “Bidirectional Recurrent Neural Networks”. In: Trans. Sig. Proc.
45.11 (Nov. 1997), pp. 2673-2681. 1SsN: 1053-587X. DOI: 10.1109/78.650093. URL: http://dx.doi .
org/10.1109/78.650093.

Claude Shannon. “Prediction and entropy of printed English”. In: The Bell System Technical Journal 30.1
(1951), pp. 50-64. DOL: 10.1002/j.1538-7305.1951.tb01366.x.

Robin Sibson and G. Stone. “Computation of Thin-plate Splines”. In: SIAM J. Sci. Stat. Comput. 12.6
(Sept. 1991), pp. 1304-1313. 1SSN: 0196-5204. DOL: 10.1137/0912070. URL: http://dx.doi.org/10.
1137/0912070.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. “Dropout:
A Simple Way to Prevent Neural Networks from Overfitting”. In: J. Mach. Learn. Res. 15.1 (Jan. 2014),
pp- 1929-1958. 1SSN: 1532-4435. URL: http://dl.acm.org/citation.cfm?id=2627435.2670313.

Sebastian Sudholt and Gernot A. Fink. “PHOCNet: A Deep Convolutional Neural Network for Word
Spotting in Handwritten Documents”. In: CoRR abs/1604.00187 (2016). arXiv: 1604.00187. URL: http:
//arxiv.org/abs/1604.00187.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. “Attention Is All You Need”. In: CoRR abs/1706.03762 (2017). arXiv: 1706.
03762. URL: http://arxiv.org/abs/1706.03762.

Alessandro Vinciarelli. “A survey on off-line Cursive Word Recognition”. In: Pattern Recognition 35 (2002),
pp. 1433-1446.

Paul Voigtlaender, Patrick Doetsch, and Hermann Ney. “Handwriting Recognition with Large Multidi-
mensional Long Short-Term Memory Recurrent Neural Networks”. In: 2016 15th International Conference
on Frontiers in Handwriting Recognition (ICFHR). 2016, pp. 228-233. DOI: 10.1109/ICFHR.2016.0052.

Yisen Wang, Xuejiao Deng, Songbai Pu, and Zhiheng Huang. “Residual Convolutional CTC Networks
for Automatic Speech Recognition”. In: CoRR abs/1702.07793 (2017). arXiv: 1702.07793. URL: http:
//arxiv.org/abs/1702.07793.

David H. Wolpert. “The Lack of a Priori Distinctions Between Learning Algorithms”. In: Neural Comput.
8.7 (Oct. 1996), pp. 1341-1390. 1sSN: 0899-7667. DOI: 10 .1162/neco.1996.8 .7 .1341. URL: http:
//dx.doi.org/10.1162/neco.1996.8.7.1341.

Sanghyun Woo, Jongchan Park, Joon-Young Lee, and In So Kweon. “CBAM: Convolutional Block At-
tention Module”. In: CoRR abs/1807.06521 (2018). arXiv: 1807 .06521. URL: http://arxiv.org/abs/
1807 .06521.

152

https://doi.org/10.1016/j.patcog.2014.08.021
http://dx.doi.org/10.1016/j.patcog.2014.08.021
http://dx.doi.org/10.1016/j.patcog.2014.08.021
http://arxiv.org/abs/1309.1501
http://arxiv.org/abs/1309.1501
http://arxiv.org/abs/1309.1501
http://arxiv.org/abs/1807.07104
http://arxiv.org/abs/1807.07104
https://doi.org/10.1109/78.650093
http://dx.doi.org/10.1109/78.650093
http://dx.doi.org/10.1109/78.650093
https://doi.org/10.1002/j.1538-7305.1951.tb01366.x
https://doi.org/10.1137/0912070
http://dx.doi.org/10.1137/0912070
http://dx.doi.org/10.1137/0912070
http://dl.acm.org/citation.cfm?id=2627435.2670313
http://arxiv.org/abs/1604.00187
http://arxiv.org/abs/1604.00187
http://arxiv.org/abs/1604.00187
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
https://doi.org/10.1109/ICFHR.2016.0052
http://arxiv.org/abs/1702.07793
http://arxiv.org/abs/1702.07793
http://arxiv.org/abs/1702.07793
https://doi.org/10.1162/neco.1996.8.7.1341
http://dx.doi.org/10.1162/neco.1996.8.7.1341
http://dx.doi.org/10.1162/neco.1996.8.7.1341
http://arxiv.org/abs/1807.06521
http://arxiv.org/abs/1807.06521
http://arxiv.org/abs/1807.06521

(78]

[79]

Mustafa Berkay Ylmaz and Berrin Yankolu. “Score Level Fusion of Classifiers in Off-line Signature Verifi-
cation”. In: Inf. Fusion 32.PB (Nov. 2016), pp. 109-119. 1SSN: 1566-2535. DOI: 10.1016/j.inffus.2016.
02.003. URL: https://doi.org/10.1016/j.inffus.2016.02.003.

Ying Zhang, Mohammad Pezeshki, Philemon Brakel, Saizheng Zhang, César Laurent, Yoshua Bengio, and
Aaron C. Courville. “Towards End-to-End Speech Recognition with Deep Convolutional Neural Networks”.
In: CoRR abs/1701.02720 (2017). arXiv: 1701.02720. URL: http://arxiv.org/abs/1701.02720.

153

https://doi.org/10.1016/j.inffus.2016.02.003
https://doi.org/10.1016/j.inffus.2016.02.003
https://doi.org/10.1016/j.inffus.2016.02.003
http://arxiv.org/abs/1701.02720
http://arxiv.org/abs/1701.02720

	µ
	
	µ µ
	 µ
	
	µ

	greekenglishNGramgreekgreek
	 greekenglishUnigram-Bigramgreekgreek
	µ µ
	-µ-µµ

	
	µ -
	 µ

	 µ greekenglishCTCgreekgreek
	
	µ
	µ µ
	 greekenglishCNN+CTCgreekgreek µ ß µ
	µµ

	, µµ

	Introduction
	Problem Definition
	Related Problems in the Document Analysis field
	Keyword Spotting
	Verification-Identification
	Layout Analysis

	IAM Database
	Thesis Outline

	Theoretical Background
	Theoretical Background
	Machine Learning Preliminaries
	Supervised Learning
	Unsupervised Learning

	Neural Networks
	Learning Algorithms

	Deep Neural Networks
	Convolutional Neural Networks
	Sequence Modeling : Recurrent Neural Networks

	Connectionist Temporal Classification
	CTC Decoding Algorithms
	N-Gram Language Models in CTC Decoding

	Previous Work
	Previous Work
	Preprocessing Techniques for HTR
	Probabilistic Models for HTR
	Hidden Markov Models
	Hidden Markov Models for Handwritten Text

	Neural Models for HTR
	Multidimensional RNN for HTR
	One-dimensional RNN for HTR

	Data Augmentation for HTR and Baseline Model
	Data Augmentation and Baseline Model for HTR
	Data Augmentation
	Global Affine Transform
	Global Morphological Transform
	Local Affine Transform
	Local Morphological Transform
	Other Transforms

	Baseline Architecture
	Experiments

	Decoding the Network Outputs
	External Language Model
	Decoding Experiments

	Ngram Models
	NGram Models
	Unigram-Bigram Model
	Shared CTC Layer Architecture for Unigram-Bigram Model
	Proposed Algorithms for Decoding Unigram-Bigram Model
	Output Analysis for Revision of Proposed Algorithms
	Decoding Experiments

	Conclusions

	Hierarchical and Multitask Learning in HTR
	Hierarchical and Multitask Approaches in HTR
	Possible Architectures for Multiscale-Target Models
	Hard Parameter Sharing for Unigram-Bigram Model

	Hierarchical Multitask Learning with CTC - An Application to HTR
	Multitask Learning
	Experimenting with Multitask Architectures

	Single Task Vs Multi Task Architectures for HTR
	Conclusions

	Deep Convolutional CTC Network for Handwritting Recognition
	Introduction
	Motivation
	Fully-Convolutional Architecture
	Experiments

	An Enseble of CNN Models for HTR
	Comparing CNN+CTC with Baseline
	Conclusions

	Contributions, Conclusions and Future Work
	Contributions, Conclusions and Future Work

	Appendix
	Examples of Greedy Decoded Alignments of Unigrams and Bigrams

