
Title Sentence Analysis Techniques in Speech Translation(
Dissertation_全文)

Author(s) Tomita, Masaru

Citation Kyoto University (京都大学)

Issue Date 1994-07-23

URL http://dx.doi.org/10.11501/3077512

Right

Type Thesis or Dissertation

Textversion author

Kyoto University

Sentence Analysis
Techniques

in Speech Translation

Masaru Tomita

4 CONTENTS

1 Introd uction 15

3.4.9 Disjunctive Equations， *OR本. 48

3.4.10 Exclusive OR， *EOR* 48

3.4.11 Casc Statement， *CASE* 48

3.4.12 Tesi with an User-defined L1SP Function， *TEST* .. 48

3.4.13 Recursive Evaluat.ion of Equations， *INTERPRET本. .. 49

3.4.14 Disjunctive Value，本OR本.. 49

3.4.15 Negative Value， *NOT* 49

3.4.16 Muliiple Values，本MULTIPLE* 49

3.4.17 Uscr Defined special Values， *tLser-definedホ. 49

3.5 Standard U nification Mode 50

3.6 Other Important Features 50

3.6.1 Character Basis Parsing 50

3.6.2 Wild Card Charact.er. 50

3.6.3 Grammar Debugging Tools 51

3.6.4 Interpretive Parser 51

3.6.5 Grammar Macros. 51

3.7 Summary .. 51

Contents

2 Generalized LR Parsing

2.1 lniroduction.

2.2 Graph-structured S句 ck

2.2.1 Splitting.

2.2.2 Combining

2.2.3 Local Ambiguity Packing

2.3 Packed Sharcd Parse Forest

2.4 A n Example . .

2.5 Specification of ihe Algoriihm . .

2.6 Summary

19

19

20

20

-
A
a
i
q
L
q
u
o
o
n
u

n
L
n
L
n
L
内

L
q
d
必

q

4 Parsing with Probabilistic Grammars 53

4.1 Introduction............................ 53

4.2 Background............................ 54

4.2.1 Probabilistic Context-Free Grammar 54

4.2.2 Probabilistic LR Parse Table 55

4.3 Probabilistic Generalized LR Parsing 56

4.3.1 Merging.......................... 59

4.3.2 Local Ambigulty Packing " 59

4.3.3 Splitiing.......................... 60

4.3.4 Using Stochastic Product to Guide Search 61

4.4 Problem with Left Recursion 62

4.4.1 Simplc Left Recursion 63

4.4.2 Massive Left Rccursion 64

4.5 Construction of Probabilist.ic LR Parsing Table 65

4.5.1 Stochastic Values of Kernel Items. 65

4.5.2 Dependency Graph 65

4.5.3 Generating Linear Equations 66

4.5.4 Solving Linear Equations wiih Caussian Elimination. 68

4.5.5 Stochastic Factors 69

4.6 Deferred Probabilities 69

4.7 Algorithm Specification 70

3 Parsing with A ugmented Grammars 41

3.1 Jntroduction............................ 41

3.1.1 The Augmentation 41

3.1.2 Sharing and Packing Functional Structures 42

3.2 The LFG Compiler .. 43

3.3 Top-Levcl Functions .. 45

3.4 Pseudo Equations. .. 46

3.1.1 Pseudo Uni五cation，= 46

3.1.2 Overwrite Assignment， <= 46

3.4.3 Removal Assignment， == 47

3.4.4 Append Multiple Value， > 47

3.4.5 Pop Multiple Value， < 47

3.1.6 *DEFINED* and *UNDEFINED*ぺ7

3.4.7 Constrrunt Equations， =c . . .

3.4.8 Removing Values，ホREMOVE*.
47

48

3

CONTENTS

4.7.1 Auxiliary Functions

4.7.2 LR Table Construction

1.8 Sammary

5 Parsing Word Lattices
5.1 Introduction....

5.2 The Substring Parsing Algorithm
5.3 Arbitrary Word Order Parsing

5.3.1 DcscriptioIl o[the Algorithm

5A An sxamplc
5.5 Using A・JIcllristic.

5.5.1 Thc Ifeuristic .

5.5.2 Compllting the P噂 Scores

5.5.3 Parsing a Word Lattice using the Heuristic
5.6 Summary

6 Noise Skipping Parsing
6.1 Introduction..

6.2 The GLRψParsing AIgorithm .

6.2.1 An Example

6.2.2 Efficiency of the Parser

6.2.3 Sclecting the BesもMaλdmalParse. .
6.3 Thc Dcam Scarch IIeuristic
6.4 Pal討ngof Spontancous Speech Using GLR* . .

6.4.1 Thc Problem of Parsing Spontaneous Speech
6.4.2 Parsing of Noisy Spontaneous Speech
6.4.3 Grammar Covcrage. .

6.5 Sllmmary

7 Speech Translation Systems
7.] Introduction.

7.2 Speech Recognition

7.2.1 ^ llistorical Perspective .
7.3 SpeechTrans.........

7.3.1 Handling Erratic Phonemes .
7.3.2 An Example

7.3.3 Scoring and the Confusion Matrix

7.3.4 Samplc Runs .
7..t Sphinx句 LR.

5

71
72

73

75

75

77

78

79

81
84

86

87
87

88

89

89
91

91
97

97

99
100

100
101

102

103

105

105

106
106

107

109

110
115

118

118

6 CONTEXTS

7.4.1 The HMM-LR Method 121

7.4.2 The Integrated Speech-Parsing Algorithm 123

7.5 JANUS 126

7.5.1 Speech Recognition with Linked Predictive Neural Net-
works 127

7.5.2 Sentence Analysis with Generalized LR Parsing 129

7.5.3 The Interlingua 131

7.5.4 Sentence Generation . . 132

7.5.5 Semantic Pattcrn Dased Parsing 133

7.5.6 Connectionist Parsing . 136

7.5.7 System Integration 138

7.5.8 Summary 畠畠. 138

8 Concluding Remarks 141

A GLR ParserjCompiler Version 8-4: User's Manual 143

A.1 Getting Started . 145

A.1.1 In trod uction . . 145

A.1.2 A Sample Script '.' . . . 145

A.1.3 Basic Functions . 150

A.2 Writing a Grammar 152

A.2.1 General Format of Grammar Rules . . . 152

A.2.2 Phrase Structure Rules 153

A.2.3 Equations 154

A.2.4 The Starting SymboJ . 155

A.2.5 Commenting the Grammar . -・. . . . 156

A.2.6 Disjunctive EquatioJls 156

A.2.7 Pseudo Equations 158

A.2.8 The Morphological Rules 161

A.2.9 Dictionary: The Lexical Rules 163

A.3 Debugging a Grammar . . 164

A.3.1 Dmode -・・・・・・・・. 164

A.3.2 Trace Function 165

A.3.3 Other Functions 165

A.3.4 Ambiguity Packing . . 167

A.4 Changing Parameters 169

A.5 Using Macro in a Grammar . 170

A.5.1 A Simple Example 170

A.5.2 Lexical Rules for English Nouns -・・・・ 4・・・・ e
171

CONTENTS

A.5.3 Lexical Rulcs for English Verbs .
A.6 Compiling Lexkal }i'iles Separately .
A.7 Using Your Own MorphjDictionary System .

A.7.1 Introduction
A.7.2 Word Based Parsing
A.7.3 User's Dictionary Look Up

.̂8 Pscudo Unification and Full Uni五cation
A.8.1 Introduction
A.8.2 Full UnifLcation
A.8.3 Pseudo U nifLcation
A.8.4 When Pscudo Unification Works DifTcrently .
A.8.5 Summary

B GENKIT and TRANSKIT Version 3・2:User's Manual
B.1 Getting Starled

B.l.l Basic Functions of GENKIT
B.1.2 Basic Functions of TRANSKIT . .

B.2 Writing a Generation Grammar .
B.3 Writing TRANSI<IT rules
D.4 Pseudo Equations. .

B.4.1 Basic Pseudo Equations .
B.4.2 Special Forms .
B.4.3 Special Values

B.5 Compiling a Grammar in Multiple Files .
8.6 Sample GENKIT Grammar . . .

7 8 CONTENTS

175

181
182
182

182
182

184
184
184

185
186

187

191

193
193
193

194

198
200

200
202

203
204
205

10 LIST OF FIGURES

4.9 An Example State for GRA2 63

4.10 Start State of GRA3 .. stI

4.11 A Dependency Graph 66

List of Figures

5.1 An Example Grammar . . .

5.2 GSS of Island (n， [6， S])

5.3 GSS of Island (p， [5，6]) . .

5.4 GSS of Island (p n， [5， S]) ..

5.5 GSS ofIsland (n， [4，5]) . .

5.6 GSS of Island (n p n， [4， $]) .

2.1 GRA: A non LR Grammar 23

2.2 SLR(1) Parsing Table for GRA 25

2.3 Trace of the parscr .. 27

2.4 Trace ofthe parser (cont'd) 28

2.5 Ttace of the parscr (cont'd) 28

2.6 Trace of the parser (cont'd) 29

2.7 Ttaceoftheparser(cont'd) 30

2.8 Trace of the parser (cont 'd) 31

2.9 Traceofthcparser(cont'd) 31

2.10 Trace of the parser (cont'd) 31

2.11 Trace of thc parser (cont'd) 32

2.12 Trace of the parscr (cont'd) 33

2.13 Trace of the parser (cont'd) 34

2.14 Trace of the parscr (cont 'd) 34

2.15 Trace of the parscr (cont 'd) 35

2.16 Trace of thc parscr (cont 'd) 36

2.17 Pac](ed Sharcd Forcst and Its Respcctivc Parsc Trees 37

3.1 Example Grammar Rule in the LFG-Iike Notation 44

3.2 The Compilcd Grammar Rule 44

4.1 GRA1: A Non-left Recursive PCFG 55

1.2 GRA2: A Lcft. rccursivc PCFG 55

4.3 GRA3:A Massivcly Left-recursive PCFG 56

4.4 Probabilistic Parsing Table for GRAl 57

4.5 Probabiustic Parsing Table for GRA2 57

4.6 Probabilistic Parsing Table for GRA3 58

4.7 lIerging.............................. 59

4.8 Splitting.............................. 60

6.1 A Simple Natural Language Grammar

6.2 Initial GSS

6.3 GSS after first shift phase .

6.4 GSS after second shift phase. .

6.5 GSS after third reduce phase

6.6 GSS after third shift phase

6.7 GSS after fourth shift phase

6.8 GSS after fifth reduce phase .

6.9 GSS after五nalreduce phase

7.1 An Example Japancse Grammar

7.2 LR Parsing Table for the Example Japancse Grammar . .

7.3 Example Trace a -f

7.4 Example Trace g -i
7.5 An input sequence of phonemes . .

7.6 The final configu ration of the parser

7.7 Sample Outputs of the Parser

7.8 Sphinx-LR's compilcd knowledge files

7.9 Schematic diagram of JIMM-LR speech recognizer

7.10 Stacking of a probabilit.y array

7.11 Modeling a phoneme by signal prediction

7.12 Example F・Structure

7.13 Example for robust parsing

7.14 Example: Interlingua Output

7.15 Output language F structure

A.1 A Toy Grammar， toy.gra . .

A.2 An Example Rule .

A.3 Counter Example J .

9

2
1
A
U
I
A吐

A
q
F
O
K
U

n
o
o
o
白

o

n

O
凸

O
n
H
U

1
i
A《
u
q
d
必“
l

d

H

1

民
d
F
h
u
n
H
v
n
k
u

n
u
u
n
u
d
o
d
A
W
u
h
u
M
Q
u
n
v
n
u
d
n
u
u

111

111
112

114
115
116

119
120
] 22

121

128
130

131
132

134

146
184
]87

LIST OP FIGURES

A.4 Counter Example II

B.l A Grammar Rule for Parsing

B.2 A Grammar Rule for Generation

B.3 A Sample F-structure

11

188

194

195

196

12 LIST OF FIGURES

List of Tables

5.1 Standard Pa.rsing Table for Grammar in Figure 1 82

5.2 Long red uction goto table for the parsing table in Table 1 .. 82

6.1 SLR(O) Parsing Tablc for Grammar io Figure 1 92

6.2 Performancc of the GLR"" Parser on Spontaneous Speech. . . 101

6.3 Performance of the GLR* Parser vs. the OriginaJ Parser . . . 103

7.1 A portion of a confusion matrix 117

13

14 LIST OF TABJAS

Chapter 1

Introduction

Spccch t.ranslation (voice input and voice output) is much more than
con-

nccting a specch recognizer to a machine translation system with a speech

synthesizcr. Suppose you have these threc components and each indivi
dual

componcnt works well. If you simply connect the three to perform speech

translation， you probably cnd up with vcry poor speech translation.

There are two ma.in problems. First， no speech recognizer is perfect， and

spoken input scntences arc often recognjzed with errors. A certain word

in the input sentcnce may be misrccognized as a different word， or may be

complct.cly ignored， resulting an ungrammatic孔Isentcnce.

Second， pcople rarely spcak grammatical sentences to bcgin with. Un-

likc writtcn sentcnces， spokcn sent.cnces oHen incll1de nonsense words and

phrases， ¥Il1ueccssary rcpetitioll， meaningless pauses， cough and other noises，

a.c; scen ill t.he following example sellt.ence: "ls this wcll is this ah the confcr-

enc(.' desk 1 mcan confcrencc office'?"

Most. conventional machinc trぞanslationsystems， which expcct thcir input

scnt.C'llccs to bc gramm叫ical，can do very little with those ungramma.ticaJ

scntcncesj they prob<¥bly produce very funny translation， or they simply

crash.

This document dcscribcs sevcral techniques to solve some of these prob-

lems.

Chaptcr 2 dcscrihC's the Generalized LR parsing algorithm for context-

frec grammars. This is thc algorithm which is thc basis of most of the

t.echniqucs prescnted later the document. Generalized LR parsing uses the

prccompiled LR parsing tablc， and unlike LR parsing， it can handle arbitral'y

context-free grammars while most of the LR efficiency is preserved with the

15

16 ClIAPTER 1. lNTRODUCTION

device callcd Graph Structured Stαcん.

Chapter 3 then describes how to handle augmented context-free gram

mars (colltext-frce grammars which have a.dditiona.l conditions a.nd a飢ction

attached to each ru叫le吋)us討ingGel1ω附e町ra剖lizedLR par 詰幻叩sing.A practical grammar

formalism， which resembles LFG， is introduced， and how thc grarnmar can

be precompiled is presented.

Analysis of spoken sentences with possible recognition crrors can bc

highly ambiguous， and some kind of mechanism is definitely nceded to tell

which is the most likely parse out of multiple ambiguol1s parscs. One such

me<:hanism is usil1g probabilistic grammars，、vhcreeach grammar r111e has

a probability value indicating how likely the rulc is l1sed. Chapter 4 has

detailed discussions of how we can haJ1dle probabilistic gramma.rs efficie
ntly

using Generalized LR parsingj specificalJy， ho¥V one can precompilc such

proba.bilistic informa.tion into the LR parsing table.

Some speech recognition systems prodl1ce not just a sequence of words，

but a lαttice of word candidates calLed word lαttice. A word lattice is an

efficient representation of a large number of sentence candidatcs. 1n parsing

word lattices， the search space is much larger than in parsing word strings

(sentences)， and an efficient algorithm is required. Chapter 5 presents an

efficient word lattice parsing algorithm based on Gencralized LR parsing.

The algorithm can parse input in aJly ordcrj tbus acoustically more rcli
ablc

words and sernantically more signi抗cantwords can be process(>d firsし

Chapter 6 describes an extension of Generalized LR parsing that is ca-

pable of skipping unrecognizable parts of the input sentence. Spontaneously

spoken sentences are very ungrammaticaL， and it is next to impossible to

write a grammar which covers them. Thercfore， rather than trying to writc

a huge grammar to cover spontaneous utterances， we want to write a concisc

grammar and have the parser extract parts of thc utt.crance that arc me
an

ingful and ignore the rest. Such a parsing algorithm. GLRへisprescnted in

the chaptcr， and some heuristics to ma.ke it. morc efficicnt arc discusscd.

In chapter 7， we describe threc differcnt speech translation projects，

which the author has been involved. SpeechT:同nsis a .J apancse to English

speech translation syst.em， in the domain of doctor paticnt conversation with

the vocab111ary size of 100. Sphinx-LR is an English to Japanese speech

traJ¥slation system in the domain of rcsource management with the voc
abu

lary size of 1000. It uses a speech recognition system named Sphin芯 which

was developed at. Carnegie Mellon University. Then， JANUS is an English

to Germanj.Japanese speech translation system in the domain of confer
encc

registration with the vocabulary size of .500. Jt uses a speech recognition

17

systcm ba弓cdon nC¥lral nctworks which was also developed at Carnegie Mel-

lon University. AII of the three systems are speaker independent and for
con/intlOUS sprech.

Finally in cha.ptpr 8， somc concluding remarks are made.
Jn th<:'九ppendiccs，there are user's manuals of two computer software

packagcs dcvclopcd by thc author: The GLR PαrserjCompiler version 8-4
and G' I~N /(/7'αnd TRA NS!(JT version 3-2. Those software packagcs are

availablc lo thc public， and by now， dozens of projects， world wide， have
bccn ¥Ising th('m as a tool for implementing naturallanguage syslcms.

Acknowledgements

1 would Iikc to thank Profcssor Makoto Nagao， for the opportunity he has
givcn me to submit this document for a degree of Doctor of Engineering，
and morc importantly， for his continuous support， technical and personal，
for many years during my career in the area of speech translation.

Substantial parts of this thesis are based on the author's previously pub-

}jshed papcrs， as indicated in the following list.

• Chaptcr 2: [Tomita， 1991， Tomita and Ng， 1991， Tomita， 1987， Tomita，
1988b]，

• Chapter 3: [Tomita， 1987， Tomita， 1990b]，

• Cha.ptcr 4: [Ng and Tomita， 1991)，

• Chaptcr 5: [Lavie and Tomita， 1993a， Tomita， 1986， Lavic and Tomita，
1993b]，

• Chaptcr 6: [Lavie and Tomita， 1993c]，

• Chaptcr 7: [Tomita et αl.， 1989， Nirenburg et αl.， 1991， Tomita etα1. ，
1990a， Saito and Tomita， 1988b， Woszczyna etαl.， 1993，" Tomita，
1988e， Tomabechi et α1.， 1989， Tomita et al.， 1990b]，

• Appendix A: [Tomita etα1.， 1988b， Tomita， 1990b]，

• Appendix B: [Tomita. and)[yberg， 19881.

Othcr publishcd papcrs that are closely related to this thesis are [Tomita，
1990a， romila， 1991， Nirenburg etαl.， 1991， Tomabechi and Tomita， 1989，
Tomita and Carboncll. 1986、Tomitaet α1.， 1987， Tomita and Carbonell，

18 CIIAPTER 1. INTRODUCTION

1987b， Tomita， 1988a， Tomita etαl.， 1988a， Kitano etα1.， 1989， Tomita，
1988c， Tomita， 1988d， Carbonell and Tomita， 1985， Tomita and Carbonell，
1988]. A part of Chapter 7 is based on [?].

1 wish to acknowledge the authors of these papers， parts of which， di-
rectly or indirectly， appear in this docllment. They are O. Barkむ， Jaime

Carbonell， Noah Coccaro， A. Eisele， Ken Goodman， Marion Kee， T. Kawa-

bata， Kenji Kita， Hiroaki Kita.no， Alon Lavie， Arthur McNair， Teruko Mi-
tamura， Hiroyuki Musha， See-Kiong Ng， Sergei Nirenburg， Eric Nyberg， 1.
Rogina， Carolyn Rose， Hiroaki Saito， T. Siohoda， JIidcto Tomabechi， Naomi
Waibel， Alex Waibel， Wayne Ward， and Monica Woszczyna.

There are many other people who gave me technical andjor personal

supports. They include JIideo Aiso， Shuji Doshita， lIitoshi Uda， Akira Kure-
matsu， Lori Levin， Joan Maddamma， Shuji Morii， Seiichi Nakagawa， Shinya
Nakagawa， Masakazu Nakanishi， Tadashi Nakayama， Allen Newell， Toyoaki
Nishida， Raj Reddy， Kiyohiro Shikano， JIerbert Simon， Hozumi Tanaka，
Junya Tsutsumi， and Jun・ichiTsujii.

Finally， 1 would like to thank my wife， Yuko， and my children， Ellie and
Ken for their continuous emotional support and encouragement.

Chapter 2

Generalized LR Parsing

2.1 Introduction

LR parsing is a widely used method of syntax analysis for a variety of reasons

First and fOJ官 nost，an LR parser is a deterministic parser which is highly

cfficicnt: it scans the input string in one pass and is able to detect errors at

an eal匂 stage.The avajJability of parser generators and compiler ∞mpilers

based on LR parsing technology [Aho and Ullman， 1977， Johnson， 1975]
furthcr acccntllatcd its popularity， since such tools are essential in practical
syslems whcrc gram mars a.re often too large for a parser to be constructed
by hand.

Am吋01'drawback of standard LR parsing is that it can only handle a

subclass of contcxt-free grammars called LR grammαrs. Although there ex・

ist P制'singtcchlliques capable of handling arbitrary context-free grammars，
for installc(I， lhc Earlcy's algorHhm [Earley， 1970] and the Cocke令-Younge町}'-
Kas胤州a削n川1

wcll <1S Lυ，H p 晶訂rsing.

On(' of thc strong poinls of standard LR parsing is that it is totally de-

terministic， which givcs rise to its efficiency in execution. In ordcr to achieve
dctcrminism， thc LR parser sacrifices its gener叫ityby imposing a stringent

condition on thc c1ass of grammars over wruch the technique works. It re-

quires tha.t an LR parsing table with no action conflicts be producible for

I Major parts of thig ch叩 lerare based on previously published papers [Tomila.， 1991，
Tomita. and Ng， 1991， Tomita， 1987， Tomita， 1988b]. r would like ぬa.cknowledgethe
coaulhor of the papers， See-Kiol、gNg. whose contribution is included in this chapter.

19

20 ClIAPTER 2. GENERALIZED LR PARSING

the grammar. It is conceivable that in some practical applications， such
grammars are hard to come by. For example， in natural language pro-

cessing， there are grammatical features such as prepositional phrase attach-
ment which are inherently ambiguous， causing any context-free grammar
which models such feature to be non-LR. Jf there is a general and efficient

method for dealing with action conflicts in the parsing table， then there lies
an efficient parsing algorithm for general context-free grammar. General-

ized LR (GLR) parsing， which was introduced by the author lTomita， 1985，
Tomita， 1987]， is one such technology.])y using a gr'lαph-structu1'ed stαck to

simulate nondeterminism， GLR parsers are able to handle general contexL-

free grammars while retaining much of the efficiency of standard LR parsing

(especially when the grammar is close to bcing LR). Other determinisLic

techniques for non-deterministic co山 xt-freeparsing have been developed

independently by Lang [Lang， 1974] and van der Steen [Van der Steen， 1987].
In the following sections， we will first describe the basic notion of the

graph-structured stack as a general mechanism. Then， we describe a com

pacted way of representing the possible parse trees for an ambiguous sen-

tence， known砧 pαckedshared pαrse forest. Next， to give the reader a fair

idea of how a GLR parser actually works， a detailed example trace of a GLR

parser on an ambiguous sentence is given. Finally， a specification of the

GLR algorithm is presented. In all the discussions， we shall assume that
the reader is familiar with the standard LR parsing technique. Extensive

descriptions of standard LR parsing can be found in [Aho and Ul1man， 1972，
Aho and Ullman， 1977].

2.2 Graph-structured Stack

The graph-structured stαck is a general device for cfficient handling of nOJ1-

determinism in parsing systems cmploying a stack. Jn this section， we shall
describe three key notions of the graph-structured stack， namely splitting，
combining and local ambiguity packing.

2.2.1 Splitting

When a stack can be reduced (01' popped) in more than one way， the top of
the stack is made to split to accommodate the various possibilities. Consider

the following example. The current stack configuration is displayed below:

the stack is represented left to right， that is， the leftmost element A is the

bottom of the stack. and the rightmost clcment E the top of the stack.

2.2. GRAPll-STRUCTURED STACK 21

E宣}--[g--{Q}-包
Now suppose that thc stack is to be reduced with each of the following

thrcc productions in parallcl:

F→ DE

G→ DE

H→ CDE

Aftcr the nondcterministic reduce actiolls， the stack hωthe following
トorη1:

Since the stack has a graph structure， it can have more than one stack

top. A stack top in a graph-slructured stack， in our left-to-right represen-
tation， is a stack node with no nodes attached to lts right. In the above

example， F， G and IT arc the sLack tops.

2.2.2 Combining

When an element needs to bc shifted (pushed) onto more than one stack top，
it is done only once by combining the tops of the stack. As a continuation to

the previous example， if 1 is to be shifted to F， G and TI， then the resulting
stack will look like:

2.2.3 Local Amhiguity Packing

If two 01' more branchcs of the stack turn out to be identical， then they
rcprcsent local ambiguity. That is‘the identical stalc of the stack has been

obtained in two or more different ways. Thesc branches are merged and

treated as a single branch. Continuing from thc above example， suppose we
al'c now to reduce the stack by each of the following productions nondeter-
ministicaUy:

J→ FI
J _. G 1

22 Cl1APTER 2. GENERALlZED LR PARSING

Jnstead of having two idCllLical J nodes sprouting from C， the resulting
stack looks as follows:

E留置
The branch A -B-C J has been obtained in two ways， but they are

packed together so that only a single branch remains on the stack.

2.3 Packed Shared Parse Forest

Fol' a highly ambiguous grammar， there might be a humongous number of

possible parse trees for an input sentence. Instead of storing each of thc

parse trees separately， we can exploit the effi.cient operations of the graph-
structured stack to build a packed shared parse forest which represents the

numerous possible parse trees in a space-effi.cien t manner. To avoid confusion

in the discussion， we shall use the lerm vertex for parse forests， whereas nodes
shall be reserved for elements on a graph-structured stack.

First of aU， if two or more lrees have a common subt1'ee， the subtrcc
should be rep1'esented only once in the forest. We call this subt1'ee shαring

and a parse forest with such p1'operty is called a shαred parse forest.
Wec組 furtherminimize the representation of the parse forest by locαl

αmbiguity pαcking， which works in the following way. The top vertices of

subtrees that represent local ambiguity are merged and treated as if there

were only one vertex. We call such a. vertex a packed vertex. A parse fo1'

est with both subtree sharing and local ambiguity packing is called a pαcked

shαred forest. Figure 2.17 shows a packed shared parse forcst fo1' the sentencc

勺 sαωJαneαndJαck hit the mαn withαtelescope"， in which the packed
vertices are boxed. From this example， one might obscrve that a packed

shared parse fo1'est is effectively a tree in which some of thenonterminal ver-

tices (the packed vertices) have several sets of child ren. Each of the children

sets corresponds to a possible derivation of the nonterminal represented by

that vertex based on the same input. It is easy to see how the numerous

parse trees can be enumerated from the packed shared parse forest.

It turns out that GLR parsing provides a natural way to construct a

packed shared parse forest during parse time. To implemcnt subtree sharing，
we push pointers to a vertex of the shared parse forest together with the stack

node. That is， when the parser shifts a terminal in the input， it creates a leaf

vertex (if it has not already been created) labeled wilh that terminal and

pushes the pointer to this verlex together with the stack node onto the stack.

2.4. AN EXAMPLE 23

Whcn the parser reduces thc stack， it pops pointers from the stack， creates
a new vcrtex whose children are the vertices pointed to by these pointers，
and pushes the pointcr to this new vcrtex together with the stack node onto
thc stack. Packed vcrtices， on the other hand， are created naturally by
the process o[localαmbiguity pαcking of the graph-structured stack. Recall
that local ambiguity packing enusres that a single stack node is employed to
represent multiple derivations for the nonterminal represented by the node.

With such a stack node located by the process， we can correspond.ingly pack
tile parse forest vertex in the stack node by appending the new set of children

verticcs for the current derivation to the vertex instead of creating a brand
new vertex for the l-eduction .This process of constructing a packed shared

forest with GLR parsing would become clear to the reader with the example
in the ncxt section.

2.4 An Example

Figure 2.1 shows a non-LR context-f1'ee gramrnar GRA which contains a fai1'

amount of ambiguity.

(1) S→ NP VP
(2) S→s PP
(3) S→ S and S
(4) NP→ η

(5) NP→ det n

(6) NP→ NPPP
(7) NP→ NPαnd NP
(8) VP→匂 NP
(9) VP→ vS

(10) pp→ pNP

Figure 2.1: GRA: A non-1R G1'amma1'

GRA is a toy grammar fol' modeling conjunctive phr回 eswith prepo・
Sltional attachments in English-Naturally，prepositional attachments and
conjunctive g1'ouping arc thc two main sou1'ces of ambiguities here. The for-

mel' can be exempli丹駅1by the sentence“1 saw a man with a telescope"， for
which there are two diffel引1tinterpretations due to ambiguous prepositional

24 CHAPTER 2. GENERALIZED LR PARSING

attachment:

1. [1 saw [a man with a telescope]]

2. [I saw [a man] with a telescope]

AmbiguHy due to conjunctive grouping can be illustrated by the sentence

"I know Jane and Jack knew it":

1. 1 know [Jane and Jack knew it].

2. [I know Jane] and [Jack knew it].

The interaction between these two sources of ambiguities worsens the
situation， such as in the sentence "1 saw J剖 leand Jack hit the man with

a telescope". Sometimes， these ambiguities may be 1'esolved by using punc-
tuations in the text (for example， by inserting a comma at the boundaries

of conjunctive groupi時 s)，intonation in speech， 01' semantic and contextual
info1'mation. The problem is that such additional info1'mation may not be
available at parse time. The parse1' is often obliged to generate all syntac-
tically consistent interpretations until fu1'ther information can be used fo1'

disambiguation.
Figure 2.2 shows an SLR(1) parsing table fo1' GRA as constructed using

the simple-LR table construction method desc1'ibed in [Aho and Ul1man，
1972， Aho and Ullman， 1977]. It does not have to be SLR(1); it can be
LR(O)， LR(1)， LALR(1)， LR(2)， SLR(2)， 01'机yother variation of LR table
construction method [Aho and Ullm却し 1977].The parse1' described in this
chapter can work with any kind of shift-1'educe LR pa1'sing table. 2

The parsing table consists of two parts: an ACTION table and a GOTO
table. The ACTION table is indexed by a state symbol s (1'ow) and a termi・

nal symbol x (column)， including the end marker $. The entry ACTION[s， x]
can be one of the following: sh， re n，αCC or blank. sh denotes a shjft action，
re n means a reduction by the n-th production，αcc denotes the accept action
and a blank indkates a parsing error. The GOTO table is indexed by a state

symbol s (か1'ow)a卸叩nda g1'a訓mma訂rsymbol X (恥(co∞olum江mn
dennes the next state the parser 、shouldgo to. During parse time， the parser
consults the ACTION table for parsing actions to execute based on its cur-

rent configu1'ation， executes the actions accordingly， andもhenrefers to the
GOTO table for its next state.

2However， more もhanone lookahead (LR(k) with k>l) is considered nol practical，ω

its parsing table becomes very large wilh little gain of run lime efFiciency.

2.4. AN EXAMPLE

Stαte ACTION

det η U p αnd s det 。$h 8h 2

1 re4 re4 何イ reイ
E 8h

3 sh sh sh

イ sh 8h αcc
5 re5 re5 re5 re5
6 sh sh 2
7 8h sh 2

8 $h sh 2

9 re1 7'e1 re1
10 1'e6 re6 re6 7'e6
11 sh sh 2
12 7'e2 re2 re2
13 sh sh， re8 sh， re8 re8
lイ $h， 7'e9 sh， 7'e9 ，'e9
15 問 10 sh，柁 10 sh， rel0 re 10
16 1'e7 sh， re7 sh， re7 7'e 7
Iγ sh， re3 sh， re3 re3

Figu問 2.2:SLR(l) Pa.rsing Ta.ble for GRA

25

GOTO

n υ p and S
1 イ

5

6 7 8
γ 11

I 1イ
1

l

1 17

6 γ 8
7 11
7 8
7 8
7 11

NP VP PP
3

9 10
12

13

15
16

3

9 10
12

10
10
12

26 CIIAPTER 2. GENERALIZED LR PARSING

1n the following， we give a trace of the GLR algorithm on the input
sentence "1 saw Jane and Jack hit the man with a te1escope". In each step

of the trace， we show the following:

• The graph-structured stack: Each stack node is represented either
as a square or a circle wiula state number in it and t11e corresponding
DUse forest vertex above it An active top node is depicted as&circle，
ヤiththe pending parsing actions p1aced next to it. Although we do
not achlajIy delete tile stacit nodes during reduction，we do nob display
the irre1evanもnodesin our trace diagrams for the sake of clarity.

• The packed shared parse forest: Each ve1'tex in the parse forest is
named as Xn， where X is a grammar symbo1 represented by that ver-
tex、andn is a unique subscript to distinguish between different ver七ices

representi時 X in the parse forest. An 0印l'凶.
&ωs a dot，whereas a packed veltex is represented as a highlighted box

encompa.ssing the dots (ve凶 ces)that represent the various possible
parses for the loc&lly ambiguous symbol.On the parse stack，asta1・
込pla.cedmomentarily beside the respective pa.rse vertex to indica.te

where a.nd when 10ca.1 ambiguity pa.cking has occurred.

• Next input word: We indica.te the next word of the input sentence
a.t the top of each trace diagra.m. It is shown as a pair“ω":x ， where
ωis the actua.l word in the input sentence， and x a terminal symbol

in the grammar which represents the 1exica.1 category ofω. We as-
sume thMevely word can be categorized unambiguously，<hough tile
parser could easily handle lexical ambiguitie?by treating blle various

possibi1ities as action conflicts [Tomita.， 1985]

• Next ACTIONs and GOTO states: The pa.rsing actions， which are
placed beside the respective active top nodes， a.re specin.ed aS pairs
[a， s]， where αis the ACTION to be performed on the node， and 8 is
tile corresponding GOTO staLe after executing α. Let us ca.ll a node

that immediately precedes a reduction path on the stack a bαse node.
For a reduction which splits a merged node， there a.re more than one
base node. In this case， s is a column which represents each of the
base nodes' goto states in the top-down o1'der in which the respective

base nodes a.re beillg depicted ill the graph.

We are 1l0W ready to begin the trace of the GLR parser on the sentence:

2.4. AN EXAMPLE 27

“1 saw J ane and .J ack hit the man with a tclcscope".

Jnitially， the slack contains only onc node with state 0， and the parse
forcst is null (represented砧よ).The next word is ''1"'， which is categorized
as a 1I0un n. Since ACTJON[O， nJ = sh and GOTO[O刈=1， we placc the
pair [sh， 1) next to the nodc， which is de印刷Iby a circle since it is c山、cntly
an active stack top (see Figu児 2.3).

Ncxl word = "1" : n

① Ish.1J
よ

Figurc 2.3: Trace of the parser

ln cxecuもingthe shift action， the parser creates a parse forest vertex nl

for the word "1"， and pushes a stack node of state 1 and vertex nl onto the
stack. The ncxt word is“saw"， which is a verb v. Since ACTION(l， v) = re4
and GOTO[O， N P] = 3 (as production 4 is NP→ n and the base node for
this rcduction is the start no仇， which has state 0)， this new node is active
with the p戸凶aむir(ヤre“4，3司]， a笛ssl
row shows the resul札川tingconfigurat心t“ionof the parser after もhis reduce action
iぬ5cxccut同ed仕 ancw pars印efo印rcωstvertcx NP円1with child η1 1βs cαre叫e釘“d，the
stack node along the reduction path is popped， and a new node with state 3
and vertcx NP1 is pushed onto the stack. The action-goto pair for this new
active stack top is [slけ)•

After thc shift action fo1' the word “saw" is executed， the 1'esulting con-
figuralion calls for another shift action f01" the input “J ane" ， as depicted in
Figurc 2.5.

Aftc1' the word“Jane" is shifted onto the stack， the next word is the
conjul1ction“and". The first action to execute is "reイ"(see the firs t row
of Figure 2.6). This reduction rcsults in a nc¥V stack node of state 13 and
parse forest vertcx NP2， as shown in thc second row of the五gure.At this
nodc， the parser encounters， for the fi.rst time， a parsing action conilict，
since ACTION[13， αnd] can be t'sh・・ or "吋 8". Sincc the GLR algorithm
requircs that aJl the curren t rcduce actiol1s bc processcd before the shifts，
thc parser leavcs this top node active ¥Vith the shift action for now. The "re
8" action is executed， sprouti時 anew bral

28

Next word = "saw" : v

Edl山 l

回618Ml

CJfAPTER 2. GENERALIZED LR PARSING

-n1

n1

Figure 2.4: Trace of the parser (cont'd)

Nexl word = 11 Jane" : n

E畠〈奇(sh，1) nl V1

Figure 2.5: Tracc of the parser (cont'd)

2.4. AN EXAMPLE 29 30 CJJAPTER 2. GENERALIZED LR PARSING

of Figure 2.6). A further reduction of the new branch occurs. after which

both branches of the stack are left with pending shift actions， as in the last
row of thc figure.

Next word = 11 Jack 11 : n

Next word = 11 and 11 : and • 、，.
nr

1

N

i

p

、T
I---

v-
、-
、n
q

l
;J
r
MH

-
令

S
噌

A

，

a句e

r

i
 i

v

欠。一
仰ヨスU

一 内，

a

.
n

'ム・v

町
内
A

旬
A

州

T
14
n

nl V1 n2andl

Figure 2.7: Trace of the parser (cont'd)

E畠連載;fdl ?.千

81

/ ~Pl l
fN町/、NP2

reduction path， a sil1g1e parse forest vertex NP3 is created. Two l1ew stack

nodes with states 16 and 3， both sharing NP3 as their parse forest vertex，
are pushed onto the respcctive base nodes， as shown in the sccond row of
the日gu陀 Oneof the stack tops (the one with state 16) is active with a

reduce action， while the other (the one with st叫e3) a shift action. F01l0wing

the policy of GLR， we process the reducc action五rst.The outcome of tbis

reduction is depicted in the last row of Figure 2.8， where hoth of the top
110des are active with the same shift-goto pair.

Figure 2.9 shows the result of pushing a combined node onto the stack

for the word“hit". The next word is the determiner“the"， which calls for a

shift action.

F、i氾gu山11'、泡e2.10 shows thc con1丹igu山na叫tiぬonof the parser af乱te町r“勺the"i均sshift

ontωo the stack. The action with the next word “rnan" is again a shift.

In Figures 2.11 and 2.12， the execution sequence of the parser in parsing
the preposition "with" is shown.

Let us pay particular attention to the last row of Figure 2.11， especially
the active top node with state 9， of which the pending action-goto pair is
[re1，4]. The only base ω白 fo1'this reduct.ion is the bottom stack node.

However， this base node already hぉ achi1d node of state -1 whkh has also

been created for the current input (針。mthe execution of [re3，4) on the top
node with state 17 in the previous row). This indicatcs that the current

input (“J saw Jane and Jack hit thc man") can be 1'e叙“d山l
mo町rethan one way. Thus， the parser performs Locαlαmbiguity pαcking as

f01l0ws. Instead of creating another stack nodc and parse forest vertex for the

current reduction， the parser packs the new reduction jnto the parse vertex
S4， causing it to have two sets of children vertices， each corrcsponding to a

possible derivation of S from the input segment "1 saw Jane and Jack hit

the man" (which can be interpreted ωeither “[1 saw Jane] and [Jack hit

nl vl n2

T九N弓

nl v1 n2

nl vl n2

Figurc 2.6: Trace of the parser (cont'd)

The two shift actions for thc word ((and" arc then executed， and Fig-
ure2.7shows Lhe resulung COIlfigtil-aLion of L11c parser-The Ilexb word is

'Jack"， which is a noun n. This time， both of the stack tops are active with
the same shift-goto pむr[sh， 1). This calls for a C01叫iningof shift nodes on

the stack，so tile parser generates a single merged node for both shifts.The

outcome is dcpicted in thc first ro¥V of Figurc 2.8 where the next word to be

parsed is “hit" .

ln pars釘ingthe word “勺hiはL

s叩plit比川川t“凶も“ingoccurs (恥se伺erows 1 a吋 2 0ぱfF日igu山1印 2.8め8め).In this case， the parser
begins with a merged stack topwhich is activewith a'zredn action.Since

there are two base nodes (namcly， the nodes with states 8 and 11) with

difTerent goto sta.tes (GOTO[8，N月=16andGOTOil13NP1=3)3the P5pping

of the merged node I esuits in a pair of stack tops-As there is only one

2.4. AN EXAMPLE 31 32 CJIAPTER 2. GENERALIZED LR PARSING

Next word = "hit" : v
Next word = 11 with 11 :1>

S1

/ ~P1
1NPl/、NP2

・

NP3

• • •
Dl vl D2 and 1 D3 V2 detl D4

n1 vl n2 andl n3

与1

/ ~Pl
fN町I'tN巧 t巧

V内 NP_ ^

ω!;:日l

n 1 V 1 n2 and 1 n 3

民
d

、h

J
-R

1

'''令、
4

e

A
M

3

・
乃

P‘ N

3

 n

'
E
S

A
u

n

a

司
4n

、A
V

噌

An

N円 ~ VR司

.<C4 -̂“
NP3/ 月:cs

Dl Vl D2 and 1 n3 V2 deLl D4

01 vl n2 andl 03

Figure 2.8: Tra.ce of the pa.rser (cont'd)

Next word = 11 the 11 : det

N町

-nl Y1 n2 andl n3 V2
nl vl n2 and 1 n3 V2 del.l n4

Figure 2.9: Trace of the parser (cont'd)

N町

Next word = "man" : n

• •
nl V1 n2 andl n3 V2 detl

nl Vl D2andl n3 Y2 deLl n4

Figurc 2.10: Trace of the parser (cont'd)
Figure 2.11: Trace of the parser (cont'd)

2.1. AN EXAMPLE 33

Next word = "with" : p (cont'd)

n1 v1 n2andl n3 v2 detl n4

Figure 2.12: Trace of the parser (cont'd)

the man]"， or "1 saw [Jane and Jack hit the man]"). Since this stack node
has been creatcd prcviously by another reduction of the current input， it
must be the cωc that further parsing actions on this node are already taken

carc of. Thus， the parser does not need to pursue further after packing the
parsc forcst vcrtcx S3 in this node. Figure 2.12 shows the resulting packed
sharcd parsc rorcst. We indicate where local ambiguity packing occurs on

the graph structurcd stack by a starred parse vertex (S;). Note also that

in F'igurc 2.12， al1 the rour active stack tops are left with the same shift-

goto pair. Again， a combincd node for the preposition “with" is crcated and
pushcd onlo thc fOUf tops， thc result of which can bc seen in Figure 2.13.

Figlll"C 2.13 and 2.14 show the parsing of the last two words in the input

sentcncc， "a" and“tclcscope"， respectively. ln each case， a shift action is

callcd to push thc wor<1 onto thc stack.

At this point， thc parscr has reached the end of the input sentence， so
the READ hcad is looking at the end marker “S

sho、w、vsthc scqucncc of actions taken by the parser towa剖rdsa自naJ“αCCel)tη

action. Thc finaJ configuration of the parser is one in which there is onJy

a single activc top node on the graph-structured stack， whose only pending
action is an "acccpt" action (see the last row of Figure 2.16). The parser

thus halts in an acccpting state.

Thc final parsc forest and the 6 possible parse trees are shown in Fig-

ure 2.17.

34 CHAPTER 2. GENERAUZED LR PARSING

Next word = "a": det

N町1

n1 v1 n2 andl n3 v2 detl n4 f

Figure 2.13: Trace of the parser (cont'd)

Next word = IItelescopell
: n

• •
n1 Vl n2 andl n3 V2 detl n4 P1 det

Figure 2.14: Trace of thc parser (cont'd)

2.4. AN EXAMPLE

Next word = "$" : $

12
10

(re且0，12)
12

14
(re2，1η

4

3.5

• • •
n1 V1 n2andl n) V2 det1 n4 P1det2ns

.六
n1 V1 n2 andl n) V2 det1 n4 P1 det2 ns

Jl.PPl
/ ~P， / sC・6

n1 Vl n2andln) V2 detl n4 P}det2ns

Figurc 2.15: Trace of the parser (cont'd)

36 CJ-IAPTER 2. GENERALIZED LR PARSING

Next word = "$": $ (cont'd)

n1 Vl n2andln) V2 de1:1 n4 P1det1ns

n1 V1 n2andln) V2 detl n4 Pldel2r

n1 V1 o2andl n) V2 detl n4 P1det2n

Figure 2.16: Trace of the parser (cont'd)

2.4. AN EXAMPLE 37

NP1

nl vl n2 and 1 n3 V2 deLl n4 P
1
det2

ns

s，

"1 vl n2 andl nJ v1白色1O. P， d札， n~ n~ V ~ Ol・n(lt J'l3 vl 白勺 n.P， det ， n~ 01 V~ Ol..dl n3 v2白色1川町det2O~

s，

同I 11，¥'

111 V1 Il ~..d ， n) v1 d・IIn. P， d"tln~ 01 V1 Ill.ndl 11) V1 d・.1n. Pldet， n~ 01 v1 nl..dl n3 v2 d・.1n. P1 det， n~

Figure 2.17: Packed Shared Forest and Its Respective Parse Trees

38 CIIAPTER 2. GENERALIZBD LR PARSTNG

2.5 Specification of the Algorithm

The following is a specification of the GLR(k) parsing algorithm for COlltcxt-

free grammars without f-productions. The algorithm can bc easily modji1ed

to handle ε-productions (see Chapter 5).

The k in this specification refers to the number of input symboJs the

parser looks ahead during parse time in determining what parsing actions to

execute. In our previous example， we used a single lookahead， that is， k = 1.

Using lookahead strings of size k， the ACTION table is indcxed by a state

and a string of k terminal symbols， including cnd-markers $'s. The GOTO

table is indexed by a state and a single grammar symbol. Usually， longer
lookaheads are employed during parsing table construction to avoid action

conflicts (for example， in canonical LR(k) algorithm or LALR(k) algorithm

[Aho and Ullman， 1972， Aho and Ullman， 1977]) so t山ha叫ts叫Lはar制釧n町l(仇rdL印Rp仰ar制州凶叩附s副in時g

can be applied. lIowever， longer lookaheads also result in larger parsing

tables. Since generalized LR can handle multiple cntries， the choicc of k in

GLR parsing ¥Vould depend on the tradeo百betwcenthe sizc of the parsing

table and the efficiency obtained from the extra dcgree of dctcl'minism due

to longcr lookaheads.

Algorithm 2.1 GLR(k) Pαr8ing Algorithm

Input: A parsing table for a grammar G = (N，E，P，S) in terms of組

ACTION table which may contain multiple entries， a GOTO function，
al1d an input string z E E". N is the set of nonlcrminals foJ' G， E

is the set of tcrminals， P is the set of productions， and SεN is the

start symbol. ACTION and GOTO are as describcd in the example

in Section 2.4， except that the ACTION table no¥V uscs a lookahcad

string of lcngth k. The state 80 is designatcd as the initial state.

Output: If zεL(G)， the root vertex of a packed shared parse forest for z.

Otherwise， an error indication.

Method: Patch the input string z with k end markers， giving thc string

Z$k. Make a stack node ηo containing the start state So・ 170forms

the bottom of the parse stack. Other than 170， a stack node nOl'mally

contains two fi.elds: the state of the parser and the corresponding parse

forest vertex. JnitiaUy， the READ head is pointing at the first symbol

of z. Let u denote the lookahead string， which consists of the next
k input symbols from the READ head. 1"or each non-error action

2..5. SPECIFJCATION OP TJIE ALGORITlIM 39

αE ACTJON[$o， u]， add the pair (770，α) to an associative list called
FRONTJER. The nodcs found in the node-action pairs in FRONTIER

arc the activc stack tops. Repeatedly perform step 1， 2， 3 and 4 (in

this order) until an acceptance or rejection occurs. 、

1. Removc an elemcnt of the form (η，陀 η)from FRONTIER. Let

the ηLh producUon be A→ α. Collect P， the set of paths of

length IαI ending atη(a path is a contiguous sequence of nodes

on thc g日 ph).For each path pεP， we create a new parse vertex

1乍 tobc used in Lhe parsc forest as the parent vertex for that

reduction. Also， for each p， collect the set of stack nodes which

immediatcly precedes p. We call these nodes the ba$e node$ for

p， and dcnote thc sct as Bp. Partition Bp according to their next

goto sLatcs on the grammar symbol A. For each goto state $， let

bs be tile set of nodes in Bp whose next goto state is s. '

For each set bs in the partition， check if there is a node ηI on

the stack which has been created with the current input， whose

state is $ and children set b$ (consequently， its parse forest vertex
also rep印刷tsthe nonterminal A). If so， then local ambiguity
has occurred and wc can re-use the nocle ηI as thc stack node for

the currcnt reduction. We pack the parse forest vertex inザby

adding to its children set the corresponding vertex path in p.If

no such node is found， then we create a new stack node η" with

s as its state and /11'ωits parsc vertex， and makc /1.， 's children

則 containthe corresponding vertex path in p. P叫ザIonto the

stack nodes in bs，and update tile FRONTIER by adding to it a

pair (17ぺα)for each non-error action αεACTION[s， u].

Repeat Stcp 1 until none of thc stack tops are acLive with a rcduce

actjon.

2. Removc all pairs from FRONTIER of the form (η， sh)・Letthe

stack nodes in these pairs be 7]1， . . . ，ηm， W hose sLaLes are $1， . . . ， Sm

閃 spectively.Crcatc a new parse vertex 11 for Ul， the first syJ巾。l
in u. Advance thc READ head one symbol to the right and lct the

llew lookahead suing be tu.LeL H be L11e partiLion of TIl ，...，71m

according to their next goto states. Let π$ be a sct in n such that

GOTO[s.， ut] = $ if 1].ζ 九・

For eachπsεn， create a single stack nodeη'$ with state s and

parse forcst ¥'ertex 1へandpushη$ onto the stack nodes in 7r $・

40 CJIAPTER 2. GENERALIZED LR PARSlNG

Add to FRONTIER a pむr(1]$， a) for each non error action αε

ACTION[$，ω] .

3. IfFRONTIER = {(η，αcc)}， we accept and叫 urnthe parse vcrtex

IIIη.

4. If FRONTIER = o， we halt and reject.

2.6 Summary

In thls chapter， we saw how standard LR parsing evolves into GLR pars-

ing which hand1es general context-free grammars instead of LR grammars

while retaining much of the efficiency of standard LR parsing. The graph-

structured stack and the shared packed parse forcst made the efficiency of

LR parsing available to naturallanguage processing. Subsequent chapters

shall describe extensions of GLR parsing to handle spoken language.

Chapter 3

Parsing with Augmented

Grammars

3.1 Introduction

ln the previous chapter， we have described the algorithm as a pure context-

free pamirig algorithm. In practice，it is often desired for each grammar

nonterminal to ha.ve αttribules， a.nd for each gra.mmar rule to have an制 定

mentation to defi問 passand test the att山 utevalues 1. It is also desirゐ
to prodpe a ftlmuonal strucLUIe (in the sense of functional gmmmMfor-

malism [I<ay， 1984， Bresnan and Kaplan， 1982)， rather than the context-free

forest. The subsection 3.1.1 describes the augrnenta.tion， and subsection
3.1.2 disc¥lsscsもheshared-packcd representation for functional structures.

3.1.1 Thc Augmentation

もlIIeattach a Lisp function to each grammar rule for this augmentation.

Whenever tile parser reduces constiMenu intoa higher-level nonterminal

using a phrase structure rule， the Lisp program associated ¥Vith the rule

is evaluated. The Lisp program ha.ndles such aspects as construction of

a syntaxjscmantic representation of thc input sentence， passing attribute

values among constituents at diITerent levels and checking syntacticjsemantic

constraints such as subject verb agreement.

If the Lisp function returns NIL， the parser does not do the reduce action

r IMajor parts of this chapter are based on the anthofs 抑制iouslypu bl.ished papers
[Tomita， 1987， Tomita， 1990h)

41

42 CHAPTER 3. PARSING WITlI AUGMENTED GRAMMARS

with the rule. If the Lisp function returns a non-~IL valuc， then this value
is given to the newly created non-terminal. The value includcs attributes of

the 附

thus far. Notice that those Lisp functions can be preCOlηmpilcd into machine

code by the s叫もta副組nda紅，rdL日is叩pcompiler.

3.1.2 Sharing and Packing Fundional Structures

A 印刷io叫拘uctureused in the functional grammar formalisms [I(ay，
1984， Dresnan and Kaplan， 1982， Shiebcf， 1985] is in gener叫a.dircctcd

acyclic graph (dag) rather than a tree. This is because some value may be

shared by two di百erentattributes in the same sentence (eιthc "agreement"

attributes of subject and main verb). Pereira [Pereira， 1985) introduced a

method to share dag structures. However， the dag structurc sharing method
is much more complex and computationally expensive than tree structure

sharing. Therefore， we handle only tree-structured functional structures [or

the sake of efficiency and simplicity 2. Jn the example， the "agreement" at-
tributes of subject and main verb may thus have two different values. Thc

identity of these two values is tested explicitly by a test in the augmen-

tation. Sharing tree-structured functional structures requires only a minor

modification on the subtree sharing method for thc shared-packed forest

representation described in section 2.3.
Local ambiguity packing for augmentcd context-free grammars is notω

easy. Suppose certain two nodes have been packed into one packed node.

Although these two nodes have the same category name (e.g. NP)， they may
have different attribute values. When a certain test in the Lisp function

refers to an attribute of the packed node， its value may not be uniquely
determined. In this case， the parser can no longer treat the packed node as

one node， and the parser wiU unpack the packed nodc into two individual
nodes agむn.The question， then， is how often this unpacking needs to take
place in practice. The more frequently it takes place， thc less significant
to do local ambiguity packing. However， rnost of sentence ambiguity comes
from such phenomena as PP-attachment and conjunction scoping， and it is

unlikely to require unpacking in these cases. For insta.nce， cOllsider the noun
phrase:

a man in the park with a telescope，

2 Although we plan to handle dag structl1res in the future， trce sLructures may bc
a.dequate， as GPSG use tree structures rather than dag structures.

.'3.2. TIIE LFG COMPILER 43

which is locally ambiguous (whether "telescope" modifies "man" or "parkη).

Two NP nodes (one for each interpretation) will be packed into one node，
but it is unlikcly that the two NP nodes have different attribute values which

arc rcfcrrec! to later by some tests in the augmentation. The same argument

holds with thc noun phrascs:

• prcgnant womcn and children

• large filc c(jllipment

AHhough morc comprehcnsive experiments are desircd， it is expected

that only a few packcd nodes need to be unpacked in practical applications.

3.2 Thc LFG Compiler

It is in generaJ very painful to create， extend and modify augment叫ions

written in Lisp. The Lisp functions should be generated automatically from

more abstract specifications. We have implemented the LFG compiler that

compiles augmentations in a higher level notation into Lisp functions. The

notation is simiJar to the Lexical Functional Grammar (LFG) formalism

[Bresnan and Kaplan， 1982] and PATR-II [Shieber， 1984]. An example of

the LFG・likenotation and its compiled Lisp function are shown in figure 3.1

釧 d3.2. We gencrate only non-destructive functions with no side-effects to

make S¥lre tltat a process never alters other processes or the parser's control

flow. A gencratcd fllllction takes a list of arguments， each of which is a

valuc associatcd wit.h each right ha.nd side symbol， a.nd returns a vaJuc to be

associa.tcd with thc left hand side symbol. Each value is a.list of f-structures，
in casc of disjullction and local ambiguity.

This scctiOll dcscribes a software packa.ge designed for practical projects
which involvc naturaJ language parsing. The GeneraJjzed LR ParserjCompiler

V8 4 is bascd on the parsing algorithm described in the previous chapter，
augmcntcd by pseudojfull unification modules. While the parserjcompiler

is not a commercial product， it has been thoroughly tested and hea.vily used
by many projccts inside and outside CMU last three years. It is publicly
availa blc with somc restrictions for profit-making industries 3. It is written

3 For thosc inter必 tcdin obtaining the software， conlacl Radha Rao， Business Man-
ager. Centcr for Machine Transla.lion. Carnegie McLlon UnivcrsilY， Pittsburgh， PA 15213
(rdr⑩nLc!'.crnu.cdu).

44 CHAPTER 3. PARSING WITJI A UGMENTED GRAMMARS

(<S> <==> (<NP> <VP>)
(((xl case) = nom)

((x2 form) =c finite)

(*OR*
(((x2 :time) = present)

((xl agr) = (x2 agr)))

(((x2 :time) = past)))

(xO = x2)
((xO :mood) = dec)

((xO subj) = xl)))

Figure 3.1: Example Grammar Rule in the LFG-like Notation

(<S> <==> (<NP> <VP>)
(LAHBDA (X1 X2)
(LET ((X (LIST (LIST (CONS (QUOTE X2) X2) (CONS (QUOTE X1) X1)))))
(AND
(SETQ X (UNIFYSETVALUE* (QUOTE (X1 CASE)) (QUOTE (NOH))))
(SETQ X (C-UNIFYSETVALUE* (QUOTE (X2 FORM)) (QUOTE (FINITE))))
(SETQ X (APPEND

(LET ((X X))
(SETQ X (UNIFYSETVALUE* (QUOTE (X2 :TIHE)) (QUOTE (PRESENT)))))
(SETQ X (UNIFYVALUE事 (QUOTE(X2 AGR)) (QUOTE (X1 AGR))))
X)

(LET ((X X))
(SETQ X (UNIFYSETVALUE* (QUOTE (X2 :TIME)) (QUOTE (PAST))))
X)))

(SETQ X (UNIFYVALUE* (QUOTE (XO)) (QUOTE (X2))))
(SETQ X (UNIFYSETVALUE* (QUOTE (XO :HOOO)) (QUOTE (DEC))))
(SETQ X (UNIFYVALUE* (QUOTE (XO SUBJ)) (QUOTE (X1))))
(GETVALUE* X (QUOTE (XO)))))))

Figure 3.2: The Compiled Grammar Rule

.1..1. TOP-LEVEL FUNCTTONS 45

entir('ly in CommonLisp， and no system-dcpendent functions、sucha.s win-

dow g叫)hics，are used for the sake of portability. Thus， it should run on

any systems that run commonLisp in principle 4，including IBM RT/PC，
Mac II， Symbolics and HP Dobcats.

I~ach rulc consists of a contcxt-free phrase structure description and a

cluster of pscudo cquαtions as in figure 3.1. The non-terminals in the phrase

structure part of the rule are rcferenced in the equationsωxO. . . xn. where

xO is the non tcrminal in thc left hand side (here， <DEC>) and xn is the n-th

non tcrminal in the right ha吋 side(here， xl represents <NP> and x2 rcpre-

senls <VP>). Thc pscudo equa.tions are uscd to check certain attribute valu旬、

s¥lch as verb form and person agreement， and to construct a f-structurc.日
the cxample， the first equation in the example states that the case of <NP>

mllst be nominativc， and the sccond equation states that the form of <VP>

m川 beJinit.c. Then one of thc following two must be true: (1) thc time of

<VP> is prese川 andagreerne川sof <NP> and <VP> agrec， OR (2) the tirne of

<VP> is past. lf all of the conditions hold， let the f-structure of <DEC> be that

of <VP>， create a slot called "subj" and put the f-structure of <NP> there.

a.nd crea.te a. slot calJed "pωsive" and p川り there.Pseudo equations are

dcscribcd in detail in section 3.4.

Gramrnar compilation is the key to this efficient parsing systern. A gram-

mar wrltten in tile correct format is to be compiled before being used to parse

sentcnccs. Thc contcxt-free phrase structure rules are compiled into an Aug-

menled LR Pα1'sing Table， and the equations are compilcu into ComrnonLisp

functions.Tile rlInurne parser then does the shift-reduce pusing guided by

tile pusing table，and each time a grammar rule is applied，its commonLisp
function compilcd from equa.tions is eva1uated.

Jn thc subsequencc sections， features of the Generalizcd LR Pa.rserjCompiler

v8・'1are briefly dcscribed.

3.3 Top-Level Functions

Thcrc are thrce top-level functions:

i to compile a grarnmar (COI叩gragmmmar-file-name)

; to load a compiled grammar (loadgra grammar-file-ηαme)

; lo parsc a. sentencc string (p senlen白)

4111practice，h?wever-we usually face one or two problems whenwe transport it to

anothcr Commonl川 p!:y~lcm. due to bugs in CommonLi!!'p and/or file 1/0 complications.

46 CHAPTER 3. PARSING WITH AUGMENTED GRAMMARS

3.4 Pseudo Equations

This section describes pseudo equations for the Generalized Lft ParserjCompiler

V8-4.

3.4.1 Pseudo Unification， =

path = vαl

Get a. value from pαth， unify it with val， and assign the unified value back

to Pαth. Jf the unification fails， this equa.tion fails. If the valuc of pαth is

undefined， this equation behaves like a simple assignment. lf path has a

value， then this equation behaves like a test statement.

]Jαthl = pαth2

Get values from pathl and pαt112， unify them， a.nd assign the unificd
value back to pαthl and pαth2. If the unifica.tion fails， this equation fails.
If both pαthl and pαlh2 have a. valuc， then this equa.tion behaves like a. test

statement. If the value of pαthl is not defined， this equa.tion behaves likc a.
simple assignment.

3.4.2 Overwrite Assignment，く=

path <= vαl

Assign val to the slot pαth. If palhl is already defined， the old value is
simply overwritten.

pαthl <= palh2

Get a value from])alh2， and assign the value to pathl. If pathJ is already

defined， the old value is simply overwritten.

pαth <= lisp-fttnction-cαII

Evaluate lisp-funclion・cαll，and assign the returned value to fJαth. If 1)αthJ

is already de日ned，the old value is simply overwritLen. lisp-fttnclion-oαII can
be a.n arbitra.ry lisp codc， as long as aU functions called in lisJJ~functíon“call
are defined. A path can be used as a special function that returns a value

of the slot.

.1.4. rSEUDO EQUATION8

3.4.3 Removal Assignment， ==

pαth1 == pαth2

47

Gct a valuc from pαth2， assign the value to pathl， and remove the valuc
of path2 (assign nil to pαth2). If a value already exists in pαthl， then the ncw
valuc is unjficd with thc old value. If the unification fails， then this equation
fails.

3.4.4 Append Multiple Va]ue， >

pαthl > path2

Get a value from pαt112， and assign the value to pαthl. If a value already
cxisls in pαth1， the new value is appended to the old value. The resuJting
valuc of pαthl is a muHiple value.

3.4.5 Pop Multip]e Value，く

pαthl < path2

Thc value of 1)αth2 should be a multiple value. The first element of the
multiple value is popped off， and assign the value lo pathl. If pathl already
has a value， unify the ncw value with the old vaJue. If pαth2 is undefined，
this equation fails.

3.4.6 本DEFINED*and *UNDEFINED*

pαth =本DEFINED本

Chcck if the valuc of path is defined. If nndefined， then this equation
fails. If defined， do nothing.

3.4.7 Constraint Equations， =c

pαth =c val

This equation is thc samc as an equatiol1

pαth = vαl

except if pαth is not alrcady defined， it fails.

48 CIIAPTER 3. PARSING WITH AUGMENTED GRAMMARS

3.4.8 Removing Values，本REMOVE*

path =ホREMOVE本

This equation removes the value in pαth， and the path becomes undefined.

3.4.9 Disjunctive Equations， *OR牢

(*OR本 list-of-equ.αtionslist-of-equαtions)

All Jists of equations are evaluated disjunctively. This is an inclusive OR，
as oppose to exclusive OREven if one of the lists of equations is evaluated

successfully， the rest of lists will be also evaluated anyway.

3.4.10 Exclusive OR，本EOR事

いEOR*list-of-equαti071s list-of-equαtions)

This is the same as disjunctive cquations *OR*， except an exclusive OR is
used. That is， as soon as one of the element is evaluated successfully， the
rest of elements will be ignored.

3.4.11 Case Statement，寧CASEネ

(*CASE* Pαth (keyl句u.ationl・1equ.αtionl・2...) (l(ey2equαtion2-
1…) (l(ey3句uαtion3-1…) • . . •)

The *CASE* statement first gets the value in pαth. The value is then com
pared with Keyl， Key2，・…， and as soon硝 thevalue is eq to some key， its
rest of equations are evaluated.

3.4.12 Test with an User-defined LISP Function， *TEST*

(HESTホ lisp-function-call)

The lisp-function-cαII is evaluated， and if the function returns nil， it fails.
If L11e fI111CLion returns a non-11il value，do nothing-A path can be used as
special function that returns a value of the slot.

3.1. PSEUDO EQUATIONS

3.1.13 Recursive Eval uation of Equations，牢INTERPRET*

(*INTERPRET Pαth)

49

The *INTERPRET* statement first gcts a value from pαth. The value of

pαtlt must be a Vaud list of equations-Those equations are then recursively

evaluated-This tINTERPRET*statement resembles the neval"function in
IJISp.

3.4.14 Disjunctive Value，牢OR*

(本OR*vα1 vαl…)

U nification of two disjul1ctive values is set interaction. For example，
(unify ， (*OR冷 ab c d) ， (*OR* b d e f)) is (*OR* b d).

3.4.15 Negative Value，牢NOT*

(*NOT* vαl vαl…)

UnificaLion of two negaLive values is sct union. For example， (unify
， (州OT*a b c d) ， (*NOT* b d e f)) is (*NOT* a b c d e f).

3.4.16 Multiple Values， *MULTIPLE牢

(*MULTIPLE本 vαlval ...)

Unification of two multiple vallles is appcnd. When unified with a value.

ca.ch 伽附ltis 11川 cdwith a value. For example， (unify I (*MULTIPLE* a

b c d b d e f) 'd) is (*MULTIPLE* d d).

3.4.17 User De白nedspecial Values， *tLscr-dcfined*

Thc user can define his own spedal values. An unification function with the

name UNIFY判lscr-defincd本 mustbe defined. The function should take two

argllrllcnts， and returns a new value orすFATVif the unification fails.

50 CHAPTER 3. PARSING WITTI AUGMENTED GRAMMARS

3.5 Standard Unification Mode

The pseudo equations described in the previous section are di宵erentfrom

what functional grammarians caJJ "uni抗cationη.The user can， howcver， se-
lect "full (standarcりunificationmode" by sctting the global variable *UNIFICATION-NODE*

from PSEUDO LO FULL. In the full unification mode， equations are interpretcd
as standard equations in a stan吋dar吋dfunctional uni 自恥cωatωt

1986叫]， although some of the features such碕 user-definedfunction calls can-

not be used. Howcver， most users of the parserjcompuer find it more conve-

nicntもouse PSEUDO unification than FULL uni五cation，bot only bccause
it is more efficient， but a1so because it has more practical features including

user-defined function calls and user-defincd special values. Thosc practical

fe叫 uresare crucial to handle low-levcl non-linguistic phenomena such as

time and date expressions [Tomita， 1988c] andjor to incorporatc scmantic
and pragmatic processing of the user's choice.

3.6 Other Important Features

3.6.1 Character Basis Parsing

The u凶se町rhas a choice to make his gra.mmar "cha訂ra.拭ct旬e1'b碕 1S"0町rstandard

"wo町rdba郁叩s訓s幻i凶s

i凶nthe grammar are cha剖racωtc町rs丸， no叫twords. There are at least two possible

reasons to make it character basis:

1. Some languages， such as J apanese， do not have a space betwecn words.

If a grammar is writtcn in character basis， the lIscr does not have to
worry about word segmcntation of unsegmented sentences.

2. Some languages have much more complex mo1'phology than English.

With the character basis mode， the user can write morphological rules

in the very same formalism as syntactic rules.

3.6.2 Wild Card Character

In pscudo unification mode， thc user can usc a wild card character "character

(if character basis) or any word (if word basis). This feature is cspecially

useful to handlc proper nouns andjor unknown wo1'ds.

3.7. SUMMARY 51

3.6.3 Grammar Debugging Tools

The GeneraJjzed LR Parser jCompiler V8 4 includes some debuggjng func-

tions. They include:

・ 伽 ode- debugging mode; to show a trace of rule applications by the

pa.rser.

• trace -to trace a parもicularrule.

• disp-trees， disp-nodes， etc.・ todispla.y pa.rtia.l trees or va.lues

of nodes in a tree.

AIl of the debugging tools do not use any fancy graphic interface for the sake

of system porta.bility.

3.6.4 Interpretive Parser

The Genera.lized LR Pa.rserjCompiler V8-4 includes a.nother pa.rser based on

chart parsing which can parse a sentence without ever compiling a grammar:

; tO load a grammar (i -loadgra grammαr-fiLe-name)

; to run the interpretive parser (i-p sentence)

¥Vhile its run time speed is signHicantly slower than that of the GLR

parser， many uscrs find it useful for debugging beca.use grammar does not

need to be compiled ea.ch time a. small change is ma.de.

3.6.5 Grammal' Macros

The user can dcfine and use macros in a grammar. This is especially useful

in case there are many similar rules in thc grammar. A macro can be def1ned
in the same way as CommonLisp macros. Those macros are expanded before

the grammar is compiled.

3.7 S ul1unary

Some of thc important fea.tures of the Generalized LR Pa.rser jCompiler ha.ve

been highlightcd. More detailed descriptions can be found in Appendix A.

U凶 kemost otl附 availablesoftware [Karttunen， 1986， Kiparsky， 1985，
Shieb町、 1984]，the Generalized LR Parser jCompiler v8・4is designed specif-

icaJly to be used in practical natural lang¥lage systems、sacrificingperhaps

52 CHAPTER 3. PARSING WITII A UGMENTED GRAMMARS

of the linguistic and theoretical elegancy. Thc system has been thor

oug111y tested and heavily used by many users i11many projecbs world wird

since 1988.Center for Machine Translation of Carnegie Menon University

has developed rather 制 ensivegrammars for English and Japanese for their

translation projects，and some experimental grammars for French，Spanish，
Turkish and Chinese.We alsohd the system very suitable to write a11d

parse task-dependent scma.ntic gra.mmars.

Chapter 4

Parsing with Probabilistic

Grammars

4.1 Introduction

Probabilistic grammars provide a formalism which accounts for certain sta-

! i 汎i ω aspects of the la 叩 age， allows stochastic d必i臼 m帥big引u削a叫tiぬO∞nof 印悶n川向tenc附c印e

i As degMbed in chapber2，Generalized LR pusing js a highly emωnt

pars』Ilgalgorithm LhaL has been adapted to handle arbitrary context-free

grammars.τ'0 combinc the advantages of both mechanisms， an algorithm
for constructing a generalized probabilistic LR parser given a probabilis-

tic context-he grammar is needed.In Wright and Wrigley {Wright and

1司frigley，1989j，aprobabilistic LR-table construcbion meL110d has been pro-

posed for IIOIl-left-recursive context-fl-Ce grammus.However，in practice.

left rccursi ve c∞on川te以xtレ心f仕re伺eg日 mmar制r悶sarc noL uncommon， and it is often mc:
essary to rctain this left-l'ecursive grammar structure. Thu札川us‘ a me叫thodfor
ha剖m州n川H仙

C∞onstruction for geneml context fre伺egr日amma剖1's.

In this chapter， wc (oncentrate on incorporating probabilistic ，grammars
with gcneralized LR parsing for effiω川・ Stochasticinfomationffom plob-

abillstlc grammar tan be used illmaking statistical decision during runtime

to improve performance.In Section 4.3，we show how to adapt the general-
ized LR parser with graph-structured slack to perform probabilistic parsing

I Ma.jor pa.rls of this cha.pler a.陀 bぉ吋 onthe author's previollsly pllblish吋 paper[Ng
ndTomita，19911 I would like to acknowledge thc coalILher of the paper，see4iong Ng，
whose cOHtribution is included in this chapter.

5:3

54 CHAPTER 4. PARSING WITII PROBADIUSTJC GRAMfIlARS

and discuss relatcd implementation issues. ln Section <1.4， we describc the
difficulty in compuling item probabilities for left recursive context-frcc gram-

mars. A solution is proposed in Scction 4.5， which involves encoding item

dcpendencies in terms of a system of linear equations. These equat.ions can

then be solved by Gaussian Elimination [Strang， 1980) to give the item prob-
abilities， from which the stochastic factors of the corrcsponding parsc actions
can bc computed as described in Wright and Wrigley [Wright and y¥川gley，
1989).

We also introduce the notion of defer7'ed probCLbility in Section 4.6 in

order to prevent creating excessive number of duplica.te items which are

similar except for their probability出 signments.

4.2 Background

Probabilistic LR parsing is based on the notions of probabilistic context-

free grammar and probabilistic LR parsing table， which are both augmcnted
versions of their nonprobabilistic counterparts. In this section， we provide
the definitions for the probabilistic versions.

4.2.1 Probabilistic Context-Fi'ee Grammar

A])1'Obαbilistic context・jreegrammar (PCFG) [Suppes， 1970， Wetherall， 1980，

Wright and Wrigley， 1989J G， is a 4・tuple(N，T，R，S) where N is a制 of

non-terminal symbols including S the sta.rt symbol， T a set of terminal sym-

bols， and R a sct of probabilistic productions of thc form < A→ α， 1) >
whcrc AεN，αε (N UT)ヘandp the prod山 tionprobability. The proba-

bility 1) is the conditional probabi1ity P(αIA)， which is the probability that

the non-terminal A which appears during a derivation process 1S rewritten

by the sequenccα. Clearly if there are k A・productionswith probabilities

Pl，... ，Pk， thenει1 Pi = 1， since the symbol A must be陀 writtcJl by the

right hand side of some A-productioll. The production probabilities can be

estimated from the corpus as outlinecl in Fu and Booth [1"u and Booth， 1!)75]
01' Fujisaki [F州saki，1984].

It is assumcd that the steps of cvery derivation in the PCFG arc mu・

tually independent， meaning that the probabi1ity of applying a rewritc rule

dcpends only UpOI1 the presence of a given nωonte町rr町mi

in a derivation and no叫tupo∞n how the pr陀emi民5wa郁sge叩ne町ra叫ted.Thus， thc prob-
ability of a derivation is simply the product of thc production probabilities

of the prodnctions in the derivation scquence.

PARSING WITlI PROBABILISTIC GRAMMARS CHAPTER4. 56

(1) S→ Sα1t

(2) S→Bα2 ~
(3) S→ Cα3 '7

(4) B→ Sα3 ~
(5) B→Bα2 ~
(6) n→ Cα1 "2

(7) C → S α 2 守主
(8) C→Dα3
(9) C→ Cα1

(10) C→ α3Bg

(11) C→α3 古

55

t
i
l
-
3
2言

J
V

噌

i

S→ NP VP

NP→ η

NP→ det n

VP→匂 NP

(1)

(2)
(3)
(4)

DACI<GROUND 1.2.

Figure 4.1: GRA1: A Non-left Recursive PCFG

Figure 4.3: GRA3:A Massively Left-recursive PCFG

puted during runtirne by multiplication using the precornputed stochastic

factors of the parsing actions (or by addition if the stochastic factors are

expressed in logarithms). The parser can use this stochastic information to

disambiguate or direct/prune its search probabilistically.

Figures 4.4， 4.5 and 4.6 show thc respective probabilistic parsing tables

for GRA1， GRA2 and GRA3， as constructed by the algorithm outlined in
Section 4.5. Note that the stochastic factors of <listinct actions associated

with a. state a.dd up to 1 as expected， since each a.ction's stochastic factor is
simply the proba.bility of the parser ma.king tha.t a.ction durlng that point of
parse. The format of the GOTO・tableis uncha.nged凶 nostochastic factor

is associated with GOTO a.ctions.

Figure 4.2: GRA2: A Left-recursive PCFG

Figurcs 4.1，4.2 and 4.3 show three exa.mple PCFGs GRAl， GRA2 and

GRA3 respectively. Incidentally， GRAl is non-left recursive， GRA2 a.nd
GRA3 are both left-recursive， although GRA3 is "more" left-recursive tha.n

GRA2. GRA2 is sa.id to have simple recursion since there is only a finite

numbcr of distinct left-rccursive loops2 in the grammar. GRA3， on the other

ha.nd， is said to have mαssive left recursions bec制 lSCof thc intcrmingled left

rccu凶ons，which rcs山 ininfinite (possibly uncounta.ble) number of distinct
lcfl-rccursive loops in the grammar.

(1) S→ NP VP

(2) S→ SPP

(3) NP→ n

(4) NP→ det n

(5) NP→ NPPP 1
S

10

(6) PP→ prep NP

(7) VP→ η NP 1

Probabilistic Generalized LR Parsing

In this section， we describe how the efficient generalized LR parser with

graph-structured sta.ck can be adapted to parse probabilistically using the
augmented parsing table. 1n particular， we discuss how to maintain con-
sistent runtime stochastic products base on three key notions of the graph-

structured stack: merging， local ambiguity packing and splitting. We as-

sume that the state number and the respectivc runtime stochastic product

are stored at each stack node.

4.3 Probabilistic LR Parse Table

A probabilistic LR table is an augmented LR tablc of which the entries in

thc八CTloN-tablccontains an additional五eldwhich is the probability of the

action. We call this probabi1ity stochαstic facto1' because it is the factor

uscd in the computation (multiplication) of the nmtime stochαstic product.

Thc parscr kceps this stochastic product during runtime for each possible

dcrivation， reflccting their respecti¥'e likelihoods. This product can be com・

4.2.2

2 A loop is a dcrivation cycle in which lhe自r5tand last productions 肝 cdin the derivation
scqucllce are the sa.me and occur nowhere else in the sequence.

4..1. PROJJAsILISTIC GENERALIZED LR PARSING 57 58 CHAPTER 4. PARSING WITJI PROBABILISTIC GRAMMARS

Statc ACTION GOTO
ト s NP VP S det η v

I 0 μsh2，ミ) (shl， ~) 4 3

1 (1'e2，1) (1'e2，1)
2 (sh5，1) State ACTION GOTO

3 (αcc，l}
トー

(sh6，1) 4 7
α1 α2 α3 s S B C 。 (shl，l) 2 3 4

5 (1'e3， 1) (1'e3，1)
一 (sh2， ~) (sh1， ~) 6 8
一 7 (1'e1，1)

8 (1'e4，1)

l (rell， t) (rell， t) 5 6 7

(shl， ~)
2 (sh9， ~) (sh8，議) (shlO，議) (α叫詰)
3 (shll， ~~) (sh12，詰)

Figure 4.4: Probabilistic Parsing Table for GRAl

4 (sh13，器) (sh14，議)

5 (sh9， ~) (sh8，恭) (s1410j器)
6 (re10，詰) (sh15， ~~~) (relO，記

(sh12，
7 (sh16，器) (sh14，長)
8 (re7，l) (re7，1)
9 (re1，l) (re1，1) (re1，1) (re1，l)
10 (re4，l) (retl，l) (re4，1)
11 (T e2 ，， 詳究B7) (re2，詳3ち7) (re2，翠W((re2，雲)

(re5':7) (re5， ;7) (re5':7)
12 (re8，l) (re8，l)
13 (re6， 議日)) (7'e6，務) (re6，春sn7)

(re9， (re9， /~7)
14 (re3，J) (re3，l) (re3，1) (7'e3，1)

15 (叫議) (叫i会13)
(7'e2，お) (re2，治)

(re5， 1，j1~') (吋5，) (re5，諮)
16 (Te63i1t1 i) (Te6.tti) (7'1'6，逗)

(Te9，) (1'札哉)

Statc ACTION GOTO

det s NP PP VP S n v prep 。(sh2， ~) (shl， ~) 3 4

(re3，1) (re3，1) (re3，1)
2 (sh5，1)
3 (sh7，告) (sh6，古) 8 9

4 (sh6， ~) (αcc，j) 10

5 (re4，1) (re4，1) (re4，1)
6 (sh2 ，~) (sh1， ~) 11

7 (sh2， ~) (shl， ~) 12

8 (re5，l) (7'e5，1) (1'e5，1)
9 (rel，l) (rel，1)
10 (re2，1) (re2，1)
11 (re6， 19

0
) (re6，先) (re6，藷) 8

←-12
(sh6，

(re了、先) (re7命;(re7， 190) 8
(sh6，

Figure 4.6: Probabilistic Parsing Table for GRA3

Pigurc 4.5: Probabilistic Parsing Table for GRA2

1...1. PROlJABILISTIC GENERALIZED LR PARSING

A[sh3，ql]

LQK ← 決ifL10

1dl山
P2q2

Figure 4.7: Merging

4.3.1 Merging

59

Mcrging occurs when an clement is bcing shifted onto two or more of the

stack tops. Figure 4.7 il1ustrates a typical scenario in which a new state

(State 3) is pushed onto stack tops States 1 and 2， of which original stochastic

products are pland mrespectively.These two nodes's stochastic products

arc modiIicd to Pl q1 and P2Q2 corrcspondingly. If the stochastic factors of

thc actions has been reprcsented as logarithms in the parse table， t山he叩ntheir

new“p

instead.For Lhe stochastic product of Node 3，we can either use bhe sum of

its parents' products (giving P3 as Plf]1 + P2Q2) if we adopt st1'Ict probαbilis-
ticα:pp1'Oαch，or the maximum of the products(ie，133=max(P1ql，mb))if

we adopt thc mαximum likclihoodαpp1'Oach. Note that although the max-

imutn likelihood approach is in sorne sense less “accurate" than the strict
probabilisti(' approach， it is a rcasonable approximate and has an added ad-

VMLage wileI1LIte stochasLic factors arc represenbed in logarishmm in which

cωe the stochastic “products" of the parsc stack can be maintained using

only addition and subtraction operato吋assuming，of course， that additions
4!ld?ubヤactionsare川 eapcr"computationally than multipli叫 ionsand
(1IVISIOnS)

4.3.2 Local Ambiguity Packing

Local ambiguity packing o('cu1's when two or more branches of the stack are

reduced to thc samc no山 rminalsymbol. To be prc問、 thisocωs whn

tile parser attempts to CIPateaGOTO state node (aft-r a reduce action.

that is) and realize thal thc parent alrcady h槌 adlild node of tile samJ

山 te.In this casc tbere is 1¥0 nced川 mtethe GOTO node but to u-tht

60 CJIAPTER、4. PARS]J¥，G ""1TH PROBABILlST1C GRAMMARS

P2
P2])5

Figurc 4.8: SplitLing

child node (“ packing"). This is cquivalent to the merging of shift nodcs， a制制J¥
can be handled similarly: the runtime product of the chi日ldnode iおsmodi陥fie吋d

tωo the new“me町rgeωd"product (cither by sllmmation 01' ma.ximalization).

This modification should be propagated accordingly to the successo1's of the

packed child node， if any.

4.3.3 Splitting

Splitting occurs when there is an action conflict. This can be handled

straightforwardly by creating corresponding ncw nodes for the new rcsulting

states with the respective 1'untime products (such as the product of the par-

ent's stochastic product with thc action's stochastic factor). Splitting can

also occur when reducing (popping) a merged node. In this case， the parser

needs to recover the original runtime product of the merged componcnts，

which can be obtained with some mathematical manipulation from the run-

time products rccorded in thc mcrged node's parents. Figure 4.8 illustratcs

a simple situation in which a mcrged node is 印刷1llもotwo. In the figllr・h

a reduce action (of which the corresponding production is of unit length) is

applied at Node 3， and the GOTO's for Nodes 1 and 2 are states 4 and 5

1'espectively. In thc case that strict probabiJistic approach is used in merg-

ing(seeabm)，we get m=dd3q制 dmdzP3qlf Lhe mmum

likelihood approach is used. then P4 =ぉ赤羽P3Qancl Ps =日清南yP3f].

Furthcrmore， if the stochastic factors havc beim expressed in logarithms，

then P4 = P3 -rnax (Pl，P2) + 1)1 + q and Ps =尚一 max(Pl，P2) + 1>2 + q

(notice that only addition and subtraction are needed，砧 promised).

1n general， there rnay be more than onc splitting corrcsponding to a

reduce action (ie， we may havc to pop morc than one mcrged nodes). For

every split node， we must rccovcr the runtimc products of its parents to

4..1. P/tOBAJJJLJ8TJC GENERALIZED LR PARSJNG 61

obtelin the apprQpriate stoιhastic products for the resulting new branches.

This can be tricky and is one of the reasons why a tree-structured stack

(desnibed below) instead of graphs might perform better in some cases.

4.3..1 Using Stochastic Product to Guide Search

Thc main poiJlt of maintaining the runtime stochastic products is to use

it as九 goodindicator function to guide search. In practical situation， the

grallll11ar can bc highly ambiguous， rcsulting in many branches of ambig山ty

in thc par8e stack. As discussed before， the runtime stochastic product

reflccts the likclihood of that branch to complete successfully.

111 thc gcncralized LR parser， processes are synchronized by performing
all thc rcducc actions bcforc the shift actions. In this way， the processes are
madc to scan thc inpul at thc same rate， which in turn allows the unification
of processes in the samc state. Thus， the runtime stochastic products can

bc a good enough indicalor of how prornising each branch (ie. partial deriva-

tion) is， since we are comparing among partial derivations of same input

length. We can perform bcam search by pruning away branches which are

less promising.

lf i llstead of the bread th-first stylc beam scarch approach described above

we cmploy a bcst-first (or 巾pth-fi川)strategy， then not al1 of the branches

will corrcspond to the samc input Jength. Since the meぉureof runtime

stochastic product is bias('d towards shortcr sentences， a good hcuristic

would have to take into account of the number of input symbols consumed.

Evcn so， handling best-first search can be tricky with the gra.ph-structllred
stark withoul thc process-inpllt synchronization， especially with the merging

and packing of nodes-Presumably，wc can have additional data strucLureco
servc as lookup table of thc nodes cllrrently io the graph stack: for instance、

an 11 by m matrix (where 11 is the 川的erof statcs in the parse table a吋巾

t山.1ふhc引i叩 11川lパtlengt h川1)i川n日叶d巾l怜exe似ωdby the state nllmbe町ranc吋dthe inp川川IIt position sto印r、i凶n乞

pOI川11州1

i汀ft her(' i8 any stack node i比tcan use bcfore creating a new one. However， in

thc ¥¥'orst casc， lhc nodes that could have been mcrged or packed might have
already been p卯opη収i

p仰a悶附e肘rdc句geo附cr(¥川附te何sint向t旬oonc with tree stru 山 red sta.ck (ie， only splitti 昭 ， but

no mc叩 nganti imking)md the laborious book-keeping of the stochastic

products due to the graph structure of the parse stack seems wasted.It

might be morc prodllctivc thCll to cmploy a tree-structllred sta.ck instead of

a graph struct 111・('<)耳tack、sincethe book-keeping of ruutime stochastic prod-

62 CJIAPTER 4. PARSJNG WITlI PROBABILISTIC' GRAMMARS

ucts for trees is much simpler: as each tree branch reprcs('nts exactly one

possiblc parse， we can associateもherespective runtime stochastic products

to the lcaf nodes (instead of every node) in the parse stack， and 叩 dating

would involve only multiplying (or adding. in the logarithmic case) with

the stochastic factors of the corresponding parse actions to obtain the new

stochastic products. The major drawback of the tree-stack version is that

it is merely a slightly compacted form of stack list [Tomita， 1987] - which

means that the tree can grow unmanageably large in a short period， u nlcss

suitable pruning is done. IIopefully， thc runtime stochastic product will scrve

as good heuristic for pruning the branches; but whcther it is thc case that the

simplicity of the tree implementation overrides that of the representational

e伍ciencyof the graph version remains to be studied.

4.4 Problem with Left Recursion

The approach to probabilistic LR table construction for non-left recu1'sive

PCFG ， as proposed by Wright and Wrigley [Wright and Wrigley， 1989]，
is to augment the standard SLR ta.ble construction algorithm presentcd in

Aho and Ullman [Aho and Ullman， 1977] to gene凶 ea probabilistic ver-

sion. The notion of a probabilistic item (A→ α. s， p) is introducecl， with

(A→ α. s) being an ordinary LR(O) item， and p the item probab山ty，which

is interpreted as the posもeriorprobability of thc item in the stat('. The

major extension is the computa.tion of these item probabilities from which

the stochastic factors of the parse actions can be dctermined. Wright and

Wrigley [Wright and Wrigley， 1989] have shown a direct method for comput-

ing the item probabilities for non-left recursive grammars. The probabilistic

parsing table in Figure 4.4 for the non-Ieft recursivc gra.mmar GRAl is thus

constructed.

Since there is an algorithm for removing left recursions from a context-

free grammar [Aho and UlIman， 1977]， it is concciva.ble th叫 thealgorithm

can be modi五edto convert a left-recursive PCFG to one that is non left-

recursive. Given a left-recursive PCFG， we can apply this algorithm， and

then use Wright and Wrigley's table construction method [Wright and Wrigley，

1989] on the resulting non left-附 ursivegrammar to creatc the parsing ta-

ble. U nfortunately， the left-recursion elimination algorithm destructs the

original grammar structure. 10 practicc， especially in naturallanguage pro-

cessing， it is oftclI necessary to prescrve the original grammar structure.

Hence a method for constructing a parse table without gramma.r conversion

1.4. PROsLEM WI1'If LEFT RECURSION

is Il('cded.

[VP→旬.NP，
[NP→ 'n，
[NP→ .det n，
[NP→.NPPP，

SO]
51]

S2]
S3]

Figure 4.9: An Example State for GRA2

63

I勺rgr孔mrnarswith 1eft recursion， the computation of item probabilities

b('cornes nontrivial. First of all， item probability ceases to be a“probability" ，

as an itcm which is involved in left recursion is effectively a coalescence of

川 infinitcnumbcr of similar itcms along the cyclic paths， so its associated

stochastic value is the sum of posteriori probabilities of these packed items.

For instance， if starti時 fromitem (A→ α. Bs， p) we dcrive the item

(C→ .Bγ， l' X PB)， then by left recursion we must a}so have the items (C→

.sγ， P X PE) for i = 1，...∞・Theprobabilistic item (C→.Bγ， q)， being a

coalesccncc of these items， would have item probability q =ε乞1P X pt =
了号;， and there is no guarantee that q ~ 1. This is understandable since

(C -+・βγ，q) is a coalescence of items which are not necessarily mutually

exclusiv('. Ilowevcr， we need not be alarmed as the stochastic values of the

underlying items are still legitimate probabilities.

uwing to this coalescence of infinitc items into one single item in left re-

cursive grammars， the computation of the stochastic values of items involves

finding infinite SIlIllS of the items' stoch<lstic vall1es. For grammars with sim-

plc Icft rccursion (th叫 is，there are only finitely many left recursion]oops)

suchMG11A2，we can stillHgureout thesm by enumeration，since the--

only a finilc numbcr of thc infinitc sums corresponding to the left recursion

loo)>s. ¥Vi礼thmassive Icf札trecursive gr悶amma訂rslike GRA3 i泊nwhi比chthere iおs

all I凶n泊巾日fil山l

mc叫tho似ωdfails. Wc shall ilJustratc this effcct in the following sections.

4.4.1 Simplc Left Recursion

I勺rgrammars wlth simple left recursion， it is possible to derive the stochastic

values by Rimple cycle tlcLection.For illshance，consider the following set of

LH(O) itcl1ls for GRA2 in Figure 4.9.

S叩 posethc kernel同 tcontains only仏 with50 =子 Let1) be a partial

64 CIIAPTER 4. PARSING WITH PROBABILIS1'IC GRAMMARS

10: [5'→ .5，

1，: [5→ .5α1 ， 51]
h: [5→.sα2， 52]

13: [5→ .Cα3， 53]

14: [s -+.5α3， 54]

15: [B→.Bα2， 55]

16: [B→.Cαt， 56]

h: [C→ .Sα2， 57]

18: [C→.Bα3， 58]

19: [C→.Cα1， 59]

110: [C→・α3B，510]
111: [C→・α3， Sl1]

Figure 4.10: Slart Stale of GRA3

derivation before seeing the input symbol v.

derivations which wiU lead to item 11 are:

Al this point， the possible

D為 W → vNP=LNP→ n

。主 VP引 NPJLNP→ NP VPZLNP-n

~ .lー .L 1.

1コ~ VP → v.NP~争 NP → .NP VP::::!与...-与 NP→.n

The sum of the posterior proba.bi1ities of the above possible partial deriva-

tions are:

SI = (So X ~) + (So x 古x~) + (So x 古2x !) +・・
_3~ で、。o ln~)_5

一・. ー'一 一
-'7'"ι.Jn=O 10 ^ 2 - 21

Similarly， 52 = ~ x乞たof×i=会， and 53 = ~ xεrLlr=会

4.4.2 Massive Left Recursion

For grammars with intermingled left recursions such as GRA3， computation

of the stochastic values of the items becomes a convoluted task. Consider

the start state for GRA3， which is depicted in Figure 4.10.

Consider the item lt ・1nan attempt to write down a closed expression for

the stochastic va.lue 5t， we discover in despair th叫 thereis an infinite number

of loops to detect， as S is immediately reachabll' by all non-terminals， and

4..5. CON8TRUCTJON OF PROBABILISTIC LR PARSING TABLE 65

50 alc thc other nonterminals themselves. This intermingling of the loops

rcndcrs it impossiblc to write down closed cxpressions for S1 through S11・

4.5 Construction of Probabilistic LR Parsing Ta-

ble

1n this scctiOll， we descl均ea way of computing item probabilities by en-

codin巴thcitcm dcpendcncies in terms of systems of linear cquatiolls and
solving t山11比附c引川、刈I

dωlcωs arb凶itr悶孔町川rげyc∞o川川n川1凶Lω(や似州3涜叫X刈t-f什re悦cgr日amma訂f1加nc山lu引吋【dωlin時gthosc w川it凶hlcft recurs討ions.We

i川H川('0州rηp仰}χ川o仙〉

Wr吋iほg副Ic吋y，1989) for computing 5tochastic factor5 for the parse actions to ob-
tain a table construction algorithm which handles general PCFG. A formal

dcscription of the complcte table construction algorithm is in the Appendix.

ln the following discussion of the algorithm， lower cωe grcek characters
suchぉ αands wiU denote strings in (N U T)* and upper case alphabets

likc A and B denotc symbols in N unless mentioned otherwise.

4.5.1 Stochastic Valucs of Kernel Items

For complcteness， wc mention briefty here how the stochastic valucs of items
in thc kerncl set can be computed as proposed by Wright and Wrigley [Wright
and Wriglcy， 1凶98州9叫J:

Thc stωOC凶has制s抗凶ti山i比cv刊叫a叫.hω of th児ekeωl印 el it同em[伊S'→ .S いn the start state is

1. Lct Statc m -1 bc a prior state of the non-start State m. We want

to computc thc stochastic values of the kernel items of State m. Suppose

ill SUMmi there are k items which are expecting L11c grammar symbol

x，their stochastic values being SI，h，...，Sk respectively-Let IJ14→ α4・

Xsi，S.] bc thcse itcm， i = l，...，k. Then もu山hepoω5t旬附e町riorproba油bi山ihiLげyof the

kernel itcm [J1i→ α向‘X.s.刈.]of State m give叩nt凶hoωsek items in St凶&叫t同ei and
gr伊抑日削amm

S'(一ε?11.

4.5.2 Dependency Graph

Thunter-dependenq-ofitems within a state can be represented most straight-

forwardly h)・adependency forest.If we label each arc by the probability of

tile rule reprcRented by thaL item the arc is pointing at，then tile posterior

66 CHAPTER 4. PARSING 'VTTJ1 PROBABILISTIC GRAMMARS

1 [vp二v.NP，So~

吋 n，Sl叶

Figure 4.11: A Depcndcncy Graph

p1'obぬilityof an item in a dcpcndency forcst is simpJy the total product of

the root item's stochastic valuc and thc (1 rc costs along the path from the

l'oot to the item.
This dependency forest can bc compacted into a dependency graph in

which no item occurs in more than one node. That is， each graph node
represents a stochastic item which is a coalesce of a11 the nodes in the de-

pendency forest representing that particular item. The stochastic value of

such an item is thus the sum of the posterior probabiuties of the underlying

items.
Figure 4.11 depicts the graphical relations of the items in the example

state of GRA2 in Figure 4.9. ¥Ve shall not attempt to depict the massively

cyclic dependency graph of the start state for GRA3 (Figure 4.10) here.

4.5.3 Generating Linear Equations

Rather than attempting to write down a closed cxprcssion for the stochastic

value of each item， we resort to creating a system of Jinear eq uations in terms

of the stochastic values which encapsulate the possibly cyclic dependency

structure of the items in the set.

Consider a state 'lt with k items， m of whlch are J<ernel items. That is， '}i

is the set of items {んい三 j孟Ic}such that f， is a kernel item if 1三j三m.

Again， let Sj be a variable representing thc stochastic value of item Ij・The
values of S1，' . . ，Sm are known sincc they can be computed as outlined in

Section 4.5.1.

Consider a non-kernel itemん， m < jくた.Let {ん)1''''ιn'}be the set

of items in曽 f1'omwhich there is an afC intoιin the dcpendency graph for

'lt. Also， let Pj， denote thc arc cost of the arc from itcm ιI toι. Then， the
equation for the stochastic value ofら， namcly 8]1 would be:

Sj = L，1う， X九 (4.1)

4.5. CONS'JRUCTION OF PROBABILI8TIC LR PARSING TABLE 67

Note that Equation (4.1) is a linear equation of at most (ん-m) un-

knowlIs， namely 5'm+1，' . . ，5'k. This mcans that from 4.1 we havc a system

of(k田川)lin<>ar cquations with (k -m) unknowns. This can be solved using

standarcl algorithms likc simple Gaussian Elimination [Strang， 1980].

Thc task of generating the cquations can bc furthcr simplified by thc

following obsNvations:

1. The cost of any incoming arc of a non-kerncl item [i = [Ai → ・向，Si]is

t.he production probabHity of the production (ん→ αi，Pr). Tn other

words， P;， = Pr for i = 1... n'. Equation (4.1) can then be simpli五ed

to 5'j = I三×乞己15'j，.

2. Withill a state， the non-kcrneJ items representing any X-production

havc the same set of items with arcs into them. Thcrefore， these nOll-
kernel items 11ave the same value fo1'ε二15'U: (which is similar to the

Sx in Section 4.5.1).

Tlll民平quation(4.1) can be further simplifiedおら=九 XSA} where

5'A} ε;;"1 5).，. With that， the system of linea.r equations for each state

can hc generated efficicnt1y without having to construct explicitly the item

dependency graph.

ExaOlples

The sysiem of linear equations for the sta~e depicted in Figures 4.9 and 4.11

for grammar GR.A2 is as follows: ~o = V ，~ (Gi~~n) ~2;' ~(品+53)
51 = H50 + 53) 53 = 110(50 + 53)

On solving the equaiions， wc have 51 =お5'2=会 and53 =去， whkh

is thc. samc solution as ihe one obtained by enumeration (Section 4:4.1).

Similarly， the following sysicm of lincar equa.tions is obtained for the

starl slate of massively left recursive grammar GRA3:

~o ;;;;: ~ 56 = H52 + 55 + 58)

51 = 1(50+51 +54+57) 57 = H53+56 + 59)

52 = t (50 + 51 + 54 + 57) 58"': ;~ (53 + 56 + 5~)

S31(So+St+S4+S7)S92it(S3+S6+S9)

S4=j(S2+SB+Ss)S10-i(S34S6+S9)

55 = H52 + 55 + 58) 511 (5(53 + 56 + 59)

On soJving the equations， we have the solutions 1. ~~. 1}~6. 禁. ~. ~~. ~~

j?，L?anti1for山 sto仇 slicvariablcs 50山 oigi;'sJJムドeぷv;ijII，

68 ClIAPTER 4. PARSING WITII PROBABILISTIC GRA九IMARS

4.5.4 Solving Linear Equations with Gaussian Elimination

The systems of linear equations gencrated during table construction can

be solved using the popular method Gαussian Elimiualion whkh can bc

found in many nume山alanalysis or linear algebra textbooks (for cxamplc，

Strang [Strang， 1980] or linear programming books (such硝 VasckChvatal，

[Chvatal， 1983]). The basic idea is to eliminale the variables OllC by onc

by repeated substitutions. For instance， if we have the following set of

equations:

(1) 5'1α115'1+α125'2 + ... +α1nSn

(η) 5'11 =α1I1Sl +αn2S2 + ... +α1I1ISn

We can climinate S1 and remove equation (1) from the systcm by sub

stituti時， for aU occurrences of 5'1 in equations (2) through (n)， the right

hand side of equation (1). We repeatedly remove variables 5'1 thro略h5'πl

in the samc way， until we are lefi with only one equation with one variabJe
Sn・lIavingthus obtained the value for 5'n， we perform back substitutions

until solutions for SI through Sn are obtained.

Complex幻dt)

1983] i凶nterms of the number of variables (ie， the number of items in thc

closure set). The generation of linear equations per state is also polynomial

since we only need to自ndthe stochastic sum expressions - the SAi 's， fOI"

the nonterminals (Point 2 of Section 4.5.3). These expressions can be ob-

tained by pariitioning the items in the state set according to their left hand

sidcs. The月 areO(mn) possible LR(O) items (hence the size of cach state

is O(mπ)) and O(2m1l
) possible sets whereηis the number of prod収 tioll

an<吋dm the lcngt山hof t山helongest right hand side. Hencc， asymptotically， the

computation of the stochastic values would noi affect thc compJexity of the

a1gorithm， since it has only added an extra polynomiaJ amount of work for

each of the cxponentially ma.ny possible sets.

Of course， we could ha.ve ¥lsed other methods for solving thcse lincar

equations， for example， by finding the illverse of the matrix represcnting thc

equations [Chvatal， 1983]. It is also plausible thai particl品rchar似 eristics

of the equations generated by the construction aJgorithm can be cxploited to

derive the equations' solutioll more efficiently. We shaJJ not discuss furth('r

here.

4.6. J)日FERREDPROBABJLJTIES 69

4.5.5 Stochastic Factors

Sincc thc stochastic values of the terminal items in a parse sLale are basicaUy

postcrior probabilities of that item given the root (kerneりitem，the compu-
t<i tion of lhc slochastic factors for the parsing aclions， which is as prescnted
in Wright and Wrigley [Wright and Wrigley， 1989]， is fairly straightforward.

F'or shift acLion， say from Sta.te i to State i+ 1 on sccing thc input symbol x，
lhc corrcsponding slochastic factor for this action would be S1;' thc surn of

thc stochastic valucs of all the leaf items in Statc i which arc expecting the

symbol x. 1勺r1'Cduce-action， the stochastic factor is sim ply the stochastic

va.luc .う，'， of thc itcm児 presentingthe reductioll， namely [Ai→αi'， .)i] if the

rcduction is via production A， → α‘. For αccept-action， the stochastic factor
is lhc stochastic valuc Sn of the item [S'→ S.， Sn]， since acceptance can be
trcatcd as a final reduction of the augmented produclion S'→ S， where S'
is lhc systcm-introduced start symbol for the grammar.

4.6 Deferred Probabilities

The inlroduction of probability created a new criterion for equality between

いvoscts of itcms: not only must they contain the same items， thcy must
have thc samc ilem probability assignment. It is thus possiblc that we have
川町 (possiblyinfinite) sets of simila.r items of diffcring probability assign-

mcnts. This is cspecially so when there a.re loops amongst thc scls of itcms

(ic， thc stαtes) in thc auLomaton created by the table construction algorithm
thcrc is no gua.rantee that the di宵eringproba.bility assignmcnts of the re-

C¥lrrillg sLa.tcs would converge. Even if they do convcrge cventually， it is still

lI11dcsirablc to have a huge parsing table of which many st叫 cshave cxactly

thc sa IllC undcJ匂ingitcm set but dif[ering probabilities.

守、brcmcdy this undesirable situation， we introduce a mcchanism caUed

dcfc1'1'cd 1)1・obabilitywhich will guarantee that the item sets converge without

duplicating too many of the states. 1'hus far， we bavc bcen prccomputing
itcm's stochastic values in an eαger fashion - propagating the probabilities

as carly as possible. Deferred probability provides a means to dcfer propa-

gating cc山 inproblematic probability assignments (problematic in the sense

that it callscs many similar states with differing probability assignments) un・

til appropriate. 1n lhe extreme case， probabilities are deferred until陀 duc-
liotl timc! ic， thc slochastic factors of REDUCE actions arc the rcspective

ru)e probabilities and all othcr parse actions have unit stochastic factors. A

reasonable postponement， ho¥¥'ever， would be to defer propagating the prob-

70 CHAPTER 4. PARSJNG ¥VITJl PROsAJJILISTIC GRAMMARS

abilities of the kernel items (kerncl probabilitics) ¥1川n比川叫tωi辻1the follow川i略 s叫ta叫te.

By forcing the dωi百e町ringitem s陀et旬stωo have sorne fixcd pr閃e引ωdefinedprobabilit勺yF

a泊悩s岱s釘ignme
app戸ropriatetimes)， we can prevent exccssivc d叩 licationof similar statcs

with same items but di汀'erentproba.bilities.

To allow for deferred probabilities， we extend thc original notion of prob-
abilistic item to contain an additional field q which is the dcferred pl'ob-

ability fol' that item. That is， a pr・obabilisticitcm would have the form

(A→α. s， p， q). The default valuc of q is 1， mcaning that no probabil-
ity has been deferred. If in the process of consLructing Lhe closure states
the table-construction program discovers that it is re・c1'catingmany states

with the same underlying items but with diffcring probabilities 01' when it

detects a. non-converging loop， it might dccide to rcplace tha.t state with one

in which the original kernel probabilities are dcferrcd. That is， if the iもem

(A→ α. s， p， q) is a kernel item， and s詳c，wc replace it with a. deferred
item (A→ α. s， p'， ~) and procecd to computc th.e c~osure of the k~rnel
sct as before (ie， ignoring the deferred probabilitics). 1n essence we have

印刷gneda kernel probability of p' to the kernel items temporarily instead
of its original probability. It is important tha.t this choice of assignment of p'

be fixed with respect to that state. For instance， oneぉsignmentwould be

to impose a. uniform proba.bility distribution onto the defcrred kernel items，

that is， let〆bethe probability前日可te古市古・ Anolherchoice is to

assign unit probability to each of the kernel items， which aUows us to sim-
ula.te the ef[ect of treating each of the kernel items as if it forms a separate

state.
AHhough in theory it is possible to defer the kerncl probabilities until

reduction time， in practice it is sufficient to def<"f it for only one state tran-

sition. That 1S， we recover the deferred probabilitics in the next state. Wc

can do this by ena.bling the propagation of the deferred probabiJities in the

next state， simply by multiplying back the defcrred probめilitiesq into thc

kernel probabilities of the next staLe. 1n other words，出 inSection 4.5.1， if
[Ai→ αi . X sI> Si， q] is in State m -]， thcn thc corresponding kernel item

in State m would be [Ai _.向x.ß，，~， 1]

4.7 Algorithm Specification

A full algorithm for probabilistic LR parsing tablc construction for general

probabilistic context-free grammar is prc問 ntedhere. Thc deferred proba.-

4.7. ALGORTTHM SPECJFICATION 71

bility mechanism as dcscribcd in Section 4.G is cmployed， the chosen reas・

signment of kcrnel probability being thc unit probability.

4.7.1 Auxiliary Functions

CLOSURE

CLOSURE takes a set of ordinary 問叩robabilisticLR(O) items and returns
the sct of LR(O) items which is the closure of the input items. A stanclarcl
algorithm for CLOSURE C(¥.11 be found in [Aho and Ullman， 1977].

PROB-CLOSURE

Input: A st>t of k probabilistic items for some k三1:{[Ai→αi' si，Pi，qi] 11三i三k}.

Output: A sct of probabilistic items wllich is the closure of the input prob・

abilistic items. Ea.ch probabilistic itcm in the output set carries a
stochastic value which is the sum of the posterior probabilities of that
item given the input items.

Method:

Stcp 1: Let C := CLOSURE({[ん→ αi. sill1壬i壬k});

Step 2: Supposck'is thesizeofC. L叫んbethe i-th itcm [Aj →αi.si]
in C， 1 ~ i ~ k'. Also， for each itcm h let Si be a variable denot-
ing its stochastic va]ue.

1. For 1 ~ iくた， 5'i:= Pi;

2. Let iB be t.he set of items in C that are expccting B as the
next symbol on the stack. 'That is， iB is the sci

{ん |ιεC，ろ =[A]→αi . Bs)]}

def
Let SB ~乞1JεεB Sj， where BεN. For k < i三k'such that
Ii = [Aj -+・βt]， set Sj := Pr X Sん wherePr is the probability
of the prodllction Ai→ si.

Stcp 3: Solve the systcm of linear equations generatecl by Step 2， us-
IlIg any standard algorithm such as simple Gaussian Elimination
(Strang， 1980).

Step 4: Return {[/1i→ α・β，Si，q，) 11三i三k'}，where q， = 1 for
k < i < k'.

72 ClIAPTER 4. PARSTNG WJTll J>ROBABILJSTIぐ GRAMMARS

GOTO

Anoiher useful function in tablc construciion is GOTO({lJ・・.ん}，X)，whcrc
the nrst argu ment {11 ・・/ん司} is a set of η p仰3川rob泊刈川a山bili凶s叫ti比cit旬凶川c引CIl1S

a制r引 mcn川tX a grはammar5勾yは引叩叫I汀m川n川lはb凶凶3泊刈01in (N υ 7γ') . .
Suppose the probabilistic items in {J1・・・ん}are sllch that thosc with

symbol X after the dot are [Jlj→ Qj' Xsi， Si，q，]， 1 ~ i ~ k for some 1壬kく 11

Let Sx beε7=15'i and sct GOTO({Ii}，X) to be PROB CLOSURE({[Ai t

αjX， si，き3A，1111壬iくた}).

When k = 0， GOTO({ん}，X)is ulldcfined.

Sets-of-Items Construction

Let U be the canonical collcction of sets of probabilistic itcms for the gram-
mar G'. U can bc cOl1structed as clescribed bclow.

Initially U := PROB・CLOSURE({[S'→ .8，1)}).Repcat thc process of a.p-
plying thc GOTO fUl1ction (ωclefincd in Stcp 4.7.1) with thc e泊stingscts
in U ancl symbols in (N u T) to generate new sets to be added to U. If
it is clctected that an cxcessive number of states with similar undeI匂JIlg
item sets but diffcring probabilities are created， use a state that is (I・e・

ated by dcfcrring the probabilities of thc kernel items. That is， supposc
the original kernel sct is {[Ai→ αi . si) Pi ， qi] 1 1 ~ i豆ん}， use ins旬以l
{[Ai→αi . si， l，piq;] 11 ~ i ~ Ic and sj f; E}.

The process stops when no new set can be gcnerated.
Notc that equality between two sets of probabilistic itcms hcre requires

th叫 thcycontain thc samc items with equal corresponding stochastic valllcs，
as well as deferrcd probabilitics.

4.7.2 LR Table Construction

The algorithm is very similar to standard LR table construction [Aho an
Ullman，し， 1977)e邸xcαepμtfor the additional s乱te叩Plωoc∞omput旬ethc stochastic f九acωtor
for each action (shift， reduce， 01αccept).

Given a gramma.r (，' (N， T， R， 5')， wc define a correspo川inggramma.I
G' with a system-generat<.'c1 start symbol 5":

(λT U {8'}， T， R U {く5"→ S，l>}， 5"}・

Input: U， the canonical collection of sets of probabjJjstic items for grammar
C'.

1.8. 5A MMARY 73

o utput: If possible， a probabilis~ic LR parsing table consisting of a parsing
actioll fUJlction A(;TION and a goto function GOTO.

Method: Let U {'l1o， "'1>"・，W n}， W here ¥fJ 0 is tha t ini tial set in Scts-of・Jtems
COllsLruction. The states of the pa1'ser are then 0，1，.. . ，n， with state i
being const ructed from ¥{! i・Theparsing actions for state i are deter-
mine<} as follows:

1. If [11 マ α・αβ，qa)is in 1Jt.， αε T， and GOTO(れ α)=曽j，set
ACTION[i，a) Lo (“sh約j"，Pa) whc同九 isthe sum of qa 's -that
is th(' stochastic valucs of items in W. with symbol αafter the dot.

2. If [11 +α'，p] is in 'l!i，附 ACTION[i，a]to (“reduce A→ αぺp)
[01' evcryαE FOLLOW(A)

:L If [5'→S'.，pJ is in ¥fIi， set ACTION[i，S] (S is an end-of-input
marlω) to (“αccept"， p).

Thc goto transitions for state i are constructed in thc llsual way:

，1. If GOTO(九A)=ん， set GOTO[i， A] = j

All cntrics not defined by rules (1) through (4) are ma山“error".

The FOLLOW tablc can be constructcd from G by a standard algorithm
in [1¥ho and Ulhnan， 1977).

4.8 Samlnary

(1¥ this rhapter， we havc presentcd a mcthod for dcalillg with left recursions
in ronstrllcting probabilistic LR parsing tables for lcft recursive PCFGs・
¥¥・'chavc dcscribcd runtime probabilistic LR parsers which use probabilistic
parsing table. The tablc construction method outlined in this chapter has
bccn implcmented in (・omrnonLisp. The two versions of runtirne parsers
descrihed in this chaptcr have also becn irnplementcd in Common Lisp. and
incorporatcd wilh variOllS search stratcgies such a~ beam-search and best-
h・stsearch (only for thc trce-stack version) for comparison

74 CIJA PTER 1. PARSING WITJJ PROBA nILISTJC GRAlvIMA HS'

Chapter 5

Parsing 、i¥TordLattices

5.1 Introduction

This chapter is concerned with the problem of parsing ¥Vord lattices 1. A

word lattice is an cfficient rcpresentation of a large set of possible senlcnce

candiclatcs， of which only a fcw are grammatical and thus parsぬ1e.Word

lat tic('s are a common output of some speech recognizcrs， and may also

arisc抗sa result of multiplc part of-specch tags of scntence words. 1n the

speech case， individual word hypotheses are (・haractcrizedby a time interval

(meHking thc bcginning a.nd cndingもimcsof the word) and a likelihood

scorc. 1n the case of multiplc part of-speech tags， thc order of words of the
oriεillal sentencc dctermines an order Oll thc assigned parts-of-spcech， and
cach possible part-of-specch tag，ging of a wOl"d is assigned a probability. ln

boLh cases， thc I{¥ ttice consisLs of a lwo c1imcllsional grid， on which aJl the
hypoLhescs are rcprescnted accor<ling to thcil" time and probability fcalures.

l、arちinga wOl"d la.ttice involvcs fllldin~ a path of timc-wise connecting

wortls within thc lattice that is grammatical. rhe goal of the parscr is to

find thc g，rammatica) path of highest overall score within the lattice. We

describe an eflici('nt algor礼hmfor parsing stlch word lattices. Our algorithm

is hasecl on a Gcncrali7.ed LR stylc substring parser， that can parsc an input

string in arbitrary ordcr. An cfficient comp¥ltation strategy is achicved by

using an 1-beuristic to determine the ordel in which words of the lattice

are pl"ocessed.

1 Mojor par!s of tl山 chaplcr3rc hascd On plcviO¥ls)y published papers [Lavie and

・l'omita，19933， TOlllita， 1986. Lavie a.nd Tomila， 199，Jb]. 1 wOllld like 10 acknowledge

the coa.uthor of !hc papcrs，λ1011 Lavi軒，whose cOllllibution is includcd in this chaptcr.

75

76 CHAPTER 5. PARSTNG H'ORD LA1TICES

Without the grammaticality constraillt， the highcst scoring path of time-

wisc connecting words through the latticc can be computed in tilllC lincar in

the llumber of words in the lattice using a Dynamic Programmillg Algorithm

[Thompson， 1990， Thompsol1， 1989].

Previous work by Tomita， Kita， Saito and oLhers [Tomita. 1986， 1Gta

et α1.， 1989a， Saito and Tomita， 1988a) has focussed on how to llSC the

predictive power of the Gencralized LR parser in ordN to guide thc search

through the hugc space of word hypothcscs in specch rccognition systems，

and has a1so tricd to deal with thc problcm of mぬsill色worcls.Saito [Saito，

1990J suggested an algorithm that can siart parsing from an identificd anchor

word， from which the parsing can procccd sequentially in both dircctions.

These parsing methods are rigid due to the fact that thc parscr mllst scan

and process ihc input in a scquentiaL uni directional fashion.

Chow and Roukos [Chow a.nd Roukos， 1989] describc .. L bottom-u)) CYK-

stylc pa.rsing algorithm that does not suITcr from the IIl1i-directionality re-

striction. The algorithm uses Dynamic Programming and Chart Pa.rsing

techniques in order to pa.rsc the word lattice and find the highesi scoring

grammatica1 path.

The word)attice parsing algorithm we prescnt in this chapter has several

advantages ovcr the Chow and Roukos algorithm. First， our algorithm is

founcled on Generalized LR parsing， which is very efficicnt in practice due

to the utilization of parsing tables that arc pre-compilcd in acl vance from

the grammar. Second， our algorithm is bωed on an algorithm for parsing

substrings that we have developcd. This sllbstring parsin~ algorilhm follows

from previous work by Batcs and Lavie [satcs and Lavic， 1992]，[Batcs and
Lavic， 1991J on recognizing substrings of LR lang附広es，and from work by
Rel問、saJld Koorn [Rekers a.nd Koorn， 1991]. The substri時 pa.rs<'ris COI1-

vcrted into a GLR parser tha~ can parsc thc words of (¥.n input scntC'ncc in

any arbitrary order. Words of the input are parsed aぉSUbSlrIllgsaud are

combined with other neighboring substrings as lhes~ bι~comc available. A

unique featurc of our substrillg parsing algorithm is thal il can par円earbi-

lrary substrings， irrespective of phrase houndarics. This allows l¥cighboring

substrings to be combined cven when thcy span sevcral parlial phras('丹.This

property provides complete scxibility ill dctennining th(' order in which to

parse the worcls of the inpuL.

In order to achieve an cflicient computation stratcgy for parsing ihe word

lattice， we develop an A" stylc heuristic. The hcurislic dctcrmincs thp ordcr

in which latticc words are parsed so that potclltially more probablc sub-

strings are pursued first. The heuristi<: gllarantees a h<llting conchtion， by

.').2. rlfL SC lJS7 [UNG PARSING ALGOR1TJlM 77

whic:h it can be dcterrnined when the best full parse found so far is the most

probable 011(' in the Jattice.

The l('tnaindc! of the cha.pter is organjzed in the following wa.y. Sec-

t iOIlう.:ldescribcs thc substring parsing algorithm. Section 5.3 presents our

(;LJt <trhitrary worcl orcler parser. A running cxample of thc parscr is pre-

S('ll I，c刊Iin section 5.4. 1n Section 5.5 we describc the A'" style hellristic a.nd

how il is incorpora.tcd with thc parser in order to cfficiently parse the word
lat.t.ic{、.

5.2 The Substring Parsing Algorithm

0111・sllbstringparsing algorithm is similar in principle to the one described by

Itekcrs (1吋 lくoorn[Rekcrs and Koorn， 1991]， a.nd foJ1ows from an algorithm
for fecognizing substrings of LR la.nguages developed by Bates and La.vie
[13ates and Lavie， 1992， Ba.tes a.nd La.vie， 1991]. For simplicity， we assume
the parSCf is SLR(1)， although the principles described here are applica.ble
to thc othcr LR parsing varia.nts as well. Given an input x = XIX2' .• Xn，
the algorithm first a.cccss田 theparsing ta.ble in search of all states that wish

to shift the自rstillput symbol X}・Thesestates a.re entered into the GSS as

initial sta.tes. Parsing continues from all of these initia.l GSS states in the

ordinary way specified by the GLR parsing algorithm. For each top sta.tc in

the GSS， the llcxt action (or a.ctions) is determilled from the parsing tables，
according to thc statc and thc next ioput symbol. Each act ion may be either

a shザt，an e7T07' or a. 7'educe， a.nd is treated in the following manner:

• ̂ shi刀a.ctionof thc form shk (shift to st叫ek) is trea.tcd norma.lly.
1'h(' input symbol is shiftcd into the GSS， a.nd a new top state nocle

wit h stalcんisadded to the GSS.

・ ，¥n C/Tor action indica.tes that the input cannot continuc to bc parsed
from this top node， a.ncl this path in the GSS is discarded.

-人附iuccactioll of the form ri (reduce by rule i) is trcated nor汀叫ly，as
long as the reduction can be completed with the existing stack symbols

in the GSS. lf this is not the ca.se， thc reduce action is a long reduction，
anu is hanoled in a spccial way. as shall be described belo¥V.

'l'he major difference betwcen our algorithm and that proposcd by Rek-

crs and hoorn is in thc handung of long reductions. Long reductions are

reductions lhat attcmpt to pop states and symbols beyond the bottom of

78 CJIA J>TER 5. PARSING ¥'司VORD LATTICES

the GSS. They thus corr邸 pondto reductions that include symbols that are

prior to the beginning of the given input string. Our algorithm uses an ad-

ditional parsing table， the long reduction golo table， to handlc such cases.
The idea behind the long reduction goto tablc is to determine the set of

states in which the parser cωO

pcrhaps mu叫11もti中p凶lereductions吋s吋)， and from which the .ncxt action would bc a

shift. It therefore enables the parser to postpone the actllal performance of
the reduction， and to continue parsing the ill put by shifting the next input
symbol. For each possible state k and 1山 i，thc ta.ble specifics the sta.te (01'

states) to which the pa.rser would goto aftcr c∞011仰 lぬe叫tinga.
i f白!'Qmtωops汎ta.叫tek. The long reduction goto ta.ble is ea.sily constructible in

advance from the gra.mmar in a way similar to the other pa.rsing tables.

When our substring pa.rser encounters a long reduction， it marks the top
state in which the long reduction occurred， detcrmincs the set of continua.tion

st叫esfrom the long reduction goLo ta.ble and adds these sta.tes as new top
stat田 tothe GSS， connecling the new statcs with the old marked state.
This a.ction is in fact equivalent to delaying the actual reduction from taking
pla.ce， and a.llows the parser to continue parsing the input出 ifthe reduction

had occurred. lt is compa.tible with the a.ction performed by the Rekers and

Koorn algorithm in this case， but intentionaJly does not remove the reduced

nodes from the GSS.

If the algorithm succeeds to reach the cnd of the input string x and

has processed the 1ωt input symbol Xn， it is gua.ranteed by properties of
the LR parsing pa.radigm tha.t x is a valid substring of some sentence in

the language described by thc grammar， and as sllch is accepted by the

substring a.lgorithm. The algorithm does not prodllcc a. full or pa.rtia.l parse

tree of the sllbstrillg. Jlowcver， thc pa.l'se informa.tion is represented in the

parser's GSS when the sulコstring礼19orithmtcrmina.tes， a.nd is utilized by

the arbitra.ry word order full-string parsing algorithm， tha.t is based on our

substring parser and presentcd in the following section.

5.3 Arbitrary Word Order Parsing

We now describe Ollr arbit訂ra加ryw附01叫d0例rderpa創r同司s叩s
on the substr凶r討ingpar悶si同ngalgorithm 1刊}川reω5C引11はlc吋din the previous section. The

primary advanta.ge of this aJgorithm is that the input word sequence may

be parsed in an arbitrary chosen ordcr. Furthermore， this order need not be
determined prior to the start of the parsing prOCf>SS， and decisions on which

.5.1. ARJJITRARY WORD ORDER PARSING 79

word of thc input to handle next can be made dynamically， based on any
kind of rcl('v九ntinforrnation or heuristic. This property enablcs us to use an

Ak hf'uristic lo dficicntly parse word lattices.

The main idra. bchind the algorithm is to efficiently parse islands of the

inpllt as sllbstrings. Thus， key features ofthe substring recognition algorithm

describc'd II1 t hc previous section are used. Parsed islands of the input must

bc corrrctly cornbincd with neighboring islands as these becomc available.

EvcntuaJly， thc parscd islands cornbine to a fully connected substring parse

of LlH' input.八dditionalconstraints may be applied叫 thispoint in order

to guar乳ntcctha.t thc aJgor・ithmaccepts onJy full-strings of the language.2

5.3. J Dcscription of the AIgorithm

Duc to space limitations and for the sake of simplicity， we describe here
only thc rccognition aspcct of the algorithm. However， the manipulation of
pointcrs to maintain and cventually produce the parse tree (or trees) of the

inpul are sirnilar in nature to the corresponding actions in the Generalized

LR parsing algorithm. 1'0 simplify the description， we assume the input
is an 11 word sequence， where the i-th word is time tagged by the interval
(i・ 1，;1. Parsed islands are marked with the interval [i，jl which they span.

The bcgilluing of an island is with the startup of a substring parse of a

singlc word [i-l， il. As in the initial stage of the su bstring parsing algorithm，
tile parsillg Lable is searched for sbates that wish to shift tile input word-

These statcs arc eJlterecl into the GSS and the sh.ift action is performed.

f̂tcr thc initial shift action， reductions are performcd. Normal recluじ

tions oc('¥l1" a，，<; IIsua.l. Long rcductions are handled in thc way described by

our substring algorithm. 1'he top state in the GSS is markcd， and the long
reduction goto1able is accessed to determine the continuation sLMcs.When

thc p川川a川¥fS討ing0ぱfa制ni凶sla加anc吋dreache邸sthe stage w here no mor陀creductions ca制制nbe
pcr巾fo1" rnc

GSS are all shift actions)， thc processing of the island is stalled until it can

combincd with a neighboring island.

れfilentwoneighboring islands are combined，their GSSs areugluedn

together-TiwGSS of tile left island serves as the ulower"part，while that
of thc Jight island is thc "upper" part. Each top state in the lower GSS

is matchcd ¥vith corresponding bottom states of the upper GSS and the

2110wc、'cr.thc pa抗r~吋c t山hげrou邑ght he entire input ma可yin f仏acωLbe va心Jllableeven in ca俗se鈴s
、巾crc the ill】p¥川uti 宗 rner陀川clya I'¥lbl'lring (b¥lt nol a full-string) of a !'enlence in the language.

80 CIiAPl'ER 5. PARSING H'ORD LATTICES

structures are then mcrged. Parts of eithcr of thc two GSSs that百ndno

matching part in their counterpart GSS arc discardcd at this point.

After the two GSS struclures are combined， thc upper part of the GSS
(the part that originally belonged to the right island) is rc-scanned in search

of nodes marked by long reductions. A rcduction prcviously marked as

long， that can no¥V be performed duc to thc more complcte mergcd GSS， is
executed at this point. This operation may rulc out some of the continuation

states that were determined when the long rcducl，ion occllrrecl. 1'he GSS is

prllned accordingly in such cases. Thc result of the J'l1('rging of the I.wo GSSs

and the posふprocessingdescribed above is a GSS appropriate to the newly

constructed joint island.

Attcmpts to combine islands occur in both directions. An island flrst

叫 temptsto combine with a neighboring left island. If no left neighboring

is1and is available，もheisland attempts to combine with a neighbor to its

right. When nei出era left or a right neighboring island is availぬle、the

processing of the current island is stalled. The island wiU be picked up again
when the parsing of a neighbor to either its 1eft or right attempts to combine

with it.

The fact that island combinations are attcmptcd from both left and right

dircctions guarantees that the algorithm will not deadlock， as long as some
progress can be made. Thus， if the entirc sentcnce is indeed parsab1e， the
algorithm will eventually combine all islands inlo a single parsed island.

We assume the parser is able to distinguish if the input segment being

processed starts at the beginning of thc input or reaches the end of the input.

If the algorithm is to accept on1y full-strings， this information can be used
to constrain the parsing process i n the following way. 1f the island does not
印紙hthe end of i叩 ut，parsing actions for all possible foJ1owing wo山(other
than もu山heend-of-input symbol '“《唱Sγ刊"つ)ar閃ec∞on叩 dc町r叩附eda 吋 p汎川1I川l

the island does reach the end of the inp汎川ut，only thc actions indicated f01"

the end-of-inpuもsymbol(“$") need be pe巾 rmed.Similarly， if the segll1<'nt
spanned by the island starts at t11e beginning of the input， reductions that
would require symbols prior to thc bcginnillg of thc、inputcan be ignored.3

The algorithm terminates when no progress can be done on any of the

existing islands. The inpllt is accepted if thcrc exists a single island at this

point， and the GSS contains the single accepting state. If on the other hand

31f，on the other hand， we wish the algoriLhm Lo accepl inputs that are merely叩 bstring宍

(bUL not full-strings) of a sentence in Lhe language， acL“io側n附sfor all po、然矧会吋iblein叩Bηゆp丸刈川¥1叫I凶Lw附ord
mu肘t係気吋tbe p¥I rsued a討taJl t“Ilneωs.

5.4. AN EXAMPLE

(1) S→NP VP
(2) NP→ n

(3) NP→NP PP
(4) VP→v NP
(5) PP→P NP

Figure 5.1: An Example Grammar

81

therc exist two or more islands， none of which can be combined， the input
in whole is not a valid su bstring and is rejected. The existing islands at this

point correspond to the largest valid substrings that could be found within

the input string.

5.4 An Example

To clarify how our p戸roposeda剖rbitれra紅ryword 0倒rde町rpa副，r討ngalgorithm ope町r叫e邸s
m p戸ra拭ctic臼e，we now present a机nexample. The grammar in Figure 5.1 is a

simple naturallanguage grammar. From this grammar， we consむructthe

standard SLR(1) parsing table of Table 5.1. Note that the table contains

&“Shift/Rcduce" conflict f01" state number 9， i凶nthe ca前seof a preposition

(te町rm川 a叫1symbol “γp"ワ).This is due to an ambiguity with prepositional phrase

attachments. The long reduction goto table for this parsing table is presented

in Table 5.2. Note th~t reductions are unique per state in this case， therefore
the long rcduction goto statesωe a function of state only (and not of state

and rule).

We now fo11ow the first few steps of the arbitrary word order parsing

algorithm on the input:
x = n v n p n p n

Each word of the input is tagged with its appropriate interval of the form

[i -1，il (for 0三i三7in our case). Let usお sumethat the order of word
pl・ocessingchosen is that in which we process the input from the last ¥Vord

to the flfSt.

川匂 thusbegin with the island (n， [6， S]). The tree on the left of Figure 5.2

is the initial GSS constructed， after shifting the input symbol “n". A normal

red uction by rule 2 is then performed， resulting in the GSS shown in the

middle of the五gure. Since this island borders the end of the input， only
further actions on the end-of-input symbol 句"are pursued. The action on

82 CHAPTER 5. PARSING WORD LATTICES

Action Goto

State n V p s NP VP pp S

1 sh2 3 4

2 r2 1'2 1"2

3 sh6 sh5 7 8

4 acc

5 sh2 9

6 sh2 10

7 r1

8 r3 1'3 1"3

9 r5 r5，sh5 r5 8

10 sh5 1"4 8

Table 5.1: Stalldard Parsing Table for Grammar in Figure 1

Top state Goto states after reduction

l

2 3 9 10

3

4

5

6
7

8 3 9 10

9 3 9 10

10

Table 5.2: Long reduction goto table for the parsing table in Table 1

.5.1. A N EXAMPLE 83 84 CllAPTER 5. PARSING WORD LATTICES

statc:l iodicates an (>rro1'， I.hcrcfore the left tree of ihis GSS is discarded， and
W(! r<'main wiih the GSS 00 thc right side of the figure. 1'he other actions
arc rcductions that ar<> all long at this point. 1'hus， the two top state nodcs
are marked (in the figure marked nodes are indicated by a double circle).
Since this island borders the end-of-input， it will not be combinable with
anything to its right. ThcrC'fore， ihere is no need io determine continuaiion
statcs in tJus case. Since no ncighboring islands arc availab1e at this point，
I.hc proccssing of the island is stalled.

的 ncxtco凶 nωwiththc island (p， [5， 6)). 1'hc iniiial shift action results
ill I.he GSS shown in Figurc .5.3. The on1y action from state 5 is a shift. At
this point thc island is rcady to be combined with ncighboring islands. Since
thcrc is no left neighbor available， the island is combined with the neighbor
to its right to form the island (p n， [5刈).Thc GSS tl川 resultsfrom the
cornbination is shown on the 1eft of Figure 5.4. The deJayed reduction by
rule 5 from state 9 can now be performed， and this results in the GSS shown
on thc right side of the figure. 1'he reduction by rule 3 from state 8 cannot
be done (ii is a long reduction)， so the node is marked. Once again， the long
rcd uction goto table is noi accessed in this case， sincc the is1and borders the
end of-input.

1'he processi時 nowproceeds to the island next in line， which is (n， [4， 5])).
Thc trce on the left of Figl1re 5.5 represents the initial GSS constructed， after
the shifting of the input symbol ‘'n". A normal rcduction by rule 2 is then
pcrformed， resulting in the GSS shown in the middle of the抗gure.Note
tlml thc top node of st叫e9 now has two conflicting actions that need 1.0

be pursued. 1'0 achievc ihis we grapruc心1ysp1it I.his node into two separate
nodC's." One of the actions is a reduction by rule 5. 1'his is a long reduひ
Lion， so thc node is markcd (graphically by a double circle)， and thc long
rc<luction goto iablc is acccsscd 1.0 determine ihe continuation states. The
continuation states are 3，9 and 10. Since there already exisi top level nodes
of al1 three of these statcs， the long reduction node is connected with these
thrcc nodes. The resultil1g GSS is displayed 011 the right of Figure 5.5. 1'he
island is now ready to be combined with its neighbors. Since there is no
Icft ncighbor available， thc island combines with its right neighbor to form
the island (n p n， [4， $]). Thc resulting GSS is shown in Figure 5.6. 1'he
dcl<孔~yed reduction from ihc I.op node with state 8 can partia.Jly be executed，
and thc rcsu1ting GSS is displayed on the right sidc of the fi.gure. The action
01¥ thc top node of statc 3 indica.tes an error， and this part of the graph is

(n， [6，$]) 必も 目@お
d
G川①

M
G叶
(ω

久
山
①

x

①
川
①

Figure 5.2: GSS of Island (n， [6， $])

山ダ:、
Figure 5.3: GSS of Is1and (p， [5， 6])

thus deleted. The other rcd uciions are long， but since ihe island borders
the end of the input， no coniinl1aiion states are added. ihe resulting GSS is
shown at the bottom of Figure 5.6. Processing then moves on to the island

(p， [3，4})) and co山 nuesfrom il附 eon

5.5 Using A* Heuristic

We now turn to describe how 1.0 efficiently parse a word laitice， by deter-
mil1ing an optimal ordering on the processing of ihe latiice words. The aim
of the parser is to五nda. complete path of connecting lattice words that
is parsa訓ea.nd is maximal in overa11 score. We assume ihat the overall
score of a string of lattice words is simply the product of their individual
scores. IIowever， our ana.lysis is just as valid with any othcr monoLonically

(p n， [5，$])

r3

===>

‘In praclice. the node doe." 1I0l ha¥'e 10 be explicilly separated.
Figure 5.'1: GSS ofIsland (p ll， [5， S])

5.5. USING A"' JIEUfUSTIC 85 86 CHAPTER 5. PARSING WORD LATTICBS

increasing function of the individual scorcs.

川
目
①
m①

お
①
叶
①

d

shS，
sh6 shS shS 5.5.1 The Heuristic

、，Vesuggest an A* style heurisiic to determine the ordcring of the words.

The lattice is then parsed using the parser described in ihc、previoussection，

with the order of words determined by thc heuristic.

The idea behind the heuristic is io attach an uppcr bound score P取 to

each lattice word and io each substring parsed by the aJgorithm. P'" is

the maximal score of a path through the lattice thaL includcs the word or

substring. This path nced not itself be grammatical. The P* score of a word

is de自nedin the following way:

Figurc .5.5: GSS of Island (n， [4，5])

r3 x r1
• Let ωbe a given word of timc span [ti， tjJ and sco叩 P(ω).

(n p n，[4，$])
(@: • Let Pj'" be the scorc of the bcst path of connecling words from the

beginning of the lattice (time = 0) to time = t;.

===>

NP

• Let Pj* be the score of the best path of connecting words from time =
tj to the end of the lattice (time = eηd). NP

1

• Then P"'(ω)=1ず.P(ω).pr
6

--ー〉

r4

The p" score of a parsed substring is defined similarly， whcre the product
of P scores of the words of the su bstring is 附 dinstead of P(刈.

Note that any path that includcs the word w and is parsable is guarantccd

to have an overall score that is lesser or equaJ to P*(ω). This condition JlOJds

for parsed substringsぉ well.Therefore， if the lattice words are proccsscd
by order of their P抱 values，the following termination condition wiU hold:

@J

6

. If the P儲 scoreof all remaining lll1processed words of the lattice is lcss

than or equal to the aclual overall score of the best parsable full path

found so far， than the algorith m can terminate.

NP

Figure 5.6: GSS of Island (n p n， [4， $])
The reason that this condition holds is that the current hcst parsable path

is guaranteed to be bcttcr in score than any path that includcs any of the

words that haven't been yet processcd， and thus thc bcst parsable path has

already been found.

.5..5. USJNG A. HEURISTIC 87

5.5.2 Computing the P志 Scores

The P・scorcsof words and substrings can be efficiently computed. In order
to IISC thc、auovementioned equation， we must show how to compute， for
each word 10 of time span [tj， tj]， the values pf and pr". For paルof-speech
word latticcs， this task is trivial， due to the simple time spans of thc words.
Po" is silll ply thc product of scores of the part-of-speech tags of greatest score
th叫 p附山肌 Similar1y，PJ慮 isthe product of scorcs of ihe part-of-speech

tags of greatest scorc that follow ω.
ln th(' case of specch produced word lattices， we can use ihc s心1m巾pleDy-

川 mic1ド》勺'r吋‘

g 附 n川rn叫icωωa川刈1リiり)pa叫thof words through the lattice [Thom町pson，1990)， [Thomp-
SOIl， 1989]. Thompso山 aJgorithmactually computes the desired values of
Po" as孔 byproduct. sy executing Thompson's algorithm time-wise in re-
versc (from the end of the lattice to its start)， the values of Pj' are similarly
computcd ωa by-product. The complexity of this algorithm is linear in the

number of words in the lattice.

5.5.3 Parsing a Word Lattice using the Heuristic

Prior to thc parsing itself， an initial phase must scan the lattice and assign
lo cach word in the lattice its corresponding P傘 score.Subsequently， the
latticc words are sorted by their P. scores. Words that have thc samc P.
scorc arc ordercd by their P score. The sorting al10ws thc parsing algorithm
to efficien ily sclcct the ncxt ¥Vord of the lattice that is to be parscd.

The parscr processcs thc lattice word after word， in the orc1er determined
by thc prc sorting. Thc first word chosen to be proccsscd is the word thal
has the grcatest P score among the words of greatest P* scorc. Each indi-
vidually parscd word creates an initial island， which is thcn combined with
al1 cxisting ncighboring islands. Islands are sもoredin an list， which is also
sortcd arcording to the P. scores of the islands.

Tslands that correspond to full pa.ths through the la.ttice， that are found
to bc valid full parscs， are stored in a third list， ra.nked by their actual
o¥'crall scorc. Once the algorithm reaches the point where the P score of an
c.:xisting ful1 parse is greatcr or equal to the P. score of the next word yet
to be proccsscd， it may terminate. The current best full parse is the desired
solution.:'

~If (11/ beslちolutionsare degired. the algorithm musl continue until the P score of lhe
best full pa. r~e is対ricllygrea.Ler than the P. score of the neltl word lo be processed

88 CIIAPTER 5. PARSING VγORD LATTICES

5.6 Summary

In this chapter we presented a new efficicnt algorithm for parsing word lat-
tices. Based on an algorithm for parsing substrings， wc developed a General-
ized LR sもyleparser that can parsc an input string in any given word order.

This algorithm parses words of the input as substrings， and combines these
parsed islands with other neighboring islands as they bccome available. Wc
described an A権 heuristicthat can bc uscd to i m pose an ordering on the lat-

tice words. This heuristic guarantecs an eHicicnt computation strategy for
finding the most probable grammatical path of words through the lattice.

The algorithm presented in this chaptcr has becn implemented and tested
on a smal1 set of preliminary examples. JIowcver， we have yet to conduct a

large scale experiment to evaluate the performance of the proposed algorithm
in pusing actual speech produced word lattices.Tile efTIdency of the parser

with realistic large scale grammars wil1 need to be tested as well.

Chapter 6

Noise Skipping Parsing

6.1 Introduction

1n this chapter， we introd uce a technique for substantially increasing the
robustncss of syntactic parsers to two particular types of extra-grammati-
cality: noise in thc input， and limited grammar coverage 1. Both phenomena
causc a common situa.tion， where the input contains words or fragments that
arc un pa.rsable. The distinction between these two types of extra-grammati-
cality is based to a la.rgc cxtcnt upon whether or not the unparsable fragment，
in its contcxt， can be considered gra.mm叫icalby a linguistic judgment. This
distinction ma.y indecd be vague at times， and practically unimportant.

Qllr approach to the problem is to enable the parser to overcome thesc
forms of cxtra-grammaticalHy by ignoring the unparsable words and frag-
mcnts and focusing on thc maximal subset of the input that is covered by the
grammar. Although prcscnted and implemented as an enhancement to thc
Cencralized LR parsing paradigm， OU1" technique is a.pplicablc in general to
1lI0叫 phrasestructurcd based parsing formalisms. lIowever， the efficiency
of Ollr parser is duc in part to several particular properties of GLR parsing，
alld may thus not bc easily transferred to other syntactic parsing formalisms.

The problem can bc formalized in the following way: Given a contcxt-
frcc grammar G and九 sentence5，日ndand parse 5' -the largest subset of
worのofS， s川 Itha.l 5"εL(G).

¥ naive approach to this problem is to exhaustively list and attempt to

ISub持ta.nlialparls of lhis chapler are ba.scd 01¥ previously publishcd paper {La.vie and
TOll1ila， 1993c]. I would like 10 acknowledge t he coauthor of the papcr， Alon Lavie， whose
conlributiOIl is includcd in lhis chapter.

89

90 CHAPTER 6. NOI5E 5KIPPING PARSING

parse all possible subsets of the input string. Thc largcst subset can thCll
be sclected from among the subsets that are found to be parsable. This
algorithm is clearly computationally infeasible， since thc number of suhscts
is exponential in thc Icngth of the input string. Wc thus devise an cfficiC'll t
method for accomplishing the same task， and pair it with an efTicient search
approximation heuristic that maintains runtime feasibility.

The algorithm described in this paper， which wc havc named GLR"， is
a modification of the Gcneralized LR parsing algorithm. Jt has been imple
mented and integrated with the latest versiOD of the GL氏Parser/ Com pi ler
[Tomita， 1990b， Tomita and Carbonell， 1987a].

There have been several other a.pproaches to thc problems of robust
parsing， most of which have been spccial purposc algorithms. Somc of
these approaches have ab剖 ldonedsyntax as a major tool in handling cxtra.
gramrnaticalities and have focused on domain dcpendent semantic mcth
~ds (Carbonell and JIa.yes， 1984， Ward， 1991). Othcr systems havc COI¥-
structed grammar and domain dependcnt fall-back componcnts to ha.ndLc
extra-grammatical input that causes the main parser to fail lStallard and
Bobrow， 1992， Seneff， 1992].

Our approach can bc viewed部a.nattempt to extract from thc in pu t
the maximal syniactic structure that is possible， within a purely syntactic
and domain independent setting. Bccause the GLR* parsing algorithm is a.n
enhancement to the standard GLR context，free pusing algorithm，all of tile
techniques and grammars developed for the standard parser can be applied
as thcy ar・e.In particular，むhcstandard LR parsing tables are compiled in
advance from the gra.mmar and used“as is" by the pa.rscr in runtime. Thc
GLR本 parserjiltlei-iLs the bene11Ls of tl1e original parser in Lei-Ins of CMc of
町 ammardevelopmcnt， and，もoa large cxtent， efficiency propertics of the
hm itself In 山 ωethat thc input sentence is by itself grammatical，
GLR傘 beha.vesexactly as the standard GLR parscr.

The remaining chapters of thc paper are organized in the following wa.y:
sccLion62presents an outline of tile basic GLR*algoriL11m iLself，followed by
a dctailed example of the operation of the parser on a simple input string.
In section 6.3 we discuss the scarch heuristic that is added to the basic
GLRオ algorithm，in order to ensure its runtime feasibility. も"'ediscuss an
application of the GLRキ algorithmto spontaneous speech understanding，
and present some preliminary test results in section 6.4.

6.2. TTIE GLR* PARSING ALGORITIIM

(1) S→NP VP
(2) NP→det n

(3) NP→n

(4) NP→NP PP
(5) VP→ v NP
(6) PP→P NP

Figure 6.1: A Simple Natural Language Grammar

6.2 The GLR* Parsing AIgorithm

91

The GLR* parsing algorithm is an extension of the Genel'alized LR Parser，
described in chapter 2.

The parser accommodates skipping words of the input string by allowing

shift operations to be performed from inactive state nodes in the Graph

Strudurcd Stack (GSS). Shifting an input symbol from an inactive state is
equivalent to skipping the words of the input that were encountered after the

parser reached the inactive state and prior to the current word being shifted.
Since the pa.rser is LR(O)， reduce operations need not be repeated for skipped
words (the rcd山 tionsdo not depend on a.ny looka.hea.d). Information a.bout
skipped words is maintained in the symbol nodes that represent parse sub-
trees.

An initia.l version of the GLR* parser ha.s been implemented in Lucid

COlnmon Lisp， in the integrated environment of the Universal Parser Archi-
tectllre.

6.2.1 An Example

To clarify how the proposed GLR* parser actually works， in liell of a more
formal description of the algorithm itself， we present a step by step runtime

example. For the purpose of the example， we use a sirnple naturallanguage
granunar that is shown in Figure 6.1. The terminal symbols of the gram・

mar are depicted in lower-case， while the non-termina.ls are in upper-case.

The gra.mmar is compiled into an SLR(O) parsing table， which is displayed
in Ta.blc 6.1. Note tha.t since the table is SLR(O)， the reduce actions are
independent of a.ny lookahead. The actions on states 10 a.nd 11 include both
a shift and a reduce.

92 CJIAPTER 6. NOISE SIGPPING PARSING

Reduce Shift Goto

State det n V p s NP VP PP S 。 sh3 sh4 2

1 acc
2 sh7 sh8 5 6

3 sh9

4 r3

5 r1
6 r4
7 sh3 s114 10

8 sh3 sh4]l

9 r2

10 r5 sh8 6

11 r6 sh8 6

Table 6.1: SLR(O) Parsing Ta.ble for Gramma.r in Figurc 1

To understand the operation of the pa.rser， we now follow some steps of
the GLR* parsing algorithm on the input x = det n v n det p n. This in-
put is ungra.mma.tica.l due to the second "det" token. The ma.ximal pa.rsable

subset of the input in this case is the string tha.t includes all words other

thωthe a.bove mentioned“det" .
In the figures a.hea.d， which gra.phica.lly displa.y the GSS of the pa.rser in

various stages of the parsing process， we use the following notation:

• An αctive (top level) state node is represented by the symboI “@ぺ with
the sta.te number indica.tedぬoveit. Actions tha.t a.re attached to the

node are indicated to the right of the node.

• An inαctive sta.te node is represented by the symbol "*". The sta.te

number is indicated above the node and a.ctions tha.t a.re atta.ched to

the node are indicated above the state nllmber.

• Grammar symboI nodes a.re represented by the symbol “#"， with the

grammar symbol itself displayed above it.

The pa.rser operates in phases of shifts and reductions. We follow the GSS
of the parser following each of these phases， while processing the input string.
Reduce actions are distributed to the active nodes during injtialization and
after each sbift phase. Shift actions are distribu ted after each reduce ph部 e.

6.2. TlfE GLR" PARSING ALGORITJlM

0

CD sh3

sh4

o det 3

*ーーー帯ーーーCDsh9

after initialization

(and empty reduce phase)

Figure 6.2: Jnitial GSS

after first shift phase

(and empty reduce phase)

Figure 6.3: CSS after first shift phase

93

Note that the GLR* parsing algorithm distributes shift actions toαII state

nodes (both active and inactive)， whereas the original parser rustributed

shift actions only to activc nodes. Rcduce actions are distributed only to

activc state nodes.

Figurc 6.2 is the initial GSS， with an active state node of sta.te O. Since

there arc no reduce actions from st叫c0， tl1e first reducc phase is empty.

'I¥'ith thc first input token bcing“det"， the shirt action atlached to state
llodc 0 is “sh3

Figurc 6.3 5油howsthe GSS after the fir悶stshif仇tphase. The symbol node

labe1cd "det" has bcen shiftcd and connected to thc initial statc node and to

the new active state node of st叫e3. Sincc therc are no rcducc actions from

sta.te 3、thenext rcduce phasc is empty. The next input token is“n". Shift

actions arc distributcd by thc algorithm to both the a.ctivc node of state 3

and thc inactivc l¥ode of st叫 c0， as can bc seen in Figure 6.3.

Figllrc 6.4 shows the GSS after the next shift phase. Thc input token

n・， ¥¥'as shifted from both stale nodes， creating active statc nodes of sta.tes

9 and ;1. The shifting of thc input tokcn "n" from sta.te 0 corresponds to a

parsing possibility in which thc first inp¥lt tokcn "det" is skipped. Reduce

actions arc distributed to both of the active nodes.

Thc following reduce phasc reduccs both branches into noun Dhrases.

The two "NP"s arc packed together by a local al州 guitypacking proccdure

Using information on skippedwolds thatis maintained1vititin the svmbol

94 C]IAPTER 6. NOISE SK!PPING PARSTNG

o det 3 n 9 after second shift phase

*--ー帯ー司ー*ー一ー#ーーー<0r2

1 n 4

1-ーーーー帯ーーーーーーーー<Dr3

Figure 6.4: GSS after second shift phase

o det 3 n 9

一ーー#ーーー本ーーー#ーーー

n 4

1--ーー帯ーーーーー喧喧ー$

1 NP 2

1-ーー由ーーー#----ーーー<0sh7

after third reduce phase

Figure 6.5: GSS after third reduce phasc

nodes， the ambiguity packing can detect that one of the noun phrascs (the

one that was reduced from “det n") is more complete， and the other noun

phrase is discarded. The rcsulting GSS is displa.yed in Figure 6.5. Shift

a.ctions with the next input token “vη a.re then disもributedto all the state

nodes. lIowever， in this case， only state 2 al10ws a shift of “v" into statc 7.

Figure 6.6 shows the GSS after the third shift phase. The state 7 nodc

is the on1y active node at this point. Since no reduce a.ctions are specified

for this state， the fourth rednce phasc is empty. Shi乱actionswith the next

input token "n" are distributed to aJl sta.te nodes，ぉ canbc seen in thc

抗gure.
Figure 6.7 shows the CSS after thc fourth shift phasc and Figllrc 6.8

after the fifth reduce phase. Note that there are no activc sta.te nodes a.fter

the fifth reducc phasc. This is due to thc fa.ct t山ha拭tnone of the sta.tc no町ωde郎s

p戸ro“du肌ce吋db句ythe redllce pha儲seallow the shifting 0ぱftl山hencxt input token

"det
the CLR泳 parsersucceeds in d出is叫tributingshif此tactions to two inactivc sta.te

nodes in this case.

6.2. TlfE GTJR珍 PARSfNGALGORITHM 95

sh4 sh9

o det 3 n 9

*ーーー#ーー一*ーーー#ーー・*

n 4

|ーーー持一司ーーーーー*

1 NP 2 v 7

1-ーーーーーー帯ーー由自由・・稼ー也-#ーーー<0sh4

after third shift phase

(叩dempty fourth reduce phase)

96 CIIAPTER 6. NOJSE 8Kl1リ>JNGPARSJNG

after fifth reduce phase

sh3

o det 3 n 9
キー・ー#ーーー*ーーー#ーーー*

n 9

Ji'igure 6.6: GSS after third shift phase I 1 1-ーω ー"ーーーーーー#骨骨ーーー司ー匁

after fourth shift phase

o det 3 n 9
京ーーー#自由値刻ドー自白書ーーー$

n 9

1---ーーーーーー"ー帯ー也ーーーーー<0r3

n 4

|也--ー#ーーーーーーー，本

1 NP 2 v 7

1--ーーーーー#---・骨ーー*ーー・神明ーー*也¥ n 4

1-ー#ーー-Gr2

1一一一一一一一一一一一一ー/

Figurc 6.7: CSS after fourth shift phase

n 4

1-ーーー#ωーーーーーーー* sh3

1 NP 2 v 7

1-ーー-一ー#ーーーーーーー*ーーー#“ーー*ーー¥ n 4

1 1 1 1ー#ーー朱

l一一一一一一一ー|一一---1--ー/

1 1 1 NP 10

1 1 1-一'ーーー#ーーー診

1 1 VP 5

1 1-ーー"ーー一一ー帯一一一ー*

S 1

|一一一一一一一一一ー一一一一一ー#一一*

NP 2

1-ーーーーーーーーーーーー----ー非ーーーーーー-ー一一一ー淑

Figure 6.8: GSS after五fthreduce phase

6.2. TJlE GLR* PARSING ALGORITlIM 97

For thc sake of brevity we do not continue to further follow the parsing

stcp hy stcp. The final GSS is displayed in Figure 6.9. Several differcnt

parses， with different subscts of skipped words are actually packcd into the

singl(・"s"node seCll at thc hottom o[the figure. The parse thaL corresponds

to tlH' maxirnal subs('t of the input is the one in which the second "det" is

the only word skippcd.

6.2.2 Efficiency of the Parser

";ffici('IlCY of the parser is achievccl by九 numberof different tcchniques.

Thc lTlost imporLa!lL of thcsc is a sophisticatcd process o[local ambiguity

packi!lg and pruning.八localambiguity is a part of the input scntence that

corresponds to a phrase (lh叫 reducibleto some non-terminal symbol o[the

grallllllar)， and is parsable in more than onc way. The process of skipping

words creatcs a large number of local ambiguities. For exarnple， the grammar

in Figurc 6.l alJows both determined and uncletermined nOlln phrases (rllles

2 allcl 3). As scen in the example presented carlier， this results in the creation

of lw() di汀ercntnoun phrase symbol nodes for the initial fragment “det n・¥

Thc ftrst node is crcatcd for the full phrasc after a rcduction according to the

日rstrule. A second symbol node is created when the detcrminer is skipped

and a recluclion by thc second rulc takes place.

Locally ambiguolls symbol nodcs are dctcctcd as nodcs that are sur-

rOllndcd by common state nodes in the GSS. The original GLR parser detects

such local ambiguitics and packs thcm into a. singlc symbol nodc. This pro-

ccdurc was extended in thc GLR *" parser. Locally ambigllolls symbol nodes

arc comparcd in terms of thc worcls skipp-ed within thcm. In cぉessuch

as thc example descl'ibed above， whcre one phrasc has more skipped words

than tile ot iter，thp phrase with more skippedwords is discarded in favor

of tl問11l0rccomplctc parsed phrase. This subsuming opcration drastically

redllces the lIumber of parses being pursued by thc parser.

八nothertechniquc employed to increasc thc efficiency of the parser is thc

Illcrging of sta.te nodcs of the samc state after a I'cduce phase and aftcr a

shift phase. I'his allows the parsing through the GSS to continue with fewer

state nodes.

6.2.3 Selecting the Best Maximal Parse

An ob¥"ious and unsurprisine; side cffect of the Gl R‘parser is an explosion

in 山川巾erof pa附 sfo州 Iby thc parscr. In 川

98 C/IAPTER 6. NOISE SIGPPING PARSJNG

after final reduce phase

o det 3 n 9

*一一-#-甲ー*ーー-#--ー本

n 9

|一一一一一ー#一一一ー*

1-ーーーーーーー，司骨骨'ー一一ーー時ー一一ーーーーー一一ーーーーーーーーーー¥ n 9

n 4

1-ーーー#ーーーーー*

1 NP 2 v 7

1-ー値『・ーー帯ーーーーーーー淑ー'ー非--ー*ーーー¥ n 4

1 1 1 1ー ト ー*

|一一一一一一一ー |一 一 一 -1ーー/

1 1 1 NP 10

1 1 1---ーーー#ーーー$ーーー会 |

1 1 1 VP 5 1

1 1一一一也1---#ーー一一* 1

1 1 1 S 1 1

1--一ー一一一ー一一|ーーー一一 |一一--ト ---* 1

1 1 1 1

1 1 1ーー¥ det 3 1

1 1 1 1---#一ー$一一←一一ー

|一 一一一 一一一 ー|一一一ー |ー /

1・申書ー--*

|ー/

1 1 1 NP 2 1ーーー¥ p 8

1--ーーーーーーーーーーーーー1-------1-ーーー#俸ーーーー・場ーーーー1-ーーー1-#・ーー本---¥ n 4

1 1------ー|一一一一一ー|一一|ーー/ 1 1ー #ーー*

|一一一一一一一ー|一一一ー|一一一一一-1一一 |一一一一一|ーー/

1 1 1 1 1 1 NP 11

1 1 1 1 1 1ーー一一帯---*

1 1 1 1 1 NP 2

|ーー事情"一一ーーー一ー1-------1-一色ー-ーーーー1・ーー1--ーー-#---ーー"ーーーーーーーーー*

1 1 1 1 1

1 1 1 1 1-ーー一ーー・ー¥ PP 6

1 1 1 1一一一一一一一|ー#一一一一ー*

1 1一一一ー |一一一一一一ー-一ー一一一一/

1 1 1 NP 10

1 1 1--一一一一一一一一一一一一一#一一一一一潟

VP 5

1 1--ーーーー一一ーー一-一帯--ーー一一ーーー一"ーーー-一一----ーー*

S 1

1------ーーーーーーー一ーー"ーーーーーー---#ーーーーーーーーーーーーーー由ーーーーーーーーーー--ーーーーーーーーー@

6.3. TllE lJEA M SEARCIJ HEURlSTIC 99

tcrcsted in finding the rnaximal par凶山 subsetof the input string (and its

parse). JIowcv<.'r， in many cases tl問、eare several distinct maximal parses，

cach consisting of a differen t subset of words of thc original sentence. Addi-

Liol1λl1y， therc are cases whcre a pa.rse th叫 isnot maxima.l in terms of the

Jlumber of words skipped may be dcemed preferable.

To seJect thc "best" parsc from the set of parses returned by ihe parser，

wc use a scorillg procedllre that ranks each of the parses found. We then

selcci the parsc that w部 rankedbcst. 2 Presently， our scoring procedure is
r叫hersimple. lt takes in lo account thc nllmber of words skipped and the

fragme山 uionof the parsc (i.e. the numbcr of S-nodcs that the pa.rsed input

scnlcnce was di vided in to). soth measures are weighed equally. Thus a. parse

that skipped onc word but parsed the remaining input as a single sentence is

preferred ovcr a parsc that fragments thc input into tJHee sentences， without
skipping any input word.

On the top of Our current research goaJs is the enhancement of this simple

scoring mechanism. We plan on adding to our scoring function several ad-

ditional hellristic measllres ihat reflcct various syntactic a.nd semantic prop-

crties of thc pa.rse trec. We will meωure the effectiveness of our enhanced

scoring fUllction in ranking the parse results by thcir desira.biuiy.

6.3 Thc Beam Search Hcuristic

Although implcrnented cfficicntly， the basic GLR本 parseris stiU not広uaran-

tccd to have a. fcasible running time. The basic GLR* algorithm dムc巾 ed

computcs parscs of all parsable subsets of the original input sもring，the nllm-
ber of which is potentially exponential in tile length of the input string.

Our goal is to find parscs of maximal subsets of the input山 ing(or almost

maximal subsets).111e have thereforedeveloped alkl added to the parser a

heuristic that pruncs parsing options that are not likely to produce a maxi-

Illal pa訂rs印c.1 his proc印cs臼s!1<ωl凶品 be沌ee飢ntl羽 li比川tion旧凶aω凶Ily匂ycωa叫alle似吋d“ bea乱，ms印earch

A dircc叫tway of add出inga beam s印ca剖rcht凶othc pa.r陀se町rwould be to limit

thc number of acti¥'e statc llodes purs附 1by the parser at each stage， and

contiuue procωSIllgonly active nodes that ale most promising in terms of the

llumber of skipped words assodaLed1vjillthem.However，the structure of

the GSS makcs it diffic 山 to associate in川1汀巾for口Iαma

2わThes勾3叫 cm、w山刈illdiお$叩p凶la吋ythe 11 be償章tP仰arωb将e臥只 fOI削11川nd.where the parameter n is conlrolled

by theu$erat runtime-B}default，we setnto one.and the highest Eanking parse is
di宗played.

100 ClIAPTER 6. NOrSE SK1PPING PA RSING

with the state nodes. 3 We have therefore opted to implcment a somewhat

di汀crentheuristic that has a similar e宜ect.

Since the skipping of words is the result of performing shift operations

from inactive sta.te nodes of the GSS， our heuristic limits the number of

inactive state nodes from which a. input symbol is shifted. At cach shift

stage， shift actions are自rstdistributed to the active state nodes of the

GSS. This corresponds to no additional skippcd words a.t this stagc. If the

number of state nodes that aUow a. shift opeωra.tion a.t thiぬspo凶inti民slcs臼st山hana.

p戸r悶e釘吋clc叫tc引rr町mi

f白rominactive sもatenodes are also consider、ed.1nactive sta.tcs are processcd

in an ordered fashion， so that shifLing from a J1lore reccnt state node that

will result in fewer skipped words is considered first. Shift operations are

distributed to inactive state nodes in this way until the number of shifts

distributed rea.ches the threshold.
This beam sea.rch heuristic reduces the runtime of the GLR * parscr to

within a constant factor of the original GLR parser. Allhough it is not

guaranteed to find the desired ma.ximal parsable subset of the input string，
our pl叫iminarytests ha.ve shown that it works well in pra.ctice.

The threshold (beam心mit)itself is a parameter th叫 canbe dynarnically

set to any constant value a.t runtime. Setting the beam-umH to a. value of 0

disallows shlfting from inactive states a11 together， which is equivalent to the

original GLR parser. 1n prelirninary expcr吋iment句，st凶ha叫twe ha.ve c∞onduct
(see next section) we ha.ve achieved good rcs山 swith a sctti時 ofthe beam-

limit to values in the ra.nge of 5 to 10. There exists a direct tradeofT between

the value of the beam-limit and the runtime of the GLRキ parser.With a

set value of 5， our tests have indica.ted a runtime tha.t is within a factor of

2-3 times that of the original GLR parser， which amounts to a parse time of

only scvera] seconds on sentences that are up to 30 words long.

6.4 Parsing of Spontaneous Speech Using GLR *

6.4.1 The Problem of Parsing Spontaneous Speech

As a form of input， spontaneous speech is full of noisc and irrelevanccs that

surrollnd the meaningful words of the utterance. Some types of noisu can

be detected and filtered out by speech recognizers that process the speech

3This is due to lhe fact that state nodes arc merged， so thal a state nodc m礼ybe

common 10 several dlfferent parses， with different skipped words ilssociated with each

p邑rse.

6.4. PAR8ING OF SPONTANEOUS SPEECII USJNG GLR* 101

Robust Parser

円、rsable

number (and percent

99

円Jnpa

ood/Closc l'arses 77

13ad Parscs 22
一 一

T礼blc6.2: Perform制lCCof the GLR t Parser on Spontaneous Speech

signal. ，¥ parscr that is desigl1cd to sllcccssfully process speech recognized

inpllt IIlllst hOW('¥'Cf bc robllst to various forms of noise， and bc able to weed
0¥1 t tlH、rnca.)1in色fulwords fro1O the rcst of the uttcrance.

WIH'!l parsing spontancolls spoken input that was recognized by a speech

rccogl1itiol1 syslem， the parscr must dcal with three major types of extra-

grammaticality:

• Noisc due lo the spontaneity of the speaker， such出 repeatedwords，
false begiul1ings， stutlcring， and filled pauses (i.e. "ah"，九mぺetc.)・

• U ngrammaticality that is due to the la.nguage of the speaker) or lo the

cO¥lcrage of thc grammar.

• Noise due lo crrors of thc speech recognizer.

¥VC have conductcd two preliminary experiments to evaluate the GLR*

parser‘s ability to ovcrcomc the first two types of extra-grammaticality. We

aIC i1111wprocess of experimentingwith the GLR*parser on actual speech

lでcogni7，NIoutput， in ordcr to tcsl its cλ.pabillties in handling crrors pl'・oduced

hy thc sp<，cch rcrogl1izcr.

6.4.2 Parsing of Noisy Spontaneous Speech

Thc first tcst wc conductcd was intellded to evaluate the performance of

thc G I H' parser 011 noisy sel1tences typical of spontaneous speech. The

parserwasLestedolla set of 100sentences of transcribed spontaneous speech

dialogues oll a conference regiRtrationdomain.The input is hand-coded

transc山 cdtext.附proce.sscdthrollgh any speech recognizer. The grarnmar

uscd was九11明 l仙 ?d¥'ersion of a grammar for the conference必st川 ion

task， dcvclopcd and used by t，hc JANUS speech-to・speechtl'anslation project

at Chit lwaihl etal.19911.Since the test sentenceswere drawn from

102 ClIAPTER 6. NO[S/~ SIGFPJNG PARSING

actual spcech transcriptions， thcy were not guarantccd to bc covcred by the

grammar. Howevcr， since thc test was mca.nt. to fOCllS on spontaneous noisc，
sentenccs that included verbs and nouus that werc bcyond thc vocabulary of

the system were avoided. AIso pruned out of the test set wcrc short opcning

and closing sentences (such as ((hcllo" and "goo仙 ye").Th】ctranscripμ】パtioll

include a multitude of noisc i凶nthe i凶nput.The following example is one of

the sentences from this test set:

"fckn2_10 /ls/ /h#/ um okay {comma}

then yeah 1訓 disappointed{comma}

pause but uh that is okay {period}"

The performance results are prescntcd in Tablc 6.2. Notc that due to

the noise contaminating thc input， the original pa.rscr is unable to parse

a singlc one of the sentences in this tcsL set. Thc GLRホ parsersuccccded

to return some parse result in a11 but one of thc test senlences. IIowever，
since returning a parse reslllt docs not by itself guarantec an analysis that

adequately refiects the mcaning of the original utterance， wc reviewed the

parse results by hand， and classified thcm into the ca.tegories of“goodl close"

and "bad" parses. The results of this classification are included in the table.

6.4.3 Grammar Coverage

We conducted a second experiment aimed exclusively on evaluating thc a.bil-

ity of the GLR* pa.rser to overcome Jimiled grammar covera.ge. In this cx-

periment， we compared the results of the GLRヰ parserwi th those of the

original GLR parser on a common set of sentenccs using the same grammar.

We used the grammar from the spontaneous spec('h experiment for this tcst

as well. The common test set was a set of 117 senlcl1ces from the confcrence

registration task of the JANUS project. These scntences arc simple synthe-

sized tcxt sentences. They contain no spontaneous speech uoisc， and arc not

the result of any specch recognition j)roccssing. Once aga.in， to evaluatc the

quality of the parse results 1叫 urncdby the parscl'， we c1assified thc parse

results of both parsers by hand into twoιategories:“good/close parses" and

"bad parses". The results of the expcriment are presented in Table 6.3.

The results indicate that using the CLR* parscr results in a significant

improvement in performance. The pcrccntage of sentences， for which the

parser returned good or c10sc parses illcrcased from 52% to 70%， an increase

of 18%. Fully 97% of the test scntences (all but 3) are parsablc by thc GLR.*

parser， an increase of 36% over tlle original parscl. Jlowcvcr， this includes

6.5. S'UMMARY 103

Original Parser Robust Parser

number percent number percent
Parsable 71 61% 114 97%
Unparsable 46 39% 3 3%
GoodjClose
Parses 61 52% 82 70%
Bad

Parses 10 9% 32 27%

Table 6.3: Performance of the GLR * Parser vs. the Original Parser

a significa川 increase(from 9% to 27%) in the number of bad parses found.
Thus， fuHy haU of the additional parsable sentences of the set return with
pa.rscs that may be deemed bad.

Thc results of the two experiments clearly point to the following problem:
Compared with the GLR* parser， the original GLR parser， although fra.gile，
rcturned rcsults of relatively good qua]jty， when it succeeded in parsing

the input. The GJJR* parser， on the other hand， will succeed in parsing
almost any input， but this parse result may be of little or no value in a
significa.nt portion of cases. This indicates a strong need in the development

of methods for discriminating between good and bad parse results. We intend
to try and devclop some effective heuristics to deal with this problem. The
p1'oblem is also due in part to the ineffectiveness of the simple heuristics
currently cmployed (01' selecting the best parse result from among the large

sct of parses 1叫 urnedby the parser. As mentioned earlier， we intend to
concentraιc cffol'ts on developing more sophisticated and effective heuristics
for selecting the best parse.

6.5 S ulnmary

Motivated by thc difficulties that standard syntactic parses have in dealing

with extル grammaticalities，we have developed GLRへanenhanced veよ
sion of the standard Generalized LR parser， that c姐 effectivelyhandle two
particular problems tha.t are typical of parsing spontaneous speech: noise
contamination and limited gl'ammar coverage.

Given a grammar G and and input string S， GLR*抗ndsand parses S'，
the maぷimalsub制 ofwoIdsof-S，such that F is in the language L(G)・T11J
parsing algorithm accommodates bile skipping of words and fragments of t11e

104 CIIAPTER 6. NOISE SKIPPJNG PARSING

input string by allowing shift operations to be performed from inactive states
of the GSS (as wellωfrom the active states， as is done by the standard

parser). The algorithm is coupled with a bea肝 search-likehet凶stic，tl川
controls the process of shifting from inactive states to a limited bea.m， and
maintains computational tractability.

Most other approaches to robust parsing have suffered to some extcnt
from a lack of generality and from being domain dependent. Our‘approach，
although limited to handling only certain types of extra-grammaticality， is
general and domain independent. lt attempts to maximize the robustness
of the parser within a purely syntactic setting. Because the GLR* pars-
ing algorithm is a modification of the standard GLR context-free parsing

algorithm， all of the techniques and grammars developed for the standard
parser can be applied as they are. In the case that the input sentence is
by itself grammatical， GLR* behaves exactly as the standard GLR parser.

The techniques used in the enhancement of the standard GLR parser into
the robust GLR牢 parserare in principle applicable to other phrase-structure
based parsers.

Preliminary experiments conducted on the effectiveness of the GLR*
parser in handling noise contamination and limited grammar coverage have
produced encouraging results. However， they have a1so pointed out a definite
need to develop effective heuristics that can select the best parse result from a
potentially large set of possibilities produced by the parser. Since the GLR *

parser is likely to succeed in producing some parse in practicallY all cases，
successful parsing by itself can no longer be an indicator to the value and

quality of the parse result. Thus， additional heuristics need to be developed
for evaluみtingthe quality of the parse found.

Chapter 7

Speech Thanslation Systems

7.1 Introduction

In t}lis cha.ptcr we first review speech rccognition in terms of its historical

background and current technology 1.

. CentraJly， we address the issue of integrating speech and naturallan-
guagc anaJysis in general and in concrete systems. UnfortunateJy， the in-
tegration of speech recogfluorl and language analysis is far from simpi守-

direct ellfl Lo end connection yields poor performance.IIISLead，both pro-

cesscs lllust be more tightly coupled with appropriate mutual fcedback.

¥Ve theJl present thre(' speech translation systems. Although all three

arc research projects MCarnegie Menon University (CMU)，they are repre-
scntative of gcncral approaches to the machine translation of speech. The

systems are as foUows:

• SpccchTrans， with noise-tolerant Generalized LR parsingj

• Sphinx-LR， with lliddcn Markov Models-LR (HM~I-LR)j and

• JANUS，¥Vith li山町Iprcdictive ncural networks (LPNN)

』句StI川bs川州討山tllt‘刊山1れI刷0

l悶98約9，Nirctll>¥刊 et札削，Tom1taet al，1990a，saito mdTomih1988b'woszczyna ej

01.， J 993， "， fomita， 1988e，百mabeduet al ，1989，PIbmita et n11990b，?] I would like to

knowledgc山川horsof those papers who鈴∞nl巾山onsaAirtclu制 Jln4山hiscll川lapt叩削pμt附er
o B川 a“i，J川a心山山川11山山m附n問B悶eC臼a.r巾bo加n叫 ， (¥0、o油 Cωoc叩 0，A. E臥凶阿el山l怜e，Ken Goodman， T I(a.九a.w川abata，J(e匂en凶11
I< 山 λ川10111.3川加1.3¥"i刈川川3¥訂川、v吋'1札 Ar 伽 ~Id\a脳“ir ， Ten引en川t

i

Ro包伊'川n3，Carolyn Ro対 . t f i r o a k i s ai t o ， T S i o b o d h I f i d e t o To r n a b e c h i ， N a o m i Wai l 、el， Alex
Waibel， Waync Wa.rd， and Monica Woszczyna.

105

106 CIIAPTER 7. SPEECII TRANSLATJON SYSTEMS

Thc systems are described in sections 7.3， 7.4 and 7.5， rcspecti¥'ely.

7.2 Speech Recognition

Specch t'ccognition is the process of mapping acoustic wavc forms correspond

ing to spoken language into unique sequcnces of symbols， ideally strings of
words. Speech understαnding is sometimes used to mean only recognition

and sometimes to encompass fulllanguage analysis.

Spccch recognition is a very complcx process that rcquires the discril1¥i-

nation of signals that vary in frequency， amplitude， onsct timc (phasc) and
tempora) elasticity (speed of uttera.nce) in different ways， by different spcak-
ers at different times. There have been many approaches to this task， but
there seems to be no simple "magic bullet." Since progress is slow but

stcady and cumul叫ivc，different ways of characterizing system performanrc
have cvolved and gained widespread acccptance among rescarchers.

7.2，1 A Historical Perspective

Specch recognition has been studied fairly extensively for many years. Proto

types o[the earliest successfullarge-scale systems reaching a L，OOO-word vo
cabulary appeared about 1975， at the end of a五ve-yearresearch plan by thc

U.S. governroent's Defense Advanced Research Projects Agency (DARPA).

Two well-known examples are HEAItSAY-II， which incorporated constraints，
mostly syntactic， from language to facilitate recognition [Lesser etα1.， 1975，

Lea， 1980] and HWIM [Woods et al.， 1976， Wolf and Woods， 1980]. 1'h('

HARPY sys同mwωofparticular note，部 itchampioned a. different ap

proach: It compiled rather than interpreted higher-level knowledge a.nd uscd

the beam-search technique to yield the best performancc of the] 975需ys

tems [Lowcr同 1976，Lowerre and Reddy， 1980]. Also in tha.t ycar， ltakura

[Itakura， 1975J of Nippon Telephone and Telegraph i川 roducedthe dynamic

tiroe warp (DTW) for nonlinear alignment of speech.

1n 1982， Wilpon et al. at Bell Labs used c1ustering techniques to叫 cmpt

speaker-independent isolated-word recognition. A recognition accuracy of

91% on a 129・¥Vordtask was reported. The FEATUItE system at CMU [Cole

etα1.， 1983] achieved an accuracy of greater than 90% i n English lettcr

recognition without grammar， using a fcature-based approach.

In 1985， the IBM Speech Recognition Group addressed a natural vcry

large vocabulary task and achieved imprcssive results. The Tangora system

7..1. SPERC1l1RANS 107

obta.illcd a. 97% recognitioJl rate for speaker-dependent recognition of sen-
tcnccs with c!ea.r pauses between words， using a 5，000・wordvocabulary and

a natllral langllagc likc grammar with a perplexiり， of 160.

l301t， J3cralH'k and Ncwma山 (BBN)BYBLOS system in 1987 uscd context-
dcpel1dcnt modclillg of phonemes and obtained a 93% accuracy on a 997・
word continuous task [Chow etα1.， 1987， Kubala et α1.， 1988]. Using con-
lil11l0IJS IIMM， a scntcncc recognition rate of 97.1% was achieved without

thc usc of a grammar by I3cll Labs on speakcr-independent connected digit
rccognitiot1 [Hahill<'f ('l al.，]988]. The Sphinx systcm at CMU， which uscs
lIiddcn Markov Modcling of specch， achieved spcakcr-jndependent word ac-
curaCIcs of71%， 94% e¥nd 96% on thc 997-word 0八RPArcsource management

task， with grammars of pcrplcxity 997， 60， and 20， respectively， in 1988 [Lee，
1988J.

Thcrc arc scvcral speech-to-speech MT projects under way throughout
the world， prima.rily in Japan， Europe and the United States. For instance，
in Japan， the ATR Intcrpreting Telephony Research Lahoratories wcre estab-

lished in 1986 to investigate automatic speech translation aids for overseω
communications. Thcir rcscarch prograrn， labeled “interpreting telephony，"
has thc ambitious goal of enabling， in constraincd domains， a person speak-
ing olle languagc to commllnicate readily by telephone with somωne spea.k-
ing another languagc. 1'he integra.tion of technologies in speech recognition，
~na.chine translation_ and speech synthesis is the focus of their investigations
lLabora.torics， 1989J. Anothcr example is rescarch a.t British Telecom Re-
scarch Laboratorics， which has becn successful in overcoming some pra.ctical
problcms in the rccognitiol1， synt.hesis and translation of spcech; thcir ap-
proach cmploys thc us(' of carefully selected keywords [Stentiford and Stecr.
1988]. Thc C州 crfor Machine Translation叫 CMUis a.lso dccply involved in

sp('(、('hto spccch translatioll， e¥nd has produced several successful， prototype
syst(，ll1s; SOI11C of th('sc arc dcscribed in the following scctions.

7.3 SpccchTrans

The SpcechTrans projcct constitutes one of several efforts to integrate spcech
into a machinc tra.nslation system at C~lU・s Center for Machine Translation.
This projcct uscs thc Genera.lized LR parsing algorithm described in chapter
2 for language analysis with Mat叩 shitaexperimentaJ hardware for low-level

phonemic speech recognition. It also used GENKIT ¥'ersion 3・2(see Ao
pcndix B) for la噂 lagege附 ati011withDEC Talk for speech synth-is. 轟

108 CHAPTER 7. SPEEClI TRANSLATION SYSTEMS

11uch e汀orthas been devoted to make the SpeechTrans parser more ro・

bust against noise in order to analyze sentences tha.t su町erfrom a.coustical
recognition errors. The speech recognition devicc， which is a. high-speed，
spea.ker-independent system developed by Ma.tsushita. Research Institute

[Morii et al.， 1985] ta.kes a continuously spoken Ja.pa.nese uttera.nce， for ex-
ample megαitai (“1 have a pain in my eye")， from spcaker-microphone i叩 ut
a.nd produces a. sequence of phoneme symbols. Beca.use the speech recogni-
tion device does not have any syntactic or scma川 icknowledge， recognition
errors often produce il1egal or noisy phonemc scqucnces， such as“ebaitaa.i"
for megαitai.2 Some more inputjoutput cxamples of the speech device a.re
presented in the following exa.mple， where thc left-ha.nd side of ea.ch line is
the correct phoneme sequence and thc right-ha.nd sidc is what was recog-

nized.

• tgαmukαmukasu叩→“iga.gukamukusjuru"

• kubigakowαbαqteiru→“k ubigakoohoqteiiru"

-αtαmαgαitαt→ "otomogai tai"

The ta.sk then is to parse noisy phoneme sequences like those in the a.bove
exa.mple a.nd analyze the mea.ning of the original input uttera.nces. A very
efficient parsing method is crucial because the task's sea.rch spa.ce is much
la.rger than that of parsing non-noisy sentences. In other words， one must
a.ttempt to pa.rse va.ria.nts of the input sequence to find the closest one tha.t
sa.tisfies a.lllexical， syntactic and semantic well-formcdness constra.ints. We
adopt the Generalized LR pa.rsing algorithm discribed in chapter 2， togethel'

with a. scoring scheme to select thc most likeJy sentence from muJtiple can-
didates. The use of a coη:fusion mαt1'IX， created in advance by ana.lyzing a
large set of inp凶 joutputpa.irs to improve the scoring a.ccuracy， is discussed
below.

Note that some speech recognition deviccs (such硝 Ma.tsushi旬、)pro-
duce a phoneme sequence， not a. phoncme lattice; there a.re no other phoneme
ca.ndida.tes available a.s altcrna.tcs. Therefore， at analysis time， we must make
the best guess ba.sed solely on the phoneme sequence genera.ted by the spcech
device. Errors caused by the speech device can he classified into three groups:

2We djstinguish noi3Y from ill-formed. The rormer is due to recognition-device errors，
while the lalter is due to human users mistyping or rnisconstructing their究entences.Each
phenomenon leads to different kinds of deviation from the correcl or expected input.

7.3. SPEECIITRANS 109

• Stlbstitu.ted phonemes: phonemes recognized incorrectly. The second
phon-eme /b/ in“ebaitaai" is a substituted phoneme， for example.

• Deleted phonemes: phonemes which are actua11y spoken but not rec-

ognized by the device. For example， a phoneme /m/ is deleted at the
beginning o[“ebaitaai."

• lnserled phonemes: phonemes recognized by the device but which are

not actually spoken. The penultimate phoneme /a/ in“ebait拍 i，"for
examplc， is an inscrted phoneme.

To copc with these problems， we integrate two key technologies:

1. Thc GLR， a very efficicnt parsing algorithm， because our task requires
much more search than conventional typed sentence parsing; and

2. A good scoring scheme， to select the most likely sentence from a m叫，

tiple candidate set，出 clescribedin section 7.3.3.

SpcechTrans uses an aλ19mented context-free grammar whose terminal
symbols are phonemes rather than words. That is， the grammar contains
rules like

Noun -ー> IJ a t a s i

instead of

Noun -ー> 'watasi'

Parsing thercfore p1'oceeds character by cha1'acter (phoneme by phoneme)

Theg町 nmrwasdeveloped for a doctor-puient communication task ITom-
and Carboncll， 1987b， Tomita etαl・， 1988a， To印rn凶1
of more than 2，000 rules including lexical r‘ules like the one above.

7.3.1 Handling Erratic Phonemes

To cope with substituted， inserted and deleted phonemes， the parser must
consider these errors as it parses minput from left to right.While the basic
algorithm described in chapterscannot handle these noisy phenomena、it

is well suited to consider many possible pa.rses at the same time. Therefore.
it can be modified relatively easily to handle various noisy phenomena:

110 ClIAPTER 7. SPEECH TRANSLATION SYSTEMS

• Subslituted phonemes: Each phoneme in a phoneme sequence may have
been substituted a，nd thus may be incorrect. The parser should con-

sider all these possibilities. A phoneme lattice is created dynamically
by placing altern叫ephoneme candidates in the same location as the
01'氾inalphoneme. Each possibility is then explored by each branch
of the parser. Not a11 phonemes can be substituted for any other

phoneme. For example， while /0/ cωbe misrecognizedω/u/， /i/
can never be misrecognized as a consonant. This kind of informa-
t.ion can be obtained from a confusion mαtr吋， which we discuss in the

next section. With the confusion matrix， the parser need not create
an exhaustive set of alternate pboneme candidates， only the mutually
confusiblc ones.

• Inserled phoηemes: Each phoneme in a phoneme sequence may be an
extra one， and the parser should consider the deletion of the current
phoneme， assuming that at most one inserted spurious phoneme can
exist between two actual phonemes.

• Deleted phonemes: Deleted phonemes can be handled by inserting po・
tentially deleted phonemes between two actual phonemes. The parser

assumes that at most one phoneme can be missing between two actual
phonemes， and we have found the assumption quite reasonable. A11
possible legal insertions are considered if the current parse (without
inse川 ons)fails.

7.3.2 An Example

1n thls subsection， we pl・esenta sample trace of the parser. IIere we use
the grammar in figure 7，1 and the LR table 1n figure 7.2 to try to parse
the phoneme sequence "ebaitaai." (The right sequence is "megaitai" which

means "1 have a pain i11 my eye.")
For this example we make thc followi11g assumptions for substituted and

deleted phonemes:

• /i/ may be misrecognized as /e/

• /e/ may be misrecognized as /a/

• / g/ may be misrecognized as /b /

• /m/ hぉ ahigh probability of being missecl in the output sequence

7..1. 8PEEGIlTRAN8

State a

111 112 CJIAPTER 7. SPEECTI TRANSLATION SYSTEMS

ーーーーーーーーーーーーーーーーー骨骨骨ーーー自由也ーーー由骨骨 1 2 3 1 2 3 1 2 3 1 2 3 4
(1) s -ー> NP V 。調ド1 1__1ーー| 1__1ー| 1__1__1 1-ー|ーー|
(2) s -ー> N *m olm le l<r5> Olm le 1 olm 1 e 1 olm le 1
(3) s -ー> V 1__1 1__1 |ー_1 |一一|

(4) NP -ー> N P (Trace a) li 14 <r6> li 14 <r6> li 14 <r6> 1 li 14

(5) N -ー>m e I*t いt I*t I*tl
1__1ー | 1-ー|ー一| 1__1__1 (6) N -ー> i 1 2 (Trace c) N 12 <r2> N 12 N 12 1 (7) P 喧ー> g a 1-ー| I*g I*g I*gl

(8) v -ー> i t a i Olm_15 1__1__1 '-_1
---ーーー由ーーーーーー甲骨ー骨ー置圃ーーー一ーーーー甲骨骨骨 |句 (Trace d) S 1m 15

I*e
(Trace e)

Figure 7.1: An Example Japanese Grammar (Trace b) (Trace f)

Figurc 7.3: Example Trace a・f

1 $ e t N NP P V S

First a.n initial sta.te 0 is crea.ted. The a.ction ta.ble indica.tes tha.t the
initia.l sta.te is expecting "m" a.nd "i" (figure 7.3a.). Since the pa.rsing strictly
procceds from left to right， the pa.rser looks for the ca.ndida.tes of thc rnissing
phonemes between the長川 timefra.me 1・ 2.(We will use the term T1， T2，…
for representing the time 1， time 2，… in figure 7.5.) Only the phonemeηm"
in this group is a.pplica.ble to sta.te o. The new sta.te number 5 is determined
from the action ta.ble (五gure7.3b).

The next group of phonemcs betwecn T2 and T3 consists of thc "e"
phoneme in the phoneme sequence and the altered candidate phoncmes of
"e". In this groupηe" is expected by state 5 and "i" is expected by state
O(figure 7.3c). After "e" is taken， the ncw sta.te is]2， which is ready for
the action "reduce 5". Thus， using the rl巾 5(Nー>m e)， we redωc the
phonemes "m e" into N. From state 0 with the nonterminal N， statc 2 is
determined from the goto table. The action table， then， indicates that state
2 has a multiple entry， i.e.， sta.te 2 is expccting "g" and rea.dy for the re-
duce a.ction(figure 7.3d). Thus， we reducc thc nonterminal N into S by rule
2(Sー>N)， a.nd the new sta.tc numbcr G is determined from the goto ta-
ble(figure 7.3e). The a.ction table indica.tes tl削 state6 is a.n accept state，
which means th叫 "me" is a successful parse. But only the自rstphoneme

圃 g

o s4
ー・・ー--ーーー ーーーーー一一一一ーーーーー----ーーーーーーー----ー・・ーー一ーーーーーー--・・ーーーー一一一一一一ーーーーーーーーーーーーーー一一ーーー・・ーーー・・ーー一一

1

2

3 s9

A-r

句。-
E
a
 s

凋

q
p
o
e
o

マ，。。
9

10

pa

句，
.
A

r
s

瓜
守-a-

qω ‘A
内

4

句
。
凋
“

τ
p
a

l

l

i

-

-

s5 2 3 1 6
r3

s7，r2 8
10

r6 s11 ，r6
s12

acc

sl1
rl

r5 r5

r8
-・・ーー.・ーーー・骨ー・・ーーーー一一ーーーー一一一一←一一 一一一一一一一一一一ーー叩ーーーーー・ーーー・ーーーーー・---・・ーーーーーーーー一一一一一一一一一一一一ー---ーーーーーーーー-ーーーー・・・ーーーーー

Figure 7.2: 1 R Parsing Table for thc Example .Japancse Grammar

7..1. ぢpιιr・JI'JRANS 113

"(." of thc in(>ut seque!lce "ebaitaai" is consumed at this point. Thlls we

disr2rd this parse by thc following constraint.

COllstl'aint 1: Thc successful parse should consume the phonemes

a.l 1<‘(1st until thc phoneme just before the end of the input se-

quenc<，.

Note that only thc parse S in figure 7.3e is ignored and that the nonter-
minal N in figure 7.3d is alive.

Now wc feturn to the figure 7.3c and continue the shjft action of "i".

Aftcr "i" is ta.kcl1， thc ncw state 4 is determined from the action table. This

sta.tc has a multiple entry， i.e. state 4 is expecting "t" and ready for the

rl'd II('CれctIOIl. Thus wc reduce "i" into N by rule 6. IIere we use the loc，αl

αmblgtlity parking tcchnique， because the reduced nonterminal is the same，
the starting state is 0 for both， and the new state is 2 for both. Thus we do

not crcatc thc new nonterminal N.

Now wc go on to the next group of phonemes between T3 and T4. Only

"m" is a.pplied to the initial state (figure 7匂).
The next grollp of phonemes between T4 and T5 has two applicable

phoncmcs， i.e. "m" to stale 0 and "g" to state 2. After "g" is taken， the
ncw slatc 7 JS dctermincd from the action table (自gure7.4h).

Thc I¥cxl group of phoncmes between T5 and T6 has only one applicable

phoncmc; "m" lo sta.te O. lIere we can introduce another constraint which
discards this partial parse.

Constraint 2: Aftcr consuming two phonernes of the input sc-

qucncc， 1¥0 phonemes can be applied to the initial state O.

This c01¥straint is natural because it is unlikely th叫 rnorethan two

pho!¥cmcs <HC rccordcd before the actual beginning phonemc for our speech

recognition dc¥'icc.

The ncxt group of phonemes between T6 and T7 has two applicable

phonemc5、i.c. ~. a." to stale 7 and・'e" 10 slate 5. After "a" is takeu， the
ncw statc 7 is rc以 Iyfor the reduce action. Thus， we reduce "g a" into P by

rule i(figllrc 7Ai). Thc ncw state 8 is determined by the goto table， and is
also ready for thc reducc action. Thus we reduce "N P" into NP by rule 4.

Thc new statc is 3. In applying "e・・!there are two 可state2"s: one is "m"

bctwecn '[・1and 1'2; the other one is吋 m、betweenT3 and T4. lIere we can
inlrodure a third co!¥slraint which discards the former partial-parse.

114

1 2 3 4 5

1__1ーー|

olm le 1
1__1

li 14 1
I*tl

'-_1一一l |四_1
N Ig 17

|キa

1__1
1m 15 1

I*el

(Trace g)

CHAPTER 7. SPEECJI TRANSLATION SYSTEl¥IS

1 2 3 4 5 6 7 1 2 3 4 5 6 7

|ーー|ーー| 1-ー|ー_1
olm le 1 Olm le 1

|ーー1 l申ー|
li 14 1 1 i 14 1

|円| |傘tl

__1__1 1-ーl 1__1__1 1__1 |骨_1

N Ig 1 la 13 <r7> N Ig 1 la 1
1__1 1__1

1__1 1m 15 1 1 e 1

1m 15 1 I*el

I*el |一一1ー喧1__1
1__1__1_- P

P 8 <r4> 1__1__1__1-ー|ーー|ーー|
NP 13

(Trace h) |取i

1__1-ー|由儒 |ーー |

N 12
I*g

(Trace i)

Figure 7.4: Exarnple 'l'race g -i

SPEECIi TRANSLATION SYSTEMS CIiAPTER 7. 116 115 SPEECHTRANS 7.3.

16 17 14 15 12 13 11 10 9 8 7 6 5 4 3 2

a a a b e

5
唱除e 12

町1 e
-・・"-4

'. ・'.
合t

. '. ・'.岡田 5
岡 田 園

12
m 'e e 2

N *g

圃・9・・・7 ra 13 ••• a 闘.
;r'・ "0 9 1.1..

回ー
14

N 'g-...
・83j

Fア合th"・'0 a '1
園 田 園

p

NP
*i...

PD

S

17 16 14 15 12 13 11 10 9 8 7 6 5 4 3 2

15

[r 8]

10

[r 1]

6

勺台本
'
Z
2・

Figure 7.5: An input sequence of phonemes

Constraint 3: A shiH action is not applied when the distance
between the phoneme and the applied (non)terminal is more than
4. (This distance contains at least one real phoneme.)

Figure 7.4i shows the situation after "e" is appJied.

The final con員gurationof the parser is represented in五gure7.6. Note
here that the parser finds two successful parses: megαitαi and igaitai (“1 have
a stomach ache").

Scoring and the Confusion Matrix

There are two main reasons for scoring each candidate parse. The fir叫 isto
prune the search space by discarding branches during the parse whose score
is hopelessly low and therefore clear匂 incorrect，The second is to select the

best sentence of multiple candidates by comparing their scores after parsing

7.3，3

occ

Figure 7.6: The抗nalconfiguration of the parscr

is complete.

Branches of the parse tha.t consider fewer substitutedjinserもedjdeleted
phonemes should be given higher scores. This is a form of "lea.st-deviant-first
search" fo1' ill引 ructuredinput， first introduced by [Fain etαl.， 1985]. When-
ever a. bra.nch of thc parse handles a substitutedjinsertedj deleted phoneme，
a specific penalty is applied to the branch. Unfortunately， the recognition
device gives us neither the probability of ea.ch phoneme tra.nsition in the se-

quence nor the likelihood of finding substitutedjinsertedj deleted phonemes.
Only the "best" phoneme sequence is given. Therefore we ha.ve to resort to
a data. structure called a confusion mαtrix for scoring purposes. A portion
of the matrix is given in ta.ble 7.1.

The table shows part of the ma.trix produced by the ma.nufacturer of the
recognition device from sample word data. This matrix tells us， for example，

7.3. SJ>EP;CTlTRANS 117

「ガu1l1t1t

pllonrmc令 /a./ /0/ /11/ /i/ /巴/ /j/ /w/ ... (1) (II)
Itlput

財士台ケ少伊伊肝H川川川…tl附tll'rげ附Il'tfI打川tfll'

93.8 1.1 1.3 。2.7 。。... 0.9 5477
/0/ 2.4 84.3 5.8 。0.3 。0.6 ... 6.5 7529
/u/ 0.3 1.8 79.7 2.4 4.6 0.1 。... 9.7 5722
/i/ 0.2 。0.9 91.2 3.5 0.7 。... 2.9 6158
/c/ 1.9 。4.5 3.3 89.1 0.] 。... 1.1 3248
μ/ 。。1.1 2.3 2.2 80.1 0.3 ... 11.4 2660
/w/ 0.2 5.1 5.8 0.5 。2.6 56.1 ... 11.2 428

(111) 327 176 564 5]2 290 864 212 ...

Table 7.1: A portion of a confusion matrix. (1) denotes the possibility of
dcletcd phoncmesj (II) the numbcr of sa町 les;and (IlI) the number of times
this phoneme has been spurious1y inserted in the given samples.

that if the phoneme /a/ is input， the device recognizes it correctly 93.8% of
the timc， lllisrccognizes it as /0/ 1.1% of thc timc， misrecognizes it as /uj
1.3% of thc time and so on. The column (1) says that the input is missed
0.9% of thc timc.

Converscly， if the phoncmc /oj is recognized by the device， there is a
slight chance that the original i叩 utwぉ jaj，ju/ or /wj， but no chance
of it bcing jij， jej or jj/， as can be secn from the table. Thc baseline α
pl'iori probability of the original input bcing /a/ is much higher than its
being /w/.Frillls，a substituted phoneme/w/should be given a mO問 severe
penalty than /aj. A scorc for substitllted phonemcs can be obtained in this
way， whilc dclcted phonemes should be given a negative score， and inserted
phonemes a zero 01' a ncgative score. With this technique， a scorc for a
pa.rtial parsc is calculated by summing thc sco!'c of each constitucnt; the
highel' thc score， the more likcly the parse is C'orrect.

Two mcthods have been adopted to prune partial parses by a score:

• Discarding the low-score， shift-waiting branches when a phoneme is
apphcd; and

• Discarding the low-scorc branches in 10cal ambiguity packing.

118 CIIAPTER 7. SPEBぐIITRAiYSLA.TION SYSTEMS

Thc fOl'mer method， when strictly applicd， is found to hc vcry e汀'ectivc.
Notc that the confusion matrix shows llS only thc phoncmc to-phonemc

transition. Jt would seem that a broader-unit transition should also be con
sidered， such as the tendcncy fo1' the /w / phoneme in 'owa' 01' 'owo' to be
missed， the tendency [or the very fi1'st /h/ sound of an input to be missed，
and the frequent t1'ansformation to 'h@' of thc 'su' sound in 'desuka'. 1n
other words， a belter confusion maもrixcan bc constructcd by considering a
larger context-such as cntire words.

7.3.4 Sample RUl1s

The actual output of the parser is shown in this section. The inpllt phonemc
sequence is "a.tomo baitai" and the correct scquence is円以ama.ga itai"(which
means "1 have a headache.")， which is produced as the top score sentence
of al1 parses. The frame-stl'ucture output after each parse i5 the meaning
of the sentence. This meaning is extractcd in the same wayぉ thcCMU's
machinc translation systcm does [Tomita and Carbonell，] 987b， Tomita et
α1.， 1988a].

7.4 Sphinx酬 LR

Sphinx is a state-of-the-art IIMM speech rccognizer developed at CMU [Lec，
1988]. II is being tested as a front end to a machine translation system. The
gramma.r compiler produccs three knowledgc files used by Sphinx-LR from
the context・freegra.mmar. They are the purc context-free grammar rules，
もheLR parsing table and the lIMM net file， as depicted i11 figure 7.8.

1'he grammar compi1er cxpects an input grammar to bc in the sarnc
format as the parser. Thus， when the tlser dcvelops a grammar for Sphinx
LR、heor she can test and debug the grammar with typed input sentences
using the standard LR parscr. Once the grammar is dcbuggcd， it can be fed
into the Sphinx-LR grammar compiler.

As already noted， the a.nalysis grammar for the t1'anslation system is
written in augmented contcxt-free grammar， while basic Sphinx uses only a
bigram grammar to reducc perplexity and thcreby constrain the search pro
cess. Sincc the bigram grammar is generally much loos('1' than the contcxt-
free grammar、Sphinxwill output many incorrectly recognized ungrammati
cal sentcnces， which cannot bc handled by thc translation systcm. It is therc
fo1'e dcsirable to const1'ain Sphinx's search process with thc samc g1'ammar
a:雪 theanalysis grammar ill the translation system so that thc probability

7.t1. SPJIINX LR 119

‘'/.'/.'!.'!.'!.'!.ココ:'!.'!.'!.'!.'!.'!.'!.'!.'!.'!.'!.'!.'!.'!.'l.'l.'l.'!.'l.'!.'!.'!.'!.'!.'!.'!.'!.'!.'!.'!.'!.'!.'!.'l.'!.'l.'l.'!.'!.'!.'l.'!.

1: (104) A<2-3> T<4-5> A<6-7#8> M<8-9> A<10-11#8> G<12-13#8> A<14-15>
1<16-17> T<18-19> A<20-21> 1<22骨 23>

((:MOOO OEC) (SEM *HAVE-A-PA1N441)
(OBJ((:WH -) (CASE GA) (SEM *HEAO) (ROOT ATAMA))) (CAUSAT1VE -) (OBJ-CASE GA)
(SUBJ骨 CASEGA) (SUBCAT 2ARG-GA) (CAT AOJ) (:T1KE PRESENT) (ROOT 1TAI))

2: (94) A<2-3> S<4-5#8> A<6-7#8>刊<8・9>A<10-11#8> 0<12-13#8> E<14-1S#8>
1<16-17> K<18-19#8> 0<20-21#8> U<22-23#8>

((:MOOO OEC) (SEM *PTRANS4S3)
(PPAOJUNCT

((PART MAOE) (SEM本T1ME) (ROOT *T1ME) (:OAY-SEGMENT ((:CFNAME *MORN1NG)))))
(SUBJ-CASE GA) (CAUSATIVE -) (PASSIVE -) (SUBCAT INTRANS)
(:TIME (*OR傘 PRESENTFUTURE)) (SIYOU +) (CAT V) (ROOT IKU))

‘'/.'l.'!.'!.'!.'/.'!.'!.'!.'!.'!.'!.'!.'!.'!.'!.'l.i.i.i.i.i.'!.i.i.'l.i.'l.'l.i.'!.'l.'!.i.'l.'!.'l.'!.'l.'!.i.'!.i.'!.i.'l.'!.i.'!.i.i.'l.i.i.i.'!.i.i.'!.'!.'!.'!.'!.i.'!.'!.'!.'!.'!.'!.'!.'!.i.‘

Figurc 7.7: Sample Outputs of thc Parser

120 CIIAPTER 7. SPEECll TRANSLATI0N SYSTEMS

Figure 7.8: Sphinx-LR's compiled knowledge files

7.1. 51リIINX-LR 121

of cOffecl recognition is increased and all Sphinx output can be handled
by the translation system. A side benefit of more constrained search is
faster spccch recognition. Therefore， g1'ammar-constrained speech recogni-
tion providcs net benefits on all counts. The addition of semantic constraints
improves pcrformance beyond that of context-free grammars.

7.4.1 The HMM-LR Method

A tωp付川r巾hげn川1
ha硝AC;b】e何{。下ndcvelope以ωdtωo intωcgr叫cII口iddenMarkov Models and GLR pa訂rs討ing.
T、his su bs関ccωtiongiv刊esad白cs叩cαri九iゆpμ〉刈刈tio∞nof the lIMM-LR method. We assume here
that the I1MM recognizer applies at the individual phone level， although it
can also bc a.pplied at the syllable or word levels.

In standard LR parsing， any parser action (shift， reduce，αccept or error)
is dt'tt'rmined by using the current parser sta.te and the next input symbol.
This parsi"g mechanism is valid only for symbolic data. (叫a.nylevel of
gra.nularity)， but cannot be applied simply to continuous da.ta. 5吋 1as speech.

1n HMM LR， the LR pa.rser is used as a language source model for
wordjphone predictionjgenera.tion. Thus we call the LR parser in next-
symbol set prediction mode the predictive LR pαrser. A phone-based pre-
dictive LR Parser predicts next phones at each transition a.nd generates
possiblc sentences as phonc sequences. The predictive LR parser determines
next phones using the LR parsing table compiled from the speci五edgram-
mar， and splits the parsing stack not only fo1' grammatical ambiguity but
also for alternative or confusible phone variation. Because the predictive LR
parscr ¥lses context-free rules whose terminal symbols are phone names， the
phonetic lexicon for the specified task is embedded in the grammar. A very
simplc example of a. contcxt・freegrammar rules with a. phonetic lexicon is
givcn hcrc:

(a) s ーー〉 NP VP

(b) NP ーー〉 DET N

(c) VP "・〉 v

(d) VP ー・〉 V NP

(e) DET ーー〉 /z/ /a/

(f) DET ーー〉 /z/ /i/

(g) N --> /m/ /ae/ /n/

122 CIIAPTER 7. SPEEC)[TRANSLATION SYSTEMS

Sp関 ch

dambase

(phone labeled)

Fo附 ard-
backward す

Verificalion
score

Context-freo i

grammar

LR lable
す generalor

LR parsing

table

Predictive

LR parser

;州州州、 1…eech

senlences

Figure 7.9: Schematic diagram of HMM-LR specch recognizer

7.'1. SPIJJNX Ui 123

(h) N 'ー〉 /ae/ /p/ /a/ /1/

(i) v -・ー〉 /iy/ /ts/

(j) v --> /s/ /ih/ /ng/ /s/

lfNe， rulc (e) indicates the definite article the pronounced /z/ /a/ before
COI山>IlC¥nts，while rulc (f) indicates the the pronounced /7./ /i/ before vowcls.
R山‘日 (g)，(h)， (i) and (j) phonctically indicate the words man，αpple) eαls
and sin[J!ぺ rC!spcctivcly.

'1 hc HMM LR co州 nllousspeech rccognition system (scc figure 7.9) con-
sist.s of thc prcclictivc LR parSN and HM M phonc veri抗ers.First， the parser
picks up all thc phollcs predicted by thc initial state of the LR parsing ta-
blc and invokcs the HMM modcls to verify the existence of these predicted
phollC's. Thc parser thcn proceeds to the next state in the LR parsing table.
DUlIng this proccss， a.1I possiblc partial parses are constructed in parallcl.
ThC' 11 MM 1】i削 everificr receivcs a probαbility array (see figure 7.10) which
includcs end point ca.ndidates and their probabilities， and updates the array
using a standard HMM probability calculation. This pr叫>abilityarray is
alta，ched to ca.cb partial parse. Partia.) parses are pruned when their prob-
ability falls bclow a prcdefined threshold. In cωe morc th加 onepartial
pa.rsc rcachcs completion， the one wHb higbest probability is selected. For
semantically constraincd domains and clean speech signals， only one parsc
typiraJly reachcs complction.

7.4.2 'The Intcgraied Speech-Parsing AIgorithm

This section presents the algorithm for IIMM-LR recognitioJl more formally.
Thc cxtcnsion of the algorithm to produce parse trees during recognition is
straightforwa rd.

First. wc introducc a data structure called a. cell. A cell is a structure
with illformation about one rccognition candida.te. The following items are
kcpi in the ccll:

• I，H lXU・~i7lg slαck， with information for pa.rsing control.

• P，.ob<loilily ar・"，α払 whichincludcs end-point candidatcs and their prob-
abili tics.

1 H recognition procccds as follows:

124

HMM

state

ハl
d

CHAPTER 7. SPEECII TRANSLATION SYSTEMS

Store in a probability array
in the cell.

Input speech

Figure 7.10: Stacking of a probability a.rray

7.4. SPJlJNX-LR 125

]. fnitiaLizαtion: CreaLe a new cell C. Push the LR ini tial state 0 on top

of thc LR parsing stack of C. Initialize the probability array Q of C;

I 1 t = 0
Q(t) = i o i ~ ~ 5 T

2. Rαmi[tcαtion of ceLLs: Construct a set

S = {(C，s，a，x)1ヨC，S， CL， X (C is a cell that is not accepted;

s is the staLe on top of the LR parsing stack of C;

& x = ACTION[s，αJ x #"error")}

For each elcment (C， s，α，x)εS， perform the operations below. If set
S is empty， parsing is completed.

3. If x =“shift s'，" verify the existence of phoneα. In this case， update
lhe probability array Q of the cell C using the following computation:

αi(t)
=(1(t)

;αj(t -1)αjibji(Yt)

Q(t)=Jot=0
1αSF(t) t>O

i = Sr
t '7正 Sr& t = 0

i#O&t>O

If maXl~tダ Q(t) is below a certain threshold， cell C is abandoned.

Otherwisc push s' on top of the LR parsing stack of cell C.

4. lf x =“町山ceA→s，" pop I訓symbolsoff the LR parsing stack and

push GOTO[s'，A] where s' isもhecurrent state on top of the stack.

5. If x =“αccept" and Q(T) exceeds a certain threshold， cell C is ac-
cepted. lf not， cell C is abandoned.

6. Rcturn Lo 2.

Recognition results are kcpt in accepted cells. 1n general， many recogni-
tion canclidates could cxist， and it is possible to rank these candidates using
Q(T) of each ceU.

In practice， howe¥'er， the following two refinements of the above HMM-
LR algorithm are ttseful:

126 CIiAPTER 7. SPEECH TRANSLATION SYSTEMS

1. Using beam-search technique:
The beam-seαrch technique was抗rstused in the HA RPY speech recogni-

tion system [Lowerre， 1976， Lowerre and Reddy， 1980J. It is a modifica-
tion of the breadth-first search technique， in which a group of near-miss
alternatives around the best path are selected and processed in paral-

lel， rather than retaining all candidates. The beam‘search techniquc
reduces search cost significantly and maintains accuracy. Generally，
the set S constructed in step 2 in the algorithm is quite large. The
beam-search technique is very useful for selecting the few most likely

cells. The value maxl壬t壬TQ(t) of each cell cωbe used as組 evalua-
tion score.

2. Using graph-structured stack:
The g11α.ph-structured stαck is one ofもhekey ideas in GLR parsing
(described in chapter 2). 1n the above algorithm， when making a叫

S， virtual copies of the LR parsing stack are created. By using the
graph・structuredstack， it is not necessary to physically copy the whole
stack. Copying only the necessary portion of the stack is sufficient and

the amount of computation is reduced.

7.5 JANUS

A speech-to・speechtranslation system combining connectionist and sym-
bolic processing strategies is being developed at CMU [Waibel et al.， 1991，
Osterholtz et α1.， 1992J. The system translates continuously spoken English
speech input in the domain of conference registration dialogues into cor-
responding Japanese or German utterances. The system consists of three
major components and integr叫esstatistica.l， connectionist and knowledge-

based approaches: the speech rec∞og伊nition(SR) c∞ompo附

tra制机nsla叫山tiωi山on(MT) c∞omponent and the speech synthesis (SS) component.
The MT-component employs several alternatc processing strategies in

parallel. To translate spoken language from one language to another， the
analysis of spoken sentences， that su汀erfrom .ill-formed input and recogni-

tion errors is most certainly the hardest part. Based on the list of N-best
hypotheses delivered by the recognition engine， we can now attempt to select
and analyze the most plausible sentence hypothesis in view of producing and
accurate and meaningful translation. Two goals are central in this attcmpt:

high fidelity and αccurate translαtion wherever possible， and robustness or
grlαceful degrαdαtion， should attempts for high fidelity translation fail in fみce

7.5. JANUS 127

。filJ formed 01' misrccognizcd input. At present， thl'ee para.llel modules at
trn1 pt to address thesc goals: 1) a.n LR・parserbasecl syntactic approach， 2)
el semantic pattern based approach a.nd 3) a conncctionist approach. Thc
川 ostIJseful analysis frorn these modules is mapped onto a common Inte1'Un-
gua， a. language indep('ndcnt， but domain-specific representation of meaning.
Thc ana.lysis stage a.ttempts to de1'ive a high p1'ecision analysis fi1'st， using a
strict syntax and domain spccific semantics. Connectionist andfor semantic
p司rscrsa.re cur1'ently a.pplicd a.s back-up， if the higher precision analysis fails.
'1'11(' lnterlingu孔 ensurcsthat altcrnate modules ca.n bc applied in a modular
f(lshion and tha.t diffefcnt output languages can bc added without redesign
()f thc a.n札Iysisstagc.

7.5.1 Speech Recognition with Linked Prcdictive Neural Net-
works

Spccch rccognition is p1'ovidcd by a connectionist， continuous， la1'ge-vocabula1'Y
systcm using]inkcd predictive neu1'al networks (LPNN) [Tebelskis and Waibel，
1990]. 111 t凶hiぬ5sy戸st同，必訓eωI肌I

fra.mcs， maintaining a pool of such networks as phoocmc models. High-Ievcl
algorithms are used to connect these netwo1'ks into scquences cor1'esponding
to the phonetic spellings of wo1'ds. With this linking of phonemic netwo1'ks，
thc systcm is voca.bulary indepcndent and is applicablc to large-vocabula1'Y
rccognJtlOn.

Figurc 7.11 illustratcs the basic idea of signal prediction behind an LPNN
nctwo1'k. To prcdict thc next f1'ame of the specch signal，](， contiguous
spcech frames a1'e p部 scdthrough a ludden layer of units in山enetwork
(ShOWll as a trianglc in the figllre). The predicted frame is then compared
10 the actual framc， with thc difference betwccn the two indicating how
good a model the network is fo1' that segment of speech. If the network
is tallght to make rela.tivcly good p1'edictions wilh rcspect to a pa1'ticu]ar
phoneme (say /a/)， thcn it is e百'ectivelyan /aJ phoneme 1'ecognizer. ln
this way， a colleclion of phoneme recognizers can be obtained， with one
modcl per phoneme. Each phoneme is actually modeled by a total of three
slIbnetwo1'ks corresponding to the beginning， middle and end of the phoneme;
the sequentiality of thcsc constituent subnetworks being enforced by the
LPNN architecturc.

To allow for word I・ccognition，cach word is associat.ed with a "]inka.ge
paltcrn" which is a logically const1'ained sequence of models corresponding
to tile phonetic spelling of tile word-For instance，supPOSe the phonemes

128 CIIAPTER 7. SPEECI-I TRANSDATION SYSTEMS

Predlcted speech frame

Predlctor I for laJ
(10 hidden
units)

Input speech frames

Figu1'e 7.11: Modeling a phoneme by signal prediction

7.5. .JANUS 129

/礼/and /1>/ flrc modeled by the sequence of networks al，a2，a3， and b 1，b2，b3
rcspcctively、thcnthe wordαbαis represented by the network Jin kage pat tern:
<1，) ，a2，a3，b 1 ，b2，b3，a 1 ，a2，a3. Note that rnultiple occurrences of networks (Iike
a.l，a2 and a~3) arc linked togetherj this allows LPNN to model phonernes
from varying rontcxts a.nd to recognize words that were not in the training
sct..

We bricfly dcscribc a three引 eptraining algorithm of the LPNN on a
word:

1. 1知・11/(Lf'(1 7Jαss: For cach input speech frame a.t time l， thc frames at
tillH' t J ancl t 2 arc fed into a11 the networks that are linkcd into
this wOl'd. Ea.ch of these nets then makes a prediction of frame(t)， and
th<， [>I'cdiction errors are computed a.nd stored in a ma.trix.

2. Jllignmcnt stcp: Dyna.mic progra.mming is applied to the prediction
(!r("()r Illa.lrix lo find t}te optirnal alignment between the speech signal
and thc phoneme models.

3. Hαckwαrd pαss: Errors are propaga.ted backward along the alignment
path. For each frame， the error is back-propaga.ted into thc network
that best predicted the frame a.ccording to the alignment. Note that
this alignmcnt-controUcd back-propaga.tion ca.uses each subneい，vorkto
spcciaJize 011 a different section of speech， resulting eventually in a
modcl for each phoneme.

l'hc tl'aining is rcpca.ted for all the words in the training vocablllary. A
variatioJl on thc standa.rd LPNN architectu1'e ha.s demonstrated a positive
effec! on the lllod<，ling pcrformance: it a110ws a limited numbcr of aJtcrnate
ruoclcls (5叩 two01' tl¥l口I附)fo1' each pho附 ncto a.ccollnt fol' thc d出if汀fc悶 1
chμarげraぐteri怜sti仁sof thc phoncmes in di町erentcontcxts

In th附<'、 P町('Xl叫l問}凡児川ιc引、刈可叶叫r吋山山、t訂rr町mc

tioll 1'，川1叫t山 Oぱf9引1%for a 23<

w、v勺叩()印)1川r円川'd山15，and 90% fol' a largcr voca.bulary of 924 words， are obtaincd.

7.5.2 Sentencc Analysis with Generalized LR Parsing

rile first step of ille translation process is syntactic parsing with the GLR
ParscrjCOI叩 ilcr¥'crsion S ，1 [Tomita and Carbonell~ 1987~]. A広rammar
withゆout・155rulcs fol' general colloquial English is w山 e11inJPseudo
Unificatioll formalism [Tomita， 1990b]， that is simiJar to Unification Gram・

ma.r and LFG formalisms (see chapter 3 and appendix八formorc abou t the

130 CHAPTER 7. SPPECTl TRAi¥"SLATION SYSTEMS

(HELLO 1S TH1S THE CONFERENCE OFF1CE事)

;++++ GLR Parser running to produce English structure ++++

(1)訓 biguitiesfound and took 1.164878 seconds 01 real time

(((PREV-SENTENCES ((COUNTER 1) (MOOD本OPEN1NG)
(ROOT *HELLO)))

(COUNTER 2)
(MOOD *1NTERROGAT1VE)
(SUBJECT ((AGR *3-S1NG) (ROOT *TH1S)

(FORM *F1N1TE)
(PRED1CATE

(CASE (*OR* *NO阿梅OBL))))

((DET ((ROOT *THE) (DEF *DEF))) (AGR *3四 S1NG)
(AN1M *ー)

(AGR傘3-S1NG)
(SUBCAT *SUBJ-PRED)
(ROOT *COPULA)
(TENSE *PRESENT)))

(A申 AN吋)

(ROOT *CONFERENCE-OFFICE)))

Figure 7.12: Exa.mple F-Structure

GLR Pa1'serjCompiler and its Pscudo Unification fo1'malism). Figure7.12
shows the result of syntactic pa.rsing of the sentence "Hello is this the COll-
ference office".

Modifica.tions have been made to makc the Gcneralized LR Parse1' more
robust aga.inst ill-formed input scntcnccs， using thc GLR*αIgo1'ithm， which
is described in chapt-e1' 6. 1n ca.se the standard pa.rsing proccdure fails to
parse an input sentence， the parser nondetcrministically skips some word(s)
in the sentence， and returns the parsc with fcwcst skipped words. 1n this
mode， the parser will return some parse(s) with any input sentence， unless
no part of the sentence can be recognizcd a.t all.

1n the example in figurc 7.13， the input sentence "lIello is this is this the
office fol' the AI conference which will bc hcld 500n " is parsed a.s "Hello is
this the office for the conference" by skipping 8 words. Because the analysis
grammar or the interligua does not handJe the relativc clause

7.5. .JANUS 131

Input sentence :
(hello is this is this the AI conference office which will be held soon $))

Parse of input sentence :
(HELLO IS THIS THE CONFERENCE OFFICE $)

Words skipped : ((IS 2) (THIS 3) (AI 7) (WHICH 10) (WILL 11)
(BE 12) (HELD 13) (SOON 14))

Figure 7.13: Example for robust parsing

h('ld 500n"， 8 is thc fewest possible words to skip to obtain a. grammatical
Sl'llt('(lce which can be represented in the interligua. In the Generalizcd LR
parsIllg， an extra procedure is applied every time a word is shiftccl onto
thc Craph Structured Stack. A heuristic similar to beam search makes the
algorithm computationally tractable. See chapter 6 for more on the GLR*
l川l'singalgorithm.

When the standard GLR parser fails on all of the 20 best sentence can-
didatcs， this robl1st GLR * parser is applicd to the best scntence candidate.

7.5.3 Thc lnterlingua

TllIs result， callcd "syntactic f-structure" ， is then fed into a mapper to pro・
ducc an Interlingua representa.tion. For the ma.pper， we use a software tool
callcc1 TRANSI<IT [Tomita ctα1.， 1988b] (see appendix B). A mapping gram・
111<¥1' witll about 300 rules is written for thc Conferencc Rcgistr叫iondomain
of Fnglish.

Figure i.l.t is an examplc of Interlingl1a representation produccd from
thc scntcn印刷1Icllois this the conference office". In the cxample， "Hcllo" is
rcpresented as spccch-act '" A('l(NOWLEDGEMENT， anc1 the rest as speech-
act 'IDENTFY OTIIER.

l'hc JANUS interlingua is tailored to dialog translation. Each uttera.nce
is I<'presented as onc or more speech acts. A speech act can be thought of
as what effect thc speaker is intcnding a particlllar uttcrance to have on the
listt'ncr. Our in tcrlinglla cu rrcntly has clcvcn speech acts such as req uest
dir<，ction、inform，and cornrnanc1. For purposes of this task， each sentence
Iltterance corrcsponds to exactly one speech act. So the first task in the

132 {・IlAPTER7. SPEECIl TRAI¥'SLATI0N SYSTEMS

((PREV-UTTERANCES ((SPEECH-ACT傘ACKNOWLEDGEHENT)(VALUE *HELLO)))
(TIHE *PRESENT)
(PARTY

((DEFINITE +) (NUMBER本SG)
(ANIM -)
(TYPE *CONFERENCE)
(CONCEPT *OFFICE)))

(SPEECH-ACT *IDENTIFY情 OTHER))

Figure 7.14: Example: Interlingua Output

mapping process is to match each sentence with its corresponding speech
act. 1n the current system， this is done on a sentence by scntence basis.
Rules in the mapping grammar look for cues in the syntactic f structure
such as mood， combinations of auxilliary verbs， and person of the subjcct
and object where it applies. In the future we plan to use more information
from context in determining which speech act to assign to each scntence.

Once the speech act is determined， the rule for a particular speech act
is fired. Each speech act has a top level semantic slot where the semantic
representation for a particular instance of the speech act is stored during
translatioll. This semantic structure is represented as a hierarchical concept
list which resembles thc argument structure of the sentence. Each spee(・h
act rule contains information about where in the syntactic structure to look
for constituents to fill thematic roles such as agent， recipicnt， and paticnt
in the semantic structure. Specific lexical rules map nouns a.nd verbs onto
concepts. 1n addition to the top levcl semantic slot， there arc slots wherc
informa.tion about tone and mood are sもored.Each speech act rule contains
information about what to look for in the syntactic structll rc in order to
know how to fill this slot. For instance the auxiliary verb which is used in
a command determines how imperative the command is. For example， 'You
must register for the conference within a weck' is much mOl'e irnpcra.tive than
'You shoulc1 register for the conference within a wcek'. The sccond examplc
leaves some room for negotiation where the first docs not.

7.5.4 Sentence Generation

The generation of targct language from an Inlerlingl1a represcntation in
volves two steps. figure 7.15 shows sample traccs of German alld Japanese，

7..5. JANUS 133

from the lllterlillglla in figurf' 7.14.

First， with the sarnc TRANSKIT used in the analysis phasc， Interlingua
rc'prcs(，Jltatioll is mappcd into syntactic f-structure of the target language.

'1 h('f('制.('about 300 rules in the generation mapping grammar for Ger-
ma.n， (lncl 230 rllles for .Japanese. The f-structure is then fcd into scntence
gcneration software caJJcd GENKIT ITomita etαl.， 1988b] to producc a sen-
tCll(，(， In thc targct languagc. A grammar for GENKIT is written in the same
formalism as thc Gcnerauzed LR Parser: phrase structure rules augrnented
with pscudo IIllification cquations. Detai!ed description of GENKIT and
Tn八N日((1'('ca.n bc found in appendix B.

Thc C I~N K lT gram mar for general colloquial German has about 90 rulcs，
日ncl.Japancsc about 60 rules. Software called MORPHE is also used fo1'

rnorphlogical gcoe1'叫ionfor German.

7.5.5 Semantic Pattern Based Parsing

A hurnan human translation task is even harder tha.n human-machine com・
munication， in that the dialog structure in human-huma.n communica.tion is
mo1'e complicatcd and the range of topics is usualJy less restricted. These
factors point to the requi1'ement for robust st1'ategies in speechもra.nslation
systems.

Our robust scmantic parser combines frame based semantics with seman-
tic phrasc gramma1's. We use a frame based parser similar to the DYPAR
pars('f uscd by Carbonell， et a1. to process ill-formed textlCa1'bonell and
llayes， 1984]， and the MINDS system previously developed at CMU[Young
ci (1[.， 1989]. Semantic information is represented in a set of frames. Each
framc conta.ins a sct of slots rep1'esenting pieces of information. ln order
to fill thc slots in the frames， we use semantic fragment gramma1's. Each
slot type is rcprcscnted by a separate Recursive Transition Network， which
specifics all ways of saying the meaning represented by the slot. The gram-
mar is a scmantic grammar， non-terminals are semantic concepts instead of
parts of spccch. Thc grammar is also written so that information carrying
fragmcnts (se山 wticf1'agments) can stand alone (be rccognizcd by a net)
as wcll as bcing e帥 cddedin a sentence. Fragments which do not form a
grammatica.l English sentence are still parsed by the syslem. IIcre there
is I¥ot olle large nclwork rcpresenting all sentence level pa.ttcrns， bul many
small IIcts rcprescnting information carrying chunks. Netwo1'ks can "ca1l"
othcr I¥ct works. thcreby significantly reducing the ovcrall size of the sys-
tcm. 'fhcsc netwo1'k日 arc¥lsed to perform patte1'n malches against input

134 CHAPTER i. SPEECJl TRANSLATION SYSTEMS

;++ TransKit rules being applied to produce G structure ++

((PREV-SENTENCES ((VALUE HALLO) (ROOT L1TERAL)))
(ROOT SE1N) (CAT V) (PERSON 3)
(SUBJECT
((CAT N) (CAS N) (01ST +) (LOC +) (PERSON 3)
(NUMBER SG) (ROOT O-PRONOUN)))

(NUMBER SG) (FORM F1N) (MOO 1NO) (TENSE PRES)
(MOOO INTERROG)
(PREO
((DET ((CAS N) (GENOER NEU)

(NUMBER SG)
(CAT DET)
(ROOT OER)))

(CLASS SW) (NUMBER SG) (PERSON 3) (CAT N)
(COMPOUMD
((CAT N) (PL-CLASS PL3)

(SG-CLASS SGO)
(GENDER FEM)
(ROOT KONFERENZ)))

(ROOT SEKRETARIAT) (PL由 CLASSPL5) (SG-CLASS SG3)
(GENDER NEU) (CAS N) (AUIM -))))

;++ GenKit rules being applied to produce German text ++

"HALLO ，1ST DORT DAS KONFERENZSEKRETARIAT ?"

;++ TransKit rules being applied to produce J structure ++

((PREV-UTTERANCES
((FOR-REMOVE-DESU *1DENT1FY-OTHER) (VALUE MOSH1MOSH1)

(ROOT *L1TERAL)))
(VTYPE MEISHI)
(SUFF (*MULT1PLE* KA DESU))
(PREO ((ROOT GAKKAIJIMUKYOKU) (CAT N)

(OEFIN1TE +)
(NUMBER *SG)
(AN1M -)))

(ROOT COPULA))

;++ GenKit rules being applied to produce Japanese text ++

"MOSH1MOSHI GAKKAI JIMUKYOKU OESUKA"

Figure 7.1.5: Output language Fヒstructure

7.5. .JANUS 135

word strings. This gcneral approacl1 has bcen described in [Ward， 1989，
Ward， 1990].

The opcration of thc parser can be viewed as "phrase spotting". A beam
of possible intcrpr川alionsarc pursued simultaneously. An interpretation is
a frame wilh som(' of its slots抗lled. The Rl Ns perform pattern rnatches
against tlw input string. When a phrase is recognized， it attempts to extend
all current interpl叫 ations.That is， it is assigned to slots in active interpre-
tations that it 仁川1fill. Phr節目 assignedto slots in the same interpretation
arc Ilot allowcd to ovcrlap. In casc of overJap， multiple interpretat.ions arc
i】roduced.WhCJl two intcrpretations for thc same frame end with thc same
phrase， the lowN sroring one is pruned. This amounts to dynamic program-
ming on scrics of phrascs. The score for an interpretation is the number
of input words that it accounts for. At the end of the utterance， thc bcst
scoring in tcrprctation is picked.

Our strategy is 1.0 apply grammatica1 constraints at the phrase level and
1.0 associate phrases in frames. Phrases reprcscnt word strings that can fill
slots in framcs. Thc slots rcpresent information which， ta.ken together， the
frame.is ablc to act on. We also use semantic rather th組 lex.ica.lgramma.rs.
Semantics providc morc constraint tha.n parts of speech and must ultimately
bc delt with in ordcr 1.0 take actions. We belicve that this a.pproach offers a
good compromisc of constraint and robustness for the phenomena of sponta-
n叩 usspeech. Rcstarts and repeats are most often between phases， so indi-
vidual phrases can still be recognized correctly. Poorly constructed gra.mmar
oftcn consists of well formed phrases， and is often semantically well-formed.
It is only syntactically incorrect.

The parsing grammar was designed so that each frame has exa.ctly one
corresponding spcech a.ct. Each top level slot corresponds to some thcmalic
role 01" othcr major scmantic concept such as action. Subnets correspond to
more specific semantic classcs of constituents. In this way， the interpretation
returned by the I>arser can bc casily mapped onto the interl.ingua and missing
informalioI¥ can bc filled by meaningful default va1ues with min.imal effort.

Once an ulterance is parsed in this way， it must then be mapped onto
thc interlingua discusscd earlier in this section. The mapping grammar con-
tains rules for each slot and subnet in the parsing gramar which correspond
to either concepts or speech acts in the interlingua. These rules specify the
relationship bctwccn a subnet and thc subnets it calls which will be rep-
resented inもhcinlcrling¥la structure it will produce. Each rule potentially
contains four parls. lt nc('d not contain all of them. The first part conta.ins a
default intcrlingua structurc for the concept represented by a particular rule.

136 Cl1APTER 7. SPEEcn THANSLATION SYSTEMS

If all else fails， this default representation will be returncd. The ncxt part
contains a skeletal interlingua representation for that rule. This is llsed in
cases where a net calls multiple subnets which fill particular slots within thc
structure corresponding to the rule. A third part is Ilsed if the slot is抗lled
by a terminal string of words. This part of the rule contains a context which
can be placed around that string of words so that il. can be attempted to be
pa，rsed and mapped by thc LR system. It a1so contains information about
where in the structure reiurncd from the LR systcm to find the constituent
corresponding to this rule. The fina1 part conta，ins ru lcs for where in the
skeletal structure to place interlingua structurcs rel¥lrncd from the subncts
called by this net.

7.5.6 Connectionist Parsing

The connection.ist parsing system PARSEC [Jain， 1991] is used出 afall-
back module if the symbolic high precision onc fails 1.0 analyze thc input.
The important aspect of thc PARSEC system is that it learnsもoparsc
sentences from a corpus of training exa.mples. A connectionist approach
to parse sponta.neous spcech offers the following advantages:

1. Because PARSEC learns al1d generalizes from thc examp)es given in
the train.ing seもnoexplicit grammar rulcs have to be specified by hand.
In particular， this is of importance when thc systcm hぉ tocope with
spontal1eous utteranccs which frequenily are“corrupted" with disfiu-
encies， restarts， repairs 01' ungrammatical cOl1structions. To specify
symbol.ic grammars capturing these phenolllcna h，ts bcen proven to be
very difficult. On thc other side therc isピ‘buildin" robustness ag引nst
these phenomena in a connectionisi system.

2. The connectionist parsing process is ablc to combinc symbolic informa.
tion (e.g. syntactic fcaturcs of words) with non-symbol.ic information
(e.g. statistical likelihood of sentence types)・ Moreover，the systcm
can easily integratc difrerent knowlcdgc sourccs. For example， instead
of just training on the symbolic inpul. string wc lrained PARSEC on
both the symbolic input string and I.he pitch contour. After tr幻ning
was completed the system was ablc to usc thc additional information
to determine thc scntcnce mood in cases WhCIC syntactic clues were J10t
su市cient.We think of exl.ending the id怜 ofintegrating prosodic infor
mation into the parsing process in order to increase the performance

7..S. .JANU8 137

。fthc system when it is confronted with corrupted input. もVehope

thaL prosodic information wiU help to indicate restarts and repairs.

~I‘ hr! currcnt PA RSEC system comprises six hierarchically ordered (back-
propagation) conncclionist modules. Each module is responsible for a spe・

ιific I.ask. For exampJc， there are two modules which determine phrase and
c1aust' boundarit's. Other moduJes are responsible for assigning to phrases

01' 山州出 labcls which indicate their function andfor relationship to otheI

fOllstitucnts. Thc top motlule determines the mood of the sentence.

Rccent gxtcnsions:

Wc app)icd a slightly modified PARSEC system to the domain of air travel

illfonnation (ATIS). We could show that the system was able to ana.lyze

utterance like “show me flights from boston to denver on us air" and that

the syslcm's output representa.tion could be mappcd to a Semanlic Query

La略 uage(SQL). Jn order to do this we included semantic information (rep-

rcsc、nt<，das binary fcatures) in the lexicon. By doing the same for the CR-

task wc hope to increase the overal1 parsing performance.

We ha.vc also cha.nged PARSEC to handle syntactic structurcs of arbitrary

dcpth (bolh lcft and righl branching) [Polzin， in preparation].
thc main idea of lhe modified PARSEC syslem is to make it auto recur-

sivc， i.c. in a recllrsion step n it will take ils output of the previolls step n-1

as its input. This oITcrs thc following advantages:

し lncreasedExpressive Power: The enhanced expressive power al-

lows a much morc natural mapping of linguistic intuitions to the spec・

ification of thc training set.

2 Ease of lcarning: Learning difficulties can be reduced. Because PAR-

SEC is now allowed to make more a.bstraction stcps each individual

step can be smaller and， hence， is casier to learn.

3. Compatibility: Because PARSEC is now capable of producing ar-

bitrary trce structures前 itsoutput it can be more casily used as a

s¥山llodulcin NLP-systems (e.g. the JANUS system). For example，
it is conceivable to produce as the parsing output f-structures which

lhen can be mapped di悶 tlyto the gene凶 ioncomponcnt [Buo， in
prcpa川 lon

138 CHAPTER I. SPEECII TRANSLATION SYSTEMS

7.5.7 System Integration

The system accepts continuous spccch speakcr-independently in either in-

put language， and produccs synlhctic spcech output in near real-time. Our
system can be linked to differen t language versions of the system 01' corre-

sponding partner systems via ethcrnct or via. telephone modem lines. This

possibility has recently bccn tcsted betwcen siles in the US， Japan and Ger-

many to illustrate the possibility of inlcrna.tional telcphone speech transla-

tion.

The minimal cquipmcnl for this system is a. Gradienl Desklab 14 A/D

converter， an HP 9000/730 (64 Meg RAM) workstation for each input la，n

guage， and a DECtalk specch synthcsizer.

Included in the processing are A/D conversion， signal processing， con-
tinuous speech recognition， languagc analysis and parsing (both syntactic
and semantic) into a languagc indcpcn州 IIin tcrli叩 la，text generation from
that interlingua， and speech synthesis.

The amount of time needed for the proccssing of an utterance， depends
on its length and acoustic qualilY， but also on the perplexity of the lan-
guage model， on whether or not the first hypothesis is parsable and on the
grammatical complexity and ambiguity of the sentence. While it can take

the parser several seconds to proccss a long lisl of hypotheses for a complex

utterance with ma組nyrela叫山L“ivec1au凶ses(いex川lr問emcly即 e in spoken lar噌

the time consumed for p剖・singis usually negligible (0.1 second).

For our current system， we have eliminated considerable amounts of com-
munication delays by introducing sockel communication between pipelined

parts of the system. Thus thc search ca.n sta.rt before the preprocessing pro-
gram is done， and the p九rscrstarts working on l1tc ~rst hypothesis while lhe

N-best list is computcd.

7.5.8 Summary

In this section， we have discusscd rccclli exlcnsions io lhe JANUS system a.
speakerindependenもmulti-lingual叩ecchlo speech translation system under

development at Carnegie Mellon alld]¥ arlsruhe U niversity. The components

inc1ude an speech recognition IIsing an N・bestsentence search， to derive
alternate hypotheses fo1' lat<，r jHoc<，ssing during lhc translation. The MT

component attempts to producc a high accuracy translation using precise

syntactic and semantic analysis. Should this analysis fail due to iJl-formed
input or misrecognitions， a conll<，ctionist parser， PARSEC， and a. semantic

7..5. .JANU8 139

parscr prod ucc alt eruativc minimalist analyscs， to at least establish the basic
mf'aning of an inpllt ¥Itterance. Human-to-human dialogs appear to gencra.te
a larmr and more mripfi breadth of expression than human-machine dialogs.
Furlher res('arch is in progress to quantify this observation and to increase
robtlstness and coverage of the system in this environment.

140 CITAPTlm 7. SPEECIl TRANSLATJON SYSTEMS

Chapter 8

Concluding Remarks

In this dOCllmcnt， we ha.ve disCllssed issl1es in sentence analysis for speech
trans!a.tiotl. Successful integra.tion of speech l'ecognition a.nd ma.shine tra.ns・
lation for pra.ctical applications requires， in the a.uthor's opinion， the follow-
ing tcchnologies:

• Efficient parsing a.lgorithm

• Praclical and robust parscr implementation

• Dcvclopment of solid grammars

・IIandlillgiU-formed a.nd erra.tic sentenccs

• Usc of probabilistic and sta.tistica.l informa.tion

¥¥1(' have addr('ssed those iSSlles with a. numbcr of diffcrent a.pproaches，
and (，>ach approach ha.s bccn dcscribed in a different chapter. AIl the ap-
pro孔chcsprescntccl arc those of the projccts a.t Carncgie Mellon University， and therc are many other a.pproa.chcs to the issues of intcgration of speech
and translation.

Finally， wc should not forgct tha.t there are two more vcry important
issucs whic.h are not addressed in this document. Thcy arc， of course:

• Accu1'atc， e侃cienland robust specch rccognition

• ACCllra.tc， efficicnL and robust machine translation

Clearly， spcech translation is a gia.nt problcm which cannot be soh'ed by a singlc person 01' projcct. Successful colla.boration among researchers，

141

142 CJIAPTER 8. CONCljUDJNG REMARKS

projects and institutions appears to be essential. The author and his col-
leagues wOllld be most delighted if some of the sentencc analysis techniqlles
c0111d make a contribution to scientific advanccs of the hu山lInandJcam: speech l
tra.削nslation.

Appendix A

GLR ParserjCompiler
Version 8-4: User's Manual

Thc Generalizcd LR Parser /Compiler Vcrsion 8-4 is is ba.sed on the Gen-
cra.lizcd LR Parsing AIgorithm， augmcnted by pseuclo and full unification
packages 1. Thc Generalized LR Parser / Compiler V8・4is implemented in
Common LISP and no window graphics is used; thus the system is trans-
portable， in principle， to any machines that support Common LISP.

Those who are intcrested in obtaining the software described in this
docllment should contact:

Radha Rao

Business Manager

Ccnter for Machine Translation
Carnegie Mellon University

Pittsburgh， PA15213， USA
rdr@nl.cs.cmu.edu

f¥lany mcmbcrs of CMU Center for Machine Translation have made con・

tributions to thc development of thc system. The runtime parser wa.s im-
plemcntcd by lIiroyuki Musha， Ma.saru Tomita and I<azuhiro Toyosluma.
llidcto Kagamida and }'lasaru Tomita implemented thc compiler. The pseudo
unification package and the full unification package have been implemented
by tvlasaru Tomita and l<cvin Knight， respectively. Stcve Morrisson， IIideto

IThis aPJ河川ixis b郁 cdon i¥ pre\'iou~ly published ωchnical report [Tomita et α1.，
1985b]. 1 ¥¥'ollld like 10 acknowledge the coauthors of the rcport， Ma.rion I<ee， Terllko
Mitalllura. i¥nd HiroYlIki MII!'hi¥， whose conlributions are included in this appcndix.

143

144 GT.，R PARSER/COMPILER VERSION 8・4

Tomabechi， Eric Nyberg and Hiroaki Saito aJso made contributions in main-
taining the system. Sample English grammars have been developcd by
Donna Cates， Lori Lcvin and Masaru Tomita. A sample Japanese gram-
mar has been devclopcd by Tel'uko Mitamura. A samplcドrcnchgram mar
is being c1eveloped by John Velonis and Linda Schmandt. Other members
who made indirect contributions in many ways include Koichi Takeda， Mar
ion Kce， Sergei Nircnburg， Ra1f Brown， and espccially Jaimc Carbonell， the
director of the Center.

Parts of this appcndix were writtcn by Hiroyuki Musha， Teruko Mita-
mura， Kevin Knight and Marion }(ee.

USJ~n'S MAN UAL
戸
町

υ
J
 i

146 GLR PARSER/COMPnER VERSION 8・4

A.l Getting S tarted
(<np> <==> (<np> <pp>)

(((xO pp) = x2)

((xO np) = x1)))
A.l.l Introductiol1

Ihc Gencralizcd LH ParsCljCompiler V8.4 is based on the GeneraJized LR

ドarsingAlgorithrn dcs<Tibed in chapter 2， augmentcd by pseudojfull uni-
fication packagps. Thc grammar used by tllis parser is basically a sct of

context.-frec phrasc strllcturc rules， where each rule is paired with a Jjst of

N/tlαlioηs， as dcscrib('d ill dctail in Chaptcr A.2.

Grammar compilatioJ1 is the key 1，0 this efficicnt parsing system. A gram

lTIar writtcn in lhc corrccl format has lo bc compiled before being uscd to

par邑esentcnccs. '1hc contcxl-free phrase structure rules are compiled into

an A ugmenlcd LR Pαl'S1ng 'J'able， and the equations are compi1ed into LlSP

functions. The runlllllC parser cannot parsc a scntence without a compiled

gra.mmar.

The GeneraJized L比Parscrj Compiler provides two di百"erentkinds of uni-

ftcation packagcs: pseudo unincation and ful1 unifLcation. Readers who arc

110t familiar wi th a uniftcalion-based analysis of language are referred to:

Shiebcr， Stual't M. An Introd1.l.ction to Unifiωtion-Bαsed Ap-

proαches to Crammαr， 1986， Center for thc Study of Language

and Information， Stanford University， Stanford， CA.

Full unification iぬsthc canonical uni自catωt

g酔ui削s“ti比川Cο)projects. Pse 川 10 unification is suitable for practical projects， as it
is faster and has practical operators such as arbitrary LISP function calls，
sacrificing somc of thc、thcorcticalelcgance of canonical unification. The USCf

has a， choicc bct¥VeeJ¥ thcse two modes， aωs dcωs以悦cα;ユ汀r均cd fu山ll'tl凶heωrJ凶nCαhaptc白rA.8.

A grammar is iuterprctcd on a c/umαclel'・by-chαrαcterbαsis， rather than
a U'ol'd-by-won[{Ja，<;is; that is， terminal symhoJs of a grammar are charac-

tc1's， 1¥ot wo1'd5. It is 50 dcsigncd with a view 10 the tlse of this system for

tm，<;ιgmenlc(l 1αrlgtwgr.s S¥lch as Japanesc， in which there are no bounclary
spaces in bctween words. As a result o[this character-based featurc、thc
lcxical dictionary and thc morphological rules can be written in the samc

formalism as thc syntactic 1'ules.

(<pp> <==> (<p> <np>)

(((xO np) = x2)

((xO p) = x1)))

、1''、‘，，，、‘，，.n

、J
t

h

i

w

+ν

--
.、晶
、‘，，

w

t

f

k

O

O

〉

r

-
n
u

〈

X，，‘、

〉

r
k

p
・
r
、

〆、''z、

、、，，，、‘，，、‘，，

)

M

n

o

.、，
d

h
u

--
。、‘，，，

t
J
t

r

k

O

O

〉

r

-
n
u

〈

X，，.、

、，，，
E

‘、

p
・
r
、

n

J

、
，，‘、

Figurc A.l: A Toy Grammar， toy.gra

john"， and so on. A detailed description of the grammar form叫 canbe found

in section A.2.

* (load "init")

When you load the system， a message like lhe followmg WllI appear to

greet you. Jt may take a couple of minutes.

"*測候**刻ドホ*ホ*キホ傘****測候*****刻惨事**ホ*本刻惨事測候****ホ傘**ヨド**傘*******刻ド**"

"** The Generalized LR Parser/Compiler 取*"

"** RT version 8.1 **It

-・** Center for Machine Translation **tt

"** Carnegie Hellon University 調跡調h・・

"** (c) 1986， 1987 All rights reserved 寧*"

， t*~依* 刻脚本**調院本*****傘*傘*傘**祖伝$別院測候*************移調ド$命取調砂$か・**刻験測候***・・

A.1.2 A Samplc Script
* (compgra "toy")

1、obegin ¥¥ith、)('(us compilc thc toy grallllllar shown in Figure 八.1，and
parse scntencc品 usingthc compiled grammar. This extremcly simp)e gram・

mar can parse the scnt(，llccs.門johnぺηjohnwith johnぺ '~john with john with

This is the way to compile a grammar. Use the ftmctton COMPGRA
with the stem of a grammar file name as Ils argmnent. A grammar file
has to have the extenSlOn ".gra". Sometlung ltke thefollowmg messages

Wlll appear dun吋 lhecompilat

U8ER.'S MANUII L 147 148 GLR PARSERjCOMPTLER VERSION 8・4

Reading toy.gra
-toy.gra read

-File toy.fun written

-Writing File toy.funload

-File toy.funload written

***** Setting up the runtirne parser
...*ホ捗測候事***傘測候......*...刻t*傘$測候..........*本**********ネ****測候**測候***

川村方 Startcornpiling toy.gra

-Reading toy.gra

toy.gra read

*** GrおnrnarPre-processor started
本*彬 GramrnarPre processor done

*** LFG Cornpiler started
令*...LFG Cornp11er done

本$激 LRTable Cornpiler started

置 convertinggrωnrnar
由 therewere 4 rules

there were 4 really dif1erent rules

-七herewere 10 syrnbols

-there were 7 terrninal syrnbols
-there were 3 non terrninal syrnbols
-rnaking augrnented grarnrnar

-rnaking all items

-18 items made

世 collectingall iterns
LR { O}

LR { 1}

LR { 2}

LR { 3}

LR { 4}

LR { 5}

LR { 6}

LR { 7}

LR { 8}

LR { 9}

LR { 10}

LR { 11}

LR { 12}

-the number 01 states is 13

-generating parsing table
LR'{ O}

-reforming goto table
市本*LR Table Comp11er done

-Writ1ng File toy.tab

-File toy.tab written

-Writing File toy.fun

vd
‘q

a

e

E
H
 r

au s

U

孔

P

N

* (p "john with jOhn")

After the compllation， lhe compiled grammar IS loaded and the parser
is set up automatically. Tlte system is ready 10 parse a sentence.

>john with john

1 (1) 訓 biguityfound and took 0.141601 seconds of real time

;料材剖¥biguity1材 $

((NP ((ROOT JOHN)))
(PP ((P ((ROOT WITH))) (NP ((ROOT JOHN))))))

傘 (p "johnwithjo hnwith jOhn")

The parser parses a sentence character寸y-characler，ratlter than wo吋・
by-word. ln fact， 1t 19η0陀 sblcmk spaces. Thus， it can accept an oddly-
spaced sentence like lhe above. To stop ignoring space8， 8et lhe variable
教IGNORE-SPACE*10 be nil (see section Aイ

>johnwithjo hnwith john

2 (2) 訓 biguitiesfound and took 0.544923 seconds of real time

;**** ambiguity 1 ***
((NP ((NP ((ROOT JOHN)))

(PP ((P ((ROOT WITH))) (NP ((ROOT JOHN)))))))

(PP ((P ((ROOT WITH))) (NP ((ROOT JOHN))))))

;**** ambiguity 2 ***
((NP ((ROOT JOHN)))
(pp

useu'S'ルlANUAJ，

((P ((ROOT WITH)))

(NP ((NP ((ROOT JOHN)))
(PP ((P ((ROOT WITH))) (HP ((ROOT JOHN))))))))))

第 (p ・・)ohnwith john with john with johnlO
)

>john with john with john with john

3 (3) ambiguities found and took 0.843750 seconds of real time

111 rll.~c an mpul scntence IS ambiguous， it wlil llroduce (11/ posslble
stn，cturcs. T/ns sentence is .'j wαys amblguous， bllt local amblglnly
IS pl1ckcdρce subsechon A .9.4)， and only 9 top-Ievel strllctures are
prodllred. 7'he symbol *OR* represents local amblgully.

;*・**創nbiguity1・**

((HP

(*OR傘

((NP ((HP ((ROOT JOHN)))

(PP ((P ((ROOT WITH))) (NP ((ROOT JOHN)))))))
(pP ((P ((ROOT WITH))) (NP ((ROOT JOHN))))))

((NP ((ROOT JOHN)))

(PP

((P ((ROOT WITH)))

(NP ((NP ((ROOT JOHN)))

(pp ((P ((ROOT WITH))) (NP ((ROOT JOHM))))

))))))))
(PP ((P ((ROOT WITH))) (NP ((ROOT JOHN))))))

;*...**釦nbiguity2 **キ

((HP ((HP ((ROOT JOHN)))
(PP ((P ((ROOT WITH))) (NP ((ROOT JOHN)))))))

(pP

((P ((ROOT WITH)))

(NP ((NP ((ROOT JOHN)))

(PP ((P ((ROOT WITH))) (NP ((ROOT JOHN))))))))))

;‘.... ambiguity 3 ***
((NP ((ROOT JOHM)))

149 150 GDR PARSER/COMPILER VERSION 8・4

(PP

((P ((ROOT WITH)))

(NP

(キOR*

((NP ((NP ((ROOT JOHN)))

(PP ((P ((ROOT WITH))) (NP ((ROOT JOHN)))))))

(pp ((P ((ROOT WITH))) (NP ((ROOT JOHN))))))

((NP ((ROOT JOHM)))

(PP

((P ((ROOT WITH)))

(NP ((NP ((ROOT JOHM)))

(PP ((P ((ROOT WITH))) (MP ((ROOT JOHN))))))))

)))))))

A.1.3 Basic Functions

Compiling a Grammar

Thjs is the complete form of the function compgra 2:

compgra string &:key : rasul t-to-f ila : parser-ready

This function cornpiles a gramrnar file whose narne is string. gra， and pro・
duces抗les:string. tab， string. fun a.nd string. funload. The cornpiled gra.rn-
rnar is autornatically loaded， and the parser is ready to parse a sentence.

The syrnbols :result-to-file a.nd :parser-ready are keywords whose

values may be set to t in order to perform ccrtai n actions， and to nil in order
not to perforrn them. If :result-to-file is sct to nil， then it sets up the

compiled grarnmar only on memory; it does not produce抗les，thereby saving

time. Thus， once you get out of LISP， thc compilcd grammar disappcars.
The default is t. Set it to nil if yOll kno¥V that your grammar has bugs:

* (compgra "toy" :result-to-file nil)

If : parser-ready is set to nil， thcn it docs not set up the parser. The

default is t. Set it to nil if you do not want to test your grarnrnar irnmedi-

ately.

* (compgra "toy" :parser-ready nil)

2The CommonLISP symbol Icltey is a.la.mbda.-lisl keyword.

U.W;WS Mj¥ぶUAL

Loading a Compiled Grammar

(loadgra sl1"7l1(/)

151

'l'his fllllCtiOIl loads a compiled grammar， and sets up the parser. If you
have jllst rlln compgra， you do not have to run loadgra.

I九u'sillga SentC'nce

(p州 illfI)

'1'1、'hisfu山JμII【cLionactually parscs the sentcnce "st1'ゴiη9
l川11川1げr陀cs. rr礼 scnl(，l¥ceis ambiguous， it produces all possiblc structures but
shows ollly thc Hrst three structures.

(p才 lisl01 st1'lngs)
'fhis fUlIction parscs all the sentences in the list. It is lIseful when you test
a grammar with a set of test sentences.

Compiling Fl.lrther a Compiled Grammar

(make-gra-fast slring)
This [ullction further compiles a compiled grammar to makc it even faster.
It prodllces onc large binary file. Use loadgra to load thc binary grammar.
loadgra first looks for a binary file， and 1f one exists， it loads the binary
grammflr. Jt can take a few hours， if your grammar is largc; so usc this on1y
whclI your gra.lllllla.r h砧 bccomereasonably stぬle.

152 GLR PARSERjCOMPILER VERSION 8・4

A.2 Writing a Grammar

This section describes how to write a grammar. A grammar file must have
a name w1th the extension ".gra". The grammar formalism used in the
system is similar to Lexical F¥川 tionalGrammar (LFG) and PATR-II. This
manual assumes that the reader knows Lexical Functional Grammar (LFG)
as described in the following reference:

Kaplan， R. & J. Bres附 1 (1982) in Dresnan (ed.) The Men-
tα1 Representαtion 01 Gmmmαtica[Relαtions， MIT Press， Cam-
bridge， MA.

We have structured this section more as a reference gu1de than as a
tutorial for writing LFG-style grammars， sincc our formalism follows LFG
cJosely enough that tutorial information would likely be redundant， given
that the user already knows LFG，

A.2.1 General Format of Grammar Rules

A grammar rule for the Generalized LR ParscrjCompiler V8・4consists of a
context-free phrase structure rule followed by a list of equations. The list of
equations is enclosed in parentheses and the entire gra.mmar rule 1s encloscd
in parentheses.

(context-free phrase structure rule
(list of equations))

The following is a s1mple grammar for the sentence A biぱ βies.

(<S> <==> (<NP> <VP>)

(((xl case) = nominative)
((xl agreement) = (x2 agreement))
((xO subj) = xl)
(xO = x2)))

(<NP> <==> (<DET> <N>)

(((xl number) = (x2 number))

USER'S MANU!¥L 153 154 GLR PARSER/COMPILER VERSION 8・4

((xu definiteness) = (xl definiteness))
(xu = x2)))

clemcnts of the right hand sidc. Although spaccs must be used in dcfining
rules， spaces are ignored in parsing. Thus， the rllle TIME -ー> (i n t h e
m 0 r n i n g) will parse "in the morning"， "inthcmorning"， "inth emor
nin g (<VP> <==> (<V>)

((xu = xl)))

(<DET> <ーー> (a)

(((xu root) = a)

((xu definiteness) = -)

((xu number) = sg)))

A.2.3 Equations

Equations for the Gencralized LR Parser/Compiler V8・4are very similar to
LFG equations except that they use the variablcs xO， x1， x2， x3， etc. in
place of the up-arrow and down-arrow. XO takcs thc placc of the up-arrow.
It refers to the functional structure corresponding to thc Icft hand side non
terminal of the phrase structllre rule. Xl takes the place of the down-arrow
referring to the first element of the right hand side of the phrase structure
rule. X2 takes the place of the down-arrow referring to the second element
of the right hand side of the phrase structurc rule， and so on.

Here is an example comparing an LFG rule with a Generalized LR
Parser / Compiler rule:

、EE'
'

、‘，，，、‘，，，σo

q
u

qJV

、J
，、
.
J

A

U

F

O

=

、Jr
s

A
U

・
、
品
、
』
，
，

h
u
=
+
i
v

r

n

=

1

J

e

-

-

r

m

1

j

e

e

b

t

b

e

r
、
o

m

r

o

u

g

〉

r
n
a

-
ハ
U

ハ
U
n
u

〈

X

X

X

，，‘、，，‘、，，‘、

、〆〆，、〆
s
・、，，‘、

M
H
r
t

J

、
，，‘、

、‘，，、‘，，

、‘，，，、、，，，
g
t

s
n

3

e

s

、J
、J
-

-

e

S

V

J

r

可
ム
、
J
n
r

白
v
S
A
+
i
un

=

.、aa=
白山曹m

、J

1
・曲、
J

e

e

t

e

S

4
ム

o
r
n

r
k
O
σ
D
e

r
a
七

、，，'
n
u
n
u
n
u

-
x
x
x

J

、，
t

、，
z
、，
t

、

，，E
、，，‘、，，‘、

、ノ
r
E

、

Hv

，、，，E
、

LFG RULE:

A.2.2 Phrase Structure Rules

s -“> NP

(-subj) = v

VP

= v

Thc context-fr<，c phrase Stl・ucturerule consists of a left-hand side， an arrow，
and a right-hand sidc. The lcft-hand sidc Il1I1St bc a single non-terminal
symbol. The arrow is one of the following: <==>バーー>， <ー一，01" <==. Thc
diO'crencc among thcm is not signi五cant.unless thc same grammar is also
to bc used in a selltencc gcnerator 3. Discussiolls on sentence generation arc
ocyond thc scopc of this documentation. Usc whichever you like if you arc
cOllcerned only with parsing.

The right hand sidc i古 alist of non-terminal symbols and alphanumeric
characters cnclosed in pal'()lIthescs. Remembcr that a grammar is written in a
chamrtcr bα再々， and thcrcforc terminal symbols of a grammar are characters，

not 川 rds(sec subscction 1¥.1.1). 'There must be spaces placed betwccn thc

GENERALIZED LR PARSER/COMPILER RULE:

(<S> <==> (<NP> <VP>)

(((xu subj) = xl)

(xu = x2)))

The 1eft hand side of an cquation is a pαth. A path is:

31n that ca.~c 曹 lhc doublr hcaded arrows meall thal the tulc can be used for gcneration
and parsing. AIl anow pointing lo the left means that the rllle can be uscd only for
parsing・andan arrow JlOinlinεto the right. ==> or-ー>.l1l ('all~ thal the rllle can be lIscd
0111)" for gcneration.

• A variable (e.g. xO， x 1， etc.).

• A variable followed by any number of character strings separated by
spaces (e.g. (xl subj)， (xO agreement)， (x2 xcomp subject)). The
character strings may not include certain speciaJ characters such出 thc
quotation mark. This type of path must bc encJosed in parentheses.

The right hand side of an equation is:

U8EH'S MANUAL 1.55 156 GLR PARSERjCOMPILER VERSJON 8・4

• J¥ path.

• ̂ characLcr string (c.g. foot， hcadache， hu叫 12)，cxcluding some
p円 ialcharactcrs such as the quotation mark.

(<start> <==> (<NP>)
((xO = x1)))

-八listconsistillg of the word *OR牢 followedby any numhcr of character
~trillgs (e.g. ('OR* nominative accusative)， (*ORキ pastpastpa川 ci-
i山)).

The 1eft hand side of a. start equa.tion contains the non-Lerminal <start>，
a.nd the right hand side contains a. single non-termina.l symbol which des-
igna.tes some constituent of thc phra.se-structure grammar. Thc pa.rscr will
ta.ke any given input a.nd a.ttcmpt to pa.rse it as the sort of constitl1ent spcc-
ified on the right hand side of the first sta.rt rule. If the input docs not
ma.tch the ru1es in the grammar which define tha.t kind of constitucnt， the
pa.rser will a.ttempt to ma.tch the input to the dght ha.nd side of the second
sta.rt rulc， a.nd so on. Note tha.t if fra.gmcnta.ry phrascs such a.s <NP> or <VP>
a.re not specified in the start ru1es， then the pa.rse wilJ fail when the input
consists on1y of such a fragment， even if the fragment parscs normally when
included a.s pa.rt of a. full sentence.

1n order for this fea.ture to work properly， the sta.rt equa.tions mtlst be
the自rstequations listed in the grammar. The parser alwa.ys assumes tha.t
it will accept only whatever structure is speci五edin the left hand side of the
first gra.mmar r111c. By ma.king the 1eft ha.nd side of the first rulc bc the
non‘terminal <start>， and then defining <start> one or more times， the
grammar writer can ca.use the pa.rser to accept a. customized set of structure
types.

~ach eq lIa.tion is enclosed in pa.renthcses. The following is a. list of cx-
arn pl<， <'<1 II atioIls.

(xO = xl)

((xO subj) = xl)

((xl case) = (ホOR*nominative accusative))

((xl agreement) = (x2 agreement))

((xO root) = foot)

((x2 subj number) = sg)

A.2.4 The Si則・tingSymbol

The Icft hand side of the flrst rule of the grammar is the start symbol.
The stelrl symbol is defined by the gramma.r writer， using thc same kind of
ι!quations which (¥r(> Ilsed for defining phrase strllcture rules. Defining the
start symbol aJlows the grammar writer to decidc if thc system wiU only
parsc inputs which are full senlcnces， or accept both sentenccs and scntence
fragmcnts (phrases)， or only accept phra.ses. For example‘in order to parse
full sentences as wdl as noun phrasc fragments， thc grammar ¥Voulcl hav(> to
begin with the following two equations:

A.2.5 Commenting the Grammar

Any line that begins with a. semi-colon (;) is treatcd as a com ment.

A.2.6 Disjunctive Equations

The Gcneralized LR ParserjCompiler V8・4allows thc user to spccify a dis-
junction over a. set of equa.tions. A disjunction consists of the word tOR*
followed by any llumber of lists of equations.

SCHEMA FOR DISJUNCTION EQUATIONS:

(<start> <==> (<S>)
((xO = xl)))

、‘，，，、‘，
J

q

u

e
山
町

n

n

0

0

.、•.•

、-

+
レ
令
b

a
a

u

u

q
q

e
e

--
4
・4
4

A

o
o

--
φ
l
v
+
L
W

C
u
c
u

UM--

n
U
〆
g

、，
z
、

会
守，，E

、

U8EH'S MANUA L 157 158 GLR PARSERjCOMPILER VERSION 8・4

、.a，，
• • • • • •

(*ORォ

(((x2 time) = present)
((xl agreement) = (x2 agreernent)))

(((x2 tirne) = past)))

(*OR*
(((x2 passive) = +)
((x3 form) = pastpart))

(((x2 passive) =ー)

((x2 progressive) = +)
((x3 forrn) = prespart))

(((x2 passive) =ー)

((x2 progressive) =ー)

((x2 perf) = +)
((x3 form) = pastpart))

(((x2 passive) =寸
((x2 progressive) =ー)

((x2 perf) =ー)

((x2 rnodal) = +)
((x3 form) = inf)))

八n川】IIIpJe山サu川 tion(from a grammarfor EngJish) is presented below.
JIl thf!f:X川 npJe，suppose that x2 stands for a <VP> and xl stands for an <NP>，
whiclJ w(' will 出 Sllmcis thc subject of the <VP>. The goa) is to make Sllre
that if tl1(> <VP> is ill the p叩 scnttense， it agrecs (in numl問、 andpcr凶r50n
w川it凶hthc <NP> whic川ch巾hiぬsits sub何3吋jecはt.Othcrwise， the <VP> must be in the past
tcnsc.

Tl1 is disjunction ront.ains t.wo list.s of equations. The 11rst. list conta，ins
two c<l ua tions alld the second list contains one equation. The disjunction
says that either x2's timc feature has thc value p陀 sentand xl's agreement
feature has the saJllc valuc as x2'sαgr'eemcnt feature or x2's time featurc has
thc value l'αst.

Disjunctions can be used to give the effect of an if-then-else construction.
For cxample， we could think of the disjunction above as saying that if x2's
Lime is prcsent thcn xl's agreement equals x2's agreement. Otherwisc， x2's
time fcaturc is past.

Thc disjunction shown bclow contains four lists of equations. (The ex-
amplc is from an EngJish gra.mmar rule which implements verb sequcnce
COl1st ra i川s. x2 and x3 both refer to <VP> 's.) The disjunction says that
eilher:

Here is an example of a rule using onc of the disjunctive cquations shown
abovc.

• x2's passiye feature has t.he valuc plus and x3's form fcature has the
valllC pastpart OR

. x.2':; passiyc fca.ture has the value minus αnd x2's progressive fea.ture
h<lS the valuc plusαnd x3's fonn fcature has thc value prespart OR

(<S> <==> (<NP> <VP>)
((本OR*

(((x2 time) = present)
((xl agreernent) = (x2 agreernent)))

(((xl time) = past)))
((xO subj) = xl)
(xO = x2)))

• x:2‘持 passi¥'efealure has thc value minusαnd x2、sprogressive fcature
has the ¥，a)uc minusαndx2、spcrf fcature has the valuc minus ancL x2's
l110clal featurc has thc value p]us αnd x3's form featllrc has the value
inf.

A.2.7 Pseudo Equations

The Generalized LR ParserjCompiler V8・4has two di汀'ercntmodes for uni・

五ca.tionimplemcntation: PSEUDO unification 01" FULL uni日ca.tion.F'ULL
Unl首cationis the standard unification. PSEUDO l1nification is suggested部

an alternative way to implement the uniflcatiolli it does not do the unifica-
tion， but does somcthing very close to it. The implementation of PSEUDO
uni自cationis sirnpler a.nd more efficient. The l1ser can choose thc unifi-
catioll mode by setting the variable本UNIFICATION-MODE*to be either

• x:2、spa.ssi¥'e feature has the va.lue minusαnd x2's progrcssive featllre
hilS t he ¥'aluc minusαnd x2's perf feature has the va.lue plus αnd x3's
fOI・ll1fcaturc has the vallle prespart OR

lJS'ER'8 MANUAL 159

)FULL 01 'PSEU DO. '1 he df'fualt is ']>SEUDO. More discussions on pseudo
unificatioll can bc founcl in scct.ion A.8.

Th<、[ollowingopcrators are only for thc PSEU DO mode， and not avail-
(¥ blc if you choose thc F'ULL IlnificatioJ1 mode.

Constraint Equations

Constraillt cquations use the symbol =c in place of the plain equal sign. The
!Tleanillg ()f a constraint equaiion is the samc as in LPG. A rcglllar equation
causcs uniriration or assignmcnt of a value to a function， whilc a constraint
cqllalion ol1ly chccks to makc surc that the function has the intended value.
If the function does not already have the intended value， the parse will fail.

Examples:

((xl case) =c nominative)

((xl case) =c (彬OR*nominative accusative))

((x3 form) =c pastparticiple)

Negativc Constraint Equations

The word *NOT'" can be used on the right hand side of an equation to check
to see if the valuc spcci抗edin the equation does not exist.

Exぉnple:

((x2 subcat) = (*NOT* intransitive))

l'he abov<， equation shows that the value of (x2 subcat) should be something
other thRn intraI1sitive. If the value is intransitivc， the parse will fa.il.

申UNDEFINED寧 and牢DEFINED事

The special words *UNDEFINED* a.nd中DEFlNI ~D i< can be used on the
right hand sidc of an equation. *t:NDF'FINED1 makes sure that the left

160 GLR PARSER/COMPILER VERSION 8・4

hand side of the equation has no va.lue， and *D8FINED* makes sure that
the left hand side of the equation has a value. For cxamplc， the equation

(x1 negation) = *UNDEFINED本

checks xl's negation featurc to make surc that iL has no valuc. If (xl ncga-
tion) has a value at the point when the cquation is encouniered， thc parse
will fail. These checks are useful for languages such as Japancse， for example
where it is necessary to makc sure that only onc componcnt of a senience
bears a particular feature.

Notc that the equation given above does not assign a valuc to (xl nega-
tion); it only checks for the presence of a value.

Assigning Multiple Values

Multiple values can be assigned to a feature or register by using the grc叫er-
than sign (>) in place of thc equal sign. If the following rule applies rccur-
sively， the pp-adjunct function will havc several difTcrent vallles at the samc
time:

(<S> <==> (<S> <pp>)
((xO = xl)
((xO pp幅 adjunct)> x2)))

LISP codes in the Grammar Rules

Arbitrary LISP codes can bc written on the right・handside of an equation，
using the arrow <=. For example， the rule below deaJs with building integers
from digits encountered in an input sentenω. Paths in the LISP codc， (xl
…) and (x2…)， are treated as special functions that return the valuc of the
path.

(<integer> <ーー> (<integer> <digit>)
((xO <= (+ (x1 value)

(* 10 (x2 value))))))

The power of arbitrary LTSP code is often very useful in a practical
application，前 inthe following example cases.

(JSJじU'SMI¥NUAJ， 161

• We may wallt to do some kind of scmantic proccssing 01' infcrcnce， in
paralleJ to the syntactic parsing. 1n that case! we need a mcthod of
trigg<'fing outsidc programs， namcJy the arbitrary LISP function ca11.

• When the phrase勺IIJ・cchundrcd twcnty自ve"is parsed， wc want to
ha.ve a. "valuc" slot fiJlcd by the intcger 325; in that case， somc a.rith-
metic opcratiolls arc IIcccssary.

• TheぽeJ凶11<川d巾IcfiJ川1けitωca制.r川l
bc 色ginwi川川th九vowcl. Whilc it is not impossiblc to cnsure this agreement
strictly witltin the featu叫valueframework， it might be much easier
to havc a LISP program to check it.

Wild Card Charactor

Thc off linc p日rs<>1'accepts a wild card character. If the wild card (cu rrently
% is the wild card character) appears in the grarnmar， it matches any sin-
gl<' charactcr and its value becomes the character itself. For example， the
following ruJc assigns thc value of <char-seq> to thc charactcr matched
with

(<char-seq> <==> (I，)

(((XO value) = (Xl value))))

sy inclnding the following rule with some LlSP fUllctions， the <char-seq>
wiU acccpt any scquence o[alphabetic characters:

(<char-seq> <--> (<char-seq> I，)

(((XO value) <=

(read-from-string (concatenate 'string
(symbol-n訓 e(xl value))
(syrnbol-n訓 e(x2 value)))))))

A.2.8 Thc Morphological Rules

A grammar for 1 he Generalized LR ParserjCompiler is written in a chat、αc-
tC1・的.<;Is.Taking advantage of this feature， the morphological rules can be
written in thc sa.me forl1lalism as thc syntactic rulos. Affixation o[a word
can hc handl<，d by writing a context-free phrase structure rulc. 1-'or cxam-
ple， .Japanese complex vcrb forms can include causative morphemcs， passive
morpheme.<;， various aspectllal markers、andtense. These morphcmes are not

162 GLR PARSER/COMPIDER VERSION 8・4

includcd in a lexicon， but they arc made avajJable in thc course of parsing.
Morphological information in the form of an assignment equation is assigned
to thc functional structure. An cxample of some morphological and lexical
rules for .J a.panesc is provided bclow:

input string: tabe-sase-rare-ta
eat-caus-pass-past

lexical rule:
(<v-ldan> <ー> (t a b e)
(((xO root) = taberu)))

morphological rules:
(<v-ldan> <ー> (<v-ldan> s a s e)
(((xl passive) = *UNDEFINED*)
((xl tense) = *UNDEFINED*)

(xO = xl)
((xO causative) = +)))

(<v-ldan> <ー> (<v幽 ldan>r a r e)
(((xl tense) = *UNDEFINED*)
(xO = x1)
((xO passive) = +)))

(<v-ldan> <ー> (<v-ldan> t a)
((xO = xl)
((xO tense) = past)))

The above morphological rules can parse thc following verb forms:

tabeta eat-PAST
tabesaseta eat-CAUS-PAST
taberareta eat-PASS-PAST
tabesaserareta eat-CAUS-PASS-PAST

On the other hand， they cannot pa.rse the fol1owing ungrammaticaJ verb
forms:

本taberaresasetaeat-PASS-CAUS-PAST
本tabetasaserareeat“PAST-CAUS-PASS
*tabetararesase eat-PAST-PASS-CAUS

USER'8 M;¥NUAL

本taberaretasaseeat-PASS-PAST-CAUS
~tabesasetarare eat-CAUS-PAST四 PASS
才taberaresaseeat-PASS-CAUS
*tabetarare eat-PAST-PASS
*tabetasase eat-PAST-CAUS

163

As w(' ran sc(' in thc morphological rulcs shown above， *UNDEFINED*
and 叶)gF')NI~ J)* equatious arc convenient dcvices to preveut a rule from
appJying in eW undesirable ordcr. Morphological rules such as the above
reducc tlH‘total numbcr o[rulcs needed， hecause there is no need to write a
scpar叫 Cf'ntry for each vcrh form.

A.2.9 Dictionary: The Lexical Rulcs

A dictionalY can be dcfll1cd as a sei of lcxical rules each of which is a lexical
entry. Thc lcxical rules can include all affixations of a word wHhout the use
of any morphological rules. Alternatively， the lexical rules can contain only
root forms， and morphological rules may be uscd to define a11 the affixation.
For inslance， the stem of a. given verb is parsed by the leピicalrule for that
verh， and t hc cquation portioll of the lexical rule a.ssigns a dictiona.ry form
of thc vcrb io the root fllllction. A lcxical rule may a.lso contain some
adclil.ioual infomaiion， such as subcategorization [01' verbs， and gcnder and
numbcr agrecment， which wil1 be needed in a later sta.gc of parsing. The
following is an example of a lexical rule for the Japanese verbαrau (ヘv出 hす:

(<5-d叩 -¥1> <==> (a r a)
(((xO root) = arau)

((xO cat) = V)
((xO subcat) = trans)))

Thc grammar writer may define macros for the lexical rules in the same
wav as Common LISP macros arc defined. ¥tVe use macro definitions so that
we no longcr need to wrilc cach lexical rulc separatelYi typing every lexical
rnlc hy hand is a time consuming ta.sk and may ca.use unnccessary bugs in
thc rulcs. Thc use of macros can reduce the size of thc grammar， since the
Icxicoll may be stored in a scpa.rate file. More details on the IlSC of macros
will bc found in scction A.5.

164 GLR PARSERjCOMPILBR VERSION 84

A.3 Debugging a Grammar

This section shows how to debug your grammar for thc Generalized LR
Parser /Compiler vcrsion 8-4. There are three main kinds of LISP functioJls
that can help your debugging process:

• The function dmode shows you the rule applkation during the parsing
process.

• The trace function provided by the LISP system shows you the input
and output of the function a.ssociated with a. particular rule.

• Other functions display useful information after the parsing.

In the following three subsections， cach of these three kinds of functions
will be described. 1n su bsection A.3.4， αmbiguity pαcking (which ma.kes thc
parscr efficient but makes debugging difficult) is explaincd.

A.3.1 Dmode

Dmode enables you to see which rules are being applied or being killed whilc
the parser is running. By entering (dmode 1) before yOIl run the parser， you
wiU see applied rules a.s well a.s the input text. Entering (dmode 2)， you will
see not only applied rules but rules killed because the fll nctions associa.tcd
with the rules did not return any valuc.

Look at the following example (this example is also ωcd in the explana-
tioJls of some of the other functions):

* Cdmode 2)
2

移 (p"remove it")

>remove it
R

E

M

O

V

E
rule書1242EV-IBMF-458 <V>(14)由-> REMOVE

U8ER'S MANUAL

rule 押 45 E司 IBMF-45 <VP>(15) ーー> <V>(14)
killed -rule # 63 E-1BMF-63 <ASPECT> ーー> <V>(14)

I

T

rule枠 219E-IBMF-219
rule # 209 E-IBMF-209
rule # 46 E-IBMF-46
rule相 29E-IBMF-29

rule # 5 E-IBMF-5

<PRO>(28) ーー> 1T
<NP>(29)ー><PRO>(28)
<VP>(30) ーー> <V>(14) <NP>(29)
<IMP> (32) ーー> <VP>(30)

<START>(51) ーー> <IMP>(32)

ln lh(' abovc example， the first rule applied was

<V> ーー> remove

165

Thc Olltput shows that thc rule number is 12-12， the name of the function
was EV-IBMF-458， and thc node <V> was assigncd number 14. The function
namc EV -IBMF -458 also tclls you that the dcfinition of thc rulc is in the file
"cv ibm"， and it is the 458th rule in the file.

Thc next line shows that the <V> (14) became a <VP> (15). The line
after that shows tha.t thc <V> (14) could not become <ASPECT> because the
a.ttachcd fllnction， namely E-IBMF-63， did not reもurnany va.lue. N ote here
tha.t thc pa.rscr a.na.lyzes thc structures in parallel so that all thc possibiliiies
are tcstcd.

A.3.2 Trace Function

The trace fllllction providcd by the LISP systcm is useful [or looking at the
input a.lId output of a. fllnction called whcn a particular rule is a.pplied.

lf you cntcr (trace e-ibmf-45)， you will sec the valuc passed to the
funclioll， which had bcen assigned to thc node <V> numbered 14. and the
¥.alue rctuTllcd by the function， which was assigned to the node <VP> num・
bcrcd 15.

Traci ng functions is cspccially llseful 、，vhcna rule supposed to be success-
fnl is killcd. You will oftcn find the ca.usc of thc 九ilurcby looking at the
input、'alllepassed to the fllnction.

A.3.3 Other Functions

Aftcr parsing a sentellcc， thc parser keeps various information about the
structllrc of the scnlcncc， and you ca.n retricve it using thc following func・

166 GLR PARSER/COMPILER VERSION 8・4

tions. Before you call these functions， run the parscr ¥ludcr (dmode 1) or
(dmode 2). Otherwise， you cannot tcll what node number was assigned 1.0
each node.

disp-tree

Function disp-tree displa.ys the tree structure obtained， as shown be10w:

* (disp-tree)

*

<START>(51) ーー> <IMP>(32)

<IMP>(32) -ー> <VP>(30)
<VP>(30) ーー> <V>(14) <NP>(29)

<V>(14) ーー> R E M 0 V E
<NP>(29) --> <PRO>(28)

<PRO>(28) ーー> 1 T

It also accepts an optional argument n， where n is a nodc number. If yOll
wantもosee the subtrce under the NP， whose node number is 29， you will
input (disp-tree 29).

This function can only rusplay one ambiguity; if therc are multiple ambi-
guities， one of them is chosen at random. If you want to sec another ambigu-
ity， you have to input thc node number of the root node whose structure y01]
want to see. To obtain node numbcrs， usc (伽ode2) andfor (disp-nodes).

disp幅 node事 valueinteger
The function disp-node-value displays the category， son (child) nodes， a.nd
the value of the node. If you want to see the value of the NP whose node
number is 29， type (disp-node-value 29). You will sce:

* (disp-node-value 29)
category = <NP>
sons = ((28))
value = ((:PRO +) (ROOT PRO) (REF DEF) (CASE .. .))

disp-nodes

The function disp-nodes shows all thc nodes with their sons (childrcn).
The following is an example:

本 (disp-nodes)

14 <V> --> R E M 0 V E

15 <VP> ーー> <V>14
16 <IMP> ーー> <VP>15

USEU'8 MANUAL 167 168 GLR PARSER/COMPILER VERSION 8・4

disp-def
Thc rUJ1ctioll disp-def displays the original dcfinition of the rule you wrote
in thc gramrnar file (which has the ".gぱ 'suffix.) If yOll wanL to see Lhe
definitioll or the rule nurnbcr 1242， you entC'r (disp-def "ev-ibm" 458)
(this inform川 ionis obtail1<，d using伽 ode2; see subsection A.3.1). Note
thal h('仁川田 grarnmarfulcs can be written in separate files， you have to
look at th<， function naIll(' (e.g. EV-IBMF-458) to figure out which自lethe
definitiol1 of this rule in， and whcre the rule is located in t11叫 file.

(56)， which was mer広edto another node， e.g. <START> (53)， you type
(disp-tree 53).

A.3.4 Ambiguity Packing

1n thc ofllinc parser， local ambiguities arc packed into one node， which
makcs thc parser quite efficienl. This feature， however， makes the debugging
of thc grammar somewhat difficult. This subsection tells you ho¥V to deal
with packcd ambiguitics.

Look at the following example:

ネ (p"move it period")

>move it
M
n
n
U
H
v
u
h
 rule梓1156EV-IBHF-372

rule書1152EV-IBHF-368

rule韓 4SE-IBHF-45

<V>(12) ー司> HOVE

<V>(12， was 13)ー>HOVE

<VP>(14) --> <V>(12)

soth the rlllC's numbcred 1156 and 1152 make a <V> node and hcre the parser
invokcd th(、arnbiguitypacking procedurc. Dy looking at the Ol1tput you can
see what happcned.

The pMscr first makes the <V> nodc numbered 12 by applying the rule
1156. Thcn， it makes the sccond <V> nodc numbered 13 by applying the
rulc 1152. J¥nowing th叫t.hcsecategories are the same， thc parser merges
node 13 10 node 12 and thc <V> node numbercd 12 is handlecl as if it were
a singlc nodc， except tha1 node 12 has the values of both the first <V> node
and tlle second <V> node. This procedurc is callcd ambiguity packing.

You call see the ¥'aluc of lIode 12 by typing (disp-node-value 12)， and
thc valuc of node 13 beforc il was merged to 12 by typing (disp寸lode-value
13). lf you want to prinl thc tree structure of a top level nodc: c.g. <START>

U5EWS M!lNUI¥L 169

A.4 Changing Parameters

Thi~ ~ectioll Jisls i川 portantglobal variables， which tUTII somc fcatures of the
pars('r 011 Of ofl'. These variables are either set to t or nil， or they take somc
specifi()d killd of argument， as explained below. Thc user may change the
valllC! of ，L paralTlt'tcr by using SETQ with the variable name and the dcsired
arglllllcllt.

1. *recover“from巴 failure本.If you set this variabJe to t， the parser will
I.ry to rccovcr cvcn if it fails during the parsing process. While you are
d(、hllgging，it is bcttοr to set this variable to nil， in ordcr to sce where
thl' parSN failcd. The default is t.

2. :tignore-space本.1'his variable toggles the word-basedjcharacter-bascd
mode of the parser. If you do not want to ignore spaces in the input
sentcncc， sct this variable to nil， to use the word-bascd mode. For in-
stancc， if you are testing rules for English， you can set *ignore-space*
to nil. In the c硝 eof Japanese， you have to set it to t. The default is
t. (Note that this variぬlecannot affect the fact that you must leave
spaces between characters when entering terminal symbols in the gram-
mar rulcs. It only affects how the parser treats spaces encountered in
thc input.)

3. *max-制 biguity-display*. This variable determincs how many am-
biguities ¥Vill be displayed at the end of the parsc. It takes a numcrical
arguJlIcnt. Without lirniting this， you sometimcs sce morc than 10
pagcs of output. The default is 3.

'1. *wild-card-character*. You can change the wild card character

which matchcs any input character， by changing which charactcr this
，ariablc is set to. The default is '1..

5. l<unification-mode*. Thi5 variable selects either full unification or
pseudo unification for the unification mechanism. The possible values
of this paramcter are full or pseudo. The defa山 ispseudo. (For
morc discu5sion on the difference bctween full and pseudo unification，
see section A .8.)

170 GLR PARSER/COMPILER VERSION 8・4

A.5 U sing Macro in a Grammar

When many of the rules in a grammar have the same or similar patterns， we
often want to define a template or a mαcro， and to represent those rules by
giving parameters to the macro. With the Generalized LR ParserjCompiler
V8-4， you can define a macro anywhere in a grammar file and instantiate it
anywhere in the same file. The way to dcfinc and call a macro is exactly the
same as the Common LISP macro dcfinition (sce thc Common LISP manual4

Readers not familiar with LISP will necd to acquil'e some knowledge of
Common LISP in order to use macros cffectivcly， and to foLlow the examples
in this section.) Macro definitions are especially useful for lexical rules， as
seen in the examples below.

A.5.1 A Simple Example

(defmacro Y.p (wordlist)

(if (atom wordlist) (setq wordlist (list wordlist)))
(append-dolist (word wordlist)
'((<p> <ーー> ，(explode-string word)

(((xO root) = ，(root-symbol word)))))))

(Y.p ("in" "at" "on" "until" "instead of"))

Given that the functions explode-string and root-symbol are appro-
priately defined， this macro definitionj ca.ll h梢 cxactlythe same e汀ect砧

writing the 5 gramma.r rules below:

(<p> <ーー> (i n) (((xO root) = in)))
(<p> <ー> (a t) (((xO root) = at)))
(<p> <ー> (0 n) (((xO root) = on)))
(<p> <ーー> (u n t i 1) (((xO root) = unti1)))
(<p> <ーー> (i n s t e a d 0 f) (((xO root) = instead-of)))

Sleele， Guy L.， et a1.， Common USP Th(' Longuoge， Digital Press， Digital
Equipment Corporation， Bedford， MA， 1984

GLR PARSER.jCOMPJJAR VERSION 8・4

;;; (xo = x1)
;;; ((xO nurn root) = plural)
;;; ((xO agr) = other)))

172 171 U8gR'8 MANUAL

Lexical Rulcs for English Nouns 八.5.2

This is a function de1inition to be used in the macro:
REGULAR-NOUN-PL-FORM takes a countable noun， and returns
ies， es or s， assuming it's regular.

(defun regular-noun-pl-torm (word)
(工et((rword* (reverse (explode-string word))))
(cond ((回d(eq (first r冒ord*) 'Y)

(not (member (second rword吋 '(ai u e 0))))
'ies)

((member (first rword*) '(5 H A 1 U 0))
'es)

(t 's))))

; ;; Lexical Rules tor English Nouns with a Macro
; ;; 10/5/87 Masaru Tomita created

The macro will be named 'l.n. It takes a word or a
list of words， with optional keywords， and returns
one or more gr倒閣官arrules with appropriate equations.
Here are exωnples 01 the rules it will return for
each kind 01 noun it encounters:

CA5E 1. Regular countable noun (e.g. BOOK).
('l.n "apple") is exp出 dedto:

(<NROOT> <ー> (A P P L E)
(((xO root) = apple)

((xO count) = YES)

((xO a-an) = an)

((xO pl-form) = s)))
('l.n "boss") is expanded to:

(<HROOT> <ーー> (B 0 S S)
(((xO root) = boss)

((xO count) = YES)

((xO a-組)= a)
((xO pl-form) = es)))

('l.n "copy") is expanded to:
(くNROOT><司甲> (C 0 P) ; note Y is missing

(((xO root) = copy)
((xO count) = YE5)
((xO a唱 an)= a)

.，.，.，.， •.
，.，.，.，.，.，.，.，.，.， •••

，.，.，.，.，
.
9
.

，.，.，.，

.，.，.，.，.，.，.，.，.，.，.，.， ••
，.，.，.，.，.， ••
，.，.，.，.，.，.，

.，

Use with the following grammar rules.

(<n>←ー (<nroot>)
((xO = xl)

(*OR*
(((x1 pl-form) = irreg))
(((x1 pl-form) = (忠OR*s es uncount))
((xO nurn root) = singular)
((xO agr) = 3sg)))))

; ;; (<n> <ー (<nroot>s)
;;; (((x1 pl-form) = s)
;;; (xO = x1)
;;; ((xO num root) = plural)
;;; ((xO agr) = other)))

; ;; (<n> <ー (<nroot>i e s)
;;; (((xl pl-form) = ies)

(<n> <ーー (<nroot> y)
(((xl pl-10rm) = ies)
(xO = x1)

((xO num root) = singular)
((xO agr) = 3sg)))

(<n> くー- (<nroot> e s)

(((X1 pl-form) = es)

(xO = x1)

((xO num root) = plural)
((xO agr) = other)))

This subscction conti'lills all exLensive commentcd cxample of the use of

rnacros， in conjun<:t.ioll with LISP functions， to write lexical rules for han-
dling the plural forms of English nouns. The uscr may wish to try using thesc

rnacros in the parser cnvirollrnent. It may be easier to follow the examples

in the manual after sceing them produce resulLs in thc working system.

GLR PARSER/COMPILER VERSION 8-4

(explode-string word))

(((xO root) = • (root-symbol word))
((xO count) = YES)

((xO a-an) = .(or a-an (if (member

(first (explode-string word))

'(aiueo))

3組 'a)))

((xO pl田 form)= • (regular-noun-pl-form word))
))

174 173

((and (eq count 'YES) pl-form)

(append-dolist (word wordlist)

'((<nroot> <ーー> . (explode-string word)

(((xO root) = • (root-symbol word))
((xO count) = YES)

((xO a-an) = .(or a-an (if (member

(first (explode-string word))

'(a i u e 0))

'an 'a)))

((xO pl-form) = irreg)

((xO num root) = singular)

((xO agr) = 3sg)

、‘』，，、‘aJ、‘，，，

CASE 2. Irregular countable nouns.

CASE 2. Irregular countable noun (e.g. MAN).

(%n "man" :pl-form "men") is expanded to:

(<NROOT> <ー> (M A N)

(((xO root) = man)

((xO count) = YES)
((xO a-an) = a)
((xO pl-form) = irreg))
((xO num root) = singular)

((xO agr) = 3sg))
(<NROOT> <匂申> (M E N)

(((xO root) = man)

((xO count) = YES)
((xO a-an) = a)
((xO pl-form) = irreg))
((xO num root) = plural)
((xO agr) = other))

USER'S MANUAL

((xO pl-form) = ies))) .，.，.，.，.，

.，

••

，.，.，.，

.，.，.，.， ••
，

CASE 3. Uncountable noun (e.g. WATER)

(%n "water" :count NO) is expanded to:

(<NROOT> <ー> (W A T E R)

(((xO root) = water)

((xO count) = NO)

((xO pl-form) = uncount))
((xO agr) = 3sg))

.，.，.，.，.，.，.，.，.，.，.， ••
，.，.，.，.， ••
，.，

.
，
.
，
.
，
.
，
.
，
.
，
.
，
.
，
.
，
.
，
.
，
.
，
.
，
.
，
.
，
.
，
.
，
.
，

.，.，.，.， •••

，

••

，.，.，.，.，.，.，
.
3
.
，.，.，.，
.，.，.，.，.，.，.，.，

.，.，.，.，.，.，.，.，

.，.，.，.，.，.，.，.，

(<nroot> <ーー> . (explode-string pl四 form)

(((xO root) = ，(root-symbol word))
((xO count) = YES)

((xO a-an) = .(or a-an (if (member

(first (explode-string word))

'(aiueo))

'an 'a)))

((xO pl-form) = irreg)
((xO num root) = plural)

((xO agr) = other)))

)))

))

A 冒ordcan be a list of words.

e.g. (%n ("water" "coffee" "air")

(defmacro %n (wordlist &key a-組 (count'YES) pl-form)

(if (atom wordlist) (setq wordlist (list wordlist)))
(cond

((日d(eq count 'YES) (null pl-form))

(append-dolist (田ordwordlist)

'((<nroot> <甲信> .(if (eq (regular-noun-pl-form word)

(butlast (explode-string word))

:count no)

Oefinition of the macro itself (with internal comments):

((eq count 'NO)

(append-dolist (word wordlist)

'((<nroot> <ーー> ，(explode-string word)
(((xO root) = ，(root-symbol word))

CASE 3. Uncountable nouns.

'ies)

CASE 1. Regular countable nouns.

GLR PARSER/COMPILER VERSION 8-4 176 175 U8ER'S MANUAL

{:SYL-OOUBLE t-or-nil}{:OTHERS other-inf})

)

Note: "word"， "pastforrn" and "pastpartforrn" can be either syrnbol or
string (for cornpound verbs). "other-inf" is either (slot value)

pair， or a list of (slot value) pairs.

，.，.，.，.，

.，

，.，.，.，.，

.，

，.，.，.，.，

.，

((xO count) = NO)

((xO pl-forrn) = 'uncount)

((xO agr) = 3sg)

)))))))

; ;; Exarnple:

;;; (%ev-list

; ;; (accord)

; ; ; (take :past took :pastpart taken)

%n is now called with nouns frorn the doctor/patient dornain:

(%n

("glass" "rnedicine" ，・tablet""rubberband" "rneal" "rnouth" "bath"

"knee" "finger" "had" "thurnb" "pain" "sore" "fever'・"head'・"headache"

"stornach" "drug" "allergy"・'reaction""ache" "back" ，・eye""hangover"

"bigtoe" "throat" "abdornen" "arrn" "neck" "elbow" "chest"

"aspirintablet" "leg" "hand'・"stiffness"
))

，

••

，

，.，
，.，

=====>
(<vroot> <ー (ac c 0 r d)

((xO <= '((root accord)

(valency trans)

(a-an an)

(rnorph-type other)))))

(<vroot> <ー (ta k)

((xO <= '((root take)

(valency trans)

(a-an a)

(rnorph-type e)))))

(<vroot> <ー (t0 0 k)

((xO <= '((root take)

(valency trans)

(a-an a)

(irreg-past +)

(forrn finite)

(tense ((root past)))))))

(くvroot>くー (t a k e n)

((xO <= '((root take)

(valency trans)

(a-an a)

(irreg-pastpart +)

(forrn pastpart)))))

(%n

("aspirin" "1ilater" "rnilk" "saltwater" "linarnent" "ternperature" "nausea"

"nurnbness"
)

:count NO)

This subsection contains an extensive commented example of the use of

macros， in conjunction with LISP functions， to write lexical rules for creating

the corrcct analysis of Ellglish verb forms:

Lexical Rules for English Verbs

Macro Oefinition for English Verbs

5/26/87 Masaru Tornita

This rnacro requires the MAP手 OOL1STrnacro， usually already
defined in pseudo-unify.L1SP

(%n "foot" :pl-forrn "feet'・)

A.5.3

••
，

••

，.，.，

.，

••

，

••

，.，

.，.，.，.，

.，.，.，.，

.，.，.，.，

，.，
，.，
，.，

There are four values for MORPH-TYPE:

Y: Ends with y， and the last char but one is not a vowel.

e.g. "copy"， "supply"， .•. but not "play"， "ernploy" ，
E: Ends with e. e.g. "hope"， "type"，

.，.，.，.，.，

.，.，.，.，.，

.，.，.，.，.，

Specification:

(%ev-list

(word {:PAST pastforrn}{:PASTPART pastpartforrn}

{:SYL-OOUBLE t-or-nil}{:OTHERS other-inf})

(word {:PAST pastforrn}{:PASTPART pastpartforrn}

，.，.，.，.，

，.，.，.，.，

，

••

，.，.，.，

GLR PARSER/COMPJLER VERSJON 8・4

(let* ((word本 (explode-stringword))

(rwordキ(工everseword*))

(root* (root-symbol word))
(a-an (or a一泊 (if (member (first word*) '(A I U E 0))

'組 'a)))

(morph-type (cond

((and (eq (first rword*) 'Y)

(not (member (second rword吋
'(A 1 U E 0))))

'Y)

((eq (first rword*) 'E)

'E)

((member (first rword*) '(A I U 0 S H))
'SH)

(t 'OTHER)))

(irregular-rule-past

(if past

'((<vroot> <ーー ，(explode-string past)
((xO <= '((root ，root吋

(form finite)

(a-an ，a-an)
(valency ，valency)
，(Oothers))

((xO tense root) = past))))))

(irregular-rule-pastpart

(if pastpart

'((<vroot> <ーー ，(explode-string pastpart)
((xO <= '((root ，root*)

(form pastpart)
(a-an ，a-an)

(valency ，valency)
，(Oothers)))))))

(regular-rule

'((<vroot> <甲ー ，(case morph-type
((Y E)(butlast wordり)
((SH OTHER) word*))

((xO <= '((root ，root*)
(valency ，valency)
(a-an ， a-an)
，(o(if morph-type '((morph-type ，morph-type)))
，(O{if past '((irreg-past +)))
，O{if pastpart '((irreg-pastpart +)))
， ~{if syl-double
'((syl-double ，(first r日ord吋)))))

178
177

SH: Ends with a， i， 0， u， s or h. e.g. "pass"， "finish'・，
OTHER: others. e.g. "print"， "employ"， "write"，

MORPH-TYPE lS 1ndependent from whether the verb is regular or
irregular.

U8ER'S MANUAL

<VROOT> is:

root-word without the last ・・y"or "e"， if HORPH-TYPE is Y or E.
root冊 word，1f MORPH-TYPE is SH or OTHER.

E.g.， <VROOT>'s of九 opy"，"hope" and "print" are (C 0 P)， (H 0 P)
and (P R I 11 T)， respectively.

IRREG-PAST and 1RREG-PASTPART are de:fined "+"， if a verb has an
irregular form for past and past participle :from， respectively.
E.g.， "write" has + in both 1RREG-PAST and 1RREG-PASTPART.

in which case FORH is always undefined except for irregular forms，
spec1al rules are defined and FO附 isde:fined.

SYL-DOUBLE is de:fined in case the last character must be doubled
in "ing" and "ed" forms. Other町iseit remains undefined.

E.g.， "hit" has SYL-DOUBLE "t"， "pop" has SYL-DOUBLE "p"，
"print" has SYL-DOUBLE undefined.

The macro 'l.ev does most o:f the work on the verb forms， but it
lS not the top-level macro. The top-level macro， which accepts
words in a user-friendly format and calls 'l.ev on them， is
narned 'l.ev-list.

and

.，.，.，.，.，.，.，.，.，.，.， •.
，.，.，.，.，.，.，.， ••
，

•••

，.，.，

••
，.， ••
•

，
.，.， •.
.

，.， ••
，

•••

，.，.，.，.，.，.，.，.， ••
，.，.， •.

•
，

•••

，.，

.，.，.，.， •••

，.，.，.，.， •.
，

•••..

，.，.，.，.，.，.，

，.，.，.，

，.，.，.，

.•

，

••

，.，

(defmacro 'l.ev (word &key syl-double past pastpart others
a-an (valency 'trans))

(if (symbolp word) ;; If word is a symbol，
(setq word (symbol-narne word))) ;; then make it a str1ng.

(if (and past (symbolp past)) ;; If past is a symbol，
(setq past (symbol name past))) ;; then make it a string.

(if (and pastpart (symbolp pastpart)) ;; 1f pastpart is a symbol
(setq pastpart (symbol-n訓 epastpart))) ;; then make it a string.

(if (and others (atom (car others)));; 1:f :OTHERS is not a list of
(setq others (list others))) ;; (slot value)'s， make it a list.

The fo11o冒ingprovisions訂 eto tolerate errors.

USER'8 MANUAJ， 179

， ~others)))))

let:t body
'(， ~regular-ru1e ， ~irregu1ar-ru1e-past ， ~irregu1ar-rule-pastpart)))

'・，
Top Leve1 Hacro

(defmacro i.ev-list (&rest v-1ist)
(append-do1ist (v v-1ist)

(macroexpand (cons ''l.ev v))))

(i.ev骨ll.st
("ache")

("aggravate")

("app1y")
("become'・:past、ec訓 e":pastpart "become")
("begin" :past "began" :pastpart "begun")
("bathe")

("breathe")

("burn")

("develop")

("drink" :past "drank" :pastpart "drunk")
("eat" :past "ate" :pastpart "eaten")
("fee1" :past "felt" :pastpart "fe1t")
("hit" :past "hit" :pastpart "hit" :syl-double T)
("hurt" :past "hurt" :pastpart "hurt")
("1ift")

("make" :past "made" :pastp紅 t"made")
("move")

("put" :past ・・put" :pastpart "put" :syl-doub1e T)
("rinse")

("sholol" :pastpart "shololn")
("step" :sy1-doub1e T)
("swallow")

("take" :past "took" :pastpart "taken")
("talk")

("te11" :past "to1d" :pastpart "to1d'・)
("throb" :sy1-doub1e T)
("turn")

("upset" :past "upset" :pastpart "upset" :syl-double T)
("wa1k・，)

180 GLR PARSERjCOMPILER VERSION 8-4

USLR'5 A-1ANUAL 181 182 GLR PARSER/COMPILER VERSJON 8・4

A.6 Compiling Lcxical Files Separately A.7 Using Your Own MorphjDictionary System
S0I1I('1 imcs， 011η finds it [ru日tJ・叫ingthat a whole grammar has to bc rc-
compiled ('vcry time a small changE' is made. It would be very nice if one
could writc九 gramlllarin scvcral separate sub files， and compile only those
Sllb Iiles in which ch川区esha.vc been made. This general idea， incrcmental
ωIIlpilatioll， is not [ully implernC'nted in the Generalized LR ParscrjCompilcr
VNsioll 8・4;it can be done ol¥ly with scvcral constraints as describcd below.

A.7.1 Introduction

-八grelllllnarshoutd consist of onc main filc and several sub files.

• In lh(' llIain file， all sub-files must be declared as in the [ollowing cx-
九mplc.

We have described our parsing system as a character basis system (rather
than word basis). That is， all terminal symbols in a grammar are charactcrs
(or letters)， so th叫 onecan writc morphological rulcs and dictionary in the
same formalism as synt似. It is， however， cntirely possible to use the Gen-
cralized ParserjCompiler for conventional word basis parsing， and to access
your own separate system for morphology and dictionary. The [ollowing
two subsections describe how to write a word based gramma.r， and how to
incorporate your own morphjdictionary system.

(<Olex "subl" Isub2" sub3") A.7.2 Word-Based Parsing

You can write a grammar with word symbols as terminals， without changing
anythingもothe system. For example， instead of writing
(<N> <ーー> (b 0 0 k))
you can simply write (くわくー> (BOOK))

All sub・削es，as well as the main file， must have a name with the
extension ".gra".

• 1n cach sub-filc， the right hand side of every rule must consist entirely
of tcrll1ll1al symbols. In other words， all rules in a sub-file have to be
lexical rnles.

(<N> <ー> (....))

where "BOOK" is one symbol. Such grammars can be compilcd in ex-
actly the same way as be[ore. However， you have to use parse-list， rather
than p for runtime parsing.

(parse-list list-oj二symbols)
This fu nction parses thc sentence represented by the list of symbols followed
by the character '$.

For example，
(parse-list '(A BIRD FLIES $))

• In each sllb-file， the left hand sidcs of aU rules must be identical. There
must not cxist rlllcs such that

l

，.、l

qn

(<ADJ> <ーー> (....))

are included ill a singlc sub-file.
A.7.3 User's Dictionary Look Up

You can call your own dictiona.ry look up program andjor morphological
analyzer using '<:::， as in the foUowing example.

ln sub.filcs， macros can bc defined as described in the previous scction.
'1'0 compilc a grammar， you simply ¥Ise the compgra function over only its
main file. compgra will automatically find and integrate sub-filcs. When
changes arc madc in onc or more filcs， compgra will rc compilc only files in
which changcs havc heen madc. It automa.tically checks to see which files
he¥¥C bccn changed since thc lasl compilation of the grarnmar. Thus. all you
havc 10 <10 to incllldc sub・Iilcsis to ¥lse compgra with the main lile namc.

(<N> <ー('/.)
((xO <::: (diction (xl value) 'noun)))

(<V> <ー('/.)
((xO <::: Cdiction (xl value) 'verb))))

USEH.氾 MANUAL 183 184 GLR PARSER/COMPILER VERSION 8-4

In this p.xample， the function diction is the user-defined function that

tilkes a wOld symbol and its catcgory， and returns an appropriate f-slructllre
f()r t 11I! wOI<l. Recall that "%" is the wild card characLcr thal can match with
any single syrnbol， and the symbol is put into the val¥lc slot of xl.

、、，，，、、，，，

t

、J
、J

n
1
J
1
J

e
r
1
J

s
g
t

e

a

s

、J

r

a

、J1
J

P

2

P

O

)

、‘
a

J

V

A

例

U

、，J

m

=

r

、
=

1

0

=

x

n

1

J

Z

1

J

r

・-、

。
M

白
M

、.ノ

=

c

u

、，J
C

山

町

白

h

v

-

目

、J
n

r

n

v

P

)

e

g

e

-

-

)

v

e

t

a

t

、JS
・
]

S

内

4

s

h

u

p
&
a

内

4

1
内
，

L

x

a

u

N

c

x

x

x

p

s

r

k

*

f

k

r
k
r
k
=

4
A
R
H
r
-
-
、f
k
f
k
n
u
n
v

〉

x

o

f
、

r

k

O

X

X

=

r

k

*

x

f

k

f

、

=

r

k

r

t

r

t

r

k

〆
K

J

、
〆
t

、

cd
f
k

Figure A.2: An Example RlIle

A.8 Pseudo U nification and Full U nification

A.8.1 Introduction

The Generalized LR ParserjCompilcr V8・4suppo山 twokinds of uni1ication

implementation: FULL unification and PSEUDO unification. The user can

choose between them by setting the variable彬UNIFICATION-MODE*to be

either FULL or PSEUDO. Full unification is the canonkal unification， and it

behaves the same as other unifc叫ionbased systems such as PATR・11.

PSEUDO uni五cationis an altcrnative approach to the unification imple-

menta山 nproposed by Tomita and K時 ht[Tomita and Knight， 1988]. It
does not exactly do uni五cation，but docs something close to it. 1n fact， it

produces the same reSl山5as full (canonical) lInifiωion most of the ti mc，
and it does not seem to present any problcms in pracLical applications， such
as naturallanguage interfaces and machine translation. On the other hand，
fealure structures in pseudo unification are always simplc trees rather than

dags (directed acyclic graphs). Thus， the implementation of pseudo unifica-
tion is much simpler， bypassing all thc tough problems callsed by dags.

A.8.2 Full Unification

Consider the following sample grammar rule of English (figure A.2). xO，
xl， and x2 are feature structures (graphs) with categories S， NP， and VP，
respectively. The rule stales conslrainls 01¥ the fcature structures， e.g. the
case of the NP must be nominative. In parsing， lules such as this one are

used to construct larger constituents out of smaller ones. The rule itself can

U8RR.'8 MI¥NUAD 185

bc vii'!wcd as a feal IJrc structure with top-Jevel features xO xl， and x2. An
eC!lIiltioll slIch as "(xl agr) = (x2 agr)" indicates that two features in the
rll J(‘広raphIl1I1St share the same value. Once we have fea.tllre structures fo1'
an NP alld VP， we combine them and unify thcm with thc 1'ule structure.
Uniricatioll is a proc(>ss which forms the union of two fcatllre scts， and which
dctcrts va)lIc conflict，s bctween them. Thus， thc equations in the rule above
SCJ'vc Lw() purposes: (1) to test features of the constituents， a.nd (2) to bulld
IICW strll(・tllre. Whcn thc rule is applicd， unification of thc rllle structure
and thc rOl1stitucnt structu1'c takes place. Fo1' example， if thc NP a.nd VP
hav(' agr fcaいII'C5with diITcrcnt values， the llnification will fail; othcrwisc，
IInifiration will sllccced， and the resulting feature st1'uctu1'e wiU contain two

f('aturcs with a single common value. Note tha.t they would not simply
ωIltaill lwo valucs that are alike: thcy share a. common valuc (in the sense
of Lisp's ~Q， not EQUAL). This sharing property， oftcn callcd rc cntrancy，
is what makcs graph representation necessary for feature st1'uctures. The
lcsult of applying the rule is a new feature structure， of category S， which
may 1I0W bc lIscd as a. constituent in a.nother rule. In this case， whether or
not thc st1'llctllrc coniains re-entrancy can a百'ectla.te1' unifications.

A.8.3 Pseudo Unification

ln pscudo unifi.catioIl) there is no re-entrancy. There may be two fcatures
with idc山 calvalues (one value for one featu吋， but therc neve1' be two
fcatures that share a value. Thereforc) a feature structurc can be always

reprcscntcd as a. lne， rather tha.n a g1'aph. This will make a drastic diITcrence
in l('l'lllS of simplicity and efficiency，ぉ discussedin the next subsection.

Let lIS泊 sumcthat the algorithm we use for context-frcc pa.rsing is
bottom 叩 (possiblywith top-down predictions); it combines constit川cnts

ill lhc right hand sidc of a rule inlo a nc¥V constitucnt of thc left hand side.
Each co 附 illlmt has a feature structure which is a. tree (01' (¥1仇¥a.t叫t刷J心訓O印I刈Y
tions in a. rull.! arc interpreted to COllstruct a new fcature s叫trllctuげrefor the
ncw cOlIstitucnt f什romfeatu1'e slructures of 1'ight ha凶ndsidc cOl¥stit uents. In-
stcad of vicwing a. rulc itself as a feature st1'uctu1'e‘we interprct equations in
thc rulc onc by onc from the top to the bottom. Each cquation of the form，
(xn ...) = (xm ...)， is interpreted procedurally as foJlows.

1. Gct thc value of (xn ...).

2. G<，t the ¥'a.lue of (xm ...).

186 GLR PARSER/COMPILER VERSION 8・4

3. Unify these two values.

4. If successful， store the 1'esult in both (xn ...) and (xrn ...); If
unsuccessful， die.

Fo1' exarnple， consider the equation， (xl agr) = (x2 agr)， in figu1'e

A.2. Get the agreement valuc of NP (which may be a tree structu1'e or an
atom)， and get the agreernent value of VP. Unify them. If the unifica.tion
fails， forget about applying this rule. If the lInification returns a new vaJue

(which may be differeni fl'orn the ol'iginal agrccment v九lues))put the new
value into (xl agr) a.nd (x2 agr) as their new agreement values. Note that
jf the original agreernent values are identical， then we do not ha.ve to put
the new value. Also， observe that if one of the fcatures is not defined) then
it will actぉ asimple assignment of the value.

If a.n equation is of the fo1'm， (xn ...) = atom-value， then it is inter-
preted as follows.

1. Get the value of (xn ...).

2. Unify the value and the atom-value.

3. If successful， put the result to (xn ...) i If uIlsuccessfuJ， die.

Consider， for exarnple， the equation) (xl case) = nom) in figure A.2.
Get the case value ofNP， and unify it with nom. If the unification fails， forget
about applying this rule. If the unification 1'cturns a. new value (which may
bedi町erentfrom the original values if either or both of them are disjunciive))
put the new value to (xl case).

A.8.4 When Pseudo Unification Works Differently

Pseudo-uni五cationcan give results diITcrent from full-unification. The sim-
plest case takes place within a singJe ruJe， such as in自gureA.3.

Assume that the VP has no voice fcature bcforc the unification. Full-
unification would produce a feature structure whose xO feature contained
a voice feature with value active. Pseudo-unifi.cation， on the other hand，
would interpret the "(xO = x2)" equation in the following way: tree-unify
(xO) and x2) then sto1'e two sepa1'ate copies of the 1'esult in xO and x2. ln

that case， the tbird equation cOllld not aITect the xO feature， and the xO
feature of the result gra.ph wOllld contain any voice feature a.t a江

A more complicated case where pseudo unification behaves diffe1'ently
occurs between rule applications. Pseudo-unification， unJike full-uni自cation，

U8ER'S MANUAD

(5 <==> (NP VP)

(((xO subj) = xl)

(xO = x2)
((x2 voice) = active)))

Figllrc A.3: Counter Exa.mplc 1

187

f礼nJlotca.rry rc-cntrant. structurcs across rule applications. This behavior
can show up whcll moclcling complex agreemcnt phenonmena. Consider thc
rulcs in fi.gure 1¥.4.

Given the sentcllcc "dogs run"， we can apply the first two rules bot-
tom up to get featurc structures of categories N and V. The third rule can
thcn apply， fixing thc agrecment features of the N and V to sha.re the same
value. (If the sentcnce 1山]been "dogs runs"， thc unification would [ail).
Thc [ourth rule t.hcn applics， but fails under full unification -there can bc
only one gcndcr [e叫 III"C，bccausc there is only onc agreement feature. Unclcl"

pscudo-unification， howcvcr， thc third rulc bchavcs differently. The a.grcc-
mcnt features of thc N and V are uni抗ed，and two copies are stored， one
in thc agr feature of t.hc main structurc， and one in the agr feature of the
subjcct. When thc fourth rulc applies， it has no problem出 signingdiffcrent.
gcnders to the い~o differellt agreement fcatures.

Whilc there cxist rulcs like above that pscudo unification does not handle
propcrly， it docs not ncccssarily mean that pscudo unification cannot handlc
ccrt.ain linguistic phcnomena that fuJl unificat.ion can 11andle. Jn fact， thel'c
scem to always cxist S0111C way of rcwriting fules so that pseudo unification
ca.n behave as full unification. In the first cxamplc， jf we put the equation，
(x2 voice) = active， bcforc the equation， (xO = x2)， then it works with
no problem. For thc scconu exa.mple， there arc scvcral ways to rewrite thc
rules so that pscudo Ilnifica.lion rejects the sentencc.

A.8.5 Summary

In this section， wc descrihed pseudo unification， and its advantages and dis-
advantages were disctlssed. It is certainly the case tha.t pseudo-unific<~tjon
lacks the theorctical elcgancc of fuU-unification. Nevcrtheless， we feel that
pseudo unifica.tion is still at tractive for thosc whose primary concern is prac-
tical applications rathcr than theoretical elegancc.

188 GLR PARSERjCOMPILER VERSION 8・4

(N <==> (d 0 g s) ; RULE 1

(((xO root) = dog)
((xO agr number) = plural)

((xO agr mind) = animate)))

(V <==> (r u n) ; RULE 2

(((xO root) = run)
((xO agr number) = plural)))

(5 <==> (N V) ; RULE 3

((xO = x2)
((xO subj) = x1)
((xO agr) = (xl agr))))

(51 <==> (5) ; RULE 4

((xO = xl)

((xO agr gender) = fem)
((xO subj agr gender) = masc)))

Figure A.4: Counter Example IJ

USER'S MANUAL 189

Aft<'f a 11‘the c1lOic<' is Llte IIser's. PS1~UDO and FULL unification modes
can bc s('l('ctecl by setting th(' variable *unification-mode* to be PSEUDO
or FULL， r~sp(>ctivp.ly. '1. he d(>fault is PSEUDO.

190 GLR PARSER/COMPILER VERSION 8・4

，

Appendix B

GENKIT and TRANSKIT
Version 3-2: U ser冶 Manual

GEf¥1(円、 isa system that compiles a grammar into a sentence generation
program 1. Thc grammar is writもenin a formalism called Pseudo Unifica.tion
Grammar. Thc compiled grammar is a standard lisp file consisting of a bunch
of fUllction 山finitions(DEFUN's).

'I'H八NST¥ll'is a system that compiles a transformation rule into a lisp
progralll thal pcrforms tree-to・tree(frame-to・frameand f-str川 ureto f-
strllcturc) transform礼tiOll.Thc ru]e of the transformation can bc written
in thc samt' formalism as the GENKIT， i.e.， Pseudo Unification Grammar.

Gl~~KlT / '1、HANSKITrcleasc version 3・2is implemen ted in Common
Lisp ancl 110 winc10w graphics is uscd; thus the system is transportablc， in
principlc， to any machines tha.t support Common Lisp.

Thosc who al'c intel'cstecl in obtaining the softwarc dcscribcd in this
dOCIlIll(，l1t :;hould contact:

Radha Rao

susiness ~Ianager
Ccntcr for l¥fachinc Translation
Carnegic-Mellon University
Pittsburgh， PA15213， USA

rdr@nl.cs.cmu.edu

Sc¥'cral lllclllhcrs of C~IU Center for Machinc 'franslation havc made

IThis appcndix i~ bascd on i¥ p、lc¥'iou!'向l句ypublisheu tc吋du川n川licωa討Ir代t叩p仰or“tI岡周周圃J wo引加11刈I
ackno、叫、v汁.(明Igclhc co品uthorム.Eric Nyberg. who!'e contriblltiOlls arc includc河Iin lhi只appendix.

191

192 GENKIT AND TRANSKIT VERSION 3・2

contributions to the system development. Phil Franklin and Ron Grider have
developed earlier versions of this system. Eric Nyberg and Steve Morrisson
have maintained the earlicr versions of the system. The version 3-2 has been
written by Masaru Tomita. Some part of this document is written by Ron
Grider and Steve Morrisson.

Funding for this project is provided by several private institutions and
governmental agencies in the United States and Japan.

U.WJW8 MANUAL 193

B.1 Getting Started

'f'hc ι'cnemlizcd LR PαrserjCompiler t刷、sion8・イ(01' late1') includes GENKIT
andγRJ¥NSKIT. Thus， Lo usc GENKIT， load the generalized LR Parser jcompiler.

B.1.1 Basic Functions of GENKIT

(COMPGENβle-name)

COMPGEN takcs a filc namc (e.g. "gra1") and compiles the五lewith extension

".gra" (c.g. "g川 .gr為")， produclng a file with the suffix "_gen.lisp" (e.g.
"gl'al gen.lisp"). The" _gcn.lisp" is a standard lisp program file; it can be

sim ply loaded using the LOAD function. The "_gen.lisp"自lecan be compiled

inlo machinc code using the COMPILE-FILE function. The "_gen.lisp"五leis

ftlllolllaLict¥.lly load cach Lime you call COMPGEN function.

(GENERATOR f-stntctu1'e)

J¥fter loading the "_gen"五le，a sentence can be generated using the top level

function callcd GENERATOR， that takes a f-structure of the sentence being

gcnerated.
(TR string)

This function is uscd to perform translation， interfacing to the Generalized
しHP九rserjCompilcr.The sentence" string" is parsed and the parser's output

(a. f-structurc) is fed to the function GENERATOR.

B.1.2 Basic Functions of TRANSKIT

(COMPTRF Jilc-ηαme)

COMPTRF Lakes a. file name (e.g. "sem-map") and compiles the file with exten-
sion ".gぱ， (c.g. ')se肝 map.gぱ')， produci時 afile with the suffix " _trf.lisp".
Thc " _Lrf.lisp" is a， siandarc1]jsp program file; it can be simply loaded using

Lhe LOAD function. The" _trf.lisp"五lecan be compiled into machine code

llsing thc COMPILE-FILE function. The "_trf.lisp"抗leis automatically load

cach time YOll call COMPTRF function.

194 GENKIT AND TRANSKIT VERSION 3-2

(<DEC> <==> (<NP> <VP>)
(((xl case) = nom)

((x2 form) =c finite)

(*OR*
(((x2 :time) = present)

((xl agr) = (x2 agr)))

(((x2 :time = past)))

(xO = x2)

((xO subj) = xl)

((xO passive) =ー)))

Figure B.1: A Grammar Rule for Parsing

B.2 Writing a Generation Grammar

The grammarformalism for GENKIT is called Pseudo Unifioαtion Grammrt1'，

which is the same formalismぉ inthe Generalized LR ParserjCompiler. The

Pseudo Uni五cationGrammar formalism resembles that of PATR-II. The

following rule is an example Pseudo Unification Grammar rule for parsing

(not for generation). Each rule consists of a context-free phrase structure

description and a cluster of pseudo equαtions. The non-terminals in the

phrase structure part of the rule are referenced in the constraint equations

as xO. . . xn， where xO is the non-terminal in the left hand side (here， <DEC>)
and xn is the n-th non-terminal in the right hand side (here， xl represents

<NP> and x2 represents <vP>). The pseudo equations are used to check

certain attribute values， such as verb form and perSOJ1 agreement， and to
constructみ f-structure.

In parsing， these rules are used to combine one or more constituents
into a higher constituent. In gener~tion， on the other hand， these rules

are used to disassemble a consもituent(left hand side) into several lowel

constituents (right hand side). We need a different set of pseudo equations

for generation. It is possible and interesting to derive pselldo eqllations

for generation automatical1y from those for parsing， but it is beyond the

scope of this document. The following rule is the generation rule which

corresponds to B.1. Descriptions of pseudo equations shall be prescnted

later in this document. GENKIT takes this kind of grammar rules， and
generates a LISP program that implements a run-time sentence generation.

U8J.;R'8 MANUAL

(<OEC> <==> (<NP> <VP>)
(((xO passive) =ー)

(xl == (xO subj))
(x2 = xO)

(*OR*
(((x2 :time) = present)
((xl agr) = (x2 agr)))

(((x2 :time = past)))

((x2 form) = finite)
((xl case) = nom)))

Figure B.2: A Grammar R111e for Generation

195

The syntactic structures produced by the parser and the syntactic structures
accepted as input by the gener叫orare identical in form. These structures

are called j-stru.ctures. Here is an example of the f・structurefor the English

sentence“1 have a pain in my head": The f-structure captures the constituent
structure of the 凶 era肌 e，the leω依x以t
the tense and agr陀eemen川tfeatures of the c∞ons“凶tituent匂，swheωre app卯ropria叫te.

The process of generating a surface 叫 erance(i.c.， a山 i時 ofwords)
from a syntactic f-structure is basically the reverse of parsing. In the sample
grammar rule， a constraint eq l1ation places the information from the <NP>

inside thc subject of the <OEC> during parsing; in gener叫ion，the f・structure
for a <OEC> will be broken up into its constituent parts， each of which will
be generated by further recursive applications of grammar r111es. ln this

case， the embeddcd f-structure that fills the subjcct slot of the declarative
f-structure will be used a.s input to aU of the rules that can possibly generate
an <NP>. Thc generator follows a top-down， depもh・firststrategy for applying

rules during gcneration. If the current search pa.th fails， the genera.tor backs
u P to the next applicable rule. Th is process contin ues until a successful
generation is found， or until all of the rules are exhausted.

The current implemel1Lation of the generator compiler involves crea.ting
a set of LISP f¥lnctions which represents thc grammar of the target language.

Each function， GG-X (where X is any sy川acticcategory)， implcmen ts all
rewritc rules from the grammar whose left hand symbol is <X>. When GG-X

is callcd with tlle f・structurerepresentation of a source-Ianguage string， if
that string can he gcnerated by expansion of the non-terminal くわ， then

196

((root have)
(time present)

(subject ((root 1)
(agr lsg)))

(object ((root pain)

GENKIT AND TRANSIGT VERSION 3-2

(det ((root a)))

(ppadjunct ((root head)

(agr 3sg))))

(poss ((root my)))
(prep ((root in)))
(agr 3sg)))

Figure B.3: A Sample F-structure

GG-X returns the representative target-language string.

The process of constructing "GG-" functions consists of reading rewrite
rules from the五lecontaining the target-language grammar， and adjusting
the appropriate "GG-" function after ea.ch rule is read. The flrst time that a
rewrite rule for <X> is read， the basic shell of the GG-X function is created，
and the LISP code implementing that rule is added， as a clause of OR (the
argument passed to GG-X， xO， is to be an f-structure):

(defun GG-X (xO)

(OR **LISP code for first rewrite rule**))

This new function is stored in a list with the other "GG-" functions.

Each time a rewrite rule for <X> is read from the grammar五le，function
GG-X is retrieved from this list， and the code for the new rule is added as
the last argument to the OR predicate. The finished version of GG-X is of
the following form:

(defun GG-X (xO)

(OR ホ*LISPcode for the first rewrite rule添*

本*LISPcode for the second rewrite rule**

常本LISPcode for the last rewrite rule添*))

USBR'S MANUAL 197 198 GENKIT AND TRANSKIT VERSION 3-2

Each rule is in the following form. B.3 Writing TRANSKIT rules

(1Iω勾 m加lα1'1'0ωrh.c;・symbolslisl-of-pseudo-efjuations)
Thc Jcft hand sidc， Ihs-symbol， m川 bca non-terminal symbol (e.g.くs>，

<NP>). Whcn thcre arc morc than one 1山 withthe same left hand side

symbol， Morc prcfcrred rules should be present五rst，ぉruleswill be applied

from the top to bottom at l'untime.

Thcα1'1'0ωhas to bc eithcr ==> or…>. If ==> is used， it will generate a

spacc bctwccn thc right hancl side constituents. If -ー>1S used， no space will
bc gencrated.

The right hand symbol in 1'hs-symbols must be one of the followIllg tluee:

• Non-Lerminal symbol-the system wiU call its GG function recursively.

.Each transformation rule is in the following form.

(gωlobj <== sou1'ceobj list-of-pseudo-equαtions)
The goal object name， goαlobj， should be some appropriate name describ-

ing the object which the rule is supposed to produce.

The source object name， sou1'ce， should be some appropriate name de-
scribing the object from which the rule is supposed to transform.

The rule body， list-of-pseudo-eqttαtions， is a list of pseudo equations writ-
ten in exactly the same way as the Pseudo Un1fication Grammar in GENKIT.

goαlobj 1S represented as "xO"， and sou1'ceobj is represented as "xl". Pseudo
equaitons are described in detail in section B.4.

The COMPTRF function compiles each rule in this form and produces a

lisp program whose name is "goalobj-from-sou7'Ceob)". For example， the
following transformation rule:

• Tcrminal symbol -the systcm will gencrate the terminal symbol.

• Wild card symbol ('1.)ーthesystem will generaもea string (or a symbol)
in its value slot.

The fourth element， list-of-pseudo-equαtions，1s described in section B.4.

(deep-sem <== eng-sem

((xO = xl)

(*EOR*
(((xl cfname) =ホutilize)

(*OR*
(((xl obj cfname) = *bath)

((xO cfname) <= '*bathe-action))

(((xl obj cfname) = *shower)

((xO cfname) <= *shower-action)))

((xO obj) = *REMOVE*))
(((xl cfname) = *....

、‘a
J

、、，，，、E

，，

will be compiled into the following function de抗nition:

(defun deep-sem-from巴 eng-sem(eng-sem)

. .{¥it some serious lisp code).....)

and this function definition will be written in a" _trf.lisp" file. After loading
the)) _trf.lisp

another as in the following e似xa剖.mple:e広:

(deep-sem-from-eng-sem '((cfname *utilize)

(obj ((cfname *bath)))

(agent ((cfname第person)

U8ER'8 MANUAL

(n訓 ejohn))))

returns ((cfname *bathe-action)
(agent ((cfname添person)

(n訓 ejohn))))

199
200 GENKIT AND TRANSKIT VERSION 3-2

B.4 Pseudo Equations

This section describes pseudo equations of the Pseudo Unification Grammar
used in GENKIT and TRANSKIT， which is the same as the one used in the
Generalized LR Parser / Compiler.

B.4.1 Basic Pseudo Equations

Pseudo Unification， =

pαth = vαl
Get a value from path， unify it with val， and assign the unifted value back
to Pαth. If the uni五cationfails， this equation fails. If the value of pαth is
undefined， this equation behaves like a simple assignment. If pαth has a
value， then this equation behaves like a test statement.

pαthl = pαth2
Get values from pαthl and pαth2， unify them， and assign the unified value
back to pαthl and pαth2. If the uni五cationfails， this equation fails. If
both pαthl and pαth2 have a value， then this equation behaves like a test

statement. If the value of pathl is not deftned， this equation behaves like a
simple assignment.

Overwrite Assignment， <=

pαth <=υαl
Assign vα1 to the slot pαth. If pωhl is already dcfined， thc old value is simply
overwritten.

pαthl <= pαth2

Get a value from path2， and a.ssign the value to pαthl. If pαthl is already
defined， the old va)ue is simply overwritten.

pαth <= lisp-function-oαII
Evaluate lisp-function・cαll，and assign the returned value to pαth. If pαthl
is already de五ned，the old value is simply overwritten. lisp-function-cαII can
be an arbitrary lisp code， as long as all functions called in lisp-function-oαII
are deftned. A path can be used as a special function that returns a value

of the slot.

USLU'S i'y/ANrAl， 201

H(・ll10valAssignlllent， ==

1"1/11 J == !J(/llt2
C:el a valll(~ frolll 1)(Llh2， assign the value to pαth1， and remove the value of
7Jfl1h2 (assif.;1I lIil to l'αIh2). Jf a value already exists in 1)αIh1， thcn the new
vallle i:; t1l1ifif'd witlt the old value. If the unification fails， then this cquation
fa ils.

Nり lispftlJl(・fi011 call 1)(， wl'iLten in thc right hand side.

Appcnd Mllltipl(' Vallle， >

]Jalh I > jJfll1l2
C:cl n v<llm' frolll 1'(/tI12， and assign the value to pathl. If a valuc already

exisls in fJfLthl， thc new value is appended to the old value. Th(' rp.sulting

valuc ()f])(11111 is n multiple value.

Pop M ultiplc Value， <

1)αlhl < 1)αth2
The valuc of 1X1.lh2 should he a multiple value. The first elemcnt of the

Jllultiple valllc is popped off， and assign the value to pathl. If path1 already
ha.<;司 valuc、unifyth<， ncw value with the old value. Jf path2 is undefined，
this eqllation fai1s.

i<DEFINEDホ and本UNDEFINED*

])(1111 = *DEFINED:t

C'hcrk if th<、valucof 1)(Llh is defined. If undefLned， then this e(]l1ation fails.

If dcfincd， do nothing・

Constraint Equations， =c

pαlh =c l'a/

This eqllatioll is thc same as Pseudo Unification

1m1h = ml c.xccpt if 1川this not. already defined 、itfails. ThllS， the constraint
cquatioll is roughly the salUe as the fol1owing sequence of eqllations.

1川 Ih= "'DEFINED本

JUllh = vαl

202 GENI<IT AND TRANSKIT VERSION 3-2

Removing Values， *REHOVE*

pαth = *REMOVE*

This equation removes the value in 1)αth， and thc path becomes undefined.

B.4.2 Special Forms

Disjunctive Equations， *OR*

(*OR本 list-of-equαtionslist-of..equαtions)
Al1 lists of equations are evaluated disjunctively. This is an inclusive OR，
as oppose to exclusive ORj Even if one of thc lists of equations is evaluated

successful1y， the rest of lists wil1 be also evaluatcd anyway.

Exclusive OR， *EOR本

(*EOR* list..of..equαtions list..oJ二equαtions....)
This is the same as disjunctive equations寧OR*，except an exclusive OR is
used. That is， as soon as one of the element is evaluated successful1y， the
rest of elements wil1 be ignored.

Case Statement， *CASE*

(*CASE* Pαth (keyl equαtionl・1equαtionl..2…) (l{ey2 equαtion2..1…)

(J(ey3 equαtion3-1))
The *CASE* statement first gets the value in pαth. The value 1s then com-

pared with I<eyl， I<ey2，…・， and as soon as the va)ue is eq to some key， its
rest of equations are evaluatcd. This is similar to Common Lisp case form，
except 1<cys cannot be a list of objects. Examp)e:

(本CASE*(xl root)

(have)

(be)

(take))

(*CASE* lisp .. junction-cαII (key1 cquationl..l equationl・2…) (l(ey2 equαtio1l2・
1 ...) (l(ey3 equαtion3-1))
One can write an arbitrary lisp function call in stead of a path.

USBn'8 MANUAL

Tcst with Arbitrary LISP Function， *TEST*

(*TEST水 lis]J-ftmclioηィαll)

203

Thc lisp-funf'f.ion-ωII is evaluated， and if the function returns nil， it fails.

Jf tllP function r('turns a non-Jlil value， do nothing. A path can be used as

spccial fllnction that returns a value of the slot. Thus，
(本TEST*7)αlh)

has thc s礼mceffccts as

palh = *DEFINEDホ

and

(*TEST本 (NOTPαlh))

has thc same cITccts as

pαlh = *UNDEFINED*

Recursive Evaluation of Equations， *INTERPRET*

(取INTERPRET*Pαth)

The *INTERPRETホstatementfirst gets a value from pαth. The value of pαlh

must be a valid 11st of equations. Those equations are then recurs1vely eval-
uatcd. This *INTERPRET* statement resembles the "eval" function in Lisp.

(*INTERPRET* lisp-function-call)

First， lisp-ftmrtion-cαli is evaluated. The lisp-function-cαII must reLurn a
valid list of eq uations. Those equa.tions are then eva.lua.ied recursively.

B.4.3 Special Values

Disjunctive Value， *OR*

(*OR*υαl vαl…)

Unification of t.wo disjunciive values is sct interaction. For example， (unify
， (本OR*a b c d) '(*OR* b d e f)) is (*OR* b d).

Ncgative Value，牢NOT*

(*NOT* vα1 vαl…)

U ni fica.tion of two negaiive values is set union. For example， (unify ，(*NOT本

a b c d) '(*NOT* b d e f)) is (本NOT*a b c d e f).

UniIica.tion of a disjunctive va1ue and a negative va.llle is set sllbstruc-

iion. For cxamplc雪 (unify'(*OR* a b c d) '(*NOT* b d e f)) is (*OR*
a c).

204

Multiple Values， *MULTIPLE*

(*MULTIPLE* vαl vαl ...)

GENIGT AND TRANSIGT VERSION 3-2

Unification of two multiple va1ues is append.
When uni首edwith a value， each element is uni五edwith a value. For ex-

ample， (unify '(*MULTIPLE* a b c d b d e f) 'd) is (*MULTIPLE* d

d) .

When nni五edwith a disjunctive value， the result is a disjunction of

multiple values. For example， (unify ， (*MULTIPLE* a b c d b d e f)

， (*OR* b d e f g))) (*OR* (*MULTIPLE* b b) (*MULTIPLE* d d) e f).

User Defined special Values， *user-defined*

The user ca.n define his own specia.l va.lues. An uni自ca.tionfunction with the

na.me UNIFY*user-deβnOO* must be defined. The function should take two

a.rguments， and returns the new va1ue or本FAIL* if the uni五cationfails. For

exa.mple， to define本ISA*va.lue，

(defun unify*isa* (x y)

(cond ((isa-p x y) x)

((isa-p y x) y)

(t '*FAIL吋))

where 1sa-p is some function to look up the is-a relation of two objects

in a is-a. hieraIchy.

B.5 Compiling a Grammar in Multiple Files

The user can compile sub files with COMPGEN and load ihem with LOAD scp-

a.ra.tely， a.s long as the following conditions are satisfied.

• A set of rules with the sa.me lefもha.ndside musi be in a single file. No

two rules in two different files must have the same lcft ha.ncl side.

• The system assumes that the last-compiled負leis山ernain gra.rnrna.r

自le.

us日H'8M!I VUAL

B.6 Samplc GENKIT Grammar

" ，
;;; This a test generation gr剖nmarby Steve 11orrisson.

(<sもart>竺=> (<dec> <period>)

(((xl mood) = imperative)

(xl = xO)))

、、，，，d

0

.TE-r

白》P
&

，，‘、、，，、
E
J

.、
B
J

-，
E

、

、，，d

0

.、4r

e

p
・
〆、，，‘、

、‘，，、‘，，.、，
J

1
J

・0

〉

u
p
s

v

、J

J

、
n
u

、，，
x

、J

〉

r
t
o

p

x

n
=

J

、

=

=

，，，、

'A
司

4

〉

x

x

z

，t
r
t

z

，t

、，，F』e

A
U

J

、
，，‘、

、‘，，，、‘，，，+U c

n

u

.、.
J

、JA
U

〉

a

p
・
pa

p

・p
・、J

J

、
、
，
J

n
u

、J

〉

X
A
U

D
A
r
k
x

"・
J

、〆、

z

，，‘、
内

4

4

i

〉

X

X

=

f、
，
t

=
r
k

P

H
u
，、〆P

.，

v

.，，、

-
s

，E
、

、‘』J、‘，，，+しc

n

u

、‘，，.、
I
J

、〆

A
U

p

a

v
v

d

d

a

a

1

J

J

、
、
，
，
，

n
v

、J

〉

x
n
u

p

(

X

V

，
、
〆
、
=

，，‘、
内

4

1
ム

、〆

V

A

V

A

=
r
t
、
rt
、

=
〆
t

、

、，，p
‘

V

J

、
，，‘、

、、，，，、.
J

+lu c

e

.、，J

1
J

・
0

、J
n
v

n
r
、
，
，

n

O

)

〆、

V
A

、BJ
，E、n
u

〉

X

v
=

〆
、
=
=

，，‘、
内

4

4

A

、〆

V

A

V

A

=
r
t
r
k

=
r
k

、〆nr
V

J

、
，，‘、

(<vp> ==> (<v>)

((xl = xO)))

(<v> ==> ('/.)

(((xl value) <= (morph-root-verb (xO)))))

;;; NP

(<np> ==> (<prep> <np)

((x2 < (xO ppadjunct))

205 206 GENT<JT AND TRANSKIT ¥fERSION 3-2

(xl = xO)))

(<np> ==> (<nl>)

((xl = xO)))

(<nl> ==> (<det> <nl>)

((xl == (xO det))

(x2 = xO)))

(<nl> ==> (<adjP> <nl>)

((xl < (xO adjadjunct))

(x2 = xO)))

、‘，，、、，，，+LV c

n

u

.、Ed
、JA
U

〉

a
p
p・
p
p
)

〆
、
、
，
J

n
v

、.J

〉

X

0

1

(

x

n

〆
、
〆
、
=

，，‘、

2

1

〉

X

X

=
，
z
、，
E

、

=
r
k

、〆4i

n

〆、，a
、

(<nl> ==> (<n>)

((xl = xO)))

(<n> ==> ('/.)

(((xl value) <= (morph-root-noun (xO root) (xO count)))))

、‘，，
e

、、，，，

、、J
，、
I
J

、，J

、，nr、，，

p
e
)

n
r
・J

〈

n
y
h
u。

、r
n
u

p
x
o

e
f
k
x

r

f

t

n
r
=

J

、

=

=

，，‘、
4
i
門

4

〉

X

X

=

r
・、
f
、

z
r
t

、〆p
・
pゐ

J

、
，，‘、

(<prep> ==> ('/.)

(((xl value) = (xO root))))

(<det> ==> ('/.)

(((xl value) = (xO root))))

Bibliography

[Aho and Ullman， 1972] A. V. Aho and J. D. Ullman. The Theory of Pα'.S-
iny， 7hmsl“lum and Com]Jiling， volumc II. Prcnticc-IIall， Englewood
81 i [s， N. .J.， 1972.

[八hoand Ullman， 1977J A. V. Aho and J. D. Ullman. p，'inciples of Com-
TJiler Dcsign. Addison Wesley， 1977.

[natcs and Lavic， 1991] J. Bates and A. Lavie. Recognizing Substrings of

LR(k) Languages in Linear Time. Technioαl Report CMU-CS-91・188，
199] .

[Balcs and La.vie， J 992] .J. Bates and A. Lavie. Recognizing Substrings of

LR(k) Languagcs in Linear Time. 1n P1'oceedings of POPL'92， Albu-
qllt'rqlle， NM， 1992. ACM press.

[Urcsnan and 1<仰lan，L 982] J. Bresna.n a.nd R. Kapla.n. Lexicalイunctio川 l

gra.mmar: ^ formal syst<'l11 for gra.mmatical representa.tion. Jn .J. Bresnan，
cditor， Th(' M(，lItal Rcp7"<'senl(Ltion 01 C，制 nmαticαIRclαtions， pa.gcs pp.
173 28しMl'l'Prcss， Cambl・idgc，Massachusetts， 1982.

IBuo， in pr<'para.t.ion] F. D. Buo. A lcarnable con問 ctionistpa.rser tha.t out-

puts f. strllclllrcs (working titlc). Master's thesis， U nivel叫 yof I<arlsruhe，
in preparalion.

[C'arboncll and llaye人 198，11.J. G. Carbonell a吋 P..J. lIayes. Rccovery

slratcgics for parsing extragrammaticallanguage. Tcchnical Rcport CMU-

CS 8.1・107、CompllterSciellce Department、 Carnegie. ~1cllon University，
Fcb 198・1.

[Carboncll and Tomita， 19S，')1 Jaime G. Carbonell and Masaru Tomita. Ne¥'，，'

approachcs lo machine translation. Technical reporl， School of Computcr
Sciencc， Carnegic "Icllon U lli¥'crsity. 1985.

207

208 Bibliography

[Cα}
Using a Uni五fica叫ti山onGrammar. In Procccdi71gs of IEEE lnternαtionα1 Con-

fe陀 nceon Acoustics， Spcechαt1(1 Signα1 P1'OccssingρCASSP'89)， pages
727-730， 1989.

[Chow etαl.，1987] Y. Chow， M. Dunham， O. Kimball， M. Krasner，
G. Kubala， J. Makhoul， S. Roucos， and R. Schwartz. BYBLOS: The BBN

continuous speech recognition systcm. Tn Proceedings olIEEE Internα-

tionα1 Conference on ACOtLStics， Speechαnd Sign.al P1'Ocessing (ICASSp-87)，
pages 89-92， Dallas， 1987.

[Chvむal，1983] VaSek Chvatal. Linωr P1'ogmmming， chapter 6. 1983.

[Cole et al.， 1983] R. Cole， R. Stern， M. Phillips， S. Brill， P. Specker， and
A. Pilant. Feature-based speakcr independcnt recognition of english let-

ters. In Proceedings of IEEE Intemαtional Confe陀 nceon Aco1Lstics，
Speechαnd Signαl Processing (ICASSP・83)，pages 731-783， 1983.

[Earley， 1970] J. Earley. An efficicnt context-frec parsing algorithm. Com-

municαtion 01 ACA久6(8):94102， February 1970.

[Fain etα1.，1985] J. Fain， J.G. Carbonell， P. lIayes， and S. Minton. MUL-

TIPAR: A robust entity-oriented parser. Tn Proceedings of the Seventh

Cognitive Science Society Conferencc， pages 110 119， Jrvine， Calif.， 1985.

[Fu a.nd Booth， 1975] 1<. S. Fu and T. 1. nooth. G印刷naticalin ference:

Introduction and survey - part ii. IE8E Trans on Sys'J Man and Cyber，
SMC-5:409-423， 1975.

[Fujisaki， 1984] T. Fujisald. An approach to slochastic parsi時・ ToProcceι
ings of COLING84， 1984.

[Ha日 za.wa.et α1.， 1990] T. JIanazawa.， K. Kita.， S. Nぜakar叩肌打mu山I

and K. Shika剖.110. ATR lIM M-LR continuolls spccch recognition system. In

Proceedings of IEEE Jnternαtionαl Confercnce on AcotLstics， Speech αnd
Signα1 Processing (ICASSP・90)，Albuq附 'quc，N. Mex.， 1990.

[Itakura， 1975] F. 1takura. Minimum prediction residual principle applied

to speech recognition. IEEE Transflcttons on Acousltcs， Speechαnd Signal

Processing， 23(1):67-72， 1975.

[Jain，1991] A.J. Jain. Parsing complex scntences with structured connec・

tionist networks. NetLrfll Computation， 3: 11 0 120， 1991.

209

[.J(Jh IlS()J1， J!)7'，)・、.C. .Johnson. Yacc yet another compilcr compiler.ぐn・ch-
lIical Heporl (、I.'R;$2， Bell Laboratories， 1975.

似討Itt，lI11f・11，I ~)8 (j 1 L. Kλrttuncn. D-patr: A developmc川 environmcntfor

IIl1ifI<，uiOJl has('c! grammars. In 12th International Gonferencc 011 Gom・

7Jf1l(/liOTW{ {，711グtllstics.T3onn， 1986.

[1くれSi't 111 i， 1印9(り;5引1'(ド、'.J<aω似制l凶山削s幻制a川n川I

g(ο川3川riL川Lh川11川11fo】I刊('刀川O削I日川l比Lμ{‘ xt fI'N.' 1凶ar釧，r川nguagcωs.Technical report， Air Forcc Cambridge
H('S(~é\J・ <:h Laborat.oI'Y， I3cdford， MA， 1965.

[1七恥 (98'11M. ((ely. Functiona.l unification grammar: A fol'll叫ismfor ma-

ch i 11(' tra IIslation. In 10th lnternαtionα{ Gonfe7-e'nc(， on Gorn]Jtttαtional

Lingtti.'lli行S，P礼広(.'s75 78， Sもanford，July 1984.

[Kipal'sky， 1985] C. Kiparsky. Lfg manual. Technical report， Xerox Palo
Alto Rcsea.rch Cenlcr， 1985.

[Kila ct (lし1989斗K.I<ita， T. Kawabata， and H. Saito. lIMM Continu-

ous Spccch Recognition Using Predictive LR Parsing. In Proccedings of
11弘EJnlc1'1lαtional Gonference on AcotLstics， Speech αnd Sign(" P，'ocess-
mg (ICJIぷ引っ， 1989.

[T¥ila d al.， 1989bJ K. Kita， T. Kawabata， and II. Saito. TJMM co川 Hト

11011日 spcC'rhrccogni tion using predictive lr parsing. 1 n Procc('(lings of
l九Fι IntcnwtionalConfe陀 nceon Acoustics， Specch αnd Signal Process-
Ulfj (IĈSSP 89)， pagcs 53 56， Glasgow， N. Mcx.， 1989.

[1くitallo('/ (1[.， 1989J 1JiJ'oaki Kita.no， Teruko MiLamt川~，みnd Ma.sa，J'u
J'omila. Mas1iivcly parallcl parsing in PhiDM Dialog: IntegraLecl archiLcc-

LuJ'(， fOI・pal'singSI問。c11inpuLs. ln 1st Intemαtional Workshop on Pαrsing
li ('/mυlogic:s， 1989.

!1¥uhala d (11・， 19~81 G. Kubala， Y. Chow， '?vI. Derr， M. Fcng， O. l<imball，
.1. ~[akholl1. P Pricc， J. Rohlicek， S. Roucos， R. SchwarLz， and .J. Van・

d~grift. Conlinuous spcech recognition results of the BYsLOS syslem
01¥ the D九RPALOOO・wordresource management database. In P1'Occcd-
il/!I$ of mF;ん11I(r.nwtionalConference on Acotlstic凡 S]X'cchand Signal

I'mr:c:.-;:-in!J (ICASSP明).pagcs 291-294、?¥ewYork， 1988.

[1油 orato巾s，1989J Al R Interp附 ingTelepho町 RcscarchLabo川 ories.
Research e¥t'tivities of thc naturallanguage understanding depart.ment and

210 Bibliography

the knowledge and data base department for 1988. Tcchnical Report TR
1-0070， ATR Interpreting Telephony Research Laboratories， Tokyo， 1989.

[Lang， 1974] B. Lang. Delerministic te舵ωchn川l
de叫te町rmin巾us坑ti比cpa紅rs印ers.ln G. Goos and J. lIartmanis， editors， Proceedings
of 2nd Colloquium on A utomata， Lαnguαgesαnd Progmmming. Springer-

Verlag Berlin， 1974. Lecture Notes in Computer Science (14)

!Lavie and Tomita， 1993斗AlonLavie and Masaru Tomita. EfficienL gencr-
allzed LR parsing of word lattices. Jn Tlよかが Bαr-llαn Symposium on thc
Foundαtion of Artificiα1 Intelligence (BISFAI-99)， 1s日。1，1993.

!Lavie and Tomita， 1993bJ Alon Lavie and Masaru Tomita. E部cientgener-
alized LR parsing of word lattices. .Joumal of Mathemαticsαnd Artificiαl

Intelligence， 1993. to appear.

[Lavie and Tomita， 1993c] Alon Lavie and Masaru Tomita. GLR* -an cffi-
cient noise-skipping parsing algorithm for context-free grammars. In Third
Intematioηα1 Workshop on Pαrsi吋 TechnologiesρWPT93)，Tilburg and
Belgium， 1993.

[Lea， 1980] W. Lea， editor. Trends in Speech Recognition. Prentice-Hall，
1980.

[Lee， 19881 K.-F. Lee. Lαrge-Vocabulαry Speαker'・JndependentContinttotLs
Speech Recognition:・TheSphinx System. PhD Lhesis， SchooJ of Computer
Science， Carnegie Mellon University， Pittsburgh， Pa.， J 988.

[Lesscr etα1.， 1975] V. Lesser， R. Fennell， L. Erman， and R. Reddy. The
hearsay-ii speech understanding system. lEEE 7十αnsαctions0ηA coustic.s，
Speechαηd Signα1 Proces.sing， 23(1)，1975.

[Lowerre and Reωy， 1980凶]s. Lowe飢rre

r陀ec∞ogni比凶t“10叩ns可ys吋tem.1n W. Lea， editor， T:吋nds in Speech Recognition， pagcs
340-360. Prentice-IIall， 1980.

[Lowerre， 1976] B. Lower陀 TheIJARPY Speech Recognition System. PhD
thesis， School of Computer Science， Carnegie Mellon University， Pitts-
burgh， Pa.. 1976.

[Morii et a1.， 1985] S. Morii， J{. Niyada， S. Fujii， and M. Hoshimi. Large
vocabu1ary speaker-independenl japanese speech recognition system. 1n

211

P1"f)(wdiTlgs of I r，，!'，E Intr7'r/olional Confc1Y'nce on Acotlstics， Speechαnd

治fJ1wlProc('肘 zng(J C:Assp~ 8!)) ， pages 866 869， Tampa， Fla.， 1985.

[r、恒 alld'J()mita， 19fJ lJ Sce-I¥io時 Ngand M硝 aru1'omita. Probabilistic LR

parsing for gcncral context frc(' grammars. ln 2nd Inηlt εe1'、Tηl αωtiωon αω1 Wo併r先旬ksl:ωBωop3

o削F川tJ>々勺rα灯4げrs幻t吋 η rhよ川11οolo句'gi必es(ρIWJρP勺T、'91釘Iリj人， Cancl

I仰川N阿irc代刊rel1引刊川‘吋川叶11川1汁i川 r唱.芭get t.αltl. ，パ19卯91リ1Scr屯gc。ωi Nire叩nbur屯g，.Jaime G. Carbonell， Masaru
Tornita， and Ken Goodm九n./(nowledge-IJωed Mαchine Tr，αnslαtion. Mor-

gan J(au[mallll PubJishers， J991.

[Ostt'rholtz et (1[.， 1992J L. OstC'rholtz， A. ~Ic :-lair ， 1. Rogina， H. Saito，

'1'. Sloboda， .J. TcbeJskis， A. Waibcl， and M. Woszczyna. Testing gen-

Na.lity in JANUS: a multi JinguaJ speech to speech translation system. 1n

rCASSP92， voJulTle 1， pages 209 212， 1992.

IPercira， 19851 F. c. N. Percira. A structu時 sharingrepresentation for

unification-bascd grammar [ormalisrns. 1n 23rd Annual Meeting of the

A .'isociation for G'omp'l.ltαtional Linguistics， pages 137-144， Chicago， July
1985.

[Polzin、inpreparation) 1'.S. Polzin. PronouIl resolution. interaction of syn-

tactI¥ andsemantic information in conncctionist pa.rsing. Master's thcsis，

C礼l・ncgieMelloll University， Dcpa.rtmcnt of Philosophy， Cornputational
Lingllistics， in pl'cparation.

[Ra.bincr etα1.， 1988] L. Rabiner， J. Wilpon， and F. Soong. High perfor-

mal1('C connected digit recognition using hidden rnarkov mode]s. In Pro-

ccrdings of IEI')l~ Internαlioua[Conferen('e 0η Acoustics， Speechαnd Sig-

11(11 P附 ω叩19(JcAssr-88)， pagcs 1214 1225， New York， 1988.

[Rekcrs and 1<00川 1991]J. Rcke凶 andW. I<oorn・ Su山b叫stringPa即

i¥rbi討itいr乱澗a別rγyCOI1川l此tcxtF、~rcc Gr、乱加a似ml口mar凶s.InPnο ccrdirη19S of Se('01ηlGぱdJ.ηte7マ判1α lバi07ηZ凶αl

Wο01'I.:shω0]) on p~肘tげげ1'~叶s叩iれ11り9 Te町dmolo句gi必esム，pagcs 218 224， Cancun， Mexico， 1991.

[Saito and Tomitaぅ 1988a]H. Saito a.nd M. Tomita. Parsing Noisy Scn-

tCI¥CCS・InPr.οcccdmgs of 12th 11ltemαtionα1 Conference 071 Computαtional

l.inYUlstics (COUNG)， Budapcst， Hung札ry，1988.

[Saito and 1'01山 a、1988b)Hiroaki Saito and Masaru 1'omita. Parsing noisy

scntenccs. Jn 12th Jnlcmalio7lal COllfr.町川ceon Com]>ulatlOnal Linguistics

(CO/.ING8S)、Buda.pest.1988.

212 Bibliography

[Sait.o， 1990) H. Saito. Bi-directional LR Pa凶 ngfrorn an A nchor Word for

Speech Recognition. In Proceedings of 13th Intemαtional Confe陀 nceon

Computαtional Linguistics (COI，ING)， Ilelsinki， Finland， 1990

[Senc 汀，1992討]S. Sencf町f.A relaxa叫山tionrnetho町ωdfor u凶nde1'standingsponta机neou

s叩pe旬cchu “ e匂ra剖制ncωes.In Proceedings of DARPA Speech and Nα turaL L α ngtt α ge

Workshop， pages 299-304， February 1992.

[Shiebcl'， 1984] S. M. Shiebe1'. The design of a compute1' language fo1' lin-

guistic information. 1n 10th Jnternαtioll(，l Confe陀 ηceon Computαlionαl

Linguistics， pages 362-366， Stanford， July 1984.

[Shieber， 1985) S. M. Shieber. Using resLriction to extend parsing必gorithms

for complex-feature-based formalisrns. In 231'([A nnuα1 Meeting of the As-

sociation for ComputαtionaL Linguistics， pages 145 152， Chicago， J uly

1985.

[Shieber， 1986) S. M. Shieber. AηIntroduction to Unificαtion Approaches

to 07'.αmmαr. CSL1 Lecture Notes. Cenもerfo1' the Study of Language and

lnformation， 1986.

[Stal1ard and Bobrow， 1992) D. Stallard and R. Bobrow. Fragrnent process-

ing in the DELPIII system. 1n Proαedings of DARPA Specch and Mαtural

Lαnguαge Workshop， pages 305 310， February 1992.

IStentiford and Steer， 1988] F. Stentiford and M. Steer. Machine translation

of speech. British Telecom TechnoLogy .!ournal， 6(2)， 1988.

[Strang， 1980) G. Strωg. Lincar Algebr，α(md Its Applicntions. Aca巾 mlc

Press， New York， NY， 2nd cdition， 1980.

[Suppes， 1970) P. Suppes. Probabilistic grammars for natural langωges.

Synthese，22:95 116，1970.

[Tebclskis and Waibel， 1990] J. 1'ebelskis and A. Wa.ibel. Lal'ge vocabulary

recognition using linked predictive ncural networks. Jn Proceedings of

IEEE lntemationαl Confe陀 n('eon ACOtlslir人 Speechand Signal Process-

ing (JCAssp-90)， pages 437 1¥'10， Alb叫 llcrque，N. Mex.， 1990.

[Thompson， 1989] 1I. 1'hompson. A Chart Parsi略 Rcalisa.tionof Dynamic

Programming， with Best-五rstEnumeration of P叫 hsin a. Lattice. Jn P7'0・

ceedings 0/ Europeαn Confe吋 nceon Specch Communicαtionαnd Tcc/mol-

ogy (Eurospeech '89)， pages 378 381， Paris， hance， September 1989.

213

IThompsort， 10fJO]]!. Thompson. Best-firsL Enumeration of Paths throllgh

a Lattirc all Activc Chart Parsing Solulion. Computer Spcech and Lαη.

!IIIfl[J('，40):263 27t1， 1990.

[Tol!l ab(>rh iれndTornita， 1989) Hi似 oTomabechi and Ma.saru Tomita. Thc

d lJ'(~ct Dl(¥ltlory acress paradigm a.nd its application to natural la.nguagc

pn川~ssinl' ('0111/.仰川川t叶l

['1向'0切切b切加l日l川 bμX川('、冗叱叫cJω:オl

'Je)り)f川nilaλ1. S，日中rhTrans:AII experimental rcal-iirne spccch-to・spccchtrans-

lation l>ystt'llI. InパAA I Sprmg Symposium on Spokcn Lαnguαge Systcms，

1989.

[Tomita. and ('arboncll， 1986] Masaru Tomila and Jaime G. Carbonell. An・

othcr stri点、 towardknowledge based machine transla.tion. 1n 11th Inter-

national Confer'ence 011 Computational Linguistics (COLING86)， Bonn，

1986.

!Tomita ancl Carboncll， 1987a.) Ma.sa.ru Tomita a.nd Jaime G. Carboncll.

The univcrsal parscr <¥.J'chiteciurc for knowledge-based machinc tra.nsla-

tion. Technical Report CMU-CMT-87・101，Center for Machine Tra.nsla
tlon， Call1cgie Mellon University， 1987.

['1、'omita.and Ca.rboncU， 1987b] Masa.ru Tomita and Jaime G. Carbonell.

The univcrsal parser architcciure for knowledge-based machinc transla・

tlOI1. ln 10th Intcrnαtionα[Joint Conference on Artificial fnteLligence

fυCAI8η， M ilallo， Haty， 1987.

!'l'omita and Carbonell， 1988] Masaru Tomita and Jaime G. Carbonell. Thc

Ilniversal parser architccture for knowledge-based machine translation. In

J .986/1987 Hcscm'dl Hrview. Scltool of Computer Sciencc， Carnegie Mellon

Cnivcrsity， 19~8.

[TOlllita and l¥night， 1988J M. Tomita and 1<. Knight. Pse吋 ou川 catioll

and fl1ll uuifica.tion. Tcchnical Repori unpublishcd， Center for Machine
Transla tiol1、 Carnegic~[ellon tlliversity， 1988.

['['omita and ~広， 1991J f¥Iasarl1 Tomita. and See-Kiong Ng. The gelleralizcd

LH parsing algorithm. In !¥'lasal・uTomita， editor， G'cncmlized LR Par'S111g・

1¥luwer ¥cadcmic Publishcrs) Boston MA， 1991.

{Tomita and '{yberg， 1988J Y1asaru Tornita and Ericトiyberg.The Gener-

aZion kit:ud tile Transformation Kit:User's gulde.Technical report、

CenEer for hfachine TranslaEion-carnegleMelionじnlversity.1988.

214
Bibliograp[Jy

[廿，τT，、切切Oω叩I町mi

Ja引imeG. Car巾bonell. L臼Jillguω1βis叫ti比ca.n川n町1c吋ddomain knowledge sources fo1' the

universal parscr ar民clut同ectいu山』μre.ln Intemationα1 Congress on Terminolσ'9Y

αnd J(nowledge Engineering， Trier， 1987.

[Tomita etαl.， 1988斗Masa.ruTomita， Marion I<ce， Hiroaki Saito， 'L'cruko

Mitamura， and lIideto TomabechL The universal parser compiler and its

application to a speech transla.tion systern. ln 2nd Internαtiona[Confer-

ence on Theoreticαlαnd Methodologicαl Issues in Mαchine 肝anslationof

Nαtural Languαges， Pittsburgh， Pennsylvania， 1988.

[Tomita. et al.， 1988b) Masaru Tomita， Teruko Mita.mu叫lIiroyukiMusl同

and Marion Kec. The genc叫 jzedLR parscrjcompiler version 8.1: User's

guide. Technical report， Center for Machine Translation， Carnegie Mcllon

University， 1988 . .

[付，τT，、b切切O町叩I町凶r

Mi比tamura，a.nd IIideto Toma.bechi. 'Towards a. spcech-to・speechtranslation

systern. Journal of Applied Linguistics， 3(1)， 1989.

(Tomita etαl.， 1990a] Masaru Tomita， Hideto Tomabcchi， a.nd JIiroaki

Saito. Speech trans: An experimental real-time speech-も0・speechtransla.-

tion system. Languαge Reseαrch， 26(4)，1990.

[Tomita et αl.，1990b] Masaru Tomita， Hidcto Tomabechi， and lIiroaki
Sおもo.SpeechTrans: An experirnental real-time speech-to・speechtransla.-

tion system. Jn Intemationα1 Confe陀 nceon Nαtural Lαnguαge Proccssing，

Seoul， 1990.

[Tomita.， 1985J Masaru TOlllita. Efficient Pαrsi吋 f01'Nαtural Lαηgtwge.

Kluwer Academic Publishers， Boston MA， 1985.

[Tomita， 1986J Masaru Tomita. An efficient word lattice pa.rsing algorithm
for continuous speech recognition. Jn Internαtionα1 Conference on A ('ou;チ

tics， Speech and Signαl Proccssing (JCASSP86)， Tokyo， 1986.

[Tomita.， 1987) Masaru Tomila. An effi汀ffi恥IC巾?

algorithm. Computαtionαl Li吋 uistics，13(1・2)，1987.

[Tomita，1988a) Masaru Tornita. Combining lexicon-driven pa.rsing and

phrasc-structure-based parsing. In 12th Internαtionα1 Conference on Com-

putαtional Linguistics (COLING88)， Budapest， 1988.

215

['I'ol1lita， 1988b} MaSafll Tomita. G叫)h-structuredstack and natu凶 lal1-

gua，{f(' parsing. Jn 26th J1nmwl Mecting oJ thc Ass∞iation Jor Com]Jutα-

/umal !，mgtLtstir;.<; (ACL88)， Buffalo， i¥ew York， 1988.

['1γ1'，、bいhυω山11
111 12t的h1ηtcnηI凶αtμtο7ηlαlιCoη1('1でmηce0ηCom]JutationaαII Linguistics (CO L-

JNC88)， sU(川dapc凶st，19匁8.

['1竹'0切'011川川I日川川n川川1川it凶a，J 988d] Mas悶削s礼削川ru'Ii、b切いO印削n川1

piけ1('円円、可マrand its 礼叫p川}ηpバ刈licr礼川川uiollLo a knowledge-based speech translation systemη .

Jn 13剖lhIntcmαtiOTL叫んAlJρSymposiumο11Linguistu、Approαchcsto A 7.-

lzfiriαl {nlelligence， Duisbllrg，] 988.

[Tomita， 1988e] Masaru Tornita. Towards speech traoslation. In 2nd Inter・

nαltonal ConJercncc on Thcorcticalαηd Methodological Issues in Machi1lc

TlYLnslαtion oJ NaltLr，αl {，(mguαges， Pittsburgh， Pennsylvania， 1988.

[Tomita.， 1990a] Masaru Tomita， editor. Cu問 ntJssues in Pα1'sing Tec/.ト

nolαgies. Kluwer Academic Publishers， Boston MA， 1990.

[Tomita，1990b] Masa.ru Tomita. The generalized LR parserjcompilcr.

In 13th Intemαtionα1 ConJc陀 nceon Com]Jutαtionαl Linguistics (COL-

ING90)， Helsinki， 1凶99ωo.

['1'，、O印III川ni比ta，1991}M 槌 arH '1 、切切n川1

Academic PubJjshers， soston MA， 1991.

['L'omita， 1992J Masaru Tornita.. Application of thc TOEFL test to the eval-

uation of Japancsc English t"fT. 1n NSF lVorkshop 0ηMT Evaluαtion，
San Dicgo， 1992.

[Van dCl Steen， 1987] C..J. Van恥rSteen. A program generator for recogni・

tioo: parsing and transduction with syntactic pattcrns. Technical report，

vakgroep Alfa informatica、Faculteitder Letleren， Universiteit van Ams-
tcrdam，1987.

[Wail問1etαl.， 1991] 1¥. Waibd，八.Jain， A. McNair， A. H. Saito， Haupt

Illann、andJ. Tebclskis. .TANUS: a speech-to・specchtranslation system

IIsing con nectionist and symbolic processing strategies. In ICASSP91，
volumc 2， pages 793 796，1991.

[¥Va叫 1989]w. ¥司lard. Understanding spo川an('ousspeech. In DARPA

SlJCcchαndλ'attlf'al langll(lge H'01'kshop、pages137・141，1989.

216 Bibliography

[Ward， 1990] W. Wa.rd. The CMU釦 travelinformation service: Undcr-

standing spontancous speech. In DARPA Spcechαnd Natural Lαηguage

Workshop， 1990.

[Ward， 1991] W. Ward. Undcrstanding spontancous speech: The Phoenix

system. In Proceedings oJ IEEE Intemαtionαl ConJe陀 nceon AωtLstics，
Speech αnd Signal ProcessingρCASSP)， pa.gcs 365 367， April1991.

[Wet凶heむra叫aU，1980] C. S. We剖ωth削e町r叫a.1l.Pわroぬbaぬbi倫lisぬst山i比cla釧ng引ua姥ge肱s配: A r閃ev吋ie仰wa制制n

s印omeope印nqu問es抗tiぬons.Comηptωttinη19 SU1問、-ve句句ys，Lロ2:361379，1980.

[Wolf and Woods， 1980] J. Wolf a.nd W. Woods. Thc H WIM speecb undcr-

standing system. In W. Lea， editor， Trends in S]Jcech Recognition， pages
316-339. Prentice-Hall， 1980.

[Woods et α1.， 1976] W. Woods， M. Bates， G. Drown， B. Bruce， C. Cook，
J. Klovstad， J. Makhoul， B. Nash-Webbcr， R. Schwartz， J. Wolf， and
v. Zue. Speech undcrstanding systems-final technical report. Technical

report， Bolt， Beranek， and Newman， Cambridge， Mass.， 1976.

[Woszczyna etαl.， 1993] M. Woszczyna， O.Darkai， N.Coccaro， A.Ei回 le，
A.McNair， I.Itοgina， C.P.Rose， T.Sloboda， M.Tomita， N.Aoki-Waibel，
A.Waibel， and W. Ward. Recent advances in JANUS: CMU's speech

translation system. In ARPA Workshop on HumαηLαnguαge免chnology，
Princeton， 1993.

[Wright and Wrigley， 1989] J. H. Wright and E. N. Wrigley. Probabilistic LR

parsing for speech rccognition. In Proceedings 01 fnternαtionαl Worksho]J

on Pαrsing Technologies '8.9， pa.ges 105-114， j 989.

[Young et α1.， 1989] S.R. Young， A.G. Hauptmann， W.TI. Ward， E.T. Smith，
and P. Werner. High levcl knowledge sources in ¥lsable speech recognition

systems. Communicαtions oJ the ACM， 32(2):183 194，1989

	0003
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	0021
	0022
	0023
	0024
	0025
	0026
	0027
	0028
	0029
	0030
	0031
	0032
	0033
	0034
	0035
	0036
	0037
	0038
	0039
	0040
	0041
	0042
	0043
	0044
	0045
	0046
	0047
	0048
	0049
	0050
	0051
	0052
	0053
	0054
	0055
	0056
	0057
	0058
	0059
	0060
	0061
	0062
	0063
	0064
	0065
	0066
	0067
	0068
	0069
	0070
	0071
	0072
	0073
	0074
	0075
	0076
	0077
	0078
	0079
	0080
	0081
	0082
	0083
	0084
	0085
	0086
	0087
	0088
	0089
	0090
	0091
	0092
	0093
	0094
	0095
	0096
	0097
	0098
	0099
	0100
	0101
	0102
	0103
	0104
	0105
	0106
	0107
	0108
	0109
	0110
	0111

