11,536 research outputs found

    Hybrid time-dependent Ginzburg-Landau simulations of block copolymer nanocomposites: nanoparticle anisotropy

    Full text link
    Block copolymer melts are perfect candidates to template the position of colloidal nanoparticles in the nanoscale, on top of their well-known suitability for lithography applications. This is due to their ability to self-assemble into periodic ordered structures, in which nanoparticles can segregate depending on the polymer-particle interactions, size and shape. The resulting coassembled structure can be highly ordered as a combination of both the polymeric and colloidal properties. The time-dependent Ginzburg-Landau model for the block copolymer was combined with Brownian dynamics for nanoparticles, resulting in an efficient mesoscopic model to study the complex behaviour of block copolymer nanocomposites. This review covers recent developments of the time-dependent Ginzburg-Landau/Brownian dynamics scheme. This includes efforts to parallelise the numerical scheme and applications of the model. The validity of the model is studied by comparing simulation and experimental results for isotropic nanoparticles. Extensions to simulate nonspherical and inhomogeneous nanoparticles are discussed and simulation results are discussed. The time-dependent Ginzburg-Landau/Brownian dynamics scheme is shown to be a flexible method which can account for the relatively large system sizes required to study block copolymer nanocomposite systems, while being easily extensible to simulate nonspherical nanoparticles

    Gasificação direta de biomassa para produção de gás combustível

    Get PDF
    The excessive consumption of fossil fuels to satisfy the world necessities of energy and commodities led to the emission of large amounts of greenhouse gases in the last decades, contributing significantly to the greatest environmental threat of the 21st century: Climate Change. The answer to this man-made disaster is not simple and can only be made if distinct stakeholders and governments are brought to cooperate and work together. This is mandatory if we want to change our economy to one more sustainable and based in renewable materials, and whose energy is provided by the eternal nature energies (e.g., wind, solar). In this regard, biomass can have a main role as an adjustable and renewable feedstock that allows the replacement of fossil fuels in various applications, and the conversion by gasification allows the necessary flexibility for that purpose. In fact, fossil fuels are just biomass that underwent extreme pressures and heat for millions of years. Furthermore, biomass is a resource that, if not used or managed, increases wildfire risks. Consequently, we also have the obligation of valorizing and using this resource. In this work, it was obtained new scientific knowledge to support the development of direct (air) gasification of biomass in bubbling fluidized bed reactors to obtain a fuel gas with suitable properties to replace natural gas in industrial gas burners. This is the first step for the integration and development of gasification-based biorefineries, which will produce a diverse number of value-added products from biomass and compete with current petrochemical refineries in the future. In this regard, solutions for the improvement of the raw producer gas quality and process efficiency parameters were defined and analyzed. First, addition of superheated steam as primary measure allowed the increase of H2 concentration and H2/CO molar ratio in the producer gas without compromising the stability of the process. However, the measure mainly showed potential for the direct (air) gasification of high-density biomass (e.g., pellets), due to the necessity of having char accumulation in the reactor bottom bed for char-steam reforming reactions. Secondly, addition of refused derived fuel to the biomass feedstock led to enhanced gasification products, revealing itself as a highly promising strategy in terms of economic viability and environmental benefits of future gasification-based biorefineries, due to the high availability and low costs of wastes. Nevertheless, integrated techno economic and life cycle analyses must be performed to fully characterize the process. Thirdly, application of low-cost catalyst as primary measure revealed potential by allowing the improvement of the producer gas quality (e.g., H2 and CO concentration, lower heating value) and process efficiency parameters with distinct solid materials; particularly, the application of concrete, synthetic fayalite and wood pellets chars, showed promising results. Finally, the economic viability of the integration of direct (air) biomass gasification processes in the pulp and paper industry was also shown, despite still lacking interest to potential investors. In this context, the role of government policies and appropriate economic instruments are of major relevance to increase the implementation of these projects.O consumo excessivo de combustíveis fósseis para garantir as necessidades e interesses da sociedade conduziu à emissão de elevadas quantidades de gases com efeito de estufa nas últimas décadas, contribuindo significativamente para a maior ameaça ambiental do século XXI: Alterações Climáticas. A solução para este desastre de origem humana é de caráter complexo e só pode ser atingida através da cooperação de todos os governos e partes interessadas. Para isto, é obrigatória a criação de uma bioeconomia como base de um futuro mais sustentável, cujas necessidades energéticas e materiais sejam garantidas pelas eternas energias da natureza (e.g., vento, sol). Neste sentido, a biomassa pode ter um papel principal como uma matéria prima ajustável e renovável que permite a substituição de combustíveis fósseis num variado número de aplicações, e a sua conversão através da gasificação pode ser a chave para este propósito. Afinal, na prática, os combustíveis fósseis são apenas biomassa sujeita a elevada temperatura e pressão durante milhões de anos. Além do mais, a gestão eficaz da biomassa é fundamental para a redução dos riscos de incêndio florestal e, como tal, temos o dever de utilizar e valorizar este recurso. Neste trabalho, foi obtido novo conhecimento científico para suporte do desenvolvimento das tecnologias de gasificação direta (ar) de biomassa em leitos fluidizados borbulhantes para produção de gás combustível, com o objetivo da substituição de gás natural em queimadores industriais. Este é o primeiro passo para o desenvolvimento de biorrefinarias de gasificação, uma potencial futura indústria que irá providenciar um variado número de produtos de valor acrescentado através da biomassa e competir com a atual indústria petroquímica. Neste sentido, foram analisadas várias medidas para a melhoria da qualidade do gás produto bruto e dos parâmetros de eficiência do processo. Em primeiro, a adição de vapor sobreaquecido como medida primária permitiu o aumento da concentração de H2 e da razão molar H2/CO no gás produto sem comprometer a estabilidade do processo. No entanto, esta medida somente revelou potencial para a gasificação direta (ar) de biomassa de alta densidade (e.g., pellets) devido à necessidade da acumulação de carbonizados no leito do reator para a ocorrência de reações de reforma com vapor. Em segundo, a mistura de combustíveis derivados de resíduos e biomassa residual florestal permitiu a melhoria dos produtos de gasificação, constituindo desta forma uma estratégia bastante promissora a nível económico e ambiental, devido à elevada abundância e baixo custo dos resíduos urbanos. Contudo, devem ser efetuadas análises técnico-económicas e de ciclo de vida para a completa caraterização do processo. Em terceiro, a aplicação de catalisadores de baixo custo como medida primária demonstrou elevado potencial para a melhoria do gás produto (e.g., concentração de H2 e CO, poder calorífico inferior) e para o incremento dos parâmetros de eficiência do processo; em particular, a aplicação de betão, faialite sintética e carbonizados de pellets de madeira, demonstrou resultados promissores. Finalmente, foi demonstrada a viabilidade económica da integração do processo de gasificação direta (ar) de biomassa na indústria da pasta e papel, apesar dos parâmetros determinados não serem atrativos para potenciais investidores. Neste contexto, a intervenção dos governos e o desenvolvimento de instrumentos de apoio económico é de grande relevância para a implementação destes projetos.Este trabalho foi financiado pela The Navigator Company e por Fundos Nacionais através da Fundação para a Ciência e a Tecnologia (FCT).Programa Doutoral em Engenharia da Refinação, Petroquímica e Químic

    Increased lifetime of Organic Photovoltaics (OPVs) and the impact of degradation, efficiency and costs in the LCOE of Emerging PVs

    Get PDF
    Emerging photovoltaic (PV) technologies such as organic photovoltaics (OPVs) and perovskites (PVKs) have the potential to disrupt the PV market due to their ease of fabrication (compatible with cheap roll-to-roll processing) and installation, as well as their significant efficiency improvements in recent years. However, rapid degradation is still an issue present in many emerging PVs, which must be addressed to enable their commercialisation. This thesis shows an OPV lifetime enhancing technique by adding the insulating polymer PMMA to the active layer, and a novel model for quantifying the impact of degradation (alongside efficiency and cost) upon levelized cost of energy (LCOE) in real world emerging PV installations. The effect of PMMA morphology on the success of a ternary strategy was investigated, leading to device design guidelines. It was found that either increasing the weight percent (wt%) or molecular weight (MW) of PMMA resulted in an increase in the volume of PMMA-rich islands, which provided the OPV protection against water and oxygen ingress. It was also found that adding PMMA can be effective in enhancing the lifetime of different active material combinations, although not to the same extent, and that processing additives can have a negative impact in the devices lifetime. A novel model was developed taking into account realistic degradation profile sourced from a literature review of state-of-the-art OPV and PVK devices. It was found that optimal strategies to improve LCOE depend on the present characteristics of a device, and that panels with a good balance of efficiency and degradation were better than panels with higher efficiency but higher degradation as well. Further, it was found that low-cost locations were more favoured from reductions in the degradation rate and module cost, whilst high-cost locations were more benefited from improvements in initial efficiency, lower discount rates and reductions in install costs

    Cost-effective non-destructive testing of biomedical components fabricated using additive manufacturing

    Get PDF
    Biocompatible titanium-alloys can be used to fabricate patient-specific medical components using additive manufacturing (AM). These novel components have the potential to improve clinical outcomes in various medical scenarios. However, AM introduces stability and repeatability concerns, which are potential roadblocks for its widespread use in the medical sector. Micro-CT imaging for non-destructive testing (NDT) is an effective solution for post-manufacturing quality control of these components. Unfortunately, current micro-CT NDT scanners require expensive infrastructure and hardware, which translates into prohibitively expensive routine NDT. Furthermore, the limited dynamic-range of these scanners can cause severe image artifacts that may compromise the diagnostic value of the non-destructive test. Finally, the cone-beam geometry of these scanners makes them susceptible to the adverse effects of scattered radiation, which is another source of artifacts in micro-CT imaging. In this work, we describe the design, fabrication, and implementation of a dedicated, cost-effective micro-CT scanner for NDT of AM-fabricated biomedical components. Our scanner reduces the limitations of costly image-based NDT by optimizing the scanner\u27s geometry and the image acquisition hardware (i.e., X-ray source and detector). Additionally, we describe two novel techniques to reduce image artifacts caused by photon-starvation and scatter radiation in cone-beam micro-CT imaging. Our cost-effective scanner was designed to match the image requirements of medium-size titanium-alloy medical components. We optimized the image acquisition hardware by using an 80 kVp low-cost portable X-ray unit and developing a low-cost lens-coupled X-ray detector. Image artifacts caused by photon-starvation were reduced by implementing dual-exposure high-dynamic-range radiography. For scatter mitigation, we describe the design, manufacturing, and testing of a large-area, highly-focused, two-dimensional, anti-scatter grid. Our results demonstrate that cost-effective NDT using low-cost equipment is feasible for medium-sized, titanium-alloy, AM-fabricated medical components. Our proposed high-dynamic-range strategy improved by 37% the penetration capabilities of an 80 kVp micro-CT imaging system for a total x-ray path length of 19.8 mm. Finally, our novel anti-scatter grid provided a 65% improvement in CT number accuracy and a 48% improvement in low-contrast visualization. Our proposed cost-effective scanner and artifact reduction strategies have the potential to improve patient care by accelerating the widespread use of patient-specific, bio-compatible, AM-manufactured, medical components

    Search for third generation vector-like leptons with the ATLAS detector

    Get PDF
    The Standard Model of particle physics provides a concise description of the building blocks of our universe in terms of fundamental particles and their interactions. It is an extremely successful theory, providing a plethora of predictions that precisely match experimental observation. In 2012, the Higgs boson was observed at CERN and was the last particle predicted by the Standard Model that had yet-to-be discovered. While this added further credibility to the theory, the Standard Model appears incomplete. Notably, it only accounts for 5% of the energy density of the universe (the rest being ``dark matter'' and ``dark energy''), it cannot resolve the gravitational force with quantum theory, it does not explain the origin of neutrino masses and cannot account for matter/anti-matter asymmetry. The most plausible explanation is that the theory is an approximation and new physics remains. Vector-like leptons are well-motivated by a number of theories that seek to provide closure on the Standard Model. They are a simple addition to the Standard Model and can help to resolve a number of discrepancies without disturbing precisely measured observables. This thesis presents a search for vector-like leptons that preferentially couple to tau leptons. The search was performed using proton-proton collision data from the Large Hadron Collider collected by the ATLAS experiment from 2015 to 2018 at center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 139 inverse femtobarns. Final states of various lepton multiplicities were considered to isolate the vector-like lepton signal against Standard Model and instrumental background. The major backgrounds mimicking the signal are from WZ, ZZ, tt+Z production and from mis-identified leptons. A number of boosted decision trees were used to improve rejection power against background where the signal was measured using a binned-likelihood estimator. No excess relative to the Standard Model was observed. Exclusion limits were placed on vector-like leptons in the mass range of 130 to 898 GeV

    Structure and adsorption properties of gas-ionic liquid interfaces

    Get PDF
    Supported ionic liquids are a diverse class of materials that have been considered as a promising approach to design new surface properties within solids for gas adsorption and separation applications. In these materials, the surface morphology and composition of a porous solid are modified by depositing ionic liquid. The resulting materials exhibit a unique combination of structural and gas adsorption properties arising from both components, the support, and the liquid. Naturally, theoretical and experimental studies devoted to understanding the underlying principles of exhibited interfacial properties have been an intense area of research. However, a complete understanding of the interplay between interfacial gas-liquid and liquid-solid interactions as well as molecular details of these processes remains elusive. The proposed problem is challenging and in this thesis, it is approached from two different perspectives applying computational and experimental techniques. In particular, molecular dynamics simulations are used to model gas adsorption in films of ionic liquids on a molecular level. A detailed description of the modeled systems is possible if the interfacial and bulk properties of ionic liquid films are separated. In this study, we use a unique method that recognizes the interfacial and bulk structures of ionic liquids and distinguishes gas adsorption from gas solubility. By combining classical nitrogen sorption experiments with a mean-field theory, we study how liquid-solid interactions influence the adsorption of ionic liquids on the surface of the porous support. The developed approach was applied to a range of ionic liquids that feature different interaction behavior with gas and porous support. Using molecular simulations with interfacial analysis, it was discovered that gas adsorption capacity can be directly related to gas solubility data, allowing the development of a predictive model for the gas adsorption performance of ionic liquid films. Furthermore, it was found that this CO2 adsorption on the surface of ionic liquid films is determined by the specific arrangement of cations and anions on the surface. A particularly important result is that, for the first time, a quantitative relation between these structural and adsorption properties of different ionic liquid films has been established. This link between two types of properties determines design principles for supported ionic liquids. However, the proposed predictive model and design principles rely on the assumption that the ionic liquid is uniformly distributed on the surface of the porous support. To test how ionic liquids behave under confinement, nitrogen physisorption experiments were conducted for micro‐ and mesopore analysis of supported ionic liquid materials. In conjunction with mean-field density functional theory applied to the lattice gas and pore models, we revealed different scenarios for the pore-filling mechanism depending on the strength of the liquid-solid interactions. In this thesis, a combination of computational and experimental studies provides a framework for the characterization of complex interfacial gas-liquid and liquid-solid processes. It is shown that interfacial analysis is a powerful tool for studying molecular-level interactions between different phases. Finally, nitrogen sorption experiments were effectively used to obtain information on the structure of supported ionic liquids

    Theory and simulation of moiré graphene multilayers

    Get PDF
    Graphene has been hailed as a material which is going to revolutionise myriad technologies due to its extraordinary stability, mechanical strength yet flexibility, and remarkable transport properties. Furthermore, it was recently discovered that if two graphene layers are stacked and twisted relative to one another, referred to as twisted bilayer graphene (tBLG), correlated insulating states and superconductivity are observed, even though graphene does not intrinsically exhibit these properties. These phases only emerge at twist angles close to the "magic angle" of 1.1 degrees, and by tuning the temperature and doping level, the system can undergo electronic phase transitions between these states. I studied electron interactions and electronic screening in tBLG and other moiré graphene multilayers. In the absence of external and internal electronic screening, I found the on-site Hubbard parameter of the flat bands of tBLG scales linearly with twist angle. Upon considering internal screening, this linear scaling breaks down, where the Hubbard interaction energy decreases more rapidly towards the magic angle owing to increased screening. Moreover, external screening, from proximity to metallic gates which dope tBLG, was found to substantially affect these Hubbard interactions, owing to the moiré length scale of the magic-angle being comparable to the distance to these metallic gates. For a sufficiently small separation to these gates, I predicted that the correlated insulating states should be screened-out and the superconducting phase should be stabilised. Long-ranged Hartree interactions were found to induced doping-dependent band-flattening in tBLG that I predicted to increase the magic-angle range of tBLG. For moiré graphene multilayers, the role of these Hartree interactions were found to sensitively depend on the stacking sequence of the structure: systems with alternating twist angles have similar interaction-driven band flattening, but systems where there are also adjacent layers that are aligned have no such interaction-driven band flattening.Open Acces

    Radionuclide and heavy metal sorption on to functionalised magnetic nanoparticles for environmental remediation

    Get PDF
    The presence of radionuclides and heavy metal ions in aqueous waste streams from industrial processes, especially in the nuclear waste industry, are a major concern. Many other processes are inherent producers of hazardous aqueous waste streams that require treatment for further disposal. These wastes quite often contain many contaminants, from harmful to very toxic. Contact with the environment, through groundwater or rivers, with such contaminants needs to be avoided. The ability to selectively sequester and remove contaminants from aqueous wastes with high loading capacities is of paramount importance to achieve full removal of the contaminants produced in many industries. The recent development of phosphate functionalised superparamagnetic magnetite ((PO)x-Fe3O4) nanoparticles have been shown to have ultra-high loading capacities and a high degree of selectivity towards uranium (U(VI)). The ability to manipulate these NPs with an external magnetic field gives these nanomaterials an advantage over many other conventional technologies in the field. These low-cost, non-toxic, and easily prepared magnetic NPs are highly biocompatible and have already been widely applied in the biotechnology and biomedical industries. The addition of specific functionalities allows for the fine tuning of the selectivity towards certain elements, therefore allowing full control over the selective removal of a wide range of contaminants. This study addresses the optimisation of the NPs manufacturing process that allows for the use of these NPs in a wider range of environments. Many of these waste streams are extreme environments, where they can be highly acidic or highly basic conditions. Therefore the feasibility of coating the Fe3O4 with silica (SiO2) was addressed, to provide an acid resistant layer and substrate for further functionalisation. Both the silica coating, and the applied surface functionality, were found to be stable against dissolution or chemical changes under acidic conditions from pH 1-4. Once acid resistance was established, the ability to extract a wide range of contaminant ions was also investigated. Sorption experiments with a wide range of contaminant ions were conducted to determine the selectivity and loading capacities of both (PO)x-Fe3O4 and (PO)x-SiO2@Fe3O4 NPs, at acidic (pH 3), neutral (pH 7), and basic (pH 11) conditions. Providing a basis for the manufacture of a state-of-the-art, novel extraction tool for both heavy metals and radionuclides. Inductively Coupled Plasma - Optical Emission Spectrometry (ICP-OES), Transmission Electron Microscopy (TEM), and Scanning Transmission Electron Microscopy - Energy Dispersive X-Ray (STEM-EDX) were used to achieve full characterisation of the NP complexes and supernatants to determine the successful extraction and presence of the contaminant metal ions used in this study. Determining the uptake kinetics, loading capacities for Cs(I), K(I), Na(I), Ca(II), Cd(II), Co(II), Cu(II), Mg(II), Mn(II), Mo(II), Ni(II), Pb(II), Sr(II), Al(III), Ce(III), Cr(III), Eu(III), Fe(III) and La(III) on to (PO)x-Fe3O4 and (PO)x-SiO2@Fe3O4 NPs. Implications of the use of these NPs in the extraction of radionuclides and heavy metals have been discussed in each case along with the potential for developing a broad-spectrum adsorbent. In conclusion, this PhD has shown the potential of these novel as-synthesised phosphate functionalised NP complexes to be utilised for heavy metal and radionuclide extraction, of a range of contaminants, from aqueous solutions, in acidic, neutral, and basic conditions. The production of these cost-effective and selective nanomaterials which exhibit rapid kinetics has the potential to be an important asset to the water treatment industry. Overall, these NP-complexes have been effective in fully removing a wide range of heavy metal contaminants and, therefore, have shown great promise to become a broad-spectrum adsorbent tool, which ultimately will aid in the clean-up of many new and legacy waste environments.Open Acces
    corecore