1,845 research outputs found

    Verification of timed circuits with failure-directed abstractions

    Get PDF
    Journal ArticleAbstract-This paper presents a method to address state explosion in timed-circuit verification by using abstraction directed by the failure model. This method allows us to decompose the verification problem into a set of subproblems, each of which proves that a specific failure condition does not occur. To each subproblem, abstraction is applied using safe transformations to reduce the complexity of verification. The abstraction preserves all essential behaviors conservatively for the specific failure model in the concrete description. Therefore, no violations of the given failure model are missed when only the abstract description is analyzed. An algorithm is also shown to examine the abstract error trace to either find a concrete error trace or report that it is a false negative. This paper presents results using the proposed failure-directed abstractions as applied to several large timed circuit designs

    Verification of timed circuits with failure directed abstractions

    Get PDF
    Journal ArticleThis paper presents a method to address state explosion in timed circuit verification by using abstraction directed by the failure model. This method allows us to decompose the verification problem into a set of subproblems, each of which proves that a specific failure condition does not occur. To each subproblem, abstraction is applied using safe transformations to reduce the complexity of verification. The abstraction preserves all essential behaviors conservatively for the specific failure model in the concrete description. Therefore, no violations of the given failure model are missed when only the abstract description is analyzed. An algorithm is also shown to examine the abstract error trace to either find a concrete error trace or report that it is a false negative. This paper presents results using the proposed failure directed abstractions as applied to two large timed circuit designs

    Hierarchical gate-level verification of speed-independent circuits

    Get PDF
    This paper presents a method for the verification of speed-independent circuits. The main contribution is the reduction of the circuit to a set of complex gates that makes the verification time complexity depend only on the number of state signals (C elements, RS flip-flops) of the circuit. Despite the reduction to complex gates, verification is kept exact. The specification of the environment only requires to describe the transitions of the input/output signals of the circuit and is allowed to express choice and non-determinism. Experimental results obtained from circuits with more than 500 gates show that the computational cost can be drastically reduced when using hierarchical verification.Peer ReviewedPostprint (published version

    Automatic abstraction for synthesis and verification of deterministic timed systems

    Get PDF
    Journal ArticleThis paper presents a new approach for synthesis and verification of asynchronous circuits by using abstraction. It attacks the state explosion problem by avoiding the generation of a flat state space for the whole design. Instead, it breaks the design into sub-blocks and conducts synthesis and verification on each of them. Using this approach, the speed of synthesis and verification improves dramatically. This paper introduces how abstraction is applied to times Petri-nets to speed up synthesis and verification

    Symbolic verification of timed asynchronous hardware protocols

    Get PDF
    pre-printCorrect interaction of asynchronous protocols re- quires verification. Timed asynchronous protocols add another layer of complexity to the verification challenge. A methodology and automated tool flow have been developed for verifying systems of timed asynchronous circuits through compositional model checking of formal models with symbolic methods. The approach uses relative timing constraints to model timing in asynchronous hardware protocols - a novel mapping of timing into the verification flow. Relative timing constraints are enforced at the interface external to the protocol component. SAT based and BDD based methods are explored employing both interleaving and simultaneous compositions. We present our representation of relative timing constraints, its mapping to a formal model, and results obtained using NuSMV on several moderate sized asynchronous protocol examples. The results show that the capability of previous methods is enhanced to enable the hierarchical verification of substantially larger timed systems

    A compositional minimization approach for large asynchronous design verification

    Get PDF
    pre-printThis paper presents a compositional minimization approach with efficient state space reductions for verifying non-trivial asynchronous designs. These reductions can result in a reduced model that contains the exact same set of observably equivalent behavior in the original model, therefore no false counter-examples result from the verification of the reduced model. This approach allows designs that cannot be handled monolithically or with partial-order reduction to be verified without difficulty. The experimental results show significant scale-up of the compositional minimization approach using these reductions on a number of large asynchronous designs

    Performance Evaluation of Components Using a Granularity-based Interface Between Real-Time Calculus and Timed Automata

    Get PDF
    To analyze complex and heterogeneous real-time embedded systems, recent works have proposed interface techniques between real-time calculus (RTC) and timed automata (TA), in order to take advantage of the strengths of each technique for analyzing various components. But the time to analyze a state-based component modeled by TA may be prohibitively high, due to the state space explosion problem. In this paper, we propose a framework of granularity-based interfacing to speed up the analysis of a TA modeled component. First, we abstract fine models to work with event streams at coarse granularity. We perform analysis of the component at multiple coarse granularities and then based on RTC theory, we derive lower and upper bounds on arrival patterns of the fine output streams using the causality closure algorithm. Our framework can help to achieve tradeoffs between precision and analysis time.Comment: QAPL 201

    Synthesis of speed independent circuits based on decomposition

    Get PDF
    Journal ArticleThis paper presents a decomposition method for speedindependent circuit design that is capable of significantly reducing the cost of synthesis. In particular, this method synthesizes each output individually. It begins by contracting the STG to include only transitions on the output of interest and its trigger signals. Next, the reachable state space for this contracted STG is analyzed to determine a minimal number of additional signals which must be reintroduced into the STG to obtain CSC. The circuit for this output is then synthesized from this STG. Results show that the quality of the circuit implementation is nearly as good as the one found from the full reachable state space, but it can be applied to find circuits for which full state space methods cannot be successfully applied. The proposed method has been implemented as a part of our tool nutas (Nii-Utah Timed Asynchronous circuit Synthesis system), and its very first version is available at http://research.nii.ac.jp/~yoneda. Key Words: Decomposition, synthesis, STGs, abstraction, speed-independent circuits

    Quantitative Verification: Formal Guarantees for Timeliness, Reliability and Performance

    Get PDF
    Computerised systems appear in almost all aspects of our daily lives, often in safety-critical scenarios such as embedded control systems in cars and aircraft or medical devices such as pacemakers and sensors. We are thus increasingly reliant on these systems working correctly, despite often operating in unpredictable or unreliable environments. Designers of such devices need ways to guarantee that they will operate in a reliable and efficient manner. Quantitative verification is a technique for analysing quantitative aspects of a system's design, such as timeliness, reliability or performance. It applies formal methods, based on a rigorous analysis of a mathematical model of the system, to automatically prove certain precisely specified properties, e.g. ``the airbag will always deploy within 20 milliseconds after a crash'' or ``the probability of both sensors failing simultaneously is less than 0.001''. The ability to formally guarantee quantitative properties of this kind is beneficial across a wide range of application domains. For example, in safety-critical systems, it may be essential to establish credible bounds on the probability with which certain failures or combinations of failures can occur. In embedded control systems, it is often important to comply with strict constraints on timing or resources. More generally, being able to derive guarantees on precisely specified levels of performance or efficiency is a valuable tool in the design of, for example, wireless networking protocols, robotic systems or power management algorithms, to name but a few. This report gives a short introduction to quantitative verification, focusing in particular on a widely used technique called model checking, and its generalisation to the analysis of quantitative aspects of a system such as timing, probabilistic behaviour or resource usage. The intended audience is industrial designers and developers of systems such as those highlighted above who could benefit from the application of quantitative verification,but lack expertise in formal verification or modelling
    • …
    corecore