
Symbolic Verification of

Timed Asynchronous Hardware Protocols

Krishnaji Desai and Kenneth S. Stevens

Electrical and Computer Engineering

University of Utah, USA

Email: krishnaji.desai@utah.edu, kstevens@ece.utah.edu

John O’Leary

Intel Corporation

Hillsboro, Oregon, USA

Email: john.w.oleary@intel.com

Abstract—Correct interaction of asynchronous protocols re-
quires verification. Timed asynchronous protocols add another
layer of complexity to the verification challenge. A methodology
and automated tool flow have been developed for verifying
systems of timed asynchronous circuits through compositional
model checking of formal models with symbolic methods. The
approach uses relative timing constraints to model timing in
asynchronous hardware protocols – a novel mapping of tim-
ing into the verification flow. Relative timing constraints are
enforced at the interface external to the protocol component.
SAT based and BDD based methods are explored employing
both interleaving and simultaneous compositions. We present our
representation of relative timing constraints, its mapping to a
formal model, and results obtained using NuSMV on several
moderate sized asynchronous protocol examples. The results
show that the capability of previous methods is enhanced to
enable the hierarchical verification of substantially larger timed
systems.

I. INTRODUCTION

Asynchronous hardware protocols are hard to implement

and hard to get right. Formal verification is required to

ensure that individual protocols implemented with logic gates

are realized correctly. This is the domain of conformance

checking, in which an implementation of a leaf-level hardware

component is checked for adherence to a specification [1]. In

this scenario both a global specification and an exact model of

the system’s environment are usually unavailable, but model

checking can still be employed to verify deadlock freedom,

liveness, safety and other necessary correctness properties.

This paper addresses the composition problem: we present

an approach for automatic generation of asynchronous system

models and their properties, with a push button CAD solution

to verify their correctness.

Verification complexity grows significantly when timing

must be considered since both logic and timing interact to

effect design correctness. Formal analysis of asynchronous

protocols usually employs explicit state enumeration and is

especially vulnerable to state explosion. One focus of this

paper is to reduce the run time of system level verification by

applying symbolic model checking techniques to help mitigate

the state explosion problem [2].

The performance and power of asynchronous hardware

circuits and protocols can be vastly improved with judicious

application of timing constraints. The second primary focus

of this work is to implement in commercial-grade model

Timed
Asynchronous

Protocol/Design

Related

Relative Timing

Constraints

Composed

Model

Construction

Property

Generation

Symbolic

Model
Checking

True

Counter

Example

Fig. 1. Illustrating the Model Checking Flow.

checking engines a relative timing model. With Relative timing

(RT), delays in a system are represented by their net effect

on system behavior: the sequencing or ordering of signals

in related race paths [3]. We start with a set of relative

timing constraints that have been automatically generated for

each timed handshake protocol module used in a system. The

RT constraints are generated by an explicit state verification

engine, ARTIST (Automatic Relative Timing Identifier based

on Signal Traces) [4], that is based on the bisimulation

formalism. This work integrates these timing constraints into

verification models to prove timed behavioral correctness of

systems employing timed protocol elements.

The basic CAD flow reported here is illustrated in Fig. 1.

A set of timed handshake protocol elements are designed and

their associated timing constraints are generated and formally

proven correct and complete. These are composed into a

system that is to be verified by this work. A formal timed

model is constructed from the specifications and related RT

constraints. This model is checked for correctness with the

industry-strength symbolic engine NuSMV [5]. A counter

example may indicate a bug in the protocol or the need to

tighten the RT constraints to ensure correct operation.

II. BACKGROUND

Asynchronous systems do not have the global synchroniza-

tion that a clock signal provides in synchronous systems,

and therefore must rely on handshake protocols for correct

sequencing and behavior. Timing constraints must be enforced

in timed protocols to avoid any input changes in unaccepting

states to a protocol. These timing constraints ensure compo-

sitional correctness of the composed modules. Fig. 2 shows

2013 IEEE Computer Society Annual Symposium on VLSI

978-1-4799-1331-2/13/$31.00 ©2013 IEEE 147

CORE Metadata, citation and similar papers at core.ac.uk

Provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276279092?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Fig. 2. Petri net and CCS specification of timed protocol LC.

the petri net and Calculus of Communicating Systems (CCS)

specification for a linear pipeline controller (LC) example [6],

[7]. This specifies a timed handshake protocol with lr (left

request) and ra (right acknowledge) as inputs and rr (right

request) and la (left acknowledge) as the outputs. LEFT

and RIGHT processes in the CCS specification are barrier

synchronized with causal arcs c1 and c2. Dotted arcs rt1 and

rt2 are the relative timing arcs in the petri net that explicitly

enforce timing by constraining the input arrival times.

Relative timing (RT) is a method that explicitly represents

the signal-ordering effects timing provides to a system. Timing

constraints are represented by the equation pod 7→ poc0 ≺

poc1, where poc0 must strictly occur before poc1. Both

events have a common timing reference represented by the

point-of-divergence signal pod. When the constraints are en-

forced, the state space is pruned due to subgraph elimination.

These results are general and apply to any system that can

be represented as a set of communicating timed asynchronous

protocols.

III. RELATIVE TIMING MODELING TECHNIQUES

NuSMV is used as the modeling language. It provides

various constructs to model the protocols. Assign statements

are used for initializing and updating variables using the

init and next operations. The union keyword is used

for introducing non-determinacy. This work builds specifi-

cations using both simultaneous and interleaving models.

Speed-independent asynchronous systems are modeled using

unbounded gate delays and no wire delays, whereas delay-

insensitive systems use an unbounded delay model for both

gates and wires.

A. Modeling Relative timing

Relative timing constraints enforce specific signal sequenc-

ing to occur. These constraints interact with the system through

RT variables as shown in Fig. 3. Each RT constraint has

an associated RT variable. Each variable is set by the pod

signal and reset by the poc0 signal from the RT equation

pod 7→ poc0 ≺ poc1. The signal poc1 is constrained to

fire only when the RT variable is not set. RT variables are

introduced at the level of hierarchy in a design where the poc

and pod signals reside, and are implemented as independent

processes that do not modify the logical behavior of a protocol.

For example, the arc rt1 in Fig. 2 is a timing constraint

represented by lr+ 7→ rr+ ≺ lr-. The variable rt1 will

rt1

prt1

poc0 pod

rtc = rt1: pod 7→ poc0 ≺ poc1

poc1 can fire only when the

relative timing variable rt1 is

reset – i.e., after poc0 fires.

Fig. 3. Modeling RT Constraint.

be asserted upon lr+ and reset with rr+. Signal lr- is

constrained to fire only when variable rt1 is not asserted,

which guarantees signal ordering between rr+ and lr-.

B. Interleaving modeling technique

Interleaving semantics are a “natural” model for asynch-

ronous designs. Interleaving models allow a single process at

a time to undergo a state transition. This is modeled with

the transition relation R in Eqn. 1. The disjunctive firing of

components models delay-insensitive asynchronous protocols.

R = ∨iRi where Ri = (v′i ⇔ fi) ∧ (∧j 6=i(v
′
j ⇔ vj)) (1)

In every transition R, the new modified value v′i is evaluated

with function fi for one of the component state variables and

the rest of the variables remain unchanged.

The first step to automate the model generation is to convert

the formal protocol specifications (Fig. 2) into a minimized

state graph. Minimized specifications are preprocessed with

a state graph utility developed for adding rise/fall transitions

based on the initial signal conditions. The sequential behavior

of the state graph, output signals, and RT variables are then

modeled with init() and next() operators in ASSIGN state-

ments. The NuSMV code for LC left and right processes

of Fig. 2 are shown. In general, observation of signal changes

only occurs during the execution of the process. Hence, when

modeling in NuSMV, the signal events corresponding to pod

and poc that set and reset RT variables cannot be probed at the

compositional level of hierarchy. In this code, the RT variable

rt1 is set by left upon transition from state s0 to s1 on

lr+ signal, and is reset by right upon transition from state

MODULE left(lr,c1,c2,rt1,rt2)

VAR

state: {s0,s1,s2,s3};

la:boolean;--output

ASSIGN

init(state) := s0;

next(state) := case

(state = s0) & (lr=1): s1;

...

1: state;

esac;

ASSIGN

init(la) := 0;

next(la) := case

state=s1&(next(state)=s2):1;

...

--rt1 set

ASSIGN

init(rt1) := 0;

next(rt1) := case

(state=s0)&(next(state)=s1): 1;

1 : rt1;

esac;

--rt2 reset similarly

--c1, c2 are set,reset

esac;

FAIRNESS running

MODULE right(ra,c1,c2,rt1,rt2)

VAR

state: {s4,s5,s6,s7};

rr:boolean;--output

ASSIGN

init(state) := s5;

next(state) := case

(state = s5) & (c1=1) : s6;

...

esac;

--rt1 reset

ASSIGN

next(rt1) := case

(state=s5)&(next(state)=s6): 0;

1 : rt1;

esac;

--rt2 set similarly

--Also rr is set/reset,

--c1, c2 are reset,set

MODULE lc(li,ri)

VAR

c1:boolean; c2:boolean;

rt1:boolean; rt2:boolean;

lproc:process left(li,c1,c2,rt1,rt2);

rproc:process right(ri,c1,c2,rt1,rt2);

FAIRNESS running

148

s5 to s6 on rr+ signal. The processes left and right

both participate in the shared constraints c1, c2, rt1 and

rt2 so these signals are exposed at the interfaces of left

and right and hidden within the composed module lc.

The signal ordering imposed by RT constraints is mod-

eled without changing the internal behavior of a protocol.

This is achieved by modifying the behavior of an input to

a protocol from its environment. The model for two LCs

composed with two RT constraints modeled at the interface

is shown and pictured in Fig. 4. Constraint rt1 from Fig. 2

is lr+ 7→ rr+ ≺ lr-. This ensures that lc1.rproc.rr

(rr+) occurs before lc1.lproc.lr (lr-) by constraining

lc0.rproc.rr as c_lr to lc1.lr. The constraint rt2

ensures that lc0.lproc.la occurs before lc0.rproc.ra by

constraining lc1.lproc.la as c_ra to lc0.ra of module

lc0 by probing rt2. As can be seen, the mapping of RT

variables and constraining on to design instances can be

relatively complicated. This CAD tool generates the mapping

automatically.

MODULE main

VAR

li:boolean;ri:boolean;

c_lr:boolean;c_ra:boolean;

....

lc0:process lc(li,c_ra);

lc1:process lc(c_lr,ri);

ASSIGN

init(c_lr) := 0;

next(c_lr) := case

(lc0.rproc.rr=1) : 1;

(lc0.rproc.rr=0)

& (lc1.rt1=0) : 0;

1 : c_lr;

esac;

--Similarly ASSIGN for c_ra

C. Simultaneous modeling technique

In simultaneous models, all processes undergo state transi-

tions in lock-step. Each process, however, makes an independ-

ent choice to either transition to a new state or “stutter” in its

current state. Modeling of the simultaneous model in NuSMV

requires the following changes:

i. The union keyword is used to model the arbitrary

behavior of next state transitions [2].

ii. Module instances are not composed using the process

keyword.

Simultaneous semantics model speed-independent delays by

making input changes and their associated state transitions

atomic, while modeling arbitrary delays for the outputs. Thus

all processes observe and react to inputs simultaneously giving

wires zero delay. Eqn. 2 formally describes the output relation

O, and Eqn. 3 the input and state change relationship with v′i
being evaluated with function fi.

O = ∧1≤i≤nOi where Oi = (v′i ⇔ fi) ∨ (v′i ⇔ vi) (2)

I = ∧1≤i≤nIi where Ii = (v′i ⇔ fi) (3)

The NuSMV model for simultaneous switching is derived

similarly to the interleaving model with the above changes

listed. Code snippet is not shown for brevity.

IV. PROPERTY VERIFICATION

A. Deadlock Freedom

A composition of asynchronous protocols must be free

from deadlocks. This is verified by checking the reachability

H/S
Channel
Protocol

la

lr rr

ra

lc0

la

lr rr

ra

lc1
H/S

Channel
Protocol

lo

li

ri

ro

c_ra lart2

rr c_lrrt1

Fig. 4. Composition of Two Linear Controllers with RT Constraints.

of the initial protocol states using possible paths with CTL

properties [8]. The properties checked in the LC example are

the following:

SPEC AG EF lc1.rproc.state = s5;

SPEC AG EF lc1.lproc.state = s0;

B. RT Signal Ordering Properties

The correctness of a timed protocol is stated with PSL

properties [9]. In the LC example, the following PSL property

ensures that the imposed ordering of RT constraint lr+ 7→

rr+ ≺ lr- always holds in the protocol composition in

Fig. 4. The sequence of c_lr within the { } braces (c_lr+)

sequentially implies that rr+ should occur before c_lr-.

PSLSPEC always ({c_lr=0;c_lr=1}

((lc1.rproc.rr=0 & next(lc1.rproc.rr=1))before

(c_lr=1 & next(c_lr=0))));

C. Failure Reachability

We model timed protocols with semi-modular processes

[10]. Upon receiving an input, a semi-modular process must

emit an output before another input change occurs on the same

input. Failures occur when an invalid timed state f (or bottom)

can be reached in any system composed of timed protocols due

to illegal inputs. This is illustrated for an inverter:

INV01 = (in+).INVa1

INVa1 = (in-).f + (out-).INVa0

INVa0 = (in-).INV00

INV00 = (in+).f + (out+).INV01

Failure reachability can be specified separately for each

protocol. In our implementation a global boolean flag variable

is maintained that is initially false and will be set true if any of

the protocols reach a failure state. Global failure reachability

can be verified with the single CTL property !EF failure=1.

V. CAD AND TOOL FLOW

This CAD flow is implemented with a tool named TNS-

MVART (Translation for NuSMV Automated with RT). It

verifies a Verilog design. The control structure of the design is

checked for correctness after generating the NuSMV models as

described in the previous section. Inputs to the flow include the

Verilog, a file with relative timing constraints for each timed

asynchronous protocol used in the Verilog design, mapping

of the RT constraints onto design instances, and a file with a

formal semi-modular representation of each boolean logic gate

in the design library. The top level flow is shown in Fig. 5.

The Verilog is converted into the OpenAccess database

using the verilog2oa program and OpenSourceLiberty

[12], [13]. The RT constraints for each asynchronous protocol

used in the design are mapped to all instances in the design as

sdc constraints. TNSMVART reads the OpenAccess database

149

Symbolic Model
Checking

(BDD & SAT)

True Counter Example

Interleaving

Model

Simultaneous

Model

PSL
Properties

NuSMV Model
generation w/RT

Front End1

(OpenAccess DB)

Verilog Design RT Constraints

Formal Models

Library

Model Mapping

File

1USC Collaboration [11]

Fig. 5. TNSMVART Tool: Top Level Flow Diagram

containing the design and the RT constraints file with an option

to specify transition counts for multicycle RT constraints. The

data path is abstracted out of the design. The NuSMV models

of the control structure of the design are created as described

in Sec. III-B and III-C. The resulting models are mapped

using either interleaving or simultaneous semantics. A correct

protocol interface is created for the channels that interact with

the restricted environment provided to the tool. Verilog library

gates and modules are mapped into their equivalent semi-

modular state graph representation (Sec. IV-C). Finally, a set

of properties are generated to verify the correctness of the

model as described in Sec. IV.

VI. CASE STUDIES AND RESULTS

This tool flow has been applied to several examples of

varying complexity. Some of these are presented in this

section. The run times of the results are all reported running

on a Dell workstation with Intel R© CoreTM i7 processor,

2.67GHz and 3GB memory (free memory up to 600MB)

machine. The NuSMV engine is executed with reachable state

computation enabled with all other default configurations. The

TNSMVART tool translates the structural Verilog files into

the NuSMV formal modeling language with RT constraint

modeling. Executions times for the translation were between

0.1 and 2 seconds for the case studies.

A. C-element

The C-element is a basic asynchronous circuit used as a

merging element. A timed gate level design can be built using

three two input NAND gates and one three input NAND gate.

The behavior of each NAND gate is described as a semi-

modular protocol similar to the inverter of Sec. IV-C. The

following four relative timing constraints are required for this

C-element design to operate without failure.

c+ 7→ ac- ≺ a-

c+ 7→ ac- ≺ b-
c+ 7→ bc- ≺ a-

c+ 7→ bc- ≺ b-

Interleaving and simultaneous models are composed that

employ the constraints. The C-element model was verified

Fig. 6. LC Example: BDD Execution Times for Semimodular Failure reach
Property being False of Interleaving and Simultaneous Models

Fig. 7. LC Example: Execution Times for Semimodular Failure reach
Property being True in BDD and SAT Methods with Simultaneous Models

with the NuSMV verification engine tool flow for deadlock,

failure unreachability, point-of-divergence event state reach-

ability, and a PSL property verifying the relative ordering

property of an RT constraint.

B. Linear Controller

Pipelines of various depths were evaluated using the LC

protocol specified in Fig. 2. The model for a two-deep pipeline

is shown in Fig. 4. For these verification results the LC

module employs the protocol specification rather than the

implementation. Properties verified are similar to that of the

C-element example. This timed protocol requires the following

two RT constraints to operate correctly:

lr+ 7→ rr+ ≺ lr- ra- 7→ la+ ≺ ra+

Performance evaluation of LC pipelines is measured with

a different number of pipeline stages, modeling types, prop-

erties, and symbolic methods. Fig. 6 shows the execution

times in seconds for interleaving and simultaneous models

for the failure reach property being false. Fig. 7 illustrates

the comparison between BDD and SAT methods for finding

a failure in the case of the simultaneous model when all RT

constraints are not modeled. Fig. 8 shows that the execution

times for failure reachability being false for linear pipelines

up to 28 stages deep.

150

Fig. 8. LC Example: Execution Times for Semimodular Failure reach
Property being False in BDD Method with Simultaneous Models

The simultaneous model is more efficient than the inter-

leaving model. This is largely due to the lower state-space

complexity and system diameter of speed-independent design

compared to delay-insensitive models. Execution times for

SAT-based methods are dependent on the bound length of the

failures. SAT run times were generally slower when greater

bound lengths are necessary to determine failure. For smaller

bound lengths, failure was reachable faster compared to the

BDD method.

Fig. 9. Arithmetic Pipeline Example x
2 + 2x, data path abstracted out

C. Arithmetic Pipeline Example

The case study of Fig. 9 is a combination of the previous

examples. Linear controllers are used for handshaking con-

trol. C-elements are used to implement broadcast Join/Fork

elements. TNSMVART abstracts the data path function to a

single latch and data bit, sufficient to represent the timing

relationship between the data and control paths.

The tool generates and verifies similar properties for the

BDD and SAT methods. The TNSMVART engine created the

model in 0.215 seconds and verified failure unreachability in

3.63 seconds with RT constraints imposed in the control path.

D. Global STP (Self Timed Pipeline)

The next example is a challenging timed circuit protocol

using signal pulses. The Global STP design is the double

frequency arithmetic pipeline implemented in an Intel micro-

processor using self-resetting domino gates [14]. The block

diagram in Fig. 10 constitutes three global STP stages and

two RESET stages along with the Latch Precharge and Inverter

blocks for output control. Signal ck is the double frequency

clock, and dout represents valid timing window of the result.

Fig. 10. Global STP: Top Level Block Diagram

The Verilog circuit design of each block is independently

modeled and verified against their minimized specifications.

The logic of these blocks consists of both domino and static

gates. There are about 20 RT constraints for these designs.

The composed model consisting of two RES stages and

three STP stages is verified. Unfortunately, the verification

engine ran out of memory for the full composition shown in

Fig. 10 due to increased modeling complexity with multicycle

timing constraints. Resolving this with dynamic reordering

and investigating counter examples for understanding the

differences between the trace and bisimulation semantics is

a topic for further research.

E. Fast Fourier Transform (FFT)

This verification methodology was also applied to verify the

control plane of an asynchronous implementation of a high

performance 64-point FFT [15]. The same timed protocols

used throughout the paper were employed in this hierarchical

wavelet design. We are able to verify the correct behavior by

employing abstractions.

The verification is performed hierarchically. The control

structure of the 4-point FFT consists of a 1:4:4:4:4:1 pipeline

with “butterfly” data interconnect using fork/join elements.

Failure unreachability is successfully verified in 59 minutes.

The FFT-16 is a 13 deep pipeline containing 8 FFT-4 blocks

and 214 total linear controllers. It has an internal parallelism

of 4, employing 4-way decimators and expanders. Based on

proofs from the abstraction of parallel pipelines [16], the FFT-

4 designs are substituted with observationally equivalent five

deep linear pipelines. The FFT-16 control structure equivalent

design block (1:4:16:1) with 22 LCs, Fork/Joins and relative

timing constraints enforced executed for failure unreachability

in 86 minutes. An abstracted equivalent 13-deep pipeline

verifies for failure unreachability in 35 minutes with relative

timing constraints.

The FFT-64 is a 4 way expander, a 4×16 crossbar (con-

sisting of 16 4-way expanders and 4 16-way decimators), a

16-way decimator, and 23 LC blocks in a 5-deep pipeline. A

proven abstracted equivalent of the 64-point FFT is the 21

deep linear pipeline. Based on the results in Sec. VI-B, the 24

deep linear pipeline executed for failure unreachability in 73

minutes with relative timing constraints.

151

TABLE I
ARTIST VS NUSMV - TRUE CASE

Tool Stages 2 Stages 4 Stages 8 Stages 10

ARTIST 0.008 s 0.036 s 11.105 s mem

NuSMV 0.1 s 0.636 s 10.06 s 60.44 s
(BDD)

The ability to abstract complex parallel and series pipelined

protocol structures into equivalent simple linear pipelines, and

to prove their interactions at the interfaces with relative timing

constraints, is essential to verify large protocol systems.

F. Comparison with ARTIST

One of the primary goals of this work is to extend the

verification capability of timed asynchronous protocols to

larger systems. Performance of this flow ported to NuSMV

fares better than previous methods that support timed protocol

verification.

The TNSMVART converted designs are compared to the

custom relative timing formal verification tool (ARTIST)

using non-symbolic verification that we developed in-house.

Results for pipelines up to 10 deep are shown in Tab. I.

The TNSMVART translated model of a 24-stage timed linear

pipeline was successfully verified in the True case (i.e. failure

unreachability) in 73 minutes using the BDD method. A 28

stage pipeline was verified in 162 minutes. Dynamic BDD

reordering is used which enhances scalability. ARTIST runs

out of memory after the 9th stage.

However, when failures exist in a design ARTIST often

excels. For a 40 stage pipeline example, the first failure is

found in 0.06 seconds. The TNSMVART translated models

are faster without the dynamic reordering option for finding

failures. There is no memory out problem until 27 stages both

in BDD and SAT methods. The BDD method experienced a

memory out problem for the 28th stage. The SAT method was

faster than BDD with an increase in number of compositions.

This is the case because the bound length for failures was

less than 10. With increased bound lengths, the SAT based

bounded model checking time to find failures increase sub-

stantially. BDD based method performs complete reachability

and verifies properties being true. SAT based method finds

counter examples for a given bound length quickly.

VII. CONCLUSION

A symbolic model checking CAD tool flow for verifying

systems of timed asynchronous protocols with BDD and SAT

methods is presented. This is the first engine to support

relative timing constraints integrated with general asynchron-

ous sequential protocol verification in a symbolic verification

engine enhancing the scalability. For the examples in this

paper, TNSMVART run times were between 0.1 and 2 seconds.

Timing failures in a protocol are manifest by the occurrence

of unaccepting inputs in a semi-modular representation of a

system. A method has been developed to integrate relative

timing constraints and their multicycle variants into the proto-

cols in order to prevent timing failures. This method does not

modify the behavior of the initial protocols composed in a sys-

tem. The approach has been applied to both interleaving and

simultaneous execution models that represent delay-insensitive

and speed-independent families of protocols. In general, the

simultaneous models show better performance.

A CAD tool named TNSMVART was implemented to

map a Verilog level design into the industry-strength NuSMV

verification engine. For the case studies, in the simultaneous

model, SAT methods tend to find a counter example in less

time than BDD methods.

This work demonstrates improved verification capability

over current approaches. It also opens the door to future

research as abstraction methods are required to verify large

designs implemented with timed protocols. Developing and

combining protocol concurrency abstraction methods into

TNSMVART will be essential to automatically verify large

systems. The tool has been exclusively applied to timed

clocked and asynchronous protocols and we anticipate that

this work will apply equally well to software and other higher

level protocols.

REFERENCES

[1] D. L. Dill, Trace Theory for Automatic Hierarchical Verification

of Speed-Independent Circuits, ser. ACM Distinguished Dissertations.
MIT Press, 1989.

[2] K. L. McMillan, Symbolic Model Checking. Kluwer Academic Pub-
lishers, 1993.

[3] K. S. Stevens, R. Ginosar, and S. Rotem, “Relative Timing,” IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, vol. 1,
no. 11, pp. 129–140, Feb. 2003.

[4] Y. Xu and K. S. Stevens, “Automatic Synthesis of Computation Interfer-
ence Constraints for Relative Timing Verification,” in 26th International

Conference on Computer Design. IEEE, October 2009, pp. 16–22.
[5] R. Cavada, A. Cimatti, C. A. Jochim, G. Keighren, E. Olivetti,

M. Pistore, M. Roveri, and A. Tchaltsev, “Nusmv 2.4 user manual,”
http://nusmv.irst.itc.it.

[6] T. Murata, “Petri Nets: Properties, Analysis and Applications,” Proceed-

ings of the IEEE, pp. 541–580, Apr. 1989.
[7] R. Milner, Communication and Concurrency, ser. Computer Science.

Prentice Hall, 1989.
[8] V. Vakilotojar and P. A. Beerel, “RTL verification of timed asynchronous

and heterogeneous systems using symbolic model checking,” Integra-

tion, the VLSI Journal., vol. 24, no. 1, pp. 19–35, December 1997.
[9] Accellera, “PSL Reference Manual,” http://www.eda.org/vfv/docs/

PSL-v1.1.pdf.
[10] D. E. Muller and W. S. Bartky, “A theory of asynchronous circuits,” in

Proceedings of an International Symposium on the Theory of Switching.
Harvard University Press, Apr. 1959, pp. 204–243.

[11] E. Quist, P. Beerel, and K. S. Stevens, “Enhanced SDC support for
relative timing designs,” in Digital Automation Conference, User Track

Poster, Jul. 2009.
[12] Si2, “OpenAccess,” http://www.si2.org/openeda.si2.org/.
[13] Liberty, “OpenSourceLiberty,” http://www.opensourceliberty.org/.
[14] G. Hinton, M. Upton, D. Sager, D. Boggs, D. M. Carmean, P. Roussel,

T. I. Chappell, T. D. Fletcher, M. S. Milshtein, M. Sprague, S. Samaan,
and R. Murray, “A 0.18 CMOS IA-32 processor with a 4-GHz integer
execution unit,” IEEE Journal of Solid-State Circuits, vol. 36, no. 11,
pp. 1617–1627, November 2001.

[15] W. Lee, V. S. Vij, A. R. Thatcher, and K. S. Stevens, “Design of Low
Energy, High Performance Synchronous and Asynchronous 64-Point
FFT,” in Design, Automation and Test in Europe (DATE). IEEE, Mar
2013, pp. 242–247.

[16] G. Birtwistle, “Control states in asynchronous pipelines,” in Asynchron-

ous Interfaces: Tools, Techniques, and Implementations", A. Yakovlev
and R. Nouta, Eds., July 2000, pp. 45–55.

152

