
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 3, MARCH 2006 403

V e r i f i c a t i o n o f T i m e d C i r c u i t s W i t h

F a i l u r e - D i r e c t e d A b s t r a c t i o n s
Hao Zheng, Member, IEEE , Chris J. Myers, Senior Member, IEEE , David Walter, Student Member, IEEE ,

Scott Little, and Tomohiro Yoneda, Member, IEEE

Abstract—This paper presents a method to address state ex­
plosion in timed-circuit verification by using abstraction directed
by the failure model. This method allows us to decompose the
verification problem into a set of subproblems, each of which
proves that a specific failure condition does not occur. To each
subproblem, abstraction is applied using safe transformations to
reduce the complexity of verification. The abstraction preserves
all essential behaviors conservatively for the specific failure model
in the concrete description. Therefore, no violations of the given
failure model are missed when only the abstract description is
analyzed. An algorithm is also shown to examine the abstract
error trace to either find a concrete error trace or report that it
is a false negative. This paper presents results using the proposed
failure-directed abstractions as applied to several large timed-
circuit designs.

Index Terms—Abstraction, formal verification, timed circuits.

1. I n t r o d u c t i o n

r p 1MED circuits are defined to be any circuit that is ag-
M gressively optimized using timing assumptions such that

their correctness is dependent on these assumptions. Utiliz­
ing timing assumptions can produce circuits with a signifi­
cant improvement in speed as demonstrated by their use in
a gigahertz research microprocessor [gigahertz unit test site
(guTS)] at International Business Machines (IBM) [1] and by
the Revolving Asynchronous Pentium Processor Instruction
Decoder (RAPP1D) instruction-length decoder designed at Intel
[2], The correctness of these new timed-circuit styles is highly
dependent upon their timing assumptions. Therefore, extensive
timing verification is necessary during the design process.

State explosion is a serious challenge for state-space-
exploration-based verification approaches. Many methods exist
to address the state explosion problem. Symbolic model check­
ing, as described in [3], represents the state space implicitly
using binary decision diagrams (BDDs), and is able to handle
systems with substantially increased sizes. Applying decision

Manuscript received November 18, 2004; revised February 8, 2005. This
work was supported by the Semiconductor Research Corporation (SRC)
Contract 2002-TJ-1024, National Science Foundation (NSF) Japan Program
Award INT-0087281, and Japan Society for the Promotion of Science (JSPS)
Joint Research Projects. This paper was recommended by Associate Editor
J. H. Kukula.

H. Zheng is with the Computer Science and Engineering Department,
University of South Florida, Tampa, FL 33620 USA.

C. J. Myers is with the Electrical and Computer Engineering Department,
University of Utah, Salt Lake City, UT 84112 USA.

D. Walter and S. Little are with the School of Computing, University of Utah,
Salt Lake City, UT 84112 USA.

T. Yoneda is with the National Institute of Informatics in Tokyo, Japan.
Digital Object Identifier 10.1109/TCAD.2005.854638

diagrams to timing verification has also been successful [4]—[6].
Since interleaving among the concurrent events is the main
source of state explosion, a number of techniques have been
proposed to reduce the number of interleavings to be explored
using partial orders [7], [8], There has also been some success
in adapting these methods to timing verification [9], [10]. While
both decision diagrams and partial orders allow the verification
of larger systems, many practical timed circuits are still too
large to be efficiently analyzed using these techniques alone.

Compositional reasoning and abstraction are essential to
verifying large systems. Compositional verification based on
assume-guarantee style reasoning explores the inherent modu­
lar structure in systems [11]—[15], and it has been applied to the
verification of timed circuits [16]. Compositional verification
makes assumptions about the environment with which the
system interacts, then checks these assumptions later. These
assumptions are typically generated by hand. Therefore, if the
system has complex interactions with its environment, it can be
difficult to make accurate assumptions. Abstraction produces
the reduced model of a system by abstracting away certain
details that are unnecessary when reasoning about the system
[17], [18]. In [19], hand abstractions are used for the verification
of timed synchronous domino circuits in the guTS design [1],
In both cases, the assumptions and abstractions are generated
by hand, making these techniques difficult to apply except by
an expert user. In [20], an automated approach is described to
generate the assumptions for compositional verification. This
approach starts with a set of the weakest assumptions for a com­
ponent, and iteratively refines these assumptions. Although the
approach guarantees that the iteration terminates, it is not clear
how efficient the approach would be in terms of iterations nec­
essary to generate a set of assumptions to prove the properties.
Also, this approach can only handle safety properties. In [21],
a hierarchical approach similar to that in [22] is presented. In
this approach, an abstraction for each module in a system is
found and verification is applied to the composition of those
abstractions. In [23], a constraint-oriented proof methodology
is applied to verify infinite systems. Constraints on infinite
systems are broken into an infinite number of simple con­
straints on finite systems, then these constraints are grouped
into finite equivalent classes. However, this methodology is not
complete in that the reduction of infinite systems is not guar­
anteed. In [24], a software model-checking method utilizing
lazy abstraction is presented to improve performance by adding
information during abstraction refinement only when necessary.
It would be interesting to see if this method can be adapted to
hardware verification. Predicate abstraction has generated a lot

0278-0070/S20.00 © 2006 IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276285512?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

404 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 3, MARCH 2006

Fig. 1. (a) TPN for a self-resetting AND gate; (b) TPN including timing constraints.

of interest [25]—[27]. First described by Graf and Sai'di [25],
predicate abstraction is a technique that combines theorem
proving and model checking automatically by mapping an
unbounded concrete system into an abstract finite state system
where the states correspond to truth assignments to a set of
predicates. Recently, predicate abstraction has been applied to
the verification of timed systems [28]. It would be interesting to
see how predicate abstraction can be combined with our method
to further improve performance.

A method that combines compositional reasoning and ab­
straction to reduce the cost of timing verification is presented
in [29]. By utilizing the inherent modular structure in hardware
designs, each module in a design is verified individually. Before
verification, information in the environment that is irrelevant to
reasoning about the module being verified is abstracted away.
Then, that module is verified with its abstracted environment.
While this work has been shown to verify larger circuits, it
cannot be applied to flat designs or ones where the size of indi­
vidual modules is beyond the capacity of the timing-verification
tool. In these cases, the module must first be decomposed by
hand into smaller submodules.

This paper addresses this problem by dividing the verification
problem as directed by the failure model rather than by the
module interface boundaries. Timing verification is utilized
to show that several different failure conditions cannot arise.
This paper proposes to decompose the verification problem into
several subproblems in which each of the failure conditions is
checked individually. In this form of problem decomposition,
any information in a model irrelevant to a given failure condi­
tion is a candidate for abstraction. As shown later in the paper,
each failure condition in our model involves only a very small
amount of information, which allows abstraction to produce
a substantial reduction in the size of the verification problem.
This work extends the method in [29] to allow for abstraction
independent of the hierarchical structure of the design. In other
words, the method can now be applied to flat designs or designs
that include large modules. This is desirable in that it eliminates

the requirement of functionally unnatural partitioning for the
underlying timing-verification tool and the time spent in search­
ing for such a partition. It also avoids errors incurred during
decomposition. The decomposition and abstraction method de­
scribed in this paper is proved to never produce a false-positive
verification result. Although the method can produce a false-
negative result, this paper describes an algorithm that examines
the abstract error trace either to determine a concrete error trace
or report that the result is a false negative. Finally, this paper
demonstrates the effectiveness of this method by its application
to several large-scale timed-circuit designs.

II. T i m e d P e t r i N e t s (TPNs)

Our method uses TPNs [30] to specify timed-circuit behav­
iors. Let W be a finite set of wires in a timed circuit. The
timed behavior of a circuit is modeled as sequences of rising
and falling transitions on W. For any w e W , w-\- is a rising
transition and w — is a falling transition on the wire w. In the
following definitions, let Q+ and M+ denote the sets of non­
negative rational and nonnegative real numbers, respectively.
A W -labeled one-safe TPN is a directed bipartite digraph
described by the tuple N = (T, P, P, M 0,1, u,C,L), where T
is the set of transitions; P is the set of places; P C (T x P) U
(P x T) is the flow relation; Mo C P is the initial marking;
I : P —> Q+ is the lower timing-bound function; u : P —>
Q+ U {oo} is the upper timing-bound function; C C P is the
set of constraint places; and L : T —> (W x { + ,—}) is the
labeling function.

A transistor diagram for a self-resetting AND gate with
specific timing information and a TPN representing its behavior
and that of its environment are shown in Fig. 1(a). A self­
resetting AND gate receives a pulse on input il and i2 and
generates a pulse on output a. Intuitively, the TPN shows that i 1
and i2 go high after eleven to fourteen time units. After three to
four more time units, a goes high. Also, after eight to ten time
units, i l and i2 go low. The internal signal x goes low eight

ZHENG et a l : VERIFICATION OF TIMED CIRCUITS WITH FAILURE-DIRECTED ABSTRACTIONS 405

to ten time units after a goes high. This, in turn, resets a one
to two time units later, which sets x high after one to two more
time units, returning the circuit to its initial state.

The self-resetting and gate is correct if it satisfies the
following requirements: 1) hold time: the signal a must go high
one time unit before either i \ or i2 goes low; 2) short circuit:
the signal x must not go low until one time unit after both i\
and i,2 have gone low, and i \ and i,2 must not go high again
until one time unit after x has gone high. Constraint places are
used to specify these types of ordering and timing requirements
between transitions. The constraint places marked with a “C”
in Fig. 1(b) are used to check the above requirements. For
example, the hold-time requirement is checked using constraint
places in the postset of a+.

The remainder of this section describes the formal semantics
of TPNs in more detail. The state of a Petri net is a marking M,
which is the set of places that hold tokens. With every transition
t € T, its associated preset is •/ .. {/> c P | (p,t) E F}. The
place set of a transition is the restriction of places in its preset
to ordinary (not constraint) places, i.e., ot = »t — C. For a tran­
sition t E T, its associated postset is t» = {p E P \ (t, p) E F } .

Note that the preset and postset for places are defined in a
similar manner. A transition is enabled in M if ot C M. The set
of transitions enabled in M is denoted by X(M) . Our method
requires correct nets to be one safe (i.e., each place is allowed
to contain no more than one token).1

The state of a TPN is a pair (Af, D) where M is the cur­
rent marking and I) : P • R+ is a clock-assignment function
assigning nonnegative real numbers to places. For every place
p, the value D(p) is the value of a clock associated with p
denoting its age. There are two operations on clocks: advance
and reset. For some nonnegative real number d E R+ , D + d
advances the clock for every p E P to the value D(p) + d.
For some subset of places P C P , [P i—► 0]D resets the clock
for every place in P to zero, and agrees with D for every
place in P — P. The initial clock assignment Do is defined
such that every clock is zero. The initial state of a TPN is the
pair (Mo, Do).

The state of a TPN can change by firing a transition or
advancing time. To fire a transition t at (Af, D), in addition to
t being enabled, D must satisfy the timing constraints defined
by I and u. A transition is time enabled if it is enabled and:
1) the clock for each place in its place set is above its low­
er bound [i.e., Vp € ot. D(p) > l(p)]; and 2) there exists a
clock for a place in its place set that is below its upper
bound [i.e., 3p' E ot. D(p') < u(p')]. Firing a time-enabled
transition t from (M.D) creates the new state (M ' .D '), de­
noted by (M , D)[i)(Af , D'), where M' = (M — »t) U t» and
D' = [*• i ̂0]!?.

The state of a TPN can also change by advancing time.
Advancing time only affects the clock-assignment function in
the state pair. Advancing time by a delay d E R+ in (M, D)
creates a new state (M.D'), denoted by (M,D)[d)(M,D'),
where D' = D + d. Time is not allowed to advance beyond

’As described later, our analysis method checks for violations of the one-
safe property during analysis, and when such a violation is detected, a failure is
reported and analysis ceases.

the point where it would disable a time-enabled transition. The
maximum delay advancement, d E R+ , at state (M, D) is

dumx(M, D) = min I max (u(p) - D(p))) .
teX(M) \p e ° t J

After advancing time by the maximum delay, a transition either
remains not time enabled, becomes time enabled, or is already
time enabled and remains so.

For example, Fig. 1(a) shows the TPN with the initial mark­
ing for the self-resetting AND gate. Transitions i \+ and i2+
are enabled in the initial marking, while o+ is not because two
places in its preset do not have tokens. After four time units,
the clock between x+ and o+ expires. This simply means that
firing o+ is no longer constrained by this place because the
other two places have not yet acquired tokens. After eleven
time units, i \+ and i2+ become time enabled because the
clocks for the places in their presets exceed their lower bounds.
Before fourteen time units elapse, both i \+ and i2+ must fire.
After firing both i \+ and i2+, the tokens are removed from
their presets and new tokens and clocks are introduced in their
postsets. At this point, o+ now has all the tokens it needs to fire,
and o+ fires three to four time units later after i \+ and i2+.

III. T im ed Trace T heory

This paper uses trace theory to define the semantics for
TPNs. Trace theory has been used for the verification of both
speed-independent [22] and timed circuits [10]. Given a TPN
N, a trace of N, x = (e\, e-2 , ■ ■ •), is a sequence of transition­
time pairs, where a = (U, Ti). The time, is an absolute time
stamp for transition ti. The trace (e \ , . . . , en) is a valid trace
if there exists a sequence of states (scb-si; • • • ,*i») such that
for 1 < i < n, each s* = (Mi, Di) and di = — rj_i (note
t 0 = 0):

1) 0 ^ di ^ dnlSiX(s i—i)',
2) (M i_ i. Di-i)[di)(Mi-i, D1);
3) ti is time enabled in D 1);
4) (Mi-i , D')[ti)(Mi,Di).

The set of all possible valid traces for a TPN N starting from
the initial state Mo, D0 is denoted by P(N). Although this set
is infinite, there exist numerous algorithms for timed state space
exploration of Petri-net models that represent this infinite set of
traces using a finite set of equivalent state classes (see [31]—[34]
for example).

The delete function, del(D)(:c), removes all transition-time
pairs of a trace x = (ei,&2 , ■ ■ •) whose transitions are in V.
More formally, if x ^ e (i.e., the empty trace), then

del (V)(x) = I {e i'/u)'' { U^ V aei(U)(x) | ^ i f t i E V

where y = del(D)(e2 , es ,. . .) and a = (ti, Ti). If x = e, then
del(D)(:c) = {e}. This function is extended naturally to sets
of traces.

The set of valid traces in a TPN is divided into those that are
successes and those that are failures. There are three types of
failures that are considered in this paper: safety, complement,
and constraint failures. A valid trace is a safety failure if in

406 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 3, MARCH 2006

firing the trace the marking update tries to add to the new
marking a place that already exists in the current marking. The
one-safe requirement of TPNs is common for timed state space
exploration algorithms. An unsafe net (i.e., one that is not one
safe) typically indicates a problem with the design. Note that
this definition of safety is on the reachable state space, so while
the TPN may not be structurally safe in an untimed sense, a
failure is only reported when a marking is actually reached
that violates the safety property. A valid trace is a complement
failure on wire w if there exist two rising (falling) transitions on
w without a falling (rising) transition in between. Complement
failures are also a common modeling error typically caused by
the designer while creating the circuit description when the
set and reset phases of a signal are similar. A valid trace is
a constraint failure if it contains a transition or time progress
that could not have occurred if constraint places are taken
into account in the definition of enabledness. Constraints are
used to indicate required ordering and timing relationships, and
they are the key tool for describing necessary properties of a
circuit such as hold time, short-circuit avoidance, etc. There are
three failure conditions for constraints. First, a transition having
a constraint place in its preset is taken while the constraint
place is not marked or has not been marked long enough. This
indicates either a desired ordering of signals that is violated,
or a minimum time separation between signals does not hold.
The second part of the definition indicates when a token stays
in a constraint place beyond its upper bound. This is used to set
maximum time separations between transitions. The third part
states the condition when a circuit deadlocks while a constraint
place is marked. It is used to check that a desired behavior
occurs before the circuit deadlocks.

In our method, the function fa il(N, W ' , C) is introduced to
take a TPN N, a set of wires W ’, and a set of constraint
places C', and returns a subset of V(N) that are either
safety failures, complement failures on W ' , or constraint fail­
ures involving places in C . In other words, a valid trace
((t i . T i).. . . . (tn, r„)) is returned by fail(AT, W ' , C) if, for its
corresponding state sequence (sq. s i, . . . , s„), one of the fol­
lowing conditions is true.

1) Safety failure: there exist s*_i = (Mi-i , Di-i) and pair
(t-i. n) , where (M*_i — •ti) fl t-i» / 0.

2) Complement failure: there exist a w € W' and pairs
(t-i. r-i) and (tfe. Tfc) such that the following is true:
a) i < k:
b) (L(t-i) = L(tk) = vj+)V(L(t-i) = L(tk) = to—); and
c) V j ■ i < j < k A (L (ti) = w + = > L (tj) / to—) A

(L (ti) = to— = > L (tj) ^ to+).
3) Constraint failure: there exist a e € C', =

(Mi-i , Di-i), and — Tj_i, such that one of the
three following conditions hold:
a) e € mt-i A ((e £ M i- 1) V (Di-i(c) + d-i < 1(c)));
b) c € Mi-i A Di-i(c) + di > u(e); or
c) X(M-i) = 0 A c € Mi.

If W' = 0 and C = 0, fail(AT, 0.0) only returns traces that
would cause safety failures in N. Similarly, fail (AT, W ' , 0) only
returns traces that would cause safety failures or complement
failures on signals in W \ while fail! A'. (fl. (") only returns

traces that would cause safety failures or constraint failures on
constraint places in C .

IV. Safe Tr a n sfo rm a tio n s

In [29], we introduced the notion of safe transformations
that can be used to reduce the size and complexity of TPN
specifications. In particular, a transformation Ti-i(N) returns a
new net N \ and it is defined to be safe when the TPN resulting
from this transformation satisfies the following two properties:

V(N ') D d el(T - T ') (V(N)) (1)

fail (AT', 0, 0) D del (T - T')(fail(N, 0,0)) (2)

where T ' is the set of transitions in N'. In other words, a net
produced by a safe transformation produces a superset of the
timed traces produced by the original TPN when any abstracted
transition is deleted from these traces, and the transformation
does not hide a safety failure of the net. As shown in the
following lemma, the application of a sequence of safe trans­
formations is also a safe transformation.

Lemma 4.1: If TTi(N) and f t j (N) are safe transformations,
then so is ^ (^ (N)) .

Proof: Assume N ’ = Tr-i(N) and N " = iij(N'). From the
definition of a safe transformation, we have

V(N') D del(T - T')(V(N))

V(N ") D del(T' - T")(V(N')).

Combining these two equations, we get

V(N") D del(T' - r")(del(T - T')(V(N)))

= del(T — T")(V(N)) .

This proves the first half of the definition of a safe transfor­
mation. The second half [i.e., fail(Ar". 0.0) D del(T — T")
(fail(AT, 0.0))] is proven similarly. ■

In the rest of this section, we present some TPN reductions
that satisfy the safe-transformation properties. Murata [35]
presents several transformations on untimed Petri nets that pre­
serve the safety properties of the original net. We have extended
these transformations and developed others for TPNs [29],
Two example safe transformations are shown in Figs. 2
and 3. More information on safe transformations can be found
in [29], If our method is working on a net N and finds a portion
of the net that resembles that shown in Fig. 2(a), and t is a
transition that can be abstracted, it can transform N to a new
net N ' in which t has been removed, as shown in Fig. 2(b),
where the timing bounds have been combined, as shown, to
preserve the timing behavior. Note that, although shown with
only two places in the preset of t, this transformation is valid
for any number of places in the preset of t as long as there is
only one place in the postset of t. While the places in the preset
of t can have any number of transitions in their presets, they
must only have transition t in their postset [i.e., (•£)• = {£}].
Similarly, the place in the postset of t can have any number of
transitions in its postset, but it must only have transition t in its
preset [i.e., •(£•) = {£}]. In a similar fashion, if transition t has

ZHENG et al.: VERIFICATION OF TIMED CIRCUITS WITH FAILURE-DIRECTED ABSTRACTIONS 407

(a) (b)

Fig. 2. Safe transformation 1.

(a) (b)

Fig. 3. Safe transformation 2.

only a single place in its preset and satisfies similar restrictions,
it can again be removed, as shown in Fig. 3. The application of
these transformations is polynomial in the size of the net.

V. F a i l u r e - D i r e c t e d A b s t r a c t i o n

A timed-circuit description is defined to be correct if
fail (TV, W, C) = 0. This section presents an approach to prov­
ing fail (TV, W, C) = 0 by showing that:

1) fail(TV,0,0) = 0 ;
2) Vw <e W.fail(TV,{w},0) = 0 ;
3) Vc G C. fail (TV, 0, {c}) = 0.

Now, instead of one verification run, our method performs
1 + | W\ + \C\ runs. Note that fail (TV, 0, 0) checks safety prop­
erties explicitly, but when \W\ + \C\ > 1, this does not need
to be done as a separate step since it is checked implicitly
during the other checks.

At this point, each run is nearly as complex as the original
run, but for each subproblem, not all transitions in TV are
required to determine if failure traces exist. Therefore, in the
second step, our method constructs a set of transitions that
can potentially be abstracted safely without causing failures
to be missed. The function X>(TV, W ' , C') takes a set of wires
{W' C W) and a set of constraint places (C" C C), and it
returns the following set:

{t G T\(\/w G W f. L(t) + AL(t) / w -)

A (Vc e Cf. t ^ U <:•)}.

Intuitively, X>(TV, W ' , C') returns a set of transitions in TV
such that they are not transitions on wires in W ' , and not
in the preset and postset of constraint places in C'. For ex­
ample, let TV denote the TPN shown in Fig. 1, and pi and
p2 denote the constraint places in the postset of a+ . Then,
X>(TV, { il, i2}, {_pl,_p2}) = {x-\-yx —, a —}.

Finally, the third step of our method is to apply safe trans­
formations to the net to remove the transitions returned by

X>(TV, W ' , C") and the related places, whenever possible. Note
that not all transitions returned by V(N, W ' , C") can be safely
removed, but only those that can be removed via safe trans­
formations. We define a function abs(TV, W " , C") that takes
a TPN TV, a set of wires W ", and a set of constraint places
C", and applies a sequence of safe transformations to remove,
when possible, transitions in X>(TV, W " , C") from TV to obtain
a new TPN TV'. The safe transformations used are restricted
such that T — T ' C V{1V, W ", C") and for all c G C", c is in
the initial marking of the new net Mq if and only if c is in the
initial marking of the original net M 0. The result after applying
this function to a net is typically a net that is substantially
simpler, and thus, results in a much smaller state space. The
main theorem can now be presented.

Theorem 5.1: Let TV be a TPN. fail (TV, W, C) = 0 if the
following three conditions are true:

1) fail(abs(TV, 0, 0), 0, 0) = 0;
2) Mw G W. fail(abs(TV, {^}, 0), {^}, 0) = 0;
3) Vc G C. fail(abs(TV, 0, {c}), 0, {c}) = 0.

Proof: We break up this proof into three cases.
Case 1) (Safety failures) Assume there is a trace x that

causes a safety failure in TV, and that TV' is the
TPN returned by the function abs(TV, 0,0). Since
x G fail(TV, 0,0), there must also exist a trace
y = d e l(T - T')(x) such that y G del(T - T 1)
(fail(TV, 0, 0)). According to property (2), y G fail
(TV', 0, 0). Therefore, a safety failure is detected on
the abstracted net.

Case 2) (Complement failures) Assume there is a trace x
that causes a complement failure on signal w in TV,
and that TV' is the TPN returned by the function
abs(TV, {w }, 0). Since x G V(N), there must also
exist a trace y = del(T — T')(x) such that y G
del(T — T f)(V(N)). From property (1), we know
safe transformations do not hide any timed traces,
so y must also be in V(N'). From the definition
of complement failure, there exist two transitions
U and tk on signal w that create the complement
failure. In fact, only transitions on w are required
to show if a trace is or is not a complement failure.
By the definition of abs, the trace y must include
all transitions on signal w in trace x with some
additional transitions from X>(TV, {w}, 0) that could
not be abstracted. Since a complement failure is
detected by only examining those transitions on
signal w and x is a complement failure, y is also
a complement failure because removing transitions
not on w does not change whether a trace is a
complement failure or not.

Case 3) (Constraint failures) Assume there is a trace x
that causes a constraint failure on constraint place
c in TV, and that TV' is the TPN returned by the
function abs(TV, 0, {c}). Since x G V(N), there
must also exist a trace y = del(T — T')(x) such
that y G del(T — T')(T(N)). This trace consists
of all transitions in »c U c» plus some additional
transitions from X>(TV, 0, {c}) that could not be

408 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 3, MARCH 2006

i2+

[3,4]

Fig. 4. TPN for checking safety.

abstracted. Traces x and y agree on the timing of all
transitions in «c U c*. There are three types of con­
straint failure defined in Section III. For type 3a),
since all transitions in •c are preserved as is the
initial marking of c, the value of the predicate
c ^ i is preserved at the time of firing ti (a tran­
sition that is also preserved). The value of Z^_i(c)
is also preserved for this reason. Therefore, if trace
x violates 3a), so does trace y. If trace x violates
type 3b), this means a transition from »c fired to
put a token into c, then either a transition in c»
fired but fired too late (in this type, it is preserved
in y, so it is okay) or a transition outside •cUc«
fired to cause the failure. In this type, that transition
is not necessarily preserved in y. However, either
there exists another transition in y that causes the
upper bound violation, or if the trace is finite and
ends with no transitions being enabled, y is a failure
due to type 3c). In either case, the failure is found
examining y. Finally, type 3c) is preserved from x
to y as in both traces end with no enabled transitions
and the constraint place in the marking.

Therefore, if there exists a failure trace in the concrete
description, it is found by an analysis of one of the abstract
descriptions. ■

Suppose that we would like to check if the TPN for the self­
resetting AND gate shown in Fig. 1 has safety failures. First,
all constraint places in the TPN are removed because they are
only needed for checking constraint failures. Since only safety
failures are checked, all transitions in the TPN are candidates
for removal. After applying safe transformations such as those
described earlier, as well as those from [29], the TPN in Fig. 1 is
reduced to the one shown in Fig. 4. A timing analysis of this net
shows that i2-\- fires after 19 to 24 time units, followed by a+
after three to four time units, which enables il-\- to fire again
after another 19 to 24 time units. Notice that the self-loop on
a+ is never constraining.

Note that the reduced TPN contains complement failures on
signals i l and a, but they are ignored during this particular
verification run because the reduced TPN is generated only for
checking safety failures. Separate verification runs are required
to check complement and constraint failures as described at the
beginning of this section and formalized in Theorem 5.1. In
particular, this example has four wires, and its TPN contains six
constraint places. The decomposition method described in this
paper would verify this example using 11 verification runs, one
for each wire and constraint place, and another one for checking
safety failures. This example illustrates how failure-directed

if ((£ ,r) i s t i m e - e n a b l e d i n s) then

else return f a l s e n e g a t i v e

Fig. 5. Algorithm to find concrete trace.

abstraction is applied to reduce net complexity, but breaking
the verification into 11 runs is clearly overkill for such a small
example. However, for large examples, as shown in Section VII,
this type of decomposition can improve the overall verification
time significantly and allow the verification of designs that
cannot be handled previously. In particular, the state space that
must be explored for each subproblem is usually exponentially
smaller than the original due to the net reductions, and each
subproblem is constructed with an algorithm that is polynomial
in the size of the original net.

VI. H a n d l i n g F a l s e N e g a t i v e s

The verification method just described is conservative in that
false negatives are possible and false positives never occur.
Consider again the transformation shown in Fig. 3. In this case,
the summing of the timing bounds as shown in the figure may
actually result in new timed traces. For example, in the new
net, the trace ((ti, 0), (£2, h + + ^3)) is possible,
while this is not possible in the original net. It does, however,
produce all the timed traces of the original net, so it is a safe
transformation. If this extra timing introduces new timed traces
and one of those introduced traces causes a failure, this failure
is a false negative. Therefore, when an error trace is reported
from an analysis of the abstracted net, it is not known whether
this is a real error trace or a false one. Also, it is difficult for a
designer to analyze the error trace to find the problem as it only
includes the transitions that have not been abstracted.

To address both of these problems, this paper introduces the
algorithm shown in Fig. 5. This algorithm uses the abstract error
trace to perform a guided simulation of the original TPN to
find a concrete error trace. This is done by attempting to fire

ZHENG et al.: VERIFICATION OF TIMED CIRCUITS WITH FAILURE-DIRECTED ABSTRACTIONS 409

 ̂ else return { c h o o s e _ o n e (t i m e - e n a b l e d { s) —T') }

Fig. 6. Algorithm to find a necessary set.

transitions from the abstract error trace, and when one of these
transitions is not fireable, it examines the TPN to determine
an abstracted transition to fire, which contributes toward the
enabling of the next transition in the abstract error trace. In
general, multiple such transitions may exist and the algorithm
may need to explore multiple paths to find a valid concrete error
trace. When no concrete error trace can be found, it is reported
that the abstract error trace is false. In this case, abstraction can
be performed again using a smaller subset of transformations by
removing transformations known to add behavior. This process
can be repeated until all behavior-adding transformations are
removed from the subset of transformations used. While in the
worst case, disallowing transformations that add timed traces
can result in a flat verification, we have not seen this happen
in practice.

The guided simulation used in the algorithm for find­
ing a concrete trace is based upon methods developed for
partial-order state-space exploration [10]. In particular, the
find_concrete_trace algorithm calls two functions used during
a typical partial-order state exploration, necessary_set and
dependent. The necessary_set algorithm in Fig. 6 is used to
determine which transitions must fire before transition t can
fire. This algorithm takes the transition to fire £, a timed state
5, a set of transitions that should not be fired T;, and the set
of transitions visited so far Tjj. The necessary_set algorithm
proceeds in the following manner. First, it checks if t is in
the set of visited transitions Tjj. If it is, a cycle is detected,
and necessary_set returns the empty set. If t is a time-enabled
transition, then it returns t. If t is enabled but not time enabled,
then there must exist some other time-enabled transition that
must fire first. Therefore, one time-enabled transition is chosen
at random to fire to allow time to move forward. If t is not
enabled, then the algorithm must look backward in the Petri
net to determine which transitions must fire in order to enable t.
This is done by finding all of the unmarked places p in the preset
of t and then calling necessary_set on each transition t! that is
in the preset of p and not a member of the set of transitions that
should not be fired T'. The result of this operation for each p
forms the set of transitions that are necessary to fire in order to
allow t to fire. The smallest of these sets is returned.

The dependent algorithm shown in Fig. 7 is used to find
a set of transitions that must be interleaved. Transitions must
be interleaved because they are in conflict. Transitions conflict
when they share a common preset place (i.e., conflict(t) =

Fig. 7. Algorithm to find a dependent set.

{£' G T | • t n •£' / 0}). The dependent algorithm takes a
seed transition £, a timed state 5, and a set of transitions that
should not be fired V . The dependent-set calculation begins
with an initial dependent set consisting of just the transition t.
The algorithm then looks for additional transitions that conflict
with those already in the dependent set. These transitions may
not yet be enabled, so this algorithm uses the necessary_set
algorithm to find those transition firings that would lead to
the enabling of the conflicting transition. Each time through
the loop, newly found transitions are added to the set and this
loop continues until no new transitions are found. The set of
transitions dependent on t are then returned.

The find_concrete_trace algorithm takes as input the initial
Petri net before abstraction TV, the set of transitions in the
abstracted net T;, and an abstract trace x, and it proceeds in
the following manner. First, it sets the current state 5 to the
initial state (Mo, Do). The first item (£, r) is removed from the
abstract error trace x. If t is time enabled in the current state,
then the dependent-set information is calculated and pushed on
the stack for backtracking purposes. Next, t is fired and added to
the concrete error trace x'. A new t is selected from the abstract
error trace and the process continues. If t is not time enabled,
then the set of transitions necessary for it to become time
enabled is calculated. For each of these necessary transitions,
the set of transitions that must be interleaved with each of them
is calculated and added to the set of necessary transitions. If
this set E is empty, then we have reached a dead path. If more
possible interleavings are on the stack, then the algorithm backs
up to the point at which the last choice was made. If the stack
is empty, then a false negative has been found. If the set E is
not empty, then a transition from the set is selected, and if any
transitions remain, they are pushed on the stack for possible
backtracking. The selected transition is fired and added to the
concrete trace and control loops back to the beginning.

The main idea behind the concrete-trace algorithm is to use
the abstract trace to guide a search through the state space of the
flat design, using a partial-order reduction-based reachability
algorithm, to confirm or refute the existence of a concrete trace
containing the abstract trace. Since a reachability algorithm is
used, it is possible that searching for a concrete error trace
could result in a full state-space exploration of the flat design.
We have, however, not seen this behavior in practice. As with
partial-order methods, this trace-generation method works well
with designs that have a high degree of concurrence. In designs
with more conflict than concurrence, the chance of seeing worst
case behavior increases.

410 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 3, MARCH 2006

Input FIFO (IF)

Req Ack

Byte Control Latch/Decode
Length

Decoder

PReq

LReq
PrefLong

Environment

(PL)
(BC) (LD) PLAck

Ack
Gen

(AG)
Tag Ack

Instruction
Ready

Control
(IR)

TagOut InstRdy TB Lenl

ByteRdy(i+l)

J ByteRdy(i+6)

Preempt(i+6)
Len7

Bytes

Env

(BE)

Tag Tagln
Env Tag Unit (TU)

(TI) 8

1 SSRdy

Steering Switch (SS)

Fig. 8. Block diagram for RAPPID circuit.

TABLE I
Experimental Results

Runs m
Average

\ T \ - \ D \
Average

\ r \
Reduction
Time (sec)

Max
States

Verification
Time (sec)

Total
Time (sec)

RAPPID 50 114 2 60 7.16 1835 27.40 45.13
TITAC2 63 231 2 26 14.60 112 1.45 83.88
IIR1 129 331 3 11 59.61 49 0.84 429.05
IIR2 133 323 3 11 60.07 29 0.86 429.71
FIR1 296 781 3 12 673.32 105 1.72 8349.87
FIR2 296 757 3 11 720.05 57 1.99 8776.39

In the self-resetting AND gate example shown in Fig. 1, two
of the eleven verification runs fail initially. The two runs that
fail are for the two constraint places in the postset of a+.
In both cases, no concrete error trace is found, so these are
false-negative results. After disallowing one very conservative
transformation that removes self-loops, these two verification
runs succeed. In the experimental results described in the next
section, only one false negative is encountered.

VII. E x p e r i m e n t a l R e s u l t s

We have incorporated the method described in this paper
into the compiler front end of the AT ACS tool [36], and we
have applied it to several examples. The AT ACS tool can per­
form flat verification, modular verification [29], and the new

failure-directed method. In the following experiments, the flat,
modular, and failure-directed approaches use the same explicit-
state reachability analysis engine and parameter settings [37].
All results are obtained on a 1.7-GHz Pentium M with 1 GB
of memory.

The first is Intel’s RAPPID circuit, which is a fully asyn­
chronous instruction-length decoder for the Pentium II 32-bit
MultiMedia extensions (MMX) instruction set [2]. In this
instruction set, each instruction can be from 1- to 15-B long,
depending on a large number of factors. In order to allow
concurrent execution of instructions, it is necessary to rapidly
determine the positions of each instruction in a cache line.
Instruction-length decoding was a critical performance bottle­
neck in the Pentium II architecture at the time when RAPPID
was being designed. The RAPPID circuit is shown to perform,

ZHENG eta l: VERIFICATION OF TIMED CIRCUITS WITH FAILURE-DIRECTED ABSTRACTIONS 411

on average, three times faster, while using half the power of
the comparable synchronous design. This performance im­
provement is due, in large part, to the highly timed nature of the
circuits in this design. Therefore, the correctness of this design
is highly dependent on timing parameters. The block diagram
for the portion of the RAPPID design that we verified is de­
picted in Fig. 8. The TPN description of the RAPPID circuit
has 114 transitions on 49 signal wires with no constraint places.
Our second example is the line fetch module of TITAC2’s
instruction cache system [38], which is represented using a
TPN with 231 transitions derived from a high-level specifica­
tion [39]. The final four examples (IIR1, IIR2, FIR1, and FIR2)
are timed signal transition graph (STGs) used in [40], which are
obtained from high-level specifications for an HR filter and an
FIR filter by doing resource allocation under several resource
constraints and generating the corresponding STGs with timing
based on a 0.25-^m gate library. The TPN representations for
the HR examples have more than 300 transitions while those
for the FIR examples have more than 700 transitions. These
examples have constraint places to check the correctness of the
resource allocation, i.e., each resource is used only sequentially.

Table I shows the reduction and runtime results for our
examples. Column 2 of Table I shows the total number of
analysis runs necessary to verify the circuit. Column 3 shows
the total number of transitions in the design before transforma­
tion, column 4 shows the average number of transitions that
would remain if all abstractable transitions were removable,
and column 5 shows the actual average number of transitions
remaining after transformation. Column 6 shows the amount of
time devoted to performing net transformations across all runs
of each design. The maximum number of states visited during
verification is shown in column 7 and the total amount of time
necessary to perform all verification runs is shown in column 8.
Finally, column 9 shows the total time for verifying each design.

For all the examples, fiat analysis runs out of memory. The
modular approach is only applicable for the RAPPID example,
since all the other examples do not contain any hierarchy. For
the RAPPID example, the modular approach decomposes the
verification problem into ten subproblems, one for each module
shown in Fig. 8. However, as described in [29], the IR module
is too large and has to be further decomposed by hand into
seven smaller modules. The final verification time for this hand-
decomposed design is reported to be 618.3 s.

The failure-directed approach succeeded in verifying all the
examples. Over all examples, only one false negative is found,
which is in the complement-failure check for one signal in
the RAPPID design. Again, by removing one transformation,
this false negative is removed and verification can complete
successfully. In the failure-directed approach, the net size is
decreased by 95% on average. The time required for these
reductions is never more than 15 min total over all the necessary
runs. The result of these reductions is that the state space
that is explored is always less than 2000 timed states and
often significantly fewer, with a total verification time over all
runs never exceeding a minute and normally taking just a few
seconds. The majority of the time spent is simply parsing the
large nets and creating the data structures necessary to represent
the original very large Petri net.

This paper describes a new method to deal with state ex­
plosion by decomposing the timing-verification problem as
directed by the given failure model. This decomposition allows
for a significant reduction in the size of the model for each
subproblem using an automatic abstraction method based on
safe transformations. It no longer requires that a design is
properly partitioned for successful verification. This method
has been applied to several large timed-circuit designs, most
of which could not previously be verified. Overall, this method
scales very well in that the size of the individual verification
problems are only dependent on the complexity associated with
a single signal or a single constraint place. This new method
can also be built on top of any reachability analysis algorithm
for TPNs, and benefit from any improvement in the underlying
analysis algorithm. In particular, our preliminary analysis has
shown that combining abstraction with a partial-order-based
analysis technique can bring even further improvements.

R e f e r e n c e s

[1] H. P. Hofstee, S. H. Dhong, D. Meltzer, K. J. Nowka, J. A. Silberman,
J. L. Bums, S. D. Posluszny, and O. Takahashi, “Designing for a giga­
hertz,” IEEE Micro, vol. 18, no. 3, pp. 66-74, May/Jun. 1998.

[2] K. S. Stevens, S. Rotera, R. Ginosar, P. Beerel, C. J. Myers,
K. Y. Yun, R. Koi, C. Dike, and M. Roncken, “An asynchronous
instruction length decoder,” IEEE J. Solid-State Circuits, vol. 36, no. 2,
pp. 217-228, Feb. 2001.

[3] J. R. Burch, E. M. Clarke, D. E. Long, K. L. McMillan, and
D. L. Dill, “Symbolic model checking for sequential circuit verification,”
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 13, no. 4,
pp. 401-424, Apr. 1994.

[4] M. Bozga, O. Maler, A. Pnueli, and S. Yovine, “Some progress in the
symbolic verification of timed automata,” in International Conference
on Computer-Aided Verification, ser. LNCS, vol. 1254. London, U. K.:
Springer-Verlag, 1997, pp. 179-190.

[5] J. M0ller, J. Lichtenberg, H. R. Andersen, and H. Hulgaard, “Difference
decision diagrams,” in Computer Science Logic. Copenhagen, Denmark:
IT Univ. Copenhagen, Sep. 1999.

[6] K. G. Larsen, C. Weise, Y. Wang, and J. Pearson, “Clock difference
diagrams,” Nord J. Comput., vol. 6, no. 3, pp. 271-298, 1999.

[7] A. Valmari, “A stubborn attack on state explosion,” in International Con­
ference on Computer-Aided Verification, ser. LNCS, vol. 531. London,
U. K.: Springer-Verlag, Jun. 1990, pp. 156-165.

[8J P. Godefroid, “Using partial orders to improve automatic verification
methods,” in International Conference on Computer-Aided Verification,
ser. LNCS, vol. 531. London, U.K.: Springer-Verlag, 1990, pp. 176-185.

[9] J. Bengtsson, B. Jonsson, J. Lilius, and W. Yi. (1998). “Partial order
reductions for timed systems,” in Int. Conf. Concurrency Theory,
Nice, France, pp. 485-500. [Online]. Available: citeseer.nj.nec.com/
bengtsson98partial.html

[10] T. Yoneda and H. Ryu, “Timed trace theoretic verification using partial
order reduction,” in Proc. Int. Symp. Advanced Research Asynchronous
Circuits and Systems, Barcelona, Spain, Apr. 1999, pp. 108-121.

[11] J. Misra and K. M. Chandy, “Proofs of networks of processes,” IEEE
Trans. Sqftw. Eng., vol. SE-7, no. 4, pp. 417-426, Jul. 1981.

[12] C. Jones, “Tentative steps toward a development for interfering pro­
grams,” ACM Trans. Program. Lang. Syst., vol. 5, no. 4, pp. 596-619,
Oct. 1983.

[13] O. Grumberg and D. Long, “Model checking and modular verifica­
tion,” ACM Trans. Program. Lang. Syst., vol. 16, no. 3, pp. 843-872,
May 1994.

[14] T. A. Henzinger, S. Qadeer, and S. K. Rajamani, “You assume, we guaran­
tee: Methodology and case studies,” in Proc. Int. Conf. Computer-Aided
Verification, Vancouver, B.C., Canada, 1998, pp. 440-451.

[15] K. L. Mcmillan, “A methodology for hardware verification using com­
positional model checking,” Science o f Computer Programming, vol. 37,
no. 1-3, pp. 279-309, May 2000.

[16] S. Tasiran and R. K. Brayton, “Stari: A case study in compositional
and hierarchical timing verification,” in International Conference on

V I I I . C o n c l u s i o n a n d F u t u r e W o r k

412 IF.F.F. TRANSACTIONS ON COMPUTER-AIDED DF.SIGN OF INTEGRATED CIRCUITS AND SYSTEMS. VOT.. 25. NO. 3. MARCH 2006

Computer-Aided Verification, ser. I.NCS, vol. 1254. London, U. K.:
Springer-Verlag, 1997, pp. 191-201.

117] B. Clarke, O. Grumberg, and D. Long, "Model checking and abstrac­
tion,” ACM Trans. Program. Ixmg. Syst., vol. 16, no. 5, pp. 1512-1542,
Sep. 1994.

1181 D. Dams, R. Gerth, and O. Grumberg, "Abstract interpretation of reactive
systems,” ACM Trans. Program. l.ang. Syst., vol. 19, no. 2, pp. 253-291,
Mar. 1997.

119) W. Relluomini and C. J. Myers, "Timed circuit verification using TBI.
structures,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.,
vol. 20, no. I, pp. 129-146, Jan. 2001.

|20| J. M. Jensen, D. Giannakopoulou, and C. S. Pasareanu, "Learning
assumptions for compositional verification,” in I.NCS, vol. 2619. Berlin,
Germany: Springer-Verlag, 2003, pp. 331-346.

1211 H. B. Jensen, K. G. Larsen, and A. Skou. (2000). "Scaling up uppaal
automatic verification of real-time systems using compositionality and
abstraction,” in Formal Techniques Real-Time and Fault-Tolerant Sys­
tems (FTKTFT), Pune, India, pp. 19-30. |Online|. Available: citeseer.nj.
nec.com/jensen00scaling.html

1221 D. Dill, Trace Theory fo r Automatic Hierarchical Verification o f
Speed-Independent Circuits, ser. ACM Distinguished Dissertations.
Cambridge, MA: MIT Press, 1989.

1231 K. I.arsen, R. Steffen, and C. Weise, "A constraint oriented proof
methodology,” in Formal Systems Verification, ser. I.NCS, vol. 1169.
Heidelberg, Germany: Springer-Verlag, Nov. 1996, pp. 405-435.

124] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre, "Lazy abstrac­
tion,” in 29th Symp. Principles Programming languages, Portland, OR,
Jan. 2002, pp. 58-70.

1251 S. Graf and H. Saidi, "Construction of abstract state graphs with pvs,”
in Conf. Computer Aided Verification, Haifa, Israel, Jun. 1997, vol. 1254,
pp. 72-83.

126) T. Rail and S. Rajamani, "A model and process for software
analysis,” Microsoft Research, Redmond, WA, Tech. Rep. 20(H)-14,
Feb. 2000.

127| ------ , "Automatically validating temporal safety properties of interfaces,”
in SPIN Workshop, Toronto, Canada, May 2001, vol. 2057, pp. 103-122.

1281 M. Moller, H. ReuB, and M. Sorea, "Predicate abstraction for dense
real-time systems,” Electron. Notes Theor. Comput. Sci., vol. 65, no. 6,
pp. 1-20, Jun. 2002.

1291 H. Zheng, B. Mercer, and C. Myers, "Modular verification of timed
circuits using automatic abstraction,” IEEE Trans. Comput.-Aided Des.
Integr Circuits Syst., vol. 22, no. 9, pp. 1138-1153, Sep. 2003.

130) C. Ramchandani, "Analysis of asynchronous concurrent systems by timed
Petri nets,” Massachusetts Inst. Technol., Cambridge, MA, Project MAC
Tech. Rep. 120, Feb. 1974.

1311 D. Dill, S. Nowick, and R. Sproull, "Specification and automatic ver­
ification of self-timed queues,” Stanford Univ. Press, Stanford, CA,
Tech. Rep. CSL-TR-89-387, Aug. 1989.

1321 T. G. Rokicki and C. J. Myers, "Automatic verification of timed circuits,”
in Proc. Int. Conf. Computer Aided Verification, Stanford, CA, 1994,
pp. 468-480.

1331 T. Yoneda and R. Schlingloff, "Bfficient verification of parallel real-time
systems,” in Formal Methods in System Design, C. Courcoubetis, Bd.
Roston, MA: Kluwer, 1997.

134] W. Relluomini and C. J. Myers, "Timed state space exploration using
posets,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 19,
no. 5, pp. 501-520, May 2000.

1351 T. Murata, "Petri nets: Properties, analysis, and applications,” Proc. IEEE,
vol. 77, no. 4, pp. 541-580, Apr. 1989.

136) C. Myers, W. Relluomini, K. Killpack, B. Mercer, B. Peskin, and
H. Zheng, "Timed circuits: A new paradigm for high-speed design,”
in Proc. Asia and South Pacific Design Automation Conf., Yokohama,
Japan, Feb. 2001, pp. 335-340.

137| B. Mercer, C. Myers, and T. Yoneda, "Improved POSBT timing analysis
in timed Petri nets,” in 10th Workshop Synthesis and System Integration
Mixed Technologies (SASIMI). Nara, Japan, Oct. 2001', pp. 151-158.

1381 A. Takamura, M. Kuwako, M. Imai, T. Fujii, M. Ozawa, 1. Fukasaku,
Y’. Ueno, and T. Nanya, "T1TAC-2: An asynchronous 32-bit microproces­
sor based on scalable-delay-insensitive model,” in Proc. Int. Conf Com­
puter Design: VISI Computers and Processors, Austin, TX, Oct. 1997,
p p .288-294.

139) T. Yoneda and C. Myers, "Synthesizing timed circuits from high
level specification languages,” Nat. Inst. Informatics, Tokyo, Japan,
Nil Tech. Rep. NII-2003-003B, 2003.

140| T. Yoneda, A. Matsumoto, M. Kato, and C. Myers, "High level synthesis
of timed asynchronous circuits,” in Proc. Int. Symp. Advanced Research
Asynchronous Circuits and Systems, New York, Mar. 2005, pp. 178-189.

Hao Zheng (M'05) received the M.S. and Ph.D. de­
grees in electrical engineering from the University of
Utah, Salt I.ake City, in 1998 and 2001, respectively.

Currently, he is an Assistant Professor in the Com­
puter Science and Bngineering Department of the
University of South Florida, Tampa. His research
interests include the application of formal methods
in the computer system design, devising abstraction
techniques to improve the capability of model check­
ing, and advanced architectures for low power and
high performance.

Chris J. Myers (S '91-M ,96-SM,04) received the
R.S. degree in electrical engineering and Chinese
history in 1991 from the California Institute of
Technology, Pasadena, and the M.S.L.L. and Ph.D.
degrees from Stanford University, Stanford, CA, in
1993 and 1995, respectively.

He is an Associate Professor in the Department
of Blectrical and Computer Bngineering, University
of Utah, Salt I.ake City. He is the author of over
50 technical papers and the textbook Asynchronous
Circuit Design. He is also a coinventor of 4 patents.

His current research interests are algorithms for the computer-aided analysis
and design of real-time concurrent systems, analog error control decoders,
formal verification, asynchronous circuit design, and modeling of biological
networks.

Dr. Myers received a National Science Foundation (NSF) Fellowship in
1991, an NSFCARBBR Award in 1996, and a Rest Paper Award at Async99.

David W alter (S'05) received the R.S. degrees in
computer science and computer engineering from
the University of Utah, Salt I.ake City, in 2001. He
is currently pursuing the Ph.D. degree in computer
science at the University of Utah.

His current research interests are in the formal
verification of analog and mixed-signal systems.

Scott Little received the R.S. degree in computer
engineering in 2003 from the University of Utah, Salt
Lake City. He is currently an SRC Fellow working
toward the Ph.D. degree in computer science at the
University of Utah.

His current research interests include formal ver­
ification of embedded systems and analog/mixed-
signal circuits.

Toinohiro Yoneda (M'85) received the R.B., M.B.,
and Dr. ling, degrees in computer science from the
Tokyo Institute of Technology, Tokyo, Japan in 1980,
1982, and 1985, respectively.

In 1985, he joined the staff of Tokyo Institute
of Technology, and he moved to National Institute
of Informatics, Tokyo, Japan, in 2002, where he is
currently a Professor. He was a Visiting Researcher
of Carnegie Mellon University from 1990 to 1991.
His research activities currently focus on formal
verification of hardware and synthesis of asynchro­

nous circuits.
Dr. Y’oneda is a member of the Institute of Blectronics, Information,

and Communication Bngineers of Japan, and Information Processing Society
of Japan.

