

Norman, G., and Parker, D. (2014) Quantitative Verification: Formal
Guarantees for Timeliness, Reliability and Performance.Technical Report.
London Mathematical Society and Smith Institute.

Copyright © 2014 The Authors

A copy can be downloaded for personal non-commercial research or
study, without prior permission or charge

Content must not be changed in any way or reproduced in any format or
medium without the formal permission of the copyright holder(s)

When referring to this work, full bibliographic details must be given

http://eprints.gla.ac.uk/96376/

 Deposited on: 29 August 2014

Enlighten – Research publications by members of the University of Glasgow
http://eprints.gla.ac.uk

http://eprints.gla.ac.uk/view/author/5956.html
http://eprints.gla.ac.uk/96376/
http://eprints.gla.ac.uk/
http://eprints.gla.ac.uk/

Quantitative Verification

Formal Guarantees for Timeliness, Reliability and Performance

A Knowledge Transfer Report from the London Mathematical Society and

Smith Institute for Industrial Mathematics and System Engineering

By Gethin Norman and David Parker

Copyright © 2014 by Gethin Norman and David Parker

Image credits:

Front cover top left: Eternalfeelings / Shutterstock.com

Front cover top right: Vereshchagin Dmitry / Shutterstock.com

Front cover bottom left: Tiggy Gallery! / Shutterstock.com

Front cover bottom right: ESA / D Ducros

Front cover background: Serg64 / Shutterstock.com

Page 10: coloursinmylife / Shutterstock.com

QUANTITATIVE VERIFICATION
Formal Guarantees for Timeliness, Reliability and Performance

By Gethin Norman and David Parker

Contents

Page

Executive Summary 3

Quantitative Verification: An Introduction 4

What Can Be Done with Quantitative Verification? 6

Quantitative Verification: In Depth 11

Current Challenges 17

Next Steps 18

Appendix 1: Quantitative Verification Tools 20

Appendix 2: Active Researchers and Practitioner Groups 21

References 23

June 2014

A Knowledge Transfer Report from the London Mathematical Society and

the Smith Institute for Industrial Mathematics and System Engineering

Edited by Robert Leese and Tom Melham

London Mathematical Society, De Morgan House, 57–58 Russell Square, London WC1B 4HS

Smith Institute, Surrey Technology Centre, Surrey Research Park, Guildford GU2 7YG

2 QUANTITATIVE VERIFICATION:

Formal Guarantees for Timeliness, Reliability and Performance

AUTHORS

Gethin Norman is a Lecturer in Computing Science at the University of Glasgow and was

previously a senior post-doctoral researcher at the University of Oxford. The focus of his

research has been on the theoretical underpinning of quantitative formal methods, particu-

larly models and algorithms for real-time and probability, and quality of service properties.

He is a key contributor to the probabilistic verification tool PRISM, developing many of

PRISM’s modelling case studies across a wide range of application domains, finding sev-

eral faults and anomalies. He is a member of the steering committees for the International

Conference on Quantitative Evaluation of Systems (QEST) and the International Workshop

on Quantitative Aspects of Programming Languages and Systems (QAPL) and has served

on the programme committees of many of the well-known international verification confer-

ences and workshops.

www.dcs.gla.ac.uk/people/personal/gethin/

gethin.norman@glasgow.ac.uk

David Parker is a Lecturer in Computer Science at the University of Birmingham. Prior

to that, he was a senior post-doctoral researcher at the University of Oxford. His main re-

search interests are in the area of formal verification, with a particular focus on the analysis

of quantitative aspects such as probabilistic and real-time behaviour, and he has published

over 90 papers in this area. Recent work includes efficient techniques for scalable verifi-

cation (e.g. abstraction, compositionality), game-theoretic verification methods, and appli-

cations of these approaches to areas such as systems biology, DNA computing, computer

security and robotics. He leads development of the widely used probabilistic verification

tool PRISM, regularly serves on the programme committees of international conferences

such as TACAS, SEFM, CONCUR, TASE and QEST, and frequently gives invited tutorials

on quantitative verification at summer schools and workshops.

www.cs.bham.ac.uk/˜parkerdx/

d.a.parker@cs.bham.ac.uk

http://www.dcs.gla.ac.uk/people/personal/gethin/
mailto:gethin.norman@glasgow.ac.uk
http://www.cs.bham.ac.uk/~parkerdx/
mailto:d.a.parker@cs.bham.ac.uk

A KNOWLEDGE TRANSFER REPORT FROM

THE LMS AND THE SMITH INSTITUTE

3

Executive Summary

Computerised systems appear in

almost all aspects of our daily lives,

often in safety-critical scenarios

such as embedded control systems

in cars and aircraft or medical

devices such as pacemakers and

sensors. We are thus increasingly

reliant on these systems working

correctly, despite often operating in

unpredictable or unreliable

environments. Designers of such

devices need ways to guarantee

that they will operate in a reliable

and efficient manner.

Quantitative verification is a

technique for analysing quantitative

aspects of a system’s design, such

as timeliness, reliability or

performance. It applies formal

methods, based on a rigorous

analysis of a mathematical model

of the system, to automatically

prove certain precisely specified

properties, e.g. “the airbag will

always deploy within 20

milliseconds after a crash” or “the

probability of both sensors failing

simultaneously is less than 0.001”.

The ability to formally guarantee

quantitative properties of this kind

is beneficial across a wide range of

application domains. For example,

in safety-critical systems, it may be

essential to establish credible

bounds on the probability with

which certain failures or

combinations of failures can occur.

In embedded control systems, it is

often important to comply with strict

constraints on timing or resources.

More generally, being able to derive

guarantees on precisely specified

levels of performance or efficiency

is a valuable tool in the design of,

for example, wireless networking

protocols, robotic systems or power

management algorithms, to name

but a few.

This report gives a short

introduction to quantitative

verification, focusing in particular

on a widely used technique called

model checking, and its

generalisation to the analysis of

quantitative aspects of a system

such as timing, probabilistic

behaviour or resource usage.

The intended audience is industrial

designers and developers of

systems such as those highlighted

above who could benefit from the

application of quantitative

verification, but lack expertise in

formal verification or modelling.

This report, in addition to explaining

the basics of quantitative

verification, highlights a variety of

successful practical applications of

these methods and provides

suggestions as to how interested

readers can learn more about

these techniques, and engage with

the researchers that are developing

them. We hope that this will spur

further advances in this rapidly

advancing area and its applicability

to industrial-scale problems.

4 QUANTITATIVE VERIFICATION:

Formal Guarantees for Timeliness, Reliability and Performance

Quantitative Verification: An Introduction

Formal verification

Formal verification is an approach

for checking the correctness of a

computerised system during its

design phase. In contrast to

testing, which checks that the

system behaves correctly under a

finite number of test cases, formal

verification is designed to be

exhaustive: it uses mathematical

reasoning to guarantee the

absence of errors. Conversely,

when system errors do exist, formal

verification can also serve as an

effective bug-hunting technique.

Formal verification has become an

essential part of the design phase

in several industries. For example,

in the development of integrated

circuits, verification functionality in

electronic design automation (EDA)

tools is routinely used to eradicate

errors that would be hugely

expensive to fix later in the design

process. In safety-critical domains

such as the avionics industry,

stringent regulations for

certification have led to widespread

usage of formal verification

techniques to prove correctness of

systems components.

Model checking [27] is a commonly

used formal verification technique,

which has been applied with great

success to check the correctness of

(and identify errors in), for example,

hardware device drivers and both

cryptographic and communication

protocols. First, the correct

behaviour of these systems is

formally specified and then a

mathematical model that captures

all possible executions of the

system is systematically

constructed and analysed in order

to verify that the correctness

properties are satisfied. In some

cases, these are abstract models,

0
2

4
6

8
10

4

12

20

28

36
0

0.2

0.4

0.6

0.8

1

Deadline (ns)

Communication delay (ns)

P
ro

b
a

b
ili

ty
 c
o

n
te

n
ti
o

n
 re

s
o

lv
e

d
 b

y
 d

e
a

d
lin

e

Figure 1: Quantitative verification, used for performance analysis of the

root contention phase of the Firewire protocol [72].

designed by hand and based on

expert knowledge of the system; in

others, they can be extracted

directly, from source code or a

high-level design document. A key

appeal of model checking is that,

once the model and its correctness

properties have been specified, the

verification process itself is typically

fully automated.

Quantitative aspects
of correctness

Computerised systems play a

critical role in almost all aspects of

our daily lives, from embedded

control systems in cars and aircraft,

to medical devices such as

pacemakers and sensors, to the

multitude of electronic devices that

make up our communication

networks. Often, these systems

function in unpredictable or

unreliable environments, yet we

have become reliant on them

working reliably and efficiently.

This means that quantitative (or

“nonfunctional”) aspects of

correctness have become

increasingly important. Whether we

are concerned with guarantees

about the operation of a

safety-critical system, or an

analysis of the performance of a

communication protocol (see, for

example, Figure 1), verifying that

systems function ‘correctly’ may

require the ability to reason about:

• Time: Does the airbag

successfully deploy within 20

milliseconds upon detection of a

crash?

• Probabilities: Is the probability

of successful message

transmission greater than 0.99?

• Resources: Does the robot

complete its mission without

depleting its battery?

Quantitative verification generalises

formal verification: it comprises a

variety of techniques that can be

used to produce formal guarantees

about quantitative aspects of

system behaviour, such as

reliability, performance or

timeliness. In this report, we give

an overview of these techniques,

with a particular emphasis on timed

and probabilistic variants of model

checking.

A KNOWLEDGE TRANSFER REPORT FROM

THE LMS AND THE SMITH INSTITUTE

5

Model checking for
real-time and
probabilistic systems

Model-checking techniques,

originally designed to prove or

disprove the absence of errors in a

system, have now been extended

to reason in a more quantitative

fashion about correctness.

The basic approach (see Figure 2

for an overview) remains to

construct a model of a system’s

behaviour, but now incorporating

information about the timing or

likelihood of events that may occur.

Typically, from the user’s point of

view, this is done using a high-level

modelling language, often one that

is specific to the model-checking

software being used. From this, the

software exhaustively constructs

and analyses the underlying

low-level model, i.e. it explores all

the possible configurations (states)

that the system can be in and the

ways in which it can evolve

between these states (transitions).

Real-time systems. When precise

constraints on the timing of events

are needed, timed automata are a

popular high-level model. These

allow the modeller to specify the

delays that occur as transitions

take place between states.

Examples of their use include

modelling real-time control systems

for manufacturing processes or

automotive applications.

Probabilistic systems. Another

key ingredient when modelling and

verifying quantitative aspects of a

system’s behaviour is probability.

This can be used to model many

sources of uncertainty, for example

the potential failure of a physical

component, the time delay

associated with transmitting data

across a busy wireless channel, or

the presence of noise from

unreliable sensors in an embedded

system. Some systems also

High-level 
model/design

Specification
(temporal logic)

Verification
results

System

Diagnostics
System

 require-
ments

¬E fail

Model  
checker

module A

 a : [0..N] init N;

 ab : [0..N] init 0;

 [r1] a>0 → k1*a :
(a =a-1)&(ab =ab+1);

 [r2] ab>0 → k2*ab : (a’=a
+1)&(ab’=ab-1);

 [r3] a>0 → k3*a : (a’=a-1);

Low-level model
(states, transitions)

Model checking

?

Numerical
results

Figure 2: An overview of the model-checking framework.

explicitly incorporate probabilistic

behaviour through the use of

randomisation: e.g. random

back-off in wireless protocols and

probabilistic network routing for

efficiency or anonymity.

Many different models exist to

capture the probabilistic behaviour

of systems. Prominent examples

include (discrete-time or

continuous-time) Markov chains

and Markov decision processes.

Property specifications. For

verification, the required behaviour

of a system needs to be formally

specified. This is often done using

temporal logics (but more

user-friendly formats also exist -

see Box 7). Examples include

TCTL (Timed Computation Tree

Logic) for real-time systems and

PCTL (Probabilistic Computation

Tree Logic) or CSL (Continuous

Stochastic Logic) for probabilistic

systems. An example of a PCTL

specification and its meaning is:

• detect ⇒ P≥0.999[^≤20 deploy]:

“With probability at least 0.999,

the airbag successfully deploys

within 20 milliseconds upon

detection of a crash.”

Verifying that models satisfy such

properties is achieved using

model-checking software. The most

widely used examples for real-time

and probabilistic systems are

UPPAAL and PRISM, respectively.

Box 1: History of

Key Developments

Late 80s: Basic theory of

probabilistic model checking,

e.g. [108].

1990: Timed automata formal-

ism, for modelling real-time sys-

tems, proposed by Alur & Dill [7].

Mid 90s: Probabilistic logic

PCTL and model-checking algo-

rithms proposed [52, 16].

Mid 90s: Zone-based data struc-

tures developed to allow efficient

analysis of timed automata [77].

1995: First release of the UP-

PAAL model checker, for mod-

elling and verification of timed

automata.

2000: First versions of the prob-

abilistic model checkers PRISM

and ETMCC (now MRMC).

Early 2000s: Probabilistic model

checking extended to continuous-

time Markov chains, for perfor-

mance and reliability [8, 9].

2000s: New variants of UPPAAL

for cost-based models, synthesis-

ing controllers and efficient, com-

positional verification.

2011: PRISM 4.0 adds support

for systems with both probabilis-

tic and real-time behaviour [69].

6 QUANTITATIVE VERIFICATION:

Formal Guarantees for Timeliness, Reliability and Performance

What Can Be Done with Quantitative Verification?

Quantitative verification techniques

have been successfully deployed in

a variety of application domains,

both to prove correctness and to

find bugs or anomalies. We identify

three key areas of application:

• safety-critical systems;

• performance/reliability;

• scheduling/optimisation,

and illustrate each area with a

number of success stories,

concentrating on those with

industrial connections.

Safety-critical systems

Safety-critical systems are those

where failure is deemed to be

unacceptable, for example because

it could lead to loss of life or major

environmental damage. Examples

can be found in domains such as

avionics, nuclear energy, process

control, robotics, transport and

medicine.

In many cases, strict constraints

are imposed upon the correctness

or reliability of computerised

systems in these domains, for

example by industrial regulations or

certification procedures.

Quantitative verification can be

used to generate formal guarantees

about such aspects of the design of

a safety-critical system.

Automotive systems. Box 2

describes an example of using

probabilistic verification to formally

assess reliability in the context of a

safety-critical system from the

automotive domain.

Box 2: Failure Analysis for an Airbag System

Automotive systems are required to operate under strict safety constraints. Researchers at the Univer-

sity of Konstanz and Swinburne University, in conjunction with industrial partners TRW Automotive GmbH,

used probabilistic model checking as part of a failure analysis for a car airbag system, as reported in [4].

Their approach was based on the FMEA (Failure Mode and Effects Analysis) process

[1], one of the first systematic approaches for failure analysis developed by reliabil-

ity engineers. FMEA analyses potential failures of system components, assessing

and ranking the risks associated with them, and then identifying and addressing the

most serious problems. The FMEA process can be time-intensive and the analysis

is sometimes informal. Quantitative verification was applied in order to overcome

these limitations. The analysis was based on the probabilistic FMEA process of

Grunske et. al. [50], which combines FMEA with probabilistic model checking and

the generation of probabilistic counterexamples [5].

The airbag system consists of three major component types: sensors, crash evalua-

tors and actuators. The sensors are used to detect accidents such as impacts or the

car rolling, and the information from the sensors is then processed by two indepen-

dent crash evaluators. If both evaluators agree that a crash has occurred, then the

actuators respond by deploying the airbags. The use of a second crash evaluator is a recent addition to airbag systems,

aimed at avoiding unnecessary deployment, which is seen as the most dangerous malfunction that can occur. The

failure analysis considered variants of the airbag system with both one and two crash evaluators.

The probabilistic model checker PRISM was used to construct models of the two different variants of the system,

with their behaviour being modelled using a continuous-time Markov chain. Probabilistic FMEA analysis was then

performed on the models. The requirements for the system were developed based on a draft of the ISO standard 26262

for road vehicles, which states that the airbag system must comply with ASIL D (Automated Safety Integration Level

D) for unintended deployment. The requirements were formalised using the temporal logic CSL and then verified

against the models using PRISM. The analysis found that certain ASIL D requirements were violated in the one-

processor variant of the system. Furthermore, using counterexample generation and visualisation, the critical aspect

of this violation was identified as the failure of the micro-processor.

An evaluation of the work carried out concluded that PRISM’s modelling language could be learned quickly by the

engineers on the project to specify models. However the same could not be said for property specification using the

CSL logic. To resolve this, property specification patterns [49] (see Box 7) were used. Other limiting factors were the

size of the system models that needed to be constructed and the time required to verify some of the CSL properties.

A KNOWLEDGE TRANSFER REPORT FROM

THE LMS AND THE SMITH INSTITUTE

7

Real-time communication.

Another example is the use of the

real-time systems model-checking

tool UPPAAL to model and verify

the commercial real-time

communications protocol AF100

(Advant Field-bus 100) [28],

developed and implemented by

ABB for safety-critical applications.

This case study is one of the

largest to which UPPAAL has been

applied and the verification had to

be applied to a sequence of

models, representing different

levels of abstraction.

The conclusion of this work was

that, although it is possible to

implement the communications

protocol such that its specified

requirements are satisfied, care

must be taken to avoid certain race

conditions (e.g. situations where

more than process tries to access a

resource at the same time) and

delays. The analysis also

demonstrated several imperfections

in the protocol’s logic and

implementation. The sources of

these errors were then debugged

using abstract models of the

protocol and solutions to these

problems were given.

Performance and
reliability

Our second highlighted area for the

application of quantitative

verification techniques is the formal

analysis of performance and

reliability properties. Temporal

logics such as PCTL, and in

particular CSL, have proved to be

an effective way of formally

capturing a wide range of useful

properties, and probabilistic

verification has been used for their

analysis in a variety of domains.

Process control. Box 3 gives an

illustration of this kind of analysis: a

reliability analysis of an industrial

process control system, which

includes application of the

probabilistic model checker PRISM.

Box 3: Reliability of an Industrial Process Control System

Engineers from ABB Corporate Research, working with the EU-funded research project Q-ImPrESS, ap-

plied probabilistic verification to study the reliability of a large-scale process control system used in a

variety of industrial settings, including power generation, chemical processes and material handling [67].

Central
control

unit

Input
modules

Sensors Actuators

Output
modules

Visualisation and interaction

The control system is used to access the sensors and actuators of an

industrial process. It provides a graphical visualisation of important

values from the sensors and allows interaction with the actuators (e.g.

opening or closing valves). In total, the control system comprises over

3 million lines of code and 100 components, structured into 9 sub-

systems.

The study applied an architecture-based software reliability analysis

(ABSRA) approach [47, 48], the main objective of which is to obtain

an estimate of the overall reliability of a software application through

the reliability of both the application’s individual components and its architecture. These methods are also used to

identify the most critical components of the application and quantify their influence on the overall reliability.

The reliability of individual components was estimated using failure reports from ABB customers and the Littlewood-

Verrall software reliability growth model [82]. The overall system was modelled as a discrete-time Markov chain

and sensitivity analysis was performed using the probabilistic model checker PRISM. The sensitivity analysis corre-

sponded to finding the influence of the failure rates of individual components on the overall failure rate of the system,

and hence how critical each component is to the overall reliability of the system.

One important motivation for this case study was to provide an empirical evaluation of the ABSRA approach on a

larger scale industrial software system than had previously been considered, and to assess the benefits and costs of

using these methods. It was found that the main effort was in data collection and processing, and that performing

accurate modelling was an expensive process. In addition, there was a trade-off in terms of the level of abstraction

at which the system was modelled: a high level of abstraction ensures that verification is tractable, but this comes at

the cost of the usefulness of the results of the analysis. Further case studies and details of a more general framework

for model-driven reliability analysis of component-based systems are presented in [26], including a discussion of

“feedback provisioning”, which analyses the results of quantitative verification in order to try to improve reliability.

8 QUANTITATIVE VERIFICATION:

Formal Guarantees for Timeliness, Reliability and Performance

Cloud computing. Researchers at

Fujitsu used probabilistic model

checking to analyse the

performance of resource

management operations in cloud

computing [65]. Based on

performance data collected from an

experimental virtualised system, a

continuous-time Markov chain

model of the system was built, and

performance properties were

expressed in CSL. The probabilistic

model checker PRISM was used for

the analysis. The results showed

that quantitative verification gave

cloud computing service

administrators a way to analyse the

management operations, and

hence help in providing efficient

and reliable services.

Satellite platforms. The

COMPASS project, working with

the European Space Agency (ESA)

developed a tool chain to analyse a

modern satellite platform [38],

including the probabilistic model

checker MRMC. This study

considered a variety of different

behavioural characteristics,

including discrete, real-time, hybrid

and stochastic features, and used a

range of quantitative (and

nonquantitative) verification

methods to analyse performance,

reliability, correctness and safety.

Scheduling and
optimisation

A further use of quantitative

verification techniques is to solve

scheduling or optimisation

problems. Rather than analysing

the timeliness or performance of an

existing, fully specified system,

verification methods and tools are

used for the reverse problem of

finding a system configuration that

satisfies (or optimises) a particular

performance criterion.

Scheduling or resource allocation

problems occur in many different

Processor 1

T
a
s
k
 q

u
e
u
e

Processor 2 Processor 3 Processor 4 rocessor 1 Processor Processor r 3 Processor

Task scheduler

Figure 3: Structure of an example task scheduling problem.

application domains, including

transport, manufacturing,

telecommunications networks and

parallel computing.

In general, a scheduling problem

involves finding a way to assign a

set of tasks to a set of resources,

typically under certain constraints

on the ordering in which tasks can

be performed and the number of

tasks that can be assigned to

resources simultaneously (see

Figure 3 for an example problem).

The goal is to execute all tasks,

while either satisfying a given

constraint on time or resource

usage, or in a way that minimises

execution time or resource usage.

Closely related is the dual problem

of finding the worst case execution

time (WCET), i.e. the maximum

time taken to complete all tasks,

given some additional constraints

on how the tasks are scheduled.

Finding solutions to these problems

is often addressed in fields such as

operational research, artificial

intelligence and queueing theory,

using techniques that include

constraint programming, genetic

algorithms and mixed integer linear

programming. However,

quantitative verification methods, in

particular using (priced) timed

automata, have been shown to

provide a competitive

alternative [2, 14].

Box 4 outlines an industrial case

study using quantitative verification

to perform schedulability analysis

on a satellite system.

Additional case studies using this

approach are discussed below.

Real-time Java. In [17] the authors

use the SARTS tool to perform

schedulability analysis on hard

real-time Java programs. SARTS

automatic translates these

programs to timed automata

models (written in the input

language for UPPAAL). A WCET

analysis of a Java program is then

performed by analysing the

corresponding timed automaton.

The approach is fully automated,

so there is no need for the user to

understand the underlying

model-checking process.

This case study demonstrated that

quantitative verification is

comparable with alternative

approaches for performing WCET

analysis and in fact can yield more

accurate results than the traditional

techniques. However, the

improvement in accuracy does

come at a cost, both in terms of the

time required for the analysis and

its scalability. To combat the latter,

compositional approaches have

since been developed to analyse

safety-critical Java programs [18].

Hydraulic pump controllers. An

industrial case study concerning a

controller for a hydraulic oil pump

provided by the HYDAC company

can be found in [24]. The controller

aims both to keep oil and gas

pressure levels within safe intervals

and to minimise the energy

accumulated in the system.

Controllers were synthesised using

UPPAAL, verified using the tool

PHAVer and simulated

with Simulink [101]. They were

shown to outperform the controllers

designed by HYDAC, while also

being robust and provably correct.

A KNOWLEDGE TRANSFER REPORT FROM

THE LMS AND THE SMITH INSTITUTE

9

Power Management. Dynamic

power management is the use of

runtime strategies to achieve a

tradeoff between the performance

and power consumption of a

system and its components. In [89],

a framework to synthesise and

analyse dynamic power

management strategies using

probabilistic model checking is

presented. Figure 4 illustrates the

optimal expected power

consumption given varying

constraints on the average request

queue size and expected number

of lost requests for an IBM

TravelStar VP disk-drive. We see

that tightening the performance

constraints (requiring the average

queue size to be smaller or that

fewer requests are lost) leads to a

“less optimal” controller (since the

power consumption increases).

200

150

100

50

2.0

1.5

1.0

0.5
0

500

1000

1500

2000

2500

Expected num. lost requests

Average request queue size

O
p
ti
m

a
l e

x
p
e
c
te

d
 p
o
w

e
r c

o
n
s
u
m

p
ti
o
n

Figure 4: An analysis of optimal power management policies for an IBM

TravelStar VP disk-drive using probabilistic model checking [89].

Box 4: The Herschel-Planck Satellite System

A good example of the applicability of quantitative verification to scheduling problems is the use of the timed model

checker UPPAAL to analyse schedulability in the Herschel-Planck satellite system [85]. Each satellite comprises a sin-

gle processor, which runs a real-time operating system and has a selection of software tasks to execute with deadlines.

The goal was to investigate whether these tasks could be scheduled on the single

processor without violating any of the deadlines. To achieve this, an earlier formula-

tion of this scheduling problem [92] was encoded as a timed automaton. The model

captures the behaviour of the processor’s scheduler, the software tasks that need to

be executed, and various resource usage measures and deadlines. Required prop-

erties of the schedule, including worst-case blocking and response times, processor

utilisation and deadline satisfaction, are modelled within the timed automaton model

and UPPAAL then is used to analyse the model and produce a schedule that satisfies

the constraints. The resulting schedule can be visualised graphically as a Gantt chart

using UPPAAL’s simulator.

An interesting conclusion of the work was that the quantitative verification approach with timed automata yielded

less pessimistic response time estimates than classical techniques, such as those in [92]. This meant that it was able

to produce a task schedule that satisfied all the required constraints in cases where alternative scheduling techniques

could not find such a solution. In particular, one conclusion of [92] was that a particular software task on the satellite

could potentially violate its deadline requirements, although this behaviour had never been seen in practice. The

analysis in [85] demonstrated that the deadline requirements were actually met.

10 QUANTITATIVE VERIFICATION:

Formal Guarantees for Timeliness, Reliability and Performance

Other applications

Security. Quantitative behaviour is

an important aspect of modelling

and analysing security protocols.

For example, time delays between

communications may unwittingly

leak hidden information or an

attacker may be able to guess a

password with some probability.

One example of applying

quantitative verification to the

security domain is [104], which

studies the PIN blocks used to

encrypt and transmit customers’

PINs in banking networks. The

probabilistic model checker PRISM

was used to detect the most

effective ways to construct PIN

block attacks, consisting of

sequences of API commands that

enable an attacker to determine the

value of a PIN from an encrypted

PIN block.

Other applications of quantitative

verification to the security domain

include anonymity networks [100],

access control mechanisms [88],

denial of service threats [12],

information flow [45], quantum

cryptography [41] and contract

signing [90].

Communication, network and

multimedia protocols. Again, in

this setting, quantitative aspects of

system behaviour play an important

role. For example, randomisation is

often used to break symmetry

between devices communicating

with the same protocol, and

real-time constraints frequently

appear in protocols or the mediums

under which they are designed to

operate. Quantitative verification

case studies in this area include

routing protocols [40], network

configuration [46, 70], Bluetooth

device discovery [36] and collision

avoidance schemes [62, 71].

Further examples of applications

of quantitative verification include

gearbox controllers [81], web

services [97], cardiac pacemakers

[25], robotics [75] and systems

biology [53].

A KNOWLEDGE TRANSFER REPORT FROM

THE LMS AND THE SMITH INSTITUTE

11

Quantitative Verification: In Depth

Model checking for
real-time systems

Automated formal verification of

systems whose behaviour depends

on real-time constraints is often

performed using a modelling

formalism called timed automata,

first proposed by Alur and Dill in the

early 90s [7].

A timed automaton is a state

transition system augmented with

real-valued clocks. States (which

are referred to as locations)

represent different possible

configurations of the system being

modelled. Transitions between

these locations, representing the

ways that the system can evolve,

are annotated with guards, which

constrain when the transitions can

be taken, based on the current

values of the clocks. Locations are

also labelled with invariants,

indicating how long can be spent in

a particular location before a

transition must be taken.

Box 5 illustrates the use of timed

automata to model a real-time

system: a train controller. This

example also demonstrates

another prominent feature of the

formalism: models are typically

constructed as networks of timed

automata, representing different

components of the system. The

automata can communicate with

each other by sending data through

channels.

To verify that a system modelled

using timed automata behaves

correctly, we perform model

checking. First, the required

properties of the system are

specified formally, typically using

temporal logic. A simple example of

a property is “it is impossible to

reach the location Error”, which

can be expressed in the temporal

High-level 
model/design

Specification
(temporal logic)

System

Counter- 
example or

Optimal 
schedule

System
 require-

ments

¬E !"# fail

Model checker  
e.g. UPPAAL

Low-level model
(states, transitions)

Real-time model checking

?

x=0

x=0

x=0

Approach
x=0

Restart

Crossing

x<=15

x>=15

x>=5

x>=10

x<= 15

stop[id]?

x<=25 x<=10

Waiting
restart[id]?

approach[id]!

Distant

clear[id]!

4.5 3.5

4

Verification
results

Figure 5: An overview of model checking for real-time systems.

logic CTL (Computation Tree Logic)

as A[�(¬Error)]. A wider range of

quantitative properties can be

expressed using the logic TCTL [6],

e.g. A[�(Send ⇒ A[^≤200 Ack])] –

“whenever location Send is visited,

we are guaranteed to reach

location Ack within 200

milliseconds”. In this report, we

omit precise details of the notation

for these logics, instead just giving

simple illustrative examples. See

the pointers given in the “Next

Steps” section for information.

Properties such as these can be

verified on a timed automaton,

through a systematic exploration of

the possible executions of the

model. In order to scale this

approach up to models of realistic

size, symbolic techniques were

developed, which efficiently

represent the possible values that

clocks can take using zones.

Thanks to these methods and to

mature software support in the form

of tools like UPPAAL [78] and

KRONOS [20], timed automata are

widely used and have been

successfully applied to verify, for

example, real-time controllers and

real-time communication protocols.

Timed automata can also be

extended in various ways. For

example, weights or prices can be

added and used to reason about

resource usage or energy

consumption; and timed game

variants of the model can be used

to model uncontrollable or

adversarial aspects of a system’s

environment. Separate branches of

UPPAAL (UPPAAL CORA and

UPPAAL TIGA, respectively) have

been developed to verify these

models.

These extended models have

proved to be particularly successful

for scheduling and controller

synthesis problems. Here, rather

than verifying the correct behaviour

of an existing system, timed

automata are used to construct

optimal or provably correct

solutions to problems such as

scheduling a set of tasks against a

set of real-time constraints, or

constructing real-time controllers

for embedded systems. See [19]

for an overview.

12 QUANTITATIVE VERIFICATION:

Formal Guarantees for Timeliness, Reliability and Performance

Box 5: Timed Automata - An Example

Figures 6 and 7 show timed automata used to model and verify a train controller which coordinates the safe passage

of two trains across a single section of track running over a bridge.

x=0

x=0

x=0

Approach
x=0

Restart

Crossing

x<=15

x>=15

x>=5

x>=10

x<= 15

stop[id]?

x<=25 x<=10

Waiting
restart[id]?

approach[id]!

Distant

clear[id]!

Figure 6: Train automaton.

Figure 6 refers to a single train. We model two trains, using two

copies of this automaton, with the id parameter set to either 0 or

1. The initial location, indicated by a double circle, is Distant, rep-

resenting the situation where the train is far away from the bridge.

When the train nears, the automaton moves to the Approach loca-

tion, notifying the controller of this using channel approach[id].

Sending and receiving on a channel are denoted by the symbols !

and ?, respectively. The timed automaton also has a local clock,

x, which is reset to 0 at this point. While approaching, if no more

than 15 time units have elapsed (i.e. the train is not too close to the

bridge to stop), the train can be stopped by the controller, via chan-

nel stop[id], resulting in a transition to location Waiting. Otherwise,

the train will cross the bridge after between 15 and 25 time units,

moving to the location Crossing. Notice how the time constraints

are encoded: the transitions to Waiting and Crossing have guards x≤15 and x≥15, indicating when they can be taken.

The Approach location also has an invariant x≤25, meaning that it must be left before clock x exceeds 25 time units.

If the train has been stopped, it waits for communication on channel restart[id], and then starts crossing after between

10 and 15 time units. Crossing the bridge takes between 5 and 10 seconds, after which the train notifies the controller

(via channel clear[id]) and returns to the location Distant.

clear[1]?clear[0]?

restart[0]!

approach[1]?

clear[id]?

restart[1]!stop[1]!

approach[0]?

stop[0]!

approach[id]?

Stop1 Stop0

Approaching

Clear

id : id_t

Restart1 Wait0Restart0Wait1

id : id_t

Figure 7: Controller automaton.

The timed automaton for the controller is given

in Figure 7. It keeps track of whether the trains

are approaching, stopped or travelling over the

bridge. The controller starts in location Clear,

corresponding to the situation where the bridge

is clear and no trains are approaching.

If a single train approaches and crosses the

bridge before another train arrives, the con-

troller will receive a message over the chan-

nel approach[id] move to the location Approach,

then receive a message over clear[id] and return

to location Clear.

On the other hand, if two trains approach the

bridge at the same time (i.e. if two successive

messages along channels approach[id] are received, and none along a channel clear[id]), then the controller moves

to location Stop0 or Stop1 after which it immediately instructs one of the trains to stop (using the channel stop[id])

and moves to Wait0 or Wait1). This immediacy is encoded in the automaton by making Stop0 and Stop1 committed

locations (labelled by a “c”), implying that the location must be left immediately, without further time elapsing. When

the bridge again becomes clear (i.e. the controller receives a message on the channel clear[id]), the controller moves

to the location Restart0 or Restart1, instructs the stopped train to restart through the channel restart[id] and moves

back to Approaching.

Example correctness properties for the model described here, written in TCTL, include:

• A[�¬(Train(0).Crossing ∧ Train(1).Crossing)] – “At most one train at a time will be crossing the bridge”

• A[�(Train(0).Approach⇒ A[^Train(0).Crossing])] – “Whenever train 0 approaches, it eventually crosses”

• A[�(Train(0).Waiting⇒ A[^≤30Train(0).Restart])] – “Train 0 is only ever stopped for at most 30 time units”

A KNOWLEDGE TRANSFER REPORT FROM

THE LMS AND THE SMITH INSTITUTE

13

Probabilistic
model checking

Probabilistic model checking

(sometimes known as stochastic

model checking) is a generalisation

of model checking for verifying

quantitative properties of systems

which exhibit stochastic behaviour,

for example due to failures or

uncertainty about the environment.

Like other forms of model checking,

it is based on the rigorous

construction and analysis of a

system model (see Figure 8). In

this case the models are

probabilistic, i.e. they capture the

likelihood that each possible

execution of the system occurs.

The simplest type of model is a

discrete-time Markov chain

(DTMC), which can be thought of

as a state transition system where

the transitions between states are

labelled with the probability that

they are taken. Box 6 illustrates the

use of a DTMC to model an

embedded system whose

components can fail.

Another popular type of model is a

continuous-time Markov chain

(CTMC), which captures not just

the probability of making transitions

between states, but also of the

delays incurred before making

transitions. These random delays

are represented using exponential

probability distributions, making

CTMCs well suited to the modelling

and analysis of, for example,

performance and reliability of

computer systems.

A third common model is a Markov

decision process (MDP), as used in

fields such as control theory and

robotics. MDPs allows us to model

the effect on our system of a

separate entity such as a controller,

e.g. for a robotic system.

High-level 
model/design

Specification
(temporal logic)

System

System
 require-

ments

P<0.1 [fail]

Model checker  
e.g. PRISM

Low-level model
(states, transitions)

Probabilistic model checking

?

Verification
results

0.5

0.1

0.4

module A

 a : [0..N] init N;

 ab : [0..N] init 0;

 [r1] a>0 → k1*a :
(a =a-1)&(ab =ab+1);

 [r2] ab>0 → k2*ab : (a’=a
+1)&(ab’=ab-1);

 [r3] a>0 → k3*a : (a’=a-1);

Numerical
results

Figure 8: An overview of probabilistic model checking.

We can formalise the required

properties of these models using

probabilistic temporal logics.

Typically, these properties capture

not just “correctness”, but a variety

of quantitative characteristics of the

system, such as reliability or

performance. Examples, using the

probabilistic temporal logic

PCTL [52], include:

• P<0.01 [^(Fail1 ∧ Fail2)]

“The probability of both sensors

eventually failing simultaneously

is less than 0.01”

• Sent ⇒ P≥0.95 [^≤10 Arrive]

“Every packet that is sent

arrives within 10ms with

probability at least 0.95”

In practice, it is also common to

use numerical variants of such

properties which, for example,

query the actual probability of an

event occurring, rather than

checking that its above or below a

specified threshold:

• P=? [^(Fail1 ∧ Fail2)]

“What is the probability of both

sensors eventually failing

simultaneously?”

Probabilistic model checking is

used to evaluate the result of

queries such as those above,

based on an analysis of a

probabilistic model of system

behaviour. Crucially, this analysis is

performed in a rigorous fashion:

models are explored exhaustively

to check for all possible executions

and then queries are solved

through numerical solution

methods, for example by solving

systems of linear equations or

linear optimisation problems.

This is in contrast to simulation

techniques, which can produce

approximate answers, computed by

averaging over a large sample of

simulated system executions.

A trade-off between these

techniques can be achieved using

statistical model checking [79],

which performs statistical methods

on simulations to provide

approximate results to formally

specified verification queries.

Prominent software tools for

probabilistic model checking

include PRISM [69] and

MRMC [64]. These have been used

to verify quantitative properties of a

wide variety of real-life systems,

from wireless communication

protocols [36], to aerospace

designs [21], to DNA circuits [76].

14 QUANTITATIVE VERIFICATION:

Formal Guarantees for Timeliness, Reliability and Performance

Box 6: Markov chains - An Example

Discrete-time Markov chains (DTMCs) can be used to model a wide range of systems with probabilistic behaviour.

Here, we illustrate their application to model an embedded system comprising a processor which reads and processes

data from two sensors.

At each clock cycle, a variety of failures can occur, whose probability we can estimate based on known or

measured failure rates. There is a chance of a single sensor failing, for which the probability is dependent

on the number of sensors currently operational. The processor uses these sensors in dual modular redundancy,

0, shutdown

1, perm 1, trans

0, perm 0, up

1

0, trans
pr

(1-pr) q1

(1-pr) q2

q1

q2

pr (1-q2)

pt (1-q2)
pp (1-q2)

pup q2

1-q2

1-q1

1

1

(1-pr) (1-q2)

(1-pr) (1-q1)

pup (1-q2)

2, up 2, perm

1-pr

pp (1-q1)

pup (1-q1)

1, up

pr (1-q1)

pt (1-q1)

2, trans

pup q1

Figure 9: DTMC model of an embedded system.

meaning that it can function effectively as

long as at least one of the two sensors is op-

erational. If both become unavailable, then

during the next clock cycle the processor

shuts the system down. The processor it-

self also has a probability of failure during

a clock cycle. This can be either a perma-

nent fault or a transient fault. In the lat-

ter case, the situation can be rectified au-

tomatically by the processor rebooting it-

self during the next clock cycle. Reboot-

ing also has a chance of failure and if this

happens, then the processor just repeatedly

tries during each clock cycle to reboot until

successful.

Figure 9 illustrates a DTMC model of the

embedded system. Each state is labelled

by the number of operational sensors (0, 1,

or 2) and the status of the processor: oper-

ational (up), transient fault (trans), perma-

nent fault (perm) or shutdown (shutdown).

Initially all components are working. The

probabilities that the processor suffers a

temporary or permanent fault during a clock cycle are pt and pp, respectively, and pup = 1 − (pt+pp) is the prob-

ability that neither occur. In addition, pr denotes the probability the processor successfully reboots and qi is the

probability that a sensor fails when i are currently operational. Notice that in the DTMC it is possible both for a sensor

to fail and for the processor to fail or repair, and since we suppose these happen independently, the probability of both

occurring is given by multiplying the probability of the individual events.

To specify properties of this model, we associate some states with labels (or atomic propositions, to use the terminol-

ogy of temporal logic). We attach fails to states where both sensors have failed and failp to those where the processor

has permanently failed. Example properties in the temporal logic PTCL include:

• P<0.01 [^ (fails ∧ failp)] – “The probability that the processor and sensors eventually fail is less than 0.01”

• P=? [^ (fails ∧ failp)] – “What is the probability that the processor and sensors eventually fail?”

• P=? [^≤1000 fails] – “What is the probability that both sensors fail within the first 1000 cycles?”

A KNOWLEDGE TRANSFER REPORT FROM

THE LMS AND THE SMITH INSTITUTE

15

Modelling and
property specification
languages

As mentioned earlier, model

checkers typically take as input a

high-level description of a system

or its design, from which they

explore and construct a low-level

model of the states and transitions

than can arise.

A variety of modelling languages

and formalisms exist for this

purpose. Often, they are specific to

a piece of software. For example,

Figure 10 shows a screenshot of

UPPAAL, whose user interface

includes a graphical editor for

designing networks of timed

automata. A separate textual

description attached to these

automata describes additional

variables used in the model, and

can incorporate fragments of C

code to specify how they are

updated.

Figure 11 gives an example of the

modelling language used by the

PRISM tool. This is a textual

language, used to describe a

variety of different types of

probabilistic models.

Other tools and tool chains

sometimes use adaptations or

extensions of more mainstream

modelling languages. An example

is the QuantUM toolset [80], which

uses UML (Unified Modeling

Language) and SysML (Systems

Modeling Language), extended with

additional quantitative information

such as failure probabilities.

Figure 12 shows screenshots from

QuantUM. A similar approach,

mentioned earlier, is the COMPASS

toolset, which uses a customised

version of AADL (Architecture

Analysis & Design Language) [22].

Figure 10: A screenshot of the real-time model checker UPPAAL, showing

graphical editing of a collection of timed automata.

dtmc

const double q2; // probability of sensor failure (2 sensors operational)

const double q1; // probability of sensor failure (1 sensors operational)

const double pt; // probability of a transient failure of the processor

const double pp; // probability of a permanent failure of the processor

const double pup = 1 - (pt+pp); // process remains operational

const double pr; // probability processor repaired (transient fault)

// module for sensors behaviour

module sensors

s : [0..2] init 2; // operational sensors

// sensor can fail when system has not shut down

[cycle] s=2 & p>0 -> q2 : (s'=s-1) + 1-q2 : (s'=s);

[cycle] s=1 & p>0 -> q1 : (s'=s-1) + 1-q1 : (s'=s);

// loop when system has shut down

[cycle] s=0 & p>0 -> 1 : (s'=s);

endmodule

module processor

p : [0..3] init 3; // 0 - shutdown, 1 - perm, 2 - trans, 3 - up

// when up and some sensors operational can fail

[cycle] p=3 & s>0 -> pup : (p'=3) + pt : (p'=2) + pp : (p'=1);

// when up and no sensors operational go to shutdown

[cycle] p=3 & s=0 -> 1 : (p'=0);

// repair from transient fault

[cycle] p=2 -> pr : (p'=3) + (1-pr) : (p'=2);

// loop when system has shut down or permanent failure

[cycle] p<2 -> 1 : (p'=p);

endmodule

Figure 11: A description, in PRISM’s textual modelling language,

representing the Markov chain model from Box 6.

16 QUANTITATIVE VERIFICATION:

Formal Guarantees for Timeliness, Reliability and Performance

Model checkers also require

specifications of the properties to

be checked of a model. Temporal

logics provide a precise and

unambiguous way of specifying a

wide range of properties: various

examples have been illustrated in

this document. However, to users

who are unfamiliar with such

formalisms, this approach to

property specification can be rather

unintuitive.

In practice, the majority of

properties needed can be

expressed using a relatively small

set of different classes of logical

formulae. A good solution is

therefore to use patterns:

commonly occurring classes of

formulae, typically identified by

studying a large set of system

properties extracted from

requirements documents and/or

verification case study reports.

Box 7 shows some examples.

Figure 12: Screenshots from the QuantUM toolset, showing its UML-based

modelling approach: the structure of an airbag model (top); and a

specification of failures for a system component (bottom).

Box 7: Quantitative Property Specifications using Patterns

The table below shows patterns for timed and probabilistic properties, as proposed by Konrad/Cheng [66] and

Grunske [49], respectively. The top two are timed and use the logic TCTL; the bottom four are probabilistic and

use the logic CSL. Colours indicate parameters to the patterns that are provided by the user.

Pattern name Example (temporal logic formula & meaning)

Bounded recurrence A[�(A[^≤100 poll]] “The controller polls the server for messages

at least every 100 milliseconds.”

Bounded response A[�(sense⇒ A[^≤30 notif])] “Whenever the sensor detects a movement, the

processor is notified within 30 milliseconds.”

Probabilistic invariance P≥0.999[�≤3600
¬fail] “With probability at least 0.999, no server fail-

ure will occur in the next hour.”

Probabilistic response P≥1[�(send ⇒ P≥0.95[^≤2 rec])] “Every time a message is sent, the probability

of it being successfully received within 2 sec-

ond is at least 0.95.”

Transient state probability P>0.99[^=t both] “The probability of both sensors being opera-

tional at time t is greater than 0.99.”

Steady-state probability S≤0.05[¬min qos] “The long-run probability of a minimum ser-

vice level not being delivered is at most 0.05.”

A KNOWLEDGE TRANSFER REPORT FROM

THE LMS AND THE SMITH INSTITUTE

17

Current Challenges

Quantitative verification is an active

and growing research area. We

outline below a few of the key

challenges facing the area,

focusing on those in which

progress is likely to improve the

applicability of the techniques to

industrial-scale problems and thus

to a wider audience.

Scalability and efficiency are

always a challenge for verification,

particularly for techniques like

model checking which are based

on an exhaustive exploration of a

model. Often, the burden falls on

the user of a verification tool to

model a system at the right level of

abstraction such that its analysis is

feasible, but this can be difficult for

users new to the area.

Many fully-automated techniques

are being developed to improve

scalability and efficiency. Examples

include automatic generation of

model abstractions; compositional

methods (decomposing verification

tasks); parallel, distributed or

GPU-based approaches; and

simulation-based methods such as

statistical model checking.

Typically, these start out as

prototype software implementations

and then gradually make their way

into more established tools.

Mainstream languages. As

mentioned above, most current

quantitative verification tools

require the user to describe the

system to be verified in a

tool-specific modelling language.

Some tools have at least partial

support for more mainstream

languages, for example UPPAAL

timed automata models can

incorporate fragments of C code

and other tools support variants of

UML-based languages.

Generally, though, to make

quantitative verification accessible

to a wider audience, there is a need

to support more mainstream

programming and modelling

languages. As has been found in

the field of nonquantitative

verification, sophisticated

verification methods are needed to

cope with the complexity of

programs developed in more

expressive, mainstream languages.

Cyber-physical systems comprise

embedded sensing or control

systems that interact closely with

their physical environment.

Examples include smart grids,

medical monitoring devices and

autonomous automotive or avionic

systems. Clearly, in such

application domains, there is a

need for rigorous guarantees on

safety or performance levels, but

the complexity of such systems

makes applying quantitative

verification a major challenge.

Since system models need to

combine discrete aspects (for

computation devices) and

continuous aspects (for their

physical environment), hybrid

systems are an appropriate class

of models. Techniques and tools

are under development for various

subclasses of such models, but

much remains to be done.

18 QUANTITATIVE VERIFICATION:

Formal Guarantees for Timeliness, Reliability and Performance

Next Steps

Get involved

We hope that this report has

provided a good illustration of the

potential benefits of applying

quantitative verification techniques,

and of the wide range of possible

application domains to which they

can be applied.

Many quantitative verification

software tools, along with guidance

for their usage and background

information about the techniques

that they use, are openly available.

We provide some pointers in the

sections below.

Of course, investigating the

applicability of these methods to

new problems or domains,

especially without background

knowledge of the area, can be

challenging. An excellent basis for

achieving this is through

collaboration with the researchers

who are actively working in the area

of quantitative verification and who

are in general very keen to tackle

industrially relevant problems.

Effective ways to go about

achieving such collaborations

include:

• acting as an industrial partner

on a research project;

• sponsoring, co-sponsoring or

co-supervising a PhD student;

• providing details and expertise

regarding an industrially

relevant case study.

We include, in Appendix 2, a list of

research groups actively working in

quantitative verification, along with

pointers to web sites with details of

the people involved and their

contact details.

Hands-on experience

The best way to understand what

can be done with quantitative

verification is to get some hands-on

experience with the tools and

techniques on offer. In Appendix 1,

we provide a list of relevant

software tools supporting the

techniques described in this report,

most of which are freely available.

Tutorials for these tools provide a

good way to learn about their

features and their modelling or

specification languages.

• The UPPAAL website [107] has

a “documentation” section with

pointers to several papers

(e.g. [13]) with detailed

descriptions of the software.

• The PRISM website [95] has a

series of online tutorials with

step-by-step instructions for

working with different features

of the tool and for analysing

various kinds of models.

For other tools, see the web links

given in Appendix 1.

Case studies also provide a good

practical introduction. Both the

UPPAAL and PRISM websites (see

above) include case study

repositories, which give an

indication of the application

domains to which the tools are

applicable and the problems that

can be solved. In some cases,

model files are provided, which can

then be experimented with in the

software, or used as a basis for a

related case study.

User support for many tools in this

area is provided by online forums

or mailing lists, populated by users

and tool developers/maintainers.

Further reading

The “In Depth” section of this report

provides some insight into the

underlying models and techniques

used in quantitative verification.

This helps users to understand, for

example, which kind of model is

most appropriate for a given

scenario, or which techniques/tools

may be most efficient for a given

problem. There is a wealth of

material available covering these

topics in greater detail.

Textbooks in the area mostly offer

broader coverage. A good starting

point is the book [11], which covers

the fundamentals for all aspects of

model checking, including chapters

on timed and probabilistic systems.

We also mention [99], which

provides a detailed tutorial for many

aspects of probabilistic model

checking, and [84], which gives an

introduction to different modelling

approaches, analysis techniques

and tools for real-time systems.

Tutorial papers, often freely

available on the web, are another

good source of in-depth learning

material. See [15] for an overview

of the semantic and algorithmic

aspects of verification tools for

timed automata. For probabilistic

model checking, [68] provides a

detailed introduction to the

modelling and verification of

(discrete- and continuous-time)

Markov chains, while [43] focuses

on model checking of Markov

decision processes, as well as a

number of more advanced topics,

and [91] covers models with both

probabilistic and real-time aspects.

We also recommend [19] and

[10, 63], which offer gentler

introductions to the areas of

verification for timed and

probabilistic systems.

A KNOWLEDGE TRANSFER REPORT FROM

THE LMS AND THE SMITH INSTITUTE

19

Conferences and
workshops

The techniques described in this

report are mostly still active

research topics. Conferences and

workshop venues in the area

provide an up-to-date view of the

latest developments. They are also

a good source of information about

successful or novel verification

case studies. Typically, they also

welcome industrial contributions

and participation.

Focused events, with a specific

emphasis on quantitative modelling

and verification, include:

• International Conference on

Quantitative Evaluation of

SysTems (QEST) [60];

• International Conference on

Formal Modeling and Analysis

of Timed Systems (FORMATS);

• International Conference on

Hybrid Systems: Computation

and Control (HSCC) [55].

In addition, the major international

conferences on formal methods

include sessions on quantitative

topics. Examples include:

• European Joint Conferences on

Theory and Practice of

Software (ETAPS) [39];

• International Conference on

Computer Aided Verification

(CAV) [59].

These events, and others, often

include more focused workshops

on quantitative verification, for

example, the International

Workshop on Quantitative Aspects

of Programming Languages and

Systems (QAPL).

20 QUANTITATIVE VERIFICATION:

Formal Guarantees for Timeliness, Reliability and Performance

Appendix 1: Quantitative Verification Tools

We list below some of the most well-known software tools for quantitative verification, summarising what each offers

and what support and documentation are available. We restrict our attention to general-purpose tools, rather than

those that implement a specific verification technique. We also only list tools that are currently available (in most

cases, for free) and are still actively developed. We group the tools according to the types of models that they

support, since this is usually the key factor to consider when selecting the most appropriate tool.

Real-time Verification Software

UPPAAL [107] is an integrated tool environment for modelling, validation and verification of real-time systems

modelled as networks of timed automata. The tool is free for noncommercial applications in academia. The

website provides links to a discussion forum, a large range of case studies and small examples, manuals and

research papers. There are also links to extensions of UPPAAL including: TIMES, for schedulability analysis

and synthesis; CORA, for cost-optimal reachability analysis; TRON, for black-box conformance testing; and

TIGA, for solving timed game automata. Recently, support has been added for probabilistic aspects of timed

automata using statistical model-checking techniques.

Probabilistic Verification Software

PRISM [95] is a probabilistic model checker, which can be used to model, analyse and verify many types of

stochastic models, such as discrete-time and continuous-time Markov chains and Markov decision processes. It

recently added support for probabilistic real-time systems, modelled as probabilistic timed automata. PRISM is

free and open source, and has been used to analyse systems from many different application domains,

including communication and multimedia protocols, security protocols, dynamic power management schemes,

biological systems and many others. The website includes a case study repository, documentation (FAQ,

manual, tutorials, lectures), research papers and a discussion/help group.

MRMC [83] is a probabilistic model checker with a particular focus on systems modelled as discrete-time and

continuous-time Markov chains, augmented with reward information. It supports verification of a variety of

different probabilistic temporal logics. MRMC is freely available and the website provides a manual, research

papers and information on related tools.

Modest Toolset [87] supports the modelling and analysis of hybrid, real-time, distributed and stochastic systems.

The toolset is freely available and provides a modular framework centered around the stochastic hybrid

automata formalism [51]. It provides a variety of input languages and backend tools, including: mcpta, which

connects to PRISM for probabilistic real-time model checking; mctau, which connects to UPPAAL for real-time

model checking; modes, which performs simulation-based analysis; mosta, a visualisation tool; and ProHVer,

which connects to PHAVer for analysis of probabilistic hybrid systems. The website provides documentation on

the language, research papers and a small number of case studies.

Further Related Tools

CADP [23] is the “Construction and Analysis of Distributed Processes” toolset, for the design of asynchronous

concurrent systems, such as communication protocols, distributed systems, asynchronous circuits,

multiprocessor architectures and web services. The primary focus is on nonquantitative verification, but support

for some probabilistic models is also included. The toolset contains more than 42 tools and 17 software

components and is is free for academic use. The website includes links to manuals, tutorials, many case

studies, research papers and user forums.

Möbius [86] is a multi-formalism modelling and analysis toolset for stochastic systems. Although originally

developed for the study of reliability, availability and performance of computer and network systems, it is now

used for a broad range of discrete-event systems, from biochemical reactions networks to the effects of

malicious attackers on secure computer systems. The tool is free for academic use and the website provides

links to a manual and academic papers.

A KNOWLEDGE TRANSFER REPORT FROM

THE LMS AND THE SMITH INSTITUTE

21

Appendix 2: Active Research Groups

Below, we give details of some of the research groups actively working in topics related to quantitative verification,

both in the UK and internationally. The list is not intended to be exhaustive and we apologise in advance to anyone

we have omitted.

In the UK

• Universities of Birmingham, Oxford and Glasgow: The PRISM tool [95] has been developed by groups

based at these three sites. More generally, the research carried out includes theory and practice, involving the

development of formalisms, theories, algorithms and tools, and their application to real-world case studies.

Oxford also has a large Automated Verification group [29], incorporating a Quantitative Analysis and

Verification group [96], working on a variety of areas including the verification of real-time, probabilistic, hybrid

and infinite-state systems.

• University of Edinburgh: PEPA group [93], part of the Laboratory for Foundations of Computer Science [74].

These groups have expertise in topics such as process algebraic techniques, continuous-time models and

verification of infinite-state probabilistic systems.

• Imperial College London: Analysis, Engineering, Simulation and Optimization of Performance (AESOP) group

[3]. The main areas of interest are analytic and simulated solutions to real performance problems.

• University of Newcastle: Dependability group [30]. This group investigates fundamental concepts,

development techniques, models, architectures and mechanisms that directly contribute to creating modern

information systems, networks and infrastructures that are dependable and secure in all aspects.

Internationally

• RWTH University of Aachen: Software Modeling and Verification (MOVES) group [102]. Focuses on the

modelling and verification of trustworthiness aspects (such as safety, reliability, performance and survivability) of

software systems by applying mathematical theories and methods.

• Aalborg University: Distributed and Embedded Systems (DES) group [35]. This group is concerned with the

modelling, analysis and realization of computer programs, with an emphasis on distributed and embedded

systems.

• ENS Cachan: Laboratoire Spécification et Vérification (LSV) [73]. Research focuses on the verification of

computerised systems, of databases and of security protocols, developing the mathematical and algorithmic

foundations for tools to automatically prove correctness and detect flaws.

• Carnegie Mellon University: Formal Methods [44]. Research covers various aspects of formal methods with a

particular focus on model checking, including verification of hybrid systems and statistical model checking.

• Universidad de Córdoba: Dependable Systems group [32]. Focuses on techniques of dependability (safety,

reliability, availability, security) of computer systems through formally based specification and analysis

techniques.

• Technische Universität Dresden: Algebraic and Logical Foundations of Computer Science group [105].

Research is focused on analysis and model-checking algorithms for quantitative systems, temporal and modal

logics, automata-based approaches, game theory and infinite-state systems.

• INRIA: Preuves et Vérification group [57]. Incorporates several research teams working on a variety of topics

within quantitative verification, including probabilistic and real-time systems.

• IST Austria: Henzinger [54] and Chatterjee [61] groups. Research covers the design and analysis of concurrent

and embedded systems, verification and game theory, including a focus on quantitative aspects of these topics.

22 QUANTITATIVE VERIFICATION:

Formal Guarantees for Timeliness, Reliability and Performance

• Masaryk University: Institute for Theoretical Computer Science [58]. Research focuses on stochastic systems,

probabilistic temporal logics and game theory.

• Technische Universität München: Foundations of Software Reliability and Theoretical Computer Science

group [106]. The group is interested in all aspects of software reliability, with special emphasis on model

checking and program analysis techniques.

• University of New South Wales and Macquarie University: Specification and Development of Probabilistic

Systems [103]. The group is concerned with formal specification and refinement of probabilistic systems and

recent work has focused on information security and anonymity.

• University of Oldenburg: Hybrid Systems group [56]. The group’s focus is on algorithms and tools for the

verification of hybrid systems.

• University of Pennsylvania: Penn Research in Embedded Computing and Integrated Systems Engineering

(PRECISE) centre [94]. This centre focuses on developing new modelling formalisms for analysing reliability of

computer-based systems; algorithms and tools for efficient analysis of these formalisms; and real-world case

studies drawn from a range of applications.

• University of Saarland: Dependable Systems and Software [31] and Reactive Systems [98] groups. Research

focuses on the design-time assurance of performance and dependability for reactive, embedded, distributed and

mobile systems and computer-aided methods for the synthesis and verification of reactive systems.

• University of Torino: [34] Performance Evaluation and System Validation group. The group’s research

concerns the development of tools and techniques for performance evaluation and system validation with focus

on techniques for modelling, performance evaluation and probabilistic verification.

• University of Twente: Design and Analysis of Communication Systems (DACS) group [33]. This group’s

mission is to contribute to the design and implementation of dependable networked systems, as well as

methods and techniques to support the design and dimensioning of such systems, such that they are

dependable, in all phases of their lifecycle.

In addition, the Formal Methods and Tools (FMT) group [42] is concerned with the development of formal

theories of concurrency, design methodologies for distributed systems and correctness assessment using

verification and validation techniques.

• Uppsala University: Embedded Systems group [37]. Aims towards scalable and precise techniques for timing

analysis and correctness verification of embedded systems.

• VERIMAG: Timed and Hybrid Systems group [109]. This group is interested in all aspects of system design,

ranging from theoretical foundations, via design techniques, down to implementation. In terms of models, the

group has a particular focus on timed and hybrid systems.

A KNOWLEDGE TRANSFER REPORT FROM

THE LMS AND THE SMITH INSTITUTE

23

References

[1] Int. Standard IEC 60812. Analysis techniques for system reliability procedure for failure mode and effects

analysis (FMEA). Int. Electrotechnical Commission, 2nd edition, 2006.

[2] A. Abdeddaı̈m, E. Asarin, and O. Maler. Scheduling with timed automata. Theoretical Computer Science,

354(2):272–300, 2006.

[3] AESOP - Performance Analysis research group in Computing at Imperial College London. aesop.doc.ic.

ac.uk, June 2014.

[4] H. Aljazzar, M. Fischer, L. Grunske, M. Kuntz, F. Leitner, and S. Leue. Safety analysis of an airbag system

using probabilistic FMEA and probabilistic counterexamples. In Proc. 6th Int. Conf. Quantitative Evaluation of

Systems (QEST’09), 2009.

[5] H. Aljazzar and S. Leue. Debugging of dependability models using interactive visualization of

counterexamples. In Proc. 5th Int. Conf. Quantitative Evaluation of Systems (QEST’08), pages 189–198.

IEEE CS Press, 2008.

[6] R. Alur, C. Courcoubetis, and D. Dill. Model checking in dense real time. Information and Computation,

104(1):2–34, 1993.

[7] R. Alur and D. Dill. Automata for modeling real-time systems. In M. Paterson, editor, Proc. 17th Int. Colloq.

Automata, Languages and Programming (ICALP’90), volume 443 of LNCS, pages 322–335. Springer, 1990.

[8] A. Aziz, K. Sanwal, V. Singhal, and R. Brayton. Model-checking continuous time Markov chains. ACM Trans.

Computational Logic, 1(1):162–170, 2000.

[9] C. Baier, B. Haverkort, H. Hermanns, and J.-P. Katoen. Model-checking algorithms for continuous-time

Markov chains. IEEE Trans. Software Engineering, 29(6):524–541, 2003.

[10] C. Baier, B. Haverkort, H. Hermanns, and J-P. Katoen. Performance evaluation and model checking join

forces. Communications of the ACM, 53(9):76–85, 2010.

[11] C. Baier and J-P. Katoen. Principles of Model Checking. MIT Press, 2008.

[12] S. Basagiannis, P. Katsaros, A. Pombortsis, and N. Alexiou. Probabilistic model checking for the

quantification of DoS security threats. Computers & Security, 28(6):450–465, 2009.

[13] G. Behrmann, A. David, and K. Larsen. A tutorial on UPPAAL. In M. Bernardo and F. Corradini, editors,

Formal Methods for the Design of Real-Time Systems, volume 3185 of LNCS, pages 200–236. Springer,

2004.

[14] G. Behrmann, A. Fehnker, T. Hune, K. Larsen, P. Pettersson, and J. Romijn. Efficient guiding towards

cost-optimality in UPPAAL. In T. Margaria and W. Yi, editors, Proc. 7th Int. Conf. Tools and Algorithms for the

Construction and Analysis of Systems (TACAS’01), volume 2031 of LNCS, pages 174–188. Springer, 2001.

[15] J. Bengtsson and W. Yi. Timed automata: Semantics, algorithms and tools. In J. Desel, W. Reisig, and

G. Rozenberg, editors, Lectures on Concurrency and Petri Nets, volume 3098 of LNCS, pages 87–124.

Springer, 2004.

[16] A. Bianco and L. de Alfaro. Model checking of probabilistic and nondeterministic systems. In P. Thiagarajan,

editor, Proc. 15th Conf. Foundations of Software Technology and Theoretical Computer Science

(FSTTCS’95), volume 1026 of LNCS, pages 499–513. Springer, 1995.

[17] T. Bøgholm, H. Kragh-Hansen, P. Olsen, B. Thomsen, and K. Larsen. Model-based schedulability analysis of

safety critical hard real-time Java programs. In G. Bollella and C. Locke, editors, Proc. 6th Int. Workshop Java

Technologies for Real-time and Embedded Systems (JTRES 2008), volume 343 of ACM Int. Conf.

Proceeding Series, pages 106–114, 2008.

http://aesop.doc.ic.ac.uk
http://aesop.doc.ic.ac.uk

24 QUANTITATIVE VERIFICATION:

Formal Guarantees for Timeliness, Reliability and Performance

[18] T. Bogholm, B. Thomsen, K. Larsen, and A. Mycroft. Schedulability analysis abstractions for safety critical

Java. In IEEE 15th Int. Symposium on Object/Component/Service-Oriented Real-Time Distributed

Computing (ISORC), pages 71–78, 2012.

[19] P. Bouyer, U. Fahrenberg, K. Larsen, and N. Markey. Quantitative analysis of real-time systems using priced

timed automata. Communications of the ACM, 54(9):78–87, 2011.

[20] M. Bozga, C. Daws, O. Maler, A. Olivero, S. Tripakis, and S. Yovine. Kronos: a model-checking tool for

real-time systems. In Proc. CAV’98, Vancouver, Canada, June 1998. Springer.

[21] M. Bozzano, A. Cimatti, J.-P. Katoen, V.-Y. Nguyen, T. Noll, and M. Roveri. The COMPASS approach:

correctness, modelling and performability of aerospace systems. In Proc. 28th Int. Conf. Computer Safety,

Reliability and Security (SAFECOMP’09), volume 5775 of LNCS, pages 173–186. Springer, 2009.

[22] M. Bozzano, A. Cimatti, J.-P. Katoen, V.-Y. Nguyen, T. Noll, M. Roveri, and R. Wimmer. A model checker for

AADL. In Proc. 22nd International Conference on Computer Aided Verification (CAV’10), volume 6174 of

LNCS, pages 562–565. Springer, 2010.

[23] CADP Home page. www.inrialpes.fr/vasy/cadp/, June 2014.

[24] F. Cassez, J. Jessen, K. Larsen, J.-F. Raskin, and P.-A. Reynier. Automatic synthesis of robust and optimal

controllers: an industrial case study. In R. Majumdar and P. Tabuada, editors, Proc. 12th Int. Conf. Hybrid

Systems: Computation and Control (HSCC 2009), volume 5469 of Lecture Notes in Computer Science,

pages 90–104. Springer, 2009.

[25] T Chen, M. Diciolla, M. Kwiatkowska, and A. Mereacre. Quantitative verification of implantable cardiac

pacemakers. In In Proc. 33rd IEEE Real-Time Systems Symposium (RTSS’12), pages 263–272. IEEE, 2012.

[26] A. Ciancone, M. Drago, A. Filieri, V. Grassi, H. Koziolek, and R. Mirandola. The KlaperSuite framework for

model-driven reliability analysis of component-based systems. Software & Systems Modeling, 2013. To

appear.

[27] E. Clarke, O. Grumberg, and D. Peled. Model Checking. The MIT Press, 2000.

[28] A. David and W. Yi. Modelling and analysis of a commercial field bus protocol. In Proc. 12th Euromicro Conf.

Real-time Systems, pages 165–172. IEEE Computer Society, 2000.

[29] Department of Computer Science - Research Theme: Automated Verification. www.cs.ox.ac.uk/

research/verification/, June 2014.

[30] Dependability - Computing Science - Newcastle University. www.ncl.ac.uk/computing/research/

groups/dependability/, June 2014.

[31] Dependable Systems and Software. depend.cs.uni-sb.de, June 2014.

[32] Dependable Systems Group. gsd.famaf.unc.edu.ar, June 2014.

[33] Design and Analysis of Communication Systems. www.utwente.nl/ewi/dacs/, June 2014.

[34] Dipartimento di Informatica: Performance Evaluation and System Validation. www.unito.it/unitoWAR/

page/dipartimenti1/D004_en/, June 2014.

[35] Distributed and Embedded Systems (DES). www.cs.aau.dk/en/research/des/, June 2014.

[36] M. Duflot, M. Kwiatkowska, G. Norman, and D. Parker. A formal analysis of Bluetooth device discovery. Int.

Journal on Software Tools for Technology Transfer, 8(6):621–632, 2006.

[37] Embedded Systems. www.it.uu.se/research/group/darts, June 2014.

[38] M-A. Esteve, J-P. Katoen, V. Nguyen, B. Postma, and Y. Yushtein. Formal correctness, safety, dependability,

and performance analysis of a satellite. In Proc. 2012 Int. Conf. Software Engineering, ICSE 2012, pages

1022–1031. IEEE Press, 2012.

http://www.inrialpes.fr/vasy/cadp
http://www.cs.ox.ac.uk/research/verification/
http://www.cs.ox.ac.uk/research/verification/
http://www.ncl.ac.uk/computing/research/groups/dependability/
http://www.ncl.ac.uk/computing/research/groups/dependability/
http://depend.cs.uni-sb.de
http://gsd.famaf.unc.edu.ar/
http://www.utwente.nl/ewi/dacs/
http://www.unito.it/unitoWAR/page/dipartimenti1/D004_en/D004_EN_sections2?path=/BEA%20Repository/358183
http://www.unito.it/unitoWAR/page/dipartimenti1/D004_en/D004_EN_sections2?path=/BEA%20Repository/358183
http://www.cs.aau.dk/en/research/des/
http://www.it.uu.se/research/group/darts

A KNOWLEDGE TRANSFER REPORT FROM

THE LMS AND THE SMITH INSTITUTE

25

[39] European Joint Conferences on Theory and Practice of Software. www.etaps.org, June 2014.

[40] A. Fehnker, R. van Glabbeek, P. Höfner, A. McIver, M. Portmann, and W. L. Tan. Automated analysis of

AODV using UPPAAL. In Proc. 18th Int. Conf. Tools and Algorithms for the Construction and Analysis of

Systems (TACAS’12), volume 7214 of LNCS, pages 173–187. Springer, 2012.

[41] V. Fernández, M.-J. Garcı́a-Martı́nez, L. Hernández-Encinas, and A. Martiı́n. Formal verification of the

security of a free-space quantum key distribution system. In Proc. 2011 World Congress in Computer

Science, Computer Engineering, and Applied Computing (WORLDCOMP’11), 2011 International Conference

on Security and Management (SAM’11), 2011.

[42] FMT - Formal Methods and Tools. fmt.cs.utwente.nl, June 2014.

[43] V. Forejt, M. Kwiatkowska, G. Norman, and D. Parker. Automated verification techniques for probabilistic

systems. In M. Bernardo and V. Issarny, editors, Formal Methods for Eternal Networked Software Systems

(SFM’11), volume 6659 of LNCS, pages 53–113. Springer, 2011.

[44] Formal Methods Research in the Computer Science Department at Carnegie Mellon. www.csd.cs.cmu.

edu/research/areas/formalmethods/, June 2014.

[45] G. Gardey, J. Mullins, and O. Roux. Non-interference control synthesis for security timed automata. In Proc.

Int. Workshop Security and Concurrency (SecCo’2005), volume 180 of ENTCS, pages 35–53, 2007.

[46] B. Gebremichael, F. Vaandrager, and M. Zhang. Analysis of the zeroconf protocol using UPPAAL. In Proc. 6th

ACM & IEEE International Conference on Embedded Software (EMSOFT’06), pages 242–251. ACM, 2006.

[47] S. Gokhale. Architecture-based software reliability analysis: Overview and limitations. IEEE Trans.

Dependable and Secure Computing, 4(1):32–40, 2007.

[48] K. Goševa-Popstojanova and K. Trivedi. Architecture-based approach to reliability assessment of software

systems. Performance Evaluation, 45(2–3):179–204, 2001.

[49] L. Grunske. Specification patterns for probabilistic quality properties. In Proc. 30th Int. Conf. Software

Engineering (ICSE’08), pages 31–40. ACM, 2008.

[50] L. Grunske, R. Colvin, and K. Winter. Probabilistic model-checking support for FMEA. In Proc. 4th Int. Conf.

Quantitative Evaluation of Systems (QEST’07), pages 119–128. IEEE Press, 2007.

[51] E. M. Hahn, A. Hartmanns, H. Hermanns, and J-P. Katoen. A compositional modelling and analysis

framework for stochastic hybrid systems. Formal Methods in System Design, 43(2):191–232, 2012.

[52] H. Hansson and B. Jonsson. A logic for reasoning about time and reliability. Formal Aspects of Computing,

6(5):512–535, 1994.

[53] J. Heath, M. Kwiatkowska, G. Norman, D. Parker, and O. Tymchyshyn. Probabilistic model checking of

complex biological pathways. Theoretical Computer Science, 319(3):239–257, 2008.

[54] Henzinger Group. pub.ist.ac.at/group_henzinger/, June 2014.

[55] Hybrid Systems: Computation and Control. www.hscc-conference.org, June 2014.

[56] Hybride Systeme. hs.informatik.uni-oldenburg.de, June 2014.

[57] INRIA - Inventors for the digital world. www.inria.fr/en/, June 2014.

[58] Institute for Theoretical Computer Science. www.muni.cz/fi/335200/people/, June 2014.

[59] International Conference on Computer Aided Verification. cavconference.org, June 2014.

[60] International Conference on Quantitative Evaluation of SysTems (QEST). www.qest.org, June 2014.

[61] IST Austria: Chatterjee Group. ist.ac.at/research/research-groups/chatterjee-group/, June 2014.

http://www.etaps.org/
http://fmt.cs.utwente.nl
http://www.csd.cs.cmu.edu/research/areas/formalmethods/
http://www.csd.cs.cmu.edu/research/areas/formalmethods/
http://pub.ist.ac.at/group_henzinger/
http://www.hscc-conference.org
http://hs.informatik.uni-oldenburg.de
http://www.inria.fr/en/
http://www.muni.cz/fi/335200/people/
http://cavconference.org/
http://www.qest.org
http://ist.ac.at/research/research-groups/chatterjee-group/

26 QUANTITATIVE VERIFICATION:

Formal Guarantees for Timeliness, Reliability and Performance

[62] H. Jensen, J. Kim, K. Larsen, and A. Skou. Modelling and analysis of a collision avoidance protocol using

SPIN and UPPAAL. In Proc. 2nd Int. Workshop on the SPIN Verification System, volume 32 of DIMACS

Series in Discrete Mathematics and Theoretical Computer Science, pages 33–50, 1996.

[63] J-P. Katoen. Model checking meets probability: A gentle introduction. NATO Science for Peace and Security

Series - D: Information and Communication Security, 34: Engineering Dependable Software Systems:1–29,

2013.

[64] J.-P. Katoen, I. Zapreev, E. M. Hahn, H. Hermanns, and D. Jansen. The ins and outs of the probabilistic

model checker MRMC. In Proc. 6th International Conference on Quantitative Evaluation of Systems

(QEST’09), pages 167–176. IEEE CS Press, 2009.

[65] S. Kikuchi and Y. Matsumoto. Performance modeling of concurrent live migration operations in cloud

computing systems using PRISM probabilistic model checker. In Proc. 4th Int. Conf. Cloud Computing (IEEE

Cloud 2011), 2011.

[66] S. Konrad and B. Cheng. Real-time specification patterns. In Proc. 27th Int. Conf. Software Engineering

(ICSE’05), pages 372–381. ACM, 2008.

[67] H. Koziolek, B. Schlich, and C. Bilich. A large-scale industrial case study on architecture-based software

reliability analysis. In Proc. 21st IEEE Int. Symp. Software Reliability Engineering (ISSRE’10), pages

279–288. IEEE Computer Society, 2010.

[68] M. Kwiatkowska, G. Norman, and D. Parker. Stochastic model checking. In M. Bernardo and J. Hillston,

editors, Formal Methods for the Design of Computer, Communication and Software Systems: Performance

Evaluation (SFM’07), volume 4486 of LNCS (Tutorial Volume), pages 220–270. Springer, 2007.

[69] M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of probabilistic real-time systems. In

G. Gopalakrishnan and S. Qadeer, editors, Proc. 23rd Int. Conf. Computer Aided Verification (CAV’11),

volume 6806 of LNCS, pages 585–591. Springer, 2011.

[70] M. Kwiatkowska, G. Norman, D. Parker, and J. Sproston. Performance analysis of probabilistic timed

automata using digital clocks. Formal Methods in System Design, 29:33–78, 2006.

[71] M. Kwiatkowska, G. Norman, and J. Sproston. Probabilistic model checking of the IEEE 802.11 wireless local

area network protocol. In H. Hermanns and R. Segala, editors, Proc. 2nd Joint International Workshop on

Process Algebra and Probabilistic Methods, Performance Modeling and Verification (PAPM/PROBMIV’02),

volume 2399 of LNCS, pages 169–187. Springer, 2002.

[72] M. Kwiatkowska, G. Norman, and J. Sproston. Probabilistic model checking of deadline properties in the

IEEE 1394 FireWire root contention protocol. Formal Aspects of Computing, 14(3):295–318, 2003.

[73] Laboratoire Spécification et Vérification. www.lsv.ens-cachan.fr, June 2014.

[74] Laboratory for Foundations of Computer Science. www.inf.ed.ac.uk/research/lfcs/, June 2014.

[75] M. Lahijanian, J. Wasniewski, S. B. Andersson, and C. Belta. Motion planning and control from temporal logic

specifications with probabilistic satisfaction guarantees. In Proc. 2010 IEEE International Conference on

Robotics and Automation, pages 3227–3232, 2010.

[76] M. Lakin, D. Parker, L. Cardelli, M. Kwiatkowska, and A. Phillips. Design and analysis of DNA strand

displacement devices using probabilistic model checking. Journal of the Royal Society Interface,

9(72):1470–1485, 2012.

[77] K. Larsen, P. Pettersson, and W. Yi. Model-checking for real-time systems. In Proc. 10th Int. Symp.

Fundamentals of Computation Theory (FCT’95), volume 965 of LNCS, pages 62–88. Springer, 1995.

[78] K. Larsen, P. Pettersson, and W. Yi. UPPAAL in a nutshell. Int. Journal on Software Tools for Technology

Transfer, 1(1-2):134–152, 1997.

http://www.lsv.ens-cachan.fr
http://www.inf.ed.ac.uk/research/lfcs/

A KNOWLEDGE TRANSFER REPORT FROM

THE LMS AND THE SMITH INSTITUTE

27

[79] A. Legay, B. Delahaye, and S. Bensalem. Statistical model checking: An overview. In H. Barringer,

Y. Falcone, B. Finkbeiner, K. Havelund, I. Lee, G. Pace, G. Roşu, O. Sokolsky, and N. Tillmann, editors, Proc.

1st. Int. Conf. Runtime Verification (RV 2010), volume 6418 of LNCS, pages 122–135. Springer, 2010.

[80] Florian Leitner-Fischer and Stefan Leue. QuantUM: Quantitative safety analysis of UML models. In Proc. 9th

Workshop on Quantitative Aspects of Programming Languages (QAPL’11), 2011.

[81] M. Lindahl, P. Pettersson, and W. Yi. Formal design and analysis of a gear-box controller. In Proc. 4th Int.

Conf. Tools and Algorithms for the Construction and Analysis of Systems (TACAS’98), volume 1384 of LNCS,

pages 281–297. Springer, 1998.

[82] B. Littlewood and J. Verrall. A Bayesian reliability growth model for computer software. Journal of the Royal

Statistical Society. Series C (Applied Statistics), 22(3):332–346, 1973.

[83] Markov Reward Model Checker. www.mrmc-tool.org, June 2014.

[84] S. Merz and N. Navet, editors. Modeling and Verification of Real-Time Systems. Wiley, 2008.

[85] M. Mikučionis, K. Larsen, J. Rasmussen, B. Nielsen, A. Skou, S. Palm, J. Pedersen, and P. Hougaard.

Schedulability analysis using Uppaal: Herschel-Planck case study. In Proc. 4th Int. Conf. Leveraging

Applications of Formal Methods, Verification and Validation - Part II, pages 175–190. Springer, 2010.

[86] The Möbius Tool. www.mobius.illinois.edu, June 2014.

[87] Modest Toolset. www.modestchecker.net, June 2014.

[88] S. Mondal and S. Sural. Security analysis of temporal-RBAC using timed automata. In 4th Int. Conf.

Information Assurance and Security (ISIAS’08), pages 37–40, 2008.

[89] G. Norman, D. Parker, M. Kwiatkowska, S. Shukla, and R. Gupta. Using probabilistic model checking for

dynamic power management. Formal Aspects of Computing, 17(2):160–176, 2005.

[90] G. Norman and V. Shmatikov. Analysis of probabilistic contract signing. Journal of Computer Security,

14(6):561–589, 2006.

[91] Gethin Norman, David Parker, and Jeremy Sproston. Model checking for probabilistic timed automata.

Formal Methods in System Design, 43(2):164–190, 2013.

[92] S. Palm. Herschel-Planck ACC ASW: sizing, timing and schedulability analysis. Technical report, Terma A/S,

2006.

[93] PEPA - Performance Evaluation Process Algebra. www.dcs.ed.ac.uk/pepa/, June 2014.

[94] PRECISE. precise.seas.upenn.edu, June 2014.

[95] PRISM – Probabilistic Symbolic Model Checker. www.prismmodelchecker.org, June 2014.

[96] Quantitative Analysis and Verification. qav.cs.ox.ac.uk, June 2014.

[97] A. Ravn, J. Srba, and S. Vighio. Modelling and verification of web services business activity protocol. In Proc.

17th Int. Conf. Tools and Algorithms for the Construction and Analysis of Systems (TACAS’11), volume 6605

of LNCS, pages 357–371. Springer, 2011.

[98] Reactive Systems Group. www.react.uni-saarland.de, June 2014.

[99] J. Rutten, M. Kwiatkowska, G. Norman, and D. Parker. Mathematical Techniques for Analyzing Concurrent

and Probabilistic Systems, P. Panangaden and F. van Breugel (eds.), volume 23 of CRM Monograph Series.

American Mathematical Society, 2004.

[100] V. Shmatikov. Probabilistic model checking of an anonymity system. Journal of Computer Security,

12(3/4):355–377, 2004.

http://www.mrmc-tool.org
http://www.mobius.illinois.edu
http://www.modestchecker.net
http://www.dcs.ed.ac.uk/pepa/
http://precise.seas.upenn.edu
http://www.prismmodelchecker.org
http://qav.cs.ox.ac.uk/
http://www.react.uni-saarland.de/

28 QUANTITATIVE VERIFICATION:

Formal Guarantees for Timeliness, Reliability and Performance

[101] Simulink - Simulation and Model-Based Design - MathWorks United Kingdom. www.mathworks.co.uk/

products/simulink/, June 2014.

[102] Software Modeling and Verification. moves.rwth-aachen.de, June 2014.

[103] Specification and Development of Probabilistic Systems. www.cse.unsw.edu.au/˜carrollm/probs/, June

2014.

[104] G. Steel. Formal analysis of PIN block attacks. Theoretical Computer Science, 367(1-2):257–270, 2006.

[105] TUD - Chair of Algebraic and Logical Foundations of Computer Science. www.inf.tu-dresden.de/index.

php?node_id=1438&ln=en, June 2014.

[106] TUM - Chair VII - Foundations of Software Reliability and Theoretical Computer Science. www7.in.tum.de/

home/index.php, June 2014.

[107] UPPAAL. www.uppaal.org, June 2014.

[108] M. Vardi. Automatic verification of probabilistic concurrent finite state programs. In Proc. 26th Annual Symp.

Foundations of Computer Science (FOCS’85), pages 327–338. IEEE Computer Society Press, 1985.

[109] VERIMAG: Tempo. www-verimag.imag.fr/Tempo,32.html, June 2014.

http://www.mathworks.co.uk/products/simulink/
http://www.mathworks.co.uk/products/simulink/
http://moves.rwth-aachen.de/
http://www.cse.unsw.edu.au/~carrollm/probs/
http://www.inf.tu-dresden.de/index.php?node_id=1438&ln=en
http://www.inf.tu-dresden.de/index.php?node_id=1438&ln=en
http://www7.in.tum.de/home/index.php?id=home&arg=
http://www7.in.tum.de/home/index.php?id=home&arg=
http://www.uppaal.org
http://www-verimag.imag.fr/Tempo,32.html

Papers in the Series:

1. Managing Risk in the Modern World
 Applications of Bayesian Networks

 Norman Fenton and Martin Neil

2. The GPU Computing Revolution
 From Multi-Core CPUs to Many-Core Graphics Processors

 Simon McIntosh-Smith

3. Problem Solving for the 21st Century
 Efficient Solvers for Satisfiability Modulo Theories

 Clark Barrett, Daniel Kroening and Tom Melham

4. Quantitative Verification
 Formal Guarantees for Timeliness, Reliability and Performance

 Gethin Norman and David Parker

Quantitative Verification

Formal Guarantees for Timeliness, Reliability and Performance

A Knowledge Transfer Report from the London Mathematical Society and the Smith Institute

for Industrial Mathematics and System Engineering

by Gethin Norman and David Parker

The London Mathematical Society (LMS) is the UK's learned society for mathematics. Founded in 1865 for

the promotion and extension of mathematical knowledge, the Society is concerned with all branches of

mathematics and its applications. It is an independent and self-financing charity, with a membership of

around 2,300 drawn from all parts of the UK and overseas. Its principal activities are the organisation of

meetings and conferences, the publication of periodicals and books, the provision of financial support for

mathematical activities, and the contribution to public debates on issues related to mathematics research

and education. It works collaboratively with other mathematical bodies worldwide. It is the UK’s adhering

body to the International Mathematical Union and is a member of the Council for the Mathematical Sciences,

which also comprises the Institute of Mathematics and its Applications, the Royal Statistical Society, the Op-

erational Research Society and the Edinburgh Mathematical Society.

www.lms.ac.uk

The Smith Institute for Industrial Mathematics and System Engineering is a leader in the UK for harnessing

mathematics as an engine of business innovation. Established as an independent organisation in 1997, it

adopts a systems approach, connecting modelling, data, algorithms and implementation. It works with an

extensive network of collaborators in industry, government and the university research base to improve

products, services and processes. The Smith Institute represents the UK internationally in the field of indus-

trial mathematics and works closely with UK Research Councils and other funding agencies to create new

and effective approaches to business-university interaction. It places an emphasis on raising awareness

outside the mathematical community of the benefits of adopting a mathematical way of thinking, often

transferring ideas across application domains to create fresh insights that deliver real value.

www.smithinst.co.uk

The LMS-Smith Knowledge Transfer Reports are an initiative that is coordinated jointly by the Smith Institute

and the Computer Science Committee of the LMS. The reports are being produced as an occasional series,

each one addressing an area where mathematics and computing have come together to provide significant

new capability that is on the cusp of mainstream industrial uptake. They are written by senior researchers in

each chosen area, for a mixed audience in business and government. The reports are designed to raise

awareness among managers and decision-makers of new tools and techniques, in a format that allows them

to assess rapidly the potential for exploitation in their own fields, alongside information about potential col-

laborators and suppliers.

	FrontCover
	QV-KT-report-screen
	BackCover

