82,101 research outputs found

    The Scalability-Efficiency/Maintainability-Portability Trade-off in Simulation Software Engineering: Examples and a Preliminary Systematic Literature Review

    Full text link
    Large-scale simulations play a central role in science and the industry. Several challenges occur when building simulation software, because simulations require complex software developed in a dynamic construction process. That is why simulation software engineering (SSE) is emerging lately as a research focus. The dichotomous trade-off between scalability and efficiency (SE) on the one hand and maintainability and portability (MP) on the other hand is one of the core challenges. We report on the SE/MP trade-off in the context of an ongoing systematic literature review (SLR). After characterizing the issue of the SE/MP trade-off using two examples from our own research, we (1) review the 33 identified articles that assess the trade-off, (2) summarize the proposed solutions for the trade-off, and (3) discuss the findings for SSE and future work. Overall, we see evidence for the SE/MP trade-off and first solution approaches. However, a strong empirical foundation has yet to be established; general quantitative metrics and methods supporting software developers in addressing the trade-off have to be developed. We foresee considerable future work in SSE across scientific communities.Comment: 9 pages, 2 figures. Accepted for presentation at the Fourth International Workshop on Software Engineering for High Performance Computing in Computational Science and Engineering (SEHPCCSE 2016

    Constraining the neutron star equation of state using Pulse Profile Modeling

    Get PDF
    One very promising technique for measuring the dense matter Equation of State exploits hotspots that form on the neutron star surface due to the pulsar mechanism, accretion streams, or during thermonuclear explosions in the neutron star ocean. This article explains how Pulse Profile Modeling of hotspots is being used by the Neutron Star Interior Composition Explorer (NICER), an X-ray telescope installed on the International Space Station in 2017 - and why the technique is a mission driver for the next, larger-area generation of telescopes including the enhanced X-ray Timing and Polarimetry (eXTP) mission and the Spectroscopic Time-Resolving Observatory for Broadband Energy X-rays (STROBE-X).Comment: To appear in the AIP Conference Proceedings of the Xiamen-CUSTIPEN Workshop on the EOS of Dense Neutron-Rich Matter in the Era of Gravitational Wave Astronomy (January 3 - 7, 2019, Xiamen, China

    Terrace reconstruction and long profile projection: a case study from the Solent river system near Southampton, England

    Get PDF
    River terrace sequences are important frameworks for archaeological evidence and as such it is important to produce robust correlations between what are often fragmentary remnants of ancient terraces. This paper examines both conceptual and practical issues related to such correlations, using a case study from the eastern part of the former Solent River system near Southampton, England. In this region two recent terrace schemes have been constructed using different data to describe the terrace deposits: one based mainly on terrace surfaces; the other on gravel thicknesses, often not recording the terrace surface itself. The utility of each of these types of data in terrace correlation is discussed in relation to the complexity of the record, the probability of post-depositional alteration of surface sediments and comparison of straight-line projections with modern river long profiles. Correlation using age estimates is also discussed, in relation to optically-stimulated luminescence dating of sand lenses within terrace gravels in this region during the PASHCC project. It is concluded that the need for replication at single sites means that this approach has limited use for correlative purposes, although dating of sediments is important for understanding wider landscape evolution and patterns of human occupation

    Data assurance in opaque computations

    Get PDF
    The chess endgame is increasingly being seen through the lens of, and therefore effectively defined by, a data ‘model’ of itself. It is vital that such models are clearly faithful to the reality they purport to represent. This paper examines that issue and systems engineering responses to it, using the chess endgame as the exemplar scenario. A structured survey has been carried out of the intrinsic challenges and complexity of creating endgame data by reviewing the past pattern of errors during work in progress, surfacing in publications and occurring after the data was generated. Specific measures are proposed to counter observed classes of error-risk, including a preliminary survey of techniques for using state-of-the-art verification tools to generate EGTs that are correct by construction. The approach may be applied generically beyond the game domain

    Large Scale Earth's Bow Shock with Northern IMF as simulated by PIC code in parallel with MHD model

    Full text link
    In this paper, we propose a 3D kinetic model (Particle-in-Cell PIC ) for the description of the large scale Earth's bow shock. The proposed version is stable and does not require huge or extensive computer resources. Because PIC simulations work with scaled plasma and field parameters, we also propose to validate our code by comparing its results with the available MHD simulations under same scaled Solar wind ( SW ) and ( IMF ) conditions. We report new results from the two models. In both codes the Earth's bow shock position is found to be ~14.8 RE along the Sun-Earth line, and ~ 29 RE on the dusk side. Those findings are consistent with past in situ observations. Both simulations reproduce the theoretical jump conditions at the shock. However, the PIC code density and temperature distributions are inflated and slightly shifted sunward when compared to the MHD results. Kinetic electron motions and reflected ions upstream may cause this sunward shift. Species distributions in the foreshock region are depicted within the transition of the shock (measured ~2 c/{\omega}pi for {\Theta}Bn =90o and MMS =4.7 ) and in the downstream. The size of the foot jump in the magnetic field at the shock is measured to be (1.7 c/{\omega}pi ). In the foreshocked region, the thermal velocity is found equal to 213 km.sec-1 at 15 RE and is equal to 63 km.sec-1at 12 RE (Magnetosheath region). Despite the large cell size of the current version of the PIC code, it is powerful to retain macrostructure of planets magnetospheres in very short time, thus it can be used for a pedagogical test purposes. It is also likely complementary with MHD to deepen our understanding of the large scale magnetosphereComment: 26 pages, 8 figures, 1 table , 66 references, JOAA-D-16-00005/201

    A k-deformed Model of Growing Complex Networks with Fitness

    Full text link
    The Barab\'asi-Bianconi (BB) fitness model can be solved by a mapping between the original network growth model to an idealized bosonic gas. The well-known transition to Bose-Einstein condensation in the latter then corresponds to the emergence of "super-hubs" in the network model. Motivated by the preservation of the scale-free property, thermodynamic stability and self-duality, we generalize the original extensive mapping of the BB fitness model by using the nonextensive Kaniadakis k-distribution. Through numerical simulation and mean-field calculations we show that deviations from extensivity do not compromise qualitative features of the phase transition. Analysis of the critical temperature yields a monotonically decreasing dependence on the nonextensive parameter k
    • …
    corecore