37,019 research outputs found

    A Survey of Volunteered Open Geo-Knowledge Bases in the Semantic Web

    Full text link
    Over the past decade, rapid advances in web technologies, coupled with innovative models of spatial data collection and consumption, have generated a robust growth in geo-referenced information, resulting in spatial information overload. Increasing 'geographic intelligence' in traditional text-based information retrieval has become a prominent approach to respond to this issue and to fulfill users' spatial information needs. Numerous efforts in the Semantic Geospatial Web, Volunteered Geographic Information (VGI), and the Linking Open Data initiative have converged in a constellation of open knowledge bases, freely available online. In this article, we survey these open knowledge bases, focusing on their geospatial dimension. Particular attention is devoted to the crucial issue of the quality of geo-knowledge bases, as well as of crowdsourced data. A new knowledge base, the OpenStreetMap Semantic Network, is outlined as our contribution to this area. Research directions in information integration and Geographic Information Retrieval (GIR) are then reviewed, with a critical discussion of their current limitations and future prospects

    Advanced Knowledge Technologies at the Midterm: Tools and Methods for the Semantic Web

    Get PDF
    The University of Edinburgh and research sponsors are authorised to reproduce and distribute reprints and on-line copies for their purposes notwithstanding any copyright annotation hereon. The views and conclusions contained herein are the author’s and shouldn’t be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of other parties.In a celebrated essay on the new electronic media, Marshall McLuhan wrote in 1962:Our private senses are not closed systems but are endlessly translated into each other in that experience which we call consciousness. Our extended senses, tools, technologies, through the ages, have been closed systems incapable of interplay or collective awareness. Now, in the electric age, the very instantaneous nature of co-existence among our technological instruments has created a crisis quite new in human history. Our extended faculties and senses now constitute a single field of experience which demands that they become collectively conscious. Our technologies, like our private senses, now demand an interplay and ratio that makes rational co-existence possible. As long as our technologies were as slow as the wheel or the alphabet or money, the fact that they were separate, closed systems was socially and psychically supportable. This is not true now when sight and sound and movement are simultaneous and global in extent. (McLuhan 1962, p.5, emphasis in original)Over forty years later, the seamless interplay that McLuhan demanded between our technologies is still barely visible. McLuhan’s predictions of the spread, and increased importance, of electronic media have of course been borne out, and the worlds of business, science and knowledge storage and transfer have been revolutionised. Yet the integration of electronic systems as open systems remains in its infancy.Advanced Knowledge Technologies (AKT) aims to address this problem, to create a view of knowledge and its management across its lifecycle, to research and create the services and technologies that such unification will require. Half way through its sixyear span, the results are beginning to come through, and this paper will explore some of the services, technologies and methodologies that have been developed. We hope to give a sense in this paper of the potential for the next three years, to discuss the insights and lessons learnt in the first phase of the project, to articulate the challenges and issues that remain.The WWW provided the original context that made the AKT approach to knowledge management (KM) possible. AKT was initially proposed in 1999, it brought together an interdisciplinary consortium with the technological breadth and complementarity to create the conditions for a unified approach to knowledge across its lifecycle. The combination of this expertise, and the time and space afforded the consortium by the IRC structure, suggested the opportunity for a concerted effort to develop an approach to advanced knowledge technologies, based on the WWW as a basic infrastructure.The technological context of AKT altered for the better in the short period between the development of the proposal and the beginning of the project itself with the development of the semantic web (SW), which foresaw much more intelligent manipulation and querying of knowledge. The opportunities that the SW provided for e.g., more intelligent retrieval, put AKT in the centre of information technology innovation and knowledge management services; the AKT skill set would clearly be central for the exploitation of those opportunities.The SW, as an extension of the WWW, provides an interesting set of constraints to the knowledge management services AKT tries to provide. As a medium for the semantically-informed coordination of information, it has suggested a number of ways in which the objectives of AKT can be achieved, most obviously through the provision of knowledge management services delivered over the web as opposed to the creation and provision of technologies to manage knowledge.AKT is working on the assumption that many web services will be developed and provided for users. The KM problem in the near future will be one of deciding which services are needed and of coordinating them. Many of these services will be largely or entirely legacies of the WWW, and so the capabilities of the services will vary. As well as providing useful KM services in their own right, AKT will be aiming to exploit this opportunity, by reasoning over services, brokering between them, and providing essential meta-services for SW knowledge service management.Ontologies will be a crucial tool for the SW. The AKT consortium brings a lot of expertise on ontologies together, and ontologies were always going to be a key part of the strategy. All kinds of knowledge sharing and transfer activities will be mediated by ontologies, and ontology management will be an important enabling task. Different applications will need to cope with inconsistent ontologies, or with the problems that will follow the automatic creation of ontologies (e.g. merging of pre-existing ontologies to create a third). Ontology mapping, and the elimination of conflicts of reference, will be important tasks. All of these issues are discussed along with our proposed technologies.Similarly, specifications of tasks will be used for the deployment of knowledge services over the SW, but in general it cannot be expected that in the medium term there will be standards for task (or service) specifications. The brokering metaservices that are envisaged will have to deal with this heterogeneity.The emerging picture of the SW is one of great opportunity but it will not be a wellordered, certain or consistent environment. It will comprise many repositories of legacy data, outdated and inconsistent stores, and requirements for common understandings across divergent formalisms. There is clearly a role for standards to play to bring much of this context together; AKT is playing a significant role in these efforts. But standards take time to emerge, they take political power to enforce, and they have been known to stifle innovation (in the short term). AKT is keen to understand the balance between principled inference and statistical processing of web content. Logical inference on the Web is tough. Complex queries using traditional AI inference methods bring most distributed computer systems to their knees. Do we set up semantically well-behaved areas of the Web? Is any part of the Web in which semantic hygiene prevails interesting enough to reason in? These and many other questions need to be addressed if we are to provide effective knowledge technologies for our content on the web

    Geospatial Narratives and their Spatio-Temporal Dynamics: Commonsense Reasoning for High-level Analyses in Geographic Information Systems

    Full text link
    The modelling, analysis, and visualisation of dynamic geospatial phenomena has been identified as a key developmental challenge for next-generation Geographic Information Systems (GIS). In this context, the envisaged paradigmatic extensions to contemporary foundational GIS technology raises fundamental questions concerning the ontological, formal representational, and (analytical) computational methods that would underlie their spatial information theoretic underpinnings. We present the conceptual overview and architecture for the development of high-level semantic and qualitative analytical capabilities for dynamic geospatial domains. Building on formal methods in the areas of commonsense reasoning, qualitative reasoning, spatial and temporal representation and reasoning, reasoning about actions and change, and computational models of narrative, we identify concrete theoretical and practical challenges that accrue in the context of formal reasoning about `space, events, actions, and change'. With this as a basis, and within the backdrop of an illustrated scenario involving the spatio-temporal dynamics of urban narratives, we address specific problems and solutions techniques chiefly involving `qualitative abstraction', `data integration and spatial consistency', and `practical geospatial abduction'. From a broad topical viewpoint, we propose that next-generation dynamic GIS technology demands a transdisciplinary scientific perspective that brings together Geography, Artificial Intelligence, and Cognitive Science. Keywords: artificial intelligence; cognitive systems; human-computer interaction; geographic information systems; spatio-temporal dynamics; computational models of narrative; geospatial analysis; geospatial modelling; ontology; qualitative spatial modelling and reasoning; spatial assistance systemsComment: ISPRS International Journal of Geo-Information (ISSN 2220-9964); Special Issue on: Geospatial Monitoring and Modelling of Environmental Change}. IJGI. Editor: Duccio Rocchini. (pre-print of article in press

    Modelling ecological values in heterogeneous and dynamic landscapes with geospatial data

    Get PDF
    Our surrounding landscape is in a constantly dynamic state, but recently the rate of changes and their effects on the environment have considerably increased. In terms of the impact on nature, this development has not been entirely positive, but has rather caused a decline in valuable species, habitats, and general biodiversity. Regardless of recognizing the problem and its high importance, plans and actions of how to stop the detrimental development are largely lacking. This partly originates from a lack of genuine will, but is also due to difficulties in detecting many valuable landscape components and their consequent neglect. To support knowledge extraction, various digital environmental data sources may be of substantial help, but only if all the relevant background factors are known and the data is processed in a suitable way. This dissertation concentrates on detecting ecologically valuable landscape components by using geospatial data sources, and applies this knowledge to support spatial planning and management activities. In other words, the focus is on observing regionally valuable species, habitats, and biotopes with GIS and remote sensing data, using suitable methods for their analysis. Primary emphasis is given to the hemiboreal vegetation zone and the drastic decline in its semi-natural grasslands, which were created by a long trajectory of traditional grazing and management activities. However, the applied perspective is largely methodological, and allows for the application of the obtained results in various contexts. Models based on statistical dependencies and correlations of multiple variables, which are able to extract desired properties from a large mass of initial data, are emphasized in the dissertation. In addition, the papers included combine several data sets from different sources and dates together, with the aim of detecting a wider range of environmental characteristics, as well as pointing out their temporal dynamics. The results of the dissertation emphasise the multidimensionality and dynamics of landscapes, which need to be understood in order to be able to recognise their ecologically valuable components. This not only requires knowledge about the emergence of these components and an understanding of the used data, but also the need to focus the observations on minute details that are able to indicate the existence of fragmented and partly overlapping landscape targets. In addition, this pinpoints the fact that most of the existing classifications are too generalised as such to provide all the required details, but they can be utilized at various steps along a longer processing chain. The dissertation also emphases the importance of landscape history as an important factor, which both creates and preserves ecological values, and which sets an essential standpoint for understanding the present landscape characteristics. The obtained results are significant both in terms of preserving semi-natural grasslands, as well as general methodological development, giving support to science-based framework in order to evaluate ecological values and guide spatial planning.Ympäröivä maisemamme on alati muuttuvassa tilassa, mutta viime aikoina muutosten nopeus ja niiden vaikutukset ympäristöön ovat kasvaneet. Luontoarvojen kannalta kehitys ei ole ollut pelkästään myönteistä, vaan monin paikoin lajistollisesti arvokkaat elinympäristöt ovat vähentyneet ja yleinen luonnon monimuotoisuus on kaventunut. Vaikka ongelma ja sen laajuus on yleisesti tunnistettu, ovat suunnitelmat ja toimet negatiivisen kehityksen pysäyttämiseksi paljolti keskeneräisiä. Osaltaan tämä johtuu tahtotilan puutteesta, mutta myös siitä että monet arvokkaista maisemakomponenteista ovat hankalasti havaittavia ja puutteellisesti tunnettuja, jolloin niihin ei osata kohdistaa tarvittavaa huomiota. Tässä yhteydessä erilaiset ympäristöön liittyvät digitaaliset tietolähteet voivat auttaa tiedon kartuttamisessa mutta vain, jos tarvittavat taustatekijät tunnetaan ja aineistoja osataan käsitellä soveltuvalla tavalla. Tässä väitöskirjassa keskitytään ekologisesti arvokkaiden maiseman ominaisuuksien tunnistamiseen geospatiaalisten aineistojen avulla, ja suositellaan käyttämään tätä tietoa aluesuunnittelun ja luonnonhoidon tarpeisiin. Tällä tarkoitetaan alueellisesti arvokkaiden lajien ja niiden elinympäristöjen havainnointia paikkatieto- ja kaukokartoitusaineistoja käyttäen, sekä tarkoitukseen sopivien analysointimenetelmien kehittämistä. Tutkimuksen kohteena on lounaissuomalainen maisema hemiboraalisessa kasvillisuusvyöhykkeessä, ja etenkin alueella esiintyvät arvokkaat perinnemaisemat, joilla pitkäkestoinen laidunnus ja hoitotoimenpiteet ovat luoneet monimuotoisen eliölajiston. Tutkimuksessa kehitetään yleistettäviä menetelmiä, ja saatuja tuloksia voidaan soveltaa myös laajempiin käyttötarkoituksiin. Tärkeässä osassa ovat erilaiset tilastollisiin tekijöihin ja muuttujien yhteisvaihteluun perustuvat mallinnusmenetelmät, joilla suuresta määrästä alkuperäisaineistoja erotetaan halutut ominaisuudet. Mallinnukset tehdään yhdistämällä useita maiseman ajallisia ja alueellisia muutoksia kuvaavia paikkatietoaineistoja. Väitöskirjan tulokset osoittavat, että maiseman dynamiikan ymmärtäminen ja muutosten tulkinta on olennaista luontoarvoiltaan tärkeiden kohteiden löytämiseksi. Tämä vaatii tietoa tutkitun ilmiön syntymekanismeista ja tehtävään käytetyistä aineistoista, mutta usein myös havainnoinnin kohdistamista riittävän yksityiskohtaiseen vaihteluun jonka avulla pirstoutuneita ja osin päällekkäisiä maisemakomponentteja voidaan tunnistaa. Näiden syiden takia valmiiksi luokitellut aineistot ovat usein liian yleistettyjä soveltuakseen sellaisenaan pienialaisten maisemakohteiden löytämiseen, mutta niitä voidaan kuitenkin hyödyntää osana pidempää työketjua. Tutkimuksen tulokset tukevat sitä tulkintaa, että maiseman nykytilaa edeltävät muutokset ovat olennaisia ekologisia arvoja maisemassa säilyttäviä tekijöitä.Tästä syystä on erityisen tarpeellista tuntea maiseman menneisyys osana nykyistä maisemarakennetta. Saadut tulokset ovat merkittäviä niin perinnemaisemien säilyttämisen kuin maisemaekologisen tutkimuksen menetelmäkehityksenkin kannalta, ja ne tukevat paikkatietoon ja tieteelliseen tutkimukseen perustuvaa luonnonsuojelua ja aluesuunnittelua.Siirretty Doriast

    A qualitative enquiry into OpenStreetMap making

    Get PDF
    Based on a case study on the OpenStreetMap community, this paper provides a contextual and embodied understanding of the user-led, user-participatory and user-generated produsage phenomenon. It employs Grounded Theory, Social Worlds Theory, and qualitative methods to illuminate and explores the produsage processes of OpenStreetMap making, and how knowledge artefacts such as maps can be collectively and collaboratively produced by a community of people, who are situated in different places around the world but engaged with the same repertoire of mapping practices. The empirical data illustrate that OpenStreetMap itself acts as a boundary object that enables actors from different social worlds to co-produce the Map through interacting with each other and negotiating the meanings of mapping, the mapping data and the Map itself. The discourses also show that unlike traditional maps that black-box cartographic knowledge and offer a single dominant perspective of cities or places, OpenStreetMap is an embodied epistemic object that embraces different world views. The paper also explores how contributors build their identities as an OpenStreetMaper alongside some other identities they have. Understanding the identity-building process helps to understand mapping as an embodied activity with emotional, cognitive and social repertoires

    The Semantic Grid: A future e-Science infrastructure

    No full text
    e-Science offers a promising vision of how computer and communication technology can support and enhance the scientific process. It does this by enabling scientists to generate, analyse, share and discuss their insights, experiments and results in an effective manner. The underlying computer infrastructure that provides these facilities is commonly referred to as the Grid. At this time, there are a number of grid applications being developed and there is a whole raft of computer technologies that provide fragments of the necessary functionality. However there is currently a major gap between these endeavours and the vision of e-Science in which there is a high degree of easy-to-use and seamless automation and in which there are flexible collaborations and computations on a global scale. To bridge this practice–aspiration divide, this paper presents a research agenda whose aim is to move from the current state of the art in e-Science infrastructure, to the future infrastructure that is needed to support the full richness of the e-Science vision. Here the future e-Science research infrastructure is termed the Semantic Grid (Semantic Grid to Grid is meant to connote a similar relationship to the one that exists between the Semantic Web and the Web). In particular, we present a conceptual architecture for the Semantic Grid. This architecture adopts a service-oriented perspective in which distinct stakeholders in the scientific process, represented as software agents, provide services to one another, under various service level agreements, in various forms of marketplace. We then focus predominantly on the issues concerned with the way that knowledge is acquired and used in such environments since we believe this is the key differentiator between current grid endeavours and those envisioned for the Semantic Grid
    corecore