17,855 research outputs found

    Digital service analysis and design : the role of process modelling

    Get PDF
    Digital libraries are evolving from content-centric systems to person-centric systems. Emergent services are interactive and multidimensional, associated systems multi-tiered and distributed. A holistic perspective is essential to their effective analysis and design, for beyond technical considerations, there are complex social, economic, organisational, and ergonomic requirements and relationships to consider. Such a perspective cannot be gained without direct user involvement, yet evidence suggests that development teams may be failing to effectively engage with users, relying on requirements derived from anecdotal evidence or prior experience. In such instances, there is a risk that services might be well designed, but functionally useless. This paper highlights the role of process modelling in gaining such perspective. Process modelling challenges, approaches, and success factors are considered, discussed with reference to a recent evaluation of usability and usefulness of a UK National Health Service (NHS) digital library. Reflecting on lessons learnt, recommendations are made regarding appropriate process modelling approach and application

    Synthetic Observational Health Data with GANs: from slow adoption to a boom in medical research and ultimately digital twins?

    Full text link
    After being collected for patient care, Observational Health Data (OHD) can further benefit patient well-being by sustaining the development of health informatics and medical research. Vast potential is unexploited because of the fiercely private nature of patient-related data and regulations to protect it. Generative Adversarial Networks (GANs) have recently emerged as a groundbreaking way to learn generative models that produce realistic synthetic data. They have revolutionized practices in multiple domains such as self-driving cars, fraud detection, digital twin simulations in industrial sectors, and medical imaging. The digital twin concept could readily apply to modelling and quantifying disease progression. In addition, GANs posses many capabilities relevant to common problems in healthcare: lack of data, class imbalance, rare diseases, and preserving privacy. Unlocking open access to privacy-preserving OHD could be transformative for scientific research. In the midst of COVID-19, the healthcare system is facing unprecedented challenges, many of which of are data related for the reasons stated above. Considering these facts, publications concerning GAN applied to OHD seemed to be severely lacking. To uncover the reasons for this slow adoption, we broadly reviewed the published literature on the subject. Our findings show that the properties of OHD were initially challenging for the existing GAN algorithms (unlike medical imaging, for which state-of-the-art model were directly transferable) and the evaluation synthetic data lacked clear metrics. We find more publications on the subject than expected, starting slowly in 2017, and since then at an increasing rate. The difficulties of OHD remain, and we discuss issues relating to evaluation, consistency, benchmarking, data modelling, and reproducibility.Comment: 31 pages (10 in previous version), not including references and glossary, 51 in total. Inclusion of a large number of recent publications and expansion of the discussion accordingl

    Workflow resource pattern modelling and visualization

    Get PDF
    Workflow patterns have been recognized as the theoretical basis to modeling recurring problems in workflow systems. A form of workflow patterns, known as the resource patterns, characterise the behaviour of resources in workflow systems. Despite the fact that many resource patterns have been discovered, people still preclude them from many workflow system implementations. One of reasons could be obscurityin the behaviour of and interaction between resources and a workflow management system. Thus, we provide a modelling and visualization approach for the resource patterns, enabling a resource behaviour modeller to intuitively see the specific resource patterns involved in the lifecycle of a workitem. We believe this research can be extended to benefit not only workflow modelling, but also other applications, such as model validation, human resource behaviour modelling, and workflow model visualization

    Understanding the Impact of Early Citers on Long-Term Scientific Impact

    Full text link
    This paper explores an interesting new dimension to the challenging problem of predicting long-term scientific impact (LTSI) usually measured by the number of citations accumulated by a paper in the long-term. It is well known that early citations (within 1-2 years after publication) acquired by a paper positively affects its LTSI. However, there is no work that investigates if the set of authors who bring in these early citations to a paper also affect its LTSI. In this paper, we demonstrate for the first time, the impact of these authors whom we call early citers (EC) on the LTSI of a paper. Note that this study of the complex dynamics of EC introduces a brand new paradigm in citation behavior analysis. Using a massive computer science bibliographic dataset we identify two distinct categories of EC - we call those authors who have high overall publication/citation count in the dataset as influential and the rest of the authors as non-influential. We investigate three characteristic properties of EC and present an extensive analysis of how each category correlates with LTSI in terms of these properties. In contrast to popular perception, we find that influential EC negatively affects LTSI possibly owing to attention stealing. To motivate this, we present several representative examples from the dataset. A closer inspection of the collaboration network reveals that this stealing effect is more profound if an EC is nearer to the authors of the paper being investigated. As an intuitive use case, we show that incorporating EC properties in the state-of-the-art supervised citation prediction models leads to high performance margins. At the closing, we present an online portal to visualize EC statistics along with the prediction results for a given query paper

    Enhancing declarative process models with DMN decision logic

    Get PDF
    Modeling dynamic, human-centric, non-standardized and knowledge-intensive business processes with imperative process modeling approaches is very challenging. Declarative process modeling approaches are more appropriate for these processes, as they offer the run-time flexibility typically required in these cases. However, by means of a realistic healthcare process that falls in the aforementioned category, we demonstrate in this paper that current declarative approaches do not incorporate all the details needed. More specifically, they lack a way to model decision logic, which is important when attempting to fully capture these processes. We propose a new declarative language, Declare-R-DMN, which combines the declarative process modeling language Declare-R with the newly adopted OMG standard Decision Model and Notation. Aside from supporting the functionality of both languages, Declare-R-DMN also creates bridges between them. We will show that using this language results in process models that encapsulate much more knowledge, while still offering the same flexibility

    Big data analytics:Computational intelligence techniques and application areas

    Get PDF
    Big Data has significant impact in developing functional smart cities and supporting modern societies. In this paper, we investigate the importance of Big Data in modern life and economy, and discuss challenges arising from Big Data utilization. Different computational intelligence techniques have been considered as tools for Big Data analytics. We also explore the powerful combination of Big Data and Computational Intelligence (CI) and identify a number of areas, where novel applications in real world smart city problems can be developed by utilizing these powerful tools and techniques. We present a case study for intelligent transportation in the context of a smart city, and a novel data modelling methodology based on a biologically inspired universal generative modelling approach called Hierarchical Spatial-Temporal State Machine (HSTSM). We further discuss various implications of policy, protection, valuation and commercialization related to Big Data, its applications and deployment

    Building Data-Driven Pathways From Routinely Collected Hospital Data:A Case Study on Prostate Cancer

    Get PDF
    Background: Routinely collected data in hospitals is complex, typically heterogeneous, and scattered across multiple Hospital Information Systems (HIS). This big data, created as a byproduct of health care activities, has the potential to provide a better understanding of diseases, unearth hidden patterns, and improve services and cost. The extent and uses of such data rely on its quality, which is not consistently checked, nor fully understood. Nevertheless, using routine data for the construction of data-driven clinical pathways, describing processes and trends, is a key topic receiving increasing attention in the literature. Traditional algorithms do not cope well with unstructured processes or data, and do not produce clinically meaningful visualizations. Supporting systems that provide additional information, context, and quality assurance inspection are needed. Objective: The objective of the study is to explore how routine hospital data can be used to develop data-driven pathways that describe the journeys that patients take through care, and their potential uses in biomedical research; it proposes a framework for the construction, quality assessment, and visualization of patient pathways for clinical studies and decision support using a case study on prostate cancer. Methods: Data pertaining to prostate cancer patients were extracted from a large UK hospital from eight different HIS, validated, and complemented with information from the local cancer registry. Data-driven pathways were built for each of the 1904 patients and an expert knowledge base, containing rules on the prostate cancer biomarker, was used to assess the completeness and utility of the pathways for a specific clinical study. Software components were built to provide meaningful visualizations for the constructed pathways. Results: The proposed framework and pathway formalism enable the summarization, visualization, and querying of complex patient-centric clinical information, as well as the computation of quality indicators and dimensions. A novel graphical representation of the pathways allows the synthesis of such information. Conclusions: Clinical pathways built from routinely collected hospital data can unearth information about patients and diseases that may otherwise be unavailable or overlooked in hospitals. Data-driven clinical pathways allow for heterogeneous data (ie, semistructured and unstructured data) to be collated over a unified data model and for data quality dimensions to be assessed. This work has enabled further research on prostate cancer and its biomarkers, and on the development and application of methods to mine, compare, analyze, and visualize pathways constructed from routine data. This is an important development for the reuse of big data in hospitals
    • …
    corecore