
© Springer International Publishing Switzerland 2015
K. Gaaloul et al. (Eds.): BPMDS 2015 and EMMSAD 2015, LNBIP 214, pp. 151–165, 2015.
DOI: 10.1007/978-3-319-19237-6_10

Enhancing Declarative Process Models
with DMN Decision Logic

Steven Mertens(), Frederik Gailly, and Geert Poels

Department of Business Informatics and Operations Management,
Faculty of Economics and Business Administration, Ghent University,

Tweekerkenstraat 2 9000, Ghent, Belgium
{steven.mertens,frederik.gailly,geert.poels}@ugent.be

Abstract. Modeling dynamic, human-centric, non-standardized and knowledge-
intensive business processes with imperative process modeling approaches is
very challenging. Declarative process modeling approaches are more appropri-
ate for these processes, as they offer the run-time flexibility typically required
in these cases. However, by means of a realistic healthcare process that falls in
the aforementioned category, we demonstrate in this paper that current declara-
tive approaches do not incorporate all the details needed. More specifically,
they lack a way to model decision logic, which is important when attempting to
fully capture these processes. We propose a new declarative language, Declare-
R-DMN, which combines the declarative process modeling language Declare-R
with the newly adopted OMG standard Decision Model and Notation. Aside
from supporting the functionality of both languages, Declare-R-DMN also
creates bridges between them. We will show that using this language results in
process models that encapsulate much more knowledge, while still offering the
same flexibility.

Keywords: Business process modeling · Declarative process models · Decision
logic · Decision management · Healthcare processes

1 Introduction

BPMN takes an imperative approach to business process modeling as it provides a
precise graph-based definition of the process control-flow [1]. While BPMN is suita-
ble for modeling static and standardized business processes [2], specifying the com-
plete control-flow for each variation of processes that require a high degree of
run-time flexibility1 is time consuming and results in overly complex models.

Goedertier et al. [1] state that dynamic, human-centric, non-standardized and
knowledge-intensive business processes (KiP) are most likely to require the run-time
flexibility offered by declarative process modeling. While imperative approaches
focus on explicitly defining the exact path of activities to reach the process goals,
declarative approaches determine only the activities that may be performed as well
as constraints prohibiting undesired behavior [3]. Applying a declarative modeling

1 Run-time flexibility: the flexibility allowed by a process after being deployed [22].

152 S. Mertens et al.

approach results in the specification of a collection of rules, constraints and assump-
tions that leaves enough freedom for various execution paths towards the process
goals to exist. Additionally, explicitly specifying rules that remain tacit with impera-
tive modeling, can enhance the knowledge management capabilities of the organiza-
tion, allow for reuse of the rules in other process models, improve maintainability
by way of high design-time flexibility2, increase process compliance and improve
traceability [4].

One of the most popular declarative process modeling languages is Declare [5, 6]
(previously known as ConDec3). This language is based on Linear Temporal Logic
(LTL), which is a formal language to express statements in modal temporal logic. It is
very well suited to represent the control-flow of a process in a declarative manner as it
does not offer a precise specification of the control-flow, but rather marks the rules to
which a valid control-flow must oblige. Declare offers visual constructs to hide some
of the complexity of LTL rules. To further improve its expressibility an extension has
been proposed, Declare-R [7], that adds a resource perspective to the language.

The healthcare sector is one of the sectors where process modeling has had a hard
time manifesting itself, as it remains mostly data-driven due to its knowledge-
intensive nature. However, some of the main concerns trending in eHealth are very
similar to other sectors, namely cost reduction and efficiency [8]. So a traditional
focus on these two process goals could still create considerable value for both the
patients as the healthcare personnel. The fact that process-orientation is nearly absent
can be attributed mainly to the need to deliver a flexible and dynamic service. Medi-
cal professionals need to be prepared to handle a vast array of cases, where doctors
are empowered to use their knowledge and judgment as a guide through the critical
data-intensive situations. This makes it hard for traditional process modeling tech-
niques to create added value and calls for a different approach. Languages like GLIF
[9], Asbru [10] and PROforma [11] have been proposed to model the guidelines, used
throughout the healthcare sector, visually as what are called Computer-Interpretable
Guidelines (CIG). Mulyar et al. [12] state that these languages have problems with the
dynamic and flexible nature of the healthcare processes (i.e., because they are hybrids
of imperative modeling languages with decision modeling languages) and advise the
use of a declarative language, CIGDec, which has since been integrated into Declare.

In this paper we will put Declare-R to the test by using it to model a realistic flexi-
ble process using a case example from the emergency department of a hospital. This
will demonstrate that languages like Declare-R and CIGDec can model these types of
processes well, but that they are missing essential information. This information can
be seen as the intelligence of the process: the decision logic. The decision logic
determines when a certain activity should be executed and this goes further than just
specifying sequence constraints between activities. In imperative modeling languages
like BPMN decision rules are implicitly modeled as part of the process control-flow
(e.g., split gateways). Recently, OMG adopted (currently in finalization phase) a
modeling method that allows for the separation of process logic and decision logic:

2 Build-time or design-time flexibility: the intrinsic flexibility of a created model [22].
3 http://www.win.tue.nl/declare/2011/11/declare-renaming/

 Enhancing Declarative Process Models with DMN Decision Logic 153

the Decision Model and Notation (DMN) [13]. By separating decisions from the
process control-flow, the decision rules can be explicitly specified. This means that
the decision logic can be reused, be adjusted to evolve within an ever-changing envi-
ronment and be used as justification for the choices being made. The decision logic is
also specified in a declarative way [14], which makes it very well suited, if not more,
to complement declarative process languages too. Consequently, it allows us to im-
prove the way we model KiPs and the way we manage these processes. This results in
value creation for all the stakeholders. This in turn can be an important incentive to
establish a more process-minded way of thinking in KiPs.

The goal of the paper is to demonstrate how a combined Declare-R and DMN
approach, we will call it Declare-R-DMN, can model flexible processes more com-
pletely with respect to their control-flow and decision logic, while still allowing for
run-time flexibility. We will do this by first showing what can and cannot be modeled
with Declare-R starting from a realistic healthcare process. Next, we will see what
tools DMN can provide us with to model decisions, deontic rules and preferences.
Finally, we discuss how the combined approach creates additional value, when com-
pared to the use of only declarative process modeling, as it adds the decision logic
which is an essential part of KiPs.

This paper is structured as follows. Section 2 gives a quick overview of the model-
ing languages used in this paper. In section 3, a case is presented, that demonstrates a
realistic, dynamic and flexible process. This case will be modeled using Declare-R
and Declare-R-DMN in section 4. In section 5 we provide a brief analysis of Declare-
R-DMN. Finally, we conclude the paper and describe the future work in section 6.

2 Background

2.1 Declare-R

Declare is a graphical representation language proposed for declarative modeling of
business processes based on LTL-logic [1, 5, 6]. A Declare model contains a set
of activities and a set of constraints that can span multiple activities. It specifies the
process environment in terms of what is necessary and what is not allowed (i.e., rules
expressing the modal verb ‘must’), restricting the possible process executions. Con-
trary to other declarative languages, Declare supports optional constraints (i.e., using
a dotted line instead of a solid line). Such constraints offer guidance (i.e., rules
expressing the modal verbs ‘should’ and ‘ought to’) through knowledge-intensive
activities [1], while their soft character ensures flexibility is maintained (i.e., it is not
necessary to enforce them).

There are four groups of Declare constraints (see Table 1):

• Existence constraints: unary cardinality constraints predicating the number of
possible executions of an activity.

• Choice constraints: n-ary constraints expressing a choice between activities.

154 S. Mertens et al.

Table 1. Constraint templates of Declare

• Relation constraints: binary constraints enforcing the presence of an activity in
combination with another activity. Table 1 presents the five most important con-
straint templates. There are six additional templates based on two variations
(i.e., alternate and chain) of the response, precedence and succession templates.

 Enhancing Declarative Process Models with DMN Decision Logic 155

The relation templates can also be extended to involve more than two activities.
See [6] for more details.

• Negation constraints: negative version of the relation constraints. This is graphi-
cally represented with two parallel lines perpendicularly crossing the representa-
tion of the relation constraint in question.

To improve the expressibility and practical usability, an extension was proposed,
called Declare-R [7], which allows for a textual specification of the information
needed to reason about resources:

- Estimates of the duration of each activity
- The available resources
- For each activity, the resource(s) required for its execution

2.2 DMN

The primary goal of Decision Model and Notation (DMN) [13] is to provide a com-
mon notation for decision logic that is understandable for business users, business
analysts and technical developers. DMN provides the constructs to model decision
rules and the decision-making process itself. A DMN decision model consists of two
levels: the decision requirements graph (DRG) and the decision logic. The former
describes where the required information is coming from and can be depicted in one
or more decision requirements diagrams (DRDs). The latter describes the logic behind
the decision, which is depicted in Decision Tables [15]. The upper half of a decision
table specifies the possible combinations of conditions that lead to certain actions,
while the bottom half contains the actions to be taken (i.e., outcomes). A minimal
scope is specified for the standardization by OMG, but the goal is to offer support for
other decision logic notations (e.g., decision trees) and allow for references to other
types of models (e.g., SBVR).

3 Case Example

We elaborate further on a case from [5] with additional information provided by a
practicing surgeon4. The process of treating arm-related fractures takes place in the
emergency department of a hospital. The process entails the registration, diagnosis
and treatment phases for patients with one or more fractures of a finger, hand, wrist,
forearm, upper arm, shoulder, and/or collarbone.

The process starts when a patient is registered at the reception of the emergency
department. Alternatively, in acute emergency situations, the registration can be done
at a later time. The next step will usually be to examine the patient. During this exami-
nation, the doctor will make a list of the symptoms (e.g., excessive pain and deforma-
tion) of the patient. Based on these symptoms he will make a preliminary diagnosis.
Normally, this diagnosis is checked by making X-rays, which in turn always results in

4 Dr. Kjell Fierens, AZ Sint-Lucas in Ghent

156 S. Mertens et al.

a new examination to evaluate the X-rays and make the actual diagnosis. In some
situations the doctor can make the final diagnosis without X-rays (e.g., clearly no
fracture) or there is just no time for this due to emergency conditions.

The next phase involves the treatment the patient will receive. Of course, a treat-
ment is only possible after at least a preliminary examination by a doctor. There
are five types of treatment: bandaging, providing support with a sling, fixating the
fracture, applying a cast or performing surgery. Each patient will receive at least one
of these treatments, even when no fracture is present the patient will be bandaged or
receive a sling. Choosing one does not eliminate other treatments, as some strategies
combine two or more treatments and patients can be treated for multiple fractures
simultaneously. While some treatments do not necessarily require follow-up activi-
ties, others might require physiotherapy. For example, muscle atrophy will quickly
take its toll after applying a cast or after surgery (due to the usual postoperative period
of rest). With the latter the additional damage done to the muscles should also be
considered. The other treatments might require physiotherapy, but this is more case
dependent. It is also possible that the patient receives a sling (of course no more than
one for each arm) or some bandages at any time during the process in order to make
he/she as comfortable as possible, no matter the diagnosis.

When we look at the case on a more detailed level we can identify several different
variations. These represent the classes of fractures that can occur. Each has a specific
flow and different characteristics to be taken into account. One common characteristic
is that all fractures require surgery if the fracture is open or complex or when there is
extensive damage to the arteries or nerves. Also, if there is no emergency situation,
the diagnosis will need to be confirmed by an X-ray. If the patient has multiple frac-
tures, one process instance can combine more than one of these variations.

- A fractured finger or a fractured bone in his hand: in most cases a simple fix-
ation is enough to let it heal. The patient will receive a sling before being
sent home.

- A fractured wrist: a cast will be applied, possibly after performing surgery.
Surgery is required if the patient is a child (under 16 years old) and also has
a damaged periosteum. For adults, surgery is only performed when dealing
with open or complex fractures. Afterwards a follow-up X-ray will be taken
to confirm that the bone is positioned correctly to start the healing process.
The patient will receive a sling before being sent home.

- A fractured forearm: usually this requires no more than a cast. Only when the
bone parts are too far apart, surgery is required. To support the cast, the pa-
tient receives a sling before being sent home.

- A fractured upper arm: is commonly treated by applying a fixation. If the
fracture is an open, surgery is performed. This surgery is also performed
when the patient has broken both arms, there is extensive artery damage,
there is extensive nerve damage or when there is no improvement over a pe-
riod of 3 months. The patient will receive a sling before being sent home.

- A fractured shoulder: usually the conservative treatment is enough, letting
the shoulder heal while wearing a sling. In the other cases, surgery is re-
quired. Physiotherapy is also needed, because the shoulder joint will be
inactive for an extended period during each of the two treatments.

 Enhancing Declarative Process Models with DMN Decision Logic 157

- A fractured collarbone: is treated in most cases by resting it while wearing a
figure of eight bandage. Surgery is only required when dealing with open or
complex fractures or extensive damage to the arteries or nerves.

Additionally, if surgery is required for a broken wrist or forearm, but the OR is un-
available, a temporary cast will be applied to bridge the time until surgery.

Another aspect is the prescription of medication. There is a general policy that
states that no medication can be prescribed without being proceeded by an actual
doctor’s examination. For pain medication it also requires the doctor or surgeon to
agree that the patient is in pain or could be in pain in the nearby future. Furthermore,
the policy makes a distinction between patients between 0-16 years old (we will refer
to them as children) and the older patients (we will refer to them as adults). For in-
stance, if a child had surgery or is in excessive pain as determined by a doctor’s ex-
amination, he/she will always receive a prescription for a weak painkiller at first.
Only if the doctor finds this to be insufficiently effective, a stronger painkiller can be
prescribed. This also holds for adults, except after surgery, when stronger painkillers
will be prescribed immediately. For both children and adults, after surgery they will
be prescribed anticoagulants and anti-inflammatory drugs as precaution. Likewise,
patients that received a cast could be prescribed anticoagulants. Because there exist
strong painkillers that do not mix well with anticoagulants and anti-inflammatory
drugs, a distinction is made between classes of strong painkillers:

- Strong painkillers A: should not be taken while on anticoagulants or anti-
inflammatory drugs, but are preferred in other cases.

- Strong painkillers B: can be taken while on anticoagulants or anti-
inflammatory drugs.

Furthermore, we also need to consider that some activities require the availability
of certain resources, which in turn are limited in number. Also, they are not only used
for this process, but rather represent a pool of resources shared among multiple inde-
pendent processes of the hospital. The inventory of the resources and the activities
that require then are as follows:

- 3 reception desks are used to register patients
- 15 exam rooms are used for the examination of the patient as well as for

applying a cast, an external fixation, a sling and bandages
- 1 X-ray room with 1 X-ray machine used to make X-rays of the patients
- 4 operating rooms where surgery is performed on the patients
- 60 beds where the patients can rest after surgery
- 2 physiotherapy rooms used to provide in-house physiotherapy

Furthermore, there is also a list of human resources available:

- 3 receptionists to work at the reception
- 3 doctors to examine and treat patients (except for surgery)
- 10 nurses to apply casts/fixations/bandages or man the X-ray machine
- 2 surgeons to perform surgery
- 1 physiotherapist to provide physiotherapy sessions

158 S. Mertens et al.

Finally, estimates of the duration of the activities are provided. Of course, this is
just an indication as this is dependent on the circumstances.

- Registration: 10 minutes
- Examination: 10 minutes
- Take an X-ray: 30 minutes
- Applying a cast: 15 minutes
- Applying a fixation: 10 minutes
- Applying a bandage: 5 minutes
- Applying a sling: 3 minutes
- Performing surgery: 120 minutes
- Resting after surgery: 180 minutes
- Physiotherapy: 60 minutes
- Prescribing painkillers, anticoagulants or anti-inflammatory drugs: 1 minute

4 Case Models

4.1 With Declare-R

If we model the process using Declare, we obtain the model in Fig. 1 (the wavy line
constraints are explained in section 4.2). By using the Declare-R extension of Declare
we can also incorporate the resource constraints of the case as described in black in
Table 2.

Fig. 1. Declare model of the arm fracture case

An important aspect of the case is the treatment of different types of fractures, each
with a unique course of action. The Declare-R model describes a set of sequencing,
timing and resource constraints, but does not consider this aspect. Creating a hierar-
chical process model is not supported according the original definition of Declare [6],

 Enhancing Declarative Process Models with DMN Decision Logic 159

however Zugal et al. [16] have described and evaluated a way to introduce it. But
even hierarchy would not be enough to model these variations. This is because instead
of specifying variations on one general activity, each variation adds different exis-
tence and sequential constraints between the activities that are already present on the
general level. Each variation could be modeled in a separate Declare model, but
how do we know which model is applicable in which situation (i.e., need for run-time
flexibility)?

Each variation is in essence a different diagnosis, which can occur simultaneously
(e.g., fracture in wrist and forearm). Since this diagnosis is not available at the start of
the process, the type of treatment is chosen at runtime, and thus it is a decision made
by the doctor conducting the examination. This decision does not only require infor-
mation of the previously executed steps, but also information about the patient, the
symptoms, the test results and perhaps the resource availability. Declare(-R) lacks
expressibility to model these decisions and the data on which they are based.

Another shortcoming of this model is the absence of role responsibilities, which
could lead to misuse of the model. Not every process actor can initiate each activity
(e.g., a nurse cannot perform surgery). Support is however added to the official
Declare tool, so this is a minor issue.

4.2 With Declare-R-DMN

The Declare-R-DMN language that we propose incorporates the Declare-R model
presented in Fig. 1 and Table 2, while including the decision logic that was missing.
The role responsibilities have also been explicitly added (in gray) in Table 2, specify-
ing the process actors that can execute a certain activity.

By using DMN, as part of the proposed Declare-R-DMN language, to model the
decision concerning the appropriate treatment, we get the Decision Requirements
Graph (DRG) from Fig. 2 and the decision logic (i.e., decision table) from Table 3.

The decision requirements graph in Fig. 2 visualizes where we get the information
needed to make the decision concerning the treatment to be applied. The patient
record, examination notes and X-ray are documents containing explicit knowledge.
This is combined with the implicit knowledge and experience of the responsible
doctor to reach a decision on what treatment is appropriate.

The decision logic in Table 3 is presented in a simple syntactic and standardized
structure [15], modeling the cause-and-effect relationships between the conditions and
actions. The activity corresponding to the action of a decision table has to be executed
at any time in the future. This means that other activities could be executed before the
action activity, but the action activity has to be executed eventually. This is similar to
how the response-constraint template of Declare works (see Table 1). For example, if
the patient has an open (visually determined) or complex (determined with X-ray)
fracture of the finger, surgery will be performed, but another X-ray might be taken
first. The alternatives are visualized side by side to facilitate the analysis of combina-
tions. The completeness property guarantees that every combination of condition
values is considered [14]. Because of this structure the decision conditions are easy to
understand and manipulate by analysts, programmers and non-technical users [15].
This makes it a great medium for documenting decisions and to allow for backwards

160 S. Mertens et al.

Table 2. Declare-R resource constraints of the arm fracture case

Estimates
Duration(Register patient) = 10
Duration(Examine patient) = 20
Duration(Take X-ray) = 30
Duration(Prescribe strong
painkillers A) = 1
Duration(Prescribe strong
painkillers B) = 1
Duration(Prescribe weak painkillers) = 1
Duration(Prescribe anticoagulants) = 1

Resource requirements and role responsi-
bilities
Register patient requires RECEPTIONDESK
and is executed by RECEPTIONIST
Examine patient requires EXAMROOM and is
executed by DOCTOR
Take X-ray requires XRAYROOM and is
executed by NURSE
Apply cast requires EXAMROOM and is
executed by NURSE or DOCTOR

Duration(Prescribe anti-inflammatory
drugs) = 1
Duration(Apply cast) = 15
Duration(Apply fixation) = 10
Duration(Apply bandage) = 5
Duration(Apply sling) = 3
Duration(Perform surgery) = 120
Duration(Let patient rest) = 180
Duration(Perform physiotherapy) = 60
Resource and role availabilities
#RECEPTIONDESK = 3
#EXAMROOM = 15
#XRAYROOM = 1
#OPERATINGROOM = 4
#PATIENTBED = 60
#PHYSIOTHERAPYROOM = 2
#RECEPTIONIST = 3
#DOCTOR = 3
#NURSE = 10
#SURGEON = 2
#PHYSIOTHERAPIST = 1

Apply fixation requires EXAMROOM and is
executed by NURSE or DOCTOR
Apply bandage requires EXAMROOM and is
executed by NURSE or DOCTOR
Apply sling requires EXAMROOM and is
executed by NURSE or DOCTOR
Perform surgery requires
OPERATINGROOM and is executed by
SURGEON
Let patient rest requires PATIENTBED
Perform physiotherapy requires
PHYSIOTHERAPYROOM and is executed
by PHYSIOTHERAPIST
Prescribe weak painkillers is executed by
DOCTOR
Prescribe strong painkillers B is executed by
DOCTOR
Prescribe strong painkillers A is executed by
DOCTOR
Prescribe anti-inflammatory drugs is executed
by DOCTOR
Prescribe anticoagulants is executed by
DOCTOR

Fig. 2. Decision Requirements Graph for the arm fracture treatments

traceability as justification of decisions taken in actual cases [15]. Additionally, deci-
sion tables are also declarative [14], just like Declare, as the columns are rules with no
particular order for conditions and actions to occur (i.e., stating the boundaries of the
environment instead of a precise path through it). Lastly, decision tables can easily be
annotated with statistical information to specify the likeliness of certain sets condi-
tions, and thus of the chosen action [14].

 Enhancing Declarative Process Models with DMN Decision Logic 161

Table 3. The decision table for the arm fracture treatments

Note that we added a context and role definition to each decision table. This speci-
fies, respectively, the activities connected with the decision and the process actors that
are responsible for taking it. The former provides us with a clear overview of what
decisions are applicable during which activities, while the latter is a safeguard against
unauthorized usage.

The decision table representation also has some drawbacks. When the decisions
themselves are based on a very large amount of conditions and actions, the readability
of a table gets lost. In such cases, the decision table will need to be split in multiple
smaller tables to allow them to stay manageable. However, this comes at the price of
cluttering the overall overview and understandability. Another problem arises when
multiple actions are activated at the same time. Consider for example if the patient
has a complex fracture of his forearm. The treatment for this diagnosis is surgery,
followed by applying a cast. Decision tables do not allow a sequencing of these ac-
tions, but this is rather important in this situation. As a solution, we propose to intro-
duce a new type of constraint in the Declare model: the decision-dependent con-
straint. It can embody all the templates from Table 1 and is visualized as a wavy line

162 S. Mertens et al.

in the model. The decision-dependent constraint represents a constraint that can only
be activated as outcome of a decision table. If we retake the previous example, we can
model this by adding a decision-dependent response constraint between ‘Perform
surgery’ and ‘Apply cast’ (i.e., response1) and adding the additional outcome activat-
ing this constraint in Table 3. In a similar way, we add a decision-dependent response
constraint between ‘Examine patient’ and ‘Apply sling’ (i.e., response2) and another
decision table outcome activating this constraint to model the fact that in all treat-
ments, except of collarbone fractures, the patient will receive a sling eventually. Last-
ly, another one of these constraints (i.e., response3) is used to ensure that surgery will
still be performed later on when a temporary cast is applied because the OR is not
available at that time.

Table 4. The decision table for the prescription of medication

Context: Examine patient or Perform surgery Role: Doctor or Surgeon

In pain (now or in foreseeable future) Y N

Age 0-16 >16 -

Previous step is surgery Y N Y N -

On weak painkillers Y N Y N - Y N -

On anticoagulants or anti-inflammatory drugs - - Y N - - Y N - -

Prescribe strong painkillers A - - - X - - - X - -

Prescribe strong painkillers B X - X - - X X - - -

Prescribe weak painkillers - X - - X - - - X -

Prescribe anticoagulants X X - - - X - - - -

Prescribe anti-inflammatory drugs X X - - - X - - - -

Multiple outcomes in a decision table do not always lead to new sequencing con-
straints. Consider Table 4, which represents the decision to prescribe medication to
patients. If the patient for example is in excessive pain, older than 16 years old and
just had surgery, three actions are activated. The sequencing of these actions does not
matter here, as they are just prescriptions (of course sequencing rules could apply
when administering these drugs, but that is beyond the scope of the case).

Besides mandatory constraints, Declare allows for optional constraints to be mod-
eled. We propose to extend this principle to the decision tables in Declare-R-DMN, as
this allows them to represent ‘wanted’-behavior (i.e., “should” and “ought to”). For
example, patients that have had surgery, a cast applied and/or a fractured shoulder
should do physiotherapy afterwards. But this is case dependent, so it should be possi-
ble to deviate from this structure. We modeled this in an optional decision table in
Table 5. Following the representation in Declare, we visualized the ‘optional’-
property with a dotted line around the decision table. Table 6 does the same for the
decision whether or not to take an X-ray.

 Enhancing Declarative Process Models with DMN Decision Logic 163

Table 5. The optional decision table for the prescription of physiotherapy

Context: Examine patient Role: Doctor

Surgery was performed Y N

Cast has been applied - Y N

Shoulder fracture - - Y N

Perform physiotherapy X X X -

Table 6. The decision table for an X-ray

Context: Examine patient or Apply cast Role: Doctor

Verifying fracture diagnosis Y N

Fracture - Y N

Verify if bone is correctly positioned under cast - Y N -

Take X-ray X X - -

5 Analysis of the Declare-R-DMN Language

Declare-R-DMN has the expressive power needed to create a more complete model,
compared to Declare-R, of the process of the arm fracture case. This is achieved by
adding support to Declare to model decision logic, without losing sight of the need for
flexibility of KiPs. Making the decision logic explicit also facilitates the justification
of taken decisions, better conformance checking and reuse [18] across different
processes or even organizations. Value is created for the users and the organization as
declarative process modeling languages are better suited for these types of processes
compared to traditional process modeling languages. Additionally, more value is
created by adding support for decision logic to the declarative modeling language as
this is essential information that would otherwise be omitted.

Recently, other approaches have been proposed [17, 18] that do similar work. They
add a way to model constraints that deal with the data aspect. However, these ap-
proaches focus primarily on the expressibility of the language and therefore much less
on understandability and the modeling aspect. It is our opinion that these aspects are
crucial for the adoption of the technique, and thus should be more of a priority. The
use of decision tables (the DMN standard is committed to also offer support for other
techniques in the near future) for this purpose is pretty straightforward, because they
are a known and proven way of representing decisions and they are understandable
for both technical as business people. By aligning the interpretation of the decision
tables with Declare (i.e., decision-dependent constraints), adding context definitions
and role responsibilities and extending the optionality-concept of Declare, Declare-R-
DMN becomes a comprehensive and coherent modeling language: the temporal logic
is modeled using Declare, the resource perspective using the Declare-R extension and
the decision logic using DMN.

164 S. Mertens et al.

However, a general problem still persists. Compared to imperative modeling, the
increased support for flexibility by declarative modeling comes at a price of unders-
tandability (of Declare in particular) and maintainability issues arise [3, 6, 19]. Re-
cently, a couple of hybrid approaches have been proposed [20, 21] that offer some
improvements for semi-structured processes, but not for unstructured processes.

6 Conclusion and Future Work

This paper presents an idea that is similar to what DMN attempts to do for BPMN, but
also differs in a fundamental way. First, BPMN already somewhat supported decision
logic with its fundamental concepts. Second, in the context of dynamic, knowledge-
intensive and flexible processes, where Declare finds its niche, the decision logic is of
much greater importance than in case of static and standardized processes. Decision
logic is essential when modeling these processes as it offers valuable insight and en-
capsulates the knowledge of the domain experts executing the process.

The proposed language, Declare-R-DMN, combines Declare-R and DMN in a way
that both original languages are supported as well as some new concepts that bridge
them together (i.e., decision-dependent constraints, context definitions, role responsi-
bilities and extending the optionality-concept). The usefulness of Declare-R-DMN
was demonstrated by modeling a case example, representing a realistic example of a
dynamic, knowledge-intensive and flexible healthcare process, as is exhibited by the
large variety of possible execution paths (i.e., theoretically infinite). Where Declare-R
did not offer enough tools to model the process of the arm fracture case, Declare-R-
DMN thrived by incorporating the knowledge that is essential to the case.

The scope of this paper was limited to a general elaboration of the idea. In the next
phase we will formalize the semantics and metamodel of this new language. For this
purpose, we need to analyze and propose solutions for all of its possible ambiguities,
overlaps and shortcomings to obtain a clear and coherent language. Inspiration can
come from the proposals for a data-aware Declare [17, 18]. The language will then be
further evaluated by using it to model similar real-life cases from different areas.

References

1. Goedertier, S., Vanthienen, J., Caron, F.: Declarative business process modelling: prin-
ciples and modelling languages. Enterp. Inf. Syst., 1–25 (2013)

2. Lu, R., Sadiq, W.: A Survey of Comparative Business Process Modeling Approaches. In:
Abramowicz, W. (ed.) BIS 2007. LNCS, vol. 4439, pp. 82–94. Springer, Heidelberg
(2007)

3. Haisjackl, C., Barba, I., Zugal, S., Soffer, P., Hadar, I., Reichert, M., Pinggera, J.,
Weber, B.: Understanding Declare models: strategies, pitfalls, empirical results. Softw.
Syst. Model. (2014)

4. Krogstie, J.: Perspectives to Process Modeling – A Historical Overview. In: Bider, I.,
Halpin, T., Krogstie, J., Nurcan, S., Proper, E., Schmidt, R., Soffer, P., Wrycza, S. (eds.)
EMMSAD 2012 and BPMDS 2012. LNBIP, vol. 113, pp. 315–330. Springer, Heidelberg
(2012)

 Enhancing Declarative Process Models with DMN Decision Logic 165

5. Van der Aalst, W.M.P., Pesic, M., Schonenberg, H.: Declarative workflows: Balancing be-
tween flexibility and support. Comput. Sci. - Res. Dev. 23, 99–113 (2009)

6. Pesic, M.: Constraint-based workflow management systems: shifting control to users
(2008)

7. Barba, I., Del Valle, C.: Filtering rules for ConDec templates - Pseudocode and complexi-
ty. http://www.lsi.us.es/quivir/irene/FilteringRulesforConDecTemplates.pdf (accessed on
October 9, 2014)

8. Payton, F.C., Paré, G., LeRouge, C., Reddy, M.: Health care IT: Process, people, patients
and interdisciplinary considerations. J. Assoc. Inf. Syst. 12 (2011)

9. Boxwala, A.A, Peleg, M., Tu, S., Ogunyemi, O., Zeng, Q.T., Wang, D., Patel, V.L.,
Greenes, R.A, Shortliffe, E.H.: GLIF3: a representation format for sharable computer-
interpretable clinical practice guidelines. J. Biomed. Inform. 37, 147–61 (2004)

10. Seyfang, A., Kosara, R., Miksch, S.: Asbru’s Reference Manual v7.3 (2002)
11. Fox, J., Johns, N., Rahmanzadeh, A.: Disseminating medical knowledge: the PROforma

approach. Artif. Intell. Med. 14, 157–181 (1998)
12. Mulyar, N., Pesic, M., van der Aalst, W.M., Peleg, M.: Declarative and Procedural

Approaches for Modelling Clinical Guidelines: Addressing Flexibility Issues. In:
ter Hofstede, A.H., Benatallah, B., Paik, H.-Y. (eds.) BPM Workshops 2007. LNCS,
vol. 4928, pp. 335–346. Springer, Heidelberg (2008)

13. OMG: Decision Model and Notation (DMN). www.omg.org/spec/DMN/Current/
(accessed on November 10, 2014)

14. Software Testing Genius: Decision Table Based Testing-Black Box Software Testing
Technique. http://www.softwaretestinggenius.com/decision-table-based-testing-black-box-
software-testing-technique

15. Decision Table Task Group: A Modern Appraisal Of Decision Tables (1982)
16. Zugal, S., Soffer, P., Haisjackl, C., Pinggera, J., Reichert, M., Weber, B.: Investigating ex-

pressiveness and understandability of hierarchy in declarative business process models.
Softw. Syst. Model. (2013)

17. Montali, M., Chesani, F., Mello, P., Maggi, F.M.: Towards data-aware constraints in
declare. In: Proceedings of the 28th Annual ACM Symposium on Applied Computing,
SAC, pp. 1391–1396. ACM Press, New York (2013)

18. Borrego, D., Barba, I.: Conformance checking and diagnosis for declarative business
process models in data-aware scenarios. Expert Syst. Appl. 41, 5340–5352 (2014)

19. Zugal, S., Pinggera, J., Weber, B.: Toward enhanced life‐cycle support for declarative
processes. J. Softw. Evol. Process., 285–302 (2012)

20. De Smedt, J., De Weerdt, J., Vanthienen, J.: Multi-Paradigm Process Mining: Retrieving
Better Models by Combining Rules and Sequences. SSRN Electron. J. (2014)

21. Maggi, F.M., Slaats, T., Reijers, H.A.: The Automated Discovery of Hybrid Processes.
In: Sadiq, S., Soffer, P., Völzer, H. (eds.) BPM 2014. LNCS, vol. 8659, pp. 392–399.
Springer, Heidelberg (2014)

22. Reichert, M., Weber, B.: Enabling flexibility in process-aware information systems.
Springer (2012)

	Enhancing Declarative Process Models with DMN Decision Logic
	1 Introduction
	2 Background
	2.1 Declare-R
	2.2 DMN

	3 Case Example
	4 Case Models
	4.1 With Declare-R
	4.2 With Declare-R-DMN

	5 Analysis of the Declare-R-DMN Language
	6 Conclusion and Future Work
	References

