3,245 research outputs found

    Thirty years of Artificial Intelligence and Law:the second decade

    Get PDF
    The first issue of Artificial Intelligence and Law journal was published in 1992. This paper provides commentaries on nine significant papers drawn from the Journal’s second decade. Four of the papers relate to reasoning with legal cases, introducing contextual considerations, predicting outcomes on the basis of natural language descriptions of the cases, comparing different ways of representing cases, and formalising precedential reasoning. One introduces a method of analysing arguments that was to become very widely used in AI and Law, namely argumentation schemes. Two relate to ontologies for the representation of legal concepts and two take advantage of the increasing availability of legal corpora in this decade, to automate document summarisation and for the mining of arguments

    Interpretations of support among arguments

    Get PDF
    The theory of formal argumentation distinguishes and unifies various notions of attack, support and preference among arguments, and principles are used to classify the semantics of various kinds of argumentation frameworks. In this paper, we consider the case in which we know that an argument is supporting another one, but we do not know yet which kind of support it is. Most common in the literature is to classify support as deductive, necessary, or evidentiary. Alternatively, support is characterized using principles. We discuss the interpretation of support using a legal divorce action. Technical results and proofs can be found in an accompanying technical report

    Argumentation and Defeasible Reasoning in the Law

    Get PDF
    Different formalisms for defeasible reasoning have been used to represent knowledge and reason in the legal field. In this work, we provide an overview of the following logic-based approaches to defeasible reasoning: defeasible logic, Answer Set Programming, ABA+, ASPIC+, and DeLP. We compare features of these approaches under three perspectives: the logical model (knowledge representation), the method (computational mechanisms), and the technology (available software resources). On top of that, two real examples in the legal domain are designed and implemented in ASPIC+ to showcase the benefit of an argumentation approach in real-world domains. The CrossJustice and Interlex projects are taken as a testbed, and experiments are conducted with the Arg2P technology

    Research in progress: report on the ICAIL 2017 doctoral consortium

    Get PDF
    This paper arose out of the 2017 international conference on AI and law doctoral consortium. There were five students who presented their Ph.D. work, and each of them has contributed a section to this paper. The paper offers a view of what topics are currently engaging students, and shows the diversity of their interests and influences

    Stable Normative Explanations: From Argumentation to Deontic Logic

    Full text link
    This paper examines how a notion of stable explanation developed elsewhere in Defeasible Logic can be expressed in the context of formal argumentation. With this done, we discuss the deontic meaning of this reconstruction and show how to build from argumentation neighborhood structures for deontic logic where this notion of explanation can be characterised. Some direct complexity results are offered.Comment: 15 pages, extended version of the short paper accepted at JELIA 202

    Challenges for a CBR framework for argumentation in open MAS

    Full text link
    [EN] Nowadays, Multi-Agent Systems (MAS) are broadening their applications to open environments, where heterogeneous agents could enter into the system, form agents’ organizations and interact. The high dynamism of open MAS gives rise to potential conflicts between agents and thus, to a need for a mechanism to reach agreements. Argumentation is a natural way of harmonizing conflicts of opinion that has been applied to many disciplines, such as Case-Based Reasoning (CBR) and MAS. Some approaches that apply CBR to manage argumentation in MAS have been proposed in the literature. These improve agents’ argumentation skills by allowing them to reason and learn from experiences. In this paper, we have reviewed these approaches and identified the current contributions of the CBR methodology in this area. As a result of this work, we have proposed several open issues that must be taken into consideration to develop a CBR framework that provides the agents of an open MAS with arguing and learning capabilities.This work was partially supported by CONSOLIDER-INGENIO 2010 under grant CSD2007-00022 and by the Spanish government and FEDER funds under TIN2006-14630-C0301 project.Heras Barberá, SM.; Botti Navarro, VJ.; Julian Inglada, VJ. (2009). Challenges for a CBR framework for argumentation in open MAS. Knowledge Engineering Review. 24(4):327-352. https://doi.org/10.1017/S0269888909990178S327352244Willmott S. , Vreeswijk G. , Chesñevar C. , South M. , McGinnis J. , Modgil S. , Rahwan I. , Reed C. , Simari G. 2006. Towards an argument interchange format for multi-agent systems. In Proceedings of the AAMAS International Workshop on Argumentation in Multi-Agent Systems, ArgMAS-06, 17–34.Sycara, K. P. (1990). Persuasive argumentation in negotiation. Theory and Decision, 28(3), 203-242. doi:10.1007/bf00162699Ontañón S. , Plaza E. 2006. Arguments and counterexamples in case-based joint deliberation. In AAMAS-06 Workshop on Argumentation in Multi-Agent Systems, ArgMAS-06, 36–53.Sadri F. , Toni F. , Torroni P. 2001. Dialogues for negotiation: agent varieties and dialogue sequences. In Proceedings of the 8th International Workshop on Agent Theories, Architectures, and Languages, ATAL-01, Intelligent Agents VIII 2333, 405–421. Springer.Fox J. , Parsons S. 1998. Arguing about beliefs and actions. In Applications of Uncertainty Formalisms, Lecture Notes in Computer Science 1455, 266–302. Springer.Dung, P. M. (1995). On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artificial Intelligence, 77(2), 321-357. doi:10.1016/0004-3702(94)00041-xAulinas M. , Tolchinsky P. , Turon C. , Poch M. , Cortés U. 2007. Is my spill environmentally safe? Towards an integrated management of wastewater in a river basin using agents that can argue. In 7th International IWA Symposium on Systems Analysis and Integrated Assessment in Water Management. Washington DC, USA.Amgoud L. 2003. A formal framework for handling conflicting desires. In Symbolic and Quantitative Approaches to Reasoning with Uncertainty, Lecture Notes in Computer Science 2711, 552–563. Springer.Armengol E. , Plaza E. 2001. Lazy induction of descriptions for relational case-based learning. In European Conference on Machine Learning, ECML-01, 13–24.Sørmo, F., Cassens, J., & Aamodt, A. (2005). Explanation in Case-Based Reasoning–Perspectives and Goals. Artificial Intelligence Review, 24(2), 109-143. doi:10.1007/s10462-005-4607-7RAHWAN, I., RAMCHURN, S. D., JENNINGS, N. R., McBURNEY, P., PARSONS, S., & SONENBERG, L. (2003). Argumentation-based negotiation. The Knowledge Engineering Review, 18(4), 343-375. doi:10.1017/s0269888904000098Brüninghaus S. , Ashley K. D. 2001. Improving the representation of legal case texts with information extraction methods. In 7th International Conference on Artificial Intelligence and Law, ICAIL-01, 42–51.Parsons, S. (1998). Agents that reason and negotiate by arguing. Journal of Logic and Computation, 8(3), 261-292. doi:10.1093/logcom/8.3.261Atkinson, K., Bench-Capon, T., & Mcburney, P. (2005). A Dialogue Game Protocol for Multi-Agent Argument over Proposals for Action. Autonomous Agents and Multi-Agent Systems, 11(2), 153-171. doi:10.1007/s10458-005-1166-xBrüninghaus S. , Ashley K. D. 2003. Predicting the outcome of case-based legal arguments. In 9th International Conference on Artificial Intelligence and Law, ICAIL-03, 233–242.Modgil S. , Tolchinsky P. , Cortés U. 2005. Towards formalising agent argumentation over the viability of human organs for transplantation. In 4th Mexican International Conference on Artificial Intelligence, MICAI-05, 928–938.Tolchinsky P. , Atkinson K. , McBurney P. , Modgil S. , Cortés U. 2007. Agents deliberating over action proposals using the ProCLAIM model. In 5th International Central and Eastern European Conference on Multi-Agent Systems, CEEMAS-07, 32–41.Prakken, H., & Sartor, G. (1998). Artificial Intelligence and Law, 6(2/4), 231-287. doi:10.1023/a:1008278309945Gordon T. F. , Karacapilidis N. 1997. The Zeno argumentation framework. In International Conference on Artificial Intelligence and Law, ICAIL-97, ACM Press, 10–18.Tolchinsky P. , Modgil S. , Cortés U. 2006a. Argument schemes and critical questions for heterogeneous agents to argue over the viability of a human organ. In AAAI Spring Symposium Series; Argumentation for Consumers of Healthcare, 377–384.Aleven V. , Ashley K. D. 1997. Teaching case-based argumentation through a model and examples, empirical evaluation of an intelligent learning environment. In 8th World Conference of the Artificial Intelligence in Education Society, 87–94.Rahwan, I. (2005). Guest Editorial: Argumentation in Multi-Agent Systems. Autonomous Agents and Multi-Agent Systems, 11(2), 115-125. doi:10.1007/s10458-005-3079-0RISSLAND, E. L., ASHLEY, K. D., & BRANTING, L. K. (2005). Case-based reasoning and law. The Knowledge Engineering Review, 20(3), 293-298. doi:10.1017/s0269888906000701Tolchinsky, P., Cortes, U., Modgil, S., Caballero, F., & Lopez-Navidad, A. (2006). Increasing Human-Organ Transplant Availability: Argumentation-Based Agent Deliberation. IEEE Intelligent Systems, 21(6), 30-37. doi:10.1109/mis.2006.116McBurney, P., Hitchcock, D., & Parsons, S. (2006). The eightfold way of deliberation dialogue. International Journal of Intelligent Systems, 22(1), 95-132. doi:10.1002/int.20191Rissland, E. L., Ashley, K. D., & Loui, R. P. (2003). AI and Law: A fruitful synergy. Artificial Intelligence, 150(1-2), 1-15. doi:10.1016/s0004-3702(03)00122-xSoh, L.-K., & Tsatsoulis, C. (2005). A Real-Time Negotiation Model and A Multi-Agent Sensor Network Implementation. Autonomous Agents and Multi-Agent Systems, 11(3), 215-271. doi:10.1007/s10458-005-0539-5Capobianco, M., Chesñevar, C. I., & Simari, G. R. (2005). Argumentation and the Dynamics of Warranted Beliefs in Changing Environments. Autonomous Agents and Multi-Agent Systems, 11(2), 127-151. doi:10.1007/s10458-005-1354-8Tolchinsky P. , Modgil S. , Cortés U. , Sànchez-Marrè M. 2006b. CBR and argument schemes for collaborative decision making. In Conference on Computational Models of Argument, COMMA-06, 144, 71–82. IOS Press.Ossowski S. , Julian V. , Bajo J. , Billhardt H. , Botti V. , Corchado J. M. 2007. Open issues in open MAS: an abstract architecture proposal. In Conferencia de la Asociacion Española para la Inteligencia Artificial, CAEPIA-07, 2, 151–160.Karacapilidis, N., & Papadias, D. (2001). Computer supported argumentation and collaborative decision making: the HERMES system. Information Systems, 26(4), 259-277. doi:10.1016/s0306-4379(01)00020-5Aamodt A. 2004. Knowledge-intensive case-based reasoning in Creek. In 7th European Conference on Case-Based Reasoning ECCBR-04, 1–15.Jakobovits H. , Vermeir D. 1999. Dialectic semantics for argumentation frameworks. In Proceedings of the 7th International Conference on Artificial Intelligence and Law, ICAIL-99, ACM Press, 53–62.Díaz-Agudo, B., & González-Calero, P. A. (s. f.). An Ontological Approach to Develop Knowledge Intensive CBR Systems. Ontologies, 173-213. doi:10.1007/978-0-387-37022-4_7Reed C. , Walton D. 2005. Towards a formal and implemented model of argumentation schemes in agent communication. In Proceedings of the 1st International Workshop in Multi-Agent Systems, ArgMAS-04, 173–188.Sycara K. 1989. Argumentation: planning other agents’ plans. In 11th International Joint Conference on Artificial Intelligence, 1, 517–523. Morgan Kaufmann Publishers, Inc.Bench-Capon, T. J. M., & Dunne, P. E. (2007). Argumentation in artificial intelligence. Artificial Intelligence, 171(10-15), 619-641. doi:10.1016/j.artint.2007.05.001Reiter, R. (1980). A logic for default reasoning. Artificial Intelligence, 13(1-2), 81-132. doi:10.1016/0004-3702(80)90014-4Amgoud L. , Kaci S. 2004. On the generation of bipolar goals in argumentation-based negotiation. In 1st International Workshop on Argumentation in Multi-Agent Systems, ArgMAS, Lecture Notes in Computer Science 3366, 192–207. Springer.CHESÑEVAR, C., MCGINNIS, MODGIL, S., RAHWAN, I., REED, C., SIMARI, G., … WILLMOTT, S. (2006). Towards an argument interchange format. The Knowledge Engineering Review, 21(4), 293-316. doi:10.1017/s0269888906001044Rahwan I. , Amgoud L. 2006. An argumentation-based approach for practical reasoning. In Proceedings of the 5th International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS-06, ACM Press, 347–354.Rittel, H. W. J., & Webber, M. M. (1973). Dilemmas in a general theory of planning. Policy Sciences, 4(2), 155-169. doi:10.1007/bf01405730Soh L.-K. , Tsatsoulis C. 2001b. Reflective negotiating agents for real-time multisensor target tracking. In International Joint Conference on Artificial Intelligence, IJCAI-01, 1121–1127.Eemeren, F. H. van, & Grootendorst, R. (1984). Speech Acts in Argumentative Discussions. doi:10.1515/9783110846089Rissland E. L. , Skalak D. B. , Friedman M. T. 1993. Bankxx: a program to generate argument through case-based search. In International Conference on Artificial Intelligence and Law, ICAIL-93, 117–124.Sycara K. 1987. Resolving Adversarial Conflicts: An Approach Integrating Case-Based and Analytic Methods, PhD thesis, School of Information and Computer Science. Georgia Institute of Technology.Ontañón S. , Plaza E. 2007. Learning and joint deliberation through argumentation in multi-agent systems. In International Conference on Autonomous Agents and Multiagent Systems, AAMAS-07, 971–978.Rissland, E. L., & Skalak, D. B. (1991). CABARET: rule interpretation in a hybrid architecture. International Journal of Man-Machine Studies, 34(6), 839-887. doi:10.1016/0020-7373(91)90013-wDaniels J. J. , Rissland E. L. 1997. Finding legally relevant passages in case opinions. In 6th International Conference on Artificial Intelligence and Law, ICAIL-97, 39–47.Brüninghaus S. , Ashley K. D. 2005. Generating legal arguments and predictions from case texts. In 10th International Conference on Artificial Intelligence and Law, ICAIL-05, 65–74.Simari G. R. , García A. J. , Capobianco M. 2004. Actions, planning and defeasible reasoning. In Proceedings of the 10th International Workshop on Non-monotonic Reasoning, NMR-04, 377–384.Soh L.-K. , Tsatsoulis C. 2001a. Agent-based argumentative negotiations with case-based reasoning. In AAAI Fall Symposium on Negotiation Methods for Autonomous Cooperative Systems, 16–25.Ashley, K. D. (1991). Reasoning with cases and hypotheticals in HYPO. International Journal of Man-Machine Studies, 34(6), 753-796. doi:10.1016/0020-7373(91)90011-uHulstijn J. , van der Torre L. 2004, Combining goal generation and planning in an argumentation framework. In Proceedings of the Workshop on Argument, Dialogue and Decision. International Workshop on Non-monotonic Reasoning, NMR-04, 212–218.Karacapilidis N. , Trousse B. , Papadias D. 1997. Using case-based reasoning for argumentation with multiple viewpoints. In 2nd International Conference on Case-Based Reasoning, ICCBR-97, 541–552.Branting, L. K. (1991). Building explanations from rules and structured cases. International Journal of Man-Machine Studies, 34(6), 797-837. doi:10.1016/0020-7373(91)90012-
    • …
    corecore