611 research outputs found

    Statistical peer-to-peer channel models for outdoor urban environments at 2GHz and 5GHz

    Get PDF

    MIMO channel modelling and simulation for cellular and mobile-to-mobile

    Get PDF
    Recently, mobile-to-mobile (M2M) communications have received much attention due to several emerging applications, such as wireless mobile ad hoc networks, relay-based cellular networks, and dedicated short range communications (DSRC) for intelligent transportation systems (e.g., IEEE 802.11p standard). Different from conventional fixed-to-mobile (F2M) cellular systems, in M2M systems both the transmitter (Tx) and receiver (Rx) are in motion and often equipped with low elevation antennas. Multiple-input-multiple-output (MIMO) technologies, employing multiple antennas at both the Tx and Rx, have widely been adopted for the third generation (3G) and beyond-3G (B3G) F2M cellular systems due to their potential benefits of improving coverage, link reliability, and overall system capacity. More recently, MIMO has been receiving more and more attention for M2M systems as well. Reliable knowledge of the propagation channel obtained from channel measurements and corresponding channel models serve as the enabling foundation for the design and analysis of MIMO F2M and M2M systems. Furthermore, the development of accurate MIMO F2M and M2M channel simulation models plays a major role in the practical simulation and performance evaluation of these systems. These form the primary motivation behind our research on MIMO channel modelling and simulation for F2M cellular and M2M communication systems. In this thesis, we first propose a new wideband theoretical multiple-ring based MIMO regular-shaped geometry-based stochastic model (RS-GBSM) for non-isotropic scattering F2M macro-cell scenarios and then derive a generic space-time-frequency (STF) correlation function (CF). The proposed theoretical reference wideband model can be reduced to a narrowband one-ring model, a new closed-form STF CF of which is derived as well. Narrowband and wideband sum-of-sinusoids (SoS) simulation models are then developed, demonstrating a good agreement with the corresponding reference models in terms of correlation functions. Secondly, based on a well-known narrowband two-ring single-input single-output (SISO) M2M channel reference model, we propose new deterministic and stochastic SoS simulation models for non-isotropic scattering environments. The proposed deterministic simulator is the first SISO M2M deterministic simulator with good performance, while the proposed stochastic simulator outperforms the existing one in terms of fitting the desired statistical properties of the corresponding reference model. Thirdly, a new adaptive narrowband MIMO M2M RS-GBSM is proposed for nonisotropic scattering environments. To the best of our knowledge, the proposed M2M model is the first RS-GBSM that has the ability to study the impact of the vehicular traffic density on channel statistics. From the proposed theoretical reference model, we comprehensively investigate some important M2M channel statistics including the STF CF, space-Doppler-frequency power spectral density, envelope level crossing rate, and average fade duration. A close agreement between some channel statistics obtained from the proposed reference model and measurement data is observed, confirming the utility of our model. Finally, we extend the above narrowband model to a new wideband MIMO M2M RSGBSM with respect to the frequency-selectivity. The proposed wideband reference model is validated by observing a good match between some statistical properties of the theoretical model and available measurement data. From the wideband reference model, we further design new wideband deterministic and stochastic SoS simulation models. The proposed wideband simulators can be easily reduced to narrowband ones. The utilities of the newly derived narrowband and wideband simulation models are validated by comparing their statistical properties with those of the corresponding reference models. The proposed channel reference models and simulators are expected to be useful for the design, testing, and performance evaluation of future MIMO cellular and M2M communication systems.Scottish Funding Counci

    Cooperative Relaying In Power Line Environment: A Survey and Tutorial

    Get PDF
    Exchange of information is essential in any society and the demand for faster, cheaper, and secure communications is increasing every day. With other hi-tech initiatives like IPv6 and Internet-of-Things (IOT) already in the horizon, demand for broadband is set to escalate beyond its current level. Inherently laden in the challenges posed by this technology are fresh opportunities in terms of penetration of data services into rural communities and development of innovative strategies for more efficient use of the grid. Though still in its developmental phase/stage, Power Line Communication (PLC) has grown beyond theoretical fantasy to become a reality. The proofs are the readily available PLC systems that can be purchased off the shelfto achieve in-house networking and the much talked about, smart metering technology; generally regarded as the “new bride” in utilities industry. One of the biggest gains of PLC is its use of existing electrical cables, thereby eliminating cost of installation and maintenance of data cables. However, given that the power infrastructure was traditionally built to deliver electricity, data signals do suffer various forms of distortions and impairments as they transit it. This paper presents a tutorial on the deployed wireless system technique which is to be adapted to PLC scenario for the purpose of managing the available source energy for achieving reliable communication system. One of these techniques is the cooperative diversity. Its application and deployment in power line environment is explored. The improvement achieved through cooperative diversity in some PLC systems were presented along with the associated limitations. Finally, future areas of research which will further improve the reliability of PLC systems and reduce its power consumption during transmission is shown

    Performance investigation of spatial modulation systems under realistic channel models

    Get PDF
    In order to fulfil the explosive demand for convenient wireless data access, novel wireless technologies such as the multiple-input-multiple-output (MIMO) have widely been used to improve the link reliability and capacity of wireless communication systems. In recent years, a new MIMO technology named the spatial modulation (SM) has attracted signi cant research interest due to its reported enhancement on the system performance with the reasonable system complexity. Before a new technology comes into real use, it is necessary to comprehensively evaluate its performance under different scenarios. In this thesis, we investigate the performance of SM systems under some important realistic scenarios for future wireless communications, such as the vehicle-to-vehicle (V2V), the high-speed train (HST), and the massive MIMO scenarios. Firstly, the bit error rate (BER) performance of SM systems under a novel threedimensional (3D) geometry based stochastic model (GBSM) for V2V MIMO channels is investigated by both theoretical analysis and system simulations. The impacts of vehicle tra c density (VTD), Doppler effect, and 3D feature on the BER performance of SM systems are thoroughly studied. In addition, other MIMO technologies, such as the vertical Bell Labs layered space-time (V-BLAST), the Alamouti scheme are compared with SM under different simulation settings. Secondly, the BER performance of SM systems is studied under a non-stationary wideband HST GBSM considering the non-ideal channel estimation case. The timevarying behaviour of the channel and its impact on the performance of SM systems are comprehensively investigated. The accurate theoretical BER expression of SM systems under a non-stationary wideband HST channels with non-ideal channel estimation is derived. A novel statistic property named stationary interval in terms of the space-time correlation function (STCF) is introduced in order to clearly explain all theoretical and simulation results. Thirdly, the performance of SM systems is evaluated under a Kroneck-based massive MIMO channel model. As a massive MIMO system employs large numbers of antennas, antenna elements are distributed over a wide range. Thus, different antenna elements may observe different sets of clusters. How this phenomenon affects the performance of SM systems is investigated by considering a survival probability of clusters, which abstracts the birth-death process of each cluster in the channel model. Moreover, the performance of SM systems is also compared with that of other MIMO technologies under the massive MIMO channel model. In summary, all research works in this thesis have considered realistic MIMO channel models, which are meaningful for the test, performance evaluation, and implementation of SM technology for future advanced wireless communications systems

    Mobile to mobile channel modelling for wireless communications

    Get PDF
    Wireless communication has been experiencing many recent advances in mobile to mobile (M2M) applications. M2M communication systems differ from conventional fixed to mobile systems by having both transmitter and receiver in low elevation and in motion. This raises the need to come up with new channel models and perform statistical analysis on M2M communication channels looking from a different perspective. This need motivated us to perform the research outlined in this thesis. In reviewing the literature we found that though in general the M2M channel models are sparse, a major gap exists in the non geometrical stochastic based mathematical channel models. In filling this gap, we develop a novel mathematical non geometrical stochastic multiple input multiple output (MIMO) M2M channel model for two dimensional (2D) and three dimensional (3D) scattering environments. This model is based on the underlying physics of free space wave propagation and can be used as a framework for any environment by selecting suitable complex scattering gain functions. In addition, we extend this novel model to multicarrier M2M which is the first multicarrier channel model in the non geometrical stochastic M2M category. Based on our novel M2M channel model, we carry out an extensive analysis in space-time correlation, space-frequency correlation and second order channel statistics. With the choice of suitable parameters, this analysis and channel model can be used for any wireless environment. Thus, we claim that our novel channel model together with the analysis performed in this thesis can be taken as a generalized framework. A significant contribution of our analysis is the consideration of the impact of transmitter and receiver speed to space-time and space-frequency correlation, which is not available in the literature. Using a von Mises-Fisher distribution as the angular power distribution, the usefulness of the derived temporal correlation function is discussed. The simulation results corroborate the fact that both space-time and space-frequency correlations are reduced when transmitter or receiver speed increases. The rate of reduction of space-time correlation in von Mises-Fisher distribution scattering environment is more than in the isotropic environment. Under second order channel statistics, we consider Rice, Rayleigh and Nakagami fading channels in four different non-isotropic scattering environments with angle of departure (AoD) and angle of arrival (AoA) distributions given by (i) separable Truncated Gaussian, (ii) separable von-Mises, (iii) truncated Gaussian bivariate and (iv) truncated Laplacian bivariate distributions. We show that the major second order statistics, namely, the level crossing rate (LCR) and the average fade duration (AFD), in different fading channels can be expressed in terms of known scattering coefficients of the AoD and AoA distributions. As the channel models and their respective measurements provide reliable knowledge of the channel for the design and analysis of M2M systems, the proposed channel model and the corresponding analysis will be useful for the design, testing and performance evaluation of future M2M communication systems

    Channel modelling and relay for powerline communications

    Get PDF
    The thesis discusses the channel modelling and relay techniques in powerline communications (PLC) which is considered as a promising technology for the Smart Grid communications, Internet access and home area network (HAN). In this thesis, the statistical PLC channel characteristics are investigated, a new statistical channel modelling method is proposed for the in-door PLC. Then a series of the relay protocols are suggested for the broadband communications over power grid. The statistical channel modelling method is proposed to surmount the limits of the traditional deterministic PLC channel models such as multipath model and transmission line model. To develop the channel model, the properties of the multipath magnitudes, interval between the paths, cable loss and the channel classification are investigated in detail. Then, each property is described by statistical distribution or formula. The simulation results show that the statistical model can describe the PLC channels as accurate as deterministic models without the topology information which is a time-consuming work for collecting. The relay transmission is proposed to help PLC adapting the diverse application scenarios. The protocols covers the main relay aspects which include decode/amplify forwarding, single/ multiple relay nodes, full/half duplex relay working mode. The capacity performance of each protocol is given and compared. A series of the facts which improve the performance of the PLC networks are figured out according to simulation results. The facts include that the decode-and-forward is more suitable for the PLC environment, deviation or transforming station is better location for placing relay node and full duplex relay working mode help exploiting the capacity potential of the PLC networks. Some future works are pointed out based on the work of statistical channel model and relay. In the last part of this thesis, an unit based statistical channel model is initialled for adapting various PLC channel conditions, a more practical relay scenario which contains multiple data terminals is proposed for approaching the realistic transmission scenario. At last, the relay for the narrowband PLC Smart Grid is also mentioned as future research topic

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin

    Propagation channel characterisation and modelling for high-speed train communication systems

    Get PDF
    High-mobility scenarios, e.g., High-Speed Train (HST) scenarios, are expected to be typical scenarios for the Fifth Generation (5G) communication systems. With the rapid development of HSTs, an increasing volume of wireless communication data is required to be transferred to train passengers. HST users demand high network capacity and reliable communication services regardless of their locations or speeds, which are beyond the capability of current HST communication systems. The features of HST channels are significantly different from those of low-mobility cellular communication systems. For a proper design and evaluation of future HST wireless communication systems, we need accurate channel models that can mimic the underlying channel characteristics, especially the non-stationarity for different HST scenarios. Inspired by the lack of such accurate HST channel models in the literature, this PhD project is devoted to the modelling and simulation of non-stationary Multiple-Input Multiple-Output (MIMO) channels for HST communication systems. In this thesis, we first give a comprehensive review of the measurement campaigns conducted in different HST scenarios and address the recent advances in HST channel models. We also highlight the key challenges of HST channel measurements and models. Then, we study the characterisation of non-stationary channels and propose a theoretical framework for deriving the statistical properties of these channels. HST wireless communication systems encounter different channel conditions due to the difference of surrounding geographical environments or scenarios. HST channel models in the literature have either considered large-scale parameters only and/or neglected the non-stationarity of HST channels and/or only consider one of the HST scenarios. Therefore, we propose a novel generic non-stationary Geometry-Based Stochastic Model (GBSM) for wideband MIMO HST channels in different HST scenarios, i.e., open space, viaduct, and cutting. The corresponding simulation model is then developed with angular parameters calculated by the Modified Method of Equal Area (MMEA). The system functions and statistical properties of the proposed channel models are thoroughly studied. The proposed generic non-stationary HST channel models are verified by measurements in terms of stationary time for the open space scenario and the Autocorrelation Function (ACF), Level Crossing Rate (LCR), and stationary distance for the viaduct and cutting scenarios. Transmission techniques which are capable of utilising Three-Dimensional (3D) spatial dimensions are significant for the development of future communication systems. Consequently, 3D MIMO channel models are critical for the development and evaluation of these techniques. Therefore, we propose a novel 3D generic non-stationary GBSM for wideband MIMO HST channels in the most common HST scenarios. The corresponding simulation model is then developed with angular parameters calculated by the Method of Equal Volume (MEV). The proposed models considers several timevarying channel parameters, such as the angular parameters, the number of taps, the Ricean K-factor, and the actual distance between the Transmitter (Tx) and Receiver (Rx). Based on the proposed generic models, we investigate the impact of the elevation angle on some of the channel statistical properties. The proposed 3D generic models are verified using relevant measurement data. Most standard channel models in the literature, like Universal Mobile Telecommunications System (UMTS), COST 2100, and IMT-2000 failed to introduce any of the HST scenarios. Even for the standard channel models which introduced a HST scenario, like IMT-Advanced (IMT-A) and WINNER II channel models, they offer stationary intervals that are noticeably longer than those in measured HST channels. This has inspired us to propose a non-stationary IMT-A channel model with time-varying parameters including the number of clusters, powers, delays of the clusters, and angular parameters. Based on the proposed non-stationary IMT-A channel model, important statistical properties, i.e., the time-variant spatial Cross-correlation Function (CCF) and time-variant ACF, are derived and analysed. Simulation results demonstrate that the stationary interval of the developed non-stationary IMT-A channel model can match that of relevant HST measurement data. In summary, the proposed theoretical and simulation models are indispensable for the design, testing, and performance evaluation of 5G high-mobility wireless communication systems in general and HST ones in specific

    Channel characteristics for intra-vehicle wireless communications

    Get PDF
    Vehicles are continuously being improved to enhance the driving experience by integrating new technologies. Recent luxury vehicles may have over 70 Electronic Control Units (ECU) and 2200 cables. It is estimated that the number of ECUs and connections between ECUs and sensors will continuously increase to meet growing network requirements. The wire harness is the third most expensive component in a vehicle, reducing the number of cables through wireless communications would consequently result in space, cost, and fuel savings. However, the behaviour of the intra-vehicle channel and suitable wireless network technologies for an intra-vehicle network have not been fully addressed. In this research, the intra-vehicle narrowband loss performance in non-line-of-sight and line-of-sight condition was investigated and compared through real field tests. The results indicate that fading behaviour is primarily caused by small-scale rather than large-scale fading. An empirical-based path loss model is proposed with its parameters extracted from the real field test measurements. Further analysis of the small-scale fading through Rician K-factor reveals the dependence of the K-factor with distance and locations. These investigations suggest that for a narrowband system whereby the bandwidth of the transmitted signal is lower than the coherence bandwidth; the channel can be modelled using Rician fading. Furthermore, the wideband and ultra-wideband channel was characteristics through a real field tests. The results demonstrate that the multipath fading of intra-vehicle channel is much worse than other type of environments such as factory workshops and hospitals. Finally, the time-varying characteristics of the intra-vehicle channel, tested under various scenarios, suggest that the channel's coherence time is primarily impacted by passenger motion in the vehicle. Considering both the channel loss and time-varying characteristics, the performance trade-off's of the cooperative communication system against retransmission was evaluated

    Design and development of mobile channel simulators using digital signal processing techniques

    Get PDF
    A mobile channel simulator can be constructed either in the time domain using a tapped delay line filter or in the frequency domain using the time variant transfer function of the channel. Transfer function modelling has many advantages over impulse response modelling. Although the transfer function channel model has been envisaged by several researchers as an alternative to the commonly employed tapped delay line model, so far it has not been implemented. In this work, channel simulators for single carrier and multicarrier OFDM system based on time variant transfer function of the channel have been designed and implemented using DSP techniques in SIMULINK. For a single carrier system, the simulator was based on Bello's transfer function channel model. Bello speculated that about 10Βτ(_MAX) frequency domain branches might result in a very good approximation of the channel (where в is the signal bandwidth and τ(_MAX) is the maximum excess delay of the multi-path channel). The simulation results showed that 10Bτ(_MAX) branches gave close agreement with the tapped delay line model(where Be is the coherence bandwidth). This number is π times higher than the previously speculated 10Bτ(_MAX).For multicarrier OFDM system, the simulator was based on the physical (PHY) layer standard for IEEE 802.16-2004 Wireless Metropolitan Area Network (WirelessMAN) and employed measured channel transfer functions at the 2.5 GHz and 3.5 GHz bands in the simulations. The channel was implemented in the frequency domain by carrying out point wise multiplication of the spectrum of OFDM time The simulator was employed to study BER performance of rate 1/2 and rate 3/4 coded systems with QPSK and 16-QAM constellations under a variety of measured channel transfer functions. The performance over the frequency selective channel mainly depended upon the frequency domain fading and the channel coding rate
    corecore