60 research outputs found

    Can upscaling ground nadir SIF to eddy covariance footprint improve the relationship between SIF and GPP in croplands?

    Get PDF
    Ground solar-induced chlorophyll fluorescence (SIF) is important for the mechanistic understanding of the dynamics of vegetation gross primary production (GPP) at fine spatiotemporal scales. However, eddy covariance (EC) observations generally cover larger footprint areas than ground SIF observations (a bare fiber with nadir), and this footprint mismatch between nadir SIF and GPP could complicate the canopy SIF-GPP relationships. Here, we upscaled nadir SIF observations to EC footprint and investigated the change in SIF-GPP relationships after the upscaling in cropland. We included 13 site-years data in our study, with seven site-years corn, four siteyears soybeans, and two site-years miscanthus, all located in the US Corn Belt. All sitesโ€™ crop nadir SIF observations collected from the automated FluoSpec2 system (a hemispheric-nadir system) were upscaled to the GPP footprint-based SIF using vegetation indices (VIs) calculated from high spatiotemporal satellite reflectance data. We found that SIF-GPP relationships were not substantially changed after upscaling nadir SIF to GPP footprint at our crop sites planted with corn, soybean, and miscanthus, with R2 change after the upscaling ranging from -0.007 to 0.051 and root mean square error (RMSE) difference from -0.658 to 0.095 umol m-2 s-1 relative to original nadir SIF-GPP relationships across all the site-years. The variation of the SIF-GPP relationship within each species across different site-years was similar between the original nadir SIF and upscaled SIF. Different VIs, EC footprint models, and satellite data led to marginal differences in the SIF-GPP relationships when upscaling nadir SIF to EC footprint. Our study provided a methodological framework to correct this spatial mismatch between ground nadir SIF and GPP observations for croplands and potentially for other ecosystems. Our results also demonstrated that the spatial mismatch between ground nadir SIF and GPP might not significantly affect the SIF-GPP relationship in cropland that are largely homogeneous

    Attributing differences of solar-induced chlorophyll fluorescence (SIF)-gross primary production (GPP) relationships between two C4 crops: corn and miscanthus

    Get PDF
    There remains limited information to characterize the solar-induced chlorophyll fluorescence (SIF)-gross primary production (GPP) relationship in C4 cropping systems. The annual C4 crop corn and perennial C4 crop miscanthus differ in phenology, canopy structure and leaf physiology. Investigating the SIF-GPP relationships in these species could deepen our understanding of SIF-GPP relationships within C4 crops. Using in situ canopy SIF and GPP measurements for both species along with leaf-level measurements, we found considerable differences in the SIF-GPP relationships between corn and miscanthus, with a stronger SIF-GPP relationship and higher slope of SIF-GPP observed in corn compared to miscanthus. These differences were mainly caused by leaf physiology. For miscanthus, high non-photochemical quenching (NPQ) under high light, temperature and water vapor deficit (VPD) conditions caused a large decline of fluorescence yield (ฮฆF), which further led to a SIF midday depression and weakened the SIF-GPP relationship. The larger slope in corn than miscanthus was mainly due to its higher GPP in mid-summer, largely attributed to the higher leaf photosynthesis and less NPQ. Our results demonstrated variation of the SIF-GPP relationship within C4 crops and highlighted the importance of leaf physiology in determining canopy SIF behaviors and SIF-GPP relationships

    ์‹œ๊ณต๊ฐ„ ํ•ด์ƒ๋„ ํ–ฅ์ƒ์„ ํ†ตํ•œ ์‹์ƒ ๋ณ€ํ™” ๋ชจ๋‹ˆํ„ฐ๋ง

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ํ™˜๊ฒฝ๋Œ€ํ•™์› ํ˜‘๋™๊ณผ์ • ์กฐ๊ฒฝํ•™, 2023. 2. ๋ฅ˜์˜๋ ฌ.์œก์ƒ ์ƒํƒœ๊ณ„์—์„œ ๋Œ€๊ธฐ๊ถŒ๊ณผ ์ƒ๋ฌผ๊ถŒ์˜ ์ƒํ˜ธ ์ž‘์šฉ์„ ์ดํ•ดํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์‹์ƒ ๋ณ€ํ™”์˜ ๋ชจ๋‹ˆํ„ฐ๋ง์ด ํ•„์š”ํ•˜๋‹ค. ์ด ๋•Œ, ์œ„์„ฑ์˜์ƒ์€ ์ง€ํ‘œ๋ฉด์„ ๊ด€์ธกํ•˜์—ฌ ์‹์ƒ์ง€๋„๋ฅผ ์ œ๊ณตํ•  ์ˆ˜ ์žˆ์ง€๋งŒ, ์ง€ํ‘œ๋ณ€ํ™”์˜ ์ƒ์„ธํ•œ ์ •๋ณด๋Š” ๊ตฌ๋ฆ„์ด๋‚˜ ์œ„์„ฑ ์ด๋ฏธ์ง€์˜ ๊ณต๊ฐ„ ํ•ด์ƒ๋„์— ์˜ํ•ด ์ œํ•œ๋˜์—ˆ๋‹ค. ๋˜ํ•œ ์œ„์„ฑ์˜์ƒ์˜ ์‹œ๊ณต๊ฐ„ ํ•ด์ƒ๋„๊ฐ€ ์‹์ƒ์ง€๋„๋ฅผ ํ†ตํ•œ ๊ด‘ํ•ฉ์„ฑ ๋ชจ๋‹ˆํ„ฐ๋ง์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์€ ์™„์ „ํžˆ ๋ฐํ˜€์ง€์ง€ ์•Š์•˜๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๊ณ ํ•ด์ƒ๋„ ์‹์ƒ ์ง€๋„๋ฅผ ์ผ๋‹จ์œ„๋กœ ์ƒ์„ฑํ•˜๊ธฐ ์œ„์„ฑ ์˜์ƒ์˜ ์‹œ๊ณต๊ฐ„ ํ•ด์ƒ๋„๋ฅผ ํ–ฅ์ƒ์‹œํ‚ค๋Š” ๊ฒƒ์„ ๋ชฉํ‘œ๋กœ ํ•˜์˜€๋‹ค. ๊ณ ํ•ด์ƒ๋„ ์œ„์„ฑ์˜์ƒ์„ ํ™œ์šฉํ•œ ์‹์ƒ ๋ณ€ํ™” ๋ชจ๋‹ˆํ„ฐ๋ง์„ ์‹œ๊ณต๊ฐ„์ ์œผ๋กœ ํ™•์žฅํ•˜๊ธฐ ์œ„ํ•ด 1) ์ •์ง€๊ถค๋„ ์œ„์„ฑ์„ ํ™œ์šฉํ•œ ์˜์ƒ์œตํ•ฉ์„ ํ†ตํ•ด ์‹œ๊ฐ„ํ•ด์ƒ๋„ ํ–ฅ์ƒ, 2) ์ ๋Œ€์ ์ƒ์„ฑ๋„คํŠธ์›Œํฌ๋ฅผ ํ™œ์šฉํ•œ ๊ณต๊ฐ„ํ•ด์ƒ๋„ ํ–ฅ์ƒ, 3) ์‹œ๊ณต๊ฐ„ํ•ด์ƒ๋„๊ฐ€ ๋†’์€ ์œ„์„ฑ์˜์ƒ์„ ํ† ์ง€ํ”ผ๋ณต์ด ๊ท ์งˆํ•˜์ง€ ์•Š์€ ๊ณต๊ฐ„์—์„œ ์‹๋ฌผ ๊ด‘ํ•ฉ์„ฑ ๋ชจ๋‹ˆํ„ฐ๋ง์„ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ์ด์ฒ˜๋Ÿผ, ์œ„์„ฑ๊ธฐ๋ฐ˜ ์›๊ฒฉํƒ์ง€์—์„œ ์ƒˆ๋กœ์šด ๊ธฐ์ˆ ์ด ๋“ฑ์žฅํ•จ์— ๋”ฐ๋ผ ํ˜„์žฌ ๋ฐ ๊ณผ๊ฑฐ์˜ ์œ„์„ฑ์˜์ƒ์€ ์‹œ๊ณต๊ฐ„ ํ•ด์ƒ๋„ ์ธก๋ฉด์—์„œ ํ–ฅ์ƒ๋˜์–ด ์‹์ƒ ๋ณ€ํ™”์˜ ๋ชจ๋‹ˆํ„ฐ๋ง ํ•  ์ˆ˜ ์žˆ๋‹ค. ์ œ2์žฅ์—์„œ๋Š” ์ •์ง€๊ถค๋„์œ„์„ฑ์˜์ƒ์„ ํ™œ์šฉํ•˜๋Š” ์‹œ๊ณต๊ฐ„ ์˜์ƒ์œตํ•ฉ์œผ๋กœ ์‹๋ฌผ์˜ ๊ด‘ํ•ฉ์„ฑ์„ ๋ชจ๋‹ˆํ„ฐ๋ง ํ–ˆ์„ ๋•Œ, ์‹œ๊ฐ„ํ•ด์ƒ๋„๊ฐ€ ํ–ฅ์ƒ๋จ์„ ๋ณด์˜€๋‹ค. ์‹œ๊ณต๊ฐ„ ์˜์ƒ์œตํ•ฉ ์‹œ, ๊ตฌ๋ฆ„ํƒ์ง€, ์–‘๋ฐฉํ–ฅ ๋ฐ˜์‚ฌ ํ•จ์ˆ˜ ์กฐ์ •, ๊ณต๊ฐ„ ๋“ฑ๋ก, ์‹œ๊ณต๊ฐ„ ์œตํ•ฉ, ์‹œ๊ณต๊ฐ„ ๊ฒฐ์ธก์น˜ ๋ณด์™„ ๋“ฑ์˜ ๊ณผ์ •์„ ๊ฑฐ์นœ๋‹ค. ์ด ์˜์ƒ์œตํ•ฉ ์‚ฐ์ถœ๋ฌผ์€ ๊ฒฝ์ž‘๊ด€๋ฆฌ ๋“ฑ์œผ๋กœ ์‹์ƒ ์ง€์ˆ˜์˜ ์—ฐ๊ฐ„ ๋ณ€๋™์ด ํฐ ๋‘ ์žฅ์†Œ(๋†๊ฒฝ์ง€์™€ ๋‚™์—ฝ์ˆ˜๋ฆผ)์—์„œ ํ‰๊ฐ€ํ•˜์˜€๋‹ค. ๊ทธ ๊ฒฐ๊ณผ, ์‹œ๊ณต๊ฐ„ ์˜์ƒ์œตํ•ฉ ์‚ฐ์ถœ๋ฌผ์€ ๊ฒฐ์ธก์น˜ ์—†์ด ํ˜„์žฅ๊ด€์ธก์„ ์˜ˆ์ธกํ•˜์˜€๋‹ค (R2 = 0.71, ์ƒ๋Œ€ ํŽธํ–ฅ = 5.64% ๋†๊ฒฝ์ง€; R2 = 0.79, ์ƒ๋Œ€ ํŽธํ–ฅ = -13.8%, ํ™œ์—ฝ์ˆ˜๋ฆผ). ์‹œ๊ณต๊ฐ„ ์˜์ƒ์œตํ•ฉ์€ ์‹์ƒ ์ง€๋„์˜ ์‹œ๊ณต๊ฐ„ ํ•ด์ƒ๋„๋ฅผ ์ ์ง„์ ์œผ๋กœ ๊ฐœ์„ ํ•˜์—ฌ, ์‹๋ฌผ ์ƒ์žฅ๊ธฐ๋™์•ˆ ์œ„์„ฑ์˜์ƒ์ด ํ˜„์žฅ ๊ด€์ธก์„ ๊ณผ์†Œ ํ‰๊ฐ€๋ฅผ ์ค„์˜€๋‹ค. ์˜์ƒ์œตํ•ฉ์€ ๋†’์€ ์‹œ๊ณต๊ฐ„ ํ•ด์ƒ๋„๋กœ ๊ด‘ํ•ฉ์„ฑ ์ง€๋„๋ฅผ ์ผ๊ฐ„๊ฒฉ์œผ๋กœ ์ƒ์„ฑํ•˜๊ธฐ์— ์ด๋ฅผ ํ™œ์šฉํ•˜์—ฌ ์œ„์„ฑ ์˜์ƒ์˜ ์ œํ•œ๋œ ์‹œ๊ณต๊ฐ„ ํ•ด์ƒ๋„๋กœ ๋ฐํ˜€์ง€์ง€ ์•Š์€ ์‹๋ฌผ๋ณ€ํ™”์˜ ๊ณผ์ •์„ ๋ฐœ๊ฒฌํ•˜๊ธธ ๊ธฐ๋Œ€ํ•œ๋‹ค. ์‹์ƒ์˜ ๊ณต๊ฐ„๋ถ„ํฌ์€ ์ •๋ฐ€๋†์—…๊ณผ ํ† ์ง€ ํ”ผ๋ณต ๋ณ€ํ™” ๋ชจ๋‹ˆํ„ฐ๋ง์„ ์œ„ํ•ด ํ•„์ˆ˜์ ์ด๋‹ค. ๊ณ ํ•ด์ƒ๋„ ์œ„์„ฑ์˜์ƒ์œผ๋กœ ์ง€๊ตฌ ํ‘œ๋ฉด์„ ๊ด€์ธกํ•˜๋Š” ๊ฒƒ์„ ์šฉ์ดํ•˜๊ฒŒ ํ•ด์กŒ๋‹ค. ํŠนํžˆ Planet Fusion์€ ์ดˆ์†Œํ˜•์œ„์„ฑ๊ตฐ ๋ฐ์ดํ„ฐ๋ฅผ ์ตœ๋Œ€ํ•œ ํ™œ์šฉํ•ด ๋ฐ์ดํ„ฐ ๊ฒฐ์ธก์ด ์—†๋Š” 3m ๊ณต๊ฐ„ ํ•ด์ƒ๋„์˜ ์ง€ํ‘œ ํ‘œ๋ฉด ๋ฐ˜์‚ฌ๋„์ด๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๊ณผ๊ฑฐ ์œ„์„ฑ ์„ผ์„œ(Landsat์˜ ๊ฒฝ์šฐ 30~60m)์˜ ๊ณต๊ฐ„ ํ•ด์ƒ๋„๋Š” ์‹์ƒ์˜ ๊ณต๊ฐ„์  ๋ณ€ํ™”๋ฅผ ์ƒ์„ธ ๋ถ„์„ํ•˜๋Š” ๊ฒƒ์„ ์ œํ•œํ–ˆ๋‹ค. ์ œ3์žฅ์—์„œ๋Š” Landsat ๋ฐ์ดํ„ฐ์˜ ๊ณต๊ฐ„ ํ•ด์ƒ๋„๋ฅผ ํ–ฅ์ƒํ•˜๊ธฐ ์œ„ํ•ด Planet Fusion ๋ฐ Landsat 8 ๋ฐ์ดํ„ฐ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์ด์ค‘ ์ ๋Œ€์  ์ƒ์„ฑ ๋„คํŠธ์›Œํฌ(the dual RSS-GAN)๋ฅผ ํ•™์Šต์‹œ์ผœ, ๊ณ ํ•ด์ƒ๋„ ์ •๊ทœํ™” ์‹์ƒ ์ง€์ˆ˜(NDVI)์™€ ์‹๋ฌผ ๊ทผ์ ์™ธ์„  ๋ฐ˜์‚ฌ(NIRv)๋„๋ฅผ ์ƒ์„ฑํ•˜๋Š” ํ•œ๋‹ค. ํƒ€์›Œ๊ธฐ๋ฐ˜ ํ˜„์žฅ ์‹์ƒ์ง€์ˆ˜(์ตœ๋Œ€ 8๋…„)์™€ ๋“œ๋ก ๊ธฐ๋ฐ˜ ์ดˆ๋ถ„๊ด‘์ง€๋„๋กœ the dual RSS-GAN์˜ ์„ฑ๋Šฅ์„ ๋Œ€ํ•œ๋ฏผ๊ตญ ๋‚ด ๋‘ ๋Œ€์ƒ์ง€(๋†๊ฒฝ์ง€์™€ ํ™œ์—ฝ์ˆ˜๋ฆผ)์—์„œ ํ‰๊ฐ€ํ–ˆ๋‹ค. The dual RSS-GAN์€ Landsat 8 ์˜์ƒ์˜ ๊ณต๊ฐ„ํ•ด์ƒ๋„๋ฅผ ํ–ฅ์ƒ์‹œ์ผœ ๊ณต๊ฐ„ ํ‘œํ˜„์„ ๋ณด์™„ํ•˜๊ณ  ์‹์ƒ ์ง€์ˆ˜์˜ ๊ณ„์ ˆ์  ๋ณ€ํ™”๋ฅผ ํฌ์ฐฉํ–ˆ๋‹ค(R2> 0.96). ๊ทธ๋ฆฌ๊ณ  the dual RSS-GAN์€ Landsat 8 ์‹์ƒ ์ง€์ˆ˜๊ฐ€ ํ˜„์žฅ์— ๋น„ํ•ด ๊ณผ์†Œ ํ‰๊ฐ€๋˜๋Š” ๊ฒƒ์„ ์™„ํ™”ํ–ˆ๋‹ค. ํ˜„์žฅ ๊ด€์ธก์— ๋น„ํ•ด ์ด์ค‘ RSS-GAN๊ณผ Landsat 8์˜ ์ƒ๋Œ€ ํŽธํ–ฅ ๊ฐ’ ๊ฐ๊ฐ -0.8% ์—์„œ -1.5%, -10.3% ์—์„œ -4.6% ์˜€๋‹ค. ์ด๋Ÿฌํ•œ ๊ฐœ์„ ์€ Planet Fusion์˜ ๊ณต๊ฐ„์ •๋ณด๋ฅผ ์ด์ค‘ RSS-GAN๋กœ ํ•™์Šตํ•˜์˜€๊ธฐ์— ๊ฐ€๋Šฅํ–ˆ๋‹ค. ํ—ค๋‹น ์—ฐ๊ตฌ ๊ฒฐ๊ณผ๋Š” Landsat ์˜์ƒ์˜ ๊ณต๊ฐ„ ํ•ด์ƒ๋„๋ฅผ ํ–ฅ์ƒ์‹œ์ผœ ์ˆจ๊ฒจ์ง„ ๊ณต๊ฐ„ ์ •๋ณด๋ฅผ ์ œ๊ณตํ•˜๋Š” ์ƒˆ๋กœ์šด ์ ‘๊ทผ ๋ฐฉ์‹์ด๋‹ค. ๊ณ ํ•ด์ƒ๋„์—์„œ ์‹๋ฌผ ๊ด‘ํ•ฉ์„ฑ ์ง€๋„๋Š” ํ† ์ง€ํ”ผ๋ณต์ด ๋ณต์žกํ•œ ๊ณต๊ฐ„์—์„œ ํƒ„์†Œ ์ˆœํ™˜ ๋ชจ๋‹ˆํ„ฐ๋ง์‹œ ํ•„์ˆ˜์ ์ด๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ Sentinel-2, Landsat ๋ฐ MODIS์™€ ๊ฐ™์ด ํƒœ์–‘ ๋™์กฐ ๊ถค๋„์— ์žˆ๋Š” ์œ„์„ฑ์€ ๊ณต๊ฐ„ ํ•ด์ƒ๋„๊ฐ€ ๋†’๊ฑฐ๋‚˜ ์‹œ๊ฐ„ ํ•ด์ƒ๋„ ๋†’์€ ์œ„์„ฑ์˜์ƒ๋งŒ ์ œ๊ณตํ•  ์ˆ˜ ์žˆ๋‹ค. ์ตœ๊ทผ ๋ฐœ์‚ฌ๋œ ์ดˆ์†Œํ˜•์œ„์„ฑ๊ตฐ์€ ์ด๋Ÿฌํ•œ ํ•ด์ƒ๋„ ํ•œ๊ณ„์„ ๊ทน๋ณตํ•  ์ˆ˜ ์žˆ๋‹ค. ํŠนํžˆ Planet Fusion์€ ์ดˆ์†Œํ˜•์œ„์„ฑ ์ž๋ฃŒ์˜ ์‹œ๊ณต๊ฐ„ ํ•ด์ƒ๋„๋กœ ์ง€ํ‘œ๋ฉด์„ ๊ด€์ธกํ•  ์ˆ˜ ์žˆ๋‹ค. 4์žฅ์—์„œ, Planet Fusion ์ง€ํ‘œ๋ฐ˜์‚ฌ๋„๋ฅผ ์ด์šฉํ•˜์—ฌ ์‹์ƒ์—์„œ ๋ฐ˜์‚ฌ๋œ ๊ทผ์ ์™ธ์„  ๋ณต์‚ฌ(NIRvP)๋ฅผ 3m ํ•ด์ƒ๋„ ์ง€๋„๋ฅผ ์ผ๊ฐ„๊ฒฉ์œผ๋กœ ์ƒ์„ฑํ–ˆ๋‹ค. ๊ทธ๋Ÿฐ ๋‹ค์Œ ๋ฏธ๊ตญ ์บ˜๋ฆฌํฌ๋‹ˆ์•„์ฃผ ์ƒˆํฌ๋ผ๋ฉ˜ํ† -์ƒŒ ํ˜ธ์•„ํ‚จ ๋ธํƒ€์˜ ํ”Œ๋Ÿญ์Šค ํƒ€์›Œ ๋„คํŠธ์›Œํฌ ๋ฐ์ดํ„ฐ์™€ ๋น„๊ตํ•˜์—ฌ ์‹๋ฌผ ๊ด‘ํ•ฉ์„ฑ์„ ์ถ”์ •ํ•˜๊ธฐ ์œ„ํ•œ NIRvP ์ง€๋„์˜ ์„ฑ๋Šฅ์„ ํ‰๊ฐ€ํ•˜์˜€๋‹ค. ์ „์ฒด์ ์œผ๋กœ NIRvP ์ง€๋„๋Š” ์Šต์ง€์˜ ์žฆ์€ ์ˆ˜์œ„ ๋ณ€ํ™”์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ๊ฐœ๋ณ„ ๋Œ€์ƒ์ง€์˜ ์‹๋ฌผ ๊ด‘ํ•ฉ์„ฑ์˜ ์‹œ๊ฐ„์  ๋ณ€ํ™”๋ฅผ ํฌ์ฐฉํ•˜์˜€๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋Œ€์ƒ์ง€ ์ „์ฒด์— ๋Œ€ํ•œ NIRvP ์ง€๋„์™€ ์‹๋ฌผ ๊ด‘ํ•ฉ์„ฑ ์‚ฌ์ด์˜ ๊ด€๊ณ„๋Š” NIRvP ์ง€๋„๋ฅผ ํ”Œ๋Ÿญ์Šค ํƒ€์›Œ ๊ด€์ธก๋ฒ”์œ„์™€ ์ผ์น˜์‹œํ‚ฌ ๋•Œ๋งŒ ๋†’์€ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ๋ณด์˜€๋‹ค. ๊ด€์ธก๋ฒ”์œ„๋ฅผ ์ผ์น˜์‹œํ‚ฌ ๊ฒฝ์šฐ, NIRvP ์ง€๋„๋Š” ์‹๋ฌผ ๊ด‘ํ•ฉ์„ฑ์„ ์ถ”์ •ํ•˜๋Š” ๋ฐ ์žˆ์–ด ํ˜„์žฅ NIRvP๋ณด๋‹ค ์šฐ์ˆ˜ํ•œ ์„ฑ๋Šฅ์„ ๋ณด์˜€๋‹ค. ์ด๋Ÿฌํ•œ ์„ฑ๋Šฅ ์ฐจ์ด๋Š” ํ”Œ๋Ÿญ์Šค ํƒ€์›Œ ๊ด€์ธก๋ฒ”์œ„๋ฅผ ์ผ์น˜์‹œํ‚ฌ ๋•Œ, ์—ฐ๊ตฌ ๋Œ€์ƒ์ง€ ๊ฐ„์˜ NIRvP-์‹๋ฌผ ๊ด‘ํ•ฉ์„ฑ ๊ด€๊ณ„์˜ ๊ธฐ์šธ๊ธฐ๊ฐ€ ์ผ๊ด€์„ฑ์„ ๋ณด์˜€๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ๋ณธ ์—ฐ๊ตฌ ๊ฒฐ๊ณผ๋Š” ์œ„์„ฑ ๊ด€์ธก์„ ํ”Œ๋Ÿญ์Šค ํƒ€์›Œ ๊ด€์ธก๋ฒ”์œ„์™€ ์ผ์น˜์‹œํ‚ค๋Š” ๊ฒƒ์˜ ์ค‘์š”์„ฑ์„ ๋ณด์—ฌ์ฃผ๊ณ  ๋†’์€ ์‹œ๊ณต๊ฐ„ ํ•ด์ƒ๋„๋กœ ์‹๋ฌผ ๊ด‘ํ•ฉ์„ฑ์„ ์›๊ฒฉ์œผ๋กœ ๋ชจ๋‹ˆํ„ฐ๋งํ•˜๋Š” ์ดˆ์†Œํ˜•์œ„์„ฑ๊ตฐ ์ž๋ฃŒ์˜ ์ž ์žฌ๋ ฅ์„ ๋ณด์—ฌ์ค€๋‹ค.Monitoring changes in terrestrial vegetation is essential to understanding interactions between atmosphere and biosphere, especially terrestrial ecosystem. To this end, satellite remote sensing offer maps for examining land surface in different scales. However, the detailed information was hindered under the clouds or limited by the spatial resolution of satellite imagery. Moreover, the impacts of spatial and temporal resolution in photosynthesis monitoring were not fully revealed. In this dissertation, I aimed to enhance the spatial and temporal resolution of satellite imagery towards daily gap-free vegetation maps with high spatial resolution. In order to expand vegetation change monitoring in time and space using high-resolution satellite images, I 1) improved temporal resolution of satellite dataset through image fusion using geostationary satellites, 2) improved spatial resolution of satellite dataset using generative adversarial networks, and 3) showed the use of high spatiotemporal resolution maps for monitoring plant photosynthesis especially over heterogeneous landscapes. With the advent of new techniques in satellite remote sensing, current and past datasets can be fully utilized for monitoring vegetation changes in the respect of spatial and temporal resolution. In Chapter 2, I developed the integrated system that implemented geostationary satellite products in the spatiotemporal image fusion method for monitoring canopy photosynthesis. The integrated system contains the series of process (i.e., cloud masking, nadir bidirectional reflectance function adjustment, spatial registration, spatiotemporal image fusion, spatial gap-filling, temporal-gap-filling). I conducted the evaluation of the integrated system over heterogeneous rice paddy landscape where the drastic land cover changes were caused by cultivation management and deciduous forest where consecutive changes occurred in time. The results showed that the integrated system well predict in situ measurements without data gaps (R2 = 0.71, relative bias = 5.64% at rice paddy site; R2 = 0.79, relative bias = -13.8% at deciduous forest site). The integrated system gradually improved the spatiotemporal resolution of vegetation maps, reducing the underestimation of in situ measurements, especially during peak growing season. Since the integrated system generates daily canopy photosynthesis maps for monitoring dynamics among regions of interest worldwide with high spatial resolution. I anticipate future efforts to reveal the hindered information by the limited spatial and temporal resolution of satellite imagery. Detailed spatial representations of terrestrial vegetation are essential for precision agricultural applications and the monitoring of land cover changes in heterogeneous landscapes. The advent of satellite-based remote sensing has facilitated daily observations of the Earths surface with high spatial resolution. In particular, a data fusion product such as Planet Fusion has realized the delivery of daily, gap-free surface reflectance data with 3-m pixel resolution through full utilization of relatively recent (i.e., 2018-) CubeSat constellation data. However, the spatial resolution of past satellite sensors (i.e., 30โ€“60 m for Landsat) has restricted the detailed spatial analysis of past changes in vegetation. In Chapter 3, to overcome the spatial resolution constraint of Landsat data for long-term vegetation monitoring, we propose a dual remote-sensing super-resolution generative adversarial network (dual RSS-GAN) combining Planet Fusion and Landsat 8 data to simulate spatially enhanced long-term time-series of the normalized difference vegetation index (NDVI) and near-infrared reflectance from vegetation (NIRv). We evaluated the performance of the dual RSS-GAN against in situ tower-based continuous measurements (up to 8 years) and remotely piloted aerial system-based maps of cropland and deciduous forest in the Republic of Korea. The dual RSS-GAN enhanced spatial representations in Landsat 8 images and captured seasonal variation in vegetation indices (R2 > 0.95, for the dual RSS-GAN maps vs. in situ data from all sites). Overall, the dual RSS-GAN reduced Landsat 8 vegetation index underestimations compared with in situ measurements; relative bias values of NDVI ranged from โˆ’3.2% to 1.2% and โˆ’12.4% to โˆ’3.7% for the dual RSS-GAN and Landsat 8, respectively. This improvement was caused by spatial enhancement through the dual RSS-GAN, which captured fine-scale information from Planet Fusion. This study presents a new approach for the restoration of hidden sub-pixel spatial information in Landsat images. Mapping canopy photosynthesis in both high spatial and temporal resolution is essential for carbon cycle monitoring in heterogeneous areas. However, well established satellites in sun-synchronous orbits such as Sentinel-2, Landsat and MODIS can only provide either high spatial or high temporal resolution but not both. Recently established CubeSat satellite constellations have created an opportunity to overcome this resolution trade-off. In particular, Planet Fusion allows full utilization of the CubeSat data resolution and coverage while maintaining high radiometric quality. In Chapter 4, I used the Planet Fusion surface reflectance product to calculate daily, 3-m resolution, gap-free maps of the near-infrared radiation reflected from vegetation (NIRvP). I then evaluated the performance of these NIRvP maps for estimating canopy photosynthesis by comparing with data from a flux tower network in Sacramento-San Joaquin Delta, California, USA. Overall, NIRvP maps captured temporal variations in canopy photosynthesis of individual sites, despite changes in water extent in the wetlands and frequent mowing in the crop fields. When combining data from all sites, however, I found that robust agreement between NIRvP maps and canopy photosynthesis could only be achieved when matching NIRvP maps to the flux tower footprints. In this case of matched footprints, NIRvP maps showed considerably better performance than in situ NIRvP in estimating canopy photosynthesis both for daily sum and data around the time of satellite overpass (R2 = 0.78 vs. 0.60, for maps vs. in situ for the satellite overpass time case). This difference in performance was mostly due to the higher degree of consistency in slopes of NIRvP-canopy photosynthesis relationships across the study sites for flux tower footprint-matched maps. Our results show the importance of matching satellite observations to the flux tower footprint and demonstrate the potential of CubeSat constellation imagery to monitor canopy photosynthesis remotely at high spatio-temporal resolution.Chapter 1. Introduction 2 1. Background 2 1.1 Daily gap-free surface reflectance using geostationary satellite products 2 1.2 Monitoring past vegetation changes with high-spatial-resolution 3 1.3 High spatiotemporal resolution vegetation photosynthesis maps 4 2. Purpose of Research 4 Chapter 2. Generating daily gap-filled BRDF adjusted surface reflectance product at 10 m resolution using geostationary satellite product for monitoring daily canopy photosynthesis 6 1. Introduction 6 2. Methods 11 2.1 Study sites 11 2.2 In situ measurements 13 2.3 Satellite products 14 2.4 Integrated system 17 2.5 Canopy photosynthesis 21 2.6 Evaluation 23 3. Results and discussion 24 3.1 Comparison of STIF NDVI and NIRv with in situ NDVI and NIRv 24 3.2 Comparison of STIF NIRvP with in situ NIRvP 28 4. Conclusion 31 Chapter 3. Super-resolution of historic Landsat imagery using a dual Generative Adversarial Network (GAN) model with CubeSat constellation imagery for monitoring vegetation changes 32 1. Introduction 32 2. Methods 38 2.1 Real-ESRGAN model 38 2.2 Study sites 40 2.3 In situ measurements 42 2.4 Vegetation index 44 2.5 Satellite data 45 2.6 Planet Fusion 48 2.7 Dual RSS-GAN via fine-tuned Real-ESRGAN 49 2.8 Evaluation 54 3. Results 57 3.1 Comparison of NDVI and NIRv maps from Planet Fusion, Sentinel 2 NBAR, and Landsat 8 NBAR data with in situ NDVI and NIRv 57 3.2 Comparison of dual RSS-SRGAN model results with Landsat 8 NDVI and NIRv 60 3.3 Comparison of dual RSS-GAN model results with respect to in situ time-series NDVI and NIRv 63 3.4 Comparison of the dual RSS-GAN model with NDVI and NIRv maps derived from RPAS 66 4. Discussion 70 4.1 Monitoring changes in terrestrial vegetation using the dual RSS-GAN model 70 4.2 CubeSat data in the dual RSS-GAN model 72 4.3 Perspectives and limitations 73 5. Conclusion 78 Appendices 79 Supplementary material 82 Chapter 4. Matching high resolution satellite data and flux tower footprints improves their agreement in photosynthesis estimates 85 1. Introduction 85 2. Methods 89 2.1 Study sites 89 2.2 In situ measurements 92 2.3 Planet Fusion NIRvP 94 2.4 Flux footprint model 98 2.5 Evaluation 98 3. Results 105 3.1 Comparison of Planet Fusion NIRv and NIRvP with in situ NIRv and NIRvP 105 3.2 Comparison of instantaneous Planet Fusion NIRv and NIRvP with against tower GPP estimates 108 3.3 Daily GPP estimation from Planet Fusion -derived NIRvP 114 4. Discussion 118 4.1 Flux tower footprint matching and effects of spatial and temporal resolution on GPP estimation 118 4.2 Roles of radiation component in GPP mapping 123 4.3 Limitations and perspectives 126 5. Conclusion 133 Appendix 135 Supplementary Materials 144 Chapter 5. Conclusion 153 Bibliography 155 Abstract in Korea 199 Acknowledgements 202๋ฐ•

    Towards the quantitative and physically-based interpretation of solar-induced vegetation fluorescence retrieved from global imaging

    Get PDF
    Due to emerging high spectral resolution, remote sensing techniques and ongoing developments to retrieve the spectrally resolved vegetation fluorescence spectrum from several scales, the light reactions of photosynthesis are receiving a boost of attention for the monitoring of the Earth's carbon balance. Sensor-retrieved vegetation fluorescence (from leaf, tower, airborne or satellite scale) originating from the excited antenna chlorophyll a molecule has become a new quantitative biophysical vegetation parameter retrievable from space using global imaging techniques. However, to retrieve the actual quantum efficiencies, and hence a true photosynthetic status of the observed vegetation, all signal distortions must be accounted for, and a high-precision true vegetation reflectance must be resolved. ESA's upcoming Fluorescence Explorer aims to deliver such novel products thanks to technological and instrumental advances, and by sophisticated approaches that will enable a deeper understanding of the mechanics of energy transfer underlying the photosynthetic process in plant canopies and ecosystems

    Plant productivity and evaporation from remote sensing

    Get PDF

    ๊ทผ์ ‘ ํ‘œ๋ฉด ์›๊ฒฉ ์„ผ์‹ฑ ์‹œ์Šคํ…œ๋“ค์„ ์ด์šฉํ•œ ์ง€์†์  ์‹๋ฌผ ๊ณ„์ ˆ ๋ฐ ํƒœ์–‘ ์œ ๋„ ์—ฝ๋ก์†Œ ํ˜•๊ด‘๋ฌผ์งˆ ๊ด€์ธก

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ํ™˜๊ฒฝ๋Œ€ํ•™์› ํ˜‘๋™๊ณผ์ • ์กฐ๊ฒฝํ•™, 2022.2. ๋ฅ˜์˜๋ ฌ.Monitoring phenology, physiological and structural changes in vegetation is essential to understand feedbacks of vegetation between terrestrial ecosystems and the atmosphere by influencing the albedo, carbon flux, water flux and energy. To this end, normalized difference vegetation index (NDVI) and solar-induced chlorophyll fluorescence (SIF) from satellite remote sensing have been widely used. However, there are still limitations in satellite remote sensing as 1) satellite imagery could not capture fine-scale spatial resolution of SIF signals, 2) satellite products are strongly influenced by condition of the atmosphere (e.g. clouds), thus it is challenging to know physiological and structural changes in vegetation on cloudy days and 3) satellite imagery captured a mixed signal from over- and understory, thus it is difficult to study the difference between overstory and understory phenology separately. Therefore, in order to more accurately understand the signals observed from the satellite, further studies using near-surface remote sensing system to collect ground-based observed data are needed. The main purpose of this dissertation is continuous observation of vegetation phenology and SIF using near-surface remote sensing system. To achieve the main goal, I set three chapters as 1) developing low-cost filter-based near-surface remote sensing system to monitor SIF continuously, 2) monitoring SIF in a temperate evergreen needleleaf forest continuously, and 3) understanding the relationships between phenology from in-situ multi-layer canopies and satellite products. In Chapter 2, I developed the filter-based smart surface sensing system (4S-SIF) to overcome the technical challenges of monitoring SIF in the field as well as to decrease sensor cost for more comprehensive spatial sampling. I verified the satisfactory spectral performance of the bandpass filters and confirmed that digital numbers (DN) from 4S-SIF exhibited linear relationships with the DN from the hyperspectral spectroradiometer in each band (R2 > 0.99). In addition, we confirmed that 4S-SIF shows relatively low variation of dark current value at various temperatures. Furthermore, the SIF signal from 4S-SIF represents a strong linear relationship with QEpro-SIF either changing the physiological mechanisms of the plant using DCMU (3-(3, 4-dichlorophenyl)-1, 1-dimethyurea) treatment. I believe that 4S-SIF will be a useful tool for collecting in-situ data across multiple spatial and temporal scales. Satellite-based SIF provides us with new opportunities to understand the physiological and structural dynamics of vegetation from canopy to global scales. However, the relationships between SIF and gross primary productivity (GPP) are not fully understood, which is mainly due to the challenges of decoupling structural and physiological factors that control the relationships. In Chapter 3, I reported the results of continuous observations of canopy-level SIF, GPP, absorbed photosynthetically active radiation (APAR), and chlorophyll: carotenoid index (CCI) in a temperate evergreen needleleaf forest. To understand the mechanisms underlying the relationship between GPP and SIF, I investigated the relationships of light use efficiency (LUE_p), chlorophyll fluorescence yield (ฮฆ_F), and the fraction of emitted SIF photons escaping from the canopy (f_esc) separately. I found a strongly non-linear relationship between GPP and SIF at diurnal and seasonal time scales (R2 = 0.91 with a hyperbolic regression function, daily). GPP saturated with APAR, while SIF did not. In addition, there were differential responses of LUE_p and ฮฆ_F to air temperature. While LUE_p reached saturation at high air temperatures, ฮฆ_F did not saturate. I also found that the canopy-level chlorophyll: carotenoid index was strongly correlated to canopy-level ฮฆ_F (R2 = 0.84) implying that ฮฆ_F could be more closely related to pigment pool changes rather than LUE_p. In addition, I found that the f_esc contributed to a stronger SIF-GPP relationship by partially capturing the response of LUE_p to diffuse light. These findings can help refine physiological and structural links between canopy-level SIF and GPP in evergreen needleleaf forests. We do not fully understand what satellite NDVI derived leaf-out and full leaf dates actually observe because deciduous broadleaf forest consists of multi-layer canopies typically and mixed-signal from multi-layer canopies could affect satellite observation. Ultimately, we have the following question: What phenology do we actually see from space compared to ground observations on multi-layer canopy phenology? In Chapter 4, I reported the results of 8 years of continuous observations of multi-layer phenology and climate variables in a deciduous broadleaf forest, South Korea. Multi-channel spectrometers installed above and below overstory canopy allowed us to monitor over- and understory canopy phenology separately, continuously. I evaluated the widely used phenology detection methods, curvature change rate and threshold with NDVI observed above top of the canopy and compared leaf-out and full leaf dates from both methods to in-situ observed multi-layer phenology. First, I found that NDVI from the above canopy had a strong linear relationship with satellites NDVI (R2=0.95 for MODIS products and R2= 0.85 for Landsat8). Second, leaf-out dates extracted by the curvature change rate method and 10% threshold were well matched with understory leaf-out dates. Third, the full-leaf dates extracted by the curvature change rate method and 90% threshold were similar to overstory full-leaf dates. Furthermore, I found that overstory leaf-out dates were closely correlated to accumulated growing degree days (AGDD) while understory leaf-out dates were related to AGDD and also sensitive to the number of chill days (NCD). These results suggest that satellite-based leaf-out and full leaf dates represent understory and overstory signals in the deciduous forest site, which requires caution when using satellite-based phenology data into future prediction as overstory and understory canopy show different sensitivities to AGDD and NCD.์‹๋ฌผ ๊ณ„์ ˆ ๋ฐ ์‹์ƒ์˜ ์ƒ๋ฆฌํ•™์ , ๊ตฌ์กฐ์ ์ธ ๋ณ€ํ™”๋ฅผ ์ง€์†์ ์œผ๋กœ ๋ชจ๋‹ˆํ„ฐ๋ง ํ•˜๋Š” ๊ฒƒ์€ ์œก์ƒ์ƒํƒœ๊ณ„์™€ ๋Œ€๊ธฐ๊ถŒ ์‚ฌ์ด์˜ ์—๋„ˆ์ง€, ํƒ„์†Œ ์ˆœํ™˜ ๋“ฑ์˜ ํ”ผ๋“œ๋ฐฑ์„ ์ดํ•ดํ•˜๋Š”๋ฐ ํ•„์ˆ˜์ ์ด๋‹ค. ์ด๋ฅผ ๊ด€์ธกํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์œ„์„ฑ์—์„œ ๊ด€์ธก๋œ ์ •๊ทœํ™” ์‹์ƒ ์ง€์ˆ˜ (NDVI) ํƒœ์–‘ ์œ ๋„ ์—ฝ๋ก์†Œ ํ˜•๊ด‘๋ฌผ์งˆ (SIF)๋Š” ๋Œ€์ค‘์ ์œผ๋กœ ์‚ฌ์šฉ๋˜๊ณ  ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜, ์šฐ์ฃผ ์œ„์„ฑ ๊ธฐ๋ฐ˜์˜ ์ž๋ฃŒ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์€ ํ•œ๊ณ„์ ๋“ค์ด ์กด์žฌํ•œ๋‹ค. 1) ์•„์ง๊นŒ์ง€ ๊ณ ํ•ด์ƒ๋„์˜ ์œ„์„ฑ ๊ธฐ๋ฐ˜ SIF ์ž๋ฃŒ๋Š” ์—†๊ณ , 2) ์œ„์„ฑ ์ž๋ฃŒ๋“ค์€ ๋Œ€๊ธฐ์˜ ์งˆ (์˜ˆ, ๊ตฌ๋ฆ„)์— ์˜ํ–ฅ์„ ๋ฐ›์•„, ํ๋ฆฐ ๋‚ ์˜ ์‹์ƒ์˜ ์ƒ๋ฆฌํ•™์ , ๊ตฌ์กฐ์  ๋ณ€ํ™”๋ฅผ ํƒ์ง€ํ•˜๊ธฐ ํž˜๋“ค๋‹ค. ๋˜ํ•œ, 3) ์œ„์„ฑ ์ด๋ฏธ์ง€๋Š” ์ƒ๋ถ€ ์‹์ƒ๊ณผ ํ•˜๋ถ€ ์‹์ƒ์ด ํ˜ผํ•ฉ๋˜์–ด ์„ž์ธ ์‹ ํ˜ธ๋ฅผ ํƒ์ง€ํ•˜๊ธฐ ๋•Œ๋ฌธ์—, ๊ฐ ์ธต์˜ ์‹๋ฌผ ๊ณ„์ ˆ์„ ๊ฐ๊ฐ ์—ฐ๊ตฌํ•˜๊ธฐ์— ์–ด๋ ค์›€์ด ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋ฏ€๋กœ, ์œ„์„ฑ์—์„œ ํƒ์ง€ํ•œ ์‹ ํ˜ธ๋ฅผ ํ‰๊ฐ€ํ•˜๊ณ , ์‹์ƒ์˜ ์ƒ๋ฆฌํ•™์ , ๊ตฌ์กฐ์  ๋ณ€ํ™”๋ฅผ ๋ณด๋‹ค ์ •ํ™•ํžˆ ์ดํ•ดํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๊ทผ์ ‘ ํ‘œ๋ฉด ์›๊ฒฉ ์„ผ์‹ฑ ์‹œ์Šคํ…œ์„ ์ด์šฉํ•œ ์‹ค์ธก ์ž๋ฃŒ ๊ธฐ๋ฐ˜์˜ ์—ฐ๊ตฌ๋“ค์ด ์š”๊ตฌ๋œ๋‹ค. ๋ณธ ํ•™์œ„๋…ผ๋ฌธ์˜ ์ฃผ ๋ชฉ์ ์€ ๊ทผ์ ‘ ํ‘œ๋ฉด ์›๊ฒฉ ์„ผ์‹ฑ ์‹œ์Šคํ…œ์„ ์ด์šฉํ•˜์—ฌ ์‹๋ฌผ ๊ณ„์ ˆ ๋ฐ SIF๋ฅผ ํ˜„์žฅ์—์„œ ์ง€์†์ ์œผ๋กœ ์‹ค์ธกํ•˜๊ณ , ์œ„์„ฑ ์˜์ƒ ๊ธฐ๋ฐ˜์˜ ์—ฐ๊ตฌ๊ฐ€ ๊ฐ–๊ณ  ์žˆ๋Š” ํ•œ๊ณ„์  ๋ฐ ๊ถ๊ธˆ์ฆ๋“ค์„ ํ•ด๊ฒฐ ๋ฐ ๋ณด์™„ํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ์ด ๋ชฉ์ ์„ ๋‹ฌ์„ฑํ•˜๊ธฐ ์œ„ํ•˜์—ฌ, ์•„๋ž˜์™€ ๊ฐ™์€ ์„ธ๊ฐ€์ง€ Chapter: 1) SIF๋ฅผ ๊ด€์ธกํ•˜๊ธฐ ์œ„ํ•œ ํ•„ํ„ฐ ๊ธฐ๋ฐ˜์˜ ์ €๋ ดํ•œ ๊ทผ์ ‘ ํ‘œ๋ฉด ์„ผ์‹ฑ ์‹œ์Šคํ…œ ๊ฐœ๋ฐœ, 2)์˜จ๋Œ€ ์นจ์—ฝ์ˆ˜๋ฆผ์—์„œ์˜ ์—ฐ์†์ ์ธ SIF ๊ด€์ธก, 3)์œ„์„ฑ ๊ธฐ๋ฐ˜์˜ ์‹๋ฌผ ๊ณ„์ ˆ๊ณผ ์‹ค์ธกํ•œ ๋‹ค์ธต ์‹์ƒ์˜ ์‹๋ฌผ ๊ณ„์ ˆ ๋น„๊ต๋กœ ๊ตฌ์„ฑํ•˜๊ณ , ์ด๋ฅผ ์ง„ํ–‰ํ•˜์˜€๋‹ค. SIF๋Š” ์‹์ƒ์˜ ๊ตฌ์กฐ์ , ์ƒ๋ฆฌํ•™์  ๋ณ€ํ™”๋ฅผ ์ดํ•ดํ•˜๊ณ , ์ถ”์ •ํ•˜๋Š” ์ธ์ž๋กœ ์‚ฌ์šฉ๋  ์ˆ˜ ์žˆ์–ด, SIF๋ฅผ ํ˜„์žฅ์—์„œ ๊ด€์ธกํ•˜๊ธฐ ์œ„ํ•œ ๋‹ค์–‘ํ•œ ๊ทผ์ ‘ ํ‘œ๋ฉด ์›๊ฒฉ ์„ผ์‹ฑ ์‹œ์Šคํ…œ๋“ค์ด ์ตœ๊ทผ ์ œ์‹œ๋˜์–ด ์˜ค๊ณ  ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜, ์•„์ง๊นŒ์ง€ SIF๋ฅผ ๊ด€์ธกํ•˜๊ธฐ ์œ„ํ•œ ์ƒ์—…์ ์œผ๋กœ ์œ ํ†ต๋˜๋Š” ๊ด€์ธก ์‹œ์Šคํ…œ์€ ํ˜„์ €ํžˆ ๋ถ€์กฑํ•˜๋ฉฐ, ๋ถ„๊ด‘๊ณ„์˜ ๊ตฌ์กฐ์  ํŠน์„ฑ์ƒ ํ˜„์žฅ์—์„œ ๊ด€์ธก ์‹œ์Šคํ…œ์„ ๋ณด์ • ๋ฐ ๊ด€๋ฆฌํ•˜๊ธฐ๊ฐ€ ์–ด๋ ค์›Œ ๋†’์€ ์งˆ์˜ SIF๋ฅผ ์ทจ๋“ํ•˜๋Š” ๊ฒƒ์€ ๋งค์šฐ ๋„์ „ ์ ์ธ ๋ถ„์•ผ์ด๋‹ค. ๋ณธ ํ•™์œ„ ๋…ผ๋ฌธ์˜ Chapter 2์—์„œ๋Š” SIF๋ฅผ ํ˜„์žฅ์—์„œ ๋ณด๋‹ค ์†์‰ฝ๊ฒŒ ๊ด€์ธกํ•˜๊ธฐ ์œ„ํ•œ ํ•„ํ„ฐ ๊ธฐ๋ฐ˜์˜ ๊ทผ์ ‘ ํ‘œ๋ฉด ์„ผ์‹ฑ ์‹œ์Šคํ…œ(Smart Surface Sensing System, 4S-SIF)์„ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. ์„ผ์„œ๋Š” ๋Œ€์—ญ ํ•„ํ„ฐ๋“ค๊ณผ ํฌํ† ๋‹ค์ด์˜ค๋“œ๊ฐ€ ๊ฒฐํ•ฉ๋˜์–ด ์žˆ์œผ๋ฉฐ, ์„œ๋ณด ๋ชจํ„ฐ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๋Œ€์—ญ ํ•„ํ„ฐ ๋ฐ ๊ด€์ธก ๋ฐฉํ–ฅ์„ ์ž๋™์ ์œผ๋กœ ๋ณ€๊ฒฝํ•จ์œผ๋กœ์จ, ํ•œ ๊ฐœ์˜ ํฌํ† ๋‹ค์ด์˜ค๋“œ๊ฐ€ 3๊ฐœ์˜ ํŒŒ์žฅ ๋ฒ”์œ„(757, 760, 770 nm)์˜ ๋น› ๋ฐ ํƒœ์–‘์œผ๋กœ๋ถ€ํ„ฐ ์ž…์‚ฌ๋˜๋Š” ๊ด‘๋Ÿ‰๊ณผ ์‹์ƒ์œผ๋กœ ๋ฐ˜์‚ฌ/๋ฐฉ์ถœ๋œ ๊ด‘๋Ÿ‰์„ ๊ด€์ธกํ•  ์ˆ˜ ์žˆ๋„๋ก ๊ณ ์•ˆ๋˜์—ˆ๋‹ค. ํฌํ† ๋‹ค์ด์˜ค๋“œ๋กœ๋ถ€ํ„ฐ ์ธ์‹๋œ ๋””์ง€ํ„ธ ์ˆ˜์น˜ ๊ฐ’์€ ์ƒ์—…์ ์œผ๋กœ ํŒ๋งค๋˜๋Š” ์ดˆ๊ณ ํ•ด์ƒ๋„ ๋ถ„๊ด‘๊ณ„(QE Pro, Ocean Insight)์™€ ๋šœ๋ ทํ•œ ์„ ํ˜• ๊ด€๊ณ„๋ฅผ ๋ณด์ด๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค (R2 > 0.99). ์ถ”๊ฐ€์ ์œผ๋กœ, 4S-SIF์—์„œ ๊ด€์ธก๋œ SIF์™€ ์ดˆ๊ณ ํ•ด์ƒ๋„ ๋ถ„๊ด‘๊ณ„๋ฅผ ์ด์šฉํ•˜์—ฌ ์ถ”์ถœํ•œ SIF๊ฐ€ ์„ ํ˜•์ ์ธ ๊ด€๊ณ„๋ฅผ ์ด๋ฃจ๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค. ์‹์ƒ์˜ ์ƒ๋ฆฌํ•™์  ๋ณ€ํ™”๋ฅผ ์ผ์œผํ‚ค๋Š” ํ™”ํ•™ ๋ฌผ์งˆ์ธ DCMU(3-(3, 4-dichlorophenyl)-1, 1-dimethyurea)์„ ์ฒ˜๋ฆฌํ–ˆ์Œ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ , ์‚ฐ์ถœ๋œ SIF๋“ค์€ ์„ ํ˜• ๊ด€๊ณ„๋ฅผ ๋ณด์˜€๋‹ค. ๋ณธ ์„ผ์„œ๋Š” ๊ธฐ์กด ์‹œ์Šคํ…œ๋“ค์— ๋น„ํ•ด ์‚ฌ์šฉํ•˜๊ธฐ ์‰ฝ๊ณ  ๊ฐ„๋‹จํ•˜๋ฉฐ, ์ €๋ ดํ•˜๊ธฐ ๋•Œ๋ฌธ์— ๋‹ค์–‘ํ•œ ์‹œ๊ณต๊ฐ„์  ์Šค์ผ€์ผ์˜ SIF๋ฅผ ๊ด€์ธกํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์žฅ์ ์ด ์žˆ๋‹ค. ์œ„์„ฑ ๊ธฐ๋ฐ˜์˜ SIF๋ฅผ ์ด์šฉํ•˜์—ฌ ์ด์ผ์ฐจ์ƒ์‚ฐ์„ฑ(gross primary productivity, GPP)์„ ์ถ”์ •ํ•˜๋Š” ์—ฐ๊ตฌ๋Š” ์ตœ๊ทผ ํƒ„์†Œ ์ˆœํ™˜ ์—ฐ๊ตฌ ๋ถ„์•ผ์—์„œ ๊ฐ๊ด‘๋ฐ›๊ณ  ์žˆ๋Š” ์—ฐ๊ตฌ ์ฃผ์ œ์ด๋‹ค. ๊ทธ๋Ÿฌ๋‚˜, SIF์™€ GPP์˜ ๊ด€๊ณ„๋Š” ์—ฌ์ „ํžˆ ๋งŽ์€ ๋ถˆํ™•์‹ค์„ฑ์„ ์ง€๋‹ˆ๊ณ  ์žˆ๋Š”๋ฐ, ์ด๋Š” SIF-GPP ๊ด€๊ณ„๋ฅผ ์กฐ์ ˆํ•˜๋Š” ์‹์ƒ์˜ ๊ตฌ์กฐ์  ๋ฐ ์ƒ๋ฆฌํ•™์  ์š”์ธ์„ ๋”ฐ๋กœ ๋ถ„๋ฆฌํ•˜์—ฌ ๊ณ ์ฐฐํ•œ ์—ฐ๊ตฌ๋“ค์ด ๋ถ€์กฑํ•˜๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ๋ณธ ํ•™์œ„ ๋…ผ๋ฌธ์˜ Chapter 3์—์„œ๋Š” ์ง€์†์ ์œผ๋กœ SIF, GPP, ํก์ˆ˜๋œ ๊ด‘ํ•ฉ์„ฑ์œ ํšจ๋ณต์‚ฌ๋Ÿ‰ (absorbed photosynthetically active radiation, APAR), ๊ทธ๋ฆฌ๊ณ  ํด๋กœ๋กœํ•„๊ณผ ์นด๋กœํ‹ฐ๋…ธ์ด๋“œ์˜ ๋น„์œจ ์ธ์ž (chlorophyll: carotenoid index, CCI)๋ฅผ ์˜จ๋Œ€์นจ์—ฝ์ˆ˜๋ฆผ์—์„œ ์—ฐ์†์ ์œผ๋กœ ๊ด€์ธกํ•˜์˜€๋‹ค. SIF-GPP ๊ด€๊ณ„์˜ ๊ตฌ์ฒด์ ์ธ ๋ฉ”์ปค๋‹ˆ์ฆ˜ ๊ด€๊ณ„๋ฅผ ๋ฐํžˆ๊ธฐ ์œ„ํ•˜์—ฌ, ๊ด‘ ์ด์šฉํšจ์œจ (light use efficiency, LUE_p), ์—ฝ๋ก์†Œ ํ˜•๊ด‘ ์ˆ˜๋“๋ฅ  (chlorophyll fluorescence yield, ฮฆ_F) ๊ทธ๋ฆฌ๊ณ  SIF ๊ด‘์ž๊ฐ€ ๊ตฐ๋ฝ์œผ๋กœ๋ถ€ํ„ฐ ๋ฐฉ์ถœ๋˜๋Š” ๋น„์œจ (escape fraction, f_esc)์„ ๊ฐ๊ฐ ๋„์ถœํ•˜๊ณ  ํƒ๊ตฌํ•˜์˜€๋‹ค. SIF์™€ GPP์˜ ๊ด€๊ณ„๋Š” ๋šœ๋ ทํ•œ ๋น„ ์„ ํ˜•์ ์ธ ๊ด€๊ณ„๋ฅผ ๋ณด์ด๋Š” ๊ฒƒ์„ ํ™•์ธํ–ˆ์œผ๋ฉฐ(R2 = 0.91 with a hyperbolic regression function, daily), ์ผ์ฃผ๊ธฐ ๋‹จ์œ„์—์„œ SIF๋Š” APAR์— ๋Œ€ํ•ด ์„ ํ˜•์ ์ด์—ˆ์ง€๋งŒ GPP๋Š” APAR์— ๋Œ€ํ•ด ๋šœ๋ ทํ•œ ํฌํ™” ๊ด€๊ณ„๋ฅผ ๋ณด์ด๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค. ์ถ”๊ฐ€์ ์œผ๋กœ LUE_p ์™€ ฮฆ_F ๊ฐ€ ๋Œ€๊ธฐ ์˜จ๋„์— ๋”ฐ๋ผ ๋ฐ˜์‘ํ•˜๋Š” ์ •๋„๊ฐ€ ๋‹ค๋ฅธ ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค. LUE_p๋Š” ๋†’์€ ์˜จ๋„์—์„œ ํฌํ™” ๋˜์—ˆ์ง€๋งŒ, ฮฆ_F๋Š” ํฌํ™” ํŒจํ„ด์„ ํ™•์ธํ•  ์ˆ˜ ์—†์—ˆ๋‹ค. ๋˜ํ•œ, ๊ตฐ๋ฝ ์ˆ˜์ค€์—์„œ์˜ CCI์™€ ฮฆ_F๊ฐ€ ๋šœ๋ ทํ•œ ์ƒ๊ด€ ๊ด€๊ณ„๋ฅผ ๋ณด์˜€๋‹ค(R2 = 0.84). ์ด๋Š” ฮฆ_F๊ฐ€ ์—ฝ๋ก์†Œ ์ƒ‰์†Œ์— ์˜ํ–ฅ์„ LUE_p์— ๋น„ํ•ด ๋” ๊ฐ•ํ•œ ๊ด€๊ณ„๊ฐ€ ์žˆ์„ ์ˆ˜ ์žˆ์Œ์„ ์‹œ์‚ฌํ•œ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, f_esc๊ฐ€ ํƒœ์–‘๊ด‘์˜ ์‚ฐ๋ž€๋œ ์ •๋„์— ๋”ฐ๋ผ ๋ฐ˜์‘์„ ํ•˜์—ฌ, ฮฆ_F์™€ LUE_p์˜ ๊ฐ•ํ•œ ์ƒ๊ด€ ๊ด€๊ณ„๋ฅผ ํ˜•์„ฑํ•˜๋Š”๋ฐ ๊ธฐ์—ฌํ•˜๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค. ์ด๋Ÿฌํ•œ ๋ฐœ๊ฒฌ์€ ์˜จ๋Œ€ ์นจ์—ฝ์ˆ˜๋ฆผ์—์„œ ๊ตฐ๋ฝ ์ˆ˜์ค€์˜ SIF-GPP๊ด€๊ณ„๋ฅผ ์ƒ๋ฆฌํ•™์  ๋ฐ ๊ตฌ์กฐ์  ์ธก๋ฉด์—์„œ ์ดํ•ดํ•˜๊ณ  ๊ทœ๋ช…ํ•˜๋Š”๋ฐ ํฐ ๋„์›€์ด ๋  ๊ฒƒ์ด๋‹ค. ์‹๋ฌผ ๊ณ„์ ˆ์€ ์‹์ƒ์ด ์ฒ ์„ ๋”ฐ๋ผ ์ฃผ๊ธฐ์ ์œผ๋กœ ๋‚˜ํƒ€๋‚ด๋Š” ๋ณ€ํ™”๋ฅผ ๊ด€์ธกํ•˜๋Š” ๋ฐ˜์‘์ด๋‹ค. ์‹๋ฌผ ๊ณ„์ ˆ์€ ์œก์ƒ์ƒํƒœ๊ณ„์™€ ๋Œ€๊ธฐ๊ถŒ ์‚ฌ์ด์˜ ๋ฌผ์งˆ ์ˆœํ™˜์„ ์ดํ•ดํ•˜๋Š”๋ฐ ๋งค์šฐ ์ค‘์š”ํ•˜๋‹ค. ์œ„์„ฑ ๊ธฐ๋ฐ˜์˜ NDVI๋Š” ์‹๋ฌผ ๊ณ„์ ˆ์„ ํƒ์ง€ํ•˜๊ณ  ์—ฐ๊ตฌํ•˜๋Š”๋ฐ ๊ฐ€์žฅ ๋Œ€์ค‘์ ์œผ๋กœ ์‚ฌ์šฉ๋œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜, ํ™œ์—ฝ์ˆ˜๋ฆผ์—์„œ์˜ ์œ„์„ฑ NDVI ๊ธฐ๋ฐ˜์˜ ๊ฐœ์—ฝ ์‹œ๊ธฐ ๋ฐ ์„ฑ์ˆ™ ์‹œ๊ธฐ๊ฐ€ ์‹ค์ œ ์–ด๋Š ์‹œ์ ์„ ํƒ์ง€ํ•˜๋Š”์ง€๋Š” ๋ถˆ๋ถ„๋ช…ํ•˜๋‹ค. ์‹ค์ œ ํ™œ์—ฝ์ˆ˜๋ฆผ์€ ๋‹ค์ธต ์‹์ƒ ๊ตฌ์กฐ์˜ ์‚ผ์ฐจ์›์œผ๋กœ ์ด๋ฃจ์–ด์ ธ ์žˆ๋Š” ๋ฐ˜๋ฉด, ์œ„์„ฑ ์˜์ƒ์€ ๋‹ค์ธต ์‹์ƒ์˜ ์‹ ํ˜ธ๊ฐ€ ์„ž์—ฌ ์žˆ๋Š” ์ด์ฐจ์›์˜ ๊ฒฐ๊ณผ๋ฌผ์ด๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ๋”ฐ๋ผ์„œ, ์œ„์„ฑ NDVI ๊ธฐ๋ฐ˜์˜ ์‹๋ฌผ ๊ณ„์ ˆ์ด ๋‹ค์ธต ์‹์ƒ ๊ตฌ์กฐ๋ฅผ ์ด๋ฃจ๊ณ  ์žˆ๋Š” ํ™œ์—ฝ์ˆ˜๋ฆผ์—์„œ ์‹ค์ œ ํ˜„์žฅ ๊ด€์ธก๊ณผ ๋น„๊ตํ•˜์˜€์„ ๋•Œ ์–ด๋Š ์‹œ์ ์„ ํƒ์ง€ํ•˜๋Š”์ง€์— ๋Œ€ํ•œ ๊ถ๊ธˆ์ฆ์ด ๋‚จ๋Š”๋‹ค. ๋ณธ ํ•™์œ„ ๋…ผ๋ฌธ์˜ Chapter 4์—์„œ๋Š” ์ง€์†์ ์œผ๋กœ 8๋…„ ๋™์•ˆ ํ™œ์—ฝ์ˆ˜๋ฆผ๋‚ด์˜ ๋‹ค์ธต ์‹์ƒ์˜ ์‹๋ฌผ ๊ณ„์ ˆ์„ ๊ทผ์ ‘ ํ‘œ๋ฉด ์›๊ฒฉ ์„ผ์‹ฑ ์‹œ์Šคํ…œ์„ ์ด์šฉํ•˜์—ฌ ๊ด€์ธกํ•˜๊ณ , ์œ„์„ฑ NDVI ๊ธฐ๋ฐ˜์˜ ์‹๋ฌผ ๊ณ„์ ˆ๊ณผ ๋น„๊ตํ•˜์˜€๋‹ค. ๋‹ค์ฑ„๋„ ๋ถ„๊ด‘๊ณ„๋ฅผ ์ƒ๋ถ€ ์‹์ƒ์˜ ์œ„์™€ ์•„๋ž˜์— ์„ค์น˜ํ•จ์œผ๋กœ์จ, ์ƒ๋ถ€ ์‹์ƒ๊ณผ ํ•˜๋ถ€ ์‹์ƒ์˜ ์‹๋ฌผ ๊ณ„์ ˆ์„ ๊ฐ๊ฐ ์—ฐ์†์ ์œผ๋กœ ๊ด€์ธกํ•˜์˜€๋‹ค. ์‹๋ฌผ ๊ณ„์ ˆ์„ ํƒ์ง€ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ๊ฐ€์žฅ ๋งŽ์ด ์‚ฌ์šฉ๋˜๋Š” ๋ฐฉ๋ฒ•์ธ 1) ์—ญ์น˜๋ฅผ ์ด์šฉํ•˜๋Š” ๋ฐฉ๋ฒ•๊ณผ 2) ์ด๊ณ„๋„ํ•จ์ˆ˜๋ฅผ ์ด์šฉํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์‚ฌ์šฉํ•˜์—ฌ ๊ฐœ์—ฝ ์‹œ๊ธฐ ๋ฐ ์„ฑ์ˆ™ ์‹œ๊ธฐ๋ฅผ ๊ณ„์‚ฐํ•˜๊ณ  ์ด๋ฅผ ๋‹ค์ธต ์‹์ƒ์˜ ์‹๋ฌผ ๊ณ„์ ˆ๊ณผ ๋น„๊ตํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ ๊ฒฐ๊ณผ, ์ฒซ๋ฒˆ์งธ๋กœ, ๊ตฐ๋ฝ์˜ ์ƒ์ธต๋ถ€์—์„œ ์‹ค์ธกํ•œ NDVI์™€ ์œ„์„ฑ ๊ธฐ๋ฐ˜์˜ NDVI๊ฐ€ ๊ฐ•ํ•œ ์„ ํ˜• ๊ด€๊ณ„๋ฅผ ๋ณด์ด๋Š” ๊ฒƒ์„ ํ™•์ธํ–ˆ๋‹ค (R2=0.95 ๋Š” MODIS ์˜์ƒ๋“ค ๋ฐ R2= 0.85 ๋Š” Landsat8). ๋‘๋ฒˆ์งธ๋กœ, ์ด๊ณ„๋„ํ•จ์ˆ˜ ๋ฐฉ๋ฒ•๊ณผ 10%์˜ ์—ญ์น˜ ๊ฐ’์„ ์ด์šฉํ•œ ๋ฐฉ๋ฒ•์ด ๋น„์Šทํ•œ ๊ฐœ์—ฝ ์‹œ๊ธฐ๋ฅผ ์ถ”์ •ํ•˜๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€์œผ๋ฉฐ, ํ•˜๋ถ€ ์‹์ƒ์˜ ๊ฐœ์—ฝ ์‹œ๊ธฐ์™€ ๋น„์Šทํ•œ ์‹œ๊ธฐ์ž„์„ ํ™•์ธํ•˜์˜€๋‹ค. ์„ธ๋ฒˆ์งธ๋กœ, ์ด๊ณ„๋„ํ•จ์ˆ˜ ๋ฐฉ๋ฒ•๊ณผ 90%์˜ ์—ญ์น˜ ๊ฐ’์„ ์ด์šฉํ•œ ๋ฐฉ๋ฒ•์ด ๋น„์Šทํ•œ ์„ฑ์ˆ™ ์‹œ๊ธฐ๋ฅผ ์‚ฐ์ถœํ•˜์˜€์œผ๋ฉฐ, ์ด๋Š” ์ƒ๋ถ€ ์‹์ƒ์˜ ์„ฑ์ˆ™ ์‹œ๊ธฐ์™€ ๋น„์Šทํ•˜์˜€๋‹ค. ์ถ”๊ฐ€์ ์œผ๋กœ ์ƒ๋ถ€ ์‹์ƒ์˜ ๊ฐœ์—ฝ ์‹œ๊ธฐ์™€ ํ•˜๋ถ€ ์‹์ƒ์˜ ๊ฐœ์—ฝ ์‹œ๊ธฐ๊ฐ€ ์˜จ๋„์™€ ๋ฐ˜์‘ํ•˜๋Š” ์ •๋„๊ฐ€ ๋šœ๋ ทํ•˜๊ฒŒ ์ฐจ์ด๊ฐ€ ๋‚˜๋Š” ๊ฒƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์ƒ๋ถ€ ์‹์ƒ์˜ ๊ฐœ์—ฝ ์‹œ๊ธฐ๋Š” ์ ์‚ฐ ์ƒ์žฅ ์˜จ๋„ ์ผ์ˆ˜ (AGDD)์™€ ๊ฐ•ํ•œ ์ƒ๊ด€์„ฑ์„ ๋ณด์˜€๊ณ , ํ•˜๋ถ€ ์‹์ƒ์˜ ๊ฐœ์—ฝ ์‹œ๊ธฐ๋Š” AGDD์™€ ์—ฐ๊ด€์„ฑ์„ ๊ฐ–๊ณ  ์žˆ์„ ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ์ถ”์œ„ ์ผ์ˆ˜(NCD)์—๋„ ๋ฏผ๊ฐํ•˜๊ฒŒ ๋ฐ˜์‘ํ•˜๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค. ์ด๋Ÿฌํ•œ ๊ฒฐ๊ณผ๋Š” ์œ„์„ฑ NDVI ๊ธฐ๋ฐ˜์˜ ๊ฐœ์—ฝ ์‹œ๊ธฐ๋Š” ํ•˜๋ถ€ ์‹์ƒ์˜ ๊ฐœ์—ฝ ์‹œ๊ธฐ์™€ ์—ฐ๊ด€์„ฑ์ด ๋†’๊ณ , ์„ฑ์ˆ™ ์‹œ๊ธฐ๋Š” ์ƒ๋ถ€ ์‹์ƒ์˜ ์„ฑ์ˆ™ ์‹œ๊ธฐ์™€ ๋น„์Šทํ•˜๋‹ค๋Š” ๊ฒƒ์„ ์˜๋ฏธํ•œ๋‹ค. ๋˜ํ•œ, ์ƒ๋ถ€ ์‹์ƒ๊ณผ ํ•˜๋ถ€ ์‹์ƒ์ด ์˜จ๋„์— ๋‹ค๋ฅธ ๋ฏผ๊ฐ์„ฑ์„ ๊ฐ–๊ณ  ์žˆ์–ด, ์œ„์„ฑ์—์„œ ์‚ฐ์ถœ๋œ ์‹๋ฌผ ๊ณ„์ ˆ์„ ์ด์šฉํ•˜์—ฌ ๊ธฐํ›„๋ณ€ํ™”๋ฅผ ์ดํ•ดํ•˜๊ณ ์ž ํ•  ๋•Œ, ์–ด๋–ค ์ธต์˜ ์‹์ƒ์ด ์œ„์„ฑ ์˜์ƒ์— ์ฃผ๋œ ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š”์ง€ ๊ณ ๋ คํ•ด์•ผ ํ•œ๋‹ค๋Š” ๊ฒƒ์„ ์‹œ์‚ฌํ•œ๋‹ค. ์œ„์„ฑ์€ ๋„“์€ ์ง€์—ญ์˜ ๋ณ€ํ™”๋ฅผ ์†์‰ฝ๊ฒŒ ๋ชจ๋‹ˆํ„ฐ๋งํ•  ์ˆ˜ ์žˆ์–ด ๋งŽ์€ ๊ฐ€๋Šฅ์„ฑ์„ ๊ฐ–๊ณ  ์žˆ๋Š” ๋„๊ตฌ์ด์ง€๋งŒ, ๋ณด๋‹ค ์ •ํ™•ํ•œ ์œ„์„ฑ ๊ด€์ธก ๊ฐ’์„ ์ดํ•ดํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ํ˜„์žฅ์—์„œ ๊ด€์ธก๋œ ์ž๋ฃŒ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ๊ฒ€์ฆ์ด ์š”๊ตฌ๋œ๋‹ค. ๋ณธ ํ•™์œ„ ๋…ผ๋ฌธ์—์„œ๋Š” 1) ๊ทผ์ ‘ ํ‘œ๋ฉด ์„ผ์‹ฑ ์‹œ์Šคํ…œ์„ ๊ฐœ๋ฐœ, 2) ๊ทผ์ ‘ ํ‘œ๋ฉด ์„ผ์‹ฑ ์‹œ์Šคํ…œ์„ ํ™œ์šฉํ•œ ์‹์ƒ์˜ ์ƒ๋ฆฌํ•™์  ๊ตฌ์กฐ์  ๋ณ€ํ™”์˜ ์ง€์†์ ์ธ ๊ด€์ธก, 3) ๋‹ค์ธต ์‹์ƒ ๊ตฌ์กฐ์—์„œ ๊ด€์ธก๋˜๋Š” ์‹๋ฌผ ๊ณ„์ ˆ ๋ฐ ์œ„์„ฑ์—์„œ ์ถ”์ •๋œ ์‹๋ฌผ ๊ณ„์ ˆ์˜ ์—ฐ๊ด€์„ฑ ํ‰๊ฐ€๋ฅผ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ๊ฐœ๋ฐœํ•œ ๊ทผ์ ‘ ํ‘œ๋ฉด ์„ผ์„œ๋Š” ์ƒ์—… ์„ผ์„œ๋“ค๊ณผ ๋น„๊ตํ–ˆ์„ ๋•Œ, ๊ฐ€๊ฒฉ์ ์œผ๋กœ ์ €๋ ดํ•˜๊ณ  ์† ์‰ฝ๊ฒŒ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ์—ˆ์œผ๋ฉฐ, ์„ฑ๋Šฅ์ ์œผ๋กœ๋„ ๋ถ€์กฑํ•จ์ด ์—†์—ˆ๋‹ค. ๊ทผ์ ‘ ํ‘œ๋ฉด ์„ผ์‹ฑ ์‹œ์Šคํ…œ์„ ์ด์šฉํ•˜์—ฌ SIF๋ฅผ ์˜จ๋Œ€ ์นจ์—ฝ์ˆ˜๋ฆผ์—์„œ ์ง€์†์ ์œผ๋กœ ๊ด€์ธกํ•œ ๊ฒฐ๊ณผ, ์ด์ผ์ฐจ์ƒ์‚ฐ์„ฑ๊ณผ SIF๋Š” ๋น„์„ ํ˜• ๊ด€๊ณ„๋ฅผ ๊ฐ–๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค. ์ด๋Š” ๋งŽ์€ ์„ ํ–‰ ์—ฐ๊ตฌ๋“ค์—์„œ ๋ฐœํ‘œํ•œ ์œ„์„ฑ ๊ธฐ๋ฐ˜์˜ SIF์™€ GPP๊ฐ€ ์„ ํ˜•์ ์ธ ๊ด€๊ณ„๋ฅผ ๋ณด์ธ๋‹ค๋Š” ๊ฒƒ๊ณผ๋Š” ๋‹ค์†Œ ์ƒ๋ฐ˜๋œ ๊ฒฐ๊ณผ์ด๋‹ค. ๋‹ค์ธก ์‹์ƒ์˜ ๋ด„์ฒ  ์‹๋ฌผ ๊ณ„์ ˆ์„ ์—ฐ์†์ ์œผ๋กœ ๊ด€์ธกํ•˜๊ณ , ์œ„์„ฑ ๊ธฐ๋ฐ˜์˜ ์‹๋ฌผ ๊ณ„์ ˆ๊ณผ ๋น„๊ตํ‰๊ฐ€ํ•œ ์—ฐ๊ตฌ์—์„œ๋Š” ์œ„์„ฑ ๊ธฐ๋ฐ˜์˜ ๊ฐœ์—ฝ ์‹œ๊ธฐ๋Š” ํ•˜๋ถ€ ์‹์ƒ์— ์˜ํ–ฅ์„ ์ฃผ๋กœ ๋ฐ›๊ณ , ์„ฑ์ˆ™ ์‹œ๊ธฐ๋Š” ์ƒ๋ถ€ ์‹์ƒ์˜ ์‹œ๊ธฐ์™€ ๋น„์Šทํ•œ ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค. ์ฆ‰, ๊ทผ์ ‘ ํ‘œ๋ฉด ์„ผ์‹ฑ ์‹œ์Šคํ…œ์„ ์ด์šฉํ•˜์—ฌ ํ˜„์žฅ์—์„œ ์‹ค์ธกํ•œ ๊ฒฐ๊ณผ๋Š” ์œ„์„ฑ ์˜์ƒ์„ ํ™œ์šฉํ•œ ์—ฐ๊ตฌ๋“ค๊ณผ๋Š” ๋‹ค๋ฅธ ๊ฒฐ๊ณผ๋ฅผ ๋ณด์ผ ์ˆ˜๋„ ์žˆ์œผ๋ฉฐ, ์œ„์„ฑ ์˜์ƒ์„ ํ‰๊ฐ€ ๋ฐ ์ดํ•ดํ•˜๋Š”๋ฐ ์‚ฌ์šฉ๋  ์ˆ˜ ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ, ๋ณด๋‹ค ์ •ํ™•ํ•œ ์‹์ƒ์˜ ๊ตฌ์กฐ์ , ์ƒ๋ฆฌํ•™์  ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ์ดํ•ดํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๊ทผ์ ‘ ํ‘œ๋ฉด ์„ผ์‹ฑ์„ ํ™œ์šฉํ•œ ํ˜„์žฅ์—์„œ ๊ตฌ์ถ•ํ•œ ์ž๋ฃŒ ๊ธฐ๋ฐ˜์˜ ๋” ๋งŽ์€ ์—ฐ๊ตฌ๋“ค์ด ํ•„์š”ํ•˜๋‹ค๋Š” ๊ฒƒ์„ ์‹œ์‚ฌํ•œ๋‹ค.Abstract i Chapter 1. Introduction 2 1. Background 2 2. Purpose 5 Chapter 2. Monitoring SIF using a filter-based near surface remote sensing system 9 1. Introduction 9 2. Instrument desing and technical spefications of the filter-based smart surface sensing system (4S-SIF) 12 2.1. Ultra-narrow band pass filter 14 2.2. Calibration of 4S-SIF 15 2.3. Temperature and humidity response 16 2.4. Evaluate SIF quality from 4S-SIF in the field 17 3. Results 20 4. Discussion 23 Chapter 3. SIF is non-linearly related to canopy photosynthesis in a temperate evergreen needleleaf forest during fall transition 27 1. Introduction 27 2. Methods and Materials 31 2.1. Study site 31 2.2. Leaf-level fluorescence measurement 32 2.3. Canopy-level SIF and spectral reflectance measurement 34 2.4. SIF retrieval 37 2.5. Canopy-level photosynthesis estimates 38 2.6. Meteorological variables and APAR 39 2.7. Statistical analysis 40 3. Results 41 4. Discussion 48 4.1. Non-linear relationships between SIF and GPP 49 4.2. Role of f_esc in SIF-GPP relationship 53 4.3. Implications of non-linear SIF-GPP relationship in temperate ENF 54 5. Conclusion 57 6. Appendix 59 Chapter 4. Monitoring spring phenology of multi-layer canopy in a deciduous broadleaf forest: What signal do satellites actually see in space 65 1. Introduction 65 2. Materials and Methods 69 2.1. Study site 69 2.2. Multi-layer spectral reflectance and transmittance measurement 70 2.3. Phenometrics detection 72 2.4. In-situ multi-layer phenology 74 2.5. Satellite remote sensing data 75 2.6. Meteorological variables 75 3. Results 76 3.1. Seasonal to interannual variations of NDVI, 1-transmittance, and air temperature 76 3.2. Inter-annual variation of leaf-out and full-leaf dates 78 3.3. The relationships between dates calculated according tothreshold and in-situ multi-layer phenology 80 3.4. The relationship between multi-layer phenology, AGDD and NCD 81 4. Discussion 82 4.1. How do satellite-based leaf-out and full-leaf dates differ from in-situ multi-layer phenology 83 4.2. Are the 10 % and 90 % thresholds from satellite-basedNDVI always well matched with the leaf-out and full-leaf dates calculated by the curvature change rate 86 4.3. What are the implications of the difference between satellite-based and multi-layer phenology 87 4.4. Limitations and implications for future studies 89 5. Conclusion 91 6. Appendix 92 Chapter 5. Conclusion 114 Abstract in Korean 115๋ฐ•

    Modelling, Monitoring and Validation of Plant Phenology Products

    Get PDF
    Phรคnologie, die Lehre der periodisch wiederkehrenden Entwicklungserscheinungen in der Natur, hat sich in den letzten Jahrzehnten zu einem wichtigen Teilgebiet der Klimaforschung entwickelt. Einer der Haupteffekte der globalen Erwรคrmung ist die Verรคnderung der Wachstumsmuster und Fortpflanzungsgewohnheiten von Pflanzen, und somit verรคnderte Phรคnologie. Um die Auswirkungen der Klimaverรคnderung auf wildwachsende sowie Kulturpflanzen vorherzusagen, werden phรคnologische Modelle angewendet, verbessert und validiert. Dabei ist Wissen รผber den aktuellen Stand der Vegetation notwendig, welches aus Beobachtungen und fernerkundliche Messungen gewonnen wird. Die hier prรคsentierte Arbeit befasst sich mit dem Verstรคndnis der Zusammenhรคnge zwischen fernerkundlichen Messungen und phรคnologischen Stadien und somit den Herausforderungen der modernen phรคnologischen Forschung: Der Vorhersage der Phรคnologie durch Modellierungsansรคtze, der Beobachtung der Phรคnologie mit optischen boden- und satellitengestรผtzten Sensoren und der Validierung phรคnologischer Produkte.Phenology, the study of recurring life cycle events of plants and animals has emerged as an important part of climate change research within the last decades. One of the main effects of global warming on vegetation is altered phenology, since plants have to modify their growth patterns and reproduction habits as reaction to changing environmental conditions. Forecasting phenology, thus phenological modelling, is a timely challenge given the necessity to predict the impact of global warming on wild-growing species and agricultural crops. However, assessing the present state of vegetation, thus phenological monitoring, is essential to update and validate model results. An improved comprehension of the relationships between plant phenology and remotely sensed products is crucial to interpret these results. Consequently, the presented thesis deals with the main challenges faced in modern phenology research, covering phenological forecasting with a modelling approach, satellite-based phenology extraction, and near-surface long-term monitoring of phenology

    Development of atmospheric correction algorithms for very high spectral and spatial resolution images: application to SEOSAT and the FLEX/Sentinel-3 missions

    Get PDF
    Advanced high spectral and spatial resolution imager spectrometers on board new generation of Earth Observation missions bring new exciting opportunities to the remote sensing scientific community. However, this progress goes hand in hand with new challenges. The exploitation of data acquired from these family of advanced instruments requires new processing algorithms able to deal with these particularities. As part of this evolution, atmospheric correction algorithms - a mandatory processing step applied prior to the Earth surface reflectance data exploitation - must be adapted or reformulated, thereby paying special attention to how atmospheric effects disturb the acquired signal in the spectral and spatial domains. For these reasons, this Thesis aims to develop new atmospheric correction strategies to be applied over very high spectral and spatial resolution data. Following this goal, this Thesis was conducted in the framework of two missions during their development phase: (1) the FLEX/Sentinelโ€“3 tandem space mission (for high spectral resolution data) and, (2) the Ingenio/SEOsat space mission (for high spatial resolution data). In the context of these missions, an additional challenge is introduced when acquiring proximal remote sensing data for their validation. This is especially relevant for the FLEX mission, which is dedicated to monitor the weak Solar Induced Chlorophyll Fluorescence (SIF) signal. Following this motivation, the main objectives of this Thesis are threefold: The first objective involved to analyse atmospheric effects on the Ingenio/SEOsat high spatial and low spectral resolution satellite mission and to propose a new atmospheric correction strategy. This strategy was called Hybrid and combines: (1) a perโ€“pixel atmospheric radiative transfer model inversion technique making use of auxiliary data to characterize the atmospheric state, followed by (2) an image deconvolution technique modelling the atmospheric MTF to correct for atmospheric spatial effects. The Hybrid method was applied to Sentinelโ€“2 data, particularly over bands acquired at 10 m resolution due to its similarities with the Ingenio/SEOsat mission. The second objective involved to define a novel atmospheric correction strategy for the FLEX/Sentinel-3 tandem mission. The proposed strategy is a two-steps method where information from Sentinel-3 instruments, OLCI and SLSTR, is first used in synergy to characterize the aerosol and water vapour presence. The high spectral resolution of FLEX data is subsequently exploited to refine the previously aerosol characterization. As part of this objective, the suitability of all the approximations assumed in the formulation proposed for the atmospheric inversion of FLEX data was validated against the FLEX mission requirements. The third objective involved to develop a strategy that deals with the atmospheric correction of very high spectral and spatial resolution data acquired at lower atmospheric scales such as Unmanned Aerial Vehicles or systems mounted on towers. In this Thesis, it was demonstrated that even when acquiring the signal at proximal remote sensing scale, i.e., few meters from the target oxygen absorption must be compensated to properly estimate SIF within these spectral regions. For this reason, a strategy to compensate for the oxygen absorption while properly dealing with the instrumental spectral response function convolution was presented and tested using simulated data. Altogether, this work identified challenges associated to atmospheric correction when applying to high spatial and especially to very high spectral resolution data. In this Thesis, adequate formulations have been developed to resolve these difficulties, and successful methodologies have been designed for the particular cases of SEOsat (high spatial resolution) and FLEX (high spectral resolution); two future remote sensing space missions that will be launched in the forthcoming years

    Space-Borne Retrieval of Solar-Induced Plant Fluorescence and its Relationship to Photosynthetic Parameters

    Get PDF
    Studies have shown that chlorophyll fluorescence is directly linked to the photosynthetic efficiency of plants. The excess absorbed energy by leaves which has not been used in photosynthesis is re-emitted to the environment, either as heat or fluorescence. Therefore, any potential stress in plants is technically visible through monitoring fluorescence and the Solar-Induced plant Fluorescence (SIF) can thus be monitored as an indicator for vegetation growth and health status. SIF is a broad band spectral feature exhibiting two maxima at about 680 and 740 nm respectively, also known as red and far-red SIF. In the recent decades, there have been several studies addressing SIF, its importance and approaches to measure its value over vegetated regions. Among several measurement approaches, satellite-based remote sensing of SIF is particularly valuable, since the covered (spatial) area can be explicitly larger than is the case with in-situ measurements. With current space-borne instruments, even a full global coverage is attainable within a few days. In the framework of this thesis, two novel methods have been developed, tested and utilized to retrieve SIF from hyper-spectral satellite measurements. In particular, the first developed method, makes use of the Fraunhofer absorption lines in the far-red spectral region (748.5 - 753 nm), to retrieve SIF via its in-filling effect on these absorption lines. However, the satellite-based remote sensing spectrometers, used in this work, typically exhibit an additive spectral feature, which is not fluorescence. This is often accompanying the actual SIF retrieval and can significantly deteriorate the results. To account for this effect, a correction method has been developed and is combined with the retrieval algorithm. The model-based sensitivity studies confirmed the feasibility of the method to disentangle SIF from this additive feature. Additionally, the potential influences of the atmospheric and measurement conditions on the retrieval results have been assessed. Finally, the method has been applied to ten years of SCIAMACHY data and the retrieved results have been mapped on seasonal base. On a global scale, the obtained values are between 0 to 4 mW ma 2 sra 1 nma 1 . In absence of large area ground based validation data, final judgment of the results obtained in the framework of this study, is not possible. Alternatively, comparison of the achieved results with those published by the US National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) has been performed. Despite some differences, the comparison also exhibited close results, both qualitatively and quantitatively. It should be noted that comparisons among the retrievals provided by other research groups (not only GSFC) over the same spatial region is also variable depending on the instruments and methods utilized (ranging on average from a few tenths to more than 4 mW ma 2 sra 1 nma 1 ). To further assess the reliability of retrieved SIF, monthly average values have been compared to ground-based flux-tower measurements of Absorbed Photosynthetically Active Radiation by plants (APAR) and Gross Primary Production (GPP), for a time span of several years. The agreement between the seasonal trends of SIF and these parameters was significant. Although the main focus of this PhD work was on retrieving SIF in the far-red wavelength region using a spectral micro-window, there are clear scientific benefits in having an estimation over the full spectral emission range of SIF. Therefore, the second retrieval method, developed in the framework of this work, was to obtain the full spectrum of the emitted SIF by retrieving the leaf and canopy parameters, utilizing a combination of two radiative transfer models. The model-based studies showed the feasibility of the method to retrieve SIF with high accuracy. Moreover, the first results of applying this approach on GOME-2 measurements demonstrated promising outcomes. Examples of the fit quality and retrieved SIF over two different vegetation coverage types have been presented in this thesis, showing clear applicability of the method to retrieve SIF over its full spectral emission range and the potential to derive other vegetation parameters (e.g. Chlorophyll content of the leaves and the so-called leaf area index)
    • โ€ฆ
    corecore