2 research outputs found

    ์‹œ๊ณต๊ฐ„ ํ•ด์ƒ๋„ ํ–ฅ์ƒ์„ ํ†ตํ•œ ์‹์ƒ ๋ณ€ํ™” ๋ชจ๋‹ˆํ„ฐ๋ง

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ํ™˜๊ฒฝ๋Œ€ํ•™์› ํ˜‘๋™๊ณผ์ • ์กฐ๊ฒฝํ•™, 2023. 2. ๋ฅ˜์˜๋ ฌ.์œก์ƒ ์ƒํƒœ๊ณ„์—์„œ ๋Œ€๊ธฐ๊ถŒ๊ณผ ์ƒ๋ฌผ๊ถŒ์˜ ์ƒํ˜ธ ์ž‘์šฉ์„ ์ดํ•ดํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์‹์ƒ ๋ณ€ํ™”์˜ ๋ชจ๋‹ˆํ„ฐ๋ง์ด ํ•„์š”ํ•˜๋‹ค. ์ด ๋•Œ, ์œ„์„ฑ์˜์ƒ์€ ์ง€ํ‘œ๋ฉด์„ ๊ด€์ธกํ•˜์—ฌ ์‹์ƒ์ง€๋„๋ฅผ ์ œ๊ณตํ•  ์ˆ˜ ์žˆ์ง€๋งŒ, ์ง€ํ‘œ๋ณ€ํ™”์˜ ์ƒ์„ธํ•œ ์ •๋ณด๋Š” ๊ตฌ๋ฆ„์ด๋‚˜ ์œ„์„ฑ ์ด๋ฏธ์ง€์˜ ๊ณต๊ฐ„ ํ•ด์ƒ๋„์— ์˜ํ•ด ์ œํ•œ๋˜์—ˆ๋‹ค. ๋˜ํ•œ ์œ„์„ฑ์˜์ƒ์˜ ์‹œ๊ณต๊ฐ„ ํ•ด์ƒ๋„๊ฐ€ ์‹์ƒ์ง€๋„๋ฅผ ํ†ตํ•œ ๊ด‘ํ•ฉ์„ฑ ๋ชจ๋‹ˆํ„ฐ๋ง์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์€ ์™„์ „ํžˆ ๋ฐํ˜€์ง€์ง€ ์•Š์•˜๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๊ณ ํ•ด์ƒ๋„ ์‹์ƒ ์ง€๋„๋ฅผ ์ผ๋‹จ์œ„๋กœ ์ƒ์„ฑํ•˜๊ธฐ ์œ„์„ฑ ์˜์ƒ์˜ ์‹œ๊ณต๊ฐ„ ํ•ด์ƒ๋„๋ฅผ ํ–ฅ์ƒ์‹œํ‚ค๋Š” ๊ฒƒ์„ ๋ชฉํ‘œ๋กœ ํ•˜์˜€๋‹ค. ๊ณ ํ•ด์ƒ๋„ ์œ„์„ฑ์˜์ƒ์„ ํ™œ์šฉํ•œ ์‹์ƒ ๋ณ€ํ™” ๋ชจ๋‹ˆํ„ฐ๋ง์„ ์‹œ๊ณต๊ฐ„์ ์œผ๋กœ ํ™•์žฅํ•˜๊ธฐ ์œ„ํ•ด 1) ์ •์ง€๊ถค๋„ ์œ„์„ฑ์„ ํ™œ์šฉํ•œ ์˜์ƒ์œตํ•ฉ์„ ํ†ตํ•ด ์‹œ๊ฐ„ํ•ด์ƒ๋„ ํ–ฅ์ƒ, 2) ์ ๋Œ€์ ์ƒ์„ฑ๋„คํŠธ์›Œํฌ๋ฅผ ํ™œ์šฉํ•œ ๊ณต๊ฐ„ํ•ด์ƒ๋„ ํ–ฅ์ƒ, 3) ์‹œ๊ณต๊ฐ„ํ•ด์ƒ๋„๊ฐ€ ๋†’์€ ์œ„์„ฑ์˜์ƒ์„ ํ† ์ง€ํ”ผ๋ณต์ด ๊ท ์งˆํ•˜์ง€ ์•Š์€ ๊ณต๊ฐ„์—์„œ ์‹๋ฌผ ๊ด‘ํ•ฉ์„ฑ ๋ชจ๋‹ˆํ„ฐ๋ง์„ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ์ด์ฒ˜๋Ÿผ, ์œ„์„ฑ๊ธฐ๋ฐ˜ ์›๊ฒฉํƒ์ง€์—์„œ ์ƒˆ๋กœ์šด ๊ธฐ์ˆ ์ด ๋“ฑ์žฅํ•จ์— ๋”ฐ๋ผ ํ˜„์žฌ ๋ฐ ๊ณผ๊ฑฐ์˜ ์œ„์„ฑ์˜์ƒ์€ ์‹œ๊ณต๊ฐ„ ํ•ด์ƒ๋„ ์ธก๋ฉด์—์„œ ํ–ฅ์ƒ๋˜์–ด ์‹์ƒ ๋ณ€ํ™”์˜ ๋ชจ๋‹ˆํ„ฐ๋ง ํ•  ์ˆ˜ ์žˆ๋‹ค. ์ œ2์žฅ์—์„œ๋Š” ์ •์ง€๊ถค๋„์œ„์„ฑ์˜์ƒ์„ ํ™œ์šฉํ•˜๋Š” ์‹œ๊ณต๊ฐ„ ์˜์ƒ์œตํ•ฉ์œผ๋กœ ์‹๋ฌผ์˜ ๊ด‘ํ•ฉ์„ฑ์„ ๋ชจ๋‹ˆํ„ฐ๋ง ํ–ˆ์„ ๋•Œ, ์‹œ๊ฐ„ํ•ด์ƒ๋„๊ฐ€ ํ–ฅ์ƒ๋จ์„ ๋ณด์˜€๋‹ค. ์‹œ๊ณต๊ฐ„ ์˜์ƒ์œตํ•ฉ ์‹œ, ๊ตฌ๋ฆ„ํƒ์ง€, ์–‘๋ฐฉํ–ฅ ๋ฐ˜์‚ฌ ํ•จ์ˆ˜ ์กฐ์ •, ๊ณต๊ฐ„ ๋“ฑ๋ก, ์‹œ๊ณต๊ฐ„ ์œตํ•ฉ, ์‹œ๊ณต๊ฐ„ ๊ฒฐ์ธก์น˜ ๋ณด์™„ ๋“ฑ์˜ ๊ณผ์ •์„ ๊ฑฐ์นœ๋‹ค. ์ด ์˜์ƒ์œตํ•ฉ ์‚ฐ์ถœ๋ฌผ์€ ๊ฒฝ์ž‘๊ด€๋ฆฌ ๋“ฑ์œผ๋กœ ์‹์ƒ ์ง€์ˆ˜์˜ ์—ฐ๊ฐ„ ๋ณ€๋™์ด ํฐ ๋‘ ์žฅ์†Œ(๋†๊ฒฝ์ง€์™€ ๋‚™์—ฝ์ˆ˜๋ฆผ)์—์„œ ํ‰๊ฐ€ํ•˜์˜€๋‹ค. ๊ทธ ๊ฒฐ๊ณผ, ์‹œ๊ณต๊ฐ„ ์˜์ƒ์œตํ•ฉ ์‚ฐ์ถœ๋ฌผ์€ ๊ฒฐ์ธก์น˜ ์—†์ด ํ˜„์žฅ๊ด€์ธก์„ ์˜ˆ์ธกํ•˜์˜€๋‹ค (R2 = 0.71, ์ƒ๋Œ€ ํŽธํ–ฅ = 5.64% ๋†๊ฒฝ์ง€; R2 = 0.79, ์ƒ๋Œ€ ํŽธํ–ฅ = -13.8%, ํ™œ์—ฝ์ˆ˜๋ฆผ). ์‹œ๊ณต๊ฐ„ ์˜์ƒ์œตํ•ฉ์€ ์‹์ƒ ์ง€๋„์˜ ์‹œ๊ณต๊ฐ„ ํ•ด์ƒ๋„๋ฅผ ์ ์ง„์ ์œผ๋กœ ๊ฐœ์„ ํ•˜์—ฌ, ์‹๋ฌผ ์ƒ์žฅ๊ธฐ๋™์•ˆ ์œ„์„ฑ์˜์ƒ์ด ํ˜„์žฅ ๊ด€์ธก์„ ๊ณผ์†Œ ํ‰๊ฐ€๋ฅผ ์ค„์˜€๋‹ค. ์˜์ƒ์œตํ•ฉ์€ ๋†’์€ ์‹œ๊ณต๊ฐ„ ํ•ด์ƒ๋„๋กœ ๊ด‘ํ•ฉ์„ฑ ์ง€๋„๋ฅผ ์ผ๊ฐ„๊ฒฉ์œผ๋กœ ์ƒ์„ฑํ•˜๊ธฐ์— ์ด๋ฅผ ํ™œ์šฉํ•˜์—ฌ ์œ„์„ฑ ์˜์ƒ์˜ ์ œํ•œ๋œ ์‹œ๊ณต๊ฐ„ ํ•ด์ƒ๋„๋กœ ๋ฐํ˜€์ง€์ง€ ์•Š์€ ์‹๋ฌผ๋ณ€ํ™”์˜ ๊ณผ์ •์„ ๋ฐœ๊ฒฌํ•˜๊ธธ ๊ธฐ๋Œ€ํ•œ๋‹ค. ์‹์ƒ์˜ ๊ณต๊ฐ„๋ถ„ํฌ์€ ์ •๋ฐ€๋†์—…๊ณผ ํ† ์ง€ ํ”ผ๋ณต ๋ณ€ํ™” ๋ชจ๋‹ˆํ„ฐ๋ง์„ ์œ„ํ•ด ํ•„์ˆ˜์ ์ด๋‹ค. ๊ณ ํ•ด์ƒ๋„ ์œ„์„ฑ์˜์ƒ์œผ๋กœ ์ง€๊ตฌ ํ‘œ๋ฉด์„ ๊ด€์ธกํ•˜๋Š” ๊ฒƒ์„ ์šฉ์ดํ•˜๊ฒŒ ํ•ด์กŒ๋‹ค. ํŠนํžˆ Planet Fusion์€ ์ดˆ์†Œํ˜•์œ„์„ฑ๊ตฐ ๋ฐ์ดํ„ฐ๋ฅผ ์ตœ๋Œ€ํ•œ ํ™œ์šฉํ•ด ๋ฐ์ดํ„ฐ ๊ฒฐ์ธก์ด ์—†๋Š” 3m ๊ณต๊ฐ„ ํ•ด์ƒ๋„์˜ ์ง€ํ‘œ ํ‘œ๋ฉด ๋ฐ˜์‚ฌ๋„์ด๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๊ณผ๊ฑฐ ์œ„์„ฑ ์„ผ์„œ(Landsat์˜ ๊ฒฝ์šฐ 30~60m)์˜ ๊ณต๊ฐ„ ํ•ด์ƒ๋„๋Š” ์‹์ƒ์˜ ๊ณต๊ฐ„์  ๋ณ€ํ™”๋ฅผ ์ƒ์„ธ ๋ถ„์„ํ•˜๋Š” ๊ฒƒ์„ ์ œํ•œํ–ˆ๋‹ค. ์ œ3์žฅ์—์„œ๋Š” Landsat ๋ฐ์ดํ„ฐ์˜ ๊ณต๊ฐ„ ํ•ด์ƒ๋„๋ฅผ ํ–ฅ์ƒํ•˜๊ธฐ ์œ„ํ•ด Planet Fusion ๋ฐ Landsat 8 ๋ฐ์ดํ„ฐ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์ด์ค‘ ์ ๋Œ€์  ์ƒ์„ฑ ๋„คํŠธ์›Œํฌ(the dual RSS-GAN)๋ฅผ ํ•™์Šต์‹œ์ผœ, ๊ณ ํ•ด์ƒ๋„ ์ •๊ทœํ™” ์‹์ƒ ์ง€์ˆ˜(NDVI)์™€ ์‹๋ฌผ ๊ทผ์ ์™ธ์„  ๋ฐ˜์‚ฌ(NIRv)๋„๋ฅผ ์ƒ์„ฑํ•˜๋Š” ํ•œ๋‹ค. ํƒ€์›Œ๊ธฐ๋ฐ˜ ํ˜„์žฅ ์‹์ƒ์ง€์ˆ˜(์ตœ๋Œ€ 8๋…„)์™€ ๋“œ๋ก ๊ธฐ๋ฐ˜ ์ดˆ๋ถ„๊ด‘์ง€๋„๋กœ the dual RSS-GAN์˜ ์„ฑ๋Šฅ์„ ๋Œ€ํ•œ๋ฏผ๊ตญ ๋‚ด ๋‘ ๋Œ€์ƒ์ง€(๋†๊ฒฝ์ง€์™€ ํ™œ์—ฝ์ˆ˜๋ฆผ)์—์„œ ํ‰๊ฐ€ํ–ˆ๋‹ค. The dual RSS-GAN์€ Landsat 8 ์˜์ƒ์˜ ๊ณต๊ฐ„ํ•ด์ƒ๋„๋ฅผ ํ–ฅ์ƒ์‹œ์ผœ ๊ณต๊ฐ„ ํ‘œํ˜„์„ ๋ณด์™„ํ•˜๊ณ  ์‹์ƒ ์ง€์ˆ˜์˜ ๊ณ„์ ˆ์  ๋ณ€ํ™”๋ฅผ ํฌ์ฐฉํ–ˆ๋‹ค(R2> 0.96). ๊ทธ๋ฆฌ๊ณ  the dual RSS-GAN์€ Landsat 8 ์‹์ƒ ์ง€์ˆ˜๊ฐ€ ํ˜„์žฅ์— ๋น„ํ•ด ๊ณผ์†Œ ํ‰๊ฐ€๋˜๋Š” ๊ฒƒ์„ ์™„ํ™”ํ–ˆ๋‹ค. ํ˜„์žฅ ๊ด€์ธก์— ๋น„ํ•ด ์ด์ค‘ RSS-GAN๊ณผ Landsat 8์˜ ์ƒ๋Œ€ ํŽธํ–ฅ ๊ฐ’ ๊ฐ๊ฐ -0.8% ์—์„œ -1.5%, -10.3% ์—์„œ -4.6% ์˜€๋‹ค. ์ด๋Ÿฌํ•œ ๊ฐœ์„ ์€ Planet Fusion์˜ ๊ณต๊ฐ„์ •๋ณด๋ฅผ ์ด์ค‘ RSS-GAN๋กœ ํ•™์Šตํ•˜์˜€๊ธฐ์— ๊ฐ€๋Šฅํ–ˆ๋‹ค. ํ—ค๋‹น ์—ฐ๊ตฌ ๊ฒฐ๊ณผ๋Š” Landsat ์˜์ƒ์˜ ๊ณต๊ฐ„ ํ•ด์ƒ๋„๋ฅผ ํ–ฅ์ƒ์‹œ์ผœ ์ˆจ๊ฒจ์ง„ ๊ณต๊ฐ„ ์ •๋ณด๋ฅผ ์ œ๊ณตํ•˜๋Š” ์ƒˆ๋กœ์šด ์ ‘๊ทผ ๋ฐฉ์‹์ด๋‹ค. ๊ณ ํ•ด์ƒ๋„์—์„œ ์‹๋ฌผ ๊ด‘ํ•ฉ์„ฑ ์ง€๋„๋Š” ํ† ์ง€ํ”ผ๋ณต์ด ๋ณต์žกํ•œ ๊ณต๊ฐ„์—์„œ ํƒ„์†Œ ์ˆœํ™˜ ๋ชจ๋‹ˆํ„ฐ๋ง์‹œ ํ•„์ˆ˜์ ์ด๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ Sentinel-2, Landsat ๋ฐ MODIS์™€ ๊ฐ™์ด ํƒœ์–‘ ๋™์กฐ ๊ถค๋„์— ์žˆ๋Š” ์œ„์„ฑ์€ ๊ณต๊ฐ„ ํ•ด์ƒ๋„๊ฐ€ ๋†’๊ฑฐ๋‚˜ ์‹œ๊ฐ„ ํ•ด์ƒ๋„ ๋†’์€ ์œ„์„ฑ์˜์ƒ๋งŒ ์ œ๊ณตํ•  ์ˆ˜ ์žˆ๋‹ค. ์ตœ๊ทผ ๋ฐœ์‚ฌ๋œ ์ดˆ์†Œํ˜•์œ„์„ฑ๊ตฐ์€ ์ด๋Ÿฌํ•œ ํ•ด์ƒ๋„ ํ•œ๊ณ„์„ ๊ทน๋ณตํ•  ์ˆ˜ ์žˆ๋‹ค. ํŠนํžˆ Planet Fusion์€ ์ดˆ์†Œํ˜•์œ„์„ฑ ์ž๋ฃŒ์˜ ์‹œ๊ณต๊ฐ„ ํ•ด์ƒ๋„๋กœ ์ง€ํ‘œ๋ฉด์„ ๊ด€์ธกํ•  ์ˆ˜ ์žˆ๋‹ค. 4์žฅ์—์„œ, Planet Fusion ์ง€ํ‘œ๋ฐ˜์‚ฌ๋„๋ฅผ ์ด์šฉํ•˜์—ฌ ์‹์ƒ์—์„œ ๋ฐ˜์‚ฌ๋œ ๊ทผ์ ์™ธ์„  ๋ณต์‚ฌ(NIRvP)๋ฅผ 3m ํ•ด์ƒ๋„ ์ง€๋„๋ฅผ ์ผ๊ฐ„๊ฒฉ์œผ๋กœ ์ƒ์„ฑํ–ˆ๋‹ค. ๊ทธ๋Ÿฐ ๋‹ค์Œ ๋ฏธ๊ตญ ์บ˜๋ฆฌํฌ๋‹ˆ์•„์ฃผ ์ƒˆํฌ๋ผ๋ฉ˜ํ† -์ƒŒ ํ˜ธ์•„ํ‚จ ๋ธํƒ€์˜ ํ”Œ๋Ÿญ์Šค ํƒ€์›Œ ๋„คํŠธ์›Œํฌ ๋ฐ์ดํ„ฐ์™€ ๋น„๊ตํ•˜์—ฌ ์‹๋ฌผ ๊ด‘ํ•ฉ์„ฑ์„ ์ถ”์ •ํ•˜๊ธฐ ์œ„ํ•œ NIRvP ์ง€๋„์˜ ์„ฑ๋Šฅ์„ ํ‰๊ฐ€ํ•˜์˜€๋‹ค. ์ „์ฒด์ ์œผ๋กœ NIRvP ์ง€๋„๋Š” ์Šต์ง€์˜ ์žฆ์€ ์ˆ˜์œ„ ๋ณ€ํ™”์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ๊ฐœ๋ณ„ ๋Œ€์ƒ์ง€์˜ ์‹๋ฌผ ๊ด‘ํ•ฉ์„ฑ์˜ ์‹œ๊ฐ„์  ๋ณ€ํ™”๋ฅผ ํฌ์ฐฉํ•˜์˜€๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋Œ€์ƒ์ง€ ์ „์ฒด์— ๋Œ€ํ•œ NIRvP ์ง€๋„์™€ ์‹๋ฌผ ๊ด‘ํ•ฉ์„ฑ ์‚ฌ์ด์˜ ๊ด€๊ณ„๋Š” NIRvP ์ง€๋„๋ฅผ ํ”Œ๋Ÿญ์Šค ํƒ€์›Œ ๊ด€์ธก๋ฒ”์œ„์™€ ์ผ์น˜์‹œํ‚ฌ ๋•Œ๋งŒ ๋†’์€ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ๋ณด์˜€๋‹ค. ๊ด€์ธก๋ฒ”์œ„๋ฅผ ์ผ์น˜์‹œํ‚ฌ ๊ฒฝ์šฐ, NIRvP ์ง€๋„๋Š” ์‹๋ฌผ ๊ด‘ํ•ฉ์„ฑ์„ ์ถ”์ •ํ•˜๋Š” ๋ฐ ์žˆ์–ด ํ˜„์žฅ NIRvP๋ณด๋‹ค ์šฐ์ˆ˜ํ•œ ์„ฑ๋Šฅ์„ ๋ณด์˜€๋‹ค. ์ด๋Ÿฌํ•œ ์„ฑ๋Šฅ ์ฐจ์ด๋Š” ํ”Œ๋Ÿญ์Šค ํƒ€์›Œ ๊ด€์ธก๋ฒ”์œ„๋ฅผ ์ผ์น˜์‹œํ‚ฌ ๋•Œ, ์—ฐ๊ตฌ ๋Œ€์ƒ์ง€ ๊ฐ„์˜ NIRvP-์‹๋ฌผ ๊ด‘ํ•ฉ์„ฑ ๊ด€๊ณ„์˜ ๊ธฐ์šธ๊ธฐ๊ฐ€ ์ผ๊ด€์„ฑ์„ ๋ณด์˜€๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ๋ณธ ์—ฐ๊ตฌ ๊ฒฐ๊ณผ๋Š” ์œ„์„ฑ ๊ด€์ธก์„ ํ”Œ๋Ÿญ์Šค ํƒ€์›Œ ๊ด€์ธก๋ฒ”์œ„์™€ ์ผ์น˜์‹œํ‚ค๋Š” ๊ฒƒ์˜ ์ค‘์š”์„ฑ์„ ๋ณด์—ฌ์ฃผ๊ณ  ๋†’์€ ์‹œ๊ณต๊ฐ„ ํ•ด์ƒ๋„๋กœ ์‹๋ฌผ ๊ด‘ํ•ฉ์„ฑ์„ ์›๊ฒฉ์œผ๋กœ ๋ชจ๋‹ˆํ„ฐ๋งํ•˜๋Š” ์ดˆ์†Œํ˜•์œ„์„ฑ๊ตฐ ์ž๋ฃŒ์˜ ์ž ์žฌ๋ ฅ์„ ๋ณด์—ฌ์ค€๋‹ค.Monitoring changes in terrestrial vegetation is essential to understanding interactions between atmosphere and biosphere, especially terrestrial ecosystem. To this end, satellite remote sensing offer maps for examining land surface in different scales. However, the detailed information was hindered under the clouds or limited by the spatial resolution of satellite imagery. Moreover, the impacts of spatial and temporal resolution in photosynthesis monitoring were not fully revealed. In this dissertation, I aimed to enhance the spatial and temporal resolution of satellite imagery towards daily gap-free vegetation maps with high spatial resolution. In order to expand vegetation change monitoring in time and space using high-resolution satellite images, I 1) improved temporal resolution of satellite dataset through image fusion using geostationary satellites, 2) improved spatial resolution of satellite dataset using generative adversarial networks, and 3) showed the use of high spatiotemporal resolution maps for monitoring plant photosynthesis especially over heterogeneous landscapes. With the advent of new techniques in satellite remote sensing, current and past datasets can be fully utilized for monitoring vegetation changes in the respect of spatial and temporal resolution. In Chapter 2, I developed the integrated system that implemented geostationary satellite products in the spatiotemporal image fusion method for monitoring canopy photosynthesis. The integrated system contains the series of process (i.e., cloud masking, nadir bidirectional reflectance function adjustment, spatial registration, spatiotemporal image fusion, spatial gap-filling, temporal-gap-filling). I conducted the evaluation of the integrated system over heterogeneous rice paddy landscape where the drastic land cover changes were caused by cultivation management and deciduous forest where consecutive changes occurred in time. The results showed that the integrated system well predict in situ measurements without data gaps (R2 = 0.71, relative bias = 5.64% at rice paddy site; R2 = 0.79, relative bias = -13.8% at deciduous forest site). The integrated system gradually improved the spatiotemporal resolution of vegetation maps, reducing the underestimation of in situ measurements, especially during peak growing season. Since the integrated system generates daily canopy photosynthesis maps for monitoring dynamics among regions of interest worldwide with high spatial resolution. I anticipate future efforts to reveal the hindered information by the limited spatial and temporal resolution of satellite imagery. Detailed spatial representations of terrestrial vegetation are essential for precision agricultural applications and the monitoring of land cover changes in heterogeneous landscapes. The advent of satellite-based remote sensing has facilitated daily observations of the Earths surface with high spatial resolution. In particular, a data fusion product such as Planet Fusion has realized the delivery of daily, gap-free surface reflectance data with 3-m pixel resolution through full utilization of relatively recent (i.e., 2018-) CubeSat constellation data. However, the spatial resolution of past satellite sensors (i.e., 30โ€“60 m for Landsat) has restricted the detailed spatial analysis of past changes in vegetation. In Chapter 3, to overcome the spatial resolution constraint of Landsat data for long-term vegetation monitoring, we propose a dual remote-sensing super-resolution generative adversarial network (dual RSS-GAN) combining Planet Fusion and Landsat 8 data to simulate spatially enhanced long-term time-series of the normalized difference vegetation index (NDVI) and near-infrared reflectance from vegetation (NIRv). We evaluated the performance of the dual RSS-GAN against in situ tower-based continuous measurements (up to 8 years) and remotely piloted aerial system-based maps of cropland and deciduous forest in the Republic of Korea. The dual RSS-GAN enhanced spatial representations in Landsat 8 images and captured seasonal variation in vegetation indices (R2 > 0.95, for the dual RSS-GAN maps vs. in situ data from all sites). Overall, the dual RSS-GAN reduced Landsat 8 vegetation index underestimations compared with in situ measurements; relative bias values of NDVI ranged from โˆ’3.2% to 1.2% and โˆ’12.4% to โˆ’3.7% for the dual RSS-GAN and Landsat 8, respectively. This improvement was caused by spatial enhancement through the dual RSS-GAN, which captured fine-scale information from Planet Fusion. This study presents a new approach for the restoration of hidden sub-pixel spatial information in Landsat images. Mapping canopy photosynthesis in both high spatial and temporal resolution is essential for carbon cycle monitoring in heterogeneous areas. However, well established satellites in sun-synchronous orbits such as Sentinel-2, Landsat and MODIS can only provide either high spatial or high temporal resolution but not both. Recently established CubeSat satellite constellations have created an opportunity to overcome this resolution trade-off. In particular, Planet Fusion allows full utilization of the CubeSat data resolution and coverage while maintaining high radiometric quality. In Chapter 4, I used the Planet Fusion surface reflectance product to calculate daily, 3-m resolution, gap-free maps of the near-infrared radiation reflected from vegetation (NIRvP). I then evaluated the performance of these NIRvP maps for estimating canopy photosynthesis by comparing with data from a flux tower network in Sacramento-San Joaquin Delta, California, USA. Overall, NIRvP maps captured temporal variations in canopy photosynthesis of individual sites, despite changes in water extent in the wetlands and frequent mowing in the crop fields. When combining data from all sites, however, I found that robust agreement between NIRvP maps and canopy photosynthesis could only be achieved when matching NIRvP maps to the flux tower footprints. In this case of matched footprints, NIRvP maps showed considerably better performance than in situ NIRvP in estimating canopy photosynthesis both for daily sum and data around the time of satellite overpass (R2 = 0.78 vs. 0.60, for maps vs. in situ for the satellite overpass time case). This difference in performance was mostly due to the higher degree of consistency in slopes of NIRvP-canopy photosynthesis relationships across the study sites for flux tower footprint-matched maps. Our results show the importance of matching satellite observations to the flux tower footprint and demonstrate the potential of CubeSat constellation imagery to monitor canopy photosynthesis remotely at high spatio-temporal resolution.Chapter 1. Introduction 2 1. Background 2 1.1 Daily gap-free surface reflectance using geostationary satellite products 2 1.2 Monitoring past vegetation changes with high-spatial-resolution 3 1.3 High spatiotemporal resolution vegetation photosynthesis maps 4 2. Purpose of Research 4 Chapter 2. Generating daily gap-filled BRDF adjusted surface reflectance product at 10 m resolution using geostationary satellite product for monitoring daily canopy photosynthesis 6 1. Introduction 6 2. Methods 11 2.1 Study sites 11 2.2 In situ measurements 13 2.3 Satellite products 14 2.4 Integrated system 17 2.5 Canopy photosynthesis 21 2.6 Evaluation 23 3. Results and discussion 24 3.1 Comparison of STIF NDVI and NIRv with in situ NDVI and NIRv 24 3.2 Comparison of STIF NIRvP with in situ NIRvP 28 4. Conclusion 31 Chapter 3. Super-resolution of historic Landsat imagery using a dual Generative Adversarial Network (GAN) model with CubeSat constellation imagery for monitoring vegetation changes 32 1. Introduction 32 2. Methods 38 2.1 Real-ESRGAN model 38 2.2 Study sites 40 2.3 In situ measurements 42 2.4 Vegetation index 44 2.5 Satellite data 45 2.6 Planet Fusion 48 2.7 Dual RSS-GAN via fine-tuned Real-ESRGAN 49 2.8 Evaluation 54 3. Results 57 3.1 Comparison of NDVI and NIRv maps from Planet Fusion, Sentinel 2 NBAR, and Landsat 8 NBAR data with in situ NDVI and NIRv 57 3.2 Comparison of dual RSS-SRGAN model results with Landsat 8 NDVI and NIRv 60 3.3 Comparison of dual RSS-GAN model results with respect to in situ time-series NDVI and NIRv 63 3.4 Comparison of the dual RSS-GAN model with NDVI and NIRv maps derived from RPAS 66 4. Discussion 70 4.1 Monitoring changes in terrestrial vegetation using the dual RSS-GAN model 70 4.2 CubeSat data in the dual RSS-GAN model 72 4.3 Perspectives and limitations 73 5. Conclusion 78 Appendices 79 Supplementary material 82 Chapter 4. Matching high resolution satellite data and flux tower footprints improves their agreement in photosynthesis estimates 85 1. Introduction 85 2. Methods 89 2.1 Study sites 89 2.2 In situ measurements 92 2.3 Planet Fusion NIRvP 94 2.4 Flux footprint model 98 2.5 Evaluation 98 3. Results 105 3.1 Comparison of Planet Fusion NIRv and NIRvP with in situ NIRv and NIRvP 105 3.2 Comparison of instantaneous Planet Fusion NIRv and NIRvP with against tower GPP estimates 108 3.3 Daily GPP estimation from Planet Fusion -derived NIRvP 114 4. Discussion 118 4.1 Flux tower footprint matching and effects of spatial and temporal resolution on GPP estimation 118 4.2 Roles of radiation component in GPP mapping 123 4.3 Limitations and perspectives 126 5. Conclusion 133 Appendix 135 Supplementary Materials 144 Chapter 5. Conclusion 153 Bibliography 155 Abstract in Korea 199 Acknowledgements 202๋ฐ•

    ์ง€ํ‘œ๋ฉด์ด ์ด์งˆ์ ์ธ ๋†๊ฒฝ์ง€๋ฅผ ๋Œ€์ƒ์œผ๋กœ ์˜์ƒํ•ฉ์„ฑ์ž๋ฃŒ์™€ ํ˜„์žฅ์ŠคํŽ™ํŠธ๋Ÿผ์ธก์ • ๊ฐ„์˜ ์ƒํ˜ธ๋น„๊ต

    No full text
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๋†์—…์ƒ๋ช…๊ณผํ•™๋Œ€ํ•™ ์ƒํƒœ์กฐ๊ฒฝยท์ง€์—ญ์‹œ์Šคํ…œ๊ณตํ•™๋ถ€(์ƒํƒœ์กฐ๊ฒฝํ•™), 2019. 2. ๋ฅ˜์˜๋ ฌ.๋‹ค์–‘ํ•œ ๊ทœ๋ชจ์˜ ์ƒํƒœ๊ณ„ ์—ญ๋™์„ฑ์„ ๊ด€์ฐฐํ•˜๊ธฐ ์œ„ํ•ด ์ค‘์š”ํ•œ ์‹œ๊ณต๊ฐ„ ํ•ด์ƒ๋„๊ฐ€ ๋†’์€ ์˜์ƒ์— ๋Œ€ํ•œ ๊ธฐ์ˆ ์˜ ๋ฐœ์ „๊ณผ ํ•จ๊ป˜ ๊ทธ ์ •ํ™•๋„ ํ‰๊ฐ€๊ฐ€ ์š”๊ตฌ๋œ๋‹ค. ๊ธฐ์กด์˜ ์˜์ƒํ•ฉ์„ฑ ์ž๋ฃŒ๋ฅผ ํ‰๊ฐ€ํ•˜๋Š” ์—ฐ๊ตฌ๋“ค์€ ์ง€ํ‘œ๋ฉด์ด ์ด์งˆ์ ์ธ ๊ฒฝ๊ด€์—์„œ ์ฒด๊ณ„์ ์ธ ํ‰๊ฐ€๋ฅผ ํ•˜๊ธฐ ์•Œ๋งž์€ ํ”ฝ์…€๋‹จ์œ„์˜ ํ˜„์žฅ ์ŠคํŽ™ํŠธ๋Ÿผ ์ธก์ •๊ฐ’์ด ๊ฒฐ์—ฌ๋˜์—ˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ์‹๋ฌผ์˜ ์ƒ์žฅ๊ธฐ ๋™์•ˆ ์ง€ํ‘œ๋ฉด์ด ์ด์งˆ์ ์ธ ๋ฒผ๋…ผ ๊ฒฝ๊ด€์—์„œ ํ˜„์กดํ•˜๋Š” ๋„ค๊ฐ€์ง€ ์˜์ƒํ•ฉ์„ฑ ์ž๋ฃŒ- ESTARFM์™€ FSDAF, STAIR, CESTEM -๋ฅผ ํ˜„์žฅ ์ŠคํŽ™ํŠธ๋Ÿผ ์ธก์ •๊ฐ’๊ณผ ์ƒํ˜ธ๋น„๊ตํ•˜์˜€๋‹ค. ์˜์ƒํ•ฉ์„ฑ์˜ NDV (์ •๊ทœ์‹์ƒ์ง€์ˆ˜)๊ฐ€ ์‹œ๊ณต๊ฐ„์ ์œผ๋กœ ๋ณ€ํ™”ํ•˜๋Š” ๊ฒƒ์— ๋Œ€ํ•ด ์‹คํ—˜ํ•˜์˜€๋‹ค. ์˜์ƒํ•ฉ์„ฑ์˜ NDVI๋Š” ํ˜„์žฅ NDVI์— ๋Œ€ํ•ด ์•Œ๋งž๊ฑฐ๋‚˜ ๋†’์€ ์„ ํ˜•์„ฑ์„ ๋ณด์˜€๊ณ , ๊ทธ ๊ฐ’๋“ค์ด ์Œ์˜ ๋ฐฉํ–ฅ์œผ๋กœ ํŽธํ–ฅ๋˜์—ˆ๋‹ค (0.73< R2 <0.93, -8 %<bias <-1.6%). ์˜์ƒํ•ฉ์„ฑ๋“ค์˜ NDVI๋Š” NDVI ๋ณ€๋™์„ฑ์„ ํฌ์ฐฉํ•˜์˜€์ง€๋งŒ, ํ˜„์žฅ NDVI๋ณด๋‹ค ๋‚ฎ์€ ๋ณ€๋™์„ฑ์„ ์˜ˆ์ธกํ•˜์˜€๋‹ค. ์ด๋Ÿฌํ•œ ๊ฒฐ๊ณผ๋กœ ํ˜„์žฅ์ž๋ฃŒ์— ๋น„ํ•ด ์˜์ƒํ•ฉ์„ฑ์— ์ž…๋ ฅํ•˜๋Š” ์ž๋ฃŒ์˜ ๊ฐ’์ด ํŽธํ–ฅ๋œ ๊ฒฝ์šฐ ์˜์ƒํ•ฉ์„ฑ ์ž๋ฃŒ์— ์ฃผ๋Š” ์˜ํ–ฅ์€ ํ‘œ์ง€ํ”ผ๋ณต์˜ ๋ถ„๋ฅ˜์— ๋”ฐ๋ผ ๋‹ค๋ฅด๋‹ค๋Š” ๊ฒƒ์„ ๋„์ถœํ•˜์˜€๋‹ค. ๋˜ํ•œ ์˜์ƒํ•ฉ์„ฑ์˜ NDVI์ž๋ฃŒ๋Š” ์‹์ƒํ™œ๋™์˜ ๋ณ€๋™์„ฑ์„ ๊ณผ์†Œํ‰๊ฐ€ ํ•  ์ˆ˜ ์žˆ์Œ์„ ์•Œ ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๊ธฐ์กด์˜ ์—ฐ๊ตฌ๊ฒฐ๊ณผ์™€ ๋‹ฌ๋ฆฌ ESTARFM๊ณผ FSDAF, STAIR๋Š” ์ž…๋ ฅ์ž๋ฃŒ์— ๋Œ€ํ•œ ์‹œ๊ฐ„์  ์˜์กด๋„๊ฐ€ ๋ช…ํ™•ํ•˜๊ฒŒ ๊ด€์ฐฐ๋˜์ง€ ์•Š์€ ํ† ์ง€ํ”ผ๋ณต์ด ์žˆ์—ˆ๋‹ค. ํ˜„์žฅ NDVI์™€ ๋น„๊ต๋ฅผ ํ†ตํ•ด ๊ฐ ์˜์ƒํ•ฉ์„ฑ์˜ NDVI์˜ ๊ฐ•์ ์„ ํ™•์ฆํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ์— ์‚ฌ์šฉ๋œ ํ˜„์žฅ ์ŠคํŽ™ํŠธ๋Ÿผ ์ž๋ฃŒ๋Š” ์˜์ƒํ•ฉ์„ฑ ์ž๋ฃŒ์˜ ๋ถˆํ™•์‹ค์„ฑ์„ ํ‰๊ฐ€ํ•˜๊ณ , ๊ฒฝ์ž‘์ง€๋ฅผ ๋ชจ๋‹ˆํ„ฐ๋งํ•˜๊ธฐ ์ ํ•ฉํ•œ ์˜์ƒ์ž๋ฃŒ๋ฅผ ํ–ฅ์ƒ์‹œํ‚ค๊ณ , ์—ฐ๊ตฌ์ž์˜ ๋ชฉ์ ์— ๋งž๊ฒŒ ์˜์ƒํ•ฉ์„ฑ๊ธฐ๋ฒ•์„ ์„ ํƒํ•˜๊ธฐ์— ์œ ์šฉํ•  ๊ฒƒ์œผ๋กœ ์ „๋ง๋œ๋‹ค.The advances from high spatiotemporal resolution images that are important for the monitoring of ecosystem dynamics across different scales demand the accuracy assessment. Previous evaluation studies of fusion products lack pixel-level in-situ spectral measurements that fit the systematic evaluation in a heterogeneous landscape. We conducted an inter-comparison of existing four image fusion products with systematically collected in-situ spectral measurements over heterogeneous rice paddy landscape during the whole growing season. The four image fusion products include enhanced spatial-temporal adaptive reflectance fusion model (ESTARFM), flexible spatiotemporal data fusion (FSDAF), satellite data integration (STAIR), and CubeSat enabled spatiotemporal enhancement method (CESTEM). We tested fusion NDVI products, Normalized difference vegetation index, in terms of spatial patterns and temporal variations. Fusion NDVI products showed the moderate to strong linear relationships and negative bias against ground NDVI (R2 range 0.73 to 0.93, bias up to -11%). Although fusion NDVI products captured the NDVI variation, ground NDVI had a larger amplitude than fusion NDVI products. The results indicated that the positive bias of input against in-situ measurement caused the overestimation on mixed land cover type, and the negative bias of input against in-situ measurement caused the underestimation on homogeneous rice paddy cover type. Furthermore, fusion NDVI products could underestimate the variations in vegetation activity. The temporal dependency of ESTARFM, FSDAF, and STAIR was not clearly detected on the mixed land cover type. By comparing fusion NDVI products to ground NDVI, the strength of each fusion product was confirmed. We expect our in-situ spectral measurement could be useful in quantifying uncertainty in image fusion products, improving fine resolution cropland mapping and monitoring, and choosing the algorithm depending on the research purpose.Abstract i Table of Contents iii List of Figures v List of Tables vi 1. Introduction 1 2. Method 6 2.1 Study Site 6 2.2 Image Fusion Algorithms 7 2.3 Satellite Data 10 2.4 Ground Measurements 11 2.5 Evaluation 15 3. Result 16 3.1 Comparison of Satellite NDVI Products Against Ground NDVI 16 3.2 Comparison of Fusion NDVI Products Against Ground NDVI 17 3.3 Time-series of NDVI on Each Plot 21 4. Discussion 24 4.1 Confirming the Strengths of Each Fusion Product with Ground Measurements 24 4.2 Evaluation of Input Data 25 4.3 How the Bias of Input Data Against Ground Measurements Affect Final Fusion Products? 26 4.4 Does Time Lag between Input-pair Date and Predicted Data Always Affect the Fusion Performance? 28 4.5 Fusion NDVI Products for Detecting Vegetation Activity 29 4.6 Dataset for Assessment Accuracy 29 5. Conclusion 31 Reference 32 Supplementary Materials 36 ๊ตญ๋ฌธ ์ดˆ๋ก 41Maste
    corecore