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A B S T R A C T   

Ground solar-induced chlorophyll fluorescence (SIF) is important for the mechanistic understanding of the dy
namics of vegetation gross primary production (GPP) at fine spatiotemporal scales. However, eddy covariance 
(EC) observations generally cover larger footprint areas than ground SIF observations (a bare fiber with nadir), 
and this footprint mismatch between nadir SIF and GPP could complicate the canopy SIF-GPP relationships. 
Here, we upscaled nadir SIF observations to EC footprint and investigated the change in SIF-GPP relationships 
after the upscaling in cropland. We included 13 site-years data in our study, with seven site-years corn, four site- 
years soybeans, and two site-years miscanthus, all located in the US Corn Belt. All sites’ crop nadir SIF obser
vations collected from the automated FluoSpec2 system (a hemispheric-nadir system) were upscaled to the GPP 
footprint-based SIF using vegetation indices (VIs) calculated from high spatiotemporal satellite reflectance data. 
We found that SIF-GPP relationships were not substantially changed after upscaling nadir SIF to GPP footprint at 
our crop sites planted with corn, soybean, and miscanthus, with R2 change after the upscaling ranging from 
-0.007 to 0.051 and root mean square error (RMSE) difference from -0.658 to 0.095 umol m − 2 s − 1 relative to 
original nadir SIF-GPP relationships across all the site-years. The variation of the SIF-GPP relationship within 
each species across different site-years was similar between the original nadir SIF and upscaled SIF. Different VIs, 
EC footprint models, and satellite data led to marginal differences in the SIF-GPP relationships when upscaling 
nadir SIF to EC footprint. Our study provided a methodological framework to correct this spatial mismatch 
between ground nadir SIF and GPP observations for croplands and potentially for other ecosystems. Our results 
also demonstrated that the spatial mismatch between ground nadir SIF and GPP might not significantly affect the 
SIF-GPP relationship in cropland that are largely homogeneous.   

1. Introduction 

Accurate quantification of gross primary productivity (GPP) is 

critical for studying the global carbon cycle and understanding terres
trial ecosystem dynamics (Jiang et al., 2020; Ryu et al., 2019). The eddy 
covariance (EC) technique has long been used to measure carbon fluxes 

Abbreviations: GPP, Gross primary production; SIF, Solar-induced chlorophyll fluorescence. 
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at the ecosystem scale (Baldocchi, 2003), but the distribution of EC sites 
is limited at regional to global scales (Baldocchi et al., 2001; Kumar 
et al., 2016). Recent progress in satellite solar-induced chlorophyll 
fluorescence (SIF) has provided a new opportunity for continuous 
regional to global terrestrial GPP estimation (Frankenberg et al., 2011; 
Li and Xiao, 2022; Sun et al., 2017). However, the coarse spatial reso
lution of the current satellite SIF dataset complicates the direct link 
between satellite SIF and EC GPP (Magney et al., 2020). Therefore, 
ground tower-based spectral systems for SIF observations concurrent 
with EC measurements have been used to better understand the rela
tionship between SIF and GPP at the ecosystem scale (Miao et al., 2018; 
Wu et al., 2022b; Yang et al., 2015; Y. Zhang et al., 2021). 

Over the last decade, several tower-based spectral systems for SIF 
measurements, which require high spectral resolution (full width at half 
maximum (FWHM)<1 nm) and cover the SIF emission spectral range 
(650–850 nm), have been developed (e.g., Du et al., 2019; Grossmann 
et al., 2018; Gu et al., 2019; Yang et al., 2018). Tower-based spectral 
systems measure both downwelling solar irradiation and upwelling 
canopy radiance to retrieve SIF (Cendrero-Mateo et al., 2019; Meroni 
et al., 2009). The most common instrument designs are bi-hemispherical 
systems such as FAME (Gu et al., 2019) and SIFprism (Zhang et al., 
2019), and hemispherical-conical systems, such as FluoSpec2 (Yang 
et al., 2018) and Photospec (Grossmann et al., 2018). Bi-hemispherical 
systems are equipped with a cosine-corrected foreoptic of the field of 
view (FOV) of 180◦ for canopy radiance collection. They sample a wide 
area, and their footprint is more comparable to the EC footprint, but the 
longer atmospheric radiation transfer path between canopy and fore
optic increases the uncertainty of SIF retrieval (Liu et al., 2017). 
Hemispherical-conical systems use a bare fiber with a small FOV (typi
cally 25◦) pointed at nadir or off-nadir for radiance acquisition, and their 
sample area covers only a small portion of the EC footprint (~2%, 
Fig. 1). Additionally, the EC footprint is temporally and spatially varying 
with turbulent conditions and wind direction (Foken and Leclerc, 2004; 
Rannik et al., 2012), while spectral observations from both 
bi-hemispherical and hemispherical-conical systems with fixed view 
zenith angles always sample the same area (Fig. 1). This sampling area 
mismatch between SIF and GPP measurements could cause additional 
uncertainty for understanding SIF-GPP relationships as well as investi
gating the effect of canopy structure (e.g., Dechant et al., 2020; Li et al., 
2020), leaf physiology (e.g., Wu et al., 2022a; Yang et al., 2021) and 
environmental conditions (e.g., Paul-Limoges et al., 2018) on SIF-GPP 
relationships. 

Following the light use efficiency framework, observed canopy SIF 
can be decomposed into four components: photosynthetic active radia
tion (PAR), the fraction of absorbed PAR of the canopy (FPAR), fluo
rescence emission yield of the canopy (ΦF, canopy), and the fraction of SIF 
photons escaped from the canopy due to scattering and reabsorption 

within the canopy (fesc) (Frankenberg and Berry, 2018): 

SIF = PAR× FPAR× ΦF, canopy × fesc, (1) 

Previous studies have found the dominant roles of structural (FPAR, 
fesc) and radiation components (PAR) in SIF signals across various eco
systems (e.g., Dechant et al., 2020; Miao et al., 2018). Strong correla
tions between SIF and vegetation indices (VIs) which mainly captures 
the structural information of vegetation such as near-infrared reflec
tance of vegetation (NIRv) and enhanced vegetation index (EVI) have 
been reported at weekly (Doughty et al., 2021) to monthly scales 
(Badgley et al., 2017). At short time scales when the contribution of PAR 
to SIF is important, the product of NIRv and PAR (NIRvP) has been 
shown to be a strong proxy for SIF at different spatial scales (Dechant 
et al., 2022). Many studies have utilized VIs, surface reflectance, and 
radiation information from Moderate Resolution Imaging Spectroradi
ometer (MODIS) to downscale coarse satellite SIF products to moderate 
spatial (e.g., 0.05◦) and temporal SIF (e.g., 8 days and 16 days) products 
with various statistical methods (Duveiller et al., 2020; Turner et al., 
2020; Wen et al., 2020; Yu et al., 2018). 

New-generation satellite surface reflectance data with high-spatial- 
and-temporal-resolution such as Planetscope (PS) and Sentinel-2 (S2) 
provide a new opportunity to upscale ground SIF observations with a 
small coverage to the whole EC footprint. PS sensors installed on con
stellations of nanosatellites are able to provide near-daily visible to near- 
infrared band reflectance at a 3 m spatial resolution across the globe 
(Houborg and McCabe, 2016). S2 sensors offer images at 10–20 m 
spatial resolutions at the visible, red-edge and near-infrared bands with 
a global average 5-day revisit time (Immitzer et al., 2016). Surface 
reflectance and calculated VIs from PS and/or S2 have been used in 
various ecological applications such as land cover classification 
(Mashonganyika et al., 2021; Mudereri et al., 2019), aboveground car
bon stock estimation (Baloloy et al., 2018; Csillik et al., 2019) and crop 
growth monitoring (Kamenova and Dimitrov, 2021; Kimm et al., 2020; 
Sadeh et al., 2021). Considering the important role of structural infor
mation in SIF signals, VIs calculated from these high spatiotemporal 
resolution data can be utilized as a bridge to match the sampling area of 
SIF and GPP which could potentially decrease the uncertainty of 
SIF-GPP relationships. 

In this paper, we aim to upscale ground canopy SIF from a small 
sampling area to match the EC footprint using PS and S2 at multiple 
cropland sites from 2017 to 2021, and then investigate the change in 
SIF-GPP relationships after this correction. These cropland sites are 
either planted with corn, soybean, or miscanthus located in the U.S. 
Corn Belt. Corn and soybean are among the most important annual row 
crops worldwide, and they are widely used as livestock feed, human 
food, biofuels, and raw materials in industry. Miscanthus is a warm- 
season, perennial grass, and it has tremendous potential for bioenergy 

Fig. 1. Conceptual diagram illustrating the footprint mismatch between eddy covariance (EC) flux and nadir SIF observations. The orange area indicates the small 
nadir footprint (25◦ of FOV) of SIF observations. Black contours represent EC flux footprint climatologies. The purple area over the plants represents one specific half- 
hourly EC flux footprint with that half-hourly mean wind direction. 
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production (Heaton et al., 2010). Its significant carbon sequestration, 
high yield, high water and nutrient use efficiencies, non-invasiveness, 
and ability to grow on marginal land have sparked significant interest 
among researchers (Whitaker et al., 2018). Investigating the effect of 
upscaling ground nadir SIF to EC footprint on SIF-GPP relationships in 
these crops could improve our understanding of SIF as a proxy of GPP in 
both annual and perennial crops. We hypothesize that SIF-GPP re
lationships would be improved after matching the SIF and GPP sampling 
areas. Specifically, we hypothesized that after the correction, (1) the R2 

of the SIF-GPP relationship at each site-year as well as within each 
species would increase; (2) the regression slope and/or intercept within 
each species would be more convergent across different site-years. 
Additionally, considering that cropland sites are relatively homoge
nous compared to natural ecosystems, we further hypothesize that the 
improvement of the SIF-GPP relationship after the SIF footprint 
upscaling would not be substantial. 

2. Materials and methods 

2.1. In situ data 

2.1.1. Study sites 
In-situ data from seven sites located in the U.S. Corn Belt from 2017 

to 2021 (a total of 13 site-years) were used in this study. Two of the sites 
(US-Ne2 and US-Ne3) were located at the Eastern Nebraska Research 
and Extension Center of the University of Nebraska-Lincoln in Nebraska. 
Another five sites were all located in Illinois, with two sites (US-UiB and 
US-UiC) at the Energy Farm of the University of Illinois at Urbana- 
Champaign, and the other three sites (Reifsteck, Rund, and Reinhart) 
at the private farms in Champaign County. US-Ne2 was irrigated, and 
the other six sites were rainfed. Except for US-UiB which was always 
planted with miscanthus (mis), the other sites were either corn-soybean 
(soy) rotation or corn-corn-soy rotation. In-situ data from seven site- 
years for corn, four site-years for soybeans, and two site-years for mis
canthus were collected. Corn and soybean were planted in April or May 
and harvested in September or October, and miscanthus emerged in 
April and was harvested in March of the next year. Detailed site and data 
availability information was summarized in Table 1. 

2.1.2. Stationary spectral measurements and SIF derivation 
A hemispherical-conical system, FluoSpec2 (Miao et al., 2018; Yang 

et al., 2018), was installed at each site-year to collect spectral data. Two 
subsystems were included in FluoSpec2. One for SIF retrieval with a 
QEPRO spectrometer (Ocean Optics Inc., FL, USA) covering 730–780 nm 
at an interval of 0.15 nm. The other is for VI calculation with an 
HR2000+ spectrometer (Ocean Optics Inc., FL, USA) covering 
400–1100 nm at an interval of 1.1 nm. Each spectrometer collected data 
from two fibers, one fiber for downwelling solar irradiance and the other 
for upwelling canopy radiance. An inline shutter was installed between 
the spectrometer and fibers to switch between irradiance and radiance. 
A cosine corrector was connected to the bare fiber for hemispherical 
solar irradiance collection, and a bare fiber with a FOV of 25◦ pointed at 
nadir was used for canopy radiance acquisition. The spectrometer and 
the shutter were placed in a temperature-controlled box, and the end of 
the fibers was placed at a 5-m tower above the ground with a sampling 
area of 2.2 m in diameter on the ground. Spectra data were collected 
automatically at a 5-min time interval using the software, FluoSpec 
Manager (Yang et al., 2018). Far-red SIF at 760 nm was retrieved from 
measured irradiance and radiance using the improved Fraunhofer Line 
Depth (iFLD) approach (Alonso et al., 2008; Cendrero-Mateo et al., 
2019). The 5-min interval far-red SIF data was averaged to half hourly 
intervals to match the frequency of EC data. More details about the 
FluoSpec2 measurement sequence and SIF retrieval can be found in Wu 
et al. (2020). 

2.1.3. Eddy covariance, meteorological and ground auxiliary 
measurements 

EC and meteorological data were acquired from the EC and meteo
rological towers located in the same field as the FluoSpec2 system. Each 
EC system was equipped with a CO2/H2O infrared gas analyzer and a 
three-dimensional ultrasonic anemometer. Raw EC data recorded at 10 
Hz frequency were processed using EddyPro (v6.2.0; LICOR Biosciences, 
NE, USA) to derive half-hourly net ecosystem exchange (NEE), sensible 
heat (H), latent heat (LE), friction velocity (u*) and Obukhov length (L). 
EddyPro applied flux de-trending (block average), coordinate alignment 
(double rotation), time-lag compensation (covariance maximization), 
flux density correction (Webb− Pearman− Leuning, Webb et al., 1980), 
spikes detection and removal (Vickers and Mahrt, 1997). Meteorological 
variables such as air temperature (Ta), relative humidity (RH), incoming 
radiation, and reflected radiation were collected close to the EC systems 
at each site. Canopy height (hc) was measured bi-weekly at each 
site-year using a ruler and/or tape measure. For US-Ne2 and US-Ne3 
sites, the measurement height of EC instruments (zm) was kept at 3 m 
for soybeans across the whole growing season, and for corn, it was at 3 m 
when hc was lower than 1 m and increased to 6 m when hc increased 
until the end of the growing season. For the US-UiB site and US-UiC site 
planted with corn, zm was kept at ~3 m at the beginning of the growing 
season and increased to ~4.2 m with the increase of hc. For the US-UiC 
and Reifsteck sites planted with soybean, zm was at 2.6 and 3 m across 
the whole growing season, respectively. For the Reifsteck site planted 
with corn, Rund and Reinhart site, zm was kept at around 4.8 m the 
whole time. Detailed information about the EC and meteorological 
tower instrumentation can be found in Suyker and Verma (2012) for 
US-Ne2 and US-Ne3 sites, and in Moore et al. (2020) for US-UiB and 
US-UiC sites. 

EddyPro-processed NEE data further went through the quality 
assurance and quality control (QA/QC) to remove spikes and outliers, u* 
filtering to exclude data from low turbulent conditions, gap-filling to 
acquire continuous half-hourly NEE, and flux partitioning to derive half- 
hourly GPP and ecosystem respiration (ER). For US-UiB and US-UiC 
sites, NEE data were removed when more than 50% of the data 
occurred outside of the targeted field due to the relatively small field size 
(200 m × 200 m). The ONEFlux processing pipeline which followed the 
standard FLUXNET2015 protocol was used to process the Eddypro- 
processed EC data at each site. More details about the ONEFlux 

Table 1 
Site and SIF observation information. GPP data are available for the whole 
growing season for each site-year, except that at the Rund site in 2021 corn, GPP 
data from June to July is not available due to sensor failure. Soy: Soybean, Mis: 
Miscanthus.  

Site lat/lon Year Crop Growing season SIF 

US-Ne2 41.1649◦N/ 
96.4701◦W 

2017 Corn May 8 – Oct 30 Jul 15 – Oct 
15 

2018 Soy May 14 – Oct 19 Jun 19 – Oct 
14 

US-Ne3 41.1797◦N/ 
96.4397◦W 

2017 Corn May 8 – Oct 30 Jul 15 – Oct 
15 

2018 Soy May 14 – Oct 19 Jul 8 – Oct 14 
US-UiB 40.0628◦N/ 

88.1984◦W 
2019 Mis Apr 2019 – Mar 

2020 
May 9 – Nov 
19 

2020 Mis Apr 2020 – Mar 
2021 

May 11 – Nov 
1 

US-UiC 40.0647◦N/ 
88.1983◦W 

2017 Corn May 16 – Nov 2 Jun 7 – Oct 29 
2018 Corn May 8 – Oct 9 Jun 28 – Oct 

10  
2019 Soy May 17 – Oct 9 Jun 5 – Oct 6 

Reifsteck 39.8824◦N/ 
88.1546◦W 

2020 Soy Apr 21– Oct 3 May 2– Oct 2 
2021 Corn May 1 – Sep 26 May 16 – Sep 

11 
Rund 40.0070◦N/ 

88.2897◦W 
2021 Corn Apr 26 – Dec 2 May 30 – Sep 

18 
Reinhart 39.8887◦N/ 

88.2140◦W 
2021 Corn Apr 23 – Sep 25 May 15 – Sep 

21  

G. Wu et al.                                                                                                                                                                                                                                      



Agricultural and Forest Meteorology 338 (2023) 109532

4

pipeline can be found in Pastorello et al. (2020). 

2.2. Satellite reflectance data 

2.2.1. Sentinel-2 
We derived daily 10m-resolution surface reflectance data from 

publicly available Sentinel-2 satellite images. Sentinel-2 L1C top of at
mosphere reflectance data and L2A surface reflectance data were ob
tained before and after 2019, respectively. The official data processing 
tool Sen2Cor was employed to conduct an atmospheric correction and 
spatial resampling. Sentinel-2 Scene Classification (SCL) was used to 
remove pixels other than “Vegetation”, “Bare Soils” and “Water”. Non- 
water pixels with blue reflectance larger than 0.4 or near-infrared 
reflectance smaller than visible reflectance were considered cloud- 
contaminated pixels and thus removed. We further applied a temporal 
filter to remove outliers, assuming that surface reflectance should vary 
smoothly within a certain time period. For a specific day, we utilized a 
15 day-radius temporally moving window from which the mean and 
standard deviation of the time series were calculated. Reflectance values 
outside the range of mean ±1.5 standard deviations were considered 
outliers and dropped. Subsequently, the mean of the first 15 days and 
that of the last 15 days were calculated, respectively. If the reflectance 
value of the target day was 50% smaller or larger than both the first 15 
days’ mean and the last 15 days’ mean, that reflectance value was 
considered an outlier and dropped. After outliers’ removal, we applied a 
temporal filter to interpolate and smooth data. Similar to the outlier 
removal step, a temporally moving window with a one-month radius 
was utilized for a specific day. A Gaussian filter was used to calculate the 
weighted sum of the time series reflectance, with larger weights assigned 
to close days and smaller weights assigned to distant days. The Gaussian 
filter was applied every day so that a smoothed gap-free daily 10 m 
surface reflectance dataset was derived. 

2.2.2. PlanetScope 
We derived daily 3m-resolution surface reflectance data from com

mercial PlantScope satellite images. PlanetScope 4-band (blue, green, 
red, and near-infrared) surface reflectance swath data were used as the 
data source. To reduce between-swath difference and day-to-day vari
ation caused by different overpass times and viewing angles, a cumu
lative distribution function (CDF) matching procedure was employed. 
We used the MCD43A4 daily 500m-resolution MODIS Nadir BRDF- 
Adjusted Reflectance (NBAR) product as a benchmark. For each Plan
etScope swath image, the MODIS image over the same area was cropped 
and resampled to a 3 m resolution. Quality control information from 
both PlanetScope data and MODIS data was used to remove clouds. For 
each band, cumulated histograms were built for both cloud-free Plan
etScope and MODIS images, and linear interpolation was used to 
determine updated values of PlanetScope surface reflectance that 
correspond most closely to the MODIS surface reflectance values. After 
the CDF matching, outlier detection and Gaussian interpolation/ 
smoothing procedure were applied to derive daily data, similar to 
Sentinel-2. 

2.3. Correcting ground SIF to EC footprint-based SIF 

2.3.1. Method overview 
Considering the importance of structural components in SIF signals, 

we would expect the product of VI and PAR to explain the majority of SIF 
signals. Therefore, VI calculated from high spatiotemporal PS, and S2 
reflectance data could be used to upscale observed SIF from the small 
sampling area to the whole EC footprint. Specifically, we first selected 
the proper VI based on the relationship between SIF and the product of 
VI and PAR from portable spectral campaigns (Section 2.3.2). Next, we 
calculated the half-hourly EC footprint using two footprint models 
(Section 2.3.3), and further calculated EC footprint weighted VI from PS 
and S2 (VIEC footprint , Eq. (2)). VI of the SIF sampling area (~diameter 2.2 

m on the ground) was represented by a single 3 m × 3 m pixel VI of PS or 
a single 10 m × 10 m VI of S2 imagery covering the SIF tower (VISIF pixel). 
Finally, the ratio of half-hourly VIEC footprint to daily VISIF pixel was esti
mated (Eq. (3)) and this ratio was multiplied by observed half-hourly SIF 
(SIFobs) to derive half-hourly EC footprint-based SIF (SIFEC footprint, Eq. 
(4)) with the assumption that PAR was the same between EC footprint 
and SIF sampling area (i.e. PAREC footprint≈ PARSIF pixel). Different satellite 
reflectance data and EC footprint models were used to investigate 
whether the sources of data and EC footprint model would impact the 
correction results. 

VIEC footprint =
∑N

i=1
wi × VIi, (2)  

RatioEC footprint, SIF pixel =
VIEC footprint × PAREC footprint

VISIF pixel × PARSIF pixel
≈
VIEC footprint

VISIF pixel
, (3)  

SIFEC footprint = SIFobs × RatioEC footprint, SIF pixel, (4)  

where VIEC footprint was calculated by the sum of the product of VI (VIi) 
and footprint weight (wi) at each pixel i across all the pixels within the 
EC footprint N. For the US-UiB and US-UiC sites, the EC footprint was 
constrained by the field boundary, and only the footprint within the 
target field was used to calculate VIEC footprint and RatioEC footprint, SIF pixel. 

2.3.2. VI selection from the portable spectral campaign and daily VI from 
PS and S2 

Portable spectral campaigns were conducted in the 2021 growing 
season to investigate the relationship between SIF and the product of 
different VI and PAR in corn and soybean in Champaign County, Illinois. 
Two corn sites (Rund and Reinhart) and two soybean sites at the Energy 
Farm of the University of Illinois at Urbana-Champaign were included. 
For each site, spectral data from 20 essential sample units (ESU), each 
with a size of about 2 × 2 m (Fig. S1), were collected at a time interval of 
2–4 weeks. The spectral system used for portable campaigns had the 
same instrumentation setup as FluoSpec2 except that a single fiber was 
used to collect both downwelling irradiance and upwelling radiance for 
each subsystem. We measured downwelling irradiance by pointing bare 
fibers at a leveled standard reflection board (Spectralon®; Labsphere, 
NH, USA) and upwelling radiance by pointing at the canopy with a nadir 
view. At each ESU, a total of 20 points were measured, and the average 
of 20 irradiances and radiances from the QEPRO spectrometer were used 
to retrieve SIF at 760 nm at each ESU using the iFLD method. Different 
VIs were calculated from the HR2000+ reflectance. PAR at each ESU 
was estimated by integrating HR2000+ downwelling irradiance from 
400 to 700 nm. Compared to the stationary spectral measurements 
(Section 2.1.2), this portable campaign included the spatial relation
ships between SIF and the product of VIs and PAR within each site, 
which was essential for the upscaling of SIF from a single pixel to the 
whole EC footprint for each site-year. 

Five common VIs used in corn and soybean were investigated 
(Table S1).NIRv and EVI are strongly correlated with SIF (Badgley et al., 
2017; Dechant et al., 2022; Doughty et al., 2021), and Normalized Dif
ference Vegetation Index (NDVI), Red edge NDVI (NDVIrededge) and 
Green NDVI (NDVIgreen) are proxies of FPAR in corn and soybean 
(Thenkabail et al., 2011). The results showed that across spatiotemporal 
scales, the product of EVI and PAR and the product of NIRv and PAR 
showed a stronger correlation with SIF compared to NDVI and NDVIgreen 
(Fig. 2; Fig. S2). This strong correlation was not affected by sun angles 
(Fig. S3). They explained no less than 85% and 94% percent of SIF 
variation in corn and soybean, respectively (Fig. 2). The product of 
NDVIrededge and PAR also showed strong correlation with SIF. However, 
NDVIrededge can only be calculated from S2 reflectance data due to the 
missing red edge band in PS reflectance data. Therefore, daily EVI and 
NIRv calculated from daily PS and S2 reflectance were used to upscale 
stationery observed SIF to EC footprint-based SIF. 
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NIRv = ρNIR ×
ρNIR − ρRED
ρNIR + ρRED

, (5)  

EVI = 2.5 ×
ρNIR − ρRED

ρNIR + 6 × ρRED + 7.5 × ρBLUE + 1
, (6)  

where ρNIR, ρRED and ρBLUE were PS or S2 surface reflectance at near- 
infrared band, red band, and blue band, respectively. For PS, the cen
tral wavelengths for blue, red, and near-infrared bands were 490 nm, 
665 nm, and 865 nm, respectively, and for S2, they were 492 nm, 665 
nm, and 833 nm, respectively. To minimize the effect of soil background 
on NIRv and EVI, soil adjusted NIRv (SANIRv) and soil adjusted EVI 
(SAEVI) were calculated following the method proposed by Jiang et al. 
(2020): 

SANIRv =
NIRv − NIRv, soil

NIRv, peak − NIRv, soil
× NIRv, peak, (7)  

SAEVI =
EVI − EVI soil
EVI peak − EVIsoil

× EVIpeak, (8)  

where NIRv, peak and EVIpeak are the maximum value of the multi-year 
average NIRv and EVI time series on a per-pixel basis, respectively; 
NIRv, soil and EVIsoil are the soil background NIRv and EVI derived from 
the multi-year average NIRv and EVI time series per pixel, respectively. 
SANIRv and SAEVI did not change the peak of NIRv and EVI but changed 
for low NIRv and EVI values. SANIRv and EVI were set 0 when NIRv and 
EVI were lower than NIRv, soil and EVIsoil. 

2.3.3. EC flux footprint calculation for each site-year 
Two different EC flux footprint models were used to calculate half- 

hourly footprint weights within 1 km of the EC tower. One was the 
Flux Footprint Prediction (FFP) model (http://footprint.kljun.net/) 
developed by (Kljun et al., 2015), and the other one was the Simple 
Analytical Footprint model on Eulerian coordinates (SAFE) developed 
by Chen et al. (2009) based on the formulation of Kormann and Meixner 
(2001). The inputs for the FFP model included measurement height 
above displacement height (z), roughness length (z0), mean wind speed 

(umean), wind direction (wdir), boundary layer height (blh), the standard 
deviation of lateral velocity fluctuations (sigmav), L and u*. The inputs 
for the SAFE model were above canopy Ta, RH, LE, H, NEE, u*, zm, 
umean, wdir, sigmav, air pressure (Pa). zm for the SAFE model was the 
recorded EC instrument height. z for FFP was calculated by the differ
ence between zm and the displacement height which was approximated 
by 0.67 times canopy height hc (Maurer et al., 2015). z0 was estimated as 
0.10 times hc (Raupach, 1994). Canopy heights were linearly interpo
lated to acquire half-hourly values. umean, wdir, sigmav, L, u*, LE, H and 
NEE were output from EddyPro. Ta and RH were from the meteoro
logical tower. Hourly blh for the FFP model at each site-year was 
downloaded from a high-resolution reanalysis product (ERA5) gener
ated by the European Center for Medium-Range Weather Forecasts 
(ECMWF) at a 0.25◦ resolution (Y. Zhang et al., 2020) and linearly 
interpolated to half-hourly scale. When combined with PS derived-VI to 
derive EC footprint weighted VI, FFP and SAFE models were run at 3 m 
resolution to acquire half-hourly footprint weights centered on the EC 
tower, and for S2 derived-VI, they were run at 10 m resolution. 

2.4. Data analysis 

To test our hypotheses, the relationship between SIF and GPP before 
and after the footprint correction was analyzed. Linear regression of 
GPP-SIF at a half-hourly scale was established for each site-year before 
and after the footprint correction separately. The change in R2 and root 
mean squared error (RMSE) before and after the correction was used to 
evaluate the performance of footprint correction at each site-year. The 
standard deviations of regression slope and intercept of the same species 
across different site-years after and before the correction were also 
computed. The Tukey test was used to investigate where the regression 
slope and intercept were significantly different before and after footprint 
correction. Additionally, for each species, we combined the data from all 
site-years and built SIF-GPP relationships before and after the correction 
to investigate the overall change in the SIF-GPP relationship for each 
species. Considering the uncertainties of SIF under low light conditions 
in the early morning and late afternoon, only data from 8:00 am to 6:00 
pm (local standard time) were used. Since we considered two satellite 

Fig. 2. The relationship between nadir-view SIF and the product of NIRv and PAR, and between SIF and the product of EVI and PAR in corn (left) and soybean (right) 
from the 2021 portable campaign. Different colors represent different dates (mm/dd) and different symbols (filled circles and triangles) represent different sites. 
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sources (PS and S2), four VIs (NIRv, EVI, SANIRv, SAEVI), and two EC 
footprint models (FFP and SAFE), a total of 16 cases were included. The 
PS-based results (8 cases) are presented in the main text, and S2-based 
results are shown in the appendix and supplementary materials. 

3. Results 

3.1. EC footprint and evaluation of spatial heterogeneity at each site-year 

Overall, the field conditions were relatively homogeneous at our 
crop sites. Across all the site-years, the maximal distance from the EC 
tower to the 90% contour of the daytime July footprint climatologies 
calculated from the SAFE model ranged from ~100 m to 400 m (Fig. 3). 
EC footprints calculated from the FFP model covered a smaller area (the 
maximal distance from the tower to the 90% contour ranged from 50 m 
to 100 m) compared to the SAFE model footprint (Fig. S3). The half- 
hourly ratio of EC footprint weighted PS VI VIEC footprint (NIRv and EVI) 
to SIF tower pixel PS VI VISIF pixel (NIRv and EVI) calculated from both EC 
footprint models ranged from 0.80 to 1.33, with mean 1.02 (Fig. 4), 
indicating that the field conditions were homogenous across the site 
years. The ratio calculated from the SAFE model (maximum ratio 1.33) 
was slightly higher than that calculated from the FFP model (maximum 
ratio 1.21) (Fig. 4). Soil adjusted VI (SANIRv and SAEVI)-based ratio 
showed larger variations at the early and late growing season compared 
to VI-based ratio (Fig. S5). S2 VI-based ratio ranged from 0.21 to 1.99 
with a mean 1.04. Overall, the S2-based ratio showed similar seasonal 
variations, but a larger range compared to the PS-based ratio at most 
site-years except the US-Ne3 2017, US-UiC 2017, Reinhart 2021, and 
Reifsteck 2020 where the S2-based ratio was substantially higher at the 
early and end of the growing season (Fig. S6 & S7). 

3.2. The change of SIF-GPP relationships after footprint correction at 
each site-year 

SIF-GPP relationships were not considerably improved after upscal
ing the nadir SIF to EC footprint-based SIF, with the R2 and RMSE dif
ference before and after correction among all the PS-based ratio cases 
ranging from − 0.007 to 0.051 and from − 0.658 to 0.095 umol m − 2 s − 1 

across all the site-years at the half-hourly timestamp, respectively 
(Figs. 5 and 6). At daily scale, R2 difference ranged from − 0.009 to 0.061 
(Fig. S8) and RMSE difference ranged from − 0.710 to 0.129 umol m − 2 s 
− 1 among all the PS-based cases across all the site-years (Fig. S9). Except 
for US-Ne2 2017 and US-UiC 2018 where R2 decreased, and RMSE 
increased after correction in most cases, the S2-based ratio showed 
similar results as the PS-based ratio, with the R2 and RMSE difference 
ranging from − 0.017 to 0.066 and from − 0.869 to 0.215, respectively 
(Figs. A1 and A2). The largest improvement in SIF-GPP relationships 
was observed at the US-Ne2 2018 soybean site. Among all the PS-based 
ratio cases, the ratio calculated from soil adjusted VI (SANIRv and 
SAEVI) and SAFE footprint showed a slightly larger R2 increase 
compared to other ratio cases for most site-years. For corn, SIF footprint 
upscaling did not decrease the variation of the SIF-GPP relationships 
across different site-years, indicated by the similar standard deviation of 
the linear regression slope and intercept between original nadir SIF and 
upscaled EC footprint SIF (Fig. 7a, d). For soybean, the standard devi
ation of regression intercept of SIF-GPP decreased after nadir SIF foot
print upscaling, but not significantly (Fig. 7b, e). For miscanthus, 
matching SIF and GPP footprints did not decrease the interannual 
variation of the SIF-GPP relationships, but the regression slope declined 
after the SIF footprint upscaling, but not significantly (Fig. 7c, f). Those 
results about regression slopes and intercepts were consistent between 
PS-based ratio cases and S2-based ratio cases for corn and soybean, but 
for miscanthus, SIF footprint upscaling increased the variation of SIF- 
GPP relationships between two years (Fig. A3). Among all the PS- 
based ratio cases, the ratio calculated from SAEVI, and SAFE model 

Fig. 3. Climatology of daytime (8 am to 6 pm) footprints in July calculated by the SAFE model. Background is PS NIRv on July, 15th at each site-year. The blank 
triangle and gray triangle indicate the location of the SIF tower and EC tower, respectively. 

G. Wu et al.                                                                                                                                                                                                                                      



Agricultural and Forest Meteorology 338 (2023) 109532

7

showed the largest decrease in the standard deviation of regression 
intercept in soybean and regression slope in miscanthus (Fig. 7c, e). 

3.3. The change of SIF-GPP relationships after footprint correction for 
each species 

For each species, the SIF-GPP relationship did not considerably 
change after matching the footprint between SIF and GPP in terms of R2, 
RMSE, linear regression slopes, and intercepts (Fig. 8 and A4). Among all 

Fig. 4. The ratio of EC footprint weighted VI VIEC footprint and SIF pixel VI VISIF pixel at each site-year (a-m). Different colors represent 4 different cases using PS data, 
two EC footprint models (FFP and SAFE) and two VIs (NIRv and EVI). The black line in each sub-figure represents that the ratio equals 1. 

Fig. 5. The change of R2 of the SIF-GPP relationship at the half-hourly timestamp after the footprint correction at each site-year. Different colors represent 8 different 
cases using PS data, two EC footprint models (FFP and SAFE), and four VIs (NIRv, SANIRv, EVI, and SAEVI). 
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the PS-based ratio cases, the largest R2 increases were 0.009, 0.012, and 
0.019 for corn, soybean, and miscanthus, respectively. The largest RMSE 
decreases were 0.153, 0.148, and 0.183 for corn, soybean, and mis
canthus, respectively. Among the S2-based ratio cases, the largest R2 

increases were 0.015, 0.007, and 0.014, respectively, but some S2-based 
ratio cases indeed degraded SIF-GPP relationships after nadir SIF foot
print upscaling (Fig. A4). For corn and soybean, the PS-based ratio 
calculated from SAEVI showed the largest improvement in terms of R2. 
For miscanthus, the PS-based ratio calculated from SANIRv showed the 

largest R2 increase. The change of the linear regression slope of SIF-GPP 
ranged from − 1.644 to 0.048, from − 0.879 to 0.421, and from − 1.955 
to − 1.0539 for corn, soybean, and miscanthus respectively, and the 
change of the regression intercept ranged from 0.051 to 0.414, from 
− 0.381 to 0.236, from − 0.183 to 0.065, respectively. Corn SIF-GPP 
relationship showed the highest R2, and regression slope, followed by 
miscanthus and soybean, and nadir SIF footprint upscaling did not 
change this pattern (Fig. 9). 

Fig. 6. The change of RMSE of the SIF-GPP relationship at the half-hourly timestamp after the footprint correction at each site-year. Different colors represent 8 
different cases using PS data, two EC footprint models (FFP and SAFE), and four VIs (NIRv, SANIRv, EVI, and SAEVI). 

Fig. 7. The regression slope and intercept variation across different site-years within corn (a, d), soybean (b, e), and miscanthus (c, f) for the original SIF (black dots) 
and footprint corrected SIF (colored dots) using PS data, two EC footprint models (FFP and SAFE) and four VIs (NIRv, SANIRv, EVI, and SAEVI). Data shown are mean 
±standard deviation. 
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4. Discussion 

4.1. Evaluation of footprint-to-target-area representativeness in croplands 

Consistent with our hypothesis, the SIF-GPP relationships were not 
substantially changed after upscaling the nadir SIF to flux footprint at 
our crop sites (Figs. 5-8). Corn and soybean are row-planting crops that 
result in relatively homogenous field conditions compared to natural 
ecosystems (Gunsolus, 1990), although in-field variations of soil and 
topographic properties could cause some heterogeneities (Jiang and 
Thelen, 2004; Vieira and Gonzalez, 2003). Miscanthus emerged annu
ally after its establishment in 2010 (Moore et al., 2020). Some 

heterogeneities were observed in the miscanthus field with high NIRv 
shown in the southern edges and low NIRv in the northern edges, but the 
SIF tower and EC tower were located in the middle of the field which 
well represented the average conditions of the field. Additionally, SIF 
tower and EC tower were close to each other within 10 m to 50 m. 
Considering that the major contributing area of EC flux comes from the 
area close to the EC tower (Kljun et al., 2015), the small distance be
tween SIF and EC towers increased representativeness of the SIF target 
within the EC footprint. In this study, we used VIs calculated from high 
spatiotemporal satellite reflectance data to evaluate the heterogeneity 
within the field and upscale the nadir SIF to EC footprint considering the 
strong correlation between SIF and structural VIs (Doughty et al., 2021; 

Fig. 8. The overall half-hourly SIF-GPP relationship change (R2, RMSE, regression slope, and intercept) after the footprint correction for each species when data from 
all site-years for the same species are combined. A total of 8 cases using PS data, two EC footprint models (FFP and SAFE), and four VIs (NIRv, SANIRv, EVI, and 
SAEVI) were considered. 

Fig. 9. The scatterplot between original SIF and GPP as well as footprint corrected SIF using PS data, SAFE EC footprint model and SAEVI, and GPP at the half-hourly 
timestamp. Colormap represents point density. The linear regression equation and R2 were shown in each sub-figure. 
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Turner et al., 2020; Zeng et al., 2022b). Previous studies have used VIs or 
reflectance directly to downscale coarse satellite SIF to finer spatial scale 
SIF products (Gensheimer et al., 2022; Turner et al., 2020; Zhang et al., 
2018). Upscaling SIF to a fixed footprint, 100 m × 100 m centered on the 
flux tower, did not significantly change the SIF-GPP relationship, which 
further demonstrated the homogeneity of our crop site within the EC 
footprint (Fig. S10 – S13). Although our study only focused on croplands 
with relatively homogenous field conditions, the methods we proposed 
could be potentially applied to other ecosystems where EVI and NIRv 
can explain the majority variation of SIF such as deciduous broadleaf 
forest and grassland (Dechant et al., 2022; Doughty et al., 2021; Guo 
et al., 2022). For natural ecosystems, more heterogeneities within the EC 
footprint are observed (Chu et al., 2021), and a larger change of SIF-GPP 

relationships after upscaling nadir SIF to EC footprint would be ex
pected. We note that a recent study has shown that matching NIRv with 
EC footprint could improve GPP estimation when crop and wetland sites 
are combined (Kong et al., 2022). We conducted the same analysis at our 
crop sites and found the relationship between GPP and NIRvP did not 
substantial change among NIRv from different sampling areas including 
SIF tower pixel, fixed footprint of 100 m × 100 m centered on the flux 
tower, and EC footprint. R2 of GPP-NIRvP slightly declined when NIRv 
sampled from a 250 m × 250 m centered on the flux tower which was 
larger than average EC footprint and field size at US-UiC and US-UiB 
sites (Fig. S14). These results further demonstrate that the spectral 
tower sampling area well represents the EC footprint in croplands, and 
indirectly support that our upscaling method can be potentially applied 

Fig. A1. The R2 of SIF-GPP changes after the footprint correction at each individual site-year. Different colors represent 8 different scenarios using S2 data, two EC 
footprint models (FFP and SAFE), and four VIs (NIRv, SANIRv, EVI, and SAEVI). 

Fig. A2. The RMSE of SIF-GPP changes after the footprint correction at each individual site-year. Different colors represent 8 different scenarios using S2 data, two 
EC footprint models (FFP and SAFE), and four VIs (NIRv, SANIRv, EVI, and SAEVI). 
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to more heterogenous ecosystems where selected VIs can explain the 
majority variation of SIF and GPP. 

4.2. Comparison of different VIs, EC footprint models, and satellite data 

Overall, different cases calculated from different VIs, EC footprint 
models, and satellite data led to marginal differences in the SIF-GPP 
relationships when upscaling nadir SIF to EC footprint. We note that 
different site-years showed differences in the change of SIF-GPP rela
tionship after SIF upscaling, e.g., the largest increase in R2 of SIF-GPP in 
US-Ne2 soybean among all the cases (Fig. 5). These differences are 
largely caused by the representativeness of spectral tower location to EC 
footprint and different data availability periods at each site-year (Miao 
et al., 2020). Although some of previous studies have reported a slightly 
stronger correlation between SIF and NIRv compared to EVI at the global 
scale (Zeng et al., 2022b), the advantage of NIRv over EVI depends on 
the regions and ecosystems (Doughty et al., 2021). For example, higher 
temporal correlation between SIF and EVI has been shown in tropics and 
subtropics (Doughty et al., 2021). Crop NIRv and EVI in our study 
showed a similar correlation with SIF at both spatial and temporal scales 
(Fig. 2& Fig. S15). Compared to original VIs, the soil adjustment process 
of VIs exerted a slightly larger difference in the SIF-GPP relationships. 
Soil-adjusted VI showed near-zero values at the early and end of the 
growing season (Fig. S16), which can better capture the variation of SIF 
at low vegetation cover (Jiang et al., 2020; Zeng et al., 2019). The ratio 
of EC footprint-weighted soil-adjusted VI to SIF tower pixel soil-adjusted 
VI showed larger deviations from 1 at the early and end of growing 
season compared to that of non-soil-adjusted VI (Fig. 3& Fig. S5). This 
larger ratio deviation from 1 caused larger modifications of SIF from 
soil-adjusted VIs at the early and end of growing season, which further 
slightly decreased the variation of SIF across the whole growing season 
and marginally improved SIF-GPP relationships. 

Different footprint models with varying complexity and assumptions 
can result in different flux contributions along with the distance from the 
EC tower (Arriga et al., 2017; Leclerc et al., 2014). EC footprint calcu
lated from the SAFE model covered a larger area compared to the FFP 
model, which resulted in a slightly higher R2 increase of SIF-GPP after 
SIF footprint upscaling at some site-years (e.g., US-UiC 2017 and US-Ne2 

2018). The different uses of measurement height contributed partly to 
the differences between these two models. For the SAFE model, the 
recorded EC instrument height was used (Chen et al., 2009), while for 
FFP, the difference between instrument height and displacement height 
was used (Kljun et al., 2015). Using the zm of FFP in the SAFE model 
resulted in smaller EC footprint coverage compared to the raw zm 
(Fig. S17). Additionally, the SAFE model used EC-measured NEE to 
weight the pure footprint which was only determined by atmospheric 
stability ,wind speed and wind direction, while the FFP model only used 
atmospheric information, which could lead to the footprint differences 
between SAFE and FFP. More direct validation is needed to verify the 
performance of different EC footprint models. 

Regarding the different satellite reflectance data, the higher tempo
ral resolution of PS which resulted in less uncertainty for daily inter
polation, and higher spatial resolution of PS (i.e., 3 m) which better 
represented the SIF tower targeting area caused slightly better perfor
mance of PS compared to S2 in upscaling nadir SIF to EC footprint when 
all cases were considered (Fig. 8& A4). Some studies have demonstrated 
the improved performance of PS over S2 to detect fine spatial and 
temporal scale phenology and land cover classification (Cheng et al., 
2020; Gašparović et al., 2018; Moon et al., 2021). Our study focused on 
cropland with relatively homogeneous field conditions, therefore the 
difference caused by different VIs, EC footprint models, and satellite 
data were marginal. Large differences among different cases would be 
expected in ecosystems with more heterogeneities. Future studies could 
apply the analyses we conducted to larger far-red SIF and GPP data 
collections such as ChinaSpec (Y. Zhang et al., 2021) which could pro
vide insights across ecosystems. 

4.3. Uncertainties in this study 

We acknowledge that there are four main uncertainties, including 
the assumption of similar ΦF, canopy for the homogenous crop canopy, the 
negligence of PAR variation within the field, the interpolation of the 
satellite reflectance data, and the variations of the SIF-VI 
relationships. ΦF, canopy depends on the absorbed energy partition 
among photochemistry, fluorescence and non-photochemical quenching 
(Frankenberg and Berry, 2018). It changes with environmental 

Fig. A3. The regression slope and intercept variation across different site-years within corn (a, d), soybean (b, e), and miscanthus (c, f) for the original SIF (black 
dots) and footprint corrected SIF (colored dots) using S2 data, two EC footprint models (FFP and SAFE) and four VIs (NIRv, SANIRv, EVI and SAEVI). Data shown are 
mean±standard deviation. 

G. Wu et al.                                                                                                                                                                                                                                      



Agricultural and Forest Meteorology 338 (2023) 109532

12

conditions such as stresses (Porcar-Castell et al., 2021). Relatively stable 
ΦF, canopy has been reported at the seasonal scale in croplands (Dechant 
et al., 2020). Spatial variation of ΦF, canopy has been shown over the 
water limitation and heat stress crop sites where SIF and the product of 
NIRv and near-infrared irradiance (NIRvR) also showed large spatial 
variations (Zeng et al., 2022a). SIF and NIRvP were similar over the EC 
footprint in our crop sites. We expect that ΦF, canopy is similar over the EC 
footprint, which is indirectly supported by the strong correlation be
tween SIF and selected VI × PAR (Fig. 2). The variation of PAR between 
the SIF tower located pixel and the EC footprint was not considered. This 
assumption is valid within a radius of 500 m in the field during sunny 
conditions (Jiang et al., 2020), although it might bring some un
certainties under scattered cloudy conditions. We are aware that the 
interpolation algorithm to get daily reflectance data would bring some 
uncertainties, but the same algorithm was applied to all the pixels in 
each field, and we used the ratio of EC footprint weighted VI and SIF 
pixel VI to upscale the original nadir SIF. This ratio calculation is ex
pected to cancel out the uncertainties related to the interpolation algo
rithm. Regarding the variations of SIF-VI relationships, recent 
cross-scale studies have found that the product of NIRv and PAR 
(NIRvP) can explain around 80% of SIF variations when combining 
spatial and temporal scales (Dechant et al., 2022; Kimm et al., 2021). 
Our portable campaign also confirmed that the product of EVI and PAR 
as well as NIRvP could explain 85% to 90% variations in SIF signal in 
corn and soybean (Fig. 2), which demonstrated that our method 
captured the majority of SIF difference between EC footprint and SIF 
tower area even without considering the variation of SIF-VI relation
ships. Therefore, we justify that these uncertainties do not affect our 
general conclusions. 

4.4. Implications to the SIF-GPP research in croplands 

SIF-GPP relationships are affected by canopy structure (Dechant 
et al., 2020; Miao et al., 2018), leaf physiology (Wu et al., 2022a; Yang 
et al., 2021), instrumentation and data process uncertainties (Zhang 
et al., 2019). Matching in-situ SIF collected by the same spectral system 
and processed with the same protocol with EC footprint did not change 
the SIF-GPP relationships for individual site-years in our study, indi
cating that canopy structure and leaf physiology are the major factors 
causing different SIF-GPP relationships among corn, soybean, and 

miscanthus (Fig. 8). The strongest SIF-GPP relationship shown in corn 
was due to the fact that both SIF and GPP co-varied with APAR (Yang 
et al., 2021), while for soybean, GPP did not co-vary with APAR at the 
seasonal scale (Wu et al., 2022b), and for miscanthus, SIF did not 
co-vary with APAR at the diurnal scale (Wu et al., 2022a). Those pat
terns caused the weaker correlations between SIF and GPP in soybean 
and miscanthus compared to corn (Fig. 8). This phenomenon of 
species-dependent SIF-GPP relationships challenges the use of a single 
SIF-GPP relationship within one plant functional type (PFT) adopted in 
previous studies (Guanter et al., 2014; Zhang et al., 2020). Combining 
other canopy structure and leaf physiology variables with SIF is ex
pected to improve GPP estimation better. Previous studies have found 
that combining SIF with photochemical reflectance index (PRI) which 
can account for part of NPQ information can improve GPP estimations 
across various species (Schickling et al., 2016; Wang et al., 2020). More 
observations that cover different species with both fluorescence and 
photosynthesis processes included would be helpful to understand the 
SIF-GPP relationships better and build one generic SIF-GPP relationship 
across various species. 

5. Conclusion 

We upscaled 13 site-years of nadir SIF to EC footprint using VIs from 
high spatiotemporal satellite reflectance data and investigated the 
change of SIF-GPP relationships for three crop species: corn, soybean, 
and miscanthus. We found that the field conditions were overall ho
mogenous across all the site-years, and SIF-GPP relationships did not 
considerably change after the SIF target area upscaling. NIRv and EVI 
showed similar performance in nadir SIF upscaling. EC footprint 
calculated from the SAFE model which covered a larger area compared 
to the FFP model showed a slightly larger increase of R2 of SIF-GPP after 
the upscaling at some site-years. Overall, using VIs calculated from PS 
showed a larger increase of R2 compared to S2 due to the higher 
spatiotemporal resolutions of PS data. The variations of regression 
slopes and intercepts across different site-years within each species were 
overall similar between original nadir SIF and upscaled EC footprint SIF. 
Our results demonstrated that the spatial mismatch between ground 
nadir SIF and GPP was a marginal issue for investigating the SIF-GPP 
relationship in croplands. The methods we proposed in this study 
could be potentially applied to other ecosystems with more 

Fig. A4. The overall SIF-GPP relationship change (R2, RMSE, regression slope, and intercept) after the footprint correction for each species when data from all site- 
years for the same species are combined. A total of 8 cases using S2 data, two EC footprint models (FFP and SAFE), and four VIs (NIRv, SANIRv, EVI, and SAEVI) 
were considered. 
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heterogeneities. 
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Francés, J., Amorós-López, J., Guanter, L., Calpe, J., Moreno, J., 2008. Improved 
Fraunhofer Line Discrimination Method for Vegetation Fluorescence Quantification. 
IEEE Geosci. Remote Sens. Lett. 5, 620–624. https://doi.org/10.1109/ 
LGRS.2008.2001180. 

Arriga, N., Rannik, Ü., Aubinet, M., Carrara, A., Vesala, T., Papale, D., 2017. 
Experimental validation of footprint models for eddy covariance CO2 flux 
measurements above grassland by means of natural and artificial tracers. Agric. For. 
Meteorol. 242, 75–84. https://doi.org/10.1016/J.AGRFORMET.2017.04.006. 

Badgley, G., Field, C.B., Berry, J.A., 2017. Canopy near-infrared reflectance and 
terrestrial photosynthesis. Sci. Adv. 3, 1602244 https://doi.org/10.1126/ 
sciadv.1602244. 

Baldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S., Anthoni, P., 
Bernhofer, C., Davis, K., Evans, R., Fuentes, J., Goldstein, A., Katul, G., Law, B., 
Lee, X., Malhi, Y., Meyers, T., Munger, W., Oechel, W., Paw, U.K.T., Pilegaard, K., 
Schmid, H.P., Valentini, R., Verma, S., Vesala, T., Wilson, K., Wofsy, S., Allen, F., 
Katul, G., Law, J.B., Lee, X., Malhi, Y., Meyers, T., Munger, W., Oechel, W., Paw, K.T. 
U., H, K.P., Valentini, P.S.R., Verma, S., Vesala, T., Wilson, K., Wofsy, S., 2001. 
FLUXNET: A New Tool to Study the Temporal and Spatial Variability of Ecosystem- 
Scale Carbon Dioxide, Water Vapor, and Energy Flux Densities. Bull. Am. Meteorol. 
Soc. 82, 2415–2434. https://doi.org/10.1175/1520-0477(2001)082<2415: 
FANTTS>2.3.CO;2. 

Baldocchi, D.D., 2003. Assessing the eddy covariance technique for evaluating carbon 
dioxide exchange rates of ecosystems: Past, present and future. Glob. Chang. Biol. 9, 
479–492. https://doi.org/10.1046/J.1365-2486.2003.00629.X. 

Balidoy Baloloy, A., Conferido Blanco, A., Gumbao Candido, C., Jay Labadisos 
Argamosa, R., Bart Lovern Caboboy Dumalag, J., Lee Carandang DImapilis, Lady, 
Camero Paringit, E., 2018. Estimation of mangrove forest aboveground biomass 
using multispectral bands, vegetation indices and biophysical variables derived from 
optical satellite imageries: rapideye, planetscope and sentinel-2. In: ISPRS Annals of 
the Photogrammetry, Remote Sensing and Spatial Information Sciences, pp. 29–36. 
https://doi.org/10.5194/isprs-annals-IV-3-29-2018. 

Cendrero-Mateo, M.P., Wieneke, S., Damm, A., Alonso, L., Pinto, F., Moreno, J., 
Guanter, L., Celesti, M., Rossini, M., Sabater, N., Cogliati, S., Julitta, T., Rascher, U., 
Goulas, Y., Aasen, H., Pacheco-Labrador, J., Arthur, A.Mac, 2019. Sun-induced 
chlorophyll fluorescence III: Benchmarking retrieval methods and sensor 
characteristics for proximal sensing. Remote Sens. 11, 962. https://doi.org/ 
10.3390/rs11080921. 

Chen, B., Black, T.A., Coops, N.C., Hilker, T., Trofymow, J.A., Morgenstern, K., 2009. 
Assessing tower flux footprint climatology and scaling between remotely sensed and 
eddy covariance measurements. Boundary-Layer Meteorol 130, 137–167. https:// 
doi.org/10.1007/s10546-008-9339-1. 

Cheng, Y., Vrieling, A., Fava, F., Meroni, M., Marshall, M., Gachoki, S., 2020. Phenology 
of short vegetation cycles in a Kenyan rangeland from PlanetScope and Sentinel-2. 
Remote Sens. Environ. 248 https://doi.org/10.1016/J.RSE.2020.112004. 

Chu, H., Luo, X., Ouyang, Z., Chan, W.S., Dengel, S., Biraud, S.C., Torn, M.S., Metzger, S., 
Kumar, J., Arain, M.A., Arkebauer, T.J., Baldocchi, D., Bernacchi, C., Billesbach, D., 
Black, T.A., Blanken, P.D., Bohrer, G., Bracho, R., Brown, S., Brunsell, N.A., Chen, J., 
Chen, X., Clark, K., Desai, A.R., Duman, T., Durden, D., Fares, S., Forbrich, I., 
Gamon, J.A., Gough, C.M., Griffis, T., Helbig, M., Hollinger, D., Humphreys, E., 
Ikawa, H., Iwata, H., Ju, Y., Knowles, J.F., Knox, S.H., Kobayashi, H., Kolb, T., 
Law, B., Lee, X., Litvak, M., Liu, H., Munger, J.W., Noormets, A., Novick, K., 
Oberbauer, S.F., Oechel, W., Oikawa, P., Papuga, S.A., Pendall, E., Prajapati, P., 
Prueger, J., Quinton, W.L., Richardson, A.D., Russell, E.S., Scott, R.L., Starr, G., 
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and planetscope imagery for vegetation detection and monitoring. In: International 
Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - 
ISPRS Archives, pp. 155–160. https://doi.org/10.5194/isprs-archives-XLII-1-155- 
2018. 
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