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Summary

The quantification of carbon and water fluxes between the land surface and the

atmosphere has practical applications in agriculture and it is fundamental for

global monitoring, especially in view of climate change. The main process of

carbon uptake is photosynthesis, and the main water flux from the land to the

atmosphere is evaporation, where we can differentiate transpiration as the flux

through pores of living organisms, mostly stomata in plants. Remote sensing

products can be used for both photosynthesis and evapotranspiration fluxes

estimates, but modelling is an inevitable step. This thesis assesses the

Soil-Canopy-Observation of Photosynthesis and Energy fluxes (SCOPE) model

for flux simulation in theory, in agricultural field experiments, and globally for

different ecosystems.

In the first step a global sensitivity analysis (GSA) of SCOPE was carried out to

evaluate the theoretical capability of the model to be driven by satellite data,

and the effects of the atmosphere on this capability. The innovative element of

the study was the sensitivity analysis at satellite level, including the atmosphere.

Previous GSAs of SCOPE were limited to top of canopy (or bottom of

atmosphere) level. The need for atmospheric analysis was also dictated by the

choice of the Sentinel-3 satellite, the data of which were only available at the

top of atmosphere level then. Another innovation - and also the motivation for

the use of Sentinel-3 - was the GSA in thermal infrared domain (TIR). Previous

studies demonstrated and our study confirmed that the link between thermal

radiance emission and the key determinant of photosynthesis rate (plant

biochemical property of the CO2 assimilating enzyme Rubisco; maximum

Rubisco carboxylation capacity, 𝑉 𝑐𝑚𝑎𝑥) is apparent in the output of the

SCOPE model. We did not succeed in retrieving 𝑉 𝑐𝑚𝑎𝑥 from TIR radiance
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Summary

with numerical optimization, but it definitely requires further investigation.

The following step was the global evaluation of SCOPE-simulated gross primary

productivity (GPP) and evapotranspiration (ET) across herbaceous and woody

plant functional types in Europe. Various seasonally static and dynamic values

of 𝑉 𝑐𝑚𝑎𝑥 were evaluated. Surprisingly, for most of the studied ecosystems the

default parametrization performed the best for the GPP flux. The largest errors

were found in dry regions, which we attribute to the lack of a soil water balance

computation and soil moisture-transpiration feedback in SCOPE model. Another

source of uncertainty was the varying ground pixel position of Sentinel-3, inherent

from the varying observation orbit. A separate chapter in the thesis discusses the

constraints on the homogeneity of the area of interest in the application of time

series of Sentinel-3.

The final step was the in-field application of SCOPE for retrieval from

hyperspectral data and potato plant productivity simulation from the CO2

assimilation flux. The performance of the retrieval algorithm was not as

successful as on the synthetic dataset, in particular only leaf chlorophyll content

(𝐶𝑎𝑏) and leaf area index (LAI) were retrieved with acceptable accuracy. At the

same time, exactly those two parameters are the main drivers of photosynthesis,

therefore the retrieval of LAI and 𝐶𝑎𝑏 enabled us to model potato yield as the

sum of mean daily net primary productivity (NPP) fluxes corrected with the

harvest index.

This thesis confirms that SCOPE can be applied not only as a radiative transfer

model, as it mostly has been applied up to now, but also as photosynthesis and

energy balance model. SCOPE provides physically consistent approach where

the satellite reflectance input and traits and fluxes output occur within a single

model. The release of the faster version 2.0 facilitates operational applications

further. The future improvement of the SCOPE model might include (1) a soil
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water balance representation relevant for drought-subjected ecosystems, where

ET is determined by water availability, rather than energy availability, and (2) leaf

clumping relevant for forests and row crops, whose leaves form patches in contrast

to grasses, where leaves are evenly distributed. Finally, the link between thermal

emitted radiance and 𝑉 𝑐𝑚𝑎𝑥 should be investigated in the coming research.
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Samenvatting

Het bepalen van de uitwisseling van koolstof en water tussen land en

amtmosfeer levert waardevolle informatie op voor de landbouw. Het is ook van

fundamentele betekenis voor wereldwijde monitoring, vooral in het kader van

klimaatverandering. Aardobersvatieproducten kunnen gebruikt worden voor

schattingen van zowel fotosynthese als de verdamping, maar voor het maken

van zulke schattingen is modellering een onvermijdelijke stap. Dit proefschrift

beoordeelt het model Soil-Canopy-Observation of Photosynthesis and Energy

fluxes (SCOPE) op drie manieren: theoretisch, voor de toepassing in

landbouwveldexperimenten en voor toepassing wereldwijd voor verschillende

ecosystemen.

Als eerste stap is een gevoeligheidsanalyse (GSA) van SCOPE uitgevoerd, om

inzicht te krijgen in de mogelijkheden en beperking van het model ten aanzien

van de sturing door satellietgegevens. Ook het effect van de atmosfeer op deze

aansturing is geanalyseerd. Het innovatieve van deze studie was dat de analyse

is gedaan op het niveau van de satelliet. Eerder GSA’s waren beperkt tot het

niveau van de top van de vegetatie (ofwel de onderkant van de atmosfeer). De

behoefte aan atmosferische analyse werd ook ingegeven door de keuze van de

Sentinel-3-satelliet, waarvan de gegevens op dat moment alleen beschikbaar

waren op het hoogste niveau van de atmosfeer. Een andere innovatie, en tevens

de hoofdreden voor de keuze voor Sentinel-3, was de beschikbaarheid van data

in het thermisch infrarode domein (TIR). De studie bevestigt dat het eerder

empirisch vastgestelde verband tussen thermische stralingsemissie en

biochemische eigenschappen van planten, om precies te zijn, de maximale

rubisco carboxylatiecapaciteit (Vcmax), gesimuleerd wordt met de

procesbeschrijvingen in SCOPE. We zijn er niet in geslaagd om Vcmax uit
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Samenvatting

TIR-straling te halen met numerieke optimalisatie, maar het gebruik van

thermische data voor deze toepassing is een veelbelovende richting voor

vervolgonderzoek.

De volgende stap was de evaluatie van de door SCOPE gesimuleerde bruto

primaire productiviteit (GPP) en evapotranspiratie (ET) voor ecosystemen

gedomineerd door functionele soorten kruidachtige en houtachtige planten in

Europa. Verschillende seizoensgebonden statische en dynamische waarden van

Vcmax werden geëvalueerd. Verrassend genoeg presteerde voor de meeste van

de bestudeerde ecosystemen de standaardparametrisering het beste voor

GPP-flux. De grootste fouten werden gevonden in droge gebieden, die we

toeschrijven aan het feit dat SCOPE geen waterbalans van de bodem bijhoudt.

Een andere bron van onzekerheid was de variërende positie op de grond van

pixels van Sentinel-3, inherent aan de variërende observatiebaan. Dit

proefschrift bevat een technische nota over dit onderwerp, waarin de vereiste

homogeniteit van het interessegebied wordt bepaald voor een zinvol gebruik van

Sentinel-3 data.

De laatste stap was de toepassing in het veld van het SCOPE-model voor het

schatten van de assimilatieflux van CO2 en de productiviteit van

aardappelplanten uit hyperspectrale reflectiemetingen. De prestaties van het

retrieval-algoritme waren niet zo hoog als bij de synthetische dataset; alleen

bladchlorofylgehalte (Cab) en bladoppervlakindex (LAI) werden met acceptabele

nauwkeurigheid geschat. Tegelijkertijd zijn precies die twee parameters het

belangrijkst voor fotosynthese. Daardoor konden we door het achterhalen van

de LAI en Cab de aardappelopbrengst modelleren als de som van de gemiddelde

dagelijkse netto primaire productiviteit (NPP) fluxen gecorrigeerd met de

oogstindex. Naast de conclusie dat het SCOPE-model aardappel-NPP adequaat

simuleert, is er een methodologische conclusie getrokken: Als in een

veldexperiment heterogeniteit wordt gecreëerd door een doelgerichte toediening
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van mest of water, is het cruciaal om dit te valideren vanuit het ’standpunt’ van

de plant, dat wil zeggen: toetsen of een opgelegde behandeling inderdaad

resulteert in een veranderde meetbare planteigenschappen, zoals LAI of

opbrengst.

Dit proefschrift bevestigt dat het SCOPE-model niet alleen kan worden

toegepast als een stralingsoverdrachtsmodel, zoals het tot nu toe meestal is

toegepast, maar ook als fotosynthese- en energiebalansmodel. Het gebruik van

een enkel model dat zowel satellietreflectie als fluxen berekent zorgt voor een

fysisch consistente modelling. Het vrij beschikbaar maken van de snellere versie

2.0 vergemakkelijkt operationele applicaties verder. De beperkingen met

betrekking tot de bodemwaterbalans moeten ook in toekomstige studies worden

aangepakt, aangezien voorgestelde aanpassingen te veel bodemspecifieke

inputparameters vereisen. Een andere beperking is de clustering van bladeren

die werd opgelost voor het stralingsoverdrachtsgedeelte, maar nog steeds

onduidelijk is voor het aerodynamische energiebalansweerstandsschema. Ten

slotte zou het verband tussen thermische uitgezonden straling en Vcmax de

focus moeten zijn van komend onderzoek.

ix



Samenvatting

x



Резюме

Данная диссертации на соискание степени кандидата наук (PhD) в области

дистанционного зондировани Земли посвещена моделированию фотосинтеза

и эвапотранспирации на уровне биоценозов и экосистем. Моделирование этих

процессов важно как для сельского хозяйства, так и для понимания динамики

растительности в связи с изменением климата.

Проводился анализ модели SCOPE (Soil-Canopy-Observation of Photosynthesis

and Energy fluxes, наблюдение за растительным покровом (почвой и

растительной кроной), фотосинтезом и энергетическими потоками) для

использования с новым космическим аппаратом Европейского космического

агенства (ESA) Sentinel-3 (Часовой-3), выведенным на орбиту в 2016 году.

Для моделирования фотосинтеза и эвапотранспирации проводилось два

запуска модели SCOPE. В ходе первого, так называемого обратного запуска

модели (inversion), к измеренному спутником Sentinel-3 спектру отражённого

света подбиралась наиболее вероятная кобинация параметров растительного

покрова, то есть такая комбинация параметров, которая максимально точно

воспроизведёт измеренный спектр при прямом (forward) запуске модели

SCOPE. Подобранная комбинация параметров и метеорологические данные

использовались во втором, прямом запуске SCOPE. Смоделированные

значения скорости ассимиляции углекислого газа (фотосинтеза) и скорости

испарения воды (эвапотранспирации) сравнивались с измеренными

значениями.

На первом этапе был проведён глобальный анализ чувствительности

выходных параметров модели SCOPE к входным. Новизна данного анализа

состояла в моделировании излучения над поверхностью атмосферы, то есть
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Резюме

непосредственно на том уровне, где спутник Sentinel-3 регистрирует сигнал.

До этого подобный анализ проводился только на уровне растительной кроны

(дна атмосферы). Для моделирования сигнала над атмосферой

потребовалось соединить SCOPE c моделью переноса излучения в

атмосфере. Вклад параметров атмосферы в синей области спектра

уменьшил чувствительность к основым параметрам растительного покрова,

тем не менее не сильно изменив возможность их подбора (retrieval) при

инвертировании модели.

На втором этапе был проведён анализ данных самого спутника Sentinel-3.

Нас интересовали временные ряды отражённого излучения в пределах одного

пикселя. Номинальное пространственное разрешение Sentinel-3 - 300 метров,

но в результате изменения орбиты и угла наблюдения в разные дни итоговое

разрешение оказалось равным 700 метрам при использовании официальных

данных и 2700 метрам при использовании данных из Google Earth Enginge

(GEE). В дальнейшем анализе использовались только официальные данные.

Смоделированные значения скорости ассимиляции углекислого газа

(фотосинтеза) и скорости испарения воды (эвапотранспирации) совпадали с

измеренными методом вихревой ковариации значениями как в лесных, так и

в травянистых экосистемах.

Дополнительное исследование, представленное в главе 5 показало, что

валовая первичная продукция (gross primary productivity, GPP), рассчитанная

из дневных значений скорости ассимиляции углекислого газа, коррелирует с

конечным урожаем картофеля. То есть данные дистанционного

зондирования могут предсказать урожайность, даже если сам урожай

(клубни), не наблюдаем (покрыт землёй).

Данная работа показала, каким образом модель SCOPE может быть

использована для моделирования фотосинтеза и эвапотранспирации с
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данными со спутника Sentinel-3, какова точность предсказанных значений

для Европейских экосистемах, и как данные предсказания могут быть

применены для прикладного анализа, например, анализа урожайности.
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Introduction

What has been will be again,

what has been done will be done again;

there is nothing new under the sun.

Ecclesiastes 1:9

This thesis is devoted to the enhancement of our understanding of the

relationship between ecosystem functioning and remote sensing signals. It

enriches our knowledge about ecosystems and their model representations and

explores the upscaling possibilities of a process-based ecosystem carbon, water

and energy flux modelling.

1.1 Background

Pupils in kindergarten are taught that living creatures are the ones who grow,

breathe, eat and reproduce; at schools a longer list of traits is given, known

in English-speaking countries as “Mrs. Gren” rule (from Move, Respire, Sense,

Grow, Reproduce, Excrete, Nutrition); finally, at university one more trait is added

- the reduction of entropy or, more poetically, the creation of the order from the

disorder. The latter implies a constant energy-driven exchange of matter. There

are two sources of that energy used by living organisms: solar energy and the

energy of chemical bonds. Solar energy is the main driver of the water cycle

through evaporation and the carbon cycle through photosynthesis. The latter is

the only pathway by which solar energy is converted into the energy of chemical

bonds and inorganic matter is transformed into organic matter. Photosynthesis

is conducted exclusively by plants, algae and some bacteria. This brings us to

two general ideas:

1. The Earth is a complex system powered with solar energy;

2. Only plants, algae and bacteria can use solar energy directly, making the
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existence of other forms of life possible;

Therefore, an enormous richness of interdisciplinary knowledge is implicit in the

simple phrase “the exchange of matter to maintain order“, and this knowledge is

needed for its further investigation in climatology, meteorology, geology, ecology,

biology, botany, chemistry, etc.

This thesis focuses on plants as the central component of

soil-vegetation-atmosphere transfer (SVAT). Plants actively participate in

carbon and water cycles during gas exchange through leaf stomata; the

corresponding metrics are gross primary productivity (GPP) - the amount of

assimilated carbon dioxide (CO2) per unit of time and transpiration (T) - the

amount of water (H2O) released from stomata per unit of time. The

“economical” relationship of a plant and the environment can be described in

the following way: H2O is the price that a plant pays for its food (CO2), which

is estimated to be as high as 400 H2O molecules “out” for 1 CO2 molecule

“in”. The soil component plays a significant role in water exchange as well,

providing water to plant roots and releasing it into the atmosphere through

evaporation (E). The total soil-vegetation water flux from the earth surface to

the atmosphere is called evapotranspiration (ET).

The following sections describe the approaches used to measure and model GPP

and ET, starting with GPP. The estimation of GPP is, to some extent, easier

than that of ET, because only one process is involved.

1.1.1 Photosynthesis

Photosynthesis is a complex process which has two phases - the light phase in

which the energy is accumulated and the dark1 phase in which CO2 is assimilated

1“dark” does not mean it occurs only at night but rather that it does not require light
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(Calvin cycle). Optical remote sensing conducts measurements related to the

light phase, while models further simulate the course of the dark phase, the rate

of CO2 assimilation.

A typical light-phase measurement is the flux density of absorbed

photosynthetically active radiation (APAR), which, in turn, depends on the light

(atmosphere transmittance, time of the day) and plant structure (greenness,

leaf area, leaf clumping). The correlation between APAR and GPP is exploited

in many versions of Monteith light use efficiency model (Monteith, 1972). In

recent years a closer look has been taken at the fate of APAR, which can be

used not only for photochemical processes but also dissipated in the form of

chlorophyll fluorescence and non-photochemical quenching. In some studies the

correlations between fluorescence and GPP have been shown to be stronger

than that between APAR and GPP (Maes et al., 2020; Yang et al., 2021a).

A typical dark-phase measurement is the gas exchange with leaf chambers, canopy

chambers and eddy covariance techniques (Baldocchi, 2003; Long et al., 1996).

This seems straightforward at first glance as it matches the operational definition

of photosynthesis, namely the CO2 assimilation rate. However, at plant level

respiration (R) confounds the measurements, absorbing oxygen and emitting extra

CO2. Technically speaking, in the presence of respiration the metric is called

net primary productivity (NPP), defined as GPP minus R. Therefore, a set of

gas exchange measurements in the dark is conducted to measure pure R. At

ecosystem level in addition to plant respiration the soil emits CO2 as a result of

decomposition processes conducted by bacteria and fungi, the so-called ecosystem

respiration (Reco). Again, a similar technique (gas exchange at night or soil gas

exchange chambers) or light response curve modelling is used to partition net

ecosystem exchange (NEP) into GPP and Reco (Lasslop et al., 2010). Thus

NEP and ET have in common that they both represent the joint flux originating

from the vegetation (GPP, T) and the soil (Reco, E).
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Dark phase models are often built around two physiological parameters:

maximum Rubisco (main CO2 fixing enzyme) carboxylation rate (𝑉 𝑐𝑚𝑎𝑥) and

stomatal conductance (𝑔𝑠). 𝑉 𝑐𝑚𝑎𝑥 can be estimated from the CO2 response

curve, which is constructed by altering the CO2 concentration within a

measurement chamber, while 𝑔𝑠 can be estimated by counting CO2 or water

molecules with a porometer. At ecosystem level the values of these parameters

are obtained through either indirect remote sensing indicators, such as land

classification and plant functional-type-specific parameterization, or through

empirical correlation with emitted thermal radiation or plant chlorophyll

content.

A comprehensive model of photosynthesis, consisting of both light and dark

reactions was proposed by Farquhar - von Caemmerer and Berry (FvCB)

(Farquhar et al., 1980). In this model photosynthesis is limited either by light

(APAR) through light phase electron transport (with capacity 𝐽𝑚𝑎𝑥) or by leaf

internal CO2 concentration through 𝑔𝑠 and enzyme activity (𝑉 𝑐𝑚𝑎𝑥),

characteristics of the dark phase. FvCB is a leaf level model and various

techniques are used for its canopy and ecosystem level upscaling with big-leaf,

two-leaf and multilayer models (Bonan et al., 2021).

Photosynthesis cannot be directly measured with remote sensing techniques, and

process modelling is inevitable for the estimation of photosynthesis rates. The

remote sensing methods relate indirectly to the first phase of photosynthesis,

namely the light reactions, but the interest and ultimate goal is the estimation

of the rate of the consequent dark-phase processes.

1.1.2 Evapotranspiration

In contrast to photosynthesis that occurs only in green plant tissues, transpiration

involves all plant organs - roots, shoots and leaves. The movement of water
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within the plant is defined by the water potential gradient which is controlled

by soil water potential, osmotically active solutes in roots, stomatal aperture in

leaves and atmospheric water potential. Pure transpiration can be measured by

equating the transpiration rate to the sap flux, and measuring the latter with sap

flux density probes, while the sum of transpiration and evaporation by soil and

wet canopy (ET=E+T) can be estimated from the water budget as monitored

with lysimeters and soil water sensors in the root zone (Allen et al., 2011; Rana

and Katerji, 2000; Wang and Dickinson, 2012).

An alternative measurement-modelling framework takes the energy budget as a

starting point, where ET is calculated from the latent heat flux of evaporation

(LE) (Liou and Kar, 2014). At the Earth surface, absorbed solar energy plus

net absorbed thermal radiation, together termed “net radiation” (Rn) heats up

water and makes it evaporate (ET, LE) or warms up the surrounding through

convection and advection (sensible heat, H). For soil and additional ground heat

component (G) due to conductive (solid phase) and convective (pore space)

heat flow is also measured. This forms the so-called energy balance Rn - G =

LE + H, where Rn is directly measured with radiometers, G is estimated from

temperature gradients in the soil or with heat flux plates, and H and LE are

estimated through temperature and humidity gradients (Bowen ratio method) or

covariance (eddy covariance method) (Allen et al., 2011; Rana and Katerji, 2000;

Wang and Dickinson, 2012).

A certain parallel can be seen between the fate of APAR in leaves and Rn of

Earth surface, which are both split into three components with one (GPP and

ET, respectively) being of particular interest.

A common modelling approach was proposed by Penman (1948) and Monteith

(1965), which requires primary knowledge of Rn and G, surface resistances and

vapour pressure. A simplified version of Penman-Monteith equation by Priestley
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and Taylor requires only the knowledge of Rn, G and air temperature (Sumner

and Jacobs, 2005).

Overall, ET can not be estimated by means of remote sensing directly, its

estimation requires modelling. At the same time remotely sensed net radiation

and thermal emitted radiation (land surface temperature) are valuable inputs of

energy balance models.

1.2 Research questions

The previous sections demonstrated why the estimation of GPP and ET with

remote sensing requires modelling. A model has to represent a balance between

the three R’s: (1) reliability, the ability to reproduce measurements, (2)

robustness, non-overlaying sensitivity to heuristic, poorly-known parameters,

and (3) realism, sufficient (for hypothesis testing) representation of the current

knowledge about the process (Prentice et al., 2015). According to Prentice

et al. (2015), land surface models (LSMs), the models used for GPP and ET

simulations, represent the processes too realistically, losing in reliability and

robustness. In contrast, the process of solar light interaction with soil, leaf and

canopy and the upscaling of leaf flux to canopy level flux are oversimplified in

LSMs. Although such insufficient realism does not automatically mean

unreliability of a model output, for canopy radiative transfer big-leaf or two-leaf

representations were shown to overestimate GPP in comparison to multilayer

schemes (Bonan et al., 2021; De Pury and Farquhar, 1997). Recently, LSMs

have replaced a simple big-leaf representation of canopy radiative transfer by

the more elaborate two-leaf scheme in CLM4 (Bonan et al., 2011) and the

multilayer scheme in JULES (Mercado et al., 2007).

Another unrealistic assumption inherent to LSMs is the independent

parametrization of ET and GPP simulations. For example the GPP (Running
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and Mu, 2019) and ET (Running et al., 2019) algorithms of a popular NASA

Earth Observation satellite mission MODIS use the same values of leaf area

index (LAI) and APAR for both algorithms, however, the maximum values of

atmospheric vapor pressure deficit at which stomata closure occurs slightly

differ. In fact, ET and GPP are coupled through stomatal gas exchange.

Models should include this coupling by parameterizing the common processes of

gas exchange and radiation absorption. When flux ratios, for example water use

efficiency (GPP/ET), are calculated, it is important that both GPP and ET

models include the same description of vegetation layer (Beer et al., 2009;

Hatfield and Dold, 2019).

This study challenges the Soil-Canopy-Observation of Photosynthesis and

Energy fluxes (SCOPE) model (Van der Tol et al., 2009; Yang et al., 2020a)

against the three R’s in relation to photosynthesis and energy balance fluxes

simulation in various ecosystem. In contrast to LSMs, SCOPE is an observation

model and its soil-vegetation-atmosphere transfer (SVAT) scheme is aimed at

the first place at accurate remote sensing signal simulation. SCOPE radiative

transfer is calculated in accordance with the four-stream radiative transfer

theory (Yang et al., 2020c), where canopy architecture is represented by

multiple layers of arbitrary inclined leaves (Jacquemoud et al., 2009; Verhoef,

1984; Verhoef, 1985). This representation spans both visible-near-infrared and

thermal infrared (TIR) domains, including both incoming and emitted radiation.

As such, SCOPE should be able to represent APAR and Rn, required for

respective GPP and ET calculations, more reliably. This requirement of uniform

parametrization for GPP and ET simulations is satisfied in SCOPE through the

coupling of the photosynthesis Farquhar - von Caemmerer and Berry model

discussed above and a stomatal conductance model (Collatz et al., 1992;

Collatz et al., 1991).

The first step towards SCOPE-simulated GPP and ET evaluation was done in
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silico, on simulated data. It was tested how well the radiative transfer and

biochemcial schemes are coupled. This question was inspired by the recent

proposition of biochemical and soil parameters retrieval using SCOPE with help

of TIR data (Bayat et al., 2018). Bayat et al. (2018) proposed that TIR is

sensitive to the 𝑉 𝑐𝑚𝑎𝑥 parameter in the FvCB model and suggested that both

𝑉 𝑐𝑚𝑎𝑥 and the surface resistance for soil evaporation can be retrieved from

satellite measured TIR. In this thesis we tested whether the sensitivity is indeed

sufficient for this purpose.

1. Is the suggested link between 𝑉 𝑐𝑚𝑎𝑥 and SCOPE-simulated thermal

emitted radiance strong enough to retrieve this important parameter for

photosynthesis?

The second step required real world remote sensing data. On the one hand,

we wanted to be able to explore visible-thermal synergy, available in spacecrafts

Terra and Aqua (MODIS) (Justice et al., 2002), Landsat 7 and 8 (Wulder et al.,

2019) and Sentinel-3 (Donlon et al., 2012), on the other, high revisit time was

needed to collect more cloud-free images. In this respect, both MODIS and

Sentinel-3 missions are suitable as they deliver daily observations. The choice

was made in favor of Sentinel-3, because this European Space Agency (ESA)

mission is a part of a long-term monitoring program: Currently (2021) two more

spacecrafts Sentinel-3C and D are to be launched. This choice of using data

of a relatively new satellite required additional investigation of uncertainty, in

particular we addressed two sources:

2. To what extent do atmospheric effects hamper the retrieval of vegetation

traits from Sentinel-3 top of atmosphere radiance?

3. What other sources of uncertainty, in addition to atmospheric, can influence

the reproducibility of the results when Sentinel-3 satellite is used?

9
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Having tested the model theoretical capabilities and characterized data-related

uncertainties, we proceeded to the GPP and ET analysis across ecosystems. Such

analysis can help decide to what extent SCOPE can be applied operationally for

large scale flux mapping.

4. How accurate are SCOPE-simulated GPP and ET fluxes compared to the

measured data in various ecosystems?

A simulated flux of carbon dioxide or water is interesting in itself. However,

practical applications can be derived from those fluxes as well. ET is typically

used for irrigation management and GPP - for yield and productivity estimation.

The potential application of SCOPE-simulated GPP flux for yield monitoring was

investigated, answering the question:

5. To what extent can the simulated GPP flux be used for crop yield estimation?

1.3 Structure of the thesis

The research questions are addressed in the consecutive chapters as follows:

Chapter 2: Global Sensitivity Analysis of the SCOPE Model in Sentinel-3 Bands:

Thermal Domain Focus (questions 1, 2)

Chapter 3: Google Earth Engine Sentinel-3 OLCI Level-1 Dataset Deviates from the

Original Data: Causes and Consequences (question 3)

Chapter 4: Multi-site Validation of Daily SCOPE-Model-Simulated Carbon and Energy

Fluxes (question 4)

Chapter 5: SCOPE Model Usage for Potato Productivity Monitoring under Different

Fertilization (question 5)

10



Chapter 2 Global Sensitivity Analysis of

the SCOPE Model in

Sentinel-3 Bands: Thermal

Domain Focus

This chapter is published as:

Prikaziuk, E., and Van der Tol, C. (2019). Global Sensitivity Analysis of the

SCOPE Model in Sentinel-3 Bands: Thermal Domain Focus. Remote Sensing,

11(20). https://doi.org/10.3390/rs11202424

11

https://doi.org/10.3390/rs11202424


Global Sensitivity Analysis of the SCOPE Model in Sentinel-3 Bands: Thermal Domain Focus

Abstract

Sentinel-3 satellite has provided simultaneous observations in the optical

(visible, near infrared (NIR), shortwave infrared (SWIR)) and thermal infrared

(TIR) domains since 2016, with the revisit time of 1–2 days. The high temporal

resolution and spectral coverage make the data of this mission attractive for

vegetation monitoring. This study explores the possibilities of using the Soil

Canopy Observation, Photochemistry and Energy fluxes (SCOPE) model

together with Sentinel-3 to exploit the two sensors onboard of Sentinel-3 (the

ocean and land color instrument (OLCI) and sea and land surface temperature

radiometer (SLSTR)) in synergy. Sobol’ variance based global sensitivity

analysis (GSA) of top of atmosphere (TOA) radiance produced with a coupled

SCOPE-6S model was conducted for optical bands of OLCI and SLSTR, while

another GSA of SCOPE was conducted for the land surface temperature (LST)

product of SLSTR. The results show that in addition to ESA level-2 Sentinel-3

products, SCOPE is able to retrieve leaf area index (LAI), leaf chlorophyll

content (Cab), leaf water content (Cw), leaf senescent material (Cs), leaf

inclination distribution (LAD). Leaf dry matter content (Cdm) and soil

brightness, despite being important, were not confidently retrieved in some

cases. GSA of LST in TIR domain showed that plant biochemical parameters -

maximum carboxylation rate (Vcmax) and stomata conductance-photosynthesis

slope (Ball-Berry m) can be constrained if prior information on near-surface

weather conditions is available. We conclude that the optical and thermal

domains combined facilitate constraining of the land surface energy balance

using SCOPE.
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2.1 Introduction

The retrieval of vegetation parameters from remote sensing data in a multi-

dimensional parameter space is a challenging task (Zamora-Sillero et al., 2011). It

relies on a physical or statistical relationship between the radiometric observation

and the vegetation parameter of interest. Parameters can only be retrieved if this

relationship is consistent and unique, and the number of retrievable parameters is

typically constraint by the number of independent observations. Understanding

the model sensitivity to the observations can help select the parameters that can

be retrieved, and identify the need for a priori information.

Global sensitivity analysis (GSA) is a useful method to quantify the relative

importance of the inputs to the outputs of models. In contrast to local

sensitivity analysis, the method accounts for input parameter interactions and

possible output non-linearity (Saltelli et al., 2010). For several radiative transfer

models describing the interaction between solar radiation and vegetation

canopies, GSAs have been carried out with the aim of assessing retrievability of

vegetation properties from optical reflectance. At the leaf level, GSAs have been

carried out for the PROSPECT model (Jacquemoud and Baret, 1990) version 4

(Li and Wang, 2011) and versions 4, 5 and D (Sun et al., 2019). Sensitivity of

PROSPECT to hyperspectral LIDAR measurements was quantified by Sun and

Liang (2008), to close-range imaging spectroscopy (PROCOSINE model) by Jay

et al. (2016), and the sensitivity of a modified version of PROSPECT model

including leaf protein and leaf cellulose and lignin quantification has been

carried out by Wang et al. (2015). The sensitivity of the dorsiventral leaf model

DLM has been analysed by Stuckens et al. (2009). At the vegetation canopy

level, leaf reflectance and transmittance models are usually complemented with

a canopy radiative transfer model, such as SAIL (Verhoef, 1984) for closed

vegetation or INFORM for forest (Schlerf and Atzberger, 2006). Many use
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PROSPECT for the leaf, as typically indicated with the prefix ‘PRO’ in the

name of the model. Several GSAs have been carried out for the PROINFORM

model (Tagliabue et al., 2019; Wang and Atkinson, 2018; Zhu et al., 2019). In

a GSA of PROSAIL and PROGEOSAIL in relation to fuel moisture content

Bowyer and Danson (2004) showed that leaf area index (LAI) and fraction of

vegetation cover dominated reflectance in shortwave infrared (SWIR) region.

This dominance of vegetation coverage is reduced if the sensitivity analysis is

carried out separately for sparse, intermediate and dense vegetation (Xiao et al.,

2014). At regional and global level it is useful to carry out a GSA for specific

operational satellite sensors or platforms. For example, Bacour (2002)

conducted a sensitivity analysis of four canopy models, PROSAIL, PROKUUSK,

PROIAPI and PRONADI, at POLDER bands on Parasol (decommissioned in

2013) (Bacour, 2002). Other GSAs included MODIS on Aqua and Terra (bands

3–7, 13, 15, 16) (Morris et al., 2008), TM on Landsat 5 (decommissioned in

2013) (Gu et al., 2016), ETM+ on Landsat 7 (bands 2–5, 7) (Hadi et al.,

2017), MSI on Sentinel-2 (Zhang et al., 2018), REIS on RapidEye (Dong et al.,

2019) and WVC on HJ-1 (Xu et al., 2019). When dealing with satellite data it

is necessary to account for the effect of the atmosphere. Several studies have

quantified the atmospheric effects by simulating the propagation of top of

canopy (TOC) reflectance to top of atmosphere (TOA) radiance using the

models MODTRAN (Anderson et al., 2009; Berk et al., 2014) for Hyperion on

EO-1 (decommissioned in 2017) (Mousivand et al., 2014), CHRIS on Proba-1,

TM on Landsat 5 and ASTER on Terra (Mousivand et al., 2015) and

6S (Vermote et al., 1997) for VEGETATION on SPOT (decomissioned in 2015)

(Ceccato et al., 2002), MODIS on Aqua and Terra (bands 1–7) (Shi et al.,

2016) and vegetation indices derived from TM and ETM+ on Landsat 5 and 7

respectively (Liu et al., 2012). GSA of full range PROSAIL-MODTRAN TOA

radiance spectra (400–2500 nm) has recently been reported (Verrelst et al.,

2019).
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Most radiative transfer models exclusively focus on one spectral domain, i.e.,

either the visible-SWIR, or thermal, or microwave domain, and thus cannot exploit

the combined optical and thermal data provided by some platforms, such as

MODIS, Landsat and Sentinel-3. In this respect, the Soil Canopy Observation,

Photosynthesis and Energy fluxes (SCOPE) model is a useful tool, as it simulates

both the thermal and optical radiance signals from the vegetation as a function

of vegetation properties and heat fluxes. In addition, it simulates solar induced

chlorophyll fluorescence (SIF). In several studies, the sensitivity of SCOPE was

analyzed. A GSA of SIF as simulated by SCOPE has been carried out by Verrelst

et al. (2015). Gross primary productivity (GPP) simulated with biochemical part

of SCOPE was subjected to GSA by Wolanin et al. (2019) and latent heat flux and

transpiration from energy balance part were analyzed by Jin et al. (2019a).None

of these studies included the thermal radiance spectra into GSA, although Bayat

et al. (2018) with a modified version of SCOPE demonstrated that simultaneous

usage of optical and thermal bands of Landsat 5 (TM) and 7 (ETM+) leads to

more accurate simulations of GPP and evapotranspiration in the course of the

growing season. Thus, there is both a need and an opportunity to assess the

sensitivity of the thermal and visible bands of Sentinel-3 with SCOPE, and to the

best of our knowledge, this has not been published before.

The objective of the present study is to analyze the usability of Sentinel-3 derived

data to constrain the SCOPE model, using a GSA. This is a next step towards

estimating energy fluxes from SCOPE using satellite data as input. This could

eventually support land surface (e.g., ORCHIDEE (Krinner et al., 2005), Noah-

MP (Niu et al., 2011)) and hydrological models (e.g., MIKE SHE (Jaber and

Shukla, 2012) or SimSphere (Petropoulos et al., 2009)) that do not include a

radiative transfer description, and that would otherwise rely on more qualitative,

index-based remote sensing data products.

The remainder of the paper is organized as follows: materials and methods
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(section 2.2) describe SCOPE model, Sentinel-3 instruments, simulation of

Sentinel-3 optical and thermal signal, basics of GSA analysis and the description

of the synthetic TOA dataset with which retrieval was performed. The results

(section 2.3) show full-spectrum and band specific sensitivity indices for optical

and thermal domain, ending with the synthetic retrieval results. In the

discussion (section 2.4) the explanation of the results along with the

comparison with previously published works is given. Conclusions (section 2.5)

summarize our work.

2.2 Materials and Methods

2.2.1 SCOPE

The Soil Canopy Observation, Photosynthesis and Energy fluxes (SCOPE)

model (Van der Tol et al., 2009) is a homogeneous (1D) radiative transfer

model that simulates soil reflectance, leaf reflectance and canopy reflectance

factors (0.4–2.4 µm) in optical domain, and canopy emitted thermal radiance

(2.5–50 µm) in thermal domain, as a result of energy balance closure and leaf

temperature calculations. The ability to simulate both optical and thermal

spectra makes SCOPE a suitable tool for working with sensors operating in

both domains, which, among many others, include MODIS on Terra and Aqua,

ETM+ on Landsat 7, TIRS on Landsat 8 and SLSTR on Sentinel-3. The

thermal radiation measurements facilitate the retrieval of parameters related to

the aeorodynamic roughness and evaporative cooling (Bayat et al., 2018;

Duffour et al., 2015).

SCOPE has been described elsewhere in detail (Van der Tol et al., 2009; Van

der Tol et al., 2019); here we only describe the parts that are essential for the

present study. The model consists of radiative transfer modules for the leaf
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(Fluspect (Vilfan et al., 2016)) and for the canopy (optical, fluorescence and

thermal domain) and models of soil reflectance (BSM (Jiang and Fang, 2019;

Verhoef et al., 2018)), energy balance and biochemistry (Collatz et al., 1992;

Collatz et al., 1991; Van der Tol et al., 2014). For this study two radiative

transfer modules are most relevant: optical radiative transfer module (RTMo)

that, strictly speaking, operates with incident irradiance in both optical and

thermal domains and thermal radiative transfer module (RTMt) that calculates

canopy and soil thermal emitted radiance.

Optical Radiative Transfer Module (RTMo)

At the first step, leaf reflectance, transmittance and fluorescence are calculated

with the Fluspect model based on leaf optical parameters listed in table 2.1

(Vilfan et al., 2016), and these optical properties apply to all leaves in the

vegetation canopy. Soil reflectance is simulated with the BSM

(Brightness-Shape-Moisture) model that uses 4 parameters (table 2.1) (Jiang

and Fang, 2019; Verhoef et al., 2018). Leaf and soil reflectance are integrated

to canopy level by ‘RTMo’, a numerical version of the SAIL model (Verhoef,

1984; Verhoef, 1985). RTMo calculates the optical properties of vegetation

layers based on a leaf angle distribution (prescribed by two parameters, LIDFa

and LIDFb, see (Verhoef, 1998)), leaf area index (LAI) and

illumination-observation geometry: solar zenith angle, viewing zenith angle and

the azimuthal difference between illumination and view angles. RTMo outputs

four top of canopy (TOC) reflectance factors: bidirectional (𝑟𝑠𝑜),

directional-hemispherical (𝑟𝑠𝑑), hemispherical-directional (𝑟𝑑𝑜), bihemispherical

(𝑟𝑑𝑑) (Schaepman-Strub et al., 2006). TOC reflectance (𝜌𝑇𝑂𝐶) is calculated

from reflectance factors and direct (𝐸𝑑𝑖𝑟) and diffuse (𝐸𝑑𝑖𝑓) TOC irradiance

following eq. (2.1):
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𝜌𝑇𝑂𝐶 =
𝐸𝑑𝑖𝑟 · 𝑟𝑠𝑜 + 𝐸𝑑𝑖𝑓 · 𝑟𝑑𝑜

𝐸𝑑𝑖𝑟 + 𝐸𝑑𝑖𝑓
(2.1)

Thermal Radiative Transfer Module (RTMt)

Thermal emitted radiance is calculated for each layer (60 layers of sunlit and

shaded leaves and a layer of sunlit and shaded soil) for wavelength from 2.5 to

50 µm from leaf temperature and emissivity using Planck’s law, followed by the

simulation of diffuse upward and downward radiation and radiance in observation

direction in analogy with the optical domain. The leaf temperatures are updated

iteratively in order to match the net radiation with the non-radiative energy

dissipation via turbulent heat exchange and evaporative cooling. The emissivity

is 1− 𝜌− 𝜏 for leaf, and 1− 𝜌𝑠 for soil according to Kirchhoff’s law, where 𝜌, 𝜏

are leaf reflectance and transmittance 𝜌𝑠—soil reflectance in the thermal range.

They are either provided as input to the model or the values at 2400 nm are

used for the thermal range as well, because a thermal leaf emissivity model is not

available in SCOPE.

Energy Balance

The core of the energy balance is the equation:

∫︁ 50000

400

(1− 𝜌− 𝜏) · (𝐸𝑖𝑛 − 𝐸𝑏𝑏,𝑒𝑚)𝑑𝜆 = 𝑅𝑛 = 𝐻 + 𝜆𝐸(+𝐺) (2.2)

where (1−𝜌−𝜏) - leaf absorptivity (emissivity), 𝐸𝑖𝑛 is the total incident irradiance

on a leaf calculated by RTMo and RTMt, 𝐸𝑏𝑏,𝑒𝑚 the emitted black body radiation

calculated by RTMt, 𝜆 the wavelength, 𝑅𝑛 is net radiation, 𝐻 the sensible heat

flux, 𝜆𝐸 the latent heat flux and 𝐺 the ground (soil) heat flux, which only applies

to the soil components but not to leaves.
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The sensible and latent heat fluxes are calculated from an aerodynamic resistance

scheme. The within-canopy resistance and above canopy resistance are functions

of atmospheric stability (Paulson, 1970), wind speed, leaf area index and drag

coefficients (Verhoef and Wallace, 2000). Finally, stomatal conductance, which

is a function of the actual assimilation rate and relative humidity, determines

the transpiration rate and latent heat flux. The energy balance routine resolves

the temperatures of sunlit and shaded leaves and soil iteratively until Equation

(2.2) holds for all leaves and the soil with a maximum error of 1 W m−2. In

some cases the algorithm does not converge towards energy balance closure, in

which case a warning is issued and the output cannot be accepted. Because the

sensitivity analysis scheme that was used in this study does not allow missing

values, we gap-filled erroneous values and values where energy balance error

(difference between net radiation and the sum of heat fluxes) was higher than 10

W m−2 with Gaussian process regression realized in the package gp emulator

(Gómez-Dans et al., 2016; Gómez-Dans and Lewis, 2018).

2.2.2 Sentinel-3

Sentinel-3 is a satellite constellation (currently consisting of two satellites)

under ESA’s Copernicus program (Donlon et al., 2012). Both satellites have

four instruments on board: Synthetic Aperture Radar Altimeter (SRAL),

microwave radiometer (MWR), Ocean and Land Colour Imager (OLCI) and

dual-view Sea and Land Surface Temperature Radiometer (SLSTR). The revisit

time of the constellation is 1.1 days at the equator. Sentinel-3 has provided

level-1 products of top of atmosphere radiance and brightness temperature since

19 April 2016. Although the primary goal of Sentinel-3 is ocean

monitoring—topography with SRAL and MWR and temperature with

SLSTR—it can well be used for vegetation remote sensing. In 2015 the

fluorescence explorer (FLEX) mission was selected to fly in tandem with
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Sentinel-3 for plant photosynthesis monitoring and fluorescence retrieval

(Drusch et al., 2017).

OLCI has 21 bands in the range from 0.4 to 1.02 µm (fig. 2.1). The swath width

is 1270 km with spacial resolution 300 m (full resolution) or 1200 m (reduced

resolution) at nadir, while SLSTR is a dual-view spectrometer that has 6 bands

delivering radiance (S1–S6) (fig. 2.1), 3 bands delivering brightness temperature

(S7–S9, 3.7, 10.9, 12 µm) and 2 active fire bands (F1,2 3.7, 10.9 µm). The

measurements of SLSTR are taken in two views: nadir (swath width 1400 km)

and oblique (55∘, swath width 740 km). Spatial resolution of S1–S6 bands is 500

m, S6–S9 and F1–2 is 1000 m. In both oblique and nadir view, the measurements

are taken in 4 stripes: A: S1–S6, B and C : S4–S6 and I: S7–S9 and F1,2.

Figure 2.1: Sensor response functions of Sentinel-3 satellite instruments in typical vegetation
top of canopy (TOC, green) and top of atmosphere (TOA, blue) radiance spectra. (a)—optical
SLSTR; (b)—thermal SLSTR; (c)—OLCI.
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2.2.3 Simulation of Sentinel-3 Signal

RTMo and 6S models were coupled as shown in fig. 2.2. Parameter ranges are

summarized in table 2.1, fixed input parameters for 6S model can be found in

table 2.5.

The Optical Domain

The optical domain includes the 21 bands of OLCI and 12 bands of SLSTR

instrument (6 nadir and 6 oblique). Level-1 data expressed in top of atmosphere

(TOA) radiance have been available since 19 April 2016, while top of canopy

(TOC) synergy data outside the water and oxygen absorption features have been

available since 8 October 2018. Because we are interested in the effect of the

atmosphere as well, we simulated the Level-1 data. We coupled RTMo module

of SCOPE with 6S atmospheric radiative transfer code (Vermote et al., 1997),

see fig. 2.2. TOC reflectance produced by RTMo was transformed into TOA

radiance in accordance with the following equation:

𝐿𝑇𝑂𝐴 = 𝐿𝑎𝑡𝑚 +
𝐸𝑠 · 𝜇𝑠 · 𝑇𝑔 · 𝑇𝑠

𝜋
· 𝜌𝑇𝑂𝐶

1− 𝑆 · 𝜌𝑇𝑂𝐶
(2.3)

where 𝐿𝑇𝑂𝐴 is the top of atmosphere radiance in observation direction,

𝐿𝑎𝑡𝑚—atmospheric path radiance at TOA, 𝐸𝑠—top of atmosphere irradiance

for the day of the year, 𝜇𝑠—cosine of solar zenith angle, 𝑇𝑔—total gaseous

transmittance, 𝑇𝑠—total scattering transmittance, 𝜌𝑇𝑂𝐶—the top of canopy

reflectance (eq. (2.1)), 𝑆—spherical albedo of the atmosphere. 𝐿𝑎𝑡𝑚, 𝑇𝑔, 𝑇 𝑠 are

provided in 6S output files, 𝐸𝑠, 𝜇𝑠 can be calculated (table 2.4). For the readers

who are familiar with 6S atmospheric correction scheme we provide another

version of eq. (2.3) in terms of 6S atmospheric correction coefficients 𝑥𝑎, 𝑥𝑏, 𝑥𝑐

eq. (2.12).
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Saltelli’s radial sampling

Sobol’ sensitivity indices 
calculations

6S ‐ atmosphere RTMo ‐ canopy

coefficients
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TOA band 
radiance
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AOT@550 ozonewater
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Figure 2.2: Workflow: sampling, model runs, sensitivity indices calculation. Key input parameters
are highlighted in red: leafbio consists of 7 leaf optical parameters: Cab, Cca, Cdm, Cs, Cw,
Cant, N; soil consists of 4 BSM model parameters: BSMBrightness, BSMlat, BSMlon and SMC;
canopy consists of 3 parameters: LAI, LIDFa, LIDFb. Notice, that angles (solar and viewing
zenith and azimuth angles were fixed to nadir or oblique configuration). Direct model outputs
are highlighted in yellow. The output used for sensitivity index calculations is highlighted in
orange. AOT stands for Aerosol Optical Thickness @550 nm, TOC—Top Of Canopy, TOA—Top
Of Atmosphere.

Aggregation of 1 nm resolution model output to Sentinel-3 band response was

done with spectral response functions of the instruments published by ESA for

OLCI and SLSTR.

The Atmosphere6S is a radiative transfer model that simulates light propagation

through the atmosphere in the range of 0.25–4 µm with the Successive Orders

of Scattering method, that is operationally used for the atmospheric correction
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of MODIS data. In this study, Version 1.1 of S6 was used, wrapped in Py6S

package (Wilson, 2013). This wrapper facilitates the input of parameters and

provides predefined wavelengths for Sentinel-3 instruments.

Our approach required two groups of 6S output parameters: bottom of

atmosphere (BOA) irradiance (direct and diffuse component) for conversion of

RTMo reflectance factors to TOC upwelling radiance following eq. (2.1) and

coefficients (𝑥𝑎, 𝑥𝑏, 𝑥𝑐) for TOC reflectance to TOA radiance propagation

(eq. (2.12)). We used the ‘US62’ atmospheric profile, a continental

atmospheric model, and a target altitude of 250 m (see table 2.5 for complete

input). Output parameters and their symbols used throughout this paper are

presented in table 2.4.

The Thermal Domain

Thermal products of Sentinel-3 are expressed in TOA brightness temperature

(BT) at level-1 and land surface temperature (LST) at level-2. Both products

have been available since 19 April 2016. The calculation of LST from BT is

carried out with the modified split-window algorithm for bands S8 and S9

following eq. (2.4) (Goryl et al., 2012; Zheng et al., 2019). The algorithm

includes atmospheric correction:

𝐿𝑆𝑇 = 𝑎+ 𝑏 · (𝐵𝑇𝑆8 −𝐵𝑇𝑆9)
(1/(cos(𝑉 𝑍𝐴)·𝑚) + (𝑏+ 𝑐) ·𝐵𝑇𝑆9 (2.4)

where 𝐿𝑆𝑇 is the land surface temperature, 𝐵𝑇𝑆8, 𝐵𝑇𝑆9 the brightness

temperatures for channels S8 (10.9 µm) S9 (12 µm ) of SLSTR; 𝑎, 𝑏, 𝑐 are

coefficients dependent on plant cover and biome (𝑎 also depends on

atmospheric water content), 𝑉 𝑍𝐴—satellite viewing zenith angle and 𝑚—view

dependent coefficient.

We simulated top of canopy TOC thermal radiance in observation direction
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with SCOPE, convolved the thermal radiance to SLSTR S7-9 bands using the

thermal spectral response function and calculated LST by inversion of the

Planck equation, acknowledging that the TOC thermal radiance resembles the

Planck curve only by approximation, because it is composed of contributions of

leaves and soil with different temperature:

𝐿𝑆𝑇𝑆9 =
𝑐2
𝜆
· [ln(𝜀 · 𝑐1𝐿

𝜆5 · 𝐿𝑆9[𝑇𝑂𝐶]
+ 1)]−1 (2.5)

where 𝐿𝑆𝑇𝑆9—equivalent blackbody temperature in 𝐾, 𝜀—gray body emissivity,

𝜆—wavelength in m (12 ·10−6 m in case of S9), 𝐿𝑆9[𝑇𝑂𝐶]—top of canopy thermal

emitted radiance in observation direction convolved with S9 SRF. The first 𝑐1𝐿 =

2 · ℎ · 𝑐2 and second 𝑐2 = ℎ · 𝑐/𝑘𝐵 radiation constants are linear combinations of

Planck’s constant ℎ, Boltzmann’s constant 𝑘𝐵 and speed of light 𝑐.

2.2.4 Sobol’ Sensitivity Analysis

We employed a Sobol’ variance-based global sensitivity analysis as implemented

in Python package SALib (Herman and Usher, 2017). This method (Sobol, 1993)

decomposes total unconditioned variance (𝑉 ) of model output (𝑌 ), 𝑉 (𝑌 ), into

conditional variances that can be attributed to a single parameter 𝑋𝑖, such that

𝑉𝑖 = 𝑉 [𝑓𝑖(𝑋𝑖)], and parameter interactions of the subsequent orders up to 𝑘th,

where 𝑘 is the number of model parameters. For example, the variance attributed

to the interaction of parameters 𝑋𝑖 and 𝑋𝑗 is 𝑉𝑖𝑗 = 𝑉 (𝑓𝑖𝑗(𝑋𝑖, 𝑋𝑗)). The total

unconditioned variance is:

𝑉 (𝑌 ) =
𝑘∑︁

𝑖=1

𝑉𝑖 +
𝑘∑︁
𝑖

𝑘∑︁
𝑗=𝑖+1

𝑉𝑖𝑗 + ...+ 𝑉12...𝑘. (2.6)

The conditional variance attributed to 𝑋𝑖 is the variance of the expected value
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of 𝑓 when 𝑋𝑖 is fixed and other parameters (𝑋∼𝑖) vary:

𝑉𝑖 = 𝑉 [𝑓𝑖(𝑋𝑖)] = 𝑉𝑋𝑖
[𝐸𝑋∼𝑖

(𝑌 |𝑋𝑖)]. (2.7)

The sensitivity index is the portion of total unconditioned variance that can be

attributed to the variance caused by the input parameter itself (first-order

sensitivity index eq. (2.8)), caused by its interaction with another input

parameter (second-order sensitivity eq. (2.9)) or caused by the input parameter

itself and all its interactions with all other input parameters up to 𝑘th order

(eq. (2.10)).

𝑆𝑖 =
𝑉𝑖

𝑉 (𝑌 )
=
𝑉𝑋𝑖

[𝐸𝑋∼𝑖
(𝑌 |𝑋𝑖)]

𝑉 (𝑌 )
(2.8)

𝑆𝑖𝑗 =
𝑉𝑖𝑗
𝑉 (𝑌 )

=
𝑉𝑋𝑖,𝑋𝑗

[𝐸𝑋∼𝑖𝑗
(𝑌 |𝑋𝑖, 𝑋𝑗)]− 𝑉𝑖 − 𝑉𝑗

𝑉 (𝑌 )
(2.9)

𝑆𝑇𝑖 = 𝑆𝑖 +
∑︁

𝑆𝑖𝑗 + ...+ 𝑆𝑖𝑗...𝑘 =
𝐸𝑋∼𝑖

[𝑉𝑋𝑖
(𝑌 |𝑋∼𝑖)]

𝑉 (𝑌 )
(2.10)

Efficient calculations of these variances for complex models is commonly done

with Monte Carlo integrals (Nossent et al., 2011).

Implementation in SALib

The sampling of input parameters was done with saltelli.sample() function

that constructs quasi-random Sobol’ sequence for further calculation of the

integrals (Sobol’, 1967; Sobol, 1976) (section 2.6.4), which efficiently explores

full parameter space (Saltelli et al., 2010). SCOPE and RTMo were run in

Matlab and 6S was run in Python. The sensitivity indices were calculated in

Python as well with sobol.analyse() (section 2.6.5). Confidence intervals of
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0.95 for sensitivity indices were bootstrapped with 100 resampling steps. As our

models have many parameters, a threshold of 0.05 for total sensitivity index was

taken for classification of parameter impact as significant (Zhang et al., 2015).

Parameter Boundaries

We conducted two sensitivity analyses: one for optical and one for thermal

domain. In the optical domain the coupled RTMo-6S model was run. The 17

parameters and their ranges are summarized in table 2.1. We made 180,000

model runs for OLCI, SLSTR nadir and SLSTR oblique views. In the thermal

domain the whole SCOPE model was run. The 32 varied, 4 calculated and 3

fixed parameters are presented in table 2.2, whereas the 18 fixed parameters are

listed in table 2.6. We made 660,000 model runs for SLSTR nadir and SLSTR

oblique views. The observation geometry for both models was fixed to simulate

nadir and oblique view situation. The angles were not included in the sensitivity

analysis because they are always known there is no need to assess their

retrievability from observations.
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Table 2.1: Ranges of parameters used in GSA of coupled RTMo-6S model. Angles in brackets
are related to the oblique view. Values for water and ozone are in default 6S units (Sentinel-3
OLCI product units).

Parameter Definition Unit Min Max Default

Leaf (RTMo)

Cab Chlorophylls µg cm−2 0 100 40

Cca Carotenoids µg cm−2 0 30 10

Cdm Dry matter g cm−2 0 0.05 0.012

Cw Water thickness cm 0 0.1 0.009

Cs Senescent fraction - 0 0.9 0

Cant Antocyanins µg cm−2 0 30 1

N Mesophyll structure - 1 4 1.5

Canopy (RTMo)

LAI leaf area index m2 m−2 0 7 3

LIDFa leaf inclination distribution function parameter a - -1 1 0.35

LIDFb leaf inclination distribution function parameter b - -1 1 -0.15

Soil (RTMo)

BSMBrightness BSM model parameter soil brightness - 0 0.9 0.5

BSMlat BSM model parameter lat - 20 40 25

BSMlon BSM model parameter lon - 40 60 45

SMC volumetric soil moisture content % 5 55 30

Atmosphere (6S)

aot550 aerosol optical thickness at 550 nm - 0 1 0.01

water atmospheric columnar water pressure g cm−2 (kg m−2) 0 7.5 (75) 1 (10)

ozone atmospheric columnar ozone pressure atm-cm (kg m−2) 0 0.7 (0.015) 0.326 (0.007)

Angles (RTMo-6S)

sza solar zenith angle deg 50

oza observation zenith angle deg 22 (50)

saa solar azimuth angle deg 150

oaa observation azimuth angle deg 100 (195)
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Table 2.2: Ranges of parameters used in GSA of SCOPE model. Several parameters were
calculated. Angles in brackets are related to the oblique view.

Parameter Definition Unit Min Max Default

Soil
BSMBrightness BSM model parameter soil brightness - 0 0.9 0.5

BSMlat BSM model parameter lat - 20 40 25
BSMlon BSM model parameter lon - 40 60 45
SMC volumetric soil moisture content - 0.1 0.7 0.25

Leaf
Cab Chlorophylls µg cm−2 0 100 40
Cca Carotenoids µg cm−2 0 25 10
Cdm Dry matter g cm−2 0 0.05 0.012
Cw Water thickness cm 0 0.2 0.009
Cs Senescent fraction - 0 1.2 0
Cant Antocyanins µg cm−2 0 5 1
N Mesophyll structure - 1 3.5 1.5

Canopy
LAI leaf area index m2 m−2 0.13 10 3

LIDFa leaf inclination distribution function parameter a - -1 1 0.35
LIDFb leaf inclination distribution function parameter b - -1 1 -0.15

Aerodynamics
Cd leaf drag coefficient - 0.001 1 0.3

leafwidth leaf width m 0.001 0.5 0.1
rwc within canopy layer resistance s m−1 0 20 0
hc canopy height m 0.01 50 2
rbs soil boundary layer resistance s m−1 5 30 10
rss soil resistance for evaporation from the pore space s m−1 100 5000 500

lambdas heat conductivity of the soil J m−1 K−1 1 2 1.55
Biochemical

Vcmax (Vcmo) maximum carboxylation rate at 25 ∘C µmol m−2 s−1 0 250 60
m slope of leaf conductance-to-photosynthesis - 2 20 8
kV Vcmax canopy extinction coefficient - 0 0.8 0.64

Rdparam dark respiration parameter - 0.001 0.03 0.015
Environment

p air pressure hPa 500 1030 970
rH relative humidity - 0 1 0.64
u wind speed at height z m s−1 0.5 10 2
Ca atmospheric CO2 concentration ppm 200 500 380
Ta air temperature ∘C 5 35 20
Rin broadband incoming shortwave radiation (0.4–2.5 um) W m−2 0 1000 600
Rli broadband incoming longwave radiation (2.5–50 um) W m−2 200 500 300

Calculated
z measurement height of meteorological data m 2.5 · ℎ𝑐
zo roughness length for momentum of the canopy m 𝑧𝑜 𝑎𝑛𝑑 𝑑(𝐿𝐴𝐼, ℎ𝑐)
d displacement height m 𝑧𝑜 𝑎𝑛𝑑 𝑑(𝐿𝐴𝐼, ℎ𝑐)
ea atmospheric vapour pressure hPa 𝑟𝐻 · 𝑠𝑎𝑡𝑣𝑎𝑝(𝑇𝑎)

Angles
tts solar zenith angle deg 50
tto observations zenith angle deg 22 (50)
psi relative azimuth angle deg 130 (135)
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2.2.5 Retrieval on Synthetic Dataset

In addition to the GSA, we carried out a retrieval exercise using a synthetic

dataset.This dataset consisted of 33 TOA radiance spectra shown in fig. 2.3.

Figure 2.3: (a)—33 simulated spectra, (b)—added noise based on Sentinel-3 signal-to-noise
ratio.

TOC reflectance factors were generated with RTMo with all parameters

randomly sampled from a uniform distribution within the borders specified in

table 2.1. TOA radiance was calculated from the resulting reflectance factors

with a clear sky, mid-latitude continental atmosphere as Equation 12

in (Verhoef et al., 2018). Finally, random noise (𝑛𝑜𝑖𝑠𝑒𝑖) with average factor of

2.5 was added to the resulting TOA spectra (𝑠𝑖𝑔𝑛𝑎𝑙𝑖) based on the

signal-to-noise ratio 𝑆𝑁𝑅𝑖 of the corresponding band 𝑖 of OLCI and SLSTR,

found in the Sentinel-3 optical annual performance report of 2018:
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𝑛𝑜𝑖𝑠𝑒𝑖 =
𝑠𝑖𝑔𝑛𝑎𝑙𝑖
𝑆𝑁𝑅𝑖

· rand(0, 5) (2.11)

The retrieval algorithm is a modified version of the algorithms used in (Van der

Tol et al., 2016) and (Verhoef et al., 2018) that includes BSM model for soil

reflectance simulation and is publicly available

https://github.com/Prikaziuk/retrieval_rtmo. The retrieval is carried

out using the build-in function lsqnonlin in the MATLAB Optimization Toolbox

that uses the trust-region-reflective method of cost-function minimization,

taken into account lower and upper parameter borders (Coleman and Li, 1994,

1996). The cost function used is a simple difference between modeled and

measured spectra. In contrast to (Van der Tol et al., 2016) and (Verhoef et al.,

2018) we did not use prior information on parameter distribution.

2.3 Results

2.3.1 RTMo-6S GSA 400–2400 nm

In this section we present first order sensitivity indices (S1) as a direct effect

and total order sensitivity indices (ST) as a combined effect, i.e., appearing from

interactions. Following Zhang et al. (2015), significant parameters are those for

which sensitivity index value is higher than 0.05.

Full-spectra of Sobol’ variance-based total order sensitivity indices in the region

400–2400 nm for top of canopy (TOC) reflectance are presented in fig. 2.4a and

for top of atmosphere (TOA) radiance in fig. 2.4b. TOC reflectance sensitivity is

highly dependent on LAI values fig. 2.5. The following subsections focus on the

results in OLCI and SLSTR bands.
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Figure 2.4: Total order sensitivity indices (ST) calculated with coupled RTMo-6S model in
the range 400–2400 nm. (a)—top of canopy (TOC), (b)—top of atmosphere (TOA). ST are
expressed in percentages.
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Figure 2.5: It is interesting to see how model sensitivity is distributed with leaf area index classes.

OLCI

fig. 2.6 shows that a limited number of model parameters significantly influence

reflectance in the OLCI bands. The important parameters based on ST value are

presented in fig. 2.6.

All bands in the visible spectral domain (Oa1–10, fig. 2.6a) are affected by

aerosol scattering, especially those in the blue region (Oa1–5). Among primarily

important vegetation parameters LAI influences all bands and chlorophyll

concentration (Cab) bands Oa6–10. Through interactions carotenoid content

(Cca) reaches significance in band Oa5, senescent material fraction (Cs) and

leaf mesophyll structure parameter (N) in band Oa6. Parameters of BSM soil

model also became important through interaction in bands Oa4–10.

In the NIR spectral domain (fig. 2.6b) we can differentiate several band groups.

First, red-edge band Oa11 has the highest sensitivity to Cab among all OLCI
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bands, and this sensitivity is even higher than the sensitivity of Oa11 to LAI.

Second, the bands located in the oxygen absorption region (Oa12–16) are

sensitive to leaf senescent material (Cs), leaf dry matter content (Cdm), leaf

angle distribution (LAD driven by LIDFa, LIDFb), LAI and BSMBrightness.

Third, bands located further in the NIR (Oa17–19, Oa21) do not show

dependence on Cs, but they are still sensitive to Cdm, LAI and LAD. Forth,

bands Oa19–20 are located in atmospheric water absorption features and

strongly depend on the atmospheric water vapour content parameters in the 6S

model. Finally, band Oa21 in the SWIR is sensitive to leaf water content (Cw).

Figure 2.6: Significant total order sensitivity indices (ST> 0.05) for OLCI instrument. Parameters
marked with diamonds had insignificant first order sensitivity index (S1 ¡ 0.05) and reached
significant ST through interactions. (a)—visible domain, (b)—near infrared domain.

SLSTR

The results of GSA in bands of Sentinel-3 SLSTR instrument are shown in fig. 2.7

for the parameters with ST > 0.05.
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The total order sensitivity indices for nadir view of SLSTR instrument (fig. 2.7a)

showed similarities with OLCI bands. The bands in visible range (S1–2) were

affected directly by aerosol optical thickness (AOT), leaf chlorophyll content

(Cab) and LAI and after interactions by BSMBrightness and BSMlat. The band

in NIR (S3) in addition to AOT, LAI and BSMBrightness showed the effects of

leaf dry matter (Cdm) and leaf inclination (LIDFa+b, LIDFa−b). S4 band is

located in the atmospheric water absorption feature and hardly contains surface-

related information. SWIR bands S5 and S6 had significant influence of leaf water

content (Cw).

The panel (b) of fig. 2.7 shows results for the oblique view of SLSTR. Overall

sensitivity index values were similar for oblique and nadir views with the exception

of bands S1–3. Band S1 (S1 o) was much more sensitive to AOT and atmospheric

ozone concentration in the the oblique view than in the nadir view. Band S2 o

also showed higher sensitivity index for AOT, whereas band S3 o lost its sensitivity

to leaf inclination distribution function parameter a-b (LIDFa-b).
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Figure 2.7: Significant total order sensitivity indices (ST > 0.05) for SLSTR instrument.
Parameters marked with diamonds had insignificant first order sensitivity index (S1 ¡ 0.05) and
reached significant ST through interactions. (a)—nadir view, (b)—oblique view.

2.3.2 TOA Retrieval (Synthetic Data)

To prove that GSA results indicate retrievable parameters we conducted the the

retrieval from synthetic data. The results are presented in fig. 2.8 and the

corresponding metrics are in table 2.3. We conducted two sets of retrieval:

from OLCI data only (red) and from OLCI and SLSTR data (Synergy, blue). In

both cases, the algorithm was able to retrieve most parameters to which the

model was sensitive (ST > 0.05), and even some of the parameters with limited

sensitivity (ST < 0.05)—Cca, while it was unable to retrieve the input values of

LIDFb, Cant, Cdm, N, and all soil parameters (B, BSMlat, BSMlon, SMC). The

retrieval from both instruments (Synergy) improved the quality.
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Table 2.3: Retrieval metrics.

Metric Instrument B BSMlat BSMlon SMC Cab Cca Cant Cdm Cw Cs N LAI LIDFa LIDFb

RMSE
OLCI 0.3 8.8 7.1 18.1 10.9 2.8 0.9 0.006 0.024 0.1 0.7 0.9 0.3 0.4

Synergy 0.2 7.0 6.0 17.6 6.7 2.8 1.1 0.005 0.025 0.1 0.6 0.9 0.2 0.4

RRMSE
OLCI 53 31 15 61 20 25 43 57 25 15 30 34 742 508

Synergy 45 24 12 59 12 25 54 48 25 11 27 34 533 532

R2
OLCI 0.33 0.00 0.09 0.22 0.83 0.86 0.73 0.46 0.83 0.91 0.33 0.85 0.64 0.04

Synergy 0.45 0.16 0.31 0.16 0.92 0.85 0.62 0.55 0.81 0.95 0.44 0.86 0.82 0.01

Figure 2.8: Quality of retrieval on a synthetic dataset. Parameter names in bold—parameters with
high sensitivity index values. Top - canopy parameters, middle—leaf parameters, bottom—soil
parameters.

2.3.3 SCOPE GSA 2.5–50 um

GSA of the full SCOPE model, i.e., with energy balance, are presented in

fig. 2.9. The first and total order sensitivity indices of top of canopy outgoing
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thermal radiance in observation direction are presented as percentages. The

most influential parameters were wind speed (u), Ball-Berry stomatal

conductance parameter (m), maximum carboxylation capacity (Vcmax) and

LAI. LAI showed spectral dependence with lower sensitivity below 20 µm and

higher towards 50 µm.

Figure 2.9: First (S1) and total (ST) order sensitivity indices for top of canopy outgoing thermal
radiance in observation direction simulated with SCOPE model presented as percentages.

LST

Figure 2.10 shows the results of the GSA analysis of the SCOPE model with

two sets of parameters: In first instance all inputs were varied (fig. 2.10a), while

in second instance the near-surface air temperature (Ta) and TOC total

incoming short- and longwave radiation (Rin and Rli, respectively) were fixed

(fig. 2.10b). In the first case, the sensitivity of LST is strongly dominated by Ta

and TOC irradiance. Indeed irradiance and air temperature are the strongest

drivers of surface temperature in the SCOPE model. For an effective use of
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SLSTR for land surface studies, these will have to be constraint by using data

from other sources such as real-time weather data. For this purpose it makes

sense to consider the GSA with these weather inputs constant. We fixed their

values to Ta = 20 ∘C, Rin = 600 W m−2, and Rli = 300 W m−2 (fig. 2.10b)

and repeated the GSA. With this constraint, the biochemical traits - Ball-Berry

stomatal conductance parameter (m) and maximum carboxylation capacity

(Vcmax)—appeared to influence the SLSTR bands significantly. Among

environmental factors wind speed (u), which is related to the aerodynamic

resistence to turbulent heat exchange fluxes, showed a high first order sensitivity

index value.

After all possible interactions several other model parameters crossed the

threshold of significance (ST > 0.05): leaf—leaf chlorophyll content (Cab);

canopy—LAI; aerodynamics—leaf drag coefficient (Cd), leafwidth, within

canopy aerodynamic resistance (rwc); environment—air pressure (p), relative

humidity (rH used for atmospheric vapor pressure (ea) calculations).

Interestingly, only the Ball-Berry stomatal parameter 𝑚 was significantly

influenced by the viewing angle fig. 2.11. Indeed differences in stomatal

aperture within the canopy is responsible for a directional differences in

brighness temperature in SCOPE.
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Figure 2.10: First (S1) and total (ST) order sensitivity indices for land surface temperature (LST)
simulated with SCOPE model from Sentinel-3 SLSTR instrument bands S8 (10.9 µm ) S9 (12 µm
). (a)—varying all parameters, (b)—fixed air temperature (Ta = 20∘), total incoming short- and
longwave radiation (Rin = 600 W m−2, Rli = 300 W m−2). Red horizontal line denotes the
significance threshold (0.05 units of index value).

2.4 Discussion

2.4.1 RTMo-6S GSA 400–2400 nm

Earlier studies have investigated the sensitivity of top of canopy (TOC)

reflectance simulated with PROSAIL (Bowyer and Danson, 2004; Proctor et al.,

2017; Verrelst et al., 2016a,b; Xiao et al., 2014) and the optical domain of

SCOPE (Jin et al., 2019a; Verrelst et al., 2015) to the model parameters. In

general our results agree with the those studies: LAI was a dominant factor

throughout the spectral range (400–2400 nm), leaf inclination distribution
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(LAD) showed slight importance in all wavelength with a substantial peak in

700–1300 nm, leaf chlorophyll content (Cab) affected visible range with peaks

in green and red-edge regions, leaf dry matter (Cdm) was important in NIR and

SWIR region, leaf water content (Cw)—SWIR region, especially above 1300

nm. Our results were rather different from those of Jin et al. (2019a) in some

other aspects. They found that the sensitivities of SCOPE simulated reflectance

to Cab, Cca, Cw and Cdm stretch far beyond the absorption spectra of these

components, a finding which we could neither reproduce nor explain

theoretically.

Compared to Verrelst et al. (2016b) who carried out a sensitivity analysis of TOC

reflectance simulated by SCOPE, we used revised optical coefficients for pigments

in leaves as proposed by Féret et al. (2017) for the PROSPECT-D model, a soil

reflectance model below and an atmospheric model above the vegetation. In

particular the inclusion of an atmospheric model has a great influence on the

model sensitivity (Mousivand et al., 2014).

Recent work that included leaf carotenoid content (Cca) into GSA showed a

contribution in 400–500 nm region (Proctor et al., 2017; Xiao et al., 2014), and

we found that the TOC reflectance output is sensitive to both Cca and the

newly introduced anthocyanin content (Cant). However, the sensitivity

diminishes when top of radiance atmosphere are used, due to the dominance of

atmospheric properties in the spectral domain of the pigment absorption. This

suggests that only strong constraints on atmospheric parameters will make

retrieval of these pigments possible. Because we assumed that the atmosphere

was perfectly characterized in the retrieval from synthetic data, the retrieval of

these pigments was successful.

Leaf senescent material fraction (Cs) was included in one earlier GSA study

(Verrelst et al., 2015), and our results are slightly different. Although the
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spectral range of Cs influence is the same (400–900 nm) our results

demonstrated a peak in NIR region whereas, according to Verrelst et al. (2015),

the highest sensitivity to Cs appeared in the visible range. This difference is

caused by the inclusion of a soil model (BSM) in the present study, which

lowers the relative contribution of brown leaf material to the total variance.

Our results also showed discrepancies with some other studies in relation to LAI

sensitivity. We obtained constantly high sensitivity to LAI all over the optical

region, suppressed by AOT in the visible range and interrupted by the water

absorption bands. The results of Bowyer and Danson (2004) showed declining

sensitivity of SAILH to LAI in NIR (800–1000 nm) and according to Xiao et al.

(2014) 4SAIL is not sensitive to LAI changes in the 400–800 nm region at all. The

difference in result with these earlier studies is due to the specific combination of

models used here, including a soil and atmospheric model, and possibly by the

size of the parameter space: Xiao et al. (2014) showed that the influence of LAI

on reflectance depends on the vegetation development stage, where the influence

is higher for sparse canopies (LAI < 3) than for dense canopies.

Recent global sensitivity study of top of atmosphere (TOA) radiance simulated by

PROSAIL and MODTRAN showed similar results to our findings (Verrelst et al.,

2019). The biggest difference is in the importance of aerosol optical thickness

at 550 nm (aot550)—more than 75% in the blue region according to our data

and around 30% (aot550 and asymmetry parameter G together) in Verrelst et al.

(2019). This may be due to the narrower range for aot550 used in that study (0.05

to 0.5) compared to our study (0 to 1) and the addition of other atmospheric

parameters to GSA—Ångström exponent, single scattering albedo and Henyey-

Greenstein (asymmetry) parameter of the phase function. Lower influence of

columnar water vapour in our results can be explained by the difference between

MODTRAN and 6S algorithms.
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2.4.2 OLCI and SLSTR Bands

Our results indicate that LAI and leaf chlorlophyll content (Cab) can be retrieved

from visible bands Oa6–10. Red-edge band Oa11 is by far the best choice for

Cab retrieval. The Level-2 OLCI terrestrial chlorophyll index (OTCI) is indeed

based on Oa11 in combination with Oa12 and Oa18. NIR bands Oa12–16 are

influenced by Cs, leaf dry matter (Cdm), leaf angle distribution (LAD) and soil

brightness (BSMBrightness), while Cdm is mostly affected by bands Oa17, 18

and Oa21. As bands Oa1–4 are influenced almost exclusively by aerosol optical

thickness (AOT), they may be used in AOT retrieval algorithms. Oa3 blue band

is used in combination with Oa10 and Oa17 for FAPAR estimation—OLCI global

vegetation index (OGVI).

There have been several studies conducting GSA in bands of certain sensors at

TOC level: PROSAIL was used for Landsat TM (Gu et al., 2016), Sentinel-2 MSI

(Zhang et al., 2018), REIS of RapidEye (Dong et al., 2019) and WVC of HJ-1 (Xu

et al., 2019), PARAS model based on the spectral invariants theory was used for

Landsat ETM+ (Hadi et al., 2017) and leaf canopy model for several bands

of MODIS (Morris et al., 2008). At TOA level another soil-leaf-canopy model

with Hapke soil model and two types of leaves (green and brown) was used for

Hyperion (Mousivand et al., 2014), CHRIS and Landsat TM sensors (Mousivand

et al., 2015) and a coupled leaf-canopy-atmosphere model where most of the leaf

parameters are calculated as percentages of specific leaf weight for MODIS (Shi

et al., 2016). Due to the narrow bandwidth of Sentinel-3 instruments (average

bandwidth is 10 nm) and different models that were used for MODIS instrument

direct comparison of the mentioned results with ours is complicated, thus we

will discuss only the works devoted to MSI and CHRIS, which have comparable

characteristics to Sentinel-3.

The study of MSI was aimed at vegetation water indices assessment with
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PROSAIL model and GSA was also conducted (Zhang et al., 2018). Sentinel-2

was designed for vegetation monitoring, it has revisit time of 3–5 days and

spatial resolution of 20–60 m. However, its bands are twice as wide as

Sentinel-3 and, although band 2 covers carotenoid-dependent region, it is too

wide to exhibit enough sensitivity for carotenoind content retrieval.

Nonetheless, synergy between Sentinel-2 and Sentinel-3 was discussed in recent

studies in relation to OTCI validation with Sentinel-2 (Brown et al., 2019) and

the enhancement of the spatial resolution of SLSTR thermal images (thermal

sharpening) for evapotranspiration analysis (Guzinski and Nieto, 2019).

CHRIS sensor, the closest in band configuration to OLCI, showed the dominance

of LAI over the whole spectral region (400–1000 nm), LIDFa after 700 nm. Two

peaks of Cab sensitivity in green (∼555 nm) and red-edge (∼700 nm) region for

both green and brown leaves and two peaks of Cs at 550 and 730 nm for green

leaves only (Mousivand et al., 2015). All these results, besides the peak of Cs in

green region, agree with our findings. PROBA-1 satellite with CHRIS on board

has a repeat cycle of 7 days.

The signal from SLSTR instrument appears suitable for the retrieval of leaf

water thickness (Cw) (S5,6). The optical bands of of SLSTR can further

contribute to the retrieval of LAI, Cab, and Cdm, while the off-nadir viewing

angle appears most useful promising for the retrieval of AOT: In bands S1 and

S2 the values of sensitivity indices for oblique view were twice the values for

nadir. This agrees with the proposed methodology of AOT retrieval from

Multi-angle Imaging SpectroRadiometer (MISR) instrument: larger viewing

angles result in longer atmospheric path, thus the signal contains more

information about an aerosol haze (Liang et al., 2012; Martonchik et al., 2002).

Level-2 SLSTR products containing AOT will be available in the near future.
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2.4.3 TOA Retrieval (Synthetic Data)

The exercise with TOA retrieval showed that most of the parameters with high

sensitivity index can actually be retrieved, but the results must be considered

with caution due to the fact that synthetic data were used, produced with the

model that was also used for retrieval. Moreover, AOT was not retrieved on this

exercise.

As an interesting alternative to assessing the sensitivity of a forward model, the

sensitivity of an inverted model can be quantified as well. Le Maire et al. (2011)

applied GSA to the inverted PROSAIL model, where MODIS reflectance in red

and near-infrared bands was input and LAI was output.

Apart from model sensitivity, parameters also need to have a unique (i.e.,

distinguishable from that of other parameters) effect on the spectrum in order

to be retrievable. This explains why Cca, Cant, and Cw were retrievable from

OLCI bands despite limited sensitivity, while the soil parameters BSMBrightness

and BSMlat were not successfully retrieved despite a higher sensitivity. From

the two leaf orientation parameters, only LIDFa (a measure for the mean leaf

angle) was retrievable, while the retrieval of LIDFb (the bi-modality of the leaf

angle distribution) was clearly ill-posed, confirming earlier findings by Verhoef

et al. (2018). We emphasize that when retrievals are carried out with real TOA

measurements rather than synthetic data, model representation errors will affect

the results, and their effect may significantly reduce the retrievability below the

ideal case shown here.

2.4.4 SCOPE GSA 2.5–50 um

To our knowledge the current work is the first work conducting GSA of a

radiative transfer model in the thermal infrared (TIR) domain. Although the
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simulated emitted thermal radiance spectra is a smooth curve due to the use of

spectrally constant emissivity values for soil and leaves, the sensitivity indices

showed some spikes. In the region below 15 µm these spikes can be explained

by the reflected incoming longwave radiation from the atmosphere, which was

the default spectrum in SCOPE as simulated with MODTRAN. This spectrum

is not smooth. Spikes at longer wavelengths may be explained by coarse output

resolution. The simulated outgoing thermal radiation strictly does not resemble

a Planck curve, due to the fact that the outgoing radiation is a linear

combination of contributions of individual leaves and the soil with different

temperature (which may each separately follow Planck’s law). This

phenomenon may explain the increasing contribution of LAI along the spectra:

leaves are typically cooler than soil and therefore, at higher wavelengths the

contribution by leaves to the radiance is higher than at shorter wavelengths.

Components (leaf and soil) temperature and land surface temperature (LST)

are used in energy balance models and algorithms for evapotranspiration

estimation. Studies that conducted a GSA for LST include the hydrological

model MIKE SHE (Ridler et al., 2012), global land surface models ORCHIDEE

(Dantec-Nédélec et al., 2017) and Noah-MP (Li et al., 2018) and

soil-vegetation-atmosphere transfer model SimSphere (Petropoulos et al.,

2015). Compared to SCOPE these models have a limited description of

radiative transfer processes. A comparison between our results and that of

previous studies with these models is nevertheless possible.

For SimSphere model outgoing thermal radiation was shown to be dependent

on the terrain aspect, LAI and soil moisture content (SMC) (Petropoulos et al.,

2015). SCOPE does not take the surface slope into account. However, the

importance of LAI on thermal radiation was shown in our work as well. SMC

did not show significant influence in SCOPE model, because it is used only in

optical domain: It affects only shortwave net radiation. SCOPE is not a full
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SVAT model, and due to the absence of a soil water budget in SCOPE, SMC it

does not affect the latent heat flux.

Noah-MP model showed the dependence of soil temperature on canopy height

(hc), wind speed (u), LAI and several soil properties (Li et al., 2018). SCOPE

model also showed the connection between LST and u and LAI, but not hc.

Interestingly, Noah-MP model simulates biochemical processes with a Farquhar-

Ball-Berry model that is similar to SCOPE, but in their GSA Vcmax showed

relatively little sensitivity, due to dominance of soil related parameters. This can

be explained by the explicit connection between soil properties and transpiration

in Noah-MP, which is absent in SCOPE.

2.4.5 Limitations

We note that several limitations of the SCOPE model affect the results. The first

limitation is the representation of a horizontally layered vegetation in SCOPE.

This representation is not accurate for all vegetation types, especially considering

the 300–500 m pixel size of the Sentinel-3 data. In heterogeneous land cover,

the fractional vegetation cover, which is not included in SCOPE, may be the

parameter of great significance (Xiao et al., 2014). Strategies will have to be

developed to unmix vegetation and soil spectra (Vicent et al., 2016).

A limitation of SCOPE in thermal domain is the lack of an emissivity model,

and a limitation related to the retrieval is the need for temperature-emissivity

separation (TES). Exploiting the different viewing angles (Peres and Dacamara,

2004; Sánchez et al., 2008) for either TES or the differentiation between sunlit

and shaded soil and leaf temperatures (Duffour et al., 2015) are interesting

ideas. However, our GSA showed only very small differences in the sensitivity of

(directional) LST between the nadir and the oblique view of SLSTR. Due the

swath, the difference in viewing angle is generally less than 50∘, the
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observations are not close to the hotspot, and for vegetation with higher LAI,

the contrast between component temperatures is generally small. These all

contribute to the small difference in sensitivities between the two observation

directions. Here we considered only TOC radiances, but when the thermal

radiance is propagated through the atmosphere, atmospheric effects may

dominate the directionality of the observations.

Our results confirm that the information provided by the two instruments on

Sentinel-3 is complementary, and suggest that retrievals from the optical

domain can help constrain retrievals from the thermal domain. Some

parameters affect both the optical and the thermal domain, in particular Cab

and LAI. Both influence the absorption of solar radiation, which is a main driver

of the surface energy balance, which in turn determines the thermal signature of

the vegetation. The two parameters are retrievable from the optical domain,

and this retrieval can help constrain retrievals of biochemical parameters such

as Vcmax and m from the thermal domain. However, the found connection has

to be validated direct with Vcmax and m measurements or indirect through

energy and carbon flux.

2.5 Conclusions

We investigated the possibilities of application of SCOPE model together with

Sentinel-3 derived data for vegetation monitoring. In addition to

ESA-distributed level-2 product of OLCI global vegetation index (OGVI) for

fraction of absorbed photosynthetically active radiation (FAPAR) and OLCI

terrestrial chlorophyll index (OTCI), SCOPE provides opportunities for LAI

retrieval, leaf dry matter (Cdm) and leaf water content (Cw) retrieval that can

be used for fuel moisture content calculations, along with leaf angle distribution

parameter a (LIDFa), leaf senescent material fraction (Cs) and soil brightness.
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For the first time a global sensitivity analysis of the thermal domain of SCOPE

model was conducted in application to SLSTR-derived land surface temperature

(LST). It was shown that LST had a link to plant biochemical parameters:

maximum carboxylation rate (Vcmax) and slope of

conductance-to-photosynthesis relationship (m). Limiting uncertainties in

environmental factor with prior information from meteorological stations and in

plant structural traits from optical information, the retrieval of Vcmax and m

parameters is possible.

Our results confirm that the synergistic application of optical and thermal data

from Sentinel-3 satellite within a model that coupled both this domains with

energy balance and photosynthesis, SCOPE, can be beneficial for the accurate

canopy state monitoring.
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2.6 Appendix

2.6.1 LST Difference in Viewing Angles

Figure 2.11: Total order sensitivity index (ST) as percent for land surface temperature (LST)
simulated with SCOPE model from Sentinel-3 SLSTR instrument bands S8 (10.9 µm ) S9
(12 µm ) in different views: oblique (transparent), nadir (dense). Red horizontal line denotes the
significance threshold (0.05 units of index value).
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2.6.2 Atmospheric Correction in 6S Atmospheric Model

In terms of 6S atmospheric correction coefficients the relationship between top

of canopy reflectance (𝜌𝑇𝑂𝐶) and top of atmosphere radiance (𝐿𝑇𝑂𝐴) (eq. (2.3))

can be expressed as:

𝐿𝑇𝑂𝐴 =
𝑥𝑏

𝑥𝑎
+

1

𝑥𝑎
· 𝜌𝑇𝑂𝐶

1− 𝑥𝑐 · 𝜌𝑇𝑂𝐶
(2.12)

from which one can infer the following definition of 6S coefficients:

𝑥𝑎 =
𝜋

𝐸𝑠 · 𝜇𝑠
· 1

𝑇𝑔 · 𝑇𝑠
(2.13)

𝑥𝑏 = 𝐿𝑎𝑡𝑚 · 𝑥𝑎 (2.14)

𝑥𝑐 = 𝑆 (2.15)

where 𝐸𝑠—TOA irradiance for the day of the year, 𝜇𝑠—cosine of solar zenith

angle, 𝑇𝑔—total gaseous transmittance, 𝑇𝑠—total scattering transmittance,

𝐿𝑎𝑡𝑚—atmospheric path radiance at TOA, 𝑆—spherical albedo of the

atmosphere.

2.6.3 Output Parameters of 6S Atmospheric Model

Table 2.4: 6S atmospheric model output parameters and their symbols used in this paper.

Symbol 6S Output Name Parameter

𝐸𝑑𝑖𝑟 direct solar irr. bottom of atmosphere direct solar irradiance

𝐸𝑑𝑖𝑓 atm. diffuse irr. bottom of atmosphere diffuse solar irradiance

𝐿𝑎𝑡𝑚 atm. intrin. rad. atmospheric path radiance (at top of atmosphere)

𝐸𝑠
int. sol. spect (in w/m2)

int. funct filter (in mic)
top of atmosphere solar radiance

𝑇𝑔 global gas. trans. total total gaseous transmittance

𝑇𝑔 total sca. trans. total total scattering (aerosol) transmittance

𝑆 spherical albedo total spherical albedo of the atmosphere
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2.6.4 Sobol’ Parameter Sampling in SALib

Essentially, it creates two equal matrices (A—sample and B—re-sample) of size

𝑁 × 𝑘, where 𝑁 is the number of simulations and 𝑘—the number of input

parameters. In this first step the matrices are filled with parameters varying

between 0 and 1 using bitwise operations. At the second step it resamples matrix

A from matrix B with radial sampling (Saltelli, 2002), resulting in matrix AB

(𝑁 · 𝑘 × 𝑘). In case of second-order sensitivity index calculations (this work)

resampling of matrix B from matrix A was also done, resulting in matrix BA

(𝑁 · 𝑘 × 𝑘). Overall the sampling matrix is a row-bound matrices A, AB, BA,

B of size 𝑁(2𝑘 + 2) × 𝑘. Finally, the matrix of samples is scaled to custom

boundaries, given (in our case) uniform distribution.

2.6.5 Sobol’ Integration in SALib

The computation of first-order, second-order and total sensitivity indices is done

in SALib taking into account the quasi-random order of input parameters. Output

matrix (𝑁(2𝑘 + 2) × 1) is normalized and rearranged into matrices A (𝑁 × 1)

, AB (𝑁 × 𝑘) , BA (𝑁 × 𝑘), B (𝑁 × 1). 𝑖th column of the matrix AB (𝐴𝐵𝑖)

has output where values of 𝑋𝑖 are equal to values of 𝑋𝑖 in matrix A, whereas

the rest of the parameters (𝑋∼𝑖) vary. With help of these matrices variances and

expectations from eqs. (2.8) to (2.10) are calculated in SALib in accordance to

eqs. (2.16) to (2.18).

𝑉𝑋𝑖
[𝐸𝑋∼𝑖

(𝑌 |𝑋𝑖)] = mean(𝐵 · (𝐴𝐵𝑖 − 𝐴)) (2.16)

𝑉𝑋𝑖,𝑋𝑗
[𝐸𝑋∼𝑖𝑗

(𝑌 |𝑋𝑖, 𝑋𝑗)] = mean(𝐵𝐴𝑖 · 𝐴𝐵𝑗 − 𝐴 ·𝐵) (2.17)

𝐸𝑋∼𝑖
[𝑉𝑋𝑖

(𝑌 |𝑋∼𝑖)] =
mean(𝐴− 𝐴𝐵𝑖)

2

2
(2.18)
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2.6.6 6S Fixed Parameters

Table 2.5: Input parameters of 6S atmospheric model that were fixed during the global sensitivity
analysis. Angles in brackets are related to the oblique view.

Parameter Definition Unit Value

Geometrical conditions

sza solar zenith angle deg 50

saa solar azimuth angle deg 150

oza observation zenith angle deg 22 (50)

oaa observation azimuth angle deg 100 (195)

day day - 14

month month - 7

Atmospheric conditions

- atmospheric profile - US62

Aerosol type

- aerosol model - Continental

Altitudes

- sensor altitude km 1000 (on board of satellite)

- target altitude km 0.25

Ground reflectance

- homogeneous Lambertian - Green vegetation
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2.6.7 SCOPE Fixed Parameters

Table 2.6: Input parameters of the SCOPE model that were fixed during the global sensitivity
analysis. Angles in brackets are related to the oblique view.

Parameter Definition Unit Value

Leaf thermal

rho thermal broadband leaf reflectance in thermal range - 0.01

tau thermal broadband leaf transmittance in thermal range - 0.01

Leaf biochemical

BallBerry0 - 0.01

Type photochemical pathway (C3 or C4) - C3

Fluorescence

Tparam temperature response of fluorescence K [0.2, 0.3, 281, 308, 328]

fqe fluorescence quantum yield efficiency at photosystem level - 0.01

Soil

rs thermal broadband soil reflectance in the thermal range - 0.06

cs specific heat capacity of the soil J kg−1 K−1 1180

rhos specific mass of the soil kg m−3 1800

Meteo

Oa atmospheric O2 concentration per mille 209

Aerodynamic

CR drag coefficient for isolated tree - 0.35

CD1 fitting parameter - 20.6

Psicor roughness layer correction - 0.2

CSSOIL drag coefficient for soil - 0.01

rb leaf boundary resistance s m−1 10

Angles

tts solar zenith angle deg 50

tto observations zenith angle deg 22 (50)

psi relative azimuth angle deg 130 (135)
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Abstract

In this study we demonstrate that the Google Earth Engine (GEE) dataset of

Sentinel-3 Ocean and Land Color Instrument (OLCI) level-1 deviates from the

original Copernicus Open Access Data Hub Service (DHUS) data by

10-20 W m−2 sr−1 𝜇m−1per band. We identify two sources of this discrepancy:

ground pixel position and reprojection. Due to the presence of two sets of

coordinates in the OLCI product - per pixel geo-coordinates and tie-point

coordinates - uncertainties similar to GEE may be encountered even in the

original products when tie-point coordinates are used for extraction. We

recommend using geo-coordinates for pixel extraction from the original data.

When the Sentinel Application Platform (SNAP) Pixel Extraction Tool is used,

an additional distance check has to be conducted to exclude pixels that lay

further than 212 m from the point of interest. An additional constraint for

applying the original data is the homogeneity of the area of interest, which must

be at a 700-meter-diameter (49 ha) footprint. The GEE OLCI dataset can be

safely used if the homogeneity assumption holds at 2700-meter-diameter

(9-by-9 OLCI pixels) or if the uncertainty in the radiance of 10% is not critical

for the application. Further analysis showed that the scaling factors reported in

the GEE dataset description must not be used. Finally, observation geometry

and meteorological data are not present in the GEE OLCI dataset, but they are

crucial for most applications. Hence we propose to calculate angles and

extraterrestrial solar fluxes and to use an alternative data source - the

Copernicus Atmosphere Monitoring Service (CAMS) dataset - for meteodata.
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3.1 Introduction

Many studies have been conducted on time-series of satellite images. Often

a buffer of several pixels around the area of interest (AOI) is used. A typical

workflow is the following: a user downloads all available images that contain

AOI, extracts one pixel and discards the rest. The Internet speed is usually a

bottleneck of such an approach. If a user operates with European Space Agency

(ESA) Sentinel data through Copernicus Open Access Data Hub Service (DHUS),

the Long Term Archive (LTA (Open Access Hub)) reduces the download speed

further: a maximum of 2 simultaneous downloads per user, and a maximum of 20

requests per user per 24 hours are permitted. In this way, a download of an image

collection of 800 images would require 40 days. For popular satellites such as

Sentinel-1 and Sentinel-2 alternative mirrors and data banks are available, such

as Data and Information Access Services (DIAS (Data and Information Access

Services — Copernicus)) , which obtain their copy of data and do not have

LTA-connected limitations.

In general, the approach described above - the “data-to-code” approach - does

not seem efficient for collecting per-pixel time-series. The alternative solution is

cloud computing, operating in the paradigm “code-to-data” or “moving code”.

The cloud-computing platforms vary by the level of required expertise: either

users must be able to build their pipeline, specifying how CPU and memory

resources of a cluster computer are used during the task execution, or a

provider hides the realization of the storage, processing and infrastructure

behind abstractions. The aforementioned DIAS system is an example of the

former approach, whereas Google Earth Engine (GEE, (Gorelick et al., 2017)) is

an example of the latter. According to a recent comparison-review (Gomes

et al., 2020), GEE is the most user-friendly solution, although alternative

platforms (OpenEO) provide more flexibility for scientists. Nonetheless,
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numerous scientific studies have been conducted in recent years with help of

GEE (Amani et al., 2020; Tamiminia et al., 2020). If the data do not come

from an official data provider, the conducted transformations, if any, have to be

reported to ensure that the research is reproducible and independent from the

chosen workflow (“data-to-code” or “code-to-data”).

Our team has explored the theoretical applications of the recent Sentinel-3

(Donlon et al., 2012) products for land surface monitoring using model

simulations (Prikaziuk and Van der Tol, 2019; Verhoef and Bach, 2012; Verhoef

et al., 2018). However, at the following proof-of-concept step using the

“real-world” data (Yang et al., 2021b), we faced the bottlenecks mentioned

above - the preparation of a time-series dataset took several days. Fortunately,

in October 2017, GEE introduced a new Image Collection of Sentinel-3 level-1

Ocean and Land Color Instrument (OLCI) products. However, in July 2018

issues were reported (Google Earth Engine — Google Developers): the absence

of angle (and meteorological) data bands, and the usage of tie-point instead of

per-pixel geo-coordinates. These issues have not been resolved until now,

although the google-earth-engine-developers group demonstrates scientists’

interest in it (Sentinel 3 angles are missing).

In this article, we (1) demonstrate the challenges of OLCI per pixel time series

extraction, (2) warn potential GEE OLCI dataset users about the hidden data

modifications revealed during the comparison of per pixel time series between

GEE and the official DHUS products, (3) propose the method to augment the

GEE OLCI dataset with angle and meteorological metadata, (4) propose a script

for the Sentinel-3 data download avoiding LTA requests.

The paper is organized in the following way. The Materials and Methods

section gives an overview of the Sentinel-3 OLCI product and its applications,

emphasizing time-series land monitoring. This is followed by a description of the
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pixel extraction workflow, GEE-DHUS name matching and the proposed

augmentation workflow. The Results and Discussion section describes the pixel

positioning issues due to geo-coordinates or tie-point coordinates usage, pixel

duplication and the absence of fixed tiles. This is followed by the pixel radiance

differences between GEE and the official DHUS products, closing with the

accuracy of the augmented data.

3.2 Materials and Methods

3.2.1 OLCI

Products overview

OLCI aboard Sentinel-3 (since 2016) (Donlon et al., 2012) is the successor of

Medium Resolution Imaging Spectrometer (MERIS (Explore MERIS - Earth

Online)) aboard Envisat (operational from 2002 to 2012) (Bezy et al., 2000).

The instruments provide observations in the visible-near infrared domain from

0.4 to 1.0 𝜇m (21 narrow bands OLCI, 15 bands MERIS) with pixel sizes of 300

m (full resolution, FR) and 1200 m (reduced resolution, RR). The land products

are disseminated at two levels:

• level-1:

– top of atmosphere (TOA) radiance per band

• level-21:

– integrated water vapour (IVW)

– OLCI (MERIS) terrestrial chlorophyll index (OTCI, MTCI)

1MERIS level-2 product contains more data: top of canopy (TOC) and top of atmosphere (TOA) reflectance
in all bands, ocean and cloud products, some of which are available as individual Water and Synergy products of
Sentinel-3, see Table 3.3 for details
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– OLCI (MERIS) global vegetation index (OGVI, MGVI)

– top of canopy (TOC) red (681 nm) and near-infrared (865 nm)

reflectance

In the case of OLCI, RR products are distributed in the form of stripes (stretching

from pole to pole) and FR products are disseminated as frames (User Products

Dissemination Concept - Sentinel-3 - Missions - Sentinel) (pieces of those stripes).

Unlike fixed tiles of Sentinel-2 products, OLCI stripes and frames correspond to

one of 365 orbits (Cornara et al., 2017). In this way, a single point can be viewed

from up to 27 different orbits (according to the repeat cycle). Furthermore,

pixel coordinates are reported per flight line (i.e. the grid is irregular or not

orthorectified), which for time series analysis leads to gridding artifacts (Gomez-

Chova et al., 2011).

OLCI is currently onboard two satellites: Sentinel-3A (launched 16-02-2016) and

Sentinel-3B (launched 25-04-2018). The employment of constellation of Sentinels

reduces the revisit time from 1.8 (1 spacecraft) to 0.9 (2 spacecrafts) day (Table 1

on (User Guides - Sentinel-2 - Sentinel Online)), yet it creates the need for cross-

calibration of instruments. A unique 5-month cross-calibration of the instruments

was conducted in the so-called “tandem phase” (Sentinel-3 Tandem for Climate)

from June to mid-October 2018 (Clerc et al., 2020). It is important to take

this phase into account during time series preparation, especially the drift phase

(mid-October - end-November) when Sentinel-3B satellite images were taken

from non-nominal orbits that do not occur during normal operational use.

In terms of data availability, there are two types of products - near-real-time (NR)

and not-time-critical (NT). The products differ by meteodata but the radiance

matches. NR products are available within 3 hours after the acquisition and

retained in the archive for up to 2 months. Finally, with the updates of algorithms

the whole archive might be reprocessed, which is indicated closer to the end of
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the full product name as operational (O) or reprocessed (R).

Time series applications for land

The primary aim of both OLCI and MERIS instruments is ocean color

monitoring, however, land applications have also been largely explored, mostly

using vegetation reflectance indices such as natural difference vegatation index

(NDVI), MTCI and MGVI. The index MTCI product was used for phenology

monitoring in tropical India (Jeganathan et al., 2010a,b), in the UK (Khwarahm

et al., 2017) and the whole of Europe (Rodriguez-Galiano et al., 2015).

Furthermore, Atkinson et al. (2012) compared MTCI smoothing methods in

relation to the phenological stage. MGVI was used as a seasonal pattern

indicator (O’Connor et al., 2012; O’Connor et al., 2008) or as a proxy of green

instantaneous absorbed photosynthetically active radiation (Gobron et al., 2008;

Gobron et al., 2007; Michaud et al., 2012). Level-1 data have been used for

biophysical properties retrieval: leaf area index (Canisius et al., 2010; Si et al.,

2012; Tum et al., 2016) and leaf and canopy chlorophyll content (Croft et al.,

2020; Si et al., 2012). Burned area mapping is another application of MERIS

products (Alonso-Canas and Chuvieco, 2015; Galionis et al., 2013; Huesca

et al., 2013). Zurita-Milla et al. (2011) proposed the MERIS pixel unmixing

method for resolution sharpening.

We found only three studies that used the time series of OLCI so far. Pastor-

Guzman et al. (2020) demonstrated that OTCI is a robust successor of MTCI: the

seasonal cycles of both indices in various ecosystems were identical. Rather short

(30 days) time series of level-1 data were used for burned area estimation with

OLCI-derived NDVI (Nolde et al., 2020). Yang et al. (2021b) made a time series

LAI retrieval algorithm from TOA OLCI data. Single-time applications of single

image OLCI data were used for biophysical properties retrieval (de Grave et al.,

2020) (synergy product) and for demonstration of radiance calibration network
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(Banks et al., 2017).

As was mentioned in the introduction, many OLCI studies were conducted on

synthetic (either model-simulated or resampled) datasets: simulation of TOA

signal (Verhoef and Bach, 2012), estimation of leaf chlorophyll content (Qian

and Liu, 2020), canopy chlorophyll content (Vuolo et al., 2012) grass chlorophyll

and nitrogen content (Clevers and Gitelson, 2013), nitrogen-phosphorous ratio

(Loozen et al., 2019), leaf area index (Kira et al., 2017), biochemical parameters

(Prikaziuk and Van der Tol, 2019). Wang and Atkinson (2018) proposed an

algorithm of Sentinel-2 spatio-temporal gap-filling with OLCI data for red, green,

blue and near-infrared bands. A number of studies focussed on the future ESA

Earth Explorer 8 (FLEX) mission (Drusch et al., 2017): scene simulation (Vicent

et al., 2016) and sun-induced fluorescence retrieval (Verhoef et al., 2018).

Overall, OLCI (mostly MERIS) data have been widely used for land monitoring

in time. In studies where mapping was not an objective of the study, a spatial

smoothing of 3-by-3 pixel area has been used (Brown et al., 2017; Canisius et al.,

2010; Pastor-Guzman et al., 2020).

OLCI level-1 full resolution product

OL 1 EFR product contains TOA data for 21 bands, quality flags and tie-point

grid data. Data provided per band are reflected radiance (Oa* radiance), solar

flux (solar flux band *), central wavelength (lambda0 band *), and full width

half maximum (FWHM band *). The coordinate set for these data is per pixel

geo-coordinates (latitude, longitude and altitude).

The quality flag is a 32-bit integer: bits from 0 to 20 indicate per band saturation,

the remaining 11 bits provide additional information. It is worth noting that

cloud flags are not present, but quality flags bright (bit 27) can be a proxy for

cloud detection. The goal of the study was to compare all available images (not
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only cloud-free); thus we did not use this flag. Another important quality flag

is quality flags duplicated (bit 23). If the pixel is marked as duplicated (23%

of any image) all per band data, including geo-coordinates, is taken from the

nearest (and the closest to the track) neighboring pixel (Figure 3.1). Duplicated

pixels are an unavoidable consequence of the swath width, satellite height and the

curvature of the Earth; off-nadir pixels are viewed from larger angles which makes

the projected area (field of view) larger, while the product grid is equally spaced.

Because tie-point coordinates and meteodata (see below) are interpolated, they

are not prone to duplication.

Figure 3.1: An OLCI image viewed with zoom in SNAP. Squares - single pixels, the blue stripe
- quality flags duplicated mask. The pins demonstrate that the duplicated pixel (Pin 2) copies
radiance and geo-coordinates (but not tie-point (TP) coordinates) from the nearest pixel (Pin
3). Duplicated pixels occur very often (23% of any OLCI image).

An additional component of OLCI level-1 product is tie-point grid data,

comprising sun-sensor-target geometry (solar and observation azimuth and

zenith angles) and meteorological metadata coming from European Centre for

Medium-range Weather Forecasts (ECMWF) dataset: wind speed, humidity at

850 hPa, sea level pressure, atmospheric water vapor and ozone content and

atmospheric temperature profile. Tie-point data have different coordinates

(TP latitude, TP longitude) and different resolution in across-track (along
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longitude) direction (77 columns for tie points versus 4865 columns for geo

coordinates) resulting in 16 km spacing. Tie-points (TP) are a subsampled

version of the image grid; as such association between TP and pixels shall be

done via their image coordinates (with the appropriate sub-sampling factor

(4865-1)/(77-1)=64 (for FR) and not from geo-coordinates which are different.

TP is the intersection of line-of-sight from the satellite with the reference

ellipsoid, which entails the absence of observation parallax correction. This

Google Earth Engine “COPERNICUS/S3/OLCI” image collection (Sentinel-3

OLCI EFR: Ocean and Land Color Instrument Earth Observation Full

Resolution) contains only reflected radiation bands, the quality flags band and

some metadata within image properties, including the official product name

(PRODUCT ID). Meteorological data and observation geometry, required for

the atmospheric correction and further processing, are absent. As mentioned in

the issues (Google Earth Engine — Google Developers) , GEE products use

tie-point coordinates, not per pixel geo-coordinates.

There are several data transformations present in the GEE OLCI dataset. Firstly,

GEE reports per band scaling factors which are equal to those of the corresponding

DHUS NetCDF per band radiance files. However, we found that the radiance

values after scaling factor application are too low and far from realistic TOA

radiance values. From the range of provided radiance values (without scaling)

we conclude that they are just rounded original values. Therefore we operated

with GEE values without scaling and recommend the users to do so. Secondly,

the images of GEE collection have different sizes: The original product is always

[4865, 4090], while the GEE version depends on the coordinate reference system

(CRS), and often has the x-size of 4866, whereas the y-size ranges from 2895

to 4604. The number of pixels changes, as well as the ground resolution (from

nominal 300 m to 318 m in GEE) but we were not able to find the interpolation

technique that GEE used during reprojection.
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3.2.2 Workflow

Time series preparation

We downloaded all available 1987 not-time-critical (NT) products (from 2016-04-

26 to 2020-09-12) of OLCI level-1 full resolution images containing Speulderbos

eddy covariance site (NL-Spe, 52.251185∘N, 5.690051∘E, elevation 64m). The

choice of a single site located in the European area is a limitation of this study,

which would benefit from multi-site comparison across different continents and

altitudes.

Out of 1987 products, 1109 online (not in LTA) images were downloaded from

Copernicus Open Access Data Hub Service (DHUS (Open Access Hub)), the

other 878 offline (in LTA) images were downloaded from the alternative mirror -

Level-1 and Atmosphere Archive and Distribution System - Distributed Active

Archive Center (LAADS DAAC (LAADS DAAC )). Pixel time series were

extracted with Sentinel Application Platform (SNAP, (SNAP — STEP))

version 8.0 software, Extract Pixel Values tool v1.3. Quality flags band was

extracted incorrectly (probably, rounded due to the length of the integer), thus

we extracted it with a custom script directly from the product’s NetCDF file

(“qualityFlags.nc”) taking the pixel x, y coordinates suggested by the tool.

We quantified the uncertainty of four approaches to pixel extraction:

1. single pixel extraction based on geo-coordinates (Figure 3.2b), SNAP

2. single pixel extraction based on tie-point coordinates (Figure 3.2c)

3. 3-by-3 pixel extraction based on geo-coordinates with further averaging

4. 3-by-3 pixel extraction based on tie-point coordinates with further averaging
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SNAP Extract Pixel Values tool conducts extraction exclusively based on geo-

coordinates. This behavior does not depend on the reading option available in the

Sentinel-3 Toolbox: “Read Sentinel-3 OLCI products with per-pixel geo-coding

instead of using tie-points”. Therefore, for the cases of tie-point-coordinates-

based extraction (cases 2 and 4), we extracted a larger area (7-by-7 pixels) and

calculated the nearest pixel based on the corresponding tie-point coordinates

ourselves.

For the same period per pixel (NL-Spe, 52.251185∘N, 5.690051∘E) time series

along with PRODUCT ID property (full product name), latitude, longitude,

coordinate reference system (CRS), pixel x and y coordinates, image width and

height were extracted from Google Earth Engine “COPERNICUS/S3/OLCI”

dataset (Sentinel-3 OLCI EFR: Ocean and Land Color Instrument Earth

Observation Full Resolution). Single pixel extracts were compared to single

pixel DHUS extractions, the extractions with a 450-meter-radius mean region

reducer (the equivalent of 3-by-3 pixels) were compared to spatially aggregated

DHUS extractions.

Distance control

The extracted pixel coordinates were imported to QGIS (QGIS Development

Team, 2009) 3.4.14-Madeira where a circular buffer of 212 m (radius of the

circumscribed circle around a 300 m by 300 m square pixel, i.e. the expected

pixel center location) was drawn (225 m for GEE, since GEE OLCI resolution is

318 m). The underlying map layer for visualization was Google Satellite from

QGIS Server. The distances between coordinate points were calculated with the

distance() function of the geopy package (v1.21.0) in Python 3.7.5.
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GEE and DHUS name matching

GEE and DHUS extracted values were joined by the product name (either full

or short) and radiance values were compared by simple root-mean-square error

(RMSE) metric and relative RMSE (rRMSE) - the ratio of RMSE to average

band radiance.

For DHUS, out of 2002 products we were able to download 1987 and extract

pixels from 1908. For GEE, the number of products in the filtered by geo-region

collection was 6795. However, most of them were wrongly reprojected (infinite

image boundary boxes) or did not have any assigned CRS, resulting in 2045 valid

points. Some products (129 DHUS, 166 GEE) have no-data at their margins,

leading to no radiance extracted. As long as that influenced neither matching

nor metrics, we did not remove them. Overall we matched 1146 images by full

name (PRODUCT ID) and 1887 images by short name (“system:index” in GEE

terminology) (Table 3.1).

The short name does not uniquely identify a product: the second half of the

name contains information about (re)processing time, ground processing unit,

time-dependency. Listing 1 shows two full names, corresponding to the same

short name. Indeed, the images belong to the same acquisition (2018-12-11),

still the first one was released on 2018-12-12 by Land OLCI Processing and

Archiving Centre 1 (LN1) in operational (O) mode, whereas the second one was

reprocessed (R) on 2020-01-15 by Marine Reprocessing Centre 1 (MR1).

S3B OL 1 EFR 20181211T093534 20181211T093710 20181212T133634 0096 019 307 1980 LN1 O NT 002

S3B OL 1 EFR 20181211T093534 20181211T093710 20200115T181744 0096 019 307 1980 MR1 R NT 002

Listing 1: An example of two full names (“PRODUCT ID” in GEE) that result in the same short
name S3B 20181211T093534 20181211T093710 (“system:index” in GEE). The difference in the
reprocessing time and the reprocessing unit is highlighted in bold. The number in red is the
relative orbit number used for viewing angles calculation.
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Among 762 DHUS images that were not matched by the full name we managed

to uniquely match 741 by the short name (Table 3.1). Those matched images

include:

• 211 GEE products came from Svalbard Satellite Core Ground Station (SVL),

which is not presented in DHUS

• 300 (including 211 SVL) GEE products were from near-real-time (NR)

dataset, whereas we took only non-time-critical from DHUS (NT)

• 218 GEE operational products (O), processed in 2019 by LN1, were

reprocessed (R) in 2020 by MR1

• 2 products mismatched by processing time

We did not find any SVL products in the collection apart from the ones from

2018, probably, GEE switched to the official DHUS archive. Finally, 336 GEE

products did not have any full name (empty PRODUCT ID property), yet 221 of

them matched by the short name. As far as we could check, the absence of the

full name is the case for the global GEE collection only in 2017 (from February

to December 2017); currently all images can be successfully traced back by the

full name.

Table 3.1: Statistics on GEE-DHUS images validity and matching.

DHUS
filter

GEE

left dropped left dropped

2002 products 6795

1987 15 loaded / CRS present 2221 4574

1908 79 extracted / CRS valid 2045 176

1146 762 matched by full name 1146 899

1887 21 matched by short name 1887 158
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3.2.3 GEE augmentation

Angles

The GEE OLCI product does not provide the sun-sensor-target geometry that is

crucial for scientific applications. Solar angles can be calculated based on point

coordinates and time. However, the calculation of observation angles is not that

straightforward, due to the absence of fixed tiles. We propose to use relative

orbit number information (characters 74:77 of the official product name). Since

the repeat cycle is 27 days, it is enough to download a set of images with unique

orbits, extract viewing geometry from them and use it for all other products from

the same orbit. The orbits for the study site (NL-Spe) are presented in Table 3.2.
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Table 3.2: Frequent orbits for NL-Spe site.

orbit number counts full name counts short name

8 77 15

22 81 15

36 80 15

51 53 15

65 78 15

79 79 16

93 77 14

108 81 16

122 79 16

136 80 16

165 78 17

179 76 15

193 77 15

222 79 14

236 78 15

250 79 15

279 78 15

293 77 15

307 79 15

336 78 17

350 77 15

364 77 15

Meteo

The GEE OLCI product does not have meteorological data, which is necessary

information for applying the atmospheric correction. We downloaded the data

from the near-real-time Copernicus Atmosphere Monitoring Service (CAMS

(ECMWF — CAMS Near-real-time)) dataset of ECMWF. CAMS dataset

provides variables at model levels, pressure levels (from 1 to 1000 hPa) and at

surface level at 0.125x0.125 degree resolution. Air temperature profile (NetCDF
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variable name t, parameter ID 130) and relative humidity (r, 157) at 850 hPa

were taken at pressure levels, the other parameters - total column water vapor

(tcwv, 137), GEMS total column ozone (gtco3, 210206), mean sea level

pressure (msl, 151), 10 metre U and V wind components (horizontal wind

vectors u10, v10) - at surface level. The dataset has a 3-hourly timestamp. We

used the initialization time of 00:00 UTC and steps of 9 and 12 hours. The

value at the time of Sentinel-3 overpass was interpolated by time and

geographical coordinates with interp() function of xarray package (v0.16.0) in

Python 3.7.5. As a proof of concept we used January 2020 data for comparison.

Although the source of meteorological data is mentioned explicitly in the

Algorithm Theoretical Basis Documents of SLSTR level-1 and level-2 (ATBD,

sec. 4.2.1.9 (Lesne and Manager, 2018)) , the specific ECMWF dataset used in

the OLCI dataset is not stated.

Solar flux

In contrast to the solar zenith angle, the extraterrestrial radiation only varies

seasonally, and not spatially. We used the data provided within the product to

obtain a full annual cycle (one value per day of the year) per band, interpolating

over days without observations.

3.3 Results and Discussion

3.3.1 Pixel positioning: geo versus tie-point

In this section we discuss the actual field of view of the OLCI instrument,

depending on the chosen coordinates for extraction: per pixel geo-coordinates

or tie-point. The distances discussed here relate to single pixels, and they have

to be extended proportionally in the case of 3-by-3 or other spatial aggregates.
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Two distance benchmarks are used in this section: 212 m and 700 m. The

212-meter-radius circle is the expected pixel center location (see Section 3.2.2).

The 700-meter-diameter-circle is the expected time-series footprint; when all

pixel centers are within 212 m from the point of interest, pixel borders are

within 362 m (212 m + 300 m / 2), resulting in approximately 700 m footprint.

The other distances mentioned in this section were measured within QGIS.

SNAP Extract Pixel Values tool conducts extraction exclusively based on geo-

coordinates (Figure 3.2b). Pixel extraction is not trivial, because the coordinates

are reported per each pixel, i.e. latitude and longitude are two dimensional. The

only method is thus to calculate the metric distance to the point of interest. In

addition, duplicated pixels complicate the task of pixel extraction: duplication of

geo-coordinates leads to two (or more) equidistant pixels, forcing the software

to make an arbitrary choice. Figure 3.2b shows that SNAP sometimes chooses

pixels incorrectly - the centers of the pixels lay outside the circumference around

the location of interest. This happens only in the east-west direction, suggesting

that it can be attributed to the degradation of instrument resolution at the swath

edge. As a result, the footprint becomes wider: from the theoretical 700-meter-

diameter circle to an ellipse with the 700-meter south-north minor axis and the

1000 meter east-west major axis. Yet, for time-series applications this is the most

accurate data one can get, because it is based on geo-coordinates. We suggest to

do manual control and remove the pixels outside the circumference (red vertical

threshold line in Figure 3.3).

An alternative option is to conduct the pixel extraction based on tie-point

coordinates (Figure 3.2c). Notice, however, that this is an approximation,

because TP coordinates do not have parallax correction, introducing even more

uncertainty at high altitudes. The effective footprint was even smaller - a

550-meter-diameter circle. However, the true (geo-coordinates based) footprint

was way larger and did not have a regular shape (Figure 3.2d), which is
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especially noticeable for the Sentinel-3B spacecraft. This fact imposes

additional requirements on the homogeneity of the area of interest from 700 m

(theoretical) to 2700 m (actual). Given that the average agricultural field area

in the European Union is 16.6 ha (Farms and farmland in the European Union -

statistics) , Sentinel-3 with its 700 m (49 ha) or 2700 m (729 ha) resolution is

unsuitable for agricultural area mapping in the EU. Because the GEE product

also uses tie-point coordinates (Figure 3.2e), one might expect the same 2700

m actual footprint (Figure 3.2d). GEE extraction does not suffer from outliers,

but the distance threshold should be increased from 212 m to 225 m, because

the pixel size of the GEE product is 318 m (Figure 3.3). Furthermore, a

comparison of tiles c and e of Figure 3.2 shows that GEE reprojected the

images: GEE pixels are strictly north-oriented, while DHUS ones were tilted 15∘

clockwise for our study site.

Overall, if the area of interest is homogeneous within the 700-meter-diameter

circle, the only option is to use geo-coordinates (DHUS product) and

time-consuming “data-to-code” approach. At the same time, if the assumption

of homogeneity can be extended to the 2700-meter-diameter area, GEE product

can be a choice.
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expected pixel centre location (212m)
effective footprint  
DHUS pixel centre: tie-point
A
B

(a) tp (geo-based)

expected pixel centre location (212m)
effective footprint 
DHUS pixel centre: geo
A
B

(b) geo (geo-based)
expected pixel centre location (212m)
effective footprint 
DHUS pixel centre: tie-point
A
B

(c) tp (tp-based)

expected pixel centre location (212m)
effective footprint 
DHUS pixel centre: geo
A
B

(d) geo (tp-based)
expected pixel centre location (212m) 
effective footprint 1 pix  
effective footprint 3x3

GEE pixel centre
A
B

(e) GEE (tp-based)

Figure 3.2: The effective ground footprint of Sentinel-3 OLCI dataset at Speulderbos site from
DHUS images (red polygon). The pink circle is the 212-meter-radius circle of the theoretically
expected pixel center location. The points show the actual OLCI pixel center location of Sentinel-
3A (green) and Sentinel-3B (purple) spacecrafts. The footprint was calculated based on (a) -
tie-point coordinates, corresponding to (b), (b) - geo-coordinates (standard SNAP extraction),
(c) - tie-point coordinates (modified SNAP extraction), (d) - geo-coordinates corresponding to
(c), (e) - GEE coordinates (reported to be tie-point coordinates).
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Figure 3.3: Distance to the point of interest

3.3.2 GEE versus DHUS: radiance difference

In this subsection we compare radiance values reported in GEE against the genuine

DHUS. We matched 1146 products by the full name, which means that their

pixel radiances should be identical. The other 741 were matched by the short

name, which does not uniquely identify the image, but still helped us to match

them unambiguously. Even after short name matching, a number of products

remained unpaired: 21 DHUS products did not have a GEE counterpart and 158

GEE products vice verse (Table 3.1).

The root mean squared error (RMSE) between GEE and Copernicus OLCI band

radiance for single pixel is presented in Figure 3.4. This test quantifies the

uncertainty of GEE against properly (per pixel) geo-located pixels for our study

site. When we gap-fill offline products with GEE products, we may expect similar

disagreement in radiance. The RMSE did not correlate with the distance to the
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location of interest, the pixel quality flags, or with anything else that can be

detected without direct radiance comparison. It also did not differ for full-name

or short-name matching, therefore the rest of the comparisons were made on all

1887 images together.
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Figure 3.4: RMSE between GEE and Copernicus OLCI products with the same name.

As the next step, we quantified the uncertainty in radiance after spatial

averaging of 3-by-3 pixels, using tie-point coordinates (Figure 3.5). We show

the data as relative RMSE (rRMSE) to normalize for systematic difference

among bands, and thus facilitate the comparison of bands. We use a (somewhat

subjective) threshold of 5% rRMSE as acceptable. As expected, tie-point-based

DHUS extraction showed closer values to GEE (which is also tie-point based),

especially after aggregation, however, the values were still not identical.
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Figure 3.5: Comparison of Sentinel-3 OLCI radiance from GEE and DHUS. Note that the data
are supposed to be identical (rRMSE=0).

Having discovered that pixel values deviate from the original data, we tried to

understand what the problem was - incorrect export or data transformation. We

checked our script on Sentinel-2 (Figure 3.11) and MODIS (Figure 3.10) datasets

and confirmed that for these datasets, the script worked correctly and resulted in

identical pixel values.

During the search for data transformation we found that GEE does reproject the

images. We selected 33 products with the highest RMSE, reprojected them in

SNAP to the GEE-corresponding CRS and compared them again. The reprojected

products matched in shape, pixel x and y coordinates matched +/- 1 pixel index,

but the RMSE of radiance remained unacceptably high. Changing the SNAP

interpolation technique from nearest to bicubic or bilinear did not change the

result either.

In conclusion, the tie-point nature of GEE OLCI data resulted in a 10-20% error
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in radiance for our study site. The cause is the erroneous pixel positioning. The

reprojection done by the GEE team during the image ingestion is the most likely

cause of the residual 5% rRMSE. We were able to reproduce the image dimensions

but not the radiance values with the SNAP reprojection tool. Gridding artifacts,

described by Gomez-Chova et al. (2011) for MERIS, might have played a role as

well.

3.3.3 GEE augmentation

This section shows the accuracy of the proposed estimation of the geometric

and meteorological data missing in the GEE product, but present in the original

DHUS. An important note regarding near-real-time (NR) products is that their

meteodata differs from non-time-critical (NT) products. In this comparison (and

the whole study) we used only NT products.

Angles

The calculation of solar angles from latitude, longitude and time is

straightforward. However, due to varying orbits, wide swath and satellite

inclination, the observation angles calculation is not that easy. The repeat cycle

of 27 days suffices to download all unique relative orbits and use those values to

complete the metadata. For NL-Spe we had 22 frequent orbits and 11 orbits

that were encountered only once. The latter belongs to Sentinel-3B at the

beginning and the end of the tandem phase. For those 11 products (and other

15 observed during the drift of satellites (see below)) our method does not

work. The accuracy of angles retrieval from orbit numbers is presented in

Figure 3.6. The outliers belong to Sentinel-3B during its fast drifting phase

from tandem (from 2018-10-26 to 2018-11-18).

Despite the fact that the relative orbit number is reported in the full name, GEE

products always have the relative orbit num property. Therefore it is possible to
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restore angles even for those GEE images that do not contain the PRODUCT ID

property.
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Figure 3.6: Performance of the estimation of observation zenith (OZA) and azimuth (OAA)
angles for GEE OLCI product. Blue dots correspond to the nominal orbits, orange dots - to the
orbits taken by Sentinel-3B spacecraft during the drift phase (from 2018-10-26 to 2018-11-18).

Meteorological data

The meteorological data, missing in the GEE product, can be retrieved from the

CAMS dataset. We linearly interpolated the data with a timestamp of 3 hours

to the time of the overpass values. Figure 3.7 shows that CAMS-derived values

are in good agreement with the values reported in the original products. Aerosol

optical thickness at 550nm (AOT) is another variable that can be acquired from

the CAMS dataset and used for atmospheric correction. However, AOT is not

included in the original OLCI product.
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Figure 3.7: Comparison of CAMS-derived (y-axis) and in-product (x-axis) meteorological data.

Figure 3.8 demonstrates that interpolated CAMS values at pressure levels can be

used to augment GEE products. However, the RMSE increases at lower pressures

(levels 20-25).
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Figure 3.8: Comparison of CAMS (y-axis) and in-product (x-axis) meteorological data -
temperature profile at pressure levels.

Solar flux

Extraterrestrial (TOA) solar irradiance data, missing in the GEE product, can

be taken from the mean annual cycle (see Section 3.2.3). We were expecting
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the estimated value to match perfectly with the in-product value. However,

Figure 3.9 shows that retrieving the solar flux without considering the

in-field-of-view pixel position (instrument pixel, provided by the detector index

band) yields large uncertainties in solar irradiance at some bands (especially the

first OLCI band Oa01) where local variability with wavelength is the highest.

These uncertainties will directly propagate into the conversion of radiances into

reflectance, since the presence of per-pixel solar flux in DHUS products is

precisely meant for that. Due to cross-FOV central wavelength variations,

in-band radiance values can vary by up to 4% within the FOV as demonstrated

by Lamquin et al. (2020).
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Figure 3.9: Comparison of the estimated (y-axis) and in-product (x-axis) extraterrestrial (top of
atmosphere) solar flux, all in W m−2 sr−1 𝜇m−1.

3.4 Conclusions

We quantified the uncertainty in the GEE OLCI dataset and proposed a method

to augment the dataset with meteorological and geometric data distributed with
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the original ESA products. We expect this to be useful for scientists working with

per-pixel time-series, the acquisition of which is complicated by the fact that half

of the products are offline in the long-term archive (LTA) and no more than 20

products per day can be requested. We discovered that GEE transformed the

original data (rounded values and, probably, conducted reprojection), which led

to the deviation of pixel values from the original data of 15 W m−2 sr−1 𝜇m−1

(average RMSE) per band. At least 1 W m−2 sr−1 𝜇m−1 of RMSE can be

attributed to the rounding: GEE OLCI values are stored as integers but the

reported scaling factors, which should convert them to floating point numbers,

are wrong and should not be used. Unfortunately, we could not find any other way

of detecting the deviating pixels (by a quality flag or a metadata property), besides

direct comparison of radiance values. Another discrepancy in the GEE ingestion

of OLCI products is the usage of tie-point coordinates. Those coordinates lack

the parallax correction, which results in larger footprints (4-times larger for our

study site: 2700 m vs 700 m). This imposes the homogeneity constraint on the

area of interest, which would increase further in high altitudes.

Suppose the error level of GEE is not acceptable or the area of interest is not

homogeneous at 2700 m diameter (9-by-9 pixels). In this case, we propose

using the LAADS DAAC archive, which has all genuine products online.

However, even with the original products there are challenges in per-pixel

time-series acquisition, originating from the absence of fixed tiles and the

presence of duplicated pixels (23% of an image). These require additional

distance control and impose homogeneity constraint of at least 700 m diameter.

Despite all the difficulties, pixel extraction from the original OLCI products with

SNAP Extract Pixel Values tool (geo-coordinates-based) produces the best

possible OLCI-radiance time-series one could get.

We expect that this article will encourage vigilance in using third-party datasets,

and will stimulate dataset-providers to meticulously describe the data

82



Chapter 3

transformation they conducted for the benefit of reproducible science.

3.5 Appendix

3.5.1 Sentinel-3 products availability

Table 3.3: Sentinel-3 products availability: Level 1 - top of atmosphere, level 2 - surface.

instrument product type content resolution, m since structure # images offline size, MB

OLCI OL 1 EFR 21 bands 300 2016-04-26 frame 2164 901 620

OL 1 ERR 21 bands 1200 2016-04-26 stripe 2164 901 700

OL 2 LFR 2 indices, 2 TOC red bands 300 2016-04-26 frame 2164 957 120

OL 2 LRR 2 indices, 2 TOC red bands 1200 2016-04-26 stripe 2164 957 170

SLSTR SL 1 RBT 24 radiance / 10 BT 500 / 1000 2016-04-19 frame 4372 2715 430

SL 2 LST 2 indices, LST, masks 1000 2016-04-19 stripe 4548 2842 60

SL 2 FRP ? ? ? ?

Synergy SY 2 SYN 26 bands, AOT550 and exponent 300 2018-10-08 frame 1146 3 400

SY 2 VGP 4 bands, atmosphere 1000 2018-10-09 stripe 1133 2 50

SY 2 VG1 4 bands, NDVI, atmosphere 1000 2018-10-04 tile 1374 3 120

SY 2 V10 4 bands, NDVI, atmosphere 1000 2018-09-22 tile 136 0 250

SRAL SR 1 SRA ? 300x1640 2016-03-01 stripe 696 3 52

SR 1 SRA A ? 300x1640 2016-04-07 line 351 99 2300

SR 1 SRA BS ? 300x1640 2016-04-07 line 351 99 1700

SR 2 LAN ? 300x1640 2016-03-03 stripe 713 1 100

SR 2 WAT ? ? ? ?
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3.5.2 Performance of the extraction script on other Google Earth Engine

datasets
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Figure 3.10: MCD43A4-006 (Schaaf and Wang, 2015) single pixel reflectance time-series
from GEE (y-axis (MCD43A4.006 MODIS Nadir BRDF-Adjusted Reflectance Daily 500m))
and AppEARS (x-axis (Application for Extracting and Exploring Analysis Ready Samples
(AppEEARS). Ver. 2.48.)) datasets. The nearest pixel to Speulderbos forest site (NL-Spe,
52.251185∘N, 5.690051∘E) for the period from 2016-01-01 to 2020-10-01 (1736 products).
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Figure 3.11: Sentinel-2 level-2 (Drusch et al., 2012) single pixel reflectance time-series from GEE
(y-axis (Sentinel-2 MSI: MultiSpectral Instrument, Level-2A)) and DHUS (x-axis (Open Access
Hub)) datasets, both resampled to 20m. In spite of the outliers from bands with native 20-
m resolution, probably caused by GEE pixel weighting during the resampling (Resampling and
Reducing Resolution — Google Earth Engine), all pixels demonstrate the expected behavior. The
nearest pixel to the Sudan agricultural field site (14.40551∘N, 33.39137∘E) for the period from
2019-07-01 to 2020-03-31 (54 products).
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Abstract

Accurate estimates of carbon, water and energy fluxes between the Earth

surface and the atmosphere are crucial for enhancing our understanding of

ecosystem-climate interactions. Such estimates can be made by combining

remote sensing derived land surface parameters with climate reanalysis data.

We analysed to what degree generic (plant functional type independent)

satellite derived vegetation properties and climate reanalysis data can explain

land surface fluxes. For this purpose we used the Soil Canopy Observation,

Photochemistry and Energy fluxes (SCOPE) model, which combines radiative

transfer in plant leaves and vegetation canopies with photosynthesis and energy

balance in a single model representation of the vegetation. We evaluated the

performance of SCOPE in simulating fluxes by comparison to 23 eddy

covariance sites representing 6 plant functional types. We varied meteorological

forcing, locally measured versus climate reanalysis ERA5-land, with default

(constant both in time and among vegetation types) versus plant functional

type dependent parametrization of maximum carboxylation capacity 𝑉 𝑐𝑚𝑎𝑥25,

and uniform versus leaf-area-index-based seasonal values. The average

performance of daily flux in terms of root-mean-square error (RMSE) was 2.5

𝜇mol CO2 m−2 s−1 (R2 0.72) for gross primary productivity (GPP), 28 W m−2

(R2 0.62) for latent heat flux (𝜆E) and 39 W m−2 (R2 0.40) for sensible heat

flux (𝐻). The spatial variability of annual accumulated GPP flux was captured

well with seasonally varying 𝑉 𝑐𝑚𝑎𝑥25 (R
2=0.67, RMSE=285 g C m−2 yr−1 and

bias=-73 g C m−2), annual accumulated evapotranspiration (ET) was

overestimated (R2=0.43, RMSE=159 mm yr−1 and bias=107 mm d−1) mainly

due to ecosystems with subtropical Mediterranean climate. Overall, the study

demonstrates that flux mapping using the radiative transfer-energy balance

coupling in SCOPE is feasible already with plant functional type independent

parameterization.
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4.1 Introduction

The quantification of the exchanges of carbon, water and energy between the

land surface and the atmosphere is relevant for many applications in Earth science

including hydrology, meteorology and ecology (Baldocchi et al., 2018). At local

scale these exchanges (fluxes) are measured using flux towers (e.g. FLUXNET

(Pastorello et al., 2020)), and at global scale satellite data driven statistical,

semi-empirical or land surface models are typically used (Beer et al., 2010; Jung

et al., 2020).

Due to the indirect nature of the relation between remote sensing indicators

and fluxes, the estimation from satellite data always requires modelling. This

study covers so-called diagnostic models which rely on external information about

atmospheric and land properties; prognostic models that can simulate climate

and vegetation dynamic internally (Huntzinger et al., 2012) are not discussed

in this study. Diagnostic ecosystem flux models require three types of input

variables - meteorological, vegetation structure and vegetation functioning. All

these variables can be derived from remote sensing observations.

Meteorological variables are usually taken from atmospheric general circulation

models (GCMs) driven by weather satellite and weather station data. Popular

global climatic datasets are NCEP/NCAR (Kalnay et al., 1996), MERRA2 (Gelaro

et al., 2017), ERA5 (Hersbach et al., 2020). The uncertainty in climatic variables

may result in 9-32% uncertainty in gross primary productivity (GPP) flux (Jung

et al., 2007; Wu et al., 2017).

Vegetation structure variables are usually derived from polar orbiting satellites

with moderate resolution (Envisat (MERIS) (Bezy et al., 2000), Aqua and Terra

(MODIS) (Justice et al., 2002), Sentinel-3 (Donlon et al., 2012)) and high

resolution (Landsat (Wulder et al., 2019), Sentinel-2 (Drusch et al., 2012)). A
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common way of obtaining values for the properties of soil and vegetation from

radiometric measurements is by inverting radiative transfer models (Homolová

et al., 2013; Verrelst et al., 2018). The resulting parameter values, such as the

Leaf Area Index (LAI), leaf chlorophyll content (𝐶𝑎𝑏) or the fraction of

absorbed photosynthetically active radiation (fAPAR) are subsequently used in

diagnostic ecosystem flux models (Houborg et al., 2013; Zhang et al., 2005).

Global LAI products demonstrate different trends (Jiang et al., 2017) and such

uncertainty in LAI propagates into the uncertainty of simulated fluxes (Liu

et al., 2018).

Very often vegetation functioning, the third diagnostic model input category, is

also parametrized from structural variables, for example, Rubisco maximum

carboxylation capacity (𝑉 𝑐𝑚𝑎𝑥25) can be calculated from 𝐶𝑎𝑏 (Luo et al.,

2019) and its seasonality is often imposed by LAI (Wang et al., 2019). Such

computations further enhance the effect of uncertain retrievals onto flux

simulation.

Overall, we can see that each category of flux model input variables is calculated

with an individual model. In this sequence parameter values are retrieved with

one model (a statistical or radiative transfer model) and used in a different model

(a micro-meteorological, energy balance or light use efficiency photosynthesis

model).

More integrated approaches have been developed in models such as CUPID

(Norman, 1979), SiB (Sellers et al., 1986) and SCOPE (Soil Canopy

Observation of Photosynthesis and Energy fluxes) (Van der Tol et al., 2009).

These models combine the radiative transfer and the non-radiative energy fluxes

(latent heat (𝜆E) and turbulent heat (H) exchange with the air) into a single

model representation of the soil and vegetation system. The advantage of such

an integrated approach is the consistent treatment of both radiative transfer
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and energy balance closure at all spatial aggregation levels.

Although SCOPE has been used in studies to improve the understanding of

specific aspects of radiative transfer, such as explaining the anisotropy of

thermal and chlorophyll fluorescence emission (Biriukova et al., 2020; Duffour

et al., 2015; Liu et al., 2015; Yang and Van der Tol, 2018), only few studies

have focused on the overall performance of the model in simulating energy

balance and carbon fluxes. Wolanin et al. (2019) combined SCOPE with a

machine learning approach to estimate Gross Primary Productivity (GPP) from

Sentinel-2 and Landsat 8 for five cropland (CRO) sites. Pardo et al. (2018)

used SCOPE forced with MODIS and MERIS LAI to simulate GPP, net

ecosystem exchange, latent, sensible and ground heat flux for rapeseed. Bayat

et al. (2018) used Landsat-8 optical and thermal data to constrain SCOPE

simulations of GPP and 𝜆E at grassland (GRA) site during drought. Dutta

et al. (2019) proposed a SCOPE optimization framework for retrieval of

biochemical parameters from flux data of CRO and deciduous broadleaf forest

(DBF). Another strategy tested on Mediterranean savannah (SAV) constrained

SCOPE with optical reflectance, thermal radiance and GPP flux to retrieve

plant traits (Pacheco-Labrador et al., 2019). Since mentioned works focused on

single-site studies and used site-specific model adjustments, there is a need to

perform a multi-site evaluation of the default SCOPE model:

1. to quantify the accuracy of SCOPE-simulated fluxes

2. to determine the best performing combination of input parameters

3. to evaluate the individual contribution of meteorological, structural and

biochemical (prior) input parameters to GPP and evapotranspiration (ET)

flux simulation
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4.2 Materials and methods

4.2.1 SCOPE

SCOPE simulates four-stream radiative transfer among horizontal canopy layers,

each consisting of leaves with a stochastically described distribution of

orientations towards the sun and sensor (Van der Tol et al., 2009; Yang et al.,

2020a). The model considers the electromagnetic spectrum from 0.4 to 50 𝜇m,

thus including both the optical and the thermal infrared domain. In comparison

with well-known land surface models such as SiB (Sellers et al., 1986),

ORCHIDEE (Krinner et al., 2005), CLASS (Verseghy, 2000), JULES (Best

et al., 2011; Clark et al., 2011) or CLM (Dai et al., 2003), SCOPE uses a more

detailed representation of the radiative transfer: apart from distinguishing

between sunlit and shaded leaves, it also differentiates irradiance within these

two groups of leaves depending on their orientations, which results in more

accurate flux simulation (Bonan et al., 2021), but, primarily, a better simulation

of satellite signals. However, the representation of the subsurface and the

soil-vegetation interaction in SCOPE is less detailed.

The energy balance component of SCOPE is a multi-source soil-canopy model

that adjusts components’ temperature until the balance closes (the net

radiation matches the sum of sensible, latent and ground heat flux). An

aerodynamic resistance scheme is used to partition the net absorbed radiation

of each leaf layer and leaf inclination class (Verhoef and Wallace, 2000). The

sensible heat flux is driven by the gradient between individual leaf temperatures

and the air temperature above the vegetation and the aerodynamic resistance.

The aerodynamic resistance depends on surface roughness, wind speed and the

atmospheric stability, which, in turn, depends on the ratio of buoyancy over

mechanical turbulence according to Monin-Obukhov theory (Paulson, 1970;
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Wallace and Verhoef, 2000). In contrast to popular single source (SEBAL

(Bastiaanssen et al., 1998), SEBS (Su, 2002), METRIC (Allen et al., 2007))

and two-source (TSEB (Norman et al., 1995)) energy balance models, SCOPE

does not require land surface temperature as an input variable.

The photosynthesis rate per leaf layer and leaf inclination class is calculated

with a classic photosynthesis and stomatal conductance model (Collatz et al.,

1992; Collatz et al., 1991; Van der Tol et al., 2014), whose key parameters are

maximum carboxylation capacity at 25 ∘C (𝑉 𝑐𝑚𝑎𝑥25) and slope of Ball-Berry

equation (BallBerrySlope). Except for the 𝑉 𝑐𝑚𝑎𝑥25, which follows an

exponential decline with depth in the canopy in accordance with average

illumination, all photosynthesis and stomatal parameters are uniform in the

whole canopy. The leaf pigment concentrations were assumed uniform in

vertical profile as well.

Upscaling of photosynthesis and energy fluxes from leaf to canopy level is carried

out by simple integration (weighted sums), where the relative contributions of

sunlit and shaded leaves are calculated from the gap fractions and the relative

contributions of leaf angle classes.

All default values for SCOPE input parameters used in this study can be found

in Table 4.8, options are presented in Table 4.7. There were, however, two

modifications conducted. Firstly, the effect of soil heat method option was

modified. In the original SCOPE model soil heat method 2 assigns 35% of soil

net radiation to ground heat flux (G). Such assumption is justified during

daytime hours (Timmermans et al., 2013), but not on daily scale, when net

radiation is positive, leading to a consistently positive G and Earth heating.

Therefore, we set the G value to 0 W m−2, to ensure the stability of annual

sums. Secondly, SCOPE output parameter Actot represents net leaf assimilated

carbon, with leaf respiration rate (Rd) determined as a fraction of 𝑉 𝑐𝑚𝑎𝑥25:
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𝑅𝑑 = 𝑅𝑑𝑝𝑎𝑟𝑎𝑚 · 𝑉 𝑐𝑚𝑎𝑥25. To make Actot represent GPP we disabled leaf

respiration, setting Rdparam to 0 throughout all simulations.

4.2.2 Sensitivity analyses

We conducted global (GSA) and local (LSA) sensitivity analyses of the SCOPE

model to meteorological and biochemical input parameters. These sensitivity

analyses enabled us to evaluate the effect of alternative input data sources, and

their accuracy requirement (e.g. locally measured versus climate reanalysis

weather forcing). Previously reported GSAs of SCOPE model focused mostly on

reflectance and solar induced fluorescence (Verrelst et al., 2015, 2016b) or

thermal emitted radiance fluxes (Prikaziuk and Van der Tol, 2019). GPP

sensitivity to vegetation and soil traits was addressed by Wolanin et al. (2019),

however, meteorological inputs were not considered and 𝑉 𝑐𝑚𝑎𝑥25 was

parametrized as a function of leaf chlorophyll content (𝐶𝑎𝑏), resulting in the

overestimation of 𝐶𝑎𝑏 importance for GPP, compared to Koffi et al. (2015).

GSA for total (sum of soil and vegetation components) net radiation and 𝜆E

was conducted by Jin et al. (2019b), also considering a limited number of input

parameters. Therefore, in our study GSA target variables were canopy

photosynthesis (GPP) and both total and individual component (soil,

vegetation canopy) energy balance fluxes (𝜆E, H, G and net radiation (Rn)).

We varied optical, biochemical and meteorological parameters of the original

SCOPE model; details of the GSA setup can be found in Prikaziuk and Van der

Tol (2019). Briefly, the Sobol’ method from SALib Python package was used

for 32 input parameters and after 600,000 model runs first and total order

sensitivity indices were calculated for target fluxes.

In contrast to GSA, LSA changes one value per run (thus does not take parameter

interaction into account) but shows the direction and magnitude of a target

variable change. A published LSA of SCOPE for GPP used a fixed air temperature
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Koffi et al. (2015). Duffour et al. (2015) conducted LSA for energy balance fluxes

varying only biochemical variables (𝑉 𝑐𝑚𝑎𝑥25 and the stomatal marginal water

cost of carbon assimilation); the results were presented in terms of RMSE and

bias, which is rather case specific than general. LSA conducted in the present

work demonstrates the effect of temperature correction option of SCOPE on

GPP, 𝜆E and H and the maximum possible simulated values of these parameters.

Parameters that showed GSA total sensitivity index values higher than 0.05 were

sampled within the same ranges as in GSA and used for LSA simulations. LSA

was run for eight LAI classes 0.1, 0.5, 1, 2, 3, 4, 5, 6 m2 m−2.

4.2.3 Parametrization of SCOPE

Apart from testing the overall performance of the SCOPE model, we were

specifically interested in the contribution of various model inputs to the

explanation of the variability in measured fluxes. The configuration of SCOPE

model options is presented in Table 4.7, fixed input parameters are given in

Table 4.8, eddy-covariance site-specific parameters are listed in Table 4.6, and

plant functional type specific biochemical parameters can be found in Table 4.1.

Site-specific LAI and meteorological variables from Table 4.2 varied daily per

site. Below we list the sources of data and motivate our choice.

Vegetation structure

A number of polar orbiting satellites provide global coverage at nearly daily

temporal resolution, such that multiple cloud-free images of the area of interest

per year are available almost everywhere. This allows for the retrieval of time

series of vegetation traits - LAI and leaf chlorophyll content (𝐶𝑎𝑏) - with

numerical, physical or hybrid approaches (Verrelst et al., 2018). Such time

series carry uncertainty in representativeness due to varying viewing geometry

among images, varying atmospheric conditions, and differences in pixel
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geo-location among orbits (Prikaziuk et al., 2021). As a result, additional filters

and quality control metrics are required to obtain a realistic time series of

retrieved surface properties.

In order to utilize the consistency of the radiative transfer and energy balance

routines, we preferred retrieving LAI from top of atmosphere (TOA) Sentinel-3

data over using the available level-3 LAI products. There are several reasons to do

so. First of all, the products differ from each other spatially and temporally (Fang

et al., 2013; Jiang et al., 2017), which seriously affects simulated fluxes (Liu et al.,

2018). Secondly, most of the products distribute the true (clump-corrected) LAI,

whereas the effective (optical) LAI may be more suitable for SCOPE, because

clumping has not been introduced in the model yet. Finally, when the retrieval

is performed from top of atmosphere (TOA) data, the uncertainties of the joint

atmospheric and land surface characterization may be reduced (Bayat et al.,

2020; Mousivand et al., 2014; Yang et al., 2020b).

Sentinel-3 Ocean and Land Color Instrument (OLCI) full resolution level-1

product was downloaded from Copernicus Open Access Hub (Open Access

Hub). Data from the first publicly available images from May 2016 to

December 2018 (validation data availability) were used. Nearest pixel time

series were prepared with ESA SNAP software and manual distance control

described in Prikaziuk et al. (2021). The newly-developed LAI retrieval

algorithm from TOA data with SPART model was used (Yang et al., 2020b,

2021b). A 60-day moving average was applied to the time series to reduce the

remaining noise (Fig. 4.11). 𝐶𝑎𝑏 retrieval was not reliable at low values of LAI,

therefore 𝐶𝑎𝑏 values were fixed to 40 𝜇g cm−2 throughout the simulations.

Vegetation functioning

In contrast to structural vegetation traits, functional parameters, maximum

carboxylation capacity of rubisco (𝑉 𝑐𝑚𝑎𝑥25) and the Ball-Berry stomatal
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parameter (BallBerrySlope), do not have specific spectral signatures and cannot

be directly retrieved from optical remote sensing. There are, however, various

empirical parametrization schemes that can be applied.

In some studies 𝑉 𝑐𝑚𝑎𝑥25 was estimated from solar-induced chlorophyll

fluorescence (SIF) (He et al., 2019; Zhang et al., 2014), but this research is still

in an early stage and SIF data are not available at the spatial resolution of

Sentinel-3 data. However, the upcoming ESA FLEX mission, designed for SIF

estimation in tandem with Sentinel-3 (Drusch et al., 2017), may be used in

addition in the future. 𝑉 𝑐𝑚𝑎𝑥25 can be calculated with empirical formula from

leaf chlorophyll content (Luo et al., 2019) or canopy chlorophyll content

expressed in MERIS terestrial chlorophyll index (MTCI) (Alton, 2017). Again,

Sentinel-3 OLCI level-2 OTCI product is the successor of MTCI

(Pastor-Guzman et al., 2020). Thermal domain data, such as land surface

temperature, were theoretically found to be useful for 𝑉 𝑐𝑚𝑎𝑥25 retrieval, but in

practice we were not able to achieve the acceptable quality of such retrievals

(Prikaziuk and Van der Tol, 2019).

For lack of a universal, quantitative understanding of the relation of 𝑉 𝑐𝑚𝑎𝑥25

with remotely sensed indicators, the usage of a single value of 𝑉 𝑐𝑚𝑎𝑥25 per

plant functional type (PFT) remains the most popular way of the ecosystem flux

model parametrization. Common 𝑉 𝑐𝑚𝑎𝑥25 per PFT data sources are the TRY

database (Kattge et al., 2009) and Groenendijk et al. (2011). In addition to mean

𝑉 𝑐𝑚𝑎𝑥25 per PFT Groenendijk et al. (2011) report climate dependent 𝑉 𝑐𝑚𝑎𝑥25

(Table 4.6) and 𝜆 parameter (the marginal water cost of carboxylation) that

can be converted to SCOPE BallBerrySlope (Equation 4.7). Recently, Norton

et al. (2019) coupled SCOPE with BETHY and optimized values of 𝑉 𝑐𝑚𝑎𝑥25.

We evaluated the effect of choice of the source of 𝑉 𝑐𝑚𝑎𝑥25 alternative to the

default SCOPE value of 60 𝜇mol CO2 m
−2 s−1 (Table 4.1).
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Table 4.1: 𝑉 𝑐𝑚𝑎𝑥25 and BallBerrySlope values used for simulations. Default SCOPE plant
functional type (PFT) independent values (default), and values from Groenendijk et al. (2011)
(table 3 therein), Kattge et al. (2009) (table 3) and (Norton et al., 2019) (table A1). Details on
calculation of BallBerrySlope (SCOPE) from the marginal water cost of evaporation 𝜆 used by
Groenendijk et al. (2011) are presented in Appendix 4.6.1. Values with asterisk were taken from
analogous ecosystems.

𝑉 𝑐𝑚𝑎𝑥25 𝜇mol CO2 m−2 s−1 BallBerrySlope

PFT default
Groenendijk

mean Kattge
Norton
(Prior)

Norton
(Posterior) default

Groenendijk
mean

CRO 60 48.6 100.7 117 130 8 7.6

GRA 60 43.3 78.2 42 101.6 8 12.7

SAV 60 18 41* 20* 20* 8 13.8

ENF 60 27.7 62.5 29 54.1 8 11.6

MF 60 36.4 60* 53 73.5 8 8.3

DBF 60 30.9 57.7 35 81.6 8 7.6

Recent studies demonstrated that the ecosystem flux of CO2 is simulated more

accurately when 𝑉 𝑐𝑚𝑎𝑥 values vary seasonally (Luo et al., 2018; Ryu et al.,

2011; Wang et al., 2019). We scaled 𝑉 𝑐𝑚𝑎𝑥 based on LAI so that the average

seasonal value equals to the value in Table 4.1 (i.e. to 𝑉 𝑐𝑚𝑎𝑥25) (Luo et al.,

2018; Ryu et al., 2011):

𝑉 𝑐𝑚𝑎𝑥𝐿𝐴𝐼 = 0.3 · 𝑉 𝑐𝑚𝑎𝑥0 + 0.7 · 𝑉 𝑐𝑚𝑎𝑥0 ·
LAI− LAI𝑚𝑎𝑥

LAI𝑚𝑎𝑥 − LAI𝑚𝑖𝑛
(4.1)

𝑉 𝑐𝑚𝑎𝑥0 =
𝑉 𝑐𝑚𝑎𝑥25

mean(0.3 + 0.7 · LAI−LAI𝑚𝑎𝑥

LAI𝑚𝑎𝑥−LAI𝑚𝑖𝑛
)

(4.2)

Meteorological data

Accurate meteorological variables are crucial for flux simulations and global

climate reanalysis products serve this purpose. They are indispensable for global
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mapping since they are the only spatially continuous meteorological data source.

We compared runs with using locally measured meteorology at eddy covariance

stations (ec) versus runs using climate reanalysis meteorological forcing (era).

We used the global meteorological data distributed within the Drought-2018 flux

product. The values come from ERA5-Land hourly data from Copernicus Climate

Data Store (Muños Sabater, 2019). The dataset contains values of two types

- instantaneous (ready to use) and accumulations (difference with the previous

time step has to be taken to get daily cycle). The resulting hourly time series

are averaged to daily values. The native resolution of the datasets is 9 km by 9

km. The FLUXNET team conducts bias correction in order to better represent

tower-scale values (Vuichard and Papale, 2015) (Fig. 4.9). The correspondence

of SCOPE and ERA5 variable definitions is presented in Table 4.2.
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Table 4.2: Correspondence of SCOPE, eddy covariance and ERA variables. Notice that ERA variables expressed in J m-2 must be
divided by the number of seconds in the period to convert Joules to Watts: 3600 s for hourly, 86400 s for daily. satvap is a function

that calculates vapour pressure from temperature 𝑇 in ∘C 6.107 · 10
7.5·𝑇

237.3+𝑇 . SCOPE automatically converts vapour pressure deficit
(VPD) into atmospheric vapour pressure (ea) in timeseries run.

name SCOPE EC unit ERA unit

input parameters

incoming shortwave radiation 𝑅𝑖𝑛 SW IN F W m−2 ssrd J m−2

incoming longwave radiation 𝑅𝑙𝑖 LW IN F W m−2 strd J m−2

air temperature 𝑇𝑎 TA F ∘C t2m −273.15 K

atmospheric vapour pressure 𝑒𝑎 𝑠𝑎𝑡𝑣𝑎𝑝(TA F) - VPD F hPa 𝑠𝑎𝑡𝑣𝑎𝑝(d2m −273.15) K

air pressure 𝑝 PA F hPa sp · 0.01 Pa

wind speed 𝑢 WS F m s−1
√
𝑢102 + 𝑣102 m s−1

output parameters

outgoing shortwave radiation HemisOutShort SW OUT W m−2 ssr - ssrd J m−2

outgoing longwave radiation HemisOutLong LW OUT W m−2 str - ssrd J m−2

sensible heat flux Htot H F MDS (H CORR) W m−2 sshf J m−2

latent heat flux lEtot LE F MDS (LE CORR) W m−2 slhf J m−2

ground heat flux Gtot G F MDS W m−2 - -

photosynthesis Actot GPP NT VUT USTAR50 𝜇mol CO2 m−2 s−1 - -
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4.2.4 Validation data

The Drought-2018 eddy covariance flux product (Drought 2018 Team and ICOS

Ecosystem Thematic Centre, 2018) across Europe was used in this study as a

source of measured meteorological data (ec, era) and for the validation of the

accuracy of SCOPE-derived products. We selected sites for which ground heat

flux (G F MDS) and, consequently, corrected for energy balance closure latent

(LE CORR) and sensible (H CORR) heat flux were present, resulting in 23 out of

52 sites (Table 4.6). The variables used in this study for SCOPE parametrization

and validation are listed in Table 4.2.

Model performance indicators

We evaluated the accuracy of the simulated fluxes temporally and spatially. The

temporal comparison was conducted on daily data, the spatial comparison on

annual sums of data, representing 2.7 years. For the year 2016 only 8 month

were summed, because the first Sentinel-3 images became available in May 2016.

The fluxes were evaluated in terms of the coefficient of determination (𝑅2) root-

mean-square error (RMSE) and bias (the mean of the difference between modelled

and measured flux).

4.3 Results

4.3.1 Sensitivity analyses

The global sensitivity analysis (GSA) comprised the meteorological drivers listed

in Table 4.2, as well as the parameters that can be retrieved from optical remote

sensing (LAI, 𝐶𝑎𝑏) and prior literature based inputs (𝑉 𝑐𝑚𝑎𝑥25, BallBerrySlope)

on simulated target fluxes (GPP, 𝐻, 𝜆E). Figure 4.1 shows the results of the

GSA for the parameters that met the total sensitivity index threshold of 0.05.
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Net radiation was primarily driven by shortwave (solar) irradiance (𝑅𝑖𝑛) but the

distribution of the net radiation over soil and vegetation canopy was strongly

affected by LAI, which was the most important parameter for explaining both

the net radiation and the sensible heat flux of the soil background (Fig. 4.1).

The H and 𝜆E flux of the canopy and the soil and canopy combined, were

sensitive to a larger number of parameters; structural parameters (𝐶𝑎𝑏 and

LAI), physiological parameters (𝑉 𝑐𝑚𝑎𝑥25 and BallBerrySlope), and

meteorological parameters (incoming longwave radiation (𝑅𝑙𝑖), air temperature

(𝑇𝑎) and relative humidity (𝑟𝐻)) showed similar values of the sensitivity indices

for those fluxes. The parameters BallBerrySlope and soil resistance to

evaporation (𝑟𝑠𝑠), which cannot be easily retrieved from satellite data, affected

canopy and soil 𝜆E, respectively.

Note that GSA accounts for variable interactions and it calculates the impact of

each individual variable of a complex model more precisely, but it neither reveals

the direction nor the magnitude of the target variable response to changes of

the input variable. The latter is demonstrated with the local sensitivity analysis

(LSA) for the most influential variables according to the GSA.
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Figure 4.1: Total sensitivity index values of global sensitivity analysis of ecosystem fluxes simulated
with SCOPE model. Subscripts: s - soil flux, c - canopy (vegetation) flux. Rn - net radiation, H
- sensible heat flux, 𝜆E - latent heat flux, G - ground (soil) heat flux, GPP - photosynthesis rate.
Color represents parameter group: leaf, canopy, aerodynamics, biochemical or environmental.
Red line denotes 0.05 significance threshold. Parameters: leaf - 𝐶𝑎𝑏 - leaf chlorophyll content;
canopy - LAI - leaf area index; aerodynamics - 𝑟𝑠𝑠 - soil resistance to evaporation, 𝑟𝑤𝑐 - within-
canopy aerodynamic resistance; biochemistry - Vcm - maximum caroxylation capacity at 25 ∘C
(𝑉 𝑐𝑚𝑎𝑥25), 𝐵𝐵𝑆 - Ball-Berry slope parameter (BallBerrySlope); environment - 𝑅𝑖𝑛 - incoming
shortwave radiation, 𝑅𝑙𝑖 - incoming longwave radiation, 𝑟𝐻 - relative humidity (the proxy of 𝑒𝑎),
𝑇𝑎 - air temperature, 𝑝 - atmospheric pressure, 𝑢 - wind speed.

Local sensitivity analysis

Figure 4.2 illustrates the sensitivity of GPP, 𝜆E and H to the most influential

biochemical (𝑉 𝑐𝑚𝑎𝑥25, BallBerrySlope) and environmental (𝑅𝑖𝑛, 𝑇𝑎) parameters

at various levels of the structural parameter (LAI). The responses of 𝜆E and GPP
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were similar, with the exception of air temperature. The temperature correction

of rate coefficients and 𝑉 𝑐𝑚𝑎𝑥25 led to a decrease in GPP and 𝜆E at high and

low air temperature, but the decrease in GPP was more pronounced.

The responses of 𝜆E and H were, as expected, opposite, with the exception of

Rin, whose increase led to the higher values of both 𝜆E and H.

Figure 4.2: Local sensitivity analysis (LSA) of SCOPE modelled fluxes at varying LAI levels
(legend). Top - gross primary productivity (GPP), middle - latent heat flux (𝜆E), bottom -
sensible heat flux (𝐻). 𝑉 𝑐𝑚𝑎𝑥25 - maximum caroxylation capacity at 25 ∘C, BallBerrySlope -
Ball-Berry slope parameter, 𝑅𝑖𝑛 - incoming shortwave radiation, 𝑇𝑎 - air temperature. For LSA
against other parameters with high GSA index values see Figure 4.7

Figure 4.7 shows the sensitivity of fluxes the other parameters: leaf chlorophyll

content (𝐶𝑎𝑏), soil resistance to evaporation (𝑟𝑠𝑠) and meteorological wind speed

(𝑢), incoming longwave radiation (𝑅𝑙𝑖) and actual vapour pressure (𝑒𝑎). Because

in SCOPE, 𝐶𝑎𝑏 is decoupled from photosynthesis parameters by default, the

fluxes saturate with 𝐶𝑎𝑏 above the value of 10 𝜇g cm−2. We therefore kept this

input fixed throughout the simulations. We note that we did not use 𝐶𝑎𝑏 as a

proxy for 𝑉 𝑐𝑚𝑎𝑥25 in the model. The parabolic responses of 𝜆E and H to 𝑒𝑎

104



Chapter 4

peak at the default value of ea of 15 hPa (64% relative humidity at 20∘C).

4.3.2 Model evaluation against Eddy Covariance data

Daily averages performance

Figures 4.3 and 4.4 and Table 4.3 present the comparison of daily simulated

GPP, Rn, 𝜆E and H to eddy covariance measurements for herbaceous and woody

ecosystems, respectively. For these simulations SCOPE was parametrized with

mean per PFT 𝑉 𝑐𝑚𝑎𝑥25 and BallBerySlope from Groenendijk et al. (2011) and

meteorological data measured at eddy covariance tower, because this source of

PFT-dependent data performed the best on annual scale (see the next section).
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Figure 4.3: Mean seasonal cycles of GPP, Rn, 𝜆E, H simulated with SCOPE model parametrized
with eddy covariance meteorological data for herbaceous ecosystems. Blue - eddy covariance data,
orange - simulation with static 𝑉 𝑐𝑚𝑎𝑥25, green - simulation with seasonally varying 𝑉 𝑐𝑚𝑎𝑥𝐿𝐴𝐼 .
The metrics were computed on the all available daily points, not means.
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Figure 4.4: Mean seasonal cycles of GPP, Rn, 𝜆E, H simulated with SCOPE model parametrized
with eddy covariance meteorological data for woody ecosystems. Blue - eddy covariance data,
orange - simulation with static 𝑉 𝑐𝑚𝑎𝑥25, green - simulation with seasonally varying 𝑉 𝑐𝑚𝑎𝑥𝐿𝐴𝐼 .
The metrics were computed on the all available daily points, not means.
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Table 4.3: Performance metrics of SCOPE-simulated daily GPP, Rn, 𝜆E, H. SCOPE was
parametrized with daily average eddy covariance meteorological data and default or Groenendijk
PFT-mean values (see Table 4.1): 𝑉 𝑐𝑚𝑎𝑥25 - simulation with static 𝑉 𝑐𝑚𝑎𝑥, 𝑉 𝑐𝑚𝑎𝑥𝐿𝐴𝐼 -
simulation with seasonally varying 𝑉 𝑐𝑚𝑎𝑥. PFT names in bold denote the cases when the
default parametrization was outperformed (𝑅𝑛 was not marked).

flux PFT R2 RMSE bias

default 𝑉 𝑐𝑚𝑎𝑥25 𝑉 𝑐𝑚𝑎𝑥𝐿𝐴𝐼 default 𝑉 𝑐𝑚𝑎𝑥25 𝑉 𝑐𝑚𝑎𝑥𝐿𝐴𝐼 default 𝑉 𝑐𝑚𝑎𝑥25 𝑉 𝑐𝑚𝑎𝑥𝐿𝐴𝐼

GPP CRO 0.68 0.69 0.74 3.0 2.9 2.9 1.1 0.5 1.1

GRA 0.69 0.69 0.69 2.7 2.4 2.9 0.9 0.0 0.8

SAV 0.76 0.68 0.67 1.2 2.0 1.7 0.6 -1.3 -1.2

ENF 0.73 0.70 0.68 2.3 2.5 2.6 0.0 -1.3 -0.7

MF 0.79 0.78 0.75 2.4 2.1 2.5 0.5 -0.8 -0.2

DBF 0.76 0.77 0.76 3.2 3.2 2.9 0.9 -1.1 -0.3

Rn CRO 0.96 0.96 0.96 20.6 20.4 20.6 11.5 11.4 11.6

GRA 0.96 0.96 0.96 25.2 25.7 26.0 18.8 19.3 19.6

SAV 0.98 0.98 0.98 10.3 10.3 10.3 6.9 6.8 6.8

ENF 0.97 0.97 0.97 13.8 13.8 13.8 -1.1 -1.0 -0.9

MF 0.97 0.97 0.97 13.3 13.2 13.4 5.3 5.1 5.3

DBF 0.87 0.87 0.87 34.7 34.3 34.3 13.7 13.5 13.4

𝜆E CRO 0.69 0.69 0.71 23.8 21.4 23.1 10.6 8.2 10.1

GRA 0.72 0.71 0.75 22.7 24.8 25.5 -4.7 0.7 4.0

SAV 0.20 0.16 0.20 50.6 49.4 47.9 30.2 26.9 27.3

ENF 0.61 0.60 0.60 27.0 29.0 33.6 4.4 5.7 8.9

MF 0.81 0.81 0.81 21.7 17.7 21.2 7.8 3.9 6.5

DBF 0.66 0.66 0.65 30.6 23.6 26.3 9.3 1.0 4.1

H CRO 0.31 0.32 0.34 36.9 39.0 36.3 18.7 21.0 19.3

GRA 0.47 0.47 0.43 44.3 39.5 36.6 33.8 28.9 25.8

SAV 0.14 0.13 0.18 39.8 41.0 38.5 -4.7 -1.6 -1.9

ENF 0.50 0.48 0.41 33.8 34.3 35.3 10.5 9.3 6.2

MF 0.54 0.59 0.55 33.3 34.8 33.6 17.0 20.6 18.4

DBF 0.42 0.45 0.44 40.7 48.0 44.3 21.4 29.1 26.1

The GPP flux and its standard deviation matched well, exhibiting high correlation

and low RMSE and bias. However, there were some discrepancies in capturing

the specific seasonal cycle patterns. The most striking mismatch was in the phase

and amplitude of the seasonal cycle for SAV, peaking later and at a higher flux

than measured. Furthermore, the onset of SCOPE-simulated GPP was a couple

of weeks earlier in the season than measured for DBF and somewhat later for

ENF and MF; the simulation of mid-summer dip for GRA was not captured well.
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The autumn decay of GPP in CRO, probably caused by harvesting, and in ENF

and MF was not captured. Comparing the input options (values for 𝑉 𝑐𝑚𝑎𝑥25),

it appears that the initial value of 𝑉 𝑐𝑚𝑎𝑥25 (orange line) was too low for SAV,

ENF and DBF and right for CRO, GRA and MF. The addition of LAI seasonality

to 𝑉 𝑐𝑚𝑎𝑥25 (green line) improved the simulations for SAV, ENF, DBF, whereas

for other ecosystems it led to the further overestimation of the flux.

Overall, simulated Rn matched well with observations. However, the

overestimation of Rn in summer for CRO, GRA and DBF is surprising, because

the representation of a canopy as a turbid medium is known to be more suitable

for herbaceous ecosystems (CRO, GRA). The amplitude and the pattern of the

simulated latent heat flux matched well with the measured flux for GRA, MF

and DBF. In CRO 𝜆E was overestimated at the second half of the season,

similarly to GPP, in ENF 𝜆E was overestimated at the peak of the season. SAV

𝜆E matched well at the beginning of the season during the humid period and

was largely overestimated during the dry period May-October (and

correspondingly, H underestimated). A modification of the SCOPE model for

drought-subjected ecosystems, by including the soil moisture- carboxylation

capacity feedback appears necessary, as suggested earlier (Bayat et al., 2018,

2019; Wang et al., 2021). The sensible heat flux was simulated with limited

success (R2 0.45): the overestimation was high at the beginning of the season

for GRA and ENF and at the peak of the season for CRO, MF and DBF.

Table 4.3 demonstrates the added value of PFT-specific 𝑉 𝑐𝑚𝑎𝑥25

parametrization compared to PFT-independent default SCOPE value. It can be

seen that for CRO, GRA, MF and DBF there is a certain improvement

(reduction of RMSE, minimization of the absolute value of bias) for both GPP

and 𝜆E flux. However, the default value of Vcmax = 60 𝜇mol CO2 m−2 s−1

appears more suitable for SCOPE simulation of GPP in SAV than the literature

value of 18 𝜇mol CO2 m−2 s−1, which was optimized to reproduce flux tower
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measurements (Table 4.1).

Annual sums performance

Figure 4.5 shows the spatial correlation of SCOPE simulated annual sums of

GPP and ET, parametrized with mean per PFT 𝑉 𝑐𝑚𝑎𝑥25 and BallBerySlope

from Groenendijk et al. (2011) and meteorological data measured at eddy

covariance tower (ec). The ecosystems form clusters that are especially well

seen in the GPP figure (top row) with SAV being the least productive (1000 g

C m−2 yr−1). Evapotranspiration (ET) clusters were determined mostly by air

temperature, resulting in a large overestimation of ET for sites in subtropical

Mediterranean climate (SAV and IT-SR2 ENF). The addition of LAI seasonality

to 𝑉 𝑐𝑚𝑎𝑥 reduced the bias and RMSE of GPP simulation, but increased them

for ET simulations. SCOPE-simulated values showed a higher coefficient of

determination when compared against ET flux corrected for the energy balance

closure error of the measurements (LE CORR).

Table 4.4 compares the alternative parametrization options. The RMSE and

bias acceptance thresholds were chosen as the metrics of the default SCOPE

parametrization: 283 g C m−2 yr−1 and 163 mm yr−1 for GPP and ET,

respectively. Surprisingly, the best performing case for annual GPP was the

default PFT-independent 𝑉 𝑐𝑚𝑎𝑥25 constant SCOPE parametrization. For ET

the performance was substantially worse for all input options but the use of

PFT dependent 𝑉 𝑐𝑚𝑎𝑥25 improved the model performance for annual ET.

Compared to using locally measured meteorology, the use of climate reanalysis

meteorological ERA5-land data did not worsen the simulations of GPP and even

improved them for ET. Among alternative 𝑉 𝑐𝑚𝑎𝑥25 sources the actual

measured 𝑉 𝑐𝑚𝑎𝑥25 values reported by Kattge et al. (2009) outperformed

BETHY-SCOPE model-fitted values of (Norton et al., 2019), however the GPP

bias was large. Interestingly, the runs on climate-dependent 𝑉 𝑐𝑚𝑎𝑥25 values
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from Groenendijk et al. (2011) led to lower accuracy than mean per PFT

𝑉 𝑐𝑚𝑎𝑥25 values from the same article.
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Figure 4.5: Performance metrics of SCOPE-simulated annual sums of GPP and ET (spatial
variability across sites). SCOPE was parametrized with daily average eddy covariance
meteorological data and Groenendijk PFT-mean values (see Table 4.1). Top row - GPP, middle
row - ET calculated from LE F MDS value, bottom row - ET calculated from LE CORR value.
Left column - simulations with static 𝑉 𝑐𝑚𝑎𝑥25 values, right column - simulations with seasonally
varying 𝑉 𝑐𝑚𝑎𝑥𝐿𝐴𝐼 .
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Table 4.4: The effect of various 𝑉 𝑐𝑚𝑎𝑥 and meteorological data sources on SCOPE-simulated
annual sums of GPP and ET. Number in bold represent the best case. Uncorrected ET flux
(LE F MDS) was used.

GPP g C m−2 yr−1 ET mm yr−1

R2 RMSE rRMSE bias R2 RMSE rRMSE bias

Vcmax static (𝑉 𝑐𝑚𝑎𝑥25)

default 0.75 283 0.16 166 0.32 163 0.42 92

Groenendijk mean ec 0.68 364 0.20 -263 0.40 146 0.37 81

Groenendijk mean era 0.68 362 0.20 -260 0.46 139 0.36 77

Groenendijk climate 0.39 470 0.26 -192 0.34 163 0.43 87

Kattge 0.66 367 0.20 207 0.35 156 0.40 95

Norton Prior 0.34 498 0.28 -233 0.26 134 0.35 47

Norton Posterior 0.50 543 0.30 216 0.37 149 0.38 95

Vcmax seasonal (𝑉 𝑐𝑚𝑎𝑥𝐿𝐴𝐼)

default 0.75 427 0.24 348 0.33 173 0.45 113

Groenendijk mean ec 0.67 285 0.16 -73 0.43 159 0.40 107

Groenendijk mean era 0.67 286 0.16 -72 0.49 150 0.38 102

Groenendijk climate 0.42 450 0.25 -11 0.37 176 0.46 112

Kattge 0.66 503 0.28 384 0.36 168 0.43 115

Norton Prior 0.38 449 0.25 -58 0.29 140 0.36 67

Norton Posterior 0.52 643 0.36 380 0.40 160 0.41 113

4.3.3 Scenario analysis

In order to show the individual contribution of input parameters to the

simulated flux we conducted a set of simulations described in Table 4.5 and

compared the predictions with the measured values at annual scale across sites.

The results are presented in Figure 4.6. The initial bench-marking “naive”

scenario was the run on the average meteorological data and average LAI. The

second step took the seasonality in one of the components (meteorology, LAI)

into account. In case of GPP flux the contribution of both components led to a

decrease in RMSE, more pronounced for meteorological input, implying its

higher importance. In case of the ET flux the inclusion of LAI dynamics led to
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lower R2, whereas meteorological input decreased RMSE slightly for the

uncorrected flux and substantially for the corrected flux. The next step

evaluated both predictors together and, as expected, resulted in higher

accuracy; for GPP the accuracy was, in fact, the highest achieved in this study;

this scenario corresponds to the “default” case (Table 4.4). The last step was

made from the default values of 𝑉 𝑐𝑚𝑎𝑥25 and BallBerrySlope (circle) to

PFT-dependent (triangle) ones, corresponding to “Groenendijk mean ec” case.

For GPP the accuracy decreased, whereas for ET the PFT-dependent values

performed better. The incorporation of 𝑉 𝑐𝑚𝑎𝑥25 seasonality (𝑉 𝑐𝑚𝑎𝑥𝐿𝐴𝐼 ,

shown with filled markers) led to the lower accuracy of ET and depended on the

initial 𝑉 𝑐𝑚𝑎𝑥25 value for GPP. For example, the default values of 𝑉 𝑐𝑚𝑎𝑥25

(hollow circle) led to the overestimation (positive bias) of accumulated GPP

flux and the LAI-driven seasonality (filled circle) led to the further

overestimation (+170 g C m−2 yr−1 to bias) due to higher 𝑉 𝑐𝑚𝑎𝑥25 at the pick

of the season. In contrast, the simulations with static “Groenendijk mean ec”

𝑉 𝑐𝑚𝑎𝑥25 (hollow triangle) underestimated (negative bias) annual GPP,

therefore an increased 𝑉 𝑐𝑚𝑎𝑥25 through LAI modulation (filled triangle)

reduced the absolute value of bias, improving the metrics. Theoretically, the top

performance one could achieve with the SCOPE on the selected eddy

covariance sites would be to fit 𝑉 𝑐𝑚𝑎𝑥25 and BallBerrySlope values to the

measured flux with the algorithm of Dutta et al. (2019).

Table 4.5: Scenario definitions.

scenario meteo LAI 𝑉 𝑐𝑚𝑎𝑥25

naive average average default

Meteo EC-measured average default

LAI average S3-retrieved default

LAI + Meteo EC-measured S3-retrieved default

LAI + Meteo + seasonality EC-measured S3-retrieved default 𝑉 𝑐𝑚𝑎𝑥𝐿𝐴𝐼

LAI + Meteo + PFT EC-measured S3-retrieved Groenendijk mean PFT-dependent

LAI + Meteo + PFT + seasonality EC-measured S3-retrieved Groenendijk mean 𝑉 𝑐𝑚𝑎𝑥𝐿𝐴𝐼
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Figure 4.6: Performance of SCOPE model in various scenarios in terms of R2 (x-axis) and RMSE
(y-axis) of annual accumulated GPP and ET flux (ET CORR - measured ET flux corrected for
energy balance closure, ET - measured, uncorrected). The best model (lowest RMSE, highest
R2) would be located in the bottom right corner. Scenario description can be found in table 4.5.
The exact values of bias can be found in Table 4.4.

4.4 Discussion

In this study we evaluated the performance of SCOPE model simulated carbon

and energy fluxes against 23 European eddy-covariance sites in 6 PFTs. We

searched for the most successful (in terms of R2, RMSE and bias) model

parametrization at daily and yearly scale, with the aim of obtaining a better
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understanding of the roles of remote sensing derived LAI and net radiation,

meteorological forcing and carboxylation capacity. The vegetation structure

parameter (LAI) and meteorological parameters were derived from Earth

observation data and we varied functional parameters 𝑉 𝑐𝑚𝑎𝑥 and

BallBerySlope according to the literature sources. The best performing

combination was the mean per PFT values reported by (Groenendijk et al.,

2011) with LAI-imposed seasonality: daily GPP R2=0.71, RMSE=2.7 g C m−2

d−1 and bias=-0.1 g C m−2 d−1, yearly sum GPP R2=0.67, RMSE=285 g C

m−2 yr−1 and bias=-73 g C m−2 yr−1, daily ET R2=0.61, RMSE=0.94 mm d−1

and bias=-0.03 mm d−1, yearly sum ET R2=0.43, RMSE=159 mm yr−1 and

bias=107 mm d−1.

Direct comparison of different models is complicated due to differences in

model architecture and the underlying assumptions, and in the spatial and

temporal resolutions of the input parameters. SCOPE is an energy balance

model for the soil and vegetation canopy that uses multilayer canopy

representation to upscale leaf level fluxes. In contrast to the Two Source

Energy Balance model (TSEB) (Kustas and Norman, 1999), SCOPE does not

use land surface temperature to determine leaf and soil temperatures, but tunes

them until the energy balance closes. In contrast to hydrological models,

SCOPE soil water balance is constrained only by energy availability, but not

water availability. Photosynthesis flux is simulated by Collatz et al. (1992) and

Collatz et al. (1991) modification of the classic Farquhar et al. (1980) model,

whereas Light Use Efficiency (LUE) model by Monteith (1972) is also widely

used for satellite products, for example by MODIS team (Running and Mu,

2019). Spatial resolution in this study was determined by the Sentinel-3 OLCI

pixel size with the nominal value of 300 m and the actual footprint of 700 m

(Prikaziuk et al., 2021), the temporal resolution was daily and annual.

Acknowledging the aforementioned concerns, we compare SCOPE performance
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metrics with the other models.

Boreal Ecosystem Productivity Simulator (BEPS) (Chen et al., 1999) simulations

for 2000-2005 have been compared to MODIS and 40 Eddy covariance sites earlier

(Zhang et al., 2012). The reported annual RMSE for MODIS was 457 g C m−2

yr−1 (R2=0.44), for BEPS 347 g C m−2 yr−1 (R2=0.68). 𝑉 𝑐𝑚𝑎𝑥25 values for this

study were taken from Kattge et al. (2009) and, indeed, the resulting metrics are

similar to SCOPE simulations with Kattge et al. (2009) values without seasonality

(Table 4.4).

Breathing Earth System Simulator (BESS) global maps for 2001-2015 have been

compared to 113 Eddy covariance sites, MODIS ET (Running et al., 2019) and

GPP (Running and Mu, 2019) products and benchmarked against Max-Planck

institute for biogeochemistry (MPG) GPP and ET products (Jung et al., 2011)

by Ryu et al. (2011). The overall 8-day metrics were very similar to the daily

values reported in our work: MODIS GPP R2=0.59, RMSE=2.86 g C m−2 d−1,

ET R2=0.52, RMSE=0.86 mm d−1, BESS GPP R2=0.67, RMSE=2.58 g C m−2

d−1, ET R2=0.62, RMSE=0.78 mm d−1. Mean annual sums of MODIS and BESS

data demonstrated negative bias (underestimation) of GPP of approximately -150

g C m−2 yr−1 (MODIS R2=0.57, BESS R2=0.52), whereas SCOPE simulations

of GPP were less biased and the coefficient of determination was higher. MODIS

and BESS also underestimated the ET flux by -70 mm yr−1 (MODIS R2=0.41,

BESS R2=0.51), whereas SCOPE largely overestimated it.

The advantage of SCOPE, BEPS and BESS is their independence from the

measured fluxes, i.e. the measured flux is not used for their calibration and can

safely be used for the validation of the simulated flux. The ability of SCOPE,

BEPS and BESS to use satellite data instead makes the models applicable at

larger scales. At the same time, all these models require more computational

time than statistical models, and prior knowledge of soil and vegetation
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parameters, the most important of which for the mentioned models is 𝑉 𝑐𝑚𝑎𝑥25

and the parameterization of stomata. A large number of studies acquired

𝑉 𝑐𝑚𝑎𝑥25 values from different sources: from leaf scale measurements (Kattge

et al., 2009), from solar-induced fluorescence (He et al., 2019), from thermal

radiance (Bayat et al., 2018; Pacheco-Labrador et al., 2019), from statistical

correlation with leaf chlorophyll content (Croft et al., 2017) and from measured

GPP flux (Alton, 2017). In this study we avoided the calibration of 𝑉 𝑐𝑚𝑎𝑥25 to

flux measurements, although the inversion framework to do so with SCOPE was

developed by Dutta et al. (2019).

Several studies have used solar-induced fluorescence (SIF) in addition to or

instead of the multi-spectral reflectance to estimate the GPP flux, and in a

recent study the possibility of the use of SIF for transpiration has been

investigated (Maes et al., 2020). Fluorescence originates from the light

harvesting complexes in plants (Mohammed et al., 2019). The measured signal

of SIF depends on illumination, absorption, the efficiencies of the subsequent

energy dissipation, and scattering in the canopy. This causes SIF to relate to

𝑉 𝑐𝑚𝑎𝑥25 (Zhang et al., 2014) and GPP (Guanter et al., 2014), but the slope

of GPP SIF relationship is PFT-dependent (Koffi et al., 2015),

structure-dependent (Migliavacca et al., 2017; Zhou et al., 2020) and

environment-dependent (Zhou et al., 2020). However, SIF data have a

substantially lower spatial or temporal resolution than reflectance data, and

most available products require temporal aggregation to reduce noise. The

validation of the SIF-derived maps of GPP against 91 eddy covariance sites (Li

and Xiao, 2019) resulted in lower RMSE 1.92 g C m−2 d−1 (R2=0.75) than the

one reported in this study. Although these SIF-GPP relations have been

calibrated to field measurements, such studies demonstrate that SIF can be

used to further constrain structural of photosynthetic parameters of SCOPE. At

field site level, half-hourly time series of hyperspectral optical reflectance data
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showed promising results for the GPP prediction with partial least squares

regression (PLSR) as well (Dechant et al., 2019). Again, a comparison of

performance is not fair, since a portion of the data was used for training.

This study was limited to daily and annual scales, the other time steps, i.e.

hourly, weekly and monthly, were not evaluated. The local sensitivity analysis

suggests that with the default parameterization the simulated GPP can reach

maximum the values of 20 𝜇mol m−2 s−1. Higher values of GPP can be achieved

by increasing 𝑉 𝑐𝑚𝑎𝑥25. Since SCOPE differentiates leaf illumination levels based

on leaf orientation classes, and due to the non-linear (saturating) relation of GPP

with illumination, higher values of 𝑉 𝑐𝑚𝑎𝑥25 may be needed for SCOPE than for

alternative models that operate the FvCB model at higher spatial (i.e. sun-shade

or big leaf) or temporal (hourly) levels of aggregation.

4.5 Conclusion

In this work we evaluated SCOPE-simulated carbon and energy fluxes across 23

European eddy covariance sites of 6 plant functional types (PFT) at daily and

yearly time steps. SCOPE was constrained with Sentinel-3 optical data and global

reanalysis ERA5-land meteorological data. Various literature values of maximum

carboxylation capacity (𝑉 𝑐𝑚𝑎𝑥) were tested in seasonally constant and seasonally

dynamic cases. We conclude that SCOPE with default parameterization, and

input from climate reanalysis data, and Sentinel-3 retrieved LAI reproduces flux

tower derived ecosystem fluxes with an accuracy similar to other land surface

models. This holds for both seasonal cycles and for the variability among sites.

Additional input of PFT specific 𝑉 𝑐𝑚𝑎𝑥25 Groenendijk et al. (2011) results in

a minor improvement, and a leaf-area-index-based seasonally varying 𝑉 𝑐𝑚𝑎𝑥25

values further improve daily gross primary productivity (GPP) simulations in forest

but not in herbaceous ecosystems, resulting in the overall reduction of bias at

119



Multi-site Validation of Daily SCOPE-Model-Simulated Carbon and Energy Fluxes

annual scale. Evapotranspiration (ET) flux, in contrast, was simulated more

accurately with seasonally constant 𝑉 𝑐𝑚𝑎𝑥25. The study further suggests that

most improvement can be expected from including a satellite derived constraint

on water limited fluxes in the model.

4.6 Appendix

4.6.1 𝜆 to Ball-Berry slope conversion

We connected the Groenendijk’s model parameter 𝜆 to SCOPE Ball-Berry slope

parameter 𝑚 through the 𝐶𝑖/𝐶𝑠 ratio of internal leaf CO2 concentration (𝐶𝑖) to

atmospheric CO2 concentration (𝐶𝑠) as:

𝑚 =
1.6

𝑅𝐻
·

√︃
𝜆 · 𝐶2

𝑠

1.6 ·𝐷 · (𝐶𝑠 − Γ)
, (4.3)

where 𝑅𝐻 is the relative humidity, 𝐷 is the vapor pressure deficit at leaf surface

and Γ is the compensation mole fraction of CO2. We calculated 𝑅𝐻 from

VPD and air temperature (𝑇𝑎) using the Clausius–Clapeyron relationship. Γ was

calculated from Γ* as:

Γ =
Γ* · 𝑉 𝑐𝑚𝑎𝑥25 +𝑅𝑑 · 𝑘′

𝑉 𝑐𝑚𝑎𝑥25 −𝑅𝑑

𝑅𝑑 = 𝑅𝑑𝑝𝑎𝑟𝑎𝑚 · 𝑉 𝑐𝑚𝑎𝑥25

Γ =
Γ* +𝑅𝑑𝑝𝑎𝑟𝑎𝑚 · 𝑘′

1−𝑅𝑑𝑝𝑎𝑟𝑎𝑚
,

where 𝑅𝑑 is dark respiration, 𝑉 𝑐𝑚𝑎𝑥25 is the maximum carboxylation capacity

or rubisco, 𝑘′ is the Michaelis-Menten constant 𝑘′ = 𝐾𝑐 · (1 +𝑂/𝐾𝑜), and Γ* is

the compensation point in the absence of dark respiration.
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We followed Groenendijk’s values of 𝐾𝑐 = 460 𝜇bar, 𝐾𝑜 = 330 mbar, 𝑂 = 210

per mille, 𝑅𝑑𝑝𝑎𝑟𝑎𝑚 = 0.07 and the following calculation of Γ*:

Γ* = 0.5 ·𝐾𝑐 ·
𝑂

𝐾𝑜
· 𝑉𝑜𝑚
𝑉𝑐𝑚

𝑉𝑜𝑚
𝑉𝑐𝑚

= 0.21,

which led to Γ* = 3.0𝑒−5 𝜇bar, Γ = 8.8𝑒−5 𝜇bar, (𝐶𝑠 − Γ) = 3.1𝑒−4 𝜇bar.

Groenendijk et al. (2011) reported values the ratio of the derivatives of

transpiration (𝐸) to photosynthesis (𝐴) to stomata conductance (𝑔𝑠) as:

𝜆 =
𝜕𝐸/𝜕𝑔𝑠
𝜕𝐴/𝜕𝑔𝑠

(4.4)

And the 𝐶𝑖/𝐶𝑠 ratio through 𝜆 was introduced by Lloyd and Farquhar (1994)

(eq. 11 therein):

𝐶𝑖

𝐶𝑠
= 1−

√︃
1.6 ·𝐷 · (𝐶𝑠 − Γ)

𝜆 · 𝐶2
𝑠

, (4.5)

SCOPE calculates 𝐶𝑖/𝐶𝑠 using Ball-Berry𝑚, the slope of photosynthesis-stomata

conductance line:
𝐶𝑖

𝐶𝑠
= 1− 1.6

𝑚 ·𝑅𝐻
, (4.6)

where 1.6 a diffusion conversion factor.

Eq. (4.6) can be drown from

𝑔𝑠 = 𝑚 · 𝐴 ·𝑅𝐻
𝐶𝑠

+ 𝑏, (4.7)

where 𝑔𝑠 - stomata conductance, 𝑚 - Ball-Berry slope, 𝐴 - photosynthesis, 𝑅𝐻 -

relative humidity, 𝐶𝑠 - atmospheric 𝐶𝑂2 concentration, 𝑏 - Ball-Berry intercept.

At equilibrium 𝑏 = 0, 𝐴 = 𝑔𝑠 · (𝐶𝑠 − 𝐶𝑖) and we can substitute 𝐴 in Eq. (4.7),
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which after some rearrangements results in Eq. (4.6).
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4.6.2 Figures

Figure 4.7: Local sensitivity analysis of SCOPE modelled fluxes at varying LAI levels (legend).
Top - gross primary productivity (GPP), middle - latent heat flux (𝜆E), bottom - sensible heat
flux (𝐻). 𝐶𝑎𝑏 - leaf chlorophyll content, 𝑟𝑠𝑠 - soil resistance to evaporation, 𝑢 - wind speed, 𝑅𝑙𝑖
- incoming longwave radiation, 𝑒𝑎 - atmospheric vapour pressure.
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Figure 4.8: Comparison of meteorological data extracted with the nearest neighbor method from
ERA5 land data (x-axis) and ERA data in the FLUXNET products (y-axis).

Figure 4.9: Comparison of meteorological data measured at the tower (x-axis) and ERA reanalysis
data from the FLUXNET products (y-axis).
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Figure 4.10: Comparison of meteorological data measured at the tower (x-axis) and extracted
with the nearest neighbor method from ERA5 land data (y-axis).

Figure 4.11: Mean seasonal cycles of leaf area index values retrieved from top of atmosphere
Sentinel-3 OLCI data used in the simulations.
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4.6.3 Eddy Covariance sites

Table 4.6: Eddy covariance sites from Drought-2018 eddy covariance flux product dataset
(Drought 2018 Team and ICOS Ecosystem Thematic Centre, 2018) participated in this study.
Vcmax25 and BallBerrySlope values are climate-dependent from Table 4 in Groenendijk et al.
(2011). z - measurement height [m], hc - canopy height [m], star denotes guessed hc, tz - time
zone in relation to UTC. Climate classification: TE - temperate, TC - continental, BO - boreal,
SM - subtropical Mediterranean.

.
PFT site code lat lon z hc tz days site years climate Vcmax25 BallBerrySlope

CRO
BE-Lon 50.55 4.75 2.7 1* 1 789 2.2 TE 75.5 7.2

DE-Geb 51.1 10.91 2 1* 1 975 2.7 TC 75.5 7.2

GRA

DE-Gri 50.95 13.51 3 0.21 1 975 2.7 TC 45 12.9

DE-RuR 50.62 6.3 2 1* 1 766 2.1 TC 45 12.9

IT-Tor 45.84 7.58 2 1* 1 975 2.7 BO 45 12.9

SAV

ES-Abr 38.7 -6.79 15 8* 1 975 2.7 SM 23.3 12.2

ES-LM1 39.94 -5.78 15 8 1 975 2.7 SM 23.3 12.2

ES-LM2 39.93 -5.78 15 8 1 975 2.7 SM 23.3 12.2

ENF

CZ-RAJ 49.44 16.7 25.5 17* 1 975 2.7 TC 30.3 9.5

DE-Obe 50.79 13.72 25.5 17* 1 746 2 TC 30.3 9.5

DE-Tha 50.96 13.57 26.5 18.6* 1 972 2.7 TC 30.3 9.5

FI-Hyy 61.85 24.29 23.3 14 2 728 2 BO 23.7 12.5

FI-Var 67.75 29.61 15 8 2 728 2 BO 23.7 12.5

FR-Bil 44.49 -0.96 23.3 14* 1 975 2.7 TE 30.6 6.1

IT-SR2 43.73 10.29 23.3 14* 1 975 2.7 SM 27.4 12.6

RU-Fy2 56.45 32.9 29 27.4 4 975 2.7 TC 30.3 9.5

RU-Fyo 56.46 32.92 29 27.4 4 730 2 TC 30.3 9.5

MF
BE-Bra 51.31 4.52 12 8 1 975 2.7 TE 40.5 4.4

BE-Vie 50.3 6 40 33 1 608 1.7 TC 35.7 11

DBF

DE-Hai 51.08 10.45 22 13* 1 975 2.7 TC 61.7 10.4

DE-HoH 52.09 11.22 22 13* 1 975 2.7 TC 61.7 10.4

DK-Sor 55.49 11.64 30 10* 1 587 1.6 TC 61.7 10.4

FR-Hes 48.67 7.06 22 13 1 975 2.7 TE 40.8 8.5
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4.6.4 SCOPE parametrization

Table 4.7: SCOPE options configuration

state name meaning

0 lite full SCOPE model is used

0 calc fluor fluorescence is not calculated

0 calc planck termal spectrum for each wavelength is not calculated

1 calc xanthophyllabs xanthophyll absorption is calculated

0 soilspectrum soil reflectance is taken from file

0 Fluorescence model biochemical model of Van der Tol Berry is used

1 applTcorr temperature correction is applied

0 verify output is not compared

1 saveCSV output is saved as .csv files

0 mSCOPE mSCOPE is not used

1 simulation time-series simulations

0 calc directional directional output is not computed

0 calc vert profiles vertical profiles are not computed

2 soil heat method ground heat flux 35% of soil net radiation [set to 0% for daily]

0 calc rss rbs rss and rbs are fixed

1 MoninObukhov Monin-Obukhov atmospheric stability correction is applied

0 save spectral spectral files are not saved
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Table 4.8: SCOPE fixed input parameters.

parameter name value units meaning
𝐶𝑎𝑏 40 𝜇g cm−2 leaf chlorophyll content
𝐶𝑐𝑎 10 𝜇g cm−2 leaf carotenoid content
𝐶𝑑𝑚 0.012 g cm−2 leaf mass per area (dry matter)
𝐶𝑤 0.009 cm equivalent leaf water thickness
𝐶𝑠 0 - senescent material (brown pigments)
𝐶𝑎𝑛𝑡 1 𝜇g cm−2 leaf anthocyanin content
𝐶𝑝 0 𝜇g cm−2 leaf protein content
𝐶𝑏𝑐 0 𝜇g cm−2 leaf brown pigment content
𝑁 1.5 - mesophyll structure parameter
𝜌𝑡ℎ𝑒𝑟𝑚𝑎𝑙 0.01 - leaf thermal reflectance
𝜏𝑡ℎ𝑒𝑟𝑚𝑎𝑙 0.01 - leaf thermal transmittance
BallBerry0 0.01 - intercept of Ball-Berry equation
Type 0 - photochemical pathway (0 - C3, 1-C4)
𝑘𝑉 0.64 - Vcmax canopy extinction coefficient
𝑅𝑑𝑝𝑎𝑟𝑎𝑚 0 - leaf respiration parameter
𝐾𝑛0 2.48
𝐾𝑛𝛼 2.83
𝐾𝑛𝛽 0.114
spectrum 1 # column number of soil spectrum used
𝑟𝑠𝑠 500 s m−1 soil resistance to evaporation
𝜌𝑠𝑡ℎ𝑒𝑟𝑚𝑎𝑙

0.06 - soil thermal reflectance
𝐿𝐼𝐷𝐹𝑎 -0.35 - leaf inclination distribution function parameter a
𝐿𝐼𝐷𝐹𝑏 -0.15 - leaf inclination distribution function parameter b
leafwidth 0.1 m leaf width
𝐶𝑎 410 ppm atmospheric CO2 concentration
𝑂𝑎 209 per mille atmospheric O2 concentration
𝑧0 0.25 m canopy roughness length
𝑑 1.34 m displacement height
𝐶𝑑 0.3 - leaf drag coefficient
𝑟𝑏 10 s m−1 leaf boundary resistance
𝐶𝑅 0.35 - drag coefficient for isolated tree
𝐶𝐷1 20.6 - fitting parameter
Ψ𝑐𝑜𝑟 0.2 - roughness layer correction
𝐶𝑆𝑆𝑂𝐼𝐿 0.01 - drag coefficient for soil
𝑟𝑏𝑠 10 s m−1 soil boundary layer resistance
𝑟𝑤𝑐 0 s m−1 within canopy layer resistance
𝜃𝑜 0 ∘ observation zenith angle
𝜓 0 ∘ relative azimuth angle
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Chapter 5 SCOPE Model Usage for

Potato Productivity

Monitoring under Different

Fertilization

This chapter will be submitted as:

Prikaziuk, E., Ntakos, G., Ten Den, T., Reidsma, P., Van der Wal, T., and Van
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Abstract

Remote sensing is widely used in agriculture. However, the applications are

mostly limited to multispectral imaging. When hyperspectral data is used,

dimensionality reduction methods are often applied. In this study we

demonstrate how hyperspectral time series can be used with Soil Canopy

Observation, Photochemistry and Energy fluxes (SCOPE) model without

dimensionality reduction or training. The experiments were conducted in two

potato fields grown in the Netherlands in May-September 2019; within the

fields plots with 3 nitrogen and 2 water classes were prepared. Top of canopy

hyperspectral reflectance was used with SCOPE to retrieve plant traits, namely

Leaf Area Index (LAI) (RMSE=1.45 m2 m−2, R2=0.46), leaf chlorophyll

content (Cab) (RMSE=8.9 𝜇g cm−2, R2=0.57) and canopy water content

(CCw) (RMSE=0.024 cm, R2=0.48), which were used further within SCOPE

model for daily canopy CO2 assimilation (photosynthesis) rate estimation.

Potato yield, estimated as the accumulated CO2 flux, correlated with the

measured tuber dry weight with R2 0.44 and RMSE 1.7 t ha−1 (harvest index

0.58) in the one field and R2 0.58 and RMSE 2.3 t ha−1 (harvest index 0.70) in

the other field. This study suggests the data products, plant traits and

productivity, that can be estimated from hyperspectral reflectance with SCOPE

model and used for crop health assessment.
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5.1 Introduction

The monitoring of natural ecosystems, forests and grasslands aims at the

identification of long-term trends, abrupt changes (fires, deforestation) and

descriptive phenological metrics (start/end of the growing season, flowering).

The study of croplands as artificial ecosystems is characterized by shorter

timings (4-6 months) and different aims. In the course of several months any

stressors that limit crop productivity should be rapidly identified to enable

management interventions in response, hence enabling the crop to reach its

potential yield. In this respect, in agricultural monitoring plant traits such as

leaf area index (LAI), leaf chlorophyll content (Cab), etc., are seen as auxiliary

indicators of plant health and predictors of biomass and the final yield.

Many studies have reported the retrieval of traits for different crops including

maize (Cab, leaf and canopy water content Cw, CCw) (Strachan et al., 2002),

(Cab, LAI) (Liu et al., 2010) , wheat (Cab) (Tilling et al., 2007), potato (Cab,

LAI) (Botha et al., 2007; Roosjen et al., 2018), rice (Cab, LAI) (Song et al.,

2011), tomato (Cab) (Ihuoma and Madramootoo, 2020). In other studies, the

retrieval step is omitted and reflectance or reflectance indices are related directly

to biomass. Strong correlation between wet biomass and normalized difference

vegetation index (NDVI) has been shown for potato, soybean, sunflower, corn

and cotton (Thenkabail et al., 2000). Above ground biomass (AGB) has been

estimated in spinach (Corti et al., 2017), potato (Li et al., 2020) and maize (Ma

et al., 2020) with partial least square regression (PLSR) on hyperspectral data.

A process-based alternative to statistical methods is given by Monteith light use

efficiency model (Monteith, 1972), which estimates net primary productivity

(NPP) as the product of irradiance and a number of efficiency coefficients. All

organic compounds are synthesized though NPP: the total net assimilated

carbohydrates are partitioned into AGB and below ground biomass. Remote
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sensing can help estimate Monteith model coefficients: absorbed

photosynthetically active radiation (APAR) (Liu et al., 2010) and environmental

stress factors (Peng et al., 2021). In contrast to empirical relations between

biomass and traits or spectra that are crop and region-specific, process-based

models generalize our knowledge.

The Food and Agriculture Organization (FAO) approach of yield estimation is

based on the accumulated NPP correction by the means of crop-specific harvest

index (Blatchford et al., 2019). Such approach implies that a correlation between

NPP and yield exists.

This study explores the possibility of applying the Soil Canopy Observation,

Photochemistry and Energy fluxes (SCOPE) model (Van der Tol et al., 2009;

Yang et al., 2020a) for potato productivity and yield estimation. SCOPE

combines the simulation of radiative transfer and photosynthesis, thus making it

possible to retrieve traits and simulate productivity. The retrieval from

observations can give us an insight into the phenology (the seasonal cycle of the

traits LAI, Cab), while the photosynthesis simulation is a quantitative indicator

of plant productivity.

In the previous chapter we evaluated the ability of SCOPE to simulate fluxes

from remote sensing and climate data. In this chapter we take this a step

further, and evaluate whether we can detect the effects of treatments on both

vegetation properties such as LAI, and also on fluxes and eventually on crop

yields. The approach we take is thus the direct estimation of fluxes from

hyperspectral observations through an inversion of a physically based radiative

transfer model and a direct relation between cumulative fluxes and yield.
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5.2 Materials and methods

5.2.1 Study site

The study was conducted in two areas with a temperate climate and large scale

commercial crop production, notably the Flevoland polder area (near the city

of Lelystad) (52.54∘N, 5.55∘E) and the area of Vredepeel (51.54∘N, 5.86∘E) in

the Netherlands. The study period was from May to October 2019. Fields in

these two areas are used by commercial farmers mainly for potato production in

a rotation with other crops. Both fields belong to the Wageningen University &

Research (WUR). The field located near Lelystad is an experimental farm with

loam soil, while the Vredepeel field has loamy-sand soil. Both fields were used

for the “Potato Gap NL” project in 2019. In each field forty-two experimental

plots were prepared (Figure 5.1). The plot area was 9-by-12 m2 for the Lelystad

field and 6-by-21 m2 for the Vredepeel field.

In each location, three potato varieties were cultivated with one of them

(Fontane) being common in both the fields. In each field, all the varieties were

planted at the same time, regardless of their cultivation duration. Table 5.1

shows the labels and the amounts of the fertilizer and water used for each

treatment, variety and field. Three nitrogen and two water treatments were

combined, resulting in 6 cases per variety: N0W1, N0W2, N1W1, N1W2,

N2W1, N2W2. Both N0 treatments (W1 and W2) had one repetition, the rest

four N1 and N2 had 3 repetitions, resulting in 14 plots per variety, 42 randomly

located plots per field.
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Table 5.1: Nitrogen fertilization and irrigation amounts per field, variety and treatment. Overall
for each variety there were 6 treatments: N0W1, N0W2, N1W1, N1W2, N2W1, N2W2.

Treatment Unit
Lelystad Vredepeel
Fontane (R1) Markies (R2) Innovator (R3) Fontane (V1) Premiere (V2) Festien (V3)

N0
kg𝑁 ha−1

0 0 0 0 0 0
N1 85 85 85 75 75 75
N2 360 320 375 320 320 265
W1

l ha−1 427.5 427.5 427.5 791.7 791.7 791.7
W2 1643.5 1643.5 1643.5 1191.3 1191.3 1191.3

Figure 5.1: Plot distribution schemes. A - Lelystad, B - Vredepeel. The rectangular gaps inside
each plot - places of destructive sampling. For coding, please, refer to Table 5.1.
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5.2.2 Spectral data

The hyperspectral measurements were conducted with the ASD FieldSpec 4

standard resolution device (ASD FieldSpec 4 standard resolution) with 2 nm

spectral sampling interval (SSI) in visible-near-infrared (VNIR) and 10 nm SSI

in short-wave-infrared (SWIR). The device was fixed to a custom-made tool

with which each measurement was 1.5 m above ground, without shadow

interference from the user, pointing perpendicular to the ground (nadir) while

the white reference panel could move in and out of the sensor’s field of view

(Figure 5.2). In this way the measurements both from the crops and the white

reference panel were stable and the distance was fixed. Five radiance

measurements per plot were acquired at each measurement day. At the end of

each row (7 plots), bare soil reflectance was recorded.

Each measurement recorded in digital numbers (DNs) consisted of a triad:

white reference (WR1) - measurement (M) - white reference (WR2) to identify

unstable illumination conditions and estimate the irradiance measurement

during the upwelling radiance measurement by interpolation. In case of a

sudden change of illumination conditions, the measurement was taken again.

Each measurement was the average result of ten consecutive repetitions. The

optimization against white reference for illumination conditions was done when

illumination conditions changed significantly (saturation or dimming), at least

once per 3 plots. The white reference used for reflectance calculations (WR)

was an interpolation product of WR1 and WR2 at the time of M. The

reflectance (R) was calculated as R=M/WR.

The resulting reflectance contained two gaps at 1000 nm and 1800 nm due to

the ASD detector changes (VNIR to SWIR1, SWIR1 to SWIR2). The gaps were

removed following the splice correction equations in the ASD User Guide:

f1000=R1001-1×R1000-R999 and f1801=R1801-2×R1800-R1799. The atmospheric
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absorption windows (1350 - 1430 nm, 1800 – 1975 nm) and noisy band in the

SWIR region (2400 – 2500 nm) were removed.

Figure 5.2: The device for ASD measurements. The ASD is in the backpack, the controlling
laptop is on the belly (not shown), the upper horizontal bar (fixed) - ASD gun with pointing
fiber, the lower horizontal bar (mobile) - white reference spectralon panel.

5.2.3 Validation data

Measurements collected for each plot

The following measurements were taken in the field (in situ) for each plot.

Two optical LAI measurements were obtained for each plot with the LAI-2200

Plant Canopy Analyzer (LAI-2200 Plant Canopy Analyzer), following the standard

protocol written in the device manual. For all the measurements, the view cap

with the 45∘ field of view was used. First an “above the canopy” measurement

was taken followed by 4 “below the canopy” measurements. The measurement
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above the canopy was acquired by pointing the sensor away from the user and his

shadow, while keeping it from looking directly at the sun too. Then, immediately,

four consecutive measurements were acquired below the canopy, as close to the

soil as possible. The first measurement was taken in the middle of the row,

between two plants, the second - halfway between the first measurement and the

middle of the crop, the third - exactly at the middle of the crop and the last one

- at about the same distance from the middle as the second measurement but

on the opposite side. Since potatoes are planted in ridges, the sensor was always

leveled to the top of the ridge. All the measurements were acquired with the

sensor pointing perpendicular to the row and away from both the user and his

shadow.

Relative leaf chlorophyll content was measured with the MultispeQ-beta sensor

(MultispeQ), a handheld plant phenotyping device. The MultispeQ

measurements of Relative chlorophyll were reported (Relative Chlorophyll

Content Validation) to correlate with the common Chlorophyll Meter

SPAD-502+ (Chlorophyll Meter SPAD-502+). The MultispeQ device averages

measurements taken using progressively increasing light intensity while

measuring the relative transmissions of red and infrared light over an area of

1 cm2. The measurements were obtained from 5 random, fully sunlit leaves per

plot. Afterwards, a calibration curve was fit to translate a unitless relative

chlorophyll content (PS) to an actual laboratory-measured chlorophyll content

(Cab) expressed in 𝜇g cm−2: 𝐶𝑎𝑏 = 0.053 · 𝑃𝑆1.67 (Figure 5.10).

Final yield - dry mass of tubers per ground area - was measured at the end of

September: 25th in Vredepeel, 29th in Lelystad. The haulms of Markies, Festien

and Fontane L varieties were killed, the other varieties reached full senescence

earlier (Figure 5.3). The final harvest was collected from the area of 10-by-1.5 m2

in Lelystad and 9-by-1.5 m2 in Vredepeel. All tubers in this area were weighed.

A subsample of tubers was dried in the oven at 70∘C for 48 hours. Based on
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the difference in weight before and after drying the dry matter percentage of

the tubers was calculated. The dry matter percentage was then applied to the

total fresh yield to get the dry yield. Harvest index was measured during an

intermediate harvest at the beginning of August: 12th Vredepeel, 19th Lelystad.

12 plants were harvested. The aboveground biomass was weighed. After the

tubers were cleaned they were also weighed. The ratio of tuber fresh weight to

the sum of tuber fresh weight and aboveground biomas fresh weight gives the

harvest index.

Figure 5.3: Developmental stages of potato varieties participated in this study.

Measurements collected for 10 selected plots

The following measurements were carried out in the laboratory on samples

collected at 10 plots: 6 plots (one repetition of all treatments) of Fontane

variety and maximum (N2W2) and minimum (N0W1) treatment for the

remaining two varieties. Notice that potato leaves are compound, but the
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destructive measurements were conducted on leaflets (rachis was removed).

The leaves were transported from the field in sealed bags inside a cooler box

filled with refrigerants and stored in a fridge (+5∘C) until the day of analysis,

for a maximum of 2 days.

Leaf chlorophyll (Cab) and leaf carotenoid (Cca) contents were measured per

leaf area - 𝜇g cm−2. Three independent extractions per leaflet were conducted.

Before the extraction 3-5 PhotosynQ measurements were taken per leaf. The

extraction was done from 2-5 round leaf discs with the diameter of 0.9 cm

produced with a hole puncher. Pure acetone buffered with magnesium

hydrocarbonate Mg(HCO3)2 was used as a solvent. The leaf discs, frozen with

liquid nitrogen, were grinded with mortar and pestle. The mortar was flushed

with 2 ml of cold solvent 3 times, the tubes with the extract were sealed with

parafilm to prevent acetone evaporation. All operations were performed on ice

or refrigerant and the extracted samples were stored in the freezer (max. 2

hours) at -20∘C while other samples were prepared. The samples were

centrifuged for 2 minutes at 3000 rpm and the absorption (A) of supernatant

was measured with UV-6300PC spectrophotometer (UV-6300PC ) at 470, 645,

662, 710 nm. The measurement was qualified as good (quality) if A470 and A662

were in the range [0.3, 0.85]. The calculations of Cab and Cca per unit of

volume were done following Lichtenthaler and Buschmann (2001) and

transformed per unit of area using disc diameter and final volume of the

solution.

Leaf water content (Cw) and leaf dry matter content (Cdm) were measured per

leaflet area - g cm−2. Cw was further expressed in cm, taken that 1 g of water

occupies 1 cm3 of volume (water density is 1 g cm−3). Leaflet fresh weight

(FW) was measured immediately after the detachment from rachis. On most of

the measurements days the leaflet area (A) was measured with a portable leaf

area meter AM350 (AM350 portable leaf area meter), though on some days A
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was calculated from photographs with ImageJ v1.52a software (Schneider et al.,

2012). To exclude biases between the two approaches we regressed ImageJ-

derived area against AM350-derived area and used the predicted area in the

days when AM350 was not available (Figure 5.11). Before drying 3-5 PhotosynQ

measurements were conducted per leaflet. Leaflets were dried in the oven at 60∘C

for 48-72 hours, after which dry weight (DW) was measured. The equations for

Cw and Cdm are: Cdm = DW / A and CW = (FW - DW) / A.

5.2.4 SCOPE

The Soil Canopy Observation, Photochemistry and Energy fluxes (SCOPE)

model simulates radiative transfer in soil-leaf-canopy continuum and

photochemical processes at leaf and canopy scale (Van der Tol et al., 2009;

Yang et al., 2020a). For radiative transfer in the VNIR-SWIR domain (400-2400

nm) SCOPE combines Brightness-Shape-Moisture (BSM) soil module (Jiang

and Fang, 2019; Verhoef et al., 2018; Yang et al., 2020b), Fluspect leaf

reflectance-fluorescence module (Vilfan et al., 2016) and canopy radiative

transfer module (RTMo) (Verhoef, 1984; Verhoef, 1985), where leaf and

canopy can be described as turbid-medium (multilayer). Photochemical

processes at leaf level include fluorescence (Van der Tol et al., 2014) and CO2

assimilation coupled with stomata conductance (Collatz et al., 1992; Collatz

et al., 1991), which are upscaled to canopy level in accordance with a multilayer

representation described in (Van der Tol et al., 2009; Yang et al., 2020a).

SCOPE connects its radiative transfer and biochemical parts through absorbed

photochemically active radiation (APAR) and total absorbed radiation within

the vegetation canopy to obtain land-atmosphere fluxes of carbon, water and

energy.
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Retrieval

The retrieval of the radiative transfer parameters of the SCOPE submodels

BSM, Fluspect, RTMo was conducted with an iterative numerical optimization

(lsqnonlin() MATLAB R2019a (Matlab, 2019) function) in two steps. In the

first step soil parameters of the BSM model, namely brightness, BSM latitude,

BSM longitude, soil moisture content, were retrieved from the measured

hyperspectral bare soil reflectance to reduce the dimensionality of the retrieval

problem. Those parameters were fixed during the second step - numerical

optimization of recorded hyperspectral data of vegetation. The upper and lower

borders for parameter values can be found in Table 2.1 (Chapter 2). The details

of the minimization algorithm are given in Yang et al. (2020b). Median

root-mean-square error (RMSE) of the spectrum fitting was 0.007 (0.7%).

The accuracy of retrieval was compared to the field and laboratory

measurements described in the previous section. The accuracy metrics (R2,

RMSE, bias, rRMSE=RMSE/range, rbias=bias/range) were calculated per

variety per treatment, resulting in 18 points per measurement day. Canopy level

parameters were calculated as a product of leaf parameter and LAI.

Photosynthesis

Retrieved LAI and Cab time series were interpolated to daily values with loess()

method in R v 3.6.0 (r Core Team, 2019). At the emergence date, the values of

0 m2 m−2 and 0 𝜇g cm−2 were taken for LAI and Cab respectively.

Meteorological data input - wind speed and air temperature - were monitored

in the field, incoming shortwave radiation was obtained from the KNMI weather

stations in Lelystad and Volkel (Vredepeel). Daily averages were used (Figure

5.4).
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Leaf biochemical parameters - maximum carboxylation capacity (𝑉 𝑐𝑚𝑎𝑥25) and

slope of Ball-Berry stomata model - were set to 80 𝜇mol CO2 m−2 s−1 and 8,

respectively. The value of 𝑉 𝑐𝑚𝑎𝑥25 was chosen higher than the default SCOPE

value of 60 𝜇mol CO2 m
−2 s−1, because croplands are in general more productive

than other ecosystems (Kattge et al., 2009). The other SCOPE input parameters

were fixed at their default values, which can be found in Tables 2.2, 2.6 (Chapter

2).

The CO2 assimilation rate (Actot) calculated by SCOPE in 𝜇mol CO2 m−2 s−1

was used to represent total green net primary productivity (NPPgreen). According

to the definition, net primary productivity (NPP) is gross primary productivity

(GPP) minus autotrophic (plant) respiration. SCOPE has a respiration rate

fraction parameter (Rdparam) which defines the rate of leaf respiration only, i.e.

excluding the contribution of stem and root respiration. In this respect, SCOPE

is able to simulate GPP when the value of Rdparam is 0, or some intermediate

(in between GPP and NPP) metric if Rdparam is at its default value of 0.015.

This intermediate metric is hereon termed as NPPgreen.

In this study the step from NPPgreen to NPP is not explicitly made, but the

yield is estimated directly from NPPgreen. To validate the simulation with the

final yield, which is expressed in kg ha−1, we converted NPPgreen to green dry

matter productivity (DMPgreen) in accordance with

𝐷𝑀𝑃 (kg ha−1) = 𝑁𝑃𝑃 (gC m−2)/0.045 (Blatchford et al., 2019) (equation

4 therein). Further translation of DMP to yield (tubers dry weight) was based

on equation 5 from Blatchford et al. (2019): 𝑦𝑖𝑒𝑙𝑑 = 𝑓 · 𝐻𝐼 · 𝐷𝑀𝑃/(1 − 𝜃),

where f - fraction of above ground biomass (0.2 for potato), HI - harvest index,

𝜃 - tuber moisture content (0.8 for potato). Although the values of harvest

index are empirical, ranging from 0.6 to 0.8 depending on the potato variety,

the approach is, nevertheless, suitable to investigate the possibility of observing

relative differences in crop yield due to treatments using hyperspectral
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reflectance measurements. As an additional step, we also estimated a

SCOPE-based HI per variety by fitting linear model without an intercept for

each variable separately and further analyzed the quality of fitting using that HI.

Figure 5.4: Measurement days and meteorological conditions over the growing season. TP -
total precipitation (blue bars, left y-axis), SW in - incoming shortwave radiation (black line, right
y-axis). Red vertical lines denote the data collection days, the numbers above them - day of the
month.
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5.3 Results

5.3.1 Measurements

Seasonal averages

The ranges of measured parameters presented in Table 5.2 help us understand

how the treatments affected the seasonal means of parameters. Water

treatments did not affect any parameter (Table 5.5), therefore we discuss only

nitrogen treatments further, thus reducing the number of treatments from six

to three. The values averaged per nitrogen class and the corresponding

distinguished classes by pairwise Wilcoxon test are presented in Table 5.6. All

measured parameters were significantly different between the high nitrogen

(N2) and other nitrogen classes (N0, N1), however, only canopy-level traits,

LAI, canopy chlorophyll content (the product of LAI and the Photosynq-derived

leaf chorophyll content Cab=f(PS)) and canopy water content (CCw) were

different between all three nitrogen classes. Nonetheless, when the two sites

were considered separately, the results were different. In Vredepeel N0 and N1

did not exhibit statistically different LAI or canopy traits. Classification by LAI

thus enabled the differentiation of at most 3 nitrogen groups, and this

separation was site-dependent.

Table 5.2: Ranges of measured variables

field treatment Cca leaflet Cab leaflet Cdm leaflet Cw leaflet LAI optical PS
𝜇g cm−2 𝜇g cm−2 g cm−2 cm m2 m−2 -

Lelystad N2W2 9.57 ± 1.96 38.74 ± 12.05 0.0043 ± 0.0006 0.0206 ± 0.0045 4.14 ± 1.55 51.32 ± 9.78
N2W1 10.82 ± 1.33 46.91 ± 6.41 0.0047 ± 0.0008 0.0215 ± 0.0041 3.87 ± 1.36 52.77 ± 10.32
N1W2 8.47 ± 2.31 30.93 ± 11.89 0.0044 ± 0.0006 0.0201 ± 0.0031 3.34 ± 1.05 43.18 ± 12.09
N1W1 8.73 ± 1.79 31.17 ± 8.88 0.0047 ± 0.0007 0.0185 ± 0.002 3.19 ± 0.99 43.41 ± 12.61
N0W2 7.56 ± 1.57 24.32 ± 7.23 0.0045 ± 0.0006 0.0198 ± 0.0029 2.36 ± 0.73 40.92 ± 9.4
N0W1 7.44 ± 1.94 23.23 ± 9.74 0.0045 ± 0.0008 0.0193 ± 0.0028 2.24 ± 0.58 39.77 ± 10.6

Vredepeel N2W2 8.5 ± 2.77 33.02 ± 11.71 0.0044 ± 0.0009 0.0191 ± 0.0041 4.96 ± 2.19 49.26 ± 10.49
N2W1 9.14 ± 3.25 37.56 ± 12.81 0.0045 ± 0.0006 0.0193 ± 0.0032 4.27 ± 1.89 51.77 ± 8.84
N1W2 7.98 ± 2.99 28.51 ± 13.27 0.0045 ± 0.0009 0.0202 ± 0.0024 3.72 ± 1.74 40.77 ± 12.47
N1W1 8.54 ± 2.95 26.64 ± 12.49 0.0044 ± 0.0006 0.0174 ± 0.0021 3.01 ± 1.4 46.42 ± 10.29
N0W2 8.43 ± 1.71 23.14 ± 5.14 0.0046 ± 0.0004 0.0189 ± 0.0024 2.89 ± 1.38 38.39 ± 12.8
N0W1 7.31 ± 2.42 22.28 ± 9.64 0.0045 ± 0.0008 0.0185 ± 0.0028 3.08 ± 1.51 40.33 ± 12.11
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5.3.2 Retrieval

The retrieval quality is presented in Figure 5.5 and the corresponding metrics are

given in Table 5.3. Among leaf traits only Cab was retrieved relatively well (R2

0.57, RMSE 8.9 𝜇g cm−2). The conversion of leaf traits to canopy traits (by

the multiplication by LAI) improved the retrieval of canopy water content and

canopy chlorophyll content, but not canopy dry matter content. Interestingly, the

product of leaf traits and LAI outperformed individual retrievals by all metrics:

for example, R2 and rRMSE of Cab were 0.57, 17%, LAI - 0.46 and 22%, Cab

x LAI (CCab) - 0.76 and 15.3%, respectively. Similarly to the measured traits,

the retrieved canopy-level traits enabled the differentiation of all three nitrogen

treatments in both fields and in Lelystad (Table 5.7). The separation of N0 and

N1 classes in Vredepeel field was achieved only by canopy chlorophyll content.

The retrieved canopy water content (CCw) differed significantly between water

classes as well (Table 5.5), and the difference was more pronounced in Vredepeel

than in Lelystad.
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Figure 5.5: Validation of retrieval of leaf (top row) and canopy (bottom row) parameters.

Table 5.3: Validation of retrieval of leaf and canopy parameters.

parameter units R2 RMSE bias rRMSE rbias N points
leaf
Cca 𝜇g cm−2 0.09 5.1 4 52.7 41.8 107
Cab=f(PS) 𝜇g cm−2 0.57 8.9 3.1 17.4 6 257
Cw leaflet cm 0.00 0.012 0.009 59.9 45.7 129
Cdm leaflet g cm−2 0.00 0.003 −0.001 98.5 −24.8 129
canopy
LAI optical m2 m−2 0.46 1.45 −1.00 21.9 −15.1 192
CCab=f(PS) 𝜇g cm−2 0.76 53.4 −33.1 15.3 −9.4 192
CCw leaflet cm 0.48 0.024 −0.002 16.8 −1.6 102
CCdm leaflet g cm−2 0.00 0.013 −0.009 35.4 −23.4 102

5.3.3 Seasonal cycle

At daily scale we can compare parameters for the common variety, Fontane, at

both sites. Direct comparison is justified despite the fact that the measurements

in Lelystad were carried out a full week later than in Vredepeel, because the
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planting date was also different by one week, such that the development stage

in Vredepeel matches with that in Lelystad. Figure 5.6 shows that at the peak

of the season - July and August - LAI values in Vredepeel were higher than in

Lelystad, especially at high nitrogen treatments. The differences in measured

leaf chlorophyll content (photosynq values converted to Cab, figure 5.7) were

not systematic. The Cab seasonal cycle for N2 treatment was more pronounced,

with the peak at the beginning of July, whereas N1 remained at plateau reached

in June without a clear summit.
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Figure 5.6: Time series of measured (a) and retrieved (b) LAI for Fontane (common variety in both fields)
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Figure 5.7: Time series of measured (a) and retrieved (b) Cab for Fontane (common variety in both fields)
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5.3.4 Plant productivity

Figure 5.8 shows the field-related difference in SCOPE-simulated rate of

photosynthesis. The spiky nature of canopy photosynthesis (Actot) originates

from the variable irradiance rather than LAI and Cab, because the time series of

these were both smoothed. High to extremely high air temperatures during an

exceptional heat wave contributed further to the mid-July dip.

150



Chapter 5

Figure 5.8: SCOPE-simulated CO2 assimilation rate (Actot) for the common variety in both
fields: Fontane L - Lelystad, Fontane V - Vredepeel. Shaded area represents standard deviation,
which is not available for N0 cases due to single repetition.

Figure 5.9 demonstrates that there was a strong positive correlation between

SCOPE-simulated accumulated “green” dry matter productivity DMPgreen and

the measured yield. This correlation was variety-dependent and the corresponding

equations are shown in Table 5.4. It is possible to further convert DMPgreen to
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the actual yield by the means of harvest index (HI), defined as the slope of

the regression line calculated without the intercept (𝑦𝑖𝑒𝑙𝑑 = 𝐻𝐼 · 𝐷𝑀𝑃green).

This operation was done for all plots from both fields together, for each field

individually and for each variety. SCOPE-derived HI correlated well with the

measured HI values. SCOPE HI was lower, which is especially well seen for

Lelystad field (Table 5.4) and may be attributed to root and stem respiration.

Indeed, DMPgreen has to be “overcorrected” compared to the full plant DMP,

where root and stem respiration has already been removed. Similar values were

observed when SCOPE was run on measured LAI and Cab data (Figure 5.12,

Table 5.8). After HI application the RMSE of yield prediction was 1.7 t ha−1 (HI

0.58, R2 0.44) for Lelystad and 2.3 t ha−1 for Vredepeel (HI 0.7, R2 0.58).

An additional point illustrated in Figure 5.9 is the measured yield response to

nitrogen treatments. For all varieties in Lelystad the yield from N0 plots was the

lowest and from N2 was the highest with N1 residing in between. In Vredepeel the

yield distribution along the nitrogen gradient was not observed. At the same time,

the productivity of Vredepeel field was overall higher than of Lelystad (Kruskal-

Wallis p-value < 0.001); the range in Vredepeel was from 9 to 22 t ha−1, in

Lelystad - from 8 to 18 t ha−1.
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Figure 5.9: SCOPE-simulated accumulated “green” dry matter productivity (DMPgreen, x-axis)
against the measured dry weight of tubers (y-axis).

Table 5.4: Derivation of harvest index. HI measured - HI in mid-August; HI - SCOPE-derived
HI; RMSEHI - RMSE of yield prediction from DMPgreen and SCOPE-derived HI in kg ha−1;
equation - complete (i.e. with slope and intercept) linear regression and its metrics RMSE and
R2, corresponding to the scatters in Figure 5.9. Notice, R2 metric is not applicable to linear
models without an intercept.

variety HI measured HI RMSEHI equation RMSE R2

Fontane L 0.68 0.6 856 0.73 · DMPgreen – 3437 816 0.76
Innovator 0.74 0.63 1140 0.37 · DMPgreen + 5855 825 0.64
Markies 0.64 0.52 1711 1.10 · DMPgreen – 14995 1023 0.87
all Lelystad 0.58 1705 0.47 · DMPgreen + 2657 1672 0.44
Fontane V 0.78 0.73 2207 0.61 · DMPgreen + 3011 2184 0.36
Premiere 0.86 0.83 1359 0.95 · DMPgreen – 2115 1340 0.62
Festien 0.62 0.63 1247 0.56 · DMPgreen + 1827 1239 0.47
all Vredepeel 0.7 2329 0.46 · DMPgreen + 5847 1952 0.58
both fields 0.64 2511 0.39 · DMPgreen + 6007 2269 0.36
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5.4 Discussion

This study explored two applications of time-series hyperspectral measurements

in combination with the process-based model SCOPE: plant traits retrieval under

different fertilization conditions, and potato crop productivity monitoring. This

study is an alternative to data-driven methods such as numerical correlation

against a vegetation index (VI) or partial leas squares regression (PLSR) (Li

et al., 2020). The mentioned methods use dimensionality reduction techniques,

selecting or weighing several bands from a continuous spectrum, whereas their

process-based alternative uses the spectrum as the whole, and the dimension

reduction consists of the retrieval of vegetation traits by model inversion.

The first interesting discussion point is the difference in the number of

treatments (6) and distinguishable groups (3 for Lelystad, 2 for Vredepeel), see

Figure 5.9, Table 5.2 and Figures 5.6, 5.7. The difference between two fields

might be explained by plot design (Figure 5.1); the plots in Vredepeel were

adjacent thus nutrients distributed within one plot might have affected the

surrounding plots. The absence of water influence might be explained by

sufficient natural precipitation (Figure 5.4) or again by the design of the

experiment; we did not aim at creating drought stress but rather provided

sufficient (W1) or excessive (W2) water supply. Although the measured leaf

level trait (Cw) was not statistically different between classes, its retrieved

canopy version (Cw x LAI) was significantly lower for W1 class in both fields

(Table 5.5). It is quite common to use CCw for crop water state detection

(Casas et al., 2014; Pasqualotto et al., 2018). More severe drought stress can

be well detected by thermal remote sensing as was shown on wheat (Tilling

et al., 2007) and potato (Gerhards et al., 2016), but it deserves a separate

study. The fact that measured Cw and Cdm were indifferent to treatment may

also be related to their calculation per area-bases (content) in contrast to per
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mass-basis (concentration). The choice of content is preferred to concentration

for remotely sensed variables, because it is the absolute quantity (content) that

effects optical properties, not its relative to another leaf components

concentration (Kattenborn et al., 2019). Similarly to Cw the upscaled CCdm

(Cdm x LAI) was statistically different between W classes. Nitrogen treatment

created significant variability in measured Cab and LAI (Table 5.6), whose

correlation with leaf nitrogen content and final yield was shown for potato

(Botha et al., 2007) and wheat (Cab, Cw and Cdm) (Camino et al., 2018).

Changes in leaf protein content, recently introduced in leaf radiative transfer

model PROSPECT-PRO (Féret et al., 2021), might also be nitrogen-sensitive

(Wang and Atkinson, 2018). The important conclusion from

measurement-treatment comparison is that leaf traits might be sensitive to

treatments (besides Cab for N) but their upscaled to canopy quantiles

(multiplication by LAI) may result in better classes separation than that based

solely on LAI. LAI, for example, showed no difference between two water classes

but both its products with Cdm and Cw were statistically different, though

CCab was not (Table 5.5). Obviously, it is important to measure some ultimate

trait like yield that shows how the plant ’perceived’ the treatments, but this

cannot be done with remote sensing directly.

At the next step we analyzed the biophysical traits retrieved from hyperspectral

reflectance. We decided to avoid spectral transformations (vegetation indices)

and invert physically based model, PROSAIL, specifically designed for

homogeneous crop canopies (Darvishzadeh et al., 2008). LAI and Cab, the two

parameters that highly influence reflectance, were retrieved well, similarly to

previous studies conducted as well on potato with numerical optimization

(Botha et al., 2007; Roosjen et al., 2018) and look-up table (Duan et al.,

2014). The seasonal patterns of LAI and Cab (Figures 5.6, 5.7) were captured

well by retrieved parameters, besides N2 class, for which retrieved LAI was 2-3
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units lower and retrieved Cab was rather stable. In case of LAI it might well be

that measured LAI was systematically higher, because optical (LAI-2200) rather

than a destructive method was used (Ryu et al., 2010). Cw and Cdm were not

retrieved at any acceptable quality. Indeed, the retrieval of those two

parameters is very challenging. Already at leaf level (PROSPECT part of

PROSAIL) two step inversion (with retrieval of leaf mesophyll structure on the

first step) and prior information was needed to succeed (Ali et al., 2016). At

canopy level Casas et al. (2014) demonstrated that PROSAIL-retrieved Cw and

Cdm (and consequently canopy water and dry matter content) showed up to

150% rRMSE. The only successful Cw retrieval with canopy level radiative

transfer model inversion that we found was conducted for PROINFORM and

required prior information (Zhu et al., 2019). It has to be noted that the

collection of validation data for Cw is also challenging, because leaf water

content varies with leaf height along the stem (Liu et al., 2018). Retrieved

canopy CCw showed significant correlation with measured CCw, which might be

due to LAI. In spite of the low range of retrieved LAI, well-retrieved leaf and

canopy values were significantly different between nitrogen treatments (Table

5.7). Thus, remote sensing hyperspectral reflectance contains all necessary

information for nitrogen classes separation.

Finally, we smoothed retrieved LAI and Cab and used them together with weather

data to simulate photosynthesis, DMPgreen and yield with SCOPE model. Even

though not all plant traits (LAI, Cab) differed between treatments, the resulting

DMPgreen and yields did differ among the three N classes (Figure 5.9). Vredepeel

field productivity was on average 5 t ha−1 higher than that of Lelystad, which

might be explained by better soil conditions, inaccuracy of nitrogen application

due to plot adjacency (Figure 5.1), and/or the different planting date.

The values of harvest index (HI) per variety correlated well with the measured

HI values, as shown in Table 5.4. As expected, SCOPE-derived HI was lower
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than the measured value, because it has to correct DMPgreen for root and stem

respiration as well. The overall range of measured HI was lower than the reported

in the literature for potato from 0.75 to 0.87 (Mazurczyk et al., 2009; Nonhebel,

1995; Wang et al., 2020). HI was lower for varieties in Lelystad field, suggesting

higher maintenance respiration in that field, which, in turn, might be related to

soil composition. Additional measurements of plant respiration with gas exchange

chambers are needed to attribute the difference in the HI to field conditions or

specific variety traits, but those require a separate study. For now we consider

the across-field HI of 0.64 as a reference value for Dutch potato yield estimation

with SCOPE model DMPgreen from remote sensing data, if variety-specific data

is not known.

5.5 Conclusion

This study provided a comprehensive analysis of proximal hyperspectral remote

sensing data usage for nutrient treatment classification and yield estimation of

potato plants with the process-based model SCOPE. The treatment classification

was done based on plant traits retrieved from top of canopy reflectance. Canopy

level traits were more suitable for nitrogen treatment separation than leaf level

traits. Accumulated net canopy photosynthesis flux correlated well with the final

tuber dry yield. Differential nitrogen application resulted in three distinct yield

classes in the field with sparsely distributed plots (Lelystad) and two yield classes

in the field with densely distributed plots (Vredepeel). This nitrogen-determined

clustering held also for “green” dry matter productivity (DMPgreen) simulated with

SCOPE model. Harvest index can further be used with DMPgreen to estimate

the yield, however, further research is needed to determine the harvest index

dependence on soil conditions and variety traits.

The proposed method of potato productivity estimation uses only optical
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reflectance and meteorological data to constrain SCOPE, and does not rely on

variety specific information, such as light use efficiency. The approach makes a

step further compared to the other radiative transfer models, as it outputs not

only optically active traits (LAI, Cab) as a result of dimensionality reduction

step, but also plant productivity. Compared to numerical methods, the training

is not needed and additional information in terms of plant traits and expected

productivity can be output.

5.6 Appendix

5.6.1 Auxiliary regression

Figure 5.10: PhotosynqQ relative chlorophyll content to leaf chlorophyll content. Black line -
fitted curve, shaded area - standard deviation of the curve-fitting coefficients.
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Figure 5.11: ImageJ-derived (x-axis) against AM350-derived (y-axis) leaflet area in mm2. Blue
line - regression, black line - one-to-one.

5.6.2 p-values against treatments

Table 5.5: Water treatment comparison, measured and retrieved values. Mean ± standard
deviation for values with pairwise Wilcoxon test p-value < 0.05 are presented.

param field W1 W2
measured
Cw leaflet both 0.02 ± 0.0036 * 0.02 ± 0.0038 *
Cw leaflet Vredepeel 0.018 ± 0.0025 * 0.019 ± 0.0031 *
retrieved
Cdm leaflet Lelystad 0.0031 ± 0.0028 * 0.0036 ± 0.0037 *
CCdm leaflet both 0.0062 ± 0.0054 ** 0.0066 ± 0.0058 **
CCdm leaflet Lelystad 0.0063 ± 0.0058 ** 0.0073 ± 0.0064 **
CCw leaflet both 0.058 ± 0.027 *** 0.063 ± 0.028 ***
CCw leaflet Lelystad 0.062 ± 0.026 *** 0.063 ± 0.026 ***
CCw leaflet Vredepeel 0.053 ± 0.027 * 0.062 ± 0.031 *
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Table 5.6: Nitrogen treatment comparison, measured values. Mean ± standard deviation for
values with pairwise Wilcoxon test p-value < 0.05 are presented.

param field N0 N1 N2
measured
Cab=f(PS) both 26.9 ± 11 (a) 30 ± 12 (a) 38.7 ± 10 (b)
Cab=f(PS) Lelystad 27 ± 9.8 (a) 30 ± 13 (a) 39.4 ± 11 (b)
Cab=f(PS) Vredepeel 26.8 ± 12 (a) 31 ± 12 (a) 37.8 ± 9.2 (b)
Cca both 7.73 ± 1.7 (a) 8.4 ± 2.3 (a) 9.62 ± 2.2 (b)
Cca Lelystad 7.78 ± 1.4 (a) 8.3 ± 2 (a) 9.96 ± 1.9 (b)
Cca Vredepeel 7.67 ± 2.1 (a) 8.5 ± 2.8 (a) 9.07 ± 2.6 (b)
Cdm leaflet both 0.00452 ± 0.00062 (a) 0.0045 ± 0.00055 (a) 0.00443 ± 0.0006 (b)
Cdm leaflet Lelystad 0.00452 ± 0.00064 (a) 0.00454 ± 0.00049 (a) 0.00445 ± 0.00052 (b)
Cdm leaflet Vredepeel 0.00452 ± 0.00061 (a) 0.00446 ± 0.00062 (a,b) 0.00441 ± 0.00071 (b)
Cw leaflet both 0.019 ± 0.0024 (a) 0.0191 ± 0.0022 (a) 0.0209 ± 0.0048 (b)
Cw leaflet Lelystad 0.0194 ± 0.0025 (a) 0.0194 ± 0.0024 (a,b) 0.022 ± 0.0052 (b)
Cw leaflet Vredepeel 0.0186 ± 0.0023 (a) 0.0188 ± 0.002 (a) 0.0191 ± 0.0035 (b)
LAI optical both 2.57 ± 1 (a) 3.28 ± 1.1 (b) 4.33 ± 1.5 (c)
LAI optical Lelystad 2.29 ± 0.6 (a) 3.26 ± 0.8 (b) 4.09 ± 1.3 (c)
LAI optical Vredepeel 2.92 ± 1.3 (a) 3.32 ± 1.4 (a) 4.64 ± 1.8 (b)
CCab=f(PS) both 75.1 ± 49 (a) 112 ± 56 (b) 181 ± 80 (c)
CCab=f(PS) Lelystad 67.8 ± 23 (a) 113 ± 44 (a) 180 ± 66 (b)
CCab=f(PS) Vredepeel 84.5 ± 68 (a) 110 ± 70 (a) 183 ± 96 (b)
CCdm leaflet both 0.0116 ± 0.0052 (a,b) 0.0154 ± 0.0057 (a) 0.0202 ± 0.0081 (b)
CCw leaflet both 0.0488 ± 0.02 (a) 0.0651 ± 0.023 (b) 0.0924 ± 0.032 (c)
CCw leaflet Lelystad 0.0454 ± 0.014 (a) 0.0626 ± 0.012 (b) 0.0879 ± 0.027 (c)
CCw leaflet Vredepeel 0.0524 ± 0.025 (a) 0.0676 ± 0.031 (a,b) 0.0986 ± 0.038 (b)

Table 5.7: Nitrogen treatment comparison, retrieved from reflectance values. Mean ± standard
deviation for values with pairwise Wilcoxon test p-value < 0.05 are presented.

param field N0 N1 N2
retrieved
Cab=f(PS) both 30.3 ± 11 (a) 33 ± 12 (a) 41.8 ± 10 (b)
Cab=f(PS) Lelystad 28.3 ± 11 (a) 30.7 ± 12 (a) 39.9 ± 10 (b)
Cab=f(PS) Vredepeel 32.8 ± 12 (a) 36 ± 11 (a) 44.2 ± 9.6 (b)
Cca both 10.6 ± 3.5 (a) 10.9 ± 2.7 (a) 13.1 ± 2.7 (b)
Cca Lelystad 9.91 ± 3.1 (a) 10.3 ± 2.4 (a) 12.6 ± 2.3 (b)
LAI optical both 1.81 ± 0.74 (a) 2.23 ± 0.97 (b) 2.6 ± 0.94 (c)
LAI optical Lelystad 1.81 ± 0.79 (a) 2.33 ± 1 (b) 2.81 ± 0.86 (c)
LAI optical Vredepeel 1.8 ± 0.68 (a) 2.09 ± 0.9 (a) 2.33 ± 0.99 (b)
CCab=f(PS) both 53.8 ± 31 (a) 73 ± 45 (b) 107 ± 50 (c)
CCab=f(PS) Lelystad 52.1 ± 32 (a) 72.8 ± 46 (b) 112 ± 48 (c)
CCab=f(PS) Vredepeel 56 ± 31 (a) 73.3 ± 43 (b) 101 ± 53 (c)
CCw leaflet both 0.0464 ± 0.022 (a) 0.0577 ± 0.026 (b) 0.0762 ± 0.026 (c)
CCw leaflet Lelystad 0.0467 ± 0.02 (a) 0.0593 ± 0.025 (b) 0.0808 ± 0.021 (c)
CCw leaflet Vredepeel 0.0459 ± 0.024 (a) 0.0558 ± 0.028 (a) 0.0703 ± 0.03 (b)
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5.6.3 Yield simulation on measured LAI and Cab

Figure 5.12: SCOPE-simulated accumulated “green” dry matter productivity calculated on
measured LAI and Cab (DMPgreen, x-axis) against the measured dry weight of tubers (y-axis).

Table 5.8: Derivation of harvest index for SCOPE run on measured LAI and Cab. RMSE is in kg
ha−1.

variety HI measured HI RMSEHI equation RMSE R2

Fontane L 0.68 0.61 903 0.91 · DMPgreen – 7981 753 0.79
Innovator 0.74 0.63 1054 0.40 · DMPgreen + 5190 838 0.63
Markies 0.64 0.52 1978 1.57 · DMPgreen – 27254 849 0.91
all Lelystad 0.58 1809 0.48 · DMPgreen + 2462 1788 0.36
Fontane V 0.78 0.73 2184 0.67 · DMPgreen + 1557 2179 0.36
Premiere 0.86 0.73 1493 0.65 · DMPgreen + 1519 1480 0.53
Festien 0.62 0.64 1178 0.60 · DMPgreen + 1158 1175 0.52
all Vredepeel 0.7 1969 0.57 · DMPgreen + 2975 1898 0.61
both fields 0.64 2334 0.48 · DMPgreen + 3934 2260 0.36
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Synthesis

This thesis started with the argument that remote sensing of carbon, energy

and water fluxes requires modeling. Modeling, in its turn, relies on schematic

representations of reality based on assumptions and on validation. Preparing

a remote sensing study, we have to choose an adequate source of data and

a corresponding model. This chapter places the findings of this thesis in the

historical and modern context of remote sensing. Historically we are at the

synergy phase in optical remote sensing, when the concepts formulated in the

XX century are being incorporated in new models, using an increasing volume of

remote sensing data. SCOPE is one of those models. The exponential growth

of data during the last 10 years made multi-sensor and time-series approaches

common. However, the model development sometimes lags behind.

6.1 XXI century contribution

The underlying principles of the studied ecosystem flux phenomena have a basis in

classic physics, and they have been known for a long time: the evapotranspiration

equation via a vertical gradients of humidity and temperature was formulated

by Howard Penman in 1948; photosynthesis light use efficiency model by John

Monteith in 1972; a mechanistic model of photosynthesis by Graham Farquhar,

Susanne von Caemmerer and Joseph Berry in 1980 and stomata model by Ray

Leuning in 1995. The radiative transfer modelling principles were developed in

the mid 1980s – early 1990s, followed by energy balance models of the late 1990s.

The question is now: What is the main contribution of the last 20 years to the

understanding of land surface fluxes through remote sensing?

The focus of many recent studies is the validation and search for an optimal

parametrization of the aforementioned models. It is reasonable to take this

route, because the underlying principles are physically based and they do not

change. The scientific development of the recent years shifted from concepts to
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technological innovations: high spectral resolution, high spatial resolution, high

temporal resolution. With these innovations, the question can be posed: “Is the

added value of these technological innovations utilized?” A positive example of

technology-driven progress is the detection of solar induced chlorophyll

fluorescence from space, which requires accurate sub-nanometer spectroscopy

which has not been feasible until recently. A negative example is the usage of

narrow band vegetation indices with hyperspectral data: if 2000 bands were

recorded but only 2 are used for an index calculation why the other 1998 were

measured?

The last 20 years of technological development of both the measurement

instrumentation and the computing power enabled the synergistic data analysis.

Those synergies can be established between different models, spectral domains

(optical, thermal, microwave), across scales (cell, leaf, canopy, ecosystem) in

space (resolution sharpening techniques) and in time (time series). The SCOPE

model employed in this study is an example of such a synergistic tool. In

Chapter 2 we started investigating the thermal-optical sensor synergy and ended

with the across-model synergy, because the biochemical model parameters

turned out to be important for thermal radiation emission. This discovery raises

two questions: a methodological one: “Would it be possible to describe this link

analytically in a neat and elegant way without the need for a complex joint

modelling toolbox?”, and a scientific one: “Is this link a physically based

natural “law”?” Theoretically, increased photosynthetic rates may indeed

reduce leaf temperature and land surface temperature through increased rates

of evaporative cooling (transpiration), but further validation studies are needed

to explore the link.

Another opportunity produced by the technological development is the

uncertainty reduction through an algorithm refinement. For example,

satellite-based surface property retrieval algorithms can benefit from the
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atmospheric properties adjustment, whose effect was also shown in Chapter 2.

Unfortunately, the best atmospheric models are still too computationally

expensive for such implementation. This computational gap has been addressed

by cloud-based parallel computing platforms developed during the last 10 years.

One of these platforms, the Google Earth Engine, was discussed in Chapter 3.

The issues of the pipeline transparency and the data concordance required for

the reproducible research were addressed there.

One more area of a relatively recent development is the temporal analysis.

Acknowledging the long history of geostationary meteorological satellites and

Landsat, a fine resolution daily time series can be considered to start with the

MODIS era (Terra and Aqua NASA satellite constellation) in 2002. Since

models were developed for steady state conditions and single image analysis, a

refinement is required before the present time-rich temporal data can be fully

exploited. Chapter 4 shows how SCOPE can be made time-aware. The success

was limited to daily and annual time steps, but there is no technical limitation

to carry out parametrization at an hourly time step as well.

It is worth noting that not all algorithms can be easily upgraded, especially

those that form a part of a pipeline. In other words, there is a time lag between

the possibility of making an improvement and its actual implementation.

Furthermore, with an algorithm update a new version of the model-derived

dataset is often released. The modifications are usually minor and do not

invalidate the findings reported on the former dataset, but the datasets from

different providers may nevertheless exhibit different trends. Examples include

the various intercomparison studies of leaf area index, GPP and ET datasets.

Much expertise is needed to evaluate the dataset suitability for the research

question and ground data validation facilitates the evaluation. Chapter 4 of this

thesis was devoted to understanding the influence of parametrization and choice

of input data on fluxes. It was demonstrated that the choice of a one value
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(𝑉 𝑐𝑚𝑎𝑥25 value) that cannot be directly obtained from remote sensing already

dramatically alters model results and that the similarly named parameter,

optimized for one model, may not be transferable to the other model.

6.2 Philosophical perspective

Undoubtedly, many technical improvements have been made in the XXI century,

but, coming back to the main topic of the chapter, what knowledge has been

added? I would like to make a distinction between the knowledge as an intellectual

phenomenon and as an application. They both can be motivating forces of

research: the first one through cherishing scientists’ curiosity, the second through

solving a real world problem. A scientist has their head in the clouds, but the

application is the gravity force that prevents them from leaving Earth.

If we look at the results of this thesis from purely practical point of view. What

problems did it solve by ecosystem flux monitoring? Local-scale precision

agriculture is one of the possible answers. However, the main farmer-oriented

applications are nutrient deficiency and disease detection, and not fluxes.

Chapter 5 demonstrated the possible application of remote sensing and GPP

flux for agriculture. At global scale I would dare to say that all living creatures

are the beneficiaries of flux monitoring. The increasing environmental awareness

following the monitoring of fluxes, confirms that this is the case.

This thesis focused on physically based understanding of processes. Besides

physically based modelling, machine learning algorithms can produce comparably

well or even outperforming products, taken that enough data is available. Does

it mean that the scientific research, as it used to be, is becoming useless? To my

mind, the “what for” question is not applicable to science at all. The fact that

we do not see the application at the moment does not mean that the discovery or

development will not be useful in the future. In this respect, it is the model, the
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pipeline, the algorithms, the thought that must be perceived as the products of

science not the derived datasets. Furthermore, in the modern era of specialization

and the exponential growth of data it is no longer possible to be aware of each

and every study in the research area, nor to really evaluate the meaning of what

has been done. At the same time, all those studies are still needed for future

breakthroughs.

I would consider the “what if” question to be more appropriate for modern

science. What if we use thermal domain to retrieve biochemical traits? What if

we model fluxes with SCOPE constraint by Earth observation? Let scientists

continue cherishing their curiosity and doing things “because we can” and the

applications might follow; history shows us that they definitely will.
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33. Camino, C., González-Dugo, V., Hernández, P., Sillero, J. C., and Zarco-Tejada, P. J.

(2018). Improved nitrogen retrievals with airborne-derived fluorescence and plant traits

quantified from VNIR-SWIR hyperspectral imagery in the context of precision agriculture.

In: International Journal of Applied Earth Observation and Geoinformation 70.February,

pp. 105–117. issn: 1872826X. doi: 10.1016/j.jag.2018.04.013.

172

https://doi.org/10.1016/j.rse.2019.111413
https://doi.org/10.1029/2010JG001593
https://doi.org/10.1016/j.agrformet.2021.108435
https://doi.org/10.1016/j.agrformet.2021.108435
https://doi.org/10.1016/j.jag.2006.11.003
https://doi.org/10.1016/j.rse.2004.05.020
https://doi.org/10.1109/jstars.2019.2899998
https://doi.org/10.1016/j.agrformet.2017.08.012
https://doi.org/10.1016/j.jag.2018.04.013


BIBLIOGRAPHY

34. Canisius, F., Fernandes, R., and Chen, J. (2010). Comparison and evaluation of Medium

Resolution Imaging Spectrometer leaf area index products across a range of land use. In:

REMOTE SENSING OF ENVIRONMENT 114.5, pp. 950–960. issn: 0034-4257. doi:

10.1016/j.rse.2009.12.010.

35. Casas, A., Riaño, D., Ustin, S. L., Dennison, P., and Salas, J. (2014). Estimation of

water-related biochemical and biophysical vegetation properties using multitemporal

airborne hyperspectral data and its comparison to MODIS spectral response. In: Remote

Sensing of Environment 148, pp. 28–41. issn: 00344257. doi:

10.1016/j.rse.2014.03.011.
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54. Dantec-Nédélec, S, Ottlé, C, Wang, T, Guglielmo, F, Maignan, F, Delbart, N,

Valdayskikh, V, Radchenko, T, Nekrasova, O, Zakharov, V, and Jouzel, J (2017). Testing

the capability of ORCHIDEE land surface model to simulate Arctic ecosystems: Sensitivity

analysis and site-level model calibration. In: Journal of Advances in Modeling Earth

Systems 9.2, pp. 1212–1230. issn: 1942-2466. doi: 10.1002/2016MS000860.

55. Darvishzadeh, R., Skidmore, A., Schlerf, M., and Atzberger, C. (2008). Inversion of a

radiative transfer model for estimating vegetation LAI and chlorophyll in a heterogeneous

grassland. In: Remote Sensing of Environment 112.5, pp. 2592–2604. issn: 00344257. doi:

10.1016/j.rse.2007.12.003.

56. de Grave, C., Verrelst, J., Morcillo-Pallarés, P., Pipia, L., Rivera-caicedo, J. P., Amin, E.,

Belda, S., and Moreno, J. (2020). Quantifying vegetation biophysical variables from the

Sentinel-3/FLEX tandem mission: Evaluation of the synergy of OLCI and FLORIS data

sources. In: Remote Sensing of Environment 251, p. 112101. issn: 00344257. doi: 10.

1016/j.rse.2020.112101.

57. De Pury, D. G. G. and Farquhar, G. D. (1997). Simple scaling of photosynthesis from leaves

to canopies without the errors of big-leaf models. In: Plant, Cell Environ. 20.5, pp. 537–557.

issn: 0140-7791. doi: 10.1111/j.1365-3040.1997.00094.x.

58. Dechant, B., Ryu, Y., and Kang, M. (2019). Making full use of hyperspectral data for

gross primary productivity estimation with multivariate regression: Mechanistic insights

from observations and process-based simulations. In: Remote Sensing of Environment 234,

p. 111435. issn: 00344257. doi: 10.1016/j.rse.2019.111435.

59. Dong, T., Liu, J., Shang, J., Qian, B., Ma, B., Kovacs, J. M., Walters, D., Jiao, X.,

Geng, X., and Shi, Y. (2019). Assessment of red-edge vegetation indices for crop leaf area

index estimation. In: Remote Sensing of Environment 222, pp. 133–143. issn: 00344257.

doi: 10.1016/j.rse.2018.12.032.

60. Donlon, C, Berruti, B, Buongiorno, A, Ferreira, M.-h., Féménias, P, Frerick, J, Goryl, P,

Klein, U, Laur, H, Mavrocordatos, C, Nieke, J, Rebhan, H, Seitz, B, Stroede, J, and

Sciarra, R (2012). The Global Monitoring for Environment and Security (GMES) Sentinel-

3 mission. In: Remote Sensing of Environment 120, pp. 37–57. issn: 00344257. doi:

10.1016/j.rse.2011.07.024.

61. Drought 2018 Team and ICOS Ecosystem Thematic Centre (2018). Drought-2018

ecosystem eddy covariance flux product for 52 stations in FLUXNET-Archive format.

Available online: https://doi.org/10.18160/YVR0- 4898. (accessed on 3 March

2021).

175

https://doi.org/10.1175/BAMS-84-8-1013
https://doi.org/10.1002/2016MS000860
https://doi.org/10.1016/j.rse.2007.12.003
https://doi.org/10.1016/j.rse.2020.112101
https://doi.org/10.1016/j.rse.2020.112101
https://doi.org/10.1111/j.1365-3040.1997.00094.x
https://doi.org/10.1016/j.rse.2019.111435
https://doi.org/10.1016/j.rse.2018.12.032
https://doi.org/10.1016/j.rse.2011.07.024
https://doi.org/10.18160/YVR0-4898


BIBLIOGRAPHY

62. Drusch, M., del Bello, U., Carlier, S., Colin, O., Fernandez, V., Gascon, F., Hoersch, B.,

Isola, C., Laberinti, P., Martimort, P., Meygret, A., Spoto, F., Sy, O., Marchese, F., and

Bargellini, P. (2012). Sentinel-2: ESA’s Optical High-Resolution Mission for GMES

Operational Services. In: Remote Sensing of Environment 120, pp. 25–36. issn:

00344257. doi: 10.1016/j.rse.2011.11.026.

63. Drusch, M., Moreno, J., Bello, U. D., Franco, R., Goulas, Y., Huth, A., Kraft, S., Middleton,

E. M., Miglietta, F., Mohammed, G., Nedbal, L., Rascher, U., Schüttemeyer, D., and
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