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Abstract 

 
Monitoring vegetation changes by enhancing spatial and temporal 

resolution of satellite imagery 

Juwon Kong 

Interdisciplinary Program in Landscape Architecture 

Graduate School  

Seoul National University 

Supervised by Professor Youngryel Ryu 

 

 

Monitoring changes in terrestrial vegetation is essential to 

understanding interactions between atmosphere and biosphere, 

especially terrestrial ecosystem. To this end, satellite remote 

sensing offer maps for examining land surface in different scales. 

However, the detailed information was hindered under the clouds or 

limited by the spatial resolution of satellite imagery. Moreover, the 

impacts of spatial and temporal resolution in photosynthesis 

monitoring were not fully revealed. 

In this dissertation, I aimed to enhance the spatial and temporal 

resolution of satellite imagery towards daily gap-free vegetation 

maps with high spatial resolution. In order to expand vegetation 

change monitoring in time and space using high-resolution satellite 

images, I 1) improved temporal resolution of satellite dataset through 

image fusion using geostationary satellites, 2) improved spatial 

resolution of satellite dataset using generative adversarial networks, 

and 3) showed the use of high spatiotemporal resolution maps for 

monitoring plant photosynthesis especially over heterogeneous 
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landscapes. With the advent of new techniques in satellite remote 

sensing, current and past datasets can be fully utilized for monitoring 

vegetation changes in the respect of spatial and temporal resolution. 

In Chapter 2, I developed the integrated system that implemented 

geostationary satellite products in the spatiotemporal image fusion 

method for monitoring canopy photosynthesis. The integrated 

system contains the series of process (i.e., cloud masking, nadir 

bidirectional reflectance function adjustment, spatial registration, 

spatiotemporal image fusion, spatial gap-filling, temporal-gap-

filling). I conducted the evaluation of the integrated system over 

heterogeneous rice paddy landscape where the drastic land cover 

changes were caused by cultivation management and deciduous 

forest where consecutive changes occurred in time. The results 

showed that the integrated system well predict in situ measurements 

without data gaps (R2 = 0.71, relative bias = 5.64% at rice paddy 

site; R2 = 0.79, relative bias = -13.8% at deciduous forest site). The 

integrated system gradually improved the spatiotemporal resolution 

of vegetation maps, reducing the underestimation of in situ 

measurements, especially during peak growing season. Since the 

integrated system generates daily canopy photosynthesis maps for 

monitoring dynamics among regions of interest worldwide with high 

spatial resolution. I anticipate future efforts to reveal the hindered 

information by the limited spatial and temporal resolution of satellite 

imagery. 

Detailed spatial representations of terrestrial vegetation are 

essential for precision agricultural applications and the monitoring of 

land cover changes in heterogeneous landscapes. The advent of 

satellite-based remote sensing has facilitated daily observations of 

the Earth’s surface with high spatial resolution. In particular, a data 
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fusion product such as Planet Fusion has realized the delivery of daily, 

gap-free surface reflectance data with 3-m pixel resolution through 

full utilization of relatively recent (i.e., 2018-) CubeSat constellation 

data. However, the spatial resolution of past satellite sensors (i.e., 

30–60 m for Landsat) has restricted the detailed spatial analysis of 

past changes in vegetation. In Chapter 3, to overcome the spatial 

resolution constraint of Landsat data for long-term vegetation 

monitoring, we propose a dual remote-sensing super-resolution 

generative adversarial network (dual RSS-GAN) combining Planet 

Fusion and Landsat 8 data to simulate spatially enhanced long-term 

time-series of the normalized difference vegetation index (NDVI) 

and near-infrared reflectance from vegetation (NIRv). We evaluated 

the performance of the dual RSS-GAN against in situ tower-based 

continuous measurements (up to 8 years) and remotely piloted aerial 

system-based maps of cropland and deciduous forest in the Republic 

of Korea. The dual RSS-GAN enhanced spatial representations in 

Landsat 8 images and captured seasonal variation in vegetation 

indices (R2 > 0.95, for the dual RSS-GAN maps vs. in situ data from 

all sites). Overall, the dual RSS-GAN reduced Landsat 8 vegetation 

index underestimations compared with in situ measurements; relative 

bias values of NDVI ranged from −3.2% to 1.2% and −12.4% to −3.7% 

for the dual RSS-GAN and Landsat 8, respectively. This 

improvement was caused by spatial enhancement through the dual 

RSS-GAN, which captured fine-scale information from Planet 

Fusion. This study presents a new approach for the restoration of 

hidden sub-pixel spatial information in Landsat images.  

Mapping canopy photosynthesis in both high spatial and temporal 

resolution is essential for carbon cycle monitoring in heterogeneous 

areas. However, well established satellites in sun-synchronous 



 

 iv 

orbits such as Sentinel-2, Landsat and MODIS can only provide 

either high spatial or high temporal resolution but not both. Recently 

established CubeSat satellite constellations have created an 

opportunity to overcome this resolution trade-off. In particular, 

Planet Fusion allows full utilization of the CubeSat data resolution and 

coverage while maintaining high radiometric quality. In Chapter 4, I 

used the Planet Fusion surface reflectance product to calculate daily, 

3-m resolution, gap-free maps of the near-infrared radiation 

reflected from vegetation (NIRvP). I then evaluated the performance 

of these NIRvP maps for estimating canopy photosynthesis by 

comparing with data from a flux tower network in Sacramento-San 

Joaquin Delta, California, USA. Overall, NIRvP maps captured 

temporal variations in canopy photosynthesis of individual sites, 

despite changes in water extent in the wetlands and frequent mowing 

in the crop fields. When combining data from all sites, however, I 

found that robust agreement between NIRvP maps and canopy 

photosynthesis could only be achieved when matching NIRvP maps 

to the flux tower footprints. In this case of matched footprints, NIRvP 

maps showed considerably better performance than in situ NIRvP in 

estimating canopy photosynthesis both for daily sum and data around 

the time of satellite overpass (R2 = 0.78 vs. 0.60, for maps vs. in situ 

for the satellite overpass time case). This difference in performance 

was mostly due to the higher degree of consistency in slopes of 

NIRvP-canopy photosynthesis relationships across the study sites 

for flux tower footprint-matched maps. Our results show the 

importance of matching satellite observations to the flux tower 

footprint and demonstrate the potential of CubeSat constellation 

imagery to monitor canopy photosynthesis remotely at high spatio-

temporal resolution. 
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Chapter 1. Introduction 

 

1. Background 

 

High spatial and temporal resolution satellite imagery is in demand 

for monitoring vegetation changes over heterogeneous landscape. 

Although daily satellite imagery with high spatial resolution is not 

available for historical data, previous studies showed some clues to 

enhance the spatial and temporal resolution of satellite dataset. 

 

1.1  Daily gap-free surface reflectance using geostationary satellite 

products 

In space-born observation, geostationary satellites can harmonize 

an uneasy mix of terrestrial monitoring and clouds. While clouds 

cause inevitable data gaps in optical satellite products that monitor 

terrestrial surfaces (Ju and Roy, 2008), geostationary satellites 

detect clouds for continuous meteorological observation (Bessho et 

al., 2016; Chung et al., 2020; McCorkel et al., 2020). In these 

disparate purposes of satellites, an opportunity for gap-filled 

satellite products can arise from continuous observation itself (Khan 

et al., 2021; Xiao et al., 2021). Compared to snapshots from polar-

orbiting satellites, geostationary satellite products have the potential 

to measure surface reflectance as the clouds flow with time 

(Hashimoto et al., 2021; Miura et al., 2019; Yan et al., 2016a; Yeom 

et al., 2018). These non-cloudy measurements from the 

geostationary satellite products improved our understanding of land 

surface seasonal dynamics (Hashimoto et al., 2021; Miura et al., 2019; 

Tran et al., 2020) and phenology detection (Wheeler and Dietze, 

2021). In heterogeneous areas, nonetheless, the spatial resolution of 

geostationary products is not enough to monitor both phenological 
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and land cover changes in landscape scale (Atkinson and Curran, 

1995; Roth et al., 2015; Turner et al., 1989; Woodcock and Strahler, 

1987). Moreover, diurnal changes of sun-target-sensor geometry 

affect the retrieval of the surface reflectance (Morton et al., 2014; 

Proud et al., 2014; Yeom et al., 2020) when applied in vegetation 

monitoring (Feng et al., 2002; Fensholt et al., 2010; Fensholt et al., 

2006; Seong et al., 2020). Although previous studies attempted to 

solve each limitation (He et al., 2019; Lee et al., 2020; Wu et al., 

2015), it has not been an integrated implementation to generate daily 

gap-filled surface reflectance products with high spatial resolution 

using geostationary satellite products. 

 

1.2  Monitoring past vegetation changes with high-spatial-

resolution 

 

High-spatial-resolution monitoring of changes in terrestrial 

vegetation is increasingly important for precision agricultural 

applications and for the quantification of changes in land cover, among 

other uses. In the context of concerns about increasing food demand 

caused by population growth (Gebbers and Adamchuk, 2010), 

precision agriculture reduces variations in temporal yield related to 

yield stability and increases crop resilience to climate change (Yost 

et al., 2017). Precision agriculture requires high-spatial-resolution 

data for site-specific information, particularly over heterogeneous 

landscapes (Duveiller and Defourny, 2010; Gebbers and Adamchuk, 

2010; Sishodia et al., 2020). The monitoring of changes in land cover 

is essential for quantifying anthropogenic impacts on climate change 

(Pielke Sr, 2005) because such changes have both biogeochemical 
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and biogeophysical effects on the global climate (Feddema et al., 

2005). High-spatial-resolution time-series data can be used to 

detect changes in land cover with less uncertainty associated with 

misclassification (Shendryk et al., 2019). 

 

1.3  High spatiotemporal resolution vegetation photosynthesis maps 

 

Being able to estimate terrestrial gross primary productivity (GPP) 

accurately with remote sensing techniques is important for 

monitoring climate change effects, vegetation responses to 

environmental extremes and agricultural applications, among other 

uses. Apart from the chosen approach to estimate GPP from remote 

sensing variables, the spatial and temporal resolution of the data are 

important. High spatial resolution satellite data are needed for 

agricultural applications and monitoring of heterogeneous natural 

ecosystems. For example, small-scale agricultural fields, which can 

be fine scale heterogeneous ecosystems, require spatial GPP details 

to distinguish boundaries between fields and to understand sub-field 

variation in crop growth (Duveiller and Defourny, 2010; Houborg and 

McCabe, 2016; Kimm et al., 2020). High temporal resolution is also 

important within short periods during transition season or extreme 

environmental events such as droughts. 

 

2. Purpose of Research 
 

In this dissertation, I aimed to enhance the spatial and temporal 

resolution of satellite dataset in order to expand vegetation change 

monitoring in time and space. For that, I generated canopy 

photosynthesis maps with high spatiotemporal resolution, extending 

spatial resolution of past dataset towards long-term vegetation 
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monitoring. With the high-resolution canopy photosynthesis maps, I 

quantified the impact of spatial and temporal resolution of maps when 

spatially upscaling in situ measurements. 

In Chapter 2, I implemented geostationary satellite products in the 

image fusion method towards daily gap-free surface reflectance 

product in visible (i.e., red, green, and blue) and near-infrared (VNIR) 

bands with high spatial resolution. For that, I integrated the series of 

processes that include cloud masking, nadir BRDF adjustment, spatial 

registration, spatiotemporal image fusion, spatial gap-filling, and 

temporal gap-filling. 

In Chapter 3, I present an approach for overcoming the spatial 

resolution gap between past and new datasets to generate consistent 

long-term terrestrial vegetation records. The dual generative 

adversarial network (GAN) model uses original and downscaled new 

datasets to train GAN models; it uses the output of one GAN as input 

for another model. I designed the dual GAN to improve spatial 

differences between past and new datasets in a sequential manner, 

beginning with the generation of long-term vegetation index maps 

with high spatial resolution. 

In Chapter 4, I facilitated daily, 3 m canopy photosynthesis maps 

from CubeSat NIRvP to link the satellite-based GPP to the tower 

observations, considering different scenarios. In particular, I 

attempted to answer the scientific questions about the impact of 

matching daily flux tower footprints with high resolution canopy 

photosynthesis maps. 
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Chapter 2. Generating daily gap-filled BRDF adjusted 

surface reflectance product at 10 m resolution using 

geostationary satellite product for monitoring daily canopy 

photosynthesis 

 

1. Introduction 

 

Utilizing the satellite products from different platforms can solve 

the weakness of geostationary satellite products in the spatial details. 

As Earth observations from single-satellite have constraints on 

either spatial resolution or revisit frequency due to the trade-off 

between pixel and swath width, researchers in environmental science 

need to select the satellite products based on the purposes. Among 

the widely used polar-orbiting satellites, for instance, the MODerate 

resolution Imaging Spectroradiometer (MODIS) can provide daily 

product with coarse spatial resolution on the global scale (Justice et 

al., 2002) when Landsat 8 Operational Land Imager (OLI) can acquire 

the 16-day product with relatively fine resolution over the same area 

(Roy et al., 2014a). Thus, the coarse spatial resolution of 

geostationary satellite products caused by the coninuous observation 

limits sensing spatial changes of the Earth in landscape-scale, mainly 

where spatial heterogeneity occurs within a pixel. One of the 

solutions to overcome the spatiotemporal limitation is the fusion of 

daily temporal resolution products (e.g., MODIS) with higher spatial 

resolution products (e.g., Landsat 8 and Sentinel 2) (Pohl and Van 

Genderen, 1998; Zhu et al., 2018). For example, the Flexible 

Spatiotemporal DAta Fusion (FSDAF) (Zhu et al., 2016) improved 

the performance of image fusion products by combining the ideas 

from weighted function-based methods (Feng et al., 2006; Zhu et al., 
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2010), unmixing-based methods (Gevaert and García-Haro, 2015; 

Zhukov et al., 1999), and spatial interpolation. In addition, FSDAF 

predicted the spatial and temporal variations of in situ dataset 

measured from the hyper-spectrometer in a heterogeneous rice 

paddy landscape (Kong et al., 2021). Furthermore, SFSDAF 

enhanced FSDAF method by considering sub-pixel class fraction 

change information (Li et al., 2020). Another solution could be 

harmonizing the products from the different satellites into a single 

dataset to complement the data gaps (Claverie et al., 2018; Frantz, 

2019a). Particularly, the processes that include spatial co-

registration between the scenes (Gao et al., 2009; Scheffler et al., 

2017; Yan et al., 2016b), spectral adjustment of each band (Houborg 

and McCabe, 2018a; Shang and Zhu, 2019; Wang et al., 2020a) enable 

us to achieve seamless products. When facilitating the image fusion 

of satellite products for enhancing the spatial resolution of 

geostationary products, the rigorous pre-processing, which includes 

atmospheric correction (Duffy et al., 2019; Lyapustin et al., 2011; 

Vermote et al., 1997) and cloud masking (Qiu et al., 2019; Zhu and 

Helmer, 2018), is an essential prerequisite (Choi et al., 2013; 

Claverie et al., 2018). 

Using diurnal changes of solar angles in continuous observations 

can reduce the effect of sun-target-sensor geometry on daily 

surface reflectance products. As sun-target-sensor geometry 

influences the instantaneous surface reflectance that depends on the 

land surface structure and optical properties, surface reflectance 

products from geostationary satellites vary within a day (Fensholt et 

al., 2010; He et al., 2019). When implementing a bidirectional 

reflectance distribution function (BRDF) using the varied 
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observations from different solar angles within a day, the daily 

surface reflectance at specific solar and viewing angles can be 

retrieved (He et al., 2019; Lee et al., 2020; Proud et al., 2014; 

Wheeler and Dietze, 2019; Yeom et al., 2020). On the other hand, the 

BRDF adjusted daily surface reflectance products from polar-

orbiting satellite, which are the composite of daily snapshots over 

several days (Schaaf et al., 2002; Wang et al., 2018b), has a limitation 

on monitoring the land surface changes in that period (Fensholt et al., 

2010). In the results of the semiempirical BRDF model (e.g., 

RossThick LiSparse (RTLSR) model (Li and Strahler, 1986; Lucht et 

al., 2000; Wanner et al., 1995) and Roujean model (Roujean et al., 

1992)), for example, the geostationary satellite products better-

captured terrestrial vegetation changes than polar-orbiting satellite 

products (Feng et al., 2006; Fensholt et al., 2010; Proud et al., 2014).  

Towards the gap-free product, the spatial and temporal gap-filling 

processes is an integral part of the robustness of daily surface 

reflectance product from geostationary products. Even if the 

geostationary satellites continuously observe the Earth’s surface, 

clouds and shadows will affect the data gaps or quality of satellite 

products, especially during the rainy season (Hashimoto et al., 2021). 

Unlike homogeneous areas, where simple interpolation methods can 

resolve missing-data problems, restoring the cloud-contaminated 

pixels is problematic over heterogeneous areas (Pringle et al., 2009; 

Weiss et al., 2014). As enhancing the spatial resolution of surface 

reflectance product magnify both homogeneous and heterogeneous 

areas (Zhu et al., 2010), the spatial gap-filling method should be 

adequate to predict small or narrow objects (Chen et al., 2011b; Zhu 

et al., 2012). For instance, the Neighborhood Similar Pixel 
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Interpolator (NSPI) (Chen et al., 2011b), which can fill the spatial 

gaps in the images in heterogeneous regions, was improved to 

Geostatistical NSPI (GNSPI) (Zhu et al., 2012) by embedding the 

geostatistical theory. In aspect of time, regression methods can 

temporally interpolate missing pixels using the pixels from different 

times, particularly, when temporal gaps between the data were short, 

surface reflectance tend to change linearly (Luo et al., 2018; Luo et 

al., 2020). Moreover, Gaussian process regression (GPR) - which 

uses the basis of multivariable normal distribution, nonparametric 

approach, and joint and conditional probability - can predict the 

nonlinear variation of land surfaces in time (Adeluyi et al., 2021; Yin 

et al., 2019). Thus, spatially and temporally gap-filled geostationary 

satellite products can give an insight into Earth surface processes, 

which cannot be recognized from satellite products with data gaps. 

In this paper, I implemented geostationary satellite products in the 

image fusion method towards daily gap-free surface reflectance 

product in visible (i.e., red, green, and blue) and near-infrared (VNIR) 

bands with high spatial resolution. For that, I integrated the series of 

processes that include cloud masking (i.e., Function of mask; Fmask), 

nadir BRDF adjustment (i.e., RTLSR model), spatial registration (i.e., 

An Automated and Robust Open-Source Image Co-Registration 

Software; AROSICS), spatiotemporal image fusion (i.e., SFSDAF), 

spatial gap-filling (i.e., NPSI), and temporal gap-filling (i.e., GPR). I 

decided to utilize the advantages of both spatiotemporal image fusion 

(i.e., SFSDAF) in large clouds and of gap-filling method (i.e., NPSI) 

in spatially small cloud patches (Shu et al., 2022) rather than 

choosing between them. In the integrated process, I used surface 

reflectance products from three polar-orbiting satellites (i.e., 



 

 10 

Sentinel 2, Landsat 8, and MODIS) and a geostationary satellite (i.e., 

Geo-KOMPSAT 2A; GK2A). The results are from heterogeneous 

rice paddy landscape where the drastic land cover changes were 

caused by cultivation management like irrigation and harvesting, and 

deciduous forest where consecutive changes occurred in time. For 

rigorous assessment, I evaluated the results in both space and time 

using hyperspectral maps derived from unmanned aerial vehicle 

(UAV) and in situ tower-based continuous spectral measurements. 

Our key scientific question is how much the daily gap-free surface 

reflectance products empower us to sense the changes of the Earth 

in space and time. 
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2. Methods 

 

2.1  Study sites 

 

To evaluate the performance of daily gap-free surface reflectance 

product, I included cropland (rice) and forest sites (deciduous forest; 

needleleaf forest) in Republic of Korea, which include flux towers 

registered in the Korea Flux Network (Figure 2.1; Table 2.1). The 

rice paddy site (Site ID: CRK) is predominantly covered by rice 

(Oryza sativa L. ssp. Japonica) and flat with a mean canopy height of 

less than 1m. (Dechant et al., 2020; Dechant et al., 2019; Huang et 

al., 2018; Hwang et al., 2020; Yang et al., 2018). The deciduous 

forest (Site ID: GDK) is covered by are Konara oak (Quercus spp.) 

and hornbeam (Carpinus spp), which are the dominant overstory 

species, in mountain with a mean canopy height of approximately 18 

m (Cho et al., 2021; Ryu et al., 2008; Ryu et al., 2014). The climates 

of sites are temperate monsoon climate and clouds are frequently 

cover the study sites with high precipitation during June to August. 
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Figure 2.1 (a) Map of the Korean peninsula (image source: Google Earth) indicating 

the location of the study area. (b) Locations of study sites and flux towers over 

cropland (CRK, red circle) and deciduous forest (GDK, yellow square). Further 

details are provided in Table 2.1. 

 

Table 2.1 List of study sites. Planet functional types are cropland (CRO) and 

deciduous broadleaf forest (DBF). Spectroradiometer position indicates sensor 

heights (m) from the ground. 

Site name (Site ID) Type 

Spectro 

radiometer 

position (m) 

Canopy 

height (m) 

Latitude (°N) 

Longitude (°E) 

Cheorwon Rice 

Paddy (CRK) 
CRO 5 m 0.5 m 

38.2013, 

127.2507 

Gwangreung 

Deciduous Forest 

(GDK) 

DBF 40 m 18 m 
37.7487, 

127.1489 
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2.2  In situ measurements 

 

To evaluate daily gap-free surface reflectance products, I 

compared them with in situ surface reflectance data from tower-

based hyperspectral and multi-spectral spectroradiometers and 

remotely piloted aviation system-based hyperspectral imager. From 

tower-based hyperspectral spectroradiometer (Jaz, Ocean Optics, 

Dunedin, FL, USA over rice paddy; Frame, Ocean Insight, Orlando, 

FL, USA over deciduous forest), I continuously measured canopy 

reflectance around each flux tower. Fiber optics with cosine 

correctors (Ocean Insight, Orlando, FL, USA) were equipped in 

hyperspectral spectroradiometers to measure bi-hemispheric 

reflectance. Additionally, LED-based multi-spectral 

spectroradiometer (Kim et al., 2019; Ryu et al., 2010; Ryu et al., 

2014) measured bi-hemispheric reflectance in deciduous forest 

(GDK). As satellite products provide the bidirectional reflectance 

factor, I used vegetation indices (e.g., Normalized Difference 

Vegetation Index (NDVI), approximated near infrared (NIR) 

reflectance from vegetation (NIRv)), which showed negligible impact 

on difference reflectance quantities (Feng et al., 2002; Kong et al., 

2021) to evaluate daily gap-free products. Based on difference 

between the sensor height from the ground and canopy height, I 

approximate the area of 80 % upwelling irradiance of bi-

hemispherical measurements. The estimated diameters of 

hyperspectral spectroradiometer footprints were 19.3 m (CRK) and 

17.2 m (GDK). To measure the bidirectional reflectance factor over 

the sites, I used hyperspectral imager (Nano-hyperspec, Analytik, 

Swavesey, UK) on remotely piloted aviation systems (DJI-600 pro 

and DJI-RONIN MX, Shenzhen, People ’ s Republic of China). 
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Hyperspectral imager scanned around 250 m by 250 m area centered 

on the flux towers of CRK and GDK (Figure 2.2). Further details were 

in original dataset paper (Choi et. al., in prep). 

 

Figure 2.2 In situ hyperspectral images (projection, WGS84/UTM zone 52N; red–

green–black (RGB) true color; 5-cm resolution). (a) Cropland (CRK) and (b) 

deciduous forest (GDK). Yellow symbols indicate flux tower locations. Black shading 

on the CRK map indicates data excluded from the final analysis. 

 

2.3  Satellite products 

 

Satellite data from different platform and sensors were used to 

generate daily gap-free surface reflectance products in VNIR bands 

(Table 2.2). I set the study period during 1 Jan 2020 to 31 Dec 2021. 

Geostationary-Korea Multi-Purpose Satellite-2 (GK2A) Advanced 

Meteorological Imager (AMI) scanned from East Asia to Australia 

with 0.5 km to 2 km resolution every 2 to 10 minutes depending on 

the region (Chung et al., 2020). I used GK2A AMI level 2 fixed 

viewing BRDF-adjusted reflectance (FVBAR) product with 2 km 

resolution, which is the daily normalized the reflectance that 

considered attribute of geostationary satellite observation (Lee et al., 

2020; Yeom and Kim, 2013). GK2A FVBAR daily surface reflectance 
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data were computed from BRDF model (i.e., Roujean model) 

inversion using cloud-free pixels in 10-minute interval GK2A data 

within five days before the day of interest. From Terra and Aqua 

MODIS data, daily Nadir view BRDF-adjusted reflectance (NBAR) 

product were retrieved (MCD43A4; Schaaf et al. (2002)) with 500 

m resolution. The inputs for daily MODIS NBAR product were the 

possible MODIS pixels within 16-day range in center of the day of 

interest. When sufficient (more than seven) high quality (e.g., cloud-

free) observations were available for semiempirical BRDF model (i.e., 

RTLSR model), a full BRDF inversion retrieval can be attempted. I 

used only pixels from full BRDF inversion retrievals in MCD43A4 

product (collection version 6) as an input for the integrated system. 

Landsat 8 OLI (Roy et al., 2014a) provide 16-day product with 30 

m resolution. I used level 2 (Surface reflectance) and angle 

parameter from Landsat 8 collection 2 level 1 (Top-of-atmosphere; 

TOA) to generate Landsat 8 NBAR data. Sentinel 2 A/B Multispectral 

Instrument (MSI) (Drusch et al., 2012b) provide 5-day product with 

10 m resolution for VNIR bands (band 2, 3, 4, and 8). I generated 

Sentinel 2 NBAR data using level 2 surface reflectance and angle 

parameter from Sentinel 2 A/B level 1 TOA. 
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Table 2.2 List of satellite data for generating daily gap-free surface reflectance 

products. Satellite data were measured from Geostationary-Korea Multi-Purpose 

Satellite-2 (GK2A) Advanced Meteorological Imager (AMI), Terra and Aqua 

Moderate Resolution Imaging Spectroradiometer (MODIS), Landsat 8 Operational 

Land Imager (OLI), and Sentinel 2 Multispectral Instrument (MSI). Spatial 

resolutions are for visible (red, green, and blue) and near-infrared bands. 

Satellite 

sensor 
Data 

Spatial 

resolution 

Temporal 

resolution 

Band number 

for VNIR 

GK2A 

AMI 

Fixed viewing BRDF-

adjusted reflectance 

(FVBAR) 

2 km Daily 

Blue = 1 

Green = 2 

Red = 3 

NIR = 4 

MODIS 

Nadir Bidirectional 

Reflectance 

Distribution Function 

(BRDF)-Adjusted 

Reflectance (NBAR) 

500 m Daily 

Blue = 3 

Green = 4 

Red = 1 

NIR = 2 

Landsat 

8 OLI 

Level1 (Top-of-

atmosphere), 

Level2 (Surface 

reflectance) 

30 m 16 days 

Blue = 2 

Green = 3 

Red = 4 

NIR = 5 

Sentinel 

2 MSI 

Level1 (Top-of-

atmosphere), 

Level2 (Surface 

reflectance) 

10 m 5 days 

Blue = 2 

Green = 3 

Red = 4 

NIR = 8 
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2.4  Integrated system 

 

To implement the integrated system, I designed the process including 

the preprocessing forcing data for image fusion methods (Figure 2.3). 

The system has three steps: 1) Preprocessing the coarse spatial 

resolution data (i.e., GK2A and MODIS), 2) Preprocessing the fine 

spatial resolution data (Landsat 8 and Sentinel 2), and 3) Image 

fusion and gap-filling process. 

 

2.4.1 Step 1: Daily gap-free 480 m resolution data 

I combined daily GK2A FVBAR and MODIS NBAR data into one 

dataset to prepare daily gap-free 480 m resolution data. First, I 

cropped the region of interest in GK2A FVBAR and MODIS NBAR 

data that contains only complete pixels in rather than segmented 

pixels on the boundary of the region of interest. Second, the 

coordinates of GK2A FVBAR and MODIS NBAR were re-projected 

to that of fine resolution data (e.g., WGS84 UTM 52N, ESPG:32652) 

and resampled the pixel size of NBAR data into 480 m by using cubic 

spline interpolation method in geospatial data abstraction library 

(GDAL). For image fusion processing, the ratio of the pixel size of 

coarse resolution to that of fine resolution should be integer. I set 

480 m, which is the common multiple of pixel sizes of fine spatial 

resolution data (i.e., 30 m for Landsat 8 and 10 m for Sentinel 2) near 

the pixel size of MODIS data (i.e., 500 m), as the coarse spatial 

resolution dataset. Third, missing pixels of daily MODIS NBAR (480 

m) due to insufficient high-quality observations for BRDF inversion 

retrievals were substituted by pixels of daily GK2A FVBAR (480 m) 

as GK2A have enough observations for generating almost gap-free 

daily FVBAR within five days before the day of interest. Last, I used 
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Gaussian process regression (GPR) model (fitrgp; MATLAB; The 

MathWorks, Inc., Natick, MA, USA) on time-series dataset at each 

location to fill the remained gaps. Gaussian process (Rasmussen, 

2004) is an example of random (stochastic) process that has random 

variables following the linear combination of multivariable normal 

distribution. When the nonlinear function that represent the dataset 

in time is a probability model with error bar, GPR estimates the 

normal distribution of that function with mean function and covariance 

(=kernel) function. After optimizing the hyper-parameters that 

controls functional covariance, I can use that posterior mean and 

covariance to predict the values in gaps. To minimize the prediction 

error, I selected the options of fitrgp function as follows: an exact 

GPR method to make prediction, a squared exponential kernel 

function, and the unconstrained nonlinear optimization for parameter 

estimation (i.e, ‘fminuc’ in fitrgp function). When the number of 

pixels were insufficient for GPR model, I estimated missing values by 

smoothing (i.e., robust quadratic regression method) nearby pixels 

within the window whose sizes were computed by own heuristic basis 

(smoothdata; MATLAB; The MathWorks, Inc., Natick, MA, USA). 

 

2.4.2 Step 2: Landsat 8 and Sentinel 2 preprocessing 

I prepared the cloud mask using automated cloud and cloud shadow 

detection algorithm (i.e., Fmask 4.6, 

https://github.com/GERSL/Fmask; (Qiu et al., 2019)) to filter out low 

quality pixels in Landsat 8 and Sentinel 2 level 2 data. Fmask, which 

is a widely used physical-rule-based algorithm, derives the physical 

characteristics of cloud (e.g., white, bright, cold, and high in elevation) 

using different spectral bands and auxiliary data (i.e., Global Surface 
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Water Occurrence data and Digital Elevation Model data). Then, 

Fmask classifies pixels of Landsat 8 and Sentinel 2 into land and 

water or distinguishes snow/ice from clouds. At the same time, I 

generated Landsat 8 and Sentinel 2 NBAR data using RTLSR model 

with kernel parameters written in Roy et al. (2016b) and Roy et al. 

(2017) as official NBAR products are not available over the study 

sites. The kernel parameters were derived from MODIS spectral 

BRDF model parameters of MODIS bands that were spectrally 

equivalent to Landsat 8 and Sentinel 2 bands. I extracted angle 

parameters (i.e., VZA, SZA, RAA) of Landsat 8 and Sentinel 2 from 

Landsat 8 level 1 data using Landsat 8 Angle Creation Tool and 

metadata of Sentinel 2 level 1 data in MTL format, respectively. 

Additionally, I conducted geospatial co-registration between Landsat 

8 and Sentinel 2 NBAR to reduce the impact of misregistration on 

multi-sensor temporal data analysis. The AROSICS (Scheffler et al., 

2017) co-registers the satellite data based on a moving window 

analysis that estimate sub-pixel shift using the Fourier shift theorem. 

As AROSICS automatically detects and corrects the misalignments 

between the satellite datasets, its implementation is suitable for our 

integrated system. Further details on AROSICS methodology can be 

found in Scheffler et al. (2017). Finally, I cropped the Landsat 8 

NBAR and Sentinel 2 NBAR based on the region that daily gap-free 

480 m resolution data covers. 

 

2.4.3 Step 3: Image fusion and gap-filling process 

I used image fusion algorithm (i.e., SFSDAF) to enhance the spatial 

resolution and used spatial gap-filling methods (i.e., NSPI) to fill up 

the missing pixels. SFSDAF inherits the strengths of FSDAF that are 
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the minimum requirement for input data and the prediction of abrupt 

change over heterogeneous land surface (Zhu et al., 2016). Based on 

FSDAF, SFSDAF were proposed to incorporate sub-pixel class 

fraction changes into spatiotemporal image fusion (STIF) process. 

Therefore, SFSDAF products retain the information to derive 

phenological changes and land cover class changes (Li et al., 2020). 

I decided to use SFSDAF among the STIF methods to utilize the full 

potential of multiple satellite dataset in the system. NSPI restores 

the missing pixels using neighboring pixels in the same-class (Chen 

et al., 2011b). With this simple assumption, NSPI effectively 

interpolated the pixel values even in heterogeneous landscape areas. 

Although I considered GNSPI as an alternative candidate (Zhu et al., 

2012), its implementation is more complicated including the high 

computation cost compared to NSPI. Moreover, the performance of 

NSPI is comparable with GNSPI in many situations, including 

heterogeneous landscape. I fused daily gap-free NBAR with 480 m 

resolution and Landsat 8 NBAR using SFSDAF to produce daily 

NBAR with 30 m resolution (denoted as STIF 30 m). Then, I make 

pairs of the STIF 30m data and Landsat 8 mask data at an equivalent 

or nearest date. I implemented spatial gap-filling algorithm (i.e., 

NSPI) with the pairs to fill the missing pixels by the cloud-

contaminated pixels in Landsat 8 data. Through the spatial gap-filling 

process, I generated daily gap-free NBAR with 30 m resolution 

(denoted as GF STIF 30 m). In the same way, I proceeded SFSDAF 

and NSPI using GF STIF 30 m and Sentinel 2 NBAR to obtain daily 

gap-free NBAR with 10 m resolution (denoted as GF STIF 10 m). 
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Figure 2.3 The flowchart of the integrated system 

 

2.5  Canopy photosynthesis 

I used NIR radiation reflected from vegetation (NIRvP) as a proxy 

of canopy photosynthesis. From the approximated NIR reflectance 

from vegetation (NIRv; Eq. [1]) that is the product of the normalized 

difference vegetation index (NDVI) and NIR reflectance, NIRvP (Eq. 

[2]) were derived using the amount of incoming photosynthetically 

active radiation (PAR). Since NIRvP was proposed as a structural 

proxy for GPP estimation, it had been widely adopted to estimate GPP 

at hourly to daily timescales for plot to continental scale (Baldocchi 

et al., 2020; Dechant et al., 2022; Dechant et al., 2020; Jiang et al., 

2021; Kong et al., 2022; Liu et al., 2020). 
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where ρNIR and ρRed are reflectance in the NIR and red regions, 

respectively. 

 

 

Figure 2.4 Example NDVI and NIRv images produced by the integrated system (i.e., 

STIF step2 GF) over CRK (red circle) and GDK (red square) sites on July 1, 2020. 

  

𝐍𝐃𝐕𝐈 =  
𝛒𝐍𝐈𝐑− 𝛒𝐑𝐞𝐝

𝛒𝐍𝐈𝐑+ 𝛒𝐑𝐞𝐝
  Eq. (1) 

 𝐍𝐈𝐑𝐯 =  𝛒𝐍𝐈𝐑 ×  𝐍𝐃𝐕𝐈 Eq. (2) 

 𝐍𝐈𝐑𝐯𝐏 =  𝐍𝐈𝐑𝐯 ×  𝐏𝐀𝐑 Eq. (3) 
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2.6  Evaluation 

To evaluated the performance of GF STIF data, I compared GF 

STIF-derived NIRvP to in situ measurements used several metrics. 

I followed previous studies (Chen et al., 2015; Kong et al., 2021; Zhu 

et al., 2018) that used the coefficient of determination (R2) of linear 

regression models, relative bias (rbias; Eq. [4]), and the relative root 

mean square error (rRMSE; Eq. [5]) to evaluate the image fusion 

products. 

𝐫𝐛𝐢𝐚𝐬 =
𝐄(‖𝐀 − 𝐁‖)

𝐄(𝐁)
 

Eq. (4) 

𝐫𝐑𝐌𝐒𝐄(𝐀) =
√𝐄((𝐁 − 𝐀)𝟐)

𝐄(𝐁)
 

Eq. (5) 

where A is fusion NIRvP products, B is in situ NIRvP, and E is the 

mean operator. 

I compared GF STIF NIRvP to GPP from the eddy covariance 

systems. As the footprint of EC system is the source area of detected 

trace gases by an EC system, I used for GF STIF pixel selection for 

GPP estimation. The daily flux footprints were calculated with the 

model from Kljun et al. (2015). When extracting GF STIF pixels 

within the daily footprint of EC system, I weighted the pixel values 

based on footprint contribution at satellite overpass time for each day 

(1000hh – 1130hh). I split the weighting factors from 10 % to 80 % 

in each 10 % interval (Eq. [6]).  

𝐍𝐈𝐑𝐯(𝐏)𝐄𝐂𝐟𝐨𝐨𝐭𝐩𝐫𝐢𝐧𝐭 = 

∑ (𝐍
𝐤=𝟏

𝐍𝐈𝐑𝐯𝐤 𝐰𝐢𝐭𝐡𝐢𝐧 𝐂𝐋𝟏𝟎 %

𝐍 𝐰𝐢𝐭𝐡𝐢𝐧 𝐂𝐋𝟏𝟎 %
×

𝟏𝟎

𝟖𝟎
) +

∑ ∑ (𝐍
𝐤=𝟏

𝐍𝐈𝐑𝐯𝐤 𝐛𝐞𝐭𝐰𝐞𝐞𝐧 𝐂𝐋(𝐢+𝟏)×𝟏𝟎 %  𝐚𝐧𝐝 𝐂𝐋𝐢×𝟏𝟎 %

𝐍 𝐛𝐞𝐭𝐰𝐞𝐞𝐧 𝐂𝐋(𝐢+𝟏)×𝟏𝟎 %  𝐚𝐧𝐝 𝐂𝐋𝐢×𝟏𝟎 %
×

𝟏𝟎

𝟖𝟎
)𝟖

𝐢=𝟏   

Eq. 

(6) 

where k is each pixel number in the total number(N) of pixels within 

the footprint area, CLD % is D % footprint contour line. 
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3. Results and discussion 

 

3.1  Comparison of STIF NDVI and NIRv with in situ NDVI and NIRv 

STIF step2 GF NDVI performed better than STIF step1 GF NDVI 

in terms of tracking changes in in situ NDVI (Figure 2.5). STIF step2 

GF NDVI showed strong linear relationships with in situ NDVI (R2 = 

0.76, rRMSE = 28.19 % at CRK; R2 = 0.83, rRMSE = 14.68 % at 

GDK), compared to STIF step1 GF NDVI (R2 = 0.74, rRMSE = 33.06 % 

at CRK; R2=0.75, rRMSE = 17.15 % at GDK). Although all STIF NDVI 

results were negatively biased against in situ NDVI, the 

underestimations of STIF step2 GF NDVI (rbias = −7.24 % at CRK; 

rbias = −10.07 % at GDK) were smaller than STIF step2 GF NDVI 

(rbias = -14.29 % at CRK; rbias = −13.89 % at GDK), especially 

growing season (Figure 2.5). 

STIF step2 GF NIRv did not performed better than STIF step1 GF 

NIRv in terms of tracking changes in in situ NDVI (Figure 2.5). STIF 

step1 GF NIRv showed strong linear relationships with in situ NIRv 

(R2 = 0.703 at CRK; R2 = 0.617 at GDK), compared to STIF step2 

GF NIRv (R2 = 0.701 at CRK; R2 = 0.462 at GDK). However, STIF 

step2 GF NIRv showed smaller rRMSE and rbias (rRMSE = 48.71 %, 

rbias = −7 % at CRK; rRMSE = 36.17 %, rbias = −21.26 % at GDK) 

than STIF step1 GF NIRv (rRMSE = 60.13 %, rbias = −25.48 % at 

CRK; rRMSE = 37.65 %, rbias = −29.57 % at GDK). 
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Figure 2.5 Comparison of measured in situ normalized vegetation difference index 

(NDVI) and near-infrared radiation reflected from vegetation (NIRv) around the 

satellite passing time with STIF step 1 GF and STIF step 2 GF data to calculate the 

coefficient of determination (R2), the significance of the linear regression (p-value), 

the slope of the linear regression (slope), relative root mean square error (rRMSE), 

and relative bias (rbias). Dashed black lines are 1:1 line (y = x) and n is the number 

of samples used in the linear regression model. 
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STIF results followed the seasonal variation of in situ NDVI and 

NIRv (Figure 2.6). STIF step 1 GF NDVI and NIRv over CRK and 

GDK underestimated the in situ NDVI and NIRv during the peak 

growing season (Figure 2.6). 

Since the NDVI and NIRv are used in the calculation of NIRvP 

(Dechant et al., 2022), the performance of NDVI and NIRv derived 

from the integrated system (comprising STIF step1 GF and STIF 

step2 GF) can assured the quality of NIRvP from the integrated 

system for monitoring canopy photosynthesis. The improvement in 

estimating in situ NDVI and NIRv were occurred when enhancing 

spatial resolution. This result is consistent with the previous studies 

that quantified the impact of land cover mixing within image pixels 

(Kong et al., 2021). 
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Figure 2.6 Seasonal variations of NDVI and NIRv derived from integrated system 

(comprising STIF step1 GF and STIF step2 GF) and in situ measurements at 

cropland site (CRK) and deciduous forest site (GDK). 
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3.2  Comparison of STIF NIRvP with in situ NIRvP 

NIRvP derived from the integrated system show good performance 

to estimate in situ NIRvP (Figure 2.7). STIF step1 GF NIRvP showed 

strong linear relationships with in situ NIRvP (R2 = 0.73, rRMSE = 

45.56 % at CRK; R2 = 0.84, rRMSE = 32.12 % at GDK), compared to 

STIF step1 GF NIRvP (R2 = 0.71, rRMSE = 51.90 % at CRK; R2 = 

0.79, rRMSE = 33.48 % at GDK). Compared to STIF step1 NIRvP 

results, which were negatively biased against in situ NIRvP (rbias = 

−15.98 % at CRK; rbias = −13.89 % at GDK), the underestimations 

of STIF step2 GF NIRvP (rbias = 5.64 % at CRK; rbias = −13.80 % 

at GDK) were smaller (Figure 2.7). 
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Figure 2.7 Comparison of measured in situ near-infrared radiation reflected from 

vegetation multiplied by incoming sunlight (NIRvP) around the satellite passing time 

with STIF step 1 GF and STIF step 2 GF data to calculate the coefficient of 

determination (R2), the significance of the linear regression (p-value), the slope of 

the linear regression (slope), relative root mean square error (rRMSE), and relative 

bias (rbias). Dashed black lines are 1:1 line (y = x) and n is the number of samples 

used in the linear regression model. 

STIF results followed the seasonal variation of in situ NIRvP 

(Figure 2.8). STIF step 1 GF NIRvP over CRK and GDK 

underestimated the in situ NDVI and NIRv during the peak growing 

season, compared to STIF step 2 GF NIRvP (Figure2. 8). 

Integrated system NIRvP showed strong linear relationship with in 

situ NIRvP, compared to integrated system NDVI (NIRv) with in situ 

NDVI (NIRv). Compared to STIF step1 GF, STIF step2 GF did not 

underestimate in situ NIRvP during peak growing season. Thus, I can 

utilize the integrated system NIRvP for estimating high 
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spatiotemporal resolution canopy photosynthesis map (Baldocchi et 

al., 2020; Dechant et al., 2022; Kong et al., 2022). 

 

 

Figure 2.8 Seasonal variations of NIRvP derived from integrated system (comprising 

STIF step1 GF and STIF step2 GF) and in situ measurements at cropland site (CRK) 

and deciduous forest site (GDK). 
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4. Conclusion 

Enhancement of the spatiotemporal resolution of satellite imagery 

is important for monitoring daily changes in vegetation, especially 

heterogeneous landscape areas. In this study, I proposed the 

integrated system that conduct the series of processes, including 

cloud masking, nadir BRDF adjustment, spatial registration, 

spatiotemporal image fusion, spatial and temporal gap-filling. I 

demonstrated the performance of the integrated system with respect 

to in situ measurements over cropland and deciduous forest in 2020. 

The proposed system enables us to monitor daily canopy 

photosynthesis dynamics among regions of interest worldwide with 

high spatial resolution. I added geostationary satellite images that 

were not used in the existing image fusion method to lower the 

uncertainty when increasing time resolution of image fusion products. 

I anticipate future efforts to use our system in various ecosystems 

including tropical forest that have been hindered by the limited spatial 

and temporal resolution of satellite imagery or conifer forest that 

show small variations of vegetation index throughout a year. 
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Chapter 3. Super-resolution of historic Landsat imagery 

using a dual Generative Adversarial Network (GAN) model 

with CubeSat constellation imagery for monitoring 

vegetation changes 

 

1. Introduction 

Advances in remote sensing have improved the spatial resolution 

of satellite observations of the Earth’s surface. For > 40 years, the 

Landsat mission has obtained spectral information regarding the 

Earth’s surface with 30–60-m resolution (Irons et al., 2012; Masek 

et al., 2020; Roy et al., 2014b; Wulder et al., 2019). Since the launch 

of the Sentinel 2 mission in 2015, multispectral imagery with 10-20 

m resolution has become available for global-scale land monitoring 

(Drusch et al., 2012a). CubeSat constellations (e.g., PlanetScope), 

which comprise satellites with multiple cubic units (i.e., < 1.33 kg 

unit−1) (Puig-Suari et al., 2001), have enabled global satellite 

datasets with 3-m resolution at a near-daily frequency (Roy et al., 

2021). For example, vegetation index maps derived from 

PlanetScope data have demonstrated ability to robustly capture 

spatial and temporal variations in canopy photosynthesis, crop yield, 

and phenology (Houborg and McCabe, 2018b; Houborg and McCabe, 

2018c; Johansen et al., 2022; Kong et al., 2021; Kong et al., 2022; 

Ziliani et al., 2022). The recently released Planet Fusion dataset 

(Planet Fusion Team, 2022), which overcomes cross-sensor 

inconsistencies in the CubeSat constellation (Houborg and McCabe, 

2018a) and cloud-induced data gaps, has shown promise in terms of 

vegetation monitoring, even in heterogeneous areas (Johansen et al., 

2022; Kong et al., 2022; Ziliani et al., 2022). 

Despite the emergence of new satellite datasets with high spatial 
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resolution (< 5 m), longer term historic satellite datasets remain 

limited by relatively low resolution. Compared to the Planet Fusion 

3-m-resolution dataset, datasets with resolutions in the range of 

tens of meters are often insufficient for effectively detecting 

vegetation dynamcis in regions characterized by heterogeneous land 

cover (Kong et al., 2022), and for supporting precision agriculture 

(Stoy et al., 2022). Multiple approaches have been proposed to 

enhance the spatial resolution of satellite images, such as image 

fusion and interpolation-based (e.g., nearest-neighbor or bilinear) 

methods (Rahmani et al., 2010). Although image fusion methods, 

including pan-sharpening, were developed for spatial enhancement, 

they require additional datasets with high spatial resolution for the 

same time period (Zhu et al., 2018). In contrast, interpolation 

methods can enhance the spatial resolution of a single image without 

requiring additional datasets; however, the results are hindered by 

noise amplification and blurred details. Interpolation methods also 

magnify the noise of satellite datasets over heterogeneous 

landscapes because high-spatial-resolution pixels are not always 

linearly mixed into low-spatial-resolution pixels (Teillet et al., 

1997). Therefore, rather than fully exploiting the abundant details in 

high-spatial-resolution satellite imagery, these datasets are often 

downscaled to generate long-term datasets with a consistent spatial 

resolution (Claverie et al., 2018; Griffiths et al., 2019). 

Generative adversarial networks (GANs) have shown promise in 

terms of increasing the spatial resolution of images, through a 

process known as super-resolution. Super-resolution is an ill-

posed inverse problem that may not have an ideal solution for the 

estimation of perfect observations from imperfect datasets; thus, 

multiple deep learning-based methods have been suggested to 
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achieve single-image super-resolution (Dong et al., 2015; Kawulok 

et al., 2021; Latte and Lejeune, 2020; Ledig et al., 2017; Wang et al., 

2021; Wang et al., 2018a). Among deep learning-based methods, 

GAN-based approaches enable robust restoration of images 

containing blur, resizing, and noise artifacts (Wang et al., 2021). 

Because the architecture of GAN-based methods uses both 

unsupervised and supervised learning (Goodfellow et al., 2014), this 

architecture can restore spatial representations in past datasets by 

learning from the detailed spatial representations in new, high-

spatial-resolution satellite datasets. The first application of a GAN 

to enhance image spatial resolution was the Super-Resolution GAN 

(SRGAN; (Ledig et al., 2017), followed by Enhanced-SRGAN 

(ESRGAN; (Wang et al., 2018a) and Real-ESRGAN (Wang et al., 

2021), all of which improved the ability of GAN-based approaches 

to manage artifacts. Few studies have used GAN models for object 

detection in 1–10-m-resolution satellite data (Beaulieu et al., 2018; 

Ren et al., 2020; Salgueiro Romero et al., 2020; Wang et al., 2020d); 

to our knowledge, no studies have used GAN models for long-term 

vegetation monitoring. 

Multiple factors have restricted the use of GAN-based super-

resolution methods for detailed vegetation monitoring with past 

satellite datasets. Vegetation monitoring via super-resolution in 

heterogeneous areas requires high perceptual quality to distinguish 

vegetated areas from other land cover types, as well as low distortion 

in terms of spectral information. However, the trade-off between 

increasing perceptual quality and decreasing distortion limits the 

performance of GAN models (Blau and Michaeli, 2018). Although 

spectral information can be preserved by harmonizing image pairs 

before GAN model training (Salgueiro Romero et al., 2020), the 
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spatial resolution of Landsat datasets (e.g., Landsat 8 surface 

reflectance product, 30 m) is 10-fold lower than the spatial 

resolution of PlanetScope datasets (e.g., Planet Fusion product, 3 m). 

This large spatial resolution discrepancy complicates accurate co-

registration of low- and high-spatial-resolution image pairs (Ren et 

al., 2020), as well as the restoration of image spatial representation. 

Differences among satellite sensors (Claverie et al., 2018; Scheffler 

et al., 2017; Storey et al., 2016; Yan et al., 2016b), caused by 

variations in sun–target–sensor geometry (Roy et al., 2017; Roy et 

al., 2016b) and spectral sensitivity, can degrade the performance of 

the GAN model in super-resolution (Beaulieu et al., 2018) Finally, a 

robust GAN model requires large amounts of cloud-free low- and 

high-spatial-resolution image pairs to learn surface changes at 

different scales; however, it is challenging to pair images for the 

same date because of clouds (Ju and Roy, 2008) and differences in 

satellite revisit frequency. 

High frequency and high spatial resolution satellite data from 

CubeSat constellations meet the quality and quantity requirements 

for image pairs needed to effectively train GAN models. Variations in 

sun–target–sensor geometry in archived Landsat datasets can be 

reduced by transforming these datasets to nadir-view bidirectional 

reflectance distribution function (BRDF)-adjusted reflectance 

(NBAR) products (Roy et al., 2016b). The Planet Fusion product 

harmonizes near-daily CubeSat imagery against BRDF-corrected 

Landsat 8 and Sentinel 2 data (Frantz, 2019b; Planet Fusion Team, 

2022), which makes it suitable for the formation of image pairs with 

Landsat datasets. In addition to the importance of cross-sensor 

calibration for long-term observation (Wulder et al., 2021), the 

Planet Fusion product delivers cloud-free surface reflectance values 
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on a continuous daily basis, which enables straightforward pairing 

with day-coincident Landsat images. Since the upscaling range 

allowed by the super-resolution GAN model (i.e., a scale factor of 

4) is smaller than the spatial resolution ratio between Landsat and 

Planet Fusion (i.e., a scale factor of 10), multi-scaled approach is 

needed (Lai et al., 2017). Because the downscaling process cannot 

determine values outside of the observation range, downscaled 

Planet Fusion products inherit the quality of the original Planet Fusion 

dataset. Accordingly, high-quality image pairs may be constructed 

between Landsat and Planet Fusion products in multi-scale. When 

images within a pair have different scales, a sequential GAN model 

that uses the outputs of a GAN as inputs for another model can be 

applied (e.g., a boosting meta-algorithm in ensemble machine 

learning). 

In this study, we present an approach for overcoming the spatial 

resolution gap between long-term (i.e., Landsat archive) and more 

recent (i.e., Planet Fusion) imagery datasets to generate consistent, 

high spatial resolution, long-term terrestrial vegetation records. A 

series of GANs (referred to as “dual GAN”) uses the original and 

downscaled Planet Fusion data to train GAN models; it uses the 

output of one GAN as input for another model. We designed the dual 

GAN to reduce spatial differences between past and new datasets in 

a sequential manner, beginning with the generation of long-term 

vegetation index maps with high spatial resolution as follows. We 

prepared Landsat 8 NBAR products to reduce the impacts of 

directional effects among the different satellite products (i.e., 

Landsat 8, Sentinel 2, and Planet Fusion). Then, we trained the 

Remote Sensing Super-resolution dual-GAN (dual RSS-GAN) to 

emulate Landsat 8 datasets with 10- and 3-m resolution, using a 2 
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year record of satellite image pairs (i.e., Landsat 8 and Planet Fusion 

from 2020 and 2021). Next, we used the dual RSS-GAN model to 

simulate historic Landsat 8 vegetation index maps (2013–2019) with 

10- and 3-m spatial resolution over cropland and deciduous forest 

landscapes. Finally, we compared vegetation index maps from the 

dual RSS-GAN models with in situ tower-based continuous 

measurements (over a period of up to 8 years) and vegetation index 

maps acquired using a remotely piloted aerial system (RPAS). These 

evaluations serve to demonstrate the spatial and temporal robustness 

of the outlined approach for enhancing the spatial resolution of long-

term vegetation observations. 
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2. Methods 

 

2.1  Real-ESRGAN model 

To generate vegetation maps similar to real landscapes, I based 

the dual RSS-GAN on the Real-ESRGAN model (Wang et al., 

2021), which effectively restores detailed spatial representations 

and suppresses artifacts in low-resolution images. Generally, a 

GAN consists of two neural networks: the discriminator, which 

classifies data into real and generator-derived artificial types, and 

the generator, which creates artificial data that will mislead the 

discriminator (i.e., leading to labeling as real data). Whereas the 

generator is updated to reduce differences between model-

generated and actual data (i.e., loss), the discriminator is trained to 

minimize instances of misclassification. Thus, the generator is both 

unsupervised and constrained by binary supervised classification 

loss (true vs. artificial data). Successive degradation processes 

such as image blur, resizing, noise, and compression are repeated 

twice as high-order degradation during Real-ESRGAN model 

training with low- and high-spatial-resolution image pairs. In the 

last step of high-order degradation, the sinc filter kernel, which 

eliminates high frequencies, is utilized to reduce ringing and 

overshoot artifacts that often appear near sharp transitions, as 

follows: 

𝐬𝐢𝐧𝐜 𝐤𝐞𝐫𝐧𝐞𝐥(𝐢, 𝐣) =
𝐰𝐜

𝟐𝛑√𝐢𝟐+𝐣𝟐
𝐉𝟏(𝐰𝐜√𝐢𝟐 + 𝐣𝟐)  Eq. (1) 

where (i, j) are the kernel coordinates; wc is the cut-off frequency; 

and J1 is the first-order Bessel function of the first kind. 

To train high-order degradation, the discriminator in Real-

ESRGAN was designed to have a U-Net structure with skip 

connections that capture general context information among pixels 
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and detailed localization for up-sampling (Ronneberger et al., 

2015). Because of the complicated degradation and structure of U-

Net, spectral normalization (Miyato et al., 2018) is performed to 

stabilize the training dynamics of the discriminator. During the 

training process, a discriminator with L1 loss [Eq. (2)] initializes 

the generator; Real-ESRGAN is trained using a combination of L1 

loss, perceptual loss [Eq. (3), also known as style loss], and GAN 

loss [Eq. (4)]: 

𝐋𝟏 𝐥𝐨𝐬𝐬 =  

∑ |𝐲𝐭𝐚𝐫𝐠𝐞𝐭 − 𝐲𝐩𝐫𝐞𝐝𝐢𝐜𝐭𝐞𝐝| 

Eq. (2) 

𝐏𝐞𝐫𝐜𝐞𝐩𝐭𝐮𝐚𝐥 𝐥𝐨𝐬𝐬 = 

 
𝟏

𝐖𝐢,𝐣𝐇𝐢,𝐣
∑ ∑ (𝛟𝐢,𝐣(𝐈𝐇𝐑)𝐱,𝐲 − 𝛟𝐢,𝐣(𝐆𝛉𝐆(𝐈𝐋𝐑))

𝐱,𝐲
)𝟐𝐇𝐢,𝐣

𝐲=𝟏

𝐖𝐢,𝐣

𝐱=𝟏
) 

Eq. (3) 

𝐆𝐀𝐍 𝐥𝐨𝐬𝐬 =  

 𝐦𝐢𝐧
𝛉𝐆

𝐦𝐚𝐱
𝛉𝐃

𝐄𝐈𝐇𝐑~𝐩𝐭𝐫𝐚𝐢𝐧(𝐈𝐇𝐑)[𝐥𝐨𝐠𝐃𝛉𝐃(𝐈𝐇𝐑)]

+ 𝐄𝐈𝐋𝐑~𝐩𝐆(𝐈𝐋𝐑)[𝐥𝐨𝐠(𝟏 − 𝐃𝛉𝐃(𝐆𝛉𝐆(𝐈𝐋𝐑))] 

Eq. (4) 

where Hj, Wj are the dimensions of the U-Net input feature map; 

𝜙𝑖,𝑗 is the feature map for the jth convolution before the ith 

maxpooling layer; D is the discriminator; G is the generator; 𝜃 

represents weights and biases; E is the expectation operator; IHR is 

a high-resolution image; ILR is a low-resolution image; p is the 

probability distribution; and D(x) is the probability for data x. 

In this study, we used the generator and discriminator structure 

of Real-ESRGAN (Wang et al., 2021) to train the dual RSS-GAN 

models to generate vegetation index maps at different scales. 

Because Real-ESRGAN is one of the state-of-art image super-

resolution models, the pre-trained generator and discriminator 

were already trained to capture artifacts introduced by scale 
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changes; therefore, we adapted the dual RSS-ESRGAN for satellite 

images. The detailed dual RSS-GAN training process is described 

in Section 2.7. 

 

2.2  Study sites 

We compared 30-, 10-, and 3-m-resolution vegetation index 

maps with in situ measurements at study sites with flux towers where 

the variation of vegetation indices is large (e.g, cropland and 

deciduous forest) within the Republic of Korea. Flux towers in rice 

croplands and deciduous forests are part of the the Korea Flux 

Network (Figure 3.1; Table 3.1). The deciduous forest site (GDK) is 

in a mountainous area, where the dominant overstory species are 

Konara oak (Quercus spp.) and hornbeam (Carpinus spp.), with a 

mean canopy height of approximately 18 m, and the dominant 

understory species are Korean spindletree (Euonymus oxyphyllus) 

and cornel (Cornus kousa) (Cho et al., 2021; Ryu et al., 2008; Ryu et 

al., 2014). The rice paddy site (CRK) has flat terrain, and the 

predominant species in the flux tower area is rice (Oryza sativa L. 

ssp. japonica), with a mean canopy height of around 0.5 m at peak 

growing season. (Dechant et al., 2020; Dechant et al., 2019; Huang 

et al., 2018; Hwang et al., 2020; Kim et al., 2019; Yang et al., 2018). 

Each site has a temperate monsoon climate, with frequent cloud cover 

and high precipitation from June to August. The vegetations in 

agricultural land is close to herbaceous with relatively short and 

simple vegetation structure, compared to deciduous forest that has 

tall tree with complex vegetation structures. On the other hand, 

agricultural land is not spatially homogeneous because each field was 

managed in different dates by the owners when deciduous forest 

showed stable land cover changes. 



 

 41 

 

 

Figure 3.1 (a) Map of the Korean peninsula (image source: Google Earth) indicating 

the location of the study area. (b) Locations of Planet Fusion tiles (red squares; 24 

km × 24 km per tile) and flux towers over cropland (CRK, yellow circle) and 

deciduous forest (GDK, yellow square). Further details are provided in Table 3.1. 
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Table 3.1 Description of study sites. Spectroradiometer position indicates sensor 

height (m). CRO, cropland; DBF, deciduous broadleaf forest. Spectroradiometer 

position indicates the sensor heights (m) from the ground. 

Site (ID) 

Land 

cover 

Type 

Spectro- 

radiometer 

 position 

(m) 

Canopy 

height 

(m) 

Latitude 

(°N) 

Longitude 

(°E) 

In situ 

measurements 

period 

Gwangreung 

deciduous 

forest 

(GDK) 

DBF 22 18 
37.7487, 

127.1489 
2013–2020 

Cheorwon 

rice paddy 

(CRK) 

CRO 5 0.5 
38.2013, 

127.2507 
2016–2021 

 

2.3  In situ measurements 

To evaluate temporal variation in vegetation index maps with 30-, 

10-, and 3-m resolution, we used in situ spectral reflectance 

measured with Jaz hyperspectral radiometers (350–1000nm, 1.5 nm 

resolution, Ocean Insight, Dunedin, FL, USA) and a light-emitting 

diode (LED)-based near-surface remote-sensing system (Kim et 

al., 2019). In the rice paddy, Jaz spectroradiometers with two fiber 

optic probes and cosine correctors were installed 5 m above the 

ground (Table 3.1). In the deciduous forest site, the LED-based 

near-surface remote-sensing system, which automatically collects, 

transfers and processes vegetation indices using blue, green, red, and 

NIR LEDs with a quality comparable to the Jaz hyperspectral 

radiometers (Kim et al., 2019), was installed 4 m above the canopy 

(Ryu et al., 2014). Because all in situ spectral measurements were 

bi-hemispheric reflectance measurements (Schaepman-Strub et al., 
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2006), we estimated 80% cumulative reflectance footprints 

according to the sensor heights above the canopy (Liu et al., 2017b). 

The estimated footprint diameters of the in situ hyperspectral and 

LED measurement footprints were approximately 19 m (CRK, rice) 

and 17 m (GDK, deciduous forest), respectively. To match the 

tower-based in situ collection time to the Landsat 8 satellite 

overpass time (approximately 1015hh-1030hh), we used in situ data 

at 1030hh. We converted in situ hyperspectral data to Landsat [red 

band: 640–670 nm, near-infrared (NIR) band: 850–880 nm] and 

Sentinel 2 [red band: 650-680 nm, NIR band: 789–898 nm] broad-

band data using the spectral response functions of the Landsat 8 

Operational Land Imager (OLI) and Sentinel 2 Multispectral 

Instrument (MSI), respectively. The LED-based GDK data consist 

of only 4 bands (peak sensitivity/full-width half maximum): blue 

(440/65), green (525/80), red (646/56), and NIR (843/72) (Ryu et 

al., 2014). 

To evaluate spatial patterns in the vegetation index maps, we used 

spectral reflectance maps (5-cm resolution) from a hyperspectral 

imager (Nano-Hyperspec, visible and NIR model; Headwall 

Photonics, Fitchburg, MA, USA) mounted on a remotely piloted aerial 

system (RPAS; DJI-M600pro, DJI, Shenzheng, China). To create the 

surface reflectance map, we calculated the ratio of outgoing radiance, 

measured by a hyperspectral imager, to incoming irradiance, 

measured by a tripod mounted hyper-spectrometer (350 nm–2500 

nm, 3nm resolution at 700nm, FieldSpec 4 Wide-ResField 

Spectroradiometer; ASD, Boulder, CO, USA) at 10-s intervals. The 

in situ surface reflectance data were then exposed to spectral 

aggregation in accordance with the satellite spectral response 

functions. In addition, generic BRDF normalization (Roy et al., 2017; 
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Roy et al., 2016b), co-registration, spatial aggregation, and 

orthorectification were applied to ensure consistency with Landsat 8 

NBAR imagery. Further details concerning the RPAS-derived NBAR 

processing will be included in a future publication. We used RPAS-

derived NBAR maps (5-cm resolution) of rice paddy and deciduous 

forest sites within ± 1 day of the Landsat 8 overpass dates (i.e., 

CRK, September 18, 2020) (Figure 3.2). 

 

 

Figure 3.2 In situ hyperspectral images (projection, WGS84/UTM zone 52N; red–

green–black (RGB) true color; 5-cm resolution). (a) Cropland (CRK) and (b) 

deciduous forest (GDK). Yellow symbols indicate flux tower locations. Black shading 

on the CRK map indicates data excluded from the final analysis. 

 

2.4  Vegetation index 

Changes in vegetation over time were monitored using the 

vegetation index map, which included the normalized difference 

vegetation index (NDVI) (Rouse, 1974; Tucker, 1979) and the NIR 

vegetation reflectance index (NIRv) (Badgley et al., 2017). NDVI 

maps, which show the normalized difference between NIR and red 

light [Eq. (5)], can be used to assess plant health in the target area 
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because vegetation reflects NIR light while absorbing red light for 

photosynthesis. The NDVI has frequently been used as a proxy for 

the chlorophyll content and leaf area index in a target area 

(Haboudane et al., 2004; Haboudane et al., 2008; Le Maire et al., 

2008; Myneni et al., 1995). Moreover, the NDVI can be derived from 

long-term satellite remote-sensing observational records, including 

datasets from Landsat multispectral sensors, Moderate Resolution 

Imaging Spectroradiometer (MODIS), and Advanced Very High-

Resolution Radiometer (AVHRR). NIRv is the fraction of vegetation 

NIR reflected within a mixed pixel, obtained through the 

multiplication of NIR by NDVI [Eq. (6)] (Badgley et al., 2017). NIRv, 

which exhibits robust performance in terms of capturing terrestrial 

photosynthesis from the site-specific scale to the global scale 

(Badgley et al., 2019), is calculated as the proportion of canopy-

intercepted visible light to the vegetation-reflected NIR (Sellers, 

1987; Sellers et al., 1992): 

𝐍𝐃𝐕𝐈 =  
𝛒𝐍𝐈𝐑−𝛒𝐑𝐞𝐝

𝛒𝐍𝐈𝐑+ 𝛒𝐑𝐞𝐝
  Eq. (5) 

𝐍𝐈𝐑𝐯 = 𝐍𝐃𝐕𝐈 × 𝛒𝐍𝐈𝐑   Eq. (6) 

where ρNIR and ρRed are reflectance in the NIR and red regions, 

respectively. 

 

2.5  Satellite data 

For dual RSS-GAN training, I used the Landsat 8 OLI dataset (Roy 

et al., 2014b), including Collection 2 Level 1 (Landsat 8 C2 L1) and 

Level 2 (Landsat 8 C2 L2) data. I applied the angle parameters from 

Level 1 products and surface reflectance from Level 2 products to 

the NBAR derivation method [i.e., the RossThick LiSparse (RTLSR) 

model (Li and Strahler, 1986; Lucht et al., 2000; Wanner et al., 
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1995)], using the parameters of the MODIS BRDF model (Roy et al., 

2017; Roy et al., 2016b) (Figure 3). Although the effect of BRDF in 

NDVI is not significant (Kong et al., 2021), however, a standardized 

format is required to use multi-source satellite images Landsat 8 

NBAR products have 30-m resolution and 16-day temporal 

resolution (Table 3.2). 

To confirm the quality of the Landsat 8 NBAR and Planet Fusion 

land monitoring products, I also used the Sentinel 2 NBAR product to 

evaluate the dual RSS-GAN training datasets. I downloaded the 

Sentinel 2 A/B dataset, including Level 1 (Sentinel 2 L1C) and Level 

2 (Sentinel 2 L2A) data from the Sentinel 2 mission (Drusch et al., 

2012a), in which Sentinel 2A and 2B carry MSI. Next, I generated 

Sentinel 2 NBAR products (10-m resolution with 5-day temporal 

resolution) (Table 3.2) in NBAR processing, which is equivalent to 

Landsat 8 NBAR processing but uses different BRDF model 

parameters (Figure 3) (Roy et al., 2017). 

  I also used an automated cloud and cloud shadow detection method 

(Fmask 4.6; (Qiu et al., 2019) to flag contaminated pixels in both the 

Landsat 8 NBAR and Sentinel 2 NBAR datasets (Figure 3.3). I used 

clear pixels in the Landsat 8 NBAR and Sentinel 2 data to generate 

NDVI and NIRv vegetation index maps via the red and NIR bands. 
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Table 3.2 List of satellite-derived datasets used in this study. Satellite data were 

obtained from Landsat 8 Operational Land Imager (OLI), Sentinel 2 Multispectral 

Instrument, and PlanetScope Dove measurements. Spatial resolution refers to pixel 

size in the red and near-infrared (NIR) bands. 

Satellite 

sensor 
Data 

Spatial 

resolution 

Temporal 

resolution 

Band 

numbers 

Data 

period 

Landsat 8 

OLI 

Level 1 

(top-of-

atmosphere), 

Level 2 

(surface 

reflectance) 

30 m 16 days 
Red = 4 

NIR = 5 

2013–

2021 

(8 

years) 

Sentinel 2 

MSI 

Level 1 

(top-of-

atmosphere), 

Level 2 

(surface 

reflectance) 

10 m 5 days 
Red = 4 

NIR = 8 

2019–

2021 

(3 

years) 

PlanetScope 

Doves 

Planet 

Fusion* 
3 m 

Near-

Daily 

Red = 3 

NIR = 4 

2020–

2021 

(2 

years) 

* PlanetScope Ortho Tile Product is the main satellite dataset for Planet 

Fusion products. 
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2.6  Planet Fusion 

To train the dual RSS-GAN, I used Planet Fusion (Planet Fusion 

Team, 2022) as a reference dataset. Planet Fusion incorporates 

reliable-quality datasets from Sentinel-2, Landsat 8, MODIS, and 

the Visible Infrared Imaging Radiometer Suite (VIIRS) for multi-

sensor inter-calibration, harmonization, fusion, and gap-filling of 

PlanetScope data (Table 2) based on the CubeSat-enabled Spatio-

Temporal Enhancement Method (CESTEM) algorithm (Houborg and 

McCabe, 2018a), which leverages the harmonized Sentinel 2 and 

Landsat 8/9 bidirectional reflectance distribution function (BRDF)-

adjusted 30-m surface reflectance product generated from the 

Framework for Operational Radiometric Correction for 

Environmental Monitoring (FORCE) (Frantz, 2019b). Detailed 

information concerning the harmonization method is provided 

elsewhere (Houborg and McCabe (2018a). After rigorous detection 

of clouds and cloud shadows in the PlanetScope data, Planet Fusion 

fills gaps in the contaminated pixels by fusing Sentinel 2 and Landsat 

8 data (Planet Fusion Team, 2022). Thus, the Planet Fusion product 

contains daily, gap-filled, 3-m-resolution, 4-band surface 

reflectance (blue: 0.45–0.51 µm; green: 0.53–0.59 µm; red: 0.64–0.67 

µm; NIR: 0.85–0.88 µm) with gridded raster tiles (24 km × 24 km) 

in UTM projection. In this study, six Planet Fusion product tiles from 

2020 to 2021 including the CRK and GDK flux tower sites and nearby 

areas (e.g., urban, mountain, and cropland) were used to generate 

NDVI and NIRv vegetation index maps (Figure 3.1). 
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2.7  Dual RSS-GAN via fine-tuned Real-ESRGAN 

To generate high-spatial-resolution NDVI and NIRv vegetation 

index maps derived from Landsat 8 datasets, we trained the dual 

RSS-GAN using Planet Fusion and Landsat 8 NBAR products from 

2020 to 2021 (Figure 3.3). We prepared image pairs for use in 

training the dual RSS-GAN model by cropping Landsat 8 NBAR 

products and cloud masks to overlay on Planet Fusion tiles. To 

exclude pixels in Planet Fusion when corresponding pixels in Landsat 

8 NBAR data were contaminated, we superimposed the cropped 

Landsat 8 cloud masks on Planet Fusion tiles. To reduce 

computational costs and effectively learn the Planet Fusion tile areas, 

we sliced the image pair tiles (i.e., Planet Fusion tiles and cropped 

Landsat 8 NBAR) into sub-tiles using slicing windows with a moving 

interval of one-half of the window size. The size of the slicing 

window was sufficient to distinguish land surface features through 

visual inspection by human eyes. By considering the computation 

resource for training GAN model, the size of sub-tile of each image 

pairs was determined as 360 × 360 and 120 × 120. When the ratio 

of contaminated pixels to all pixels in a sub-tile was > 50%, we 

excluded the sub-tile from the fine-tuning step. The finalized sub-

tiles comprised red, NIR, and NDVI bands (3 channels; false color), 

which are the bands required for generating the NDVI and NIRv 

vegetation index maps. To improve data format consistency between 

the Real-ESRGAN and dual RSS-GAN, sub-tiles in the Geo-TIF 

format were converted to 16-bit 3-channel Portable Network 

Graphics (PNG) files. PNG is a lossless compression graphic file 

format that supports transparency. Because a 16-bit PNG file 

contains values ranging from 0 to 65535, surface reflectance values 

(from 0 to 1, with intervals of 0.0001) in Geo-TIF images are 
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sufficiently converted into pixel values in PNG files. Since Planet 

Fusion resembles the radiometry of Sentinel 2 products, which is 

closely resembles Landsat 8 products, we cross-calibrated Planet 

Fusion sub-tiles against Landsat 8 sub-tiles using band-specific 

histogram matching (Yang and Lo, 2000), which adjusts the mean and 

standard deviation of a Gaussian distribution histogram via linear 

transformation (Wang et al., 2020a), to ensure radiometric 

consistency between PF and Landsat irrespective of the file 

conversion (Salgueiro Romero et al., 2020). To avoid rescaling 

errors, we regarded values > 96% of 16-bit value range (i.e., > 

62914) as outliers when reconverting PNG-format model outcomes 

to Geo-TIF files. Since the spatial resolution ratio (i.e., scale factor) 

between Landsat and Planet Fusion is 10, we used the multi-scale 

two-step GAN approach as a mechanism to reduce the scale factor 

from 10 to 4. The first GAN model in the dual RSS-GAN is 

designated LP10; it generates Landsat 8 NBAR-like red, NIR, and 

NDVI data with 10-m resolution using Landsat 8 NBAR 30-m-

resolution data. For LP10 training, Planet Fusion products on Landsat 

8 overpass dates were resampled on a 10-m interval grid using the 

nearest-neighbor method, which achieves better performance in 

spectral–spatial remote-sensing rescaling, compared with bilinear, 

bicubic, and sinc spatial interpolation methods (Belov and Denisova, 

2019). The sub-tiles used for LP10 training were image pairs that 

consisted of a resampled Planet Fusion (10 m) image with 360 × 

360 pixels and a Landsat 8 NBAR (30 m) image with 120 × 120 

pixels. Because we set the scale factor of the dual RSS-GAN to 4, 

Landsat 8 NBAR (30 m) images with 120 × 120 pixels were 

resampled on a 40-m grid with 90 × 90 pixels using nearest-

neighbor interpolation (Figure 4). The 15,033 generated image pairs, 
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each representing an area of 3.6 km × 3.6 km, were used for LP10 

training (batch size = 8; 42 epochs; 40,000 iterations). Because the 

batch size was set to 8, the LP10 network weights were updated 

using features from eight images (28.8 km × 28.8 km) in each 

iteration. We trained the LP10 model on two NVIDIA A100 (80GB) 

GPU computers for 10 hours. 

The final GAN model in the dual RSS-GAN is designated LP3; it 

generates Landsat 8 NBAR-like red, NIR, and NDVI data with 3-m 

resolution using Landsat 8 NBAR-like 10-m resolution data from 

LP10. For LP3 training, we prepared 3-m Planet Fusion tiles on 

Landsat 8 overpass dates and used 10-m resolution Landsat 8 

NBAR-like red, NIR, NDVI data generated by LP10. The sub-tiles 

used for LP3 training were 3-m Planet Fusion image pairs with 360 

× 360 pixels and 10-m Landsat 8 NBAR-like images with 108 × 

108 pixels. To obtain a consistent scale factor for the LP10 data, we 

resampled the 10-m Landsat 8 NBAR-like sub-tiles using a 12-m 

grid with 90 × 90 pixels using nearest-neighbor interpolation 

(Figure 4). LP3 was trained using 188,875 image pairs (each 

representing an area of 1.08 km × 1.08 km) (batch size = 8; 22 

epochs; 270,000 iterations). In each iteration, the LP3 network 

weights were updated using features from eight images (8.64 km × 

8.64 km area). We trained the LP3 model on two NVIDIA A100 

(80GB) GPU computers for 74 hours. 

We applied the dual (i.e., LP10 and LP3) RSS-GAN model to 30-

m and 10-m Landsat 8 NBAR-like data from 2013 to 2021, 

respectively. After comparing calculated NDVI to the model-produce 

NDVI (R2>0.98, Figure S1), we used NDVI and NIRv that were 

calculated directly from the emulated red and NIR channels, rather 

than the model-produced NDVI channel. 
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Figure 3.3 Flowchart of the dual Remote Sensing Super-resolution dual-GAN 

generative adversarial network (dual RSS-GAN) system, which comprises the LP10 

and LP3 models. 
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Figure 3.4 Example image pairs (spatial resolution; width × height × channel) 

including 3-channel false color data [red, NIR, and normalized difference vegetation 

index (NDVI)] used to train the dual RSS-GAN model, which comprises the LP10 

and LP3 models. Image pairs for March 11, 2020, were applied to LP10: (a) 

resampled Landsat 8 image (40 m; 90 × 90 × 3) and (b) resampled Planet Fusion 

image (10 m; 360 × 360 × 3) and to LP3: (c) resampled Landsat 8 image (12 m; 

90 × 90 × 3) derived from LP10 and (d) Planet Fusion image (3 m; 360 × 360 

× 3). 
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2.8  Evaluation 

To evaluate the performance of the dual RSS-GAN over time, I 

evaluated NDVI and NIRv vegetation maps based on satellite products 

and the dual RSS-GAN model results by comparison with tower-

based in situ measurements during the training period (2020–2021) 

and before the training period (2013–2019). I extracted pixels from 

the Planet Fusion, Landsat 8 NBAR, and Sentinel 2 satellite products 

and the dual RSS-GAN model within the estimated footprints of 

tower-based in situ spectral measurements (Section 2.2). I 

aggregated the extracted pixels in accordance with the cosine law-

based upscaling method, which considers the view angle between the 

sensor and the center of the pixel (Shuai et al., 2011; Shuai et al., 

2014) (Figure A1). Typical metrics including the coefficient of 

determination (R2) of the linear regression model, root mean square 

error (RMSE) [Eq. (7)], and relative bias (rbias) [Eq. (8)] were 

used to evaluate the performances of the satellite products and dual 

RSS-GAN over time. 

𝐑𝐌𝐒𝐄 =  √𝐄((𝐀 − 𝐁)𝟐)  Eq. (7) 

𝐫𝐛𝐢𝐚𝐬 =  
𝐄(‖𝐁−𝐀‖)

𝐄(𝐁)
  Eq. (8) 

where A represents the satellite product or model outcomes, B 

represents in situ measurements, and E is the mean operator. 

To evaluate the performance of the dual RSS-GAN in emulating 

detailed spatial representations, I compared NDVI and NIRv 

vegetation maps from the dual RSS-GAN model with RPAS-based 

NDVI and NIRv maps. I matched the spatial resolution of the RPAS-

based maps (5 cm) to the spatial resolution of the dual RSS-GAN (3 

m) using nearest-neighbor interpolation. I evaluated the distortion 

and perceptual quality of vegetation index maps from the dual RSS-
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GAN using image quality assessment methods including the peak 

signal-to-noise ratio (PSNR), structural similarity index (SSIM) 

(Zhou et al., 2004), and blind/referenceless image spatial quality 

evaluator (BRISQUE) (Mittal et al., 2012). Two reference-based 

image assessment methods, PSNR and SSIM [Eqs. (9) and (10), 

respectively], were used to quantify information loss in terms of 

image quality and the degree of structural information distortion, 

respectively. 

𝐏𝐒𝐍𝐑 = 𝟏𝟎 𝐥𝐨𝐠𝟏𝟎( 𝐩𝐞𝐚𝐤𝐯𝐚𝐥𝟐 𝐌𝐒𝐄⁄ )   

( ∵ 𝐌𝐒𝐄 =  
𝟏

𝐧
∑(𝐀 − 𝐁)𝟐)  

Eq. (9) 

𝐒𝐒𝐈𝐌 =  
(𝟐𝛍𝐀𝛍𝐁+𝐂𝟏)(𝟐𝛔𝐀𝐁+𝐂𝟐)

(𝛍𝐀
𝟐 +𝛍𝐁

𝟐 +𝐂𝟏)(𝛔𝐀
𝟐 +𝛔𝐁

𝟐 +𝐂𝟐)
   

(∵ 𝐂𝟏 =  (𝐤𝟏𝐋)𝟐 , 𝐂𝟐 =  (𝐤𝟏𝐋)𝟐)  

Eq. (10) 

where A represents the satellite product or model outcomes; B 

represents in situ measurements; E is the mean operator; peakval is 

the peak value of the area; n is the number of observations; 𝜇 is the 

mean; 𝜎 is the standard deviation; and constants k1 and k2 are set to 

0.01 and 0.03, respectively. 

Because human vision is the best tool for assessing perceptual quality, 

we used BRISQUE score (brisque; MATLAB; The MathWorks, Inc., 

Natick, MA, USA) as a secondary indicator to quantify perceptual 

quality. A smaller BRISQUE score indicates better perceptual quality. 

BRISQUE uses support vector regression model that trained on 

images with distortion such as compression artifacts, blurring, and 

noise. Prior to human visual inspection, we performed mean 

subtraction and contrast normalization (MSCN) (Gaussian window 

size: 10 × 10) (Mittal et al., 2012), which accentuates statistical 

characteristics hidden in images by eliminating unnecessary 

repetitive parts of the data and retaining important parts. 



 

 56 

Table 3.3 Overview of evaluation protocol of the dual Remote Sensing Super-

resolution dual-GAN generative adversarial network (dual RSS-GAN). 

Aspect in this 

study 

Quality 

index 
note 

Temporal 

assessment 

R2 Coefficient of determination 

rRMSE Relative root mean square error 

rbias Relative bias 

Spatial 

assessment 

PSNR 
Quantify information loss in terms of 

image quality 

SSIM 
The degree of structural information 

distortion 

MSCN 
Eliminating unnecessary repetitive 

parts of the data 

BRISQUE Perceptual quality of image 
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3. Results 

This section reports on 1) the evaluation results of vegetation 

index maps derived from Planet Fusion, and Sentinel 2 and Landsat 

8 NBAR data with respect to tower-based in situ data during the dual 

RSS-GAN training period, and 2) the performance of vegetation 

index maps produced from the dual RSS-GAN model with respect to 

tower-based in situ data, RPAS-based maps, and maps produced 

from the original Landsat 8 NBAR data. 

 

3.1  Comparison of NDVI and NIRv maps from Planet Fusion, Sentinel 

2 NBAR, and Landsat 8 NBAR data with in situ NDVI and NIRv 

Planet Fusion NDVI and NIRv showed strong linear relationships 

with tower-based in situ NDVI and NIRv during the training period 

for the dual RSS-GAN model (2020–2021) (Figure 3.5). The linear 

relationships based on Planet Fusion NDVI were stronger than the 

linear relationships based on Landsat 8 NDVI (Planet Fusion on dates 

with Landsat 8 availability: R2 = 0.953; RMSE = 0.059; Landsat 8: 

R2 = 0.88; RMSE = 0.085) and Sentinel 2 NDVI (Planet Fusion on 

dates with Sentinel 2 availability: R2 = 0.966; RMSE = 0.047; 

Sentinel 2: R2 = 0.943; RMSE = 0.057) (Figure 3.5). Similarly, Planet 

Fusion NIRv showed better agreement with tower-based in situ NIRv 

than did Landsat 8 NIRv (Planet Fusion on dates with Landsat 

availability: R2 = 0.936, RMSE = 0.037, rbias = −9.2%; Landsat 8: 

R2 = 0.908, RMSE = 0.033, rbias= -25.6%) or Sentinel 2 NIRv 

(Planet Fusion on dates with Sentinel 2 availability: R2 = 0.787, 

RMSE = 0.058, rbias = −16.0%; Sentinel 2: R2 = 0.795, RMSE = 

0.049, rbias = −28.5%) (Figure 3.5). When comparing with all 

available in situ NIRv, Planet Fusion NIRv showed strong linear 

relationship (Planet Fusion with all available data: R2 = 0.874, RMSE 
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= 0.059) (Figure A3.2). Although Landsat 8 and Sentinel 2 NDVI and 

NIRv tracked the seasonal variations recorded in the in situ data, it 

showed negative bias against in situ NDVI or NIRv (Landsat 8 NDVI 

rbias = −1.1%, Sentinel 2 NDVI rbias = −2.9%, Landsat 8 NIRv 

rbias = −25.6%, Sentinel 2 NDVI rbias = −28.5%), especially 

during peak growing season (Figure 3.5). 
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Figure 3.5 Evaluation of Planet Fusion (PF; dark blue), Sentinel 2 (S2; dark green), 

and Landsat 8 (L8; dark red) (a) NDVI and (b) NIRv values with respect to in situ 

measurements in deciduous forest (GDK; square) and cropland (CRK; circle). The 

daily Planet Fusion data were only used on Landsat 8 and Sentinel 2 overpass dates 

for the calculation of the coefficient of determination (R2), root mean square error 

(RMSE), and relative bias (rbias). n is the number of samples used in the linear 

regression model. NDVI and NIRv are unitless. The results of supplemental analyses 

using all available datasets are shown in Figure A2. 
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3.2  Comparison of dual RSS-SRGAN model results with Landsat 8 

NDVI and NIRv 

Compared to Landsat 8 NDVI and NIRv (30-m resolution), LP10 

(10 m) and LP3 (3 m) produced NDVI and NIRv data with enhanced 

spatial detail, as expected (Figures 3.6 and 3.7). For example, the 

native resolution of Landsat 8 is too coarse (30 m) for distinguishing 

individual crop fields over a spatially heterogeneous rice paddy area, 

whereas rice paddy boundaries were more effectively resolved in 

vegetation maps derived from LP10 and especially LP3 (Figure 3.7). 

As expected, pixelized streams, roads, and ridges between rice 

paddies in Landsat 8 imagery are better resolved in the vegetation 

maps derived from LP10 and LP3 while maintaining consistent 

histograms (Figures 3.6 and 3.7). 
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Figure 3.6 Example NDVI and NIRv images produced by the dual RSS-GAN models 

(LP10 and LP3) and Landsat 8 (L30) at the GDK site (yellow square) on May 9, 

2018. Overall landscape (1530 m × 1530 m) and flux tower area subsetted (510 m 

× 510 m) images are shown. The bottom panel shows the corresponding NDVI and 

NIRv histograms for L30, LP10, and LP3. NDVI and NIRv are unitless. The same 

figure in gray scale is shown in Figure S3.2. 
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Figure 3.7 Example NDVI and NIRv images produced by the dual RSS-GAN model 

(LP10 and LP3) and Landsat 8 (L30) images over the CRK site (yellow circle) on 

May 9, 2018. Overall landscape (1530 m × 1530 m) and flux tower area subsetted 

(510 m × 510 m) images are shown. The bottom panel shows the corresponding 

NDVI and NIRv histograms for L30, LP10, and LP3. NDVI and NIRv are unitless. 

The same figure in gray scale is shown in Figure S3.2. 
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3.3  Comparison of dual RSS-GAN model results with respect to in 

situ time-series NDVI and NIRv 

The dual RSS-GAN model followed the seasonal variation of in situ 

NDVI and NIRv, compared with Landsat 8 (Figure 3.8). However, 

compared with the dual RSS-GAN model, the Landsat 8 NBAR-

derived NDVI and NIRv underestimated the in situ NDVI and NIRv 

during the peak growing season (Figure 3.9). 

 

 

Figure 3.8 Seasonal variations of NDVI and NIRv derived from satellite bidirectional 

reflectance distribution function (BRDF)-adjusted reflectance (NBAR) (Landsat 8, 

L30), the dual RSS-GAN model (comprising the LP10 and LP3 models), and in situ 

measurements at each site. GDK, deciduous forest (squares); CRK, cropland 

(circles). NDVI and NIRv are unitless. 
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Statistically, the LP10 and LP3 models performed better than 

Landsat 8 in terms of tracking changes in the in situ NDVI and NIRv 

from 2013 to 2019 (Figures 3.9 and 3.10). The linear relationships 

between the in situ NDVI from all sites and model or satellite-based 

NDVI were ranked as follows, in order of decreasing R2: LP10 > LP3 

> Landsat 8 NBAR, with R2 (RMSE) values of 0.955 (0.057), 0.950 

(0.060), and 0.946 (0.064), respectively. Similarly, for NIRv the 

linear relationships were ranked as follows, in order of decreasing 

R2: Landsat 8 NBAR > LP3 > LP10, with R2 (RMSE) values) of 0.916 

(0.032), 0.915 (0.035), and 0.903 (0.035), respectively. Landsat 8 

NDVI and NIRv data were more negatively biased with respect to the 

in situ data from all sites (NDVI rbias = −4.9%, NIRv rbias = −16.3%) 

compared to LP10 (NDVI rbias = −0.7%, NIRv rbias = −15.8%) and 

LP3 (NDVI rbias = 0.6%, NIRv rbias = −10.0%). Similarly, at each 

site, Landsat 8 NBAR vegetation indices (i.e., NDVI and NIRv) were 

also negatively biased against in situ data (NDVI rbias = −3.7%, NIRv 

rbias = −16.1% at deciduous forest site; NDVI rbias = −12.4%, NIRv 

rbias = −17.5% at cropland site) compared with LP10 (NDVI rbias = 

−0.1%, NIRv rbias = −16.2% at deciduous forest site; NDVI rbias = 

−4.7%, NIRv rbias = −12.7% at cropland site) and LP3 (NDVI rbias 

= 1.2%, NIRv rbias = −9.7% at deciduous forest site; NDVI rbias = 

−3.2%, NIRv rbias = −11.5% at cropland site) (Figure 3.9). The dual 

RSS-GAN based NDVI outperformed Landsat 8 NDVI for estimating 

in situ NDVI (Figure 3.10). A similar tendency was reported for NIRv 

with the dual RSS-GAN demonstrating comparable or stronger linear 

relationships less biased with respect to in situ NIRv relative to the 

Landsat 8 based retrievals (Figure 3.10). In general, the LP10 and 

LP3 models were characterized by reduced biases with respect to 

the in situ NDVI and NIRv data relative to Landsat 8 at CRK. 
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Figure 3.9 Comparison of NDVI and NIRv derived from Landsat 8 NBAR (L30), the 

dual RSS-GAN model (LP10 and LP3) with in situ measurements for the GDK 

(squares) and CRK (circles) sites. R2, coefficient of determination; RMSE, root 

mean square error; rbias, relative bias. NDVI and NIRv are unitless. Detailed site 

data are provided in Table A3.3. 
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Figure 3.10 Statistical comparisons of Landsat 8 (L30) and dual RSS-GAN model 

(LP10 and LP3) based NDVI and NIRv against in situ measurements at the CRK 

(circles) and GDK (squares) sites. R2, coefficient of determination; RMSE, root 

mean square error; rbias, relative bias. Detailed site data are provided in Table A3.2. 

 

3.4  Comparison of the dual RSS-GAN model with NDVI and NIRv 

maps derived from RPAS 

The dual RSS-GAN model (LP10 and LP3) results captured more of 

the spatial variations in NDVI and NIRv evident from high resolution 

(5 cm) RPAS-based resulting in improved field delineation (Figure 

3.11). The rice paddy edges are better resolved in the dual RSS-
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GAN model results compared to the Landsat nearest-neighbor and 

bilinear interpolation results (Figure 3.11). The nearest-neighbor 

and bilinear interpolation results overemphasized noise and blurring 

of details compared with the dual RSS-GAN model results (Figure 

3.11). At the cropland (CRK) and deciduous forest (GDK) sites, the 

comparative analysis results for NDVI and NIRv maps with respect 

to the RPAS-based map showed that the 3 m resampled (i.e., bilinear, 

nearest-neighbor) Landsat 8 data scored high values in distortion 

assessment index (i.e., PSNR and SSIM). At the same time, the dual 

RSS-GAN model results scored better than 3 m resampled Landsat 

8 data in perceptual quality index (i.e., BRISQUE) (Table 3.4). 
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Figure 3.11 NDVI and NIRv maps derived from the remotely piloted aerial system 

(RPAS), the dual RSS-GAN model (LP10 and LP3), and nearest-neighbor or 

bilinear interpolation at the cropland (yellow circles) site on September 18, 2020, 

and the deciduous forest (yellow squares) site on October 25, 2021. Redundant 

information in the NDVI and NIRv maps was eliminated through mean subtraction 

and contrast normalization (MSCN) (color map: jet, range: −0.05 to 0.1). NDVI and 

NIRv are unitless. 
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Table 3.4 Evaluation of image quality in NDVI and NIRv vegetation index maps 

derived from the dual RSS-GAN model (LP10 and LP3) or via resampling (i.e., 

nearest-neighbor or bilinear interpolation) relative to the RPAS-based maps at the 

cropland (CRK, September 18, 2020) the deciduous forest (GDK, October 25, 2021) 

sites. BRISQUE, blind/referenceless image spatial quality evaluator; PSNR, peak 

signal-to-noise ratio; SSIM, structural similarity index. Highest values are 

indicated in bold font for SSIM and PSNR. Lowest values are indicated in bold font 

for BRISQUE. 

Site 
Vegetation 

index 

Quality 

Assessment 
LP10 LP3 NN BI 

CRK 

NDVI 

 

PSNR 16.27 16.05 16.83 16.90 

SSIM 0.6252 0.6275 0.6322 0.6441 

BRISQUE 39.9110 45.7055 54.7800 51.0786 

NIRv 

 

PSNR 20.45 20.19 23.22 23.17 

SSIM 0.7123 0.7146 0.7557 0.7590 

BRISQUE 45.0739 44.0738 46.8685 45.8685 

GDK 

NDVI 

 

PSNR 26.36 26.36 26.58 26.76 

SSIM 0.7223 0.7282 0.7267 0.7328 

BRISQUE 36.2711 36.5865 50.3063 49.7062 

NIRv 

 

PSNR 18.49 18.52 19.00 19.00 

SSIM 0.4557 0.4639 0.4744 0.4701 

BRISQUE 48.9077 50.0886 55.8437 51.2454 
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4. Discussion 

 

4.1  Monitoring changes in terrestrial vegetation using the dual RSS-

GAN model 

The dual RSS-GAN model demonstrated the strengths of GAN-

based image restoration methods in vegetation monitoring. Despite 

the coarse resolution (30 m) of the input dataset, the dual RSS-GAN 

model was able to simulate high-resolution vegetation maps with 

significantly improved delineation of individual crop fields (Figure 

3.7). Compared with the nearest-neighbor and bilinear methods 

(Belov and Denisova, 2019), the dual RSS-GAN model exhibited less 

noise and reduced blurring of details over heterogeneous landscapes 

(Figure 3.11). This perceptual quality of the dual RSS-GAN model 

was confirmed by visual inspection. It follows that the dual RSS-GAN 

was able to emulate Landsat 8-like maps with 10- and 3-m 

resolutions without significant degradation in terms of spectral 

representations (Figures 3.6 and 3.7).  

The dual RSS-GAN model reduced the uncertainty associated with 

Landsat 8 images when capturing the seasonal variation of vegetation 

indices. While the Landsat 8 NDVI and NIRv maps captured the 

overall seasonal variations of the in situ data (Figure 3.8), in situ 

NDVI and NIRv were being underestimated during the growing 

seasons (Figures 3.5 and 3.8). Because the dual RSS-GAN model 

used Landsat 8 as an input dataset, it inherited the Landsat 8 based 

underestimation of vegetation index values relative to the in-situ 

data (Figure 3.8) albeit significantly reduced (Figures 3.9 and 3.10). 

The improved accuracy of the vegetation index data generated by the 

dual RSS-GAN during the growing season may be attributed to the 

enhanced spatial resolution, which allowed pixels within the footprint 
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of the in situ data (approximately 15–17 m in diameter) to be better 

resolved (Kong et al., 2022). The dual RSS-GAN was trained using 

Planet Fusion data, which did not underestimate vegetation indices 

with respect to in situ data during the growing season (Figure 3.5); 

thus, Planet Fusion data also played a role in reducing vegetation 

index underestimation in super resolved Landsat 8 data. Unbiased 

vegetation index estimates during the peak growing season are 

critically important for greening/browning trend analyses (Hwang et 

al., 2022) and for accurately detecting land cover changes (Pielke Sr, 

2005; Turner et al., 2007). 

The dual RSS-GAN model enhanced the perceptual quality of 

Landsat 8 without the additional distortion. Compared to the dual 

RSS-GAN model, the interpolation methods exhibited lower 

distortion with respect to RPAS-based maps (Table 4). However, 

the interpolation methods produced oversmoothed maps and 

pixelization patterns (Figure 3.11). Because super-resolution relies 

on a trade-off between perceptual and distortion quality (Blau and 

Michaeli, 2018), improvements to the spatial details tend to come at 

the expense of increased distortion. However, compared to the 

performance of the dual RSS-GAN model in spatial enhancement, the 

expense of distortion was not significant (Table 3.4). Coincidentally, 

distortion is related to the signal bit rate, or the amount of information 

per unit of time, based on the rate-distortion theory (Cover, 1999; 

Shannon, 1959). As a consequence of the triple trade-off among 

perception, distortion, and rate (Blau and Michaeli, 2019), the dual 

RSS-GAN file conversion process, which converts red, NIR, and 

NDVI values (range: 0 to 1, interval of 0.0001, which fit in 14-bit 

values) to 16-bit values (Section 2.7), may serve to reduce 

additional distortion. 
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The structure of the dual RSS-GAN facilitated 10-fold spatial 

enhancement to Landsat 8 data. The large spatial resolution ratio 

(10) between Landsat 8 (30 m) and Planet Fusion (3 m) makes it 

difficult to super-resolve fine spatial details. Since super-resolution 

in one step (i.e., from 30 m to 3 m) does not satisfy the recommended 

upscaling factor in super-resolution (over 4), an incremental multi-

resolution approach for learning the detailed spatial image 

representations have been suggested (Denton et al., 2015; Karnewar 

and Wang, 2020; Lai et al., 2017) based on scale-space theory that 

is basis of a tool for analyzing structures at different scales 

(Lindeberg, 1994). In the ensemble meta-algorithm in machine 

learning, boosting is the sequential learning process that weights the 

next algorithm to correct the prediction of the previous algorithm. 

Because the dual RSS-GAN was designed to take advantage of 

multi-scale learning and boosting, it can be considered as a multi-

resolution sequential GAN towards enhancing the spatial resolution 

of Landsat data. Thus, the dual RSS-GAN restored the spatial 

representation in Landsat data into both 10 m and 3 m resolution 

(Figure 3.6 and 3.7) although some smoothed results appeared 

(Figure 3.11). 

 

4.2  CubeSat data in the dual RSS-GAN model 

In this study, we confirmed that the Planet Fusion surface 

reflectance product enabled by CubeSat constellation imagery is 

suitable for training the dual RSS-GAN model to enhance the spatial 

resolution of Landsat 8 vegetation indices for detailed (i.e., 3 – 10 

m) vegetation monitoring. The 3 m resolution Planet Fusion data 

helped to effectively train the dual RSS-GAN to super-resolve 

Landsat 8 based vegetation index maps (Figure 3.6 and 3.7). Because 
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the downscaling process preserves the original image quality, unlike 

the upscaling process (Bierkens et al., 2000), the Planet Fusion 3 m 

product could be used for both LP10 and LP3 training purposes. 

Indeed, the dual RSS-GAN model exhibited robust performance in 

terms of generating both 10- and 3-m resolution products (Figures 

3.6, 3.7, 3.10, and 3.11). Seasonal changes in vegetation indices 

derived from Planet Fusion data also impacted the changes in 

vegetation indices produced by the dual RSS-GAN model since the 

dual RSS-GAN model was trained with respect to Planet Fusion 

products (Figure 3.4), so vegetation maps from the dual RSS-GAN 

model tracked in situ data with unbiased vegetation index estimates 

(Figures 3.9 and 3.10). The Planet Fusion harmonization process 

ensures radiometric consistency with Landsat 8 over time. Although 

the band-specific histogram-matching method preserves image 

pairs in the dual RSS-GAN, the Planet Fusion harmonization solves 

cross-sensor inconsistency issues in multi-generation CubeSat 

constellation data over time (Houborg and McCabe, 2018a; Planet 

Fusion Team, 2022). Thus, Planet Fusion-derived vegetation indices 

were similar to Landsat 8-derived vegetation indices, without 

outliers (Figure 3.5) (Houborg and McCabe, 2018a; Planet Fusion 

Team, 2022); the high level of interoperability eliminated the need 

for additional calibration of the dual RSS-GAN model over time. 

Finally, the Planet Fusion product, being a daily product leveraging 

the global near-daily coverage of the PlanetScope constellation (Roy 

et al., 2021), produced sufficient image pairs with Landsat 8 to train 

the dual RSS-GAN model. 

 

4.3  Perspectives and limitations 

The dual RSS-GAN model could be used to generate high 
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resolution (~3 m) canopy photosynthesis maps over the historical 

Landsat archive. Numerous studies have demonstrated methods for 

harmonizing multi-satellite data, including Landsat 5, Landsat 7, 

Landsat 8, and Sentinel 2 products (Cao et al., 2022; Claverie et al., 

2018; Frantz, 2019b; Helder et al., 2018; Roy et al., 2016a). Thus, 

the outlined approach could be applied to harmonized Landsat archive 

data for detailed monitoring of decades-long variations in vegetation 

over spatially heterogeneous areas, including gross primary 

productivity (GPP) (Baldocchi et al., 2020; Dechant et al., 2022; 

Kong et al., 2022), which can be estimated from multiplying NIRv and 

photosynthetically active radiation (e.g., (Ryu et al., 2018)). Finally, 

the outlined approach could be added as a module after image fusion 

methods (Moreno-Martínez et al., 2020; Zhu et al., 2018) that can 

use Landsat archived dataset to generate long-term daily GPP maps 

with high spatial resolution. The matching of such maps to the 

footprint of in situ GPP measurements (Kong et al., 2022) would 

facilitate the validation of remote-sensing-based GPP products over 

spatially heterogeneous landscapes from past to present. For 

example, gap-free satellite images around in situ GPP measurement 

area (Walther et al., 2022) with the outlined approach can avoid the 

biased GPP result that from coarse spatial resolution (Chen et al., 

2011a; Ran et al., 2016). Moreover, mapping of GPP at 3 m resolution 

for multiple fields over a heterogeneous landscape would be useful 

for precision agriculture applications (Duveiller and Defourny, 2010; 

Gebbers and Adamchuk, 2010; Sishodia et al., 2020). 

Gap-filling is required to fill missing values in the dual RSS-GAN 

model and reconstruct a long-term continuous record. The high 

spatial resolution maps derived from the dual RSS-GAN encountered 

extended data gaps (Figure 3.8), since cloud-induced gaps are 
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common in the original Landsat archive datasets (Ju and Roy, 2008). 

Although the spatiotemporal image fusion methods (Moreno-

Martínez et al., 2020; Zhu et al., 2018) could supplement land surface 

observations during the MODIS era (since 2000), the gap-filling 

process is inevitable for the Landsat long-term record. For example, 

some methods fill missing values in partially contaminated Landsat 

images using pixel values from spectrally similar land cover classes 

(Chen et al., 2011b; Luo et al., 2018; Yan and Roy, 2018; Yan and 

Roy, 2020) while other methods fit models to time series data to 

predict nonlinear land surface changes during cloud cover and 

missing acquisition data (Adeluyi et al., 2021; Chen et al., 2021; Yin 

et al., 2019). When the spatial resolution of maps is high, more pixels 

and spatial details disappear compared to low-medium resolution 

maps, even if there is a data gap in the same space, especially in 

heterogeneous areas. Thus, we would encourage future studies to 

develop high fidelity gap-filling methods for high resolution Landsat 

maps, like object-based gap-filling methods for PlanetScope dataset 

(Wang et al., 2022). 

The dual RSS-GAN model is associated with a number of potential 

uncertainties. First, the results generated by the RSS-GAN model 

are non-deterministic, which means that it cannot reproduce exactly 

the same results even with identical input data. This type of model 

uncertainty originates from the stochastic basis of the GAN generator 

and discriminator. Nevertheless, the dual RSS-GAN model produced 

vegetation maps that exhibited robust performances with respect to 

in situ measurements (Figures 3.9 and 3.10). Second, the number of 

epochs used in this study (Section 2.7) does not represent a 

universally generic value for the dual RSS-GAN; each researcher 

should optimize it based on a localized training dataset. The lack of 
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reproducibility may lead to small variations in the performance of the 

dual RSS-GAN model. This variation could be reduced through a 

very long training process but the long training process results in an 

overfitted model that fails to predict observations because of training 

dataset memorization (Yang and E, 2022). To avoid model overfitting, 

you would need to reduce either variance or bias (not both) (Geman 

et al., 1992). Moreover, a stable performance during the training 

process does not necessarily ensure a stable performance in practice. 

To achieve stable performance without overfitting, the number of 

epochs should be optimized according to the practical situation (e.g., 

sample number and model structure) (Yazici et al., 2020). Third, the 

performance of the dual RSS-GAN used in this study may degrade 

in areas beyond Planet Fusion tiles. Even though drastic changes in 

land-use and land cover occurs in 30 m scale (i.e., the size of Landsat 

8 pixel), the dual RSS-GAN can convey that into results, land surface 

changes in few meters scale could not be captured. Although the 

Planet Fusion tiles used in the present study included various land 

cover types (e.g., urban, mountain, forest, and cropland; Figure 3.1), 

the GAN model is likely to converge the stochastic distribution of the 

discriminator toward the stochastic distribution of the training 

dataset (Yang and E, 2021; Yang and E, 2022). Ideally, the number 

of Planet Fusion training tiles should match the scope of the research 

area when training the dual RSS-GAN model to achieve optimal 

performances. 

Our results highlight the potential of the dual RSS-GAN model to 

enhance the spatial resolution of past satellite datasets using high 

resolution CubeSat-based imagery. By projecting past information 

from present data, we generated a high spatial resolution 8-year 

record of vegetation index maps using 2 years of Planet Fusion data 
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for model training purposes. Previous studies have used high spatial 

resolution maps from CubeSat datasets to monitor vegetation 

phenology and leaf area index (Houborg and McCabe, 2018b; 

Johansen et al., 2022; Kimm et al., 2020; Wang et al., 2020a), 

suggesting potential applications of our dual RSS-GAN model results 

in those fields during past Landsat periods. While the dual RSS-GAN 

model demonstrated encouraging performance over cropland and 

deciduous forest study regions additional evaluation is required 

across a wider range of ecosystems including tropical forests and 

arctic regions, where land cover has substantially changed in recent 

decades (Achard et al., 2004; Houghton and Nassikas, 2017; Stow et 

al., 2004; Wang et al., 2020b). 

  



 

 78 

5. Conclusion 

Spatial resolution enhancement of historic satellite datasets is 

essential for monitoring and resolving long-term changes in 

vegetation within fine-grained/heterogeneous landscapes. In this 

study, we proposed a dual RSS-GAN super-resolution model trained 

using day-coincident Planet Fusion and Landsat 8 products for 

generating long-term spatially enhanced satellite data. The results 

demonstrated a robust performance of the dual RSS-GAN model 

against in situ measurements over cropland and deciduous forest 

sites from 2013 to 2021. The dual RSS-GAN model retained the 

strengths of GAN-based methods in terms of rescaling and reducing 

the underestimation of vegetation indices evident in the original 

Landsat 8 data. The proposed approach offers promise for the 

adoption of dual RSS-GAN models in monitoring long-term 

vegetation dynamics with high spatial resolution (i.e., 3 m). We 

anticipate future efforts to further explore the use of GAN-based 

methods for vegetation monitoring across a variety of ecosystems 

that have experienced substantial changes in land cover in recent 

decades. 
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Appendices 

 
Figure A3.1 Differences in NDVI and NIRv according to aggregation method in 

satellite product pixels within in situ measurement footprint. The x-axis indicates 

the pixel value weight (Shuai et al., 2014); the y-axis indicates the mean pixel 

values within the footprint. 
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Figure A3.2 Evaluation of Planet Fusion (PF; dark blue), Sentinel 2 (S2; dark green), 

and Landsat 8 (L8; dark red) NDVI and NIRv against all available in situ 

measurements in deciduous forest (GDK; square), cropland (CRK; circle). 
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Table A3.3 Evaluation of NDVI and NIRv results derived from Landsat 8 NBAR (L8), 

LP10, and LP3 data, Landsat 8 NBAR data interpolated using the nearest-neighbor 

method, and Landsat 8 NBAR data interpolated using the bilinear method. Model-

derived NDVI and NIRv results were compared with in situ measurements. R2, 

coefficient of determination; RMSE, root mean square error; rbias, relative bias; n, 

number of samples. 

NDVI 

Site Data R2 RMSE rbias (%) n 

Overall L8 0.957 0.058 −5.7 64 

LP10 0.967 0.049 −1.5 64 

LP3 0.963 0.052 −0.2 64 

GDK L8 0.945 0.053 −4.9 46 

LP10 0.948 0.048 −1.4 46 

LP3 0.947 0.049 −0.1 46 

CRK L8 0.901 0.044 −10.3 18 

LP10 0.944 0.036 −2.3 18 

LP3 0.930 0.039 −0.8 18 

NIRv 

Site Data R2 RMSE rbias (%) n 

Overall L8 0.921 0.032 −11.6 64 

LP10 0.905 0.035 −11.1 64 

LP3 0.915 0.035 −4.9 64 

GDK L8 0.902 0.034 −11.5 46 

LP10 0.891 0.039 −11.6 46 

LP3 0.893 0.038 −4.8 46 

CRK L8 0.921 0.015 −12.1 18 

LP10 0.972 0.009 −7.1 18 

LP3 0.958 0.011 −5.8 18 
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Supplementary material 
 

 
Figure S3.1 Comparison of calculated and produced vegetation indices (NDVI and 

NIRv) of in the dual RSS-GAN model (LP10 and LP3) in deciduous forest (GDK; 

square), cropland (CRK; circle). ‘Calculated’ is designated vegetation index that 

calculated from emulated red and NIR band; ‘Produced’ is designated vegetation 

index that calculated from the model-produced NDVI band and NIR band. 
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Figure S3.2 Example NDVI and NIRv images produced by the dual RSS-GAN model 

(LP10 and LP3) and Landsat 8 (L30) images in gray scale over (b) the GDK site 

(yellow square) and (b) the CRK site (yellow circle) on May 9, 2018. Overall 

landscape (1530 m × 1530 m) and flux tower area subsetted (510 m × 510 m) 

images are shown. The bottom panel shows the corresponding NDVI and NIRv 

histograms for L30, LP10, and LP3. NDVI and NIRv are unitless. 
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Figure S3.3 Seasonal variation of difference between vegetation indices (that is, 

NDVI and NIRv) derived from the dual RSS-GAN model (Model-LP10, LP10; 

Model-LP3, LP3) and the satellite NBAR (Landsat 8, L30) at each site (GDK, 

deciduous forest, square; CRK, cropland, circle). NDVI and NIRv are unitless. 
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Chapter 4. Matching high resolution satellite data and flux 

tower footprints improves their agreement in 

photosynthesis estimates 

 

1. Introduction 

High spatio-temporal resolution of satellite imagery is not only 

important to monitor vegetation, it is also crucial for the validation of 

remote sensing-based GPP products with flux tower measurements 

(Chen et al., 2011a; Ran et al., 2016). While the footprint of eddy 

covariance flux towers covers a relatively large area (more than 1 

km2 for 80 % cumulative contribution of fluxes) (Chen et al., 2009; 

Chen et al., 2012), its location, size and shape change continuously, 

driven by surface roughness and meteorological factors such as wind 

direction and speed (Kljun et al., 2015; Prabha et al., 2008; Schmid, 

1997). Although footprint variations can affect the feasibility to 

match flux tower GPP with satellite products in any type of 

ecosystem due to spatial heterogeneity within the flux tower 

footprint (Giannico et al., 2018), it is a key factor in heterogeneous 

landscapes as contributions to the tower GPP can come from different 

land cover types (Ran et al., 2016). Due to the limitations in the 

spatial resolution of available satellite imagery, this aspect of flux 

tower footprint shape, size and dynamics has mostly been 

circumvented by selecting only flux tower sites within large patches 

of relatively homogeneous ecosystems (Liang et al., 2019; Zhang et 

al., 2020). Even in such cases of consistent land cover within the flux 

tower footprint, however, the assumption of spatial homogeneity of 

GPP within the flux tower footprint might not be justified. An 

important aspect related to this is that even for tower-based, near-

surface sensing techniques, covering the entire flux tower footprint 
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with tower-based optical sensors is virtually impossible even when 

a bi-hemispheric viewing geometry is used (Gamon, 2015; Liu et al., 

2017a; Marcolla and Cescatti, 2018).  

Remotely monitoring GPP at both high spatial and temporal 

resolution has been challenging due to the trade-off between spatial 

and temporal resolutions in observations from sun-synchronous 

satellites. Most publicly available satellite-derived surface 

reflectance products, therefore, have either coarse spatial resolution 

(e.g., 250 m – 1 km) with high revisit frequency (e.g., one day for 

Moderate Resolution Imaging Spectrometer; MODIS) (Justice et al., 

1998) or fine spatial resolution (e.g., 10 m –30 m) with revisit 

frequency (e.g., up to 16 days for Sentinel 2 and Landsat 8)(Claverie 

et al., 2018; Drusch et al., 2012b; Roy et al., 2014a), which can 

effectively result in much lower temporal resolution in many areas 

due to frequent cloud cover. While many image fusion techniques 

have been developed (Zhu et al., 2018) and rather successfully 

applied to partly overcome the trade-off between spatial and 

temporal resolutions, these approaches still have important 

limitations. For example, forcing data with a coarse spatial resolution 

can result in bias against ground measurements, especially in 

heterogeneous landscapes (Kong et al., 2021).  

A recent solution to spatiotemporal trade-offs in satellite 

observations have been satellite constellations, which consist of a 

high number of, typically small satellites (i.e., CubeSat; 

(https://www.cubesat.org/)). CubseSat consists of multiple cubic 

units (1 unit = 10 cm × 10 cm × 10 cm) but weights, less than 

1.33kg unit-1. On the other hand, it introduces another challenge of 

cross-calibration between a large number of sensors. The Cubesat-

enabled Spatio-Temporal Enhancement Method (CESTEM) 

https://www.cubesat.org/)
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overcomes the challenges of low radiometric quality and cross-

sensor inconsistency among CubeSat images by radiometric 

normalization using satellite images from rigorously calibrated 

sensors (Helder et al., 2020; Houborg and McCabe, 2018a). Indeed, 

CESTEM outperformed other image fusion products in capturing 

spatial and temporal variation in an in situ NDVI dataset for a 

heterogeneous rice paddy landscape (Kong et al., 2021) and has 

shown great potential for agricultural applications (Aragon et al., 

2018; Aragon et al., 2021; Houborg and McCabe, 2018b). Moreover, 

Planet Fusion, which is based on CESTEM algorithm, conducts both 

inter-sensor radiometric harmonization and gap-filling process to 

deliver daily cloud-free 4-band (blue, green, red, and near infrared; 

NIR) surface reflectance data with 3 m resolution 

(PlanetFusionTeam, 2021). 

Recently, NIR radiation reflected from vegetation has shown 

promising results in terms of estimating GPP at the field scale of a 

diverse range of vegetation types (Baldocchi et al., 2020; Dechant et 

al., 2022; Dechant et al., 2020). NIR reflectance from vegetation is 

approximated using the NIRv index as the product of the normalized 

difference vegetation index (NDVI) and NIR reflectance (Badgley et 

al., 2017). It accurately estimates monthly and annual GPP variations 

over globally distributed flux tower sites (Badgley et al., 2019). 

However, reflectance does not include information regarding the 

amount of incoming photosynthetically active radiation (PAR), which 

is a dominant factor driving daily GPP variation. Therefore, NIR 

radiation reflected from vegetation (NIRvP), which is the product of 

NIRv and PAR, has been proposed as a structural proxy for GPP 

estimation (Dechant et al., 2022; Dechant et al., 2020; Wu et al., 

2020) and has been widely applied at hourly to daily timescales for 
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site-level and larger scale of GPP estimation since then (Baldocchi 

et al., 2020; Dechant et al., 2022; Dechant et al., 2020; Jiang et al., 

2021; Liu et al., 2020). 

Baldocchi et al. (2020) found that NIRvP from in situ spectral 

sensors tracked diurnal to seasonal variations of tower-based GPP 

well for individual sites, but that the slopes in the NIRvP-GPP 

regressions varied considerably across sites and years. As the study 

of Baldocchi et al. (2020) included spatially heterogeneous sites such 

as wetlands with considerable variation in water extent and cropland 

with frequent mowing, the variation in regression slopes could at 

least partly be due to the footprint mismatch between spectral 

sensors and eddy covariance systems on the flux towers. This aspect 

is explored in detail in our study by generating daily, 3 m GPP maps 

from CubeSat NIRvP and considering different scenarios to link the 

satellite-based GPP to the tower observations. In particular, I 

attempted to answer the following scientific questions:  

(i) Does matching daily flux tower footprints with high 

resolution (3 m) NIRvP improve correlation to GPP 

compared to a larger fixed area around the tower and in 

situ spectral measurements? 

(ii) How do the spatial and temporal resolution of satellite data 

impact the relationship between NIRvP and GPP when 

matching the flux tower footprint? 
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2. Methods 

 

2.1  Study sites 

To evaluate Planet Fusion-based GPP estimates, I selected study 

wetland and crop sites that had in situ measure measurements of 

NIRvP in the Sacramento–San Joaquin River delta in California, USA 

(Figure 4.1), which are registered in AmeriFlux and FLUXNET 

(Baldocchi et al., 2001; Pastorello et al., 2020). The five study sites 

included three restored wetlands (US-Tw4, US-Myb, and US-Snf) 

and two crop fields (US-Bi1 and US-Bi2 which are alfalfa and corn, 

respectively), located on Sherman, Bouldin, and Twitchell Islands 

(Table 4.1). Ideal conditions for eddy covariance measurements 

include a homogenous and flat landscape and few disturbances, which 

is physically impossible in the real world (Chu et al., 2021). For 

example, the wetland sites had a complex mosaic of water and 

vegetation. The alfalfa site underwent repeated cuttings and 

regrowth over an annual course. The corn site had a short growing 

season, and was plowed and flooded for a period during the year 

Moreover, the summer growing season is mostly cloud free, hence a 

suitable venue for evaluating satellite products.US-Bi1 (Rey-

Sanchez et al., 2021b) (Alfalfa) is an alfalfa field (Medicago sativa 

L., a C3 plant), which is harvested five to seven times per year and 

periodically grazed with sheep (Rey-Sanchez et al., 2021c); US-Bi2 

(Rey-Sanchez et al., 2021a) (Corn) is a corn field (Zea mays L., a 

C4 plant), which is harvested once per year and flooded in the winter. 

Two of the wetlands were restored from other land uses over the 

past decade. US-Myb (Matthes et al., 2021) (Palustrine wetland) 

was restored from a livestock pasture in 2010 and US-Tw4 

(Eichelmann et al., 2021) (Freshwater wetland) was restored from a 
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cornfield in 2013; both sites have heterogeneous bathymetry 

(Chamberlain et al., 2018). The dominant vegetation in US-Myb and 

US-Tw4 is a mixture of tules (Schoenoplectus acutus, a C3 plant) 

and cattails (Typha spp, a C3 plant) in shallow water (water table 

depth < 40 cm) (Eichelmann et al., 2018; Valach et al., 2021). US-

Snf (Kusak et al., 2020) (Pasture) is a wetland, more specifically 

peatland  (Kasak et al., 2021) and is also used as a pasture to graze 

cattle throughout the seasons. The peak growing season over pasture 

site was around December to June. All study sites are registered with 

the AmeriFlux Network with publicly available data (Hemes et al., 

2019).  

 

Figure 4.1 Maps of the study sites. (a) A map of California. (Image source: Google 

Earth) with the location of Sacramento–San Joaquin River delta area indicated by the 

red square. (b) The Sacramento–San Joaquin River delta area with red points that 

indicate study sites. Image source: red–green–blue (RGB) Planet Fusion surface 

reflectance product for July 1, 2018 (resolution, 3 m; projection, WGS84/UTM zone 

10N; area, 30.6 km × 14.2 km = 433 km2). 
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Table 4.1 List of study sites. Latitude and longitude of the flux tower (projection, 

WGS84) were adjusted from sub-meter spatial resolution satellite images from 

Google Earth and confirmed by field visits (Figure S1). The normalized difference 

vegetation index (NDVI) sensor position indicates distances (m) from the flux tower 

to the east and north, as well as height. 

Site name (Site 

ID) 

DOI for citation 

Type 
Typical 

vegetation 
Study period 

Latitude, 

Longitude 

NDVI sensor 

position 

Bouldin Alfalfa 

(US-Bi1) 

https://doi.org/10.17

190/AMF/1480317 

Crop 

(Alfalfa) 

Medicago 

sativa L. 

(Hemes et 

al., 2019) 

2018-01-01 

to 

2018-12-31 

38.099161, -

121.499336 

2.89, -2.78, 

2.7 

Bouldin Corn  

(US-Bi2) 

https://doi.org/10.17

190/AMF/1419513 

Crop 

(Corn) 

Zea mays 

(Knox et al., 

2015) 

2018-01-01 

to 

2018-12-31 

38.109078, -

121.535122 

-2.03, -1.94, 

4.42 

Twitchell Wetland 

East End 

 (US-Tw4) 

https://doi.org/10.17

190/AMF/1246151 

Wetland 

Schoenoplect

us acutus & 

Typha spp. 

(Hemes et 

al., 2020) 

2018-01-01 

to 

2018-12-31 

38.102747, -

121.641325 

-2.17, -1.73, 

4.73 

Mayberry  

(US-Myb) 

https://doi.org/10.17

190/AMF/1246139 

Wetland 

Schoenoplect

us acutus & 

Typha spp 

(Eichelmann 

et al., 2018) 

2019-01-01 

to 

2019-12-31 

38.049864, -

121.765006 

3.10, 2.3, 4 

Sherman Barn 

(US-Snf) 

https://doi.org/10.17

190/AMF/1579718 

Wetland 

(Pasture) 

* Unreported 

(Kasak et al., 

2021) 

2019-07-19 

to 

2019-12-31 

38.040208, -

121.727161 

-1.49, -2.49, 

2.75 
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2.2  In situ measurements 

To evaluate GPP estimates derived from CubeSat NIRvP maps, I 

compared them with in situ carbon flux measurements from eddy 

covariance systems, surface reflectance measurements from NDVI 

sensors, and quantum sensor PAR measurements. 

The eddy covariance systems included open-path infrared gas 

analyzers (LI-7500A for CO2 and H2O, LI-7700 for CH4; LiCOR Inc., 

Lincoln, NE, USA), and three-dimensional sonic anemometers 

(WindMaster Pro 1590, Gill Instruments Ltd, Lymington, Hampshire, 

UK) that measure sonic temperature and three-dimensional wind 

speeds at 20 Hz. High-frequency raw data processing and flux 

computations were performed in accordance with the methods of 

Pastorello et al. (2020). Briefly, standard processing procedures 

included spike removal for 20-Hz raw data, coordinate rotations 

within each 30-min block for anemometer tilt correction, block 

averaging for 30-min fluxes of net ecosystem CO2 exchange (NEE), 

air density corrections and site-specific friction velocity filtering. 

Furthermore, I applied a neural network procedure (Moffat et al., 

2007) to fill the gaps in 30-min NEE time series and then partitioned 

NEE into ecosystem assimilation and ecosystem respiration flux 

densities using the nighttime approach (Reichstein et al., 2005). A 

detailed description about flux data processing, gap-filling and 

partitioning can be found in Eichelmann et al. (2018) and Knox et al. 

(2015). The proportion of gap-filled GPP at each site during the 

study period was 36.8 % (US-Bi1; Alfalfa), 27.6 % (US-Bi2; Corn), 

25.2 % (US-Tw4; Freshwater wetland), 27.0 % (US-Myb; 

Palustrine wetland), and 25.3 % (US-Snf; Pasture).  

In situ NIRv data were derived from NDVI sensors (Decagon SRS-

Ni, Pullman, WA, USA) that measured incident and reflected radiation 



 

 93 

in the red (630 nm; full-width, half-maximum, 50 nm) and NIR (800 

nm; full-width, half-maximum, 40 nm) spectral bands. NDVI sensors 

were mounted on booms extended from the flux tower (Table 1). I 

measured bi-hemispheric reflectance by using hemispherical view 

for both upward and downward looking sensors to increase the area 

of the footprint viewed by the NDVI sensors (Baldocchi et al., 2020). 

Although the field of view of the NDVI sensors with bi-hemispheric 

view include the tower structure, this is expected to be a small, and 

temporally constant bias. In particular, the NDVI of the tower 

structure elements is expected to be very low, effectively decreasing 

the contribution to NIRv. Planet Fusion (Section 2.3) provides a 

bidirectional reflectance factor that differs from bi-hemispheric 

reflectance; therefore, I tested the impacts of the different 

reflectance quantities on NIRv over two study sites using satellite-

derived bidirectional reflectance distribution function (BRDF) 

parameters and the result demonstrated a negligible difference 

(Figure A1). Moreover, radiometric calibration had been done for 

each NDVI sensor before and after the growing season but slow drift 

year after year in NDVI sensor over the site (US-Tw4)was not a 

scope of uncertainty in this study as I only used single year data. At 

each tower, in situ incoming PAR data (μmol m−2 s−1) were 

measured by quantum sensors (PAR‐Lite or PQS1, Kipp & Zonen, 

Delft, Netherlands). 

To align the time between continuous in situ measurements and 

Planet Fusion data that rely on morning to around noon overpass time 

of satellites such as Sentinel 2 (around 1015hh – 1030hh) and 

Landsat 8 (around 1015hh – 1030hh), and MODIS nadir BRDF-

adjusted reflectance (local solar noon), I averaged in situ 

measurements (i.e., GPP, PAR, and NIRv, hereafter NIRvin situ ) 
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between 1030hh. and 1230hh to align it to Planet Fusion data. For 

daily GPP and in situ daily NIRvP (daily NIRvPin situ), I summed half-

hourly GPP and half-hourly in situ NIRvP over the whole day 

(0000hh – 2400hh) to obtain daily sum values, respectively. 

 

2.3  Planet Fusion NIRvP 

NIRvP was calculated on the basis of Planet Fusion (PF) surface 

reflectance data (PlanetFusionTeam, 2021). Planet Fusion 

constitutes a comprehensive harmonization and fusion methodology 

based on the CESTEM algorithm (Houborg and McCabe, 2018a; 

Houborg and McCabe, 2018b). Planet Fusion performs multi-sensor 

inter-calibration, harmonization, enhancement, and fusion leveraging 

rigorously calibrated and freely available datasets from Sentinel-2, 

Landsat 8, Moderate Resolution Imaging Spectroradiometer (MODIS), 

and Visible Infrared Imaging Radiometer Suite (VIIRS) in concert 

with the higher spatial and temporal resolution CubeSat images from 

the PlanetScope Constellations. Planet Fusion uses the Framework 

for Operational Radiometric Correction for Environmental Monitoring 

(FORCE) (Frantz, 2019a) to generate a 30 m harmonized Sentinel-

2 and Landsat 8 BRDF adjusted surface reflectance product to be 

used as the calibration target during the CESTEM-based radiometric 

harmonization step. In that harmonization step, a cubist rule-based 

regression technique was used for constructing band-specific 

prediction models, which were trained by the FORCE-based 

Sentinel-2 and Landsat 8 surface reflectance product (30 m) and 

aggregated-PlanetScope data (30 m). Further details on the original 

CESTEM methodology are in Houborg and McCabe (2018a). 

Additional Planet Fusion features include 1) sub-pixel fine geometric 

alignment of source imagery, 2) rigorous, temporally driven, cloud 
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and cloud shadow detection to remove the cloud-related pixels, 3) 

fusion of Sentinel-2 and Landsat 8 data to help fill gaps in 

PlanetScope coverage, and 4) advanced gap-filling 

(PlanetFusionTeam, 2021). Planet Fusion delivers daily, gap-filled, 

4-band (0.45 – 0.51 µm, blue; 0.53 – 0.59 µm, green; 0.64 – 0.67 

µm, red; 0.85 - 0.88 µm, NIR) sensor agnostic surface reflectance 

data characterized by enhanced radiometric stability and consistency 

across space and time to support advanced analytics. Planet Fusion 

product is generated with a 3 m pixel size as regularly gridded raster 

tiles (24 by 24 km) in UTM projection. In this study, Planet Fusion 

data were provided for the years 2018 and 2019 by utilizing 

Harmonized Landsat and Sentinel (referred to as HLS from hereon) 

(Claverie et al., 2018) as the calibration target, which is different 

from the currently available Planet Fusion product that uses FORCE-

based Sentinel-2 and Landsat surface reflectance product. 

To calculate instantaneous Planet Fusion -based NIRvP, I used 

NIRv maps from Planet Fusion data and PAR from tower-based 

quantum sensors located at the sites. First, I calculated NDVI maps 

using Planet Fusion red and NIR reflectance maps, according to Eq. 

(1). Then, I multiplied them by NIR reflectance to generate NIRv 

maps, according to Eq. (2). Finally, I applied Eq. (3) to estimate 

NIRvP for each site using averaged PAR data collected by in situ PAR 

sensors around satellite overpass time. Although Planet Fusion 

inherits overpass time of Sentinel 2 and Landsat 8 (around 1015hh – 

1030hh) in theory, I assumed the time window between 1030hh and 

1230hh when aligning it to in situ data. MODIS affects the daily 

variation of Planet Fusion more than Sentinel 2 and Landsat. 

Specifically, MCD43A4 products (Schaaf et al., 2002), which are 

forcing data for Planet Fusion, use the data from both MODIS terra 
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(overpass at 1030hh) and MODIS aqua (overpass at 1330hh).  

 

where ρNIR and ρRed are reflectance in the NIR and red regions, 

respectively. 

To generate daily Planet Fusion NIRvP maps, I used both satellite-

derived daily summed PAR data and in situ PAR data. As Planet 

Fusion products are snapshots of daytime conditions around satellite 

overpass time, rather than daily accumulated values, I temporally 

upscaled Planet Fusion NIRvP around the satellite overpass time to 

generate daily Planet Fusion NIRvP ( daily NIRvPECfootprint
PF ). This 

temporal upscaling process successfully upscaled GPP (Ryu et al., 

2012), using a simple cosine function computed from the solar zenith 

angle, latitude, and longitude. For the application of Planet Fusion 

NIRvP where in situ PAR were not available, I multiplied Planet 

Fusion NIRv with daily summed PAR data (BESS daily PAR, 5 km; 

daily PARBESS ) (Ryu et al., 2018), which were retrieved from the 

satellite-based Breathing Earth System Simulator (BESS) PAR 

product (Ryu et al., 2011)(Figure 4.2). The BESS PAR product uses 

MODIS Terra and Aqua data to upscale available instantaneous PAR 

estimates into daily summed values by combining an atmospheric 

radiative transfer model(i.e., Forest Light Environmental Simulator, 

FLiES; Kobayashi and Iwabuchi (2008)) with an artificial neural 

network. The daily PARBESSdata showed a strong linear relationship to 

daily PAR𝑖𝑛 𝑠𝑖𝑡𝑢 data with little bias (R2 = 0.97, relative bias = -0.8%) 

(Figure A4.2).  

𝐍𝐃𝐕𝐈 =  
𝛒𝐍𝐈𝐑− 𝛒𝐑𝐞𝐝

𝛒𝐍𝐈𝐑+ 𝛒𝐑𝐞𝐝
  Eq. (1) 

 𝐍𝐈𝐑𝐯 =  𝛒𝐍𝐈𝐑 ×  𝐍𝐃𝐕𝐈 Eq. (2) 

 𝐍𝐈𝐑𝐯𝐏 =  𝐍𝐈𝐑𝐯 ×  𝐏𝐀𝐑 Eq. (3) 
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Figure 4.2 Maps of (a) NDVI, (b) NIR, (c) NIRv, and (d) BESS daily PAR (e) NIRvP 

derived from the combined Planet Fusion surface reflectance product (3 m resolution) 

and BESS daily PAR product (5 km resolution) on July 1, 2018 (projection, 

WGS84/UTM zone 10N; area, 30.6 km × 14.2 km = 433 km2). NDVI, NIR, and NIRv 

are given in unitless; PAR and NIRvP are given in unit of mol m-2 d-1. NIRvP maps 

of different times during the year is (Figure S4.2). 
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2.4  Flux footprint model 

Flux footprints for each of the sites were calculated with the model 

from Kormann and Meixner (2001). This model outperformed other 

commonly-used flux footprint models according to a CO2 gas release 

experiment (Kumari et al., 2020; Rey-Sanchez et al., in prep). Flux 

footprints were calculated for those half hours between 1030hh – 

1230hh, and later aggregated at the daily level to produce 50, 60, 70, 

and 80% footprint contours. An 80% footprint contour indicates that 

80% of the sources/sinks contributing to the signal detected by the 

eddy-covariance tower are located within the indicated area. 

Multiple contours were calculated to obtain a visual inspection of the 

exponential decay of the footprint past the 50 % contour line. The 

80 % threshold selection is supported by Chu et al. (2021), who found 

that footprint area beyond the 80% contour had a minimal influence 

on the final calculations of footprint representativeness in a study of 

monthly footprint-weight maps. To obtain highly accurate footprint 

contours I calculated aerodynamic canopy height using the algorithm 

of Pennypacker and Baldocchi (2016), which has been shown to track 

detailed trends in the growth of wetland canopies at our study site 

(Kasak et al., 2020) and in other sites (Chu et al., 2018). Roughness 

length and displacement height were calculated as 0.1, and 0.66 of 

canopy height, respectively. 

 

2.5  Evaluation 

I evaluated the performance of the Planet Fusion -derived NIRvP 

product for GPP estimation by comparing it with in situ 

measurements from both NDVI sensor and eddy covariance system 

data (Chu et al., 2021). For that, I compared satellite-derived NIRv 

(and NIRvP) data with in situ measurements using several metrics. 
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The coefficient of determination (R2) of the linear regression 

between NIRv(P) and GPP, which equals the square of the Pearson 

correlation coefficient, was used as the main metric to characterize 

the strength of the linear relationship and thus the GPP estimation 

performance of NIRv(P). The linear regression slope indicates the 

variation in the relationship of NIRvPF  (or NIRvPPF ) to GPP for 

different ecosystem types. Root mean square error (RMSE), bias, 

and relative bias were calculated as follows: 

𝐁𝐢𝐚𝐬 = 𝐄(||𝐁 − 𝐀||) Eq. (5) 

𝐫𝐛𝐢𝐚𝐬 =
𝐄(||𝐁 − 𝐀||)

𝐄(𝐀)
 

Eq. (6) 

where A is the satellite product (i.e., MODIS, HLS, or Planet 

Fusion), B is in situ NIRv, and E is the mean operator. 

First, I directly evaluated Planet Fusion NIRv against NIRv 

calculated from in situ sensors, which can be considered a direct 

ground validation. I estimated the footprints of in situ NDVI sensors 

based on their heights and locations (Table 4.1). Because NDVI 

sensors measure hemispherical irradiance, I approximate the 80% 

footprint of in situ NIRv from the area of 80% of upwelling irradiance, 

which can be estimated by considering the sensor height above the 

ground (Table 4.1) (Liu et al., 2017a). The estimated diameters of 

the NDVI sensor footprints (NDVIsensor) were approximately 12 m 

(US-Bi1; Alflafa), 19 m (US-Bi2; Corn), 20 m (US-Tw4; 

Freshwater wetland), 12 m (US-Snf; Pasture), and 13 m (US-Myb; 

Palustrine wetland). I designated Harmonized Landsat/Sentinel (HLS) 

pixels that included NDVIsensor as a footprint type to be considered in 

the comparison of different approaches, inHLS. Thus, each inHLS 

𝐑𝐌𝐒𝐄 = √𝐄((𝐀 − 𝐁)𝟐) Eq. (4) 
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footprint contained one (US-Myb; Palustrine wetland) or two HLS 

pixels (US-Bi1, Alflafa; US-Bi2, Corn; US-Tw4, Freshwater 

wetland; or US-Snf, Pasture) (Figure 4.3 and A4.3). I compared the 

Planet Fusion NIRv product within the estimated footprint of the 

NDVI sensors (NIRvNDVIsensor
PF ) and in situ NIRv measurements. I 

extracted HLS pixels covering NDVI sensor footprints (Figure 4.3 

and A4.3) and extracted Planet Fusion NIRv data within the inHLS 

footprint (NIRvinHSL
HLS ) to quantify spatial variation in NIRv.  

Second, I evaluated Planet Fusion NIRv (and NIRvP) for GPP 

estimation by comparing it to GPP from the eddy covariance systems. 

The flux footprint indicates the source area of trace gases detected 

by an EC system and therefore can be used for pixel selection during 

CubeSat GPP evaluation. In this study, I used cumulative eddy 

covariance footprints up to 80% at satellite overpass time for each 

day (1030hh – 1230hh) (ECfootprint). When extracting Planet Fusion 

pixels within the ECfootprint, I weighted the pixel values based on 

footprint contribution. I used an 80% accumulated footprint area for 

the weighting. I split the weighting factors from 0-50%, 50-60%, 

60-70% and 70-80% (Eq. (7)).  

𝐍𝐈𝐑𝐯(𝐏)𝐄𝐂𝐟𝐨𝐨𝐭𝐩𝐫𝐢𝐧𝐭 = 

∑ (𝐍
𝐤=𝟏

𝐍𝐈𝐑𝐯𝐤 𝐰𝐢𝐭𝐡𝐢𝐧 𝐂𝐋𝟓𝟎 %

𝐍 𝐰𝐢𝐭𝐡𝐢𝐧 𝐂𝐋𝟓𝟎 %
×

𝟓𝟎

𝟖𝟎
) +

∑ (𝐍
𝐤=𝟏

𝐍𝐈𝐑𝐯𝐤 𝐛𝐞𝐭𝐰𝐞𝐞𝐧 𝐂𝐋𝟔𝟎 %  𝐚𝐧𝐝 𝐂𝐋𝟓𝟎 %

𝐍 𝐛𝐞𝐭𝐰𝐞𝐞𝐧 𝐂𝐋𝟔𝟎 %  𝐚𝐧𝐝 𝐂𝐋𝟓𝟎 %
×

𝟔𝟎−𝟓𝟎

𝟖𝟎
) +

∑ (𝐍
𝐤=𝟏

𝐍𝐈𝐑𝐯𝐤 𝐛𝐞𝐭𝐰𝐞𝐞𝐧 𝐂𝐋𝟕𝟎 % 𝐚𝐧𝐝 𝐂𝐋𝟔𝟎 %

𝐍 𝐛𝐞𝐭𝐰𝐞𝐞𝐧 𝐂𝐋𝟕𝟎 % 𝐚𝐧𝐝 𝐂𝐋𝟔𝟎 %
×

𝟕𝟎−𝟔𝟎

𝟖𝟎
) +

∑ (𝐍
𝐤=𝟏

𝐍𝐈𝐑𝐯𝐤 𝐛𝐞𝐭𝐰𝐞𝐞𝐧 𝐂𝐋𝟖𝟎 % 𝐚𝐧𝐝 𝐂𝐋𝟕𝟎 %

𝐍 𝐛𝐞𝐭𝐰𝐞𝐞𝐧 𝐂𝐋𝟖𝟎 % 𝐚𝐧𝐝 𝐂𝐋𝟕𝟎 %
×

𝟖𝟎−𝟕𝟎

𝟖𝟎
)  

Eq. (7) 

Where k is each pixel number in the total number(N) of pixels within 

the footprint area, CLD % is D % footprint contour line. 

I also chose a fixed 100 m by 100 m area centered on the flux 
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towers (Figure 3; Table 2), which is greater than the footprint of in 

situ NDVI sensor and partly covers the flux tower footprint, . Such 

fixed footprints have been applied in previous studies because of the 

use of coarse spatial resolution satellite products (Heinsch et al., 

2006; Kim et al., 2006; Verma et al., 2015). I extracted Planet Fusion 

pixels from the fixed-area footprint (100 m x 100 m) centered on 

the towers (NIRv100m
PF ) and the estimated footprint area at satellite 

overpass time for each day (NIRvECfootprint
PF ) . Then, I compared 

NIRvNDVIsensor
PF , NIRv100m

PF , and NIRvECfootprint
PF  (and corresponding NIRvP) 

with GPP estimates around satellite passing time to evaluate the GPP 

estimation performance of each footprint type. 

Additionally, I used annual accumulated footprint over Alfalfa (Bi1), 

Corn (Bi2), and Freshwater wetland (Tw4) (Figure A4.3) to evaluate 

the impact of temporal resolution of Planet Fusion NIRvP on GPP 

estimation. The comparison of Planet Fusion pixels within annual 

accumulated footprints to GPP is in (Figure A4.9). I also resampled 

Planet Fusion data to a 30 m resolution using the nearest-neighbor 

interpolation method without antialiasing, which produced the results 

closest to in situ measurements when resampling Planet Fusion-like 

data from 3 to 30 m resolution (Kong et al., 2021). Next, I extracted 

pixels within ECfootprint to test the effect of spatial resolution on GPP 

estimation performance by comparison with the original 3 m 

resolution (Li et al., 2008). Finally, I compared daily NIRvPECfootprint
PF  

and NIRvECfootprint
PF  multiplied by daily PARBESS against daily GPP. For 

each footprint type, I extracted pixels only when their centers were 

within the footprint (poly2mask; MATLAB; The MathWorks, Inc., 

Natick, MA, USA). 
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Figure 4.3 Examples of footprints for the US-Myb (Palustrine wetland) flux tower 

(white dot) between 1030hh to 1230hh (a) Daily eddy covariance (EC) footprints 

from June 22, 2019, to June 24, 2019. (b) eddy covariance footprint on June 22, 

2018 (orange), a fixed 100 m × 100 m footprint (green) around the eddy 

covariance tower, and Harmonized Landsat/Sentinel (inHLS) pixels (cyan) including 

the normalized difference vegetation index (NDVI) sensor footprint (yellow) (Table 

2). Contour lines denote footprints within which 50 – 80% (10% interval) of the 

cumulative flux originated. Image source: Planet Fusion RGB surface reflectance 

product for June 22, 2019 (projection, WGS84/UTM zone 10N). Footprints for in 

situ measurements at other sites are shown in (Figure A4.3 and A4.4). 
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Table 4. 2 Footprint types used in this study (Figure 4.3) and Abbreviations used to 

indicate data source, footprint type (i.e., NDVIsensor, inHLS, 100m, ECfootprint) (Figure 

4.2), and temporal scale (i.e., satellite overpassing time and daily) for NIRv, NIRvP, 

and PAR in this study. PF refers to Planet Fusion (Section 2.3); MODIS refers to 

nadir bidirectional reflectance distribution function adjusted reflectance product 

using MODIS data; HLS refers to Harmonized Landsat and Sentinel (Section 2.3), 

BESS refers to the satellite-based Breathing Earth System Simulator which is a 

platform to compute fluxes in carbon, water, and energy. 

Footprint type Description 

NDVIsensor Footprint of the normalized difference vegetation 

index (NDVI) sensor. Diameter: 12 – 20 m 

inHLS Harmonized Landsat/Sentinel (HLS) pixel 

coverage that includes NDVIsensor Pixel size: 30 m 

× 30 m 

100 m A fixed 100 m × 100 m area centered on the flux 

tower 

ECfootprint Daily eddy covariance (EC) measurement footprint 

Relevant aspect Abbreviation examples 

Temporal scale  NIRv (satellite overpassing time), daily NIRv (daily 

time scale) 

Data source  NIRv𝑖𝑛 𝑠𝑖𝑡𝑢 , NIRvPF, NIRvMODIS, NIRvHLS, PARBESS, PAR𝑖𝑛 𝑠𝑖𝑡𝑢  

Footprint type  NIRvNDVIsensor, NIRvinHLS, NIRv100m, NIRvECfootprint  

All combined  NIRvECfootprint
PF , NIRv100m

PF , daily NIRvPECfootprint
PF , 

daily PARBESS 

 

To evaluate the time series of NIRvP data against tower GPP data, 

I used nonparametric singular spectrum analysis, which decomposes 

and reconstructs time-series data to detect trends, remove long-

term trends, and emphasize short-term variation (Ghil et al., 2002; 

Mahecha et al., 2007). A time series can be regarded as a collection 
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of additive components (e.g., trends, regular oscillations, and noise 

(Ghil et al., 2002)); therefore, I evaluated both trends (with low-

frequency, smooth components) and oscillations (with high-

frequency coherence). Singular spectrum analysis in this study 

consisted of two stages: decomposition and reconstruction. During 

the decomposition stage, I formed a time window with length L, which 

is half of the study period (L = N/2, where N is the length of a flux 

measurement with a unit of days), for each site and slid it along the 

time series to construct the L × K (K = N–L + 1) Hankel matrix X. 

Then, I applied singular value decomposition to X to extract the 

eigenvalues and eigenvectors of XXT. The leading singular value 

decomposition component (indicated by the largest eigenvalue) 

typically corresponds to the time-series trend (Alexandrov, 2009); 

therefore, I reconstructed the trend by inverting the projection from 

the leading component to a time series with length N. Subsequently, 

high-frequency (detrended) components were computed as the 

difference between the original time series and the trend. I conducted 

singular spectrum analysis using the R package Rssa v1.0.2 

(Golyandina et al., 2018). 
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3. Results 

This section reports the performance of Planet Fusion derived NIRv 

and NIRvP across different footprint types against in situ NIRv, 

NIRvP, and GPP. 

 

3.1 Comparison of Planet Fusion NIRv and NIRvP with in situ NIRv 

and NIRvP 

Planet Fusion NIRv in the footprint of in situ NDVI sensor 

(NIRvNDVIsensor
PF ) showed better agreement with in situ NIRv (NIRv𝑖𝑛 𝑠𝑖𝑡𝑢) 

(R2 = 0.74) compared to MODIS-derived NIRv (NIRvMODIS) (R2 = 

0.44) or HLS-derived NIRv (NIRvHLS) (R2 = 0.69) (Figure 4). Even 

for daily gap-filled Planet Fusion data, linear relationships with 

NIRv𝑖𝑛 𝑠𝑖𝑡𝑢 were strong (R2 > 0.82), with small RMSE values (< 0.1) 

at sites US-Bi2 (Corn), US-Snf (Pasture), US-Tw4 (Freshwater 

wetland), and US-Myb (Palustrine wetland) (Table A5). At US-Bi1 

(Alfalfa), the relationship between NIRvNDVIsensor
PF  and NIRv𝑖𝑛 𝑠𝑖𝑡𝑢 had 

the highest RMSE (0.12). At all sites except US-Bi1(Alfalfa), the 

performance of NIRvNDVIsensor
PF  derived from gap-filled process in 

comparison with NIRv𝑖𝑛 𝑠𝑖𝑡𝑢  was similar to the performance of 

NIRvNDVIsensor
PF  derived from direct observation (Figure 4.5; Table 

A4.5). For NIRvP, regression analysis of NIRvPNDVIsensor
PF   and 

NIRvP𝑖𝑛 𝑠𝑖𝑡𝑢 at all sites showed strong linear relationships (R2 = 0.83) 

with positive bias. Regression analysis of NIRvPMODISand  NIRvP𝑖𝑛 𝑠𝑖𝑡𝑢 

showed strong linear relationships at all sites, but with varying slopes 

(Figure 4.5). Thus, the overall performance of NIRvPMODIS  in 

comparison with NIRvP𝑖𝑛 𝑠𝑖𝑡𝑢 (R2 = 0.51) was worse than the overall 

performance of NIRvPNDVIsensor
PF  (R2 = 0.79) and NIRvPHLS (R2 = 0.73) 

against NIRvPin situ, which had more consistent slopes (Figure 4.5, 

Table A4.5). Unlike the impacts of gap-filling on NIRv, gap-filled 
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NIRvPNDVIsensor
PF  showed a stronger linear relationship with NIRvP𝑖𝑛 𝑠𝑖𝑡𝑢 

(R2 = 0.90 – 0.98) than did NIRvPHLS(R2 = 0.64 – 0.96). Meanwhile, 

gap-filled NIRvPNDVIsensor
PF  showed a stronger linear relationship with 

NIRvP𝑖𝑛 𝑠𝑖𝑡𝑢measurements at all sites (R2 = 0.90 – 0.98) compared to 

observed NIRvPNDVIsensor
PF  (R2 = 0.88 – 0.98) (Figure 5; Table A5). In 

each site and all sites pooled data, the proportion of observed Planet 

Fusion out of gap-filled Planet Fusion was 49 – 56% when the 

proportion of HLS out of that was 22 – 28% (Figure 4.4; Table A4.5). 
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Figure 4.4 Comparison of measured in situ near-infrared radiation reflected from 

vegetation (NIRv) and the product of NIRv and photosynthetically active radiation 

(PAR) (NIRvP) around the satellite passing time with MODIS, HLS, observation-

derived and gap-filled Planet Fusion (PF) data. Dashed black lines are 1:1 line (y = 

x). Red lines indicate linear regression model slopes for all sites. R2 is the coefficient 

of determination, p-value indicates the significance of the linear regression, rbias is 

relative bias, and n is the number of samples used in the linear regression model. 

NIRv is unitless and NIRvP is in unit of μmol m-2 s-1. Detailed analyses for each 

site are shown in (Table A4.5). 
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Figure 4.5 Comparison of measured in situ NIRv and NIRvP around the satellite 

passing time at each site and all sites pooled (colored symbols) with MODIS, HLS, 

and observation-derived and gap-filled Planet Fusion (PF) data. R2 and the linear 

regression slope are indicated for each site. Detailed site data are provided in (Table 

A4.5). 

 

3.2 Comparison of instantaneous Planet Fusion NIRv and NIRvP with 

against tower GPP estimates 

NIRvPPF (R2 ≤ 0.78) performed better than NIRvP𝑖𝑛 𝑠𝑖𝑡𝑢 (R2 = 0.61) 

in estimating GPP when combining the data from all sites (Figure 4.6). 

The linear relationships between NIRvP and GPP for all site data 

combined showed the following ranking (in order of decreasing R2): 

Planet Fusion NIRvP in daily flux tower footprints (NIRvPECfootprint
PF ) > 

Planet Fusion NIRvP in a a fixed area footprint  area around flux 

tower (100 m × 100 m) (NIRvP100m
PF ) > Planet Fusion NIRvP in the 

footprint of in situ NDVI sensor (NIRvPNDVIsensor
PF ) > in situ NIRvP 

( NIRvP𝑖𝑛 𝑠𝑖𝑡𝑢 ), with R2 values of 0.78, 0.65, 0.61, and 0.61, 

respectively. On the other hand, the linear relationships between 
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NIRv and GPP were moderate (in order of decreasing R2): 

NIRvECfootprint
PF  > NIRv𝑖𝑛 𝑠𝑖𝑡𝑢 > NIRv100m

PF  > NIRvNDVIsensor
PF , with R2 values 

of 0.62, 0.58, 0.46, and 0.43, respectively. Overall, the linear 

relationships were stronger between NIRvPPFand GPP than between 

NIRvPF and GPP (Figures 4.6 and 4.7). 

The performance of NIRvPPF  in estimating GPP at each site 

individually was only clearly improved for one (US-Myb, Palustrine 

wetland) out of the five sites when the satellite footprint was matched 

to the ECfootprint (Figure 4.7, Table A4.6). For other sites the 

performance of the NIRvPECfootprint
PF  was slightly better (US-Bi1, 

Alfalfa; and US-Snf, Pasture) or comparable (US-Bi2, Corn; and 

US-Tw4, Freshwater wetland) than other footprint types. 

NIRvPECfootprint
PF

 showed a strong linear relationship with in situ GPP at 

the wetland sites, especially US-Myb (Palustrine wetland). For all 

footprint types, NIRvPPF  generally showed slightly stronger linear 

relationships with GPP than with NIRvP𝑖𝑛 𝑠𝑖𝑡𝑢  except for US-Bi2 

(Corn). I observed the largest improvement of NIRvPPF compared to 

NIRvP𝑖𝑛 𝑠𝑖𝑡𝑢  for site US-Bi1 (Alfalfa), where the linear regression 

between NIRvP𝑖𝑛 𝑠𝑖𝑡𝑢 and GPP had an R2 value of 0.72, whereas the 

linear regression of NIRvPPFwas > 0.78 for all footprint types (Table 

A4.6). NIRvECfootprint
PF  also had higher R2 values compared to NIRv100m

PF  

(Figure 4.7; Table A4.6).  

The slopes of linear regressions between NIRvPF and NIRvPPF and 

GPP showed large differences for the NDVIsensor and 100 m footprints 

but converged when Planet Fusion data was matched with the 

footprint type of ECfootprint (Figure 4.6). More specifically, the 

variability in linear regression slopes of both NIRv and NIRvP with 

GPP showed the following ranking (in order of decreasing variability): 
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Planet Fusion NIRv (NIRvP) with different footprint types (ECfootprint 

> 100m > NDVIsensor) > NIRv𝑖𝑛 𝑠𝑖𝑡𝑢(NIRvP𝑖𝑛 𝑠𝑖𝑡𝑢) (Figure 4.7). In the 

cropland sites, the linear regression slopes of NIRv𝑖𝑛 𝑠𝑖𝑡𝑢  and 

NIRvP𝑖𝑛 𝑠𝑖𝑡𝑢 with GPP were larger at US-Bi2 (Corn, a C4 plant) than 

at US-Bi1 (Alfalfa, a C3 plant). These trends were also observed in 

both NIRvPF and NIRvPPF for all footprint types (Figure 4.6; Table 

A4.6). The linear regression slopes of NIRv𝑖𝑛 𝑠𝑖𝑡𝑢  and NIRvP𝑖𝑛 𝑠𝑖𝑡𝑢 

with GPP were generally larger in wetland sites than in cropland sites.  

While overall NIRvP showed better GPP estimation performance 

than NIRv, there were notable differences between Planet Fusion and 

in situ – based results as well as individual sites vs. pooled data 

(Figures 4.6, 4.7, S4.3; Table A4.6). For the pooled data from all 

sites, the difference in R2 values between NIRvP and NIRv-based 

GPP estimation showed a ranking in the following order: Planet 

Fusion NIRv (NIRvP) with different footprint types(NDVIsensor-> 

100m > ECfootprint) > NIRv𝑖𝑛 𝑠𝑖𝑡𝑢(NIRvP𝑖𝑛 𝑠𝑖𝑡𝑢) with R2 differences of 0.18, 

0.19, 0.16, and 0.02, respectively (Table A4.6). For individual sites, 

in situ only showed clear improvement of NIRvP over NIRv for US-

Myb (Palustrine wetland), while for other sites the performances 

were comparable (US-Snf; Pasture) or even slightly worse (US-

Bi1, Alfalfa; US-Bi2, Corn; US-Tw4, Freshwater wetland) for 

NIRvP (Table A4.6). For Planet Fusion-based results, larger 

improvements of NIRvP over NIRv were observed, especially for 

sites US-Bi1(Alfalfa) and US-Myb (Palustrine wetland) (Figure 

4.7). However, for some sites, and especially for the 100 m fixed 

footprint type, NIRvP performed slightly worse than NIRv. 
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Figure 4.6 Comparison of NIRv and NIRvP measured in situ and derived from gap-

filled Planet Fusion (PF) in different footprint types with GPP measured in all study 

sites (colored circles) around satellite overpassing time. 𝐍𝐈𝐑𝐯(𝐍𝐈𝐑𝐯𝐏)𝐍𝐃𝐕𝐈𝐬𝐞𝐧𝐬𝐨𝐫
𝐏𝐅 , 

𝐍𝐈𝐑𝐯(𝐍𝐈𝐑𝐯𝐏)𝟏𝟎𝟎𝐦
𝐏𝐅 , 𝐍𝐈𝐑𝐯(𝐍𝐈𝐑𝐯𝐏)𝐄𝐂𝐟𝐨𝐨𝐭𝐩𝐫𝐢𝐧𝐭

𝐏𝐅  denotes Planet Fusion -derived NIRv 

(NIRvP) around the local satellite overpassing time for footprint domains (i.e., 

NDVIsensor, 100m, and ECfootprint). Red lines indicate linear regression model slopes 

for all sites. R2 is the coefficient of determination, p-value indicates the significance 

of the linear regression, and n is the number of samples used in the linear regression 

model. NIRv is unitless and NIRvP is unit of μmol m-2 s-1. Detailed site data are 

provided in (Table A4.6). 
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Figure 4.7 Comparison of NIRv and NIRvP measured in situ and derived from gap-

filled Planet Fusion (PF) with GPP measured at each site and all sites pooled 

(colored symbols) around satellite passing time for all footprint types. 

𝐍𝐈𝐑𝐯(𝐍𝐈𝐑𝐯𝐏)𝐍𝐃𝐕𝐈𝐬𝐞𝐧𝐬𝐨𝐫
𝐏𝐅 , 𝐍𝐈𝐑𝐯(𝐍𝐈𝐑𝐯𝐏)𝟏𝟎𝟎𝐦

𝐏𝐅 , 𝐍𝐈𝐑𝐯(𝐍𝐈𝐑𝐯𝐏)𝐄𝐂𝐟𝐨𝐨𝐭𝐩𝐫𝐢𝐧𝐭,𝐬𝐚𝐭𝐞𝐥𝐥𝐢𝐭𝐞
𝐏𝐅  denotes Planet 

Fusion-derived NIRv (NIRvP) around the local satellite overpassing time for 

footprint domains (i.e., NDVIsensor, 100m, and ECfootprint). R2 and linear regression 

slopes are shown for each site. Detailed site data are provided in (Table A4.6). 

Trends in NIRvPECfootprint
PF  and GPP over time were similar (Figure 

4.8). Among Planet Fusion NIRvP data derived from different 

footprint types, NIRvPECfootprint
PF  showed generally good performance 

in tracking the detrended GPP, especially over wetlands. For example, 

at site US-Myb (Palustrine wetland), NIRvPECfootprint
PF  captured the 

sharp drops in GPP around day of the year 160, 260 and 280, whereas 

NIRvPNDVIsensor
PF  and NIRvP100m

PF  did not (Figure S4.3). NIRvPECfootprint
PF  

showed stronger linear relationships with GPP, compared with 

NIRvP𝑖𝑛 𝑠𝑖𝑡𝑢 . Notably, the R2 values of the relationship between 

detrended NIRvPECfootprint
PF  and detrended GPP were greater than the 

R2 values for NIRvP𝑖𝑛 𝑠𝑖𝑡𝑢, except for US-Bi2 (Corn). 



 

 113 

 

Figure 4.8 The GPP trend (T) and detrended (D) GPP at each site. Linear 

relationships of gap-filled Planet Fusion (PF) NIRvP and in situ NIRvP with T and 

D around the satellite passing time are also shown. 𝐍𝐈𝐑𝐯𝐏𝐍𝐃𝐕𝐈𝐬𝐞𝐧𝐬𝐨𝐫
𝐏𝐅 , 𝐍𝐈𝐑𝐯𝐏𝟏𝟎𝟎𝐦

𝐏𝐅 , 

𝐍𝐈𝐑𝐯𝐏𝐄𝐂𝐟𝐨𝐨𝐭𝐩𝐫𝐢𝐧𝐭
𝐏𝐅  denotes Planet Fusion -derived NIRvP around the local satellite 

overpassing time in different footprint type (i.e., NDVIsensor, 100m, and ECfootprint). 

Detailed site data for the entire study period are shown in (Figure S4.3). 

NIRvPECfoorprint
PF  more accurately estimated GPP around satellite 

overpassing time at the original spatial resolution (3 m), compared 

with footprint matching at the aggregated 30 m resolution (Figure 

4.9). The performances of NIRvPECfootprint
PF  in estimating GPP at 

different spatial resolutions were similar for croplands but differed 
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for wetland sites. For example, in the wetland sites (i.e., US-Tw4, 

Freshwater wetland; US-Myb, Palustrine wetland; and US-Snf, 

Pasture), NIRvPECfootprint
PF  (3 m) showed a slightly stronger linear 

relationship (R2 = 0.89, 0.92, and 0.88, respectively) with GPP than 

did 30 m resampled NIRvPECfootprint
PF (R2 = 0.83, 0.90, and 0.85, 

respectively). 

 

Figure 4.9 Evaluation of Planet Fusion (PF) derived NIRvP within eddy covariance 

(EC) footprint in different spatial resolution against GPP around satellite passing 

time. 𝐍𝐈𝐑𝐯𝐏𝐄𝐂𝐟𝐨𝐨𝐭𝐩𝐫𝐢𝐧𝐭
𝐏𝐅  denotes Planet Fusion -derived NIRvP in daily eddy covariance 

footprints around the local satellite overpassing time. The linear relationships 

against GPP are shown. The detailed numbers are in (Table A4.6). 

 

3.3 Daily GPP estimation from Planet Fusion -derived NIRvP 

The overall performance of daily NIRvPECfootprint
PF  (R2 = 0.80; RMSE 

= 2.08) in estimating daily GPP was considerably better than the 

overall performance of daily NIRvP𝑖𝑛 𝑠𝑖𝑡𝑢 (R2 = 0.67; RMSE = 2.68) 
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(Figure 4.10). The NIRvECfootprint
PF × daily PARBESS product showed a 

stronger linear relationship and smaller RMSE (R2 = 0.79; RMSE = 

2.15) with daily GPP than the NIRv𝑖𝑛 𝑠𝑖𝑡𝑢 × daily PARBESS product (R2 

= 0.62; RMSE = 2.88). Compared with daily NIRvPECfootprint
PF , 

NIRvECfootprint
PF  × daily PARBESS showed similarly good performance for 

daily GPP estimation. The slopes (in parentheses) estimated by 

linear regression between NIRvP and daily GPP were: 

daily NIRvPECfootprint
PF  (0.67–0.98) > NIRvECfootprint

PF  × daily PARBESS 

(0.69 – 1.01) > daily NIRvP𝑖𝑛 𝑠𝑖𝑡𝑢  (0.80 – 2.32) > NIRv𝑖𝑛 𝑠𝑖𝑡𝑢  × 

daily PARBESS  (0.68 – 2.35) (Table A7). Additionally, NIRvECfootprint
PF  

× daily PARBESS followed well the changes of GPP with time (Figure 

4.11). 
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Figure 4.10 Linear relationships between in situ-measured and Planet Fusion (PF)-

derived daily NIRvP and daily GPP at all sites (colored circles). 

𝐝𝐚𝐢𝐥𝐲 𝐍𝐈𝐑𝐯𝐏𝐢𝐧 𝐬𝐢𝐭𝐮 denotes the aggregated half-hourly in situ NIRvP; 

𝐍𝐈𝐑𝐯𝐏𝐢𝐧 𝐬𝐢𝐭𝐮denotes averaged in situ NIRvP around the local satellite overpassing time; 

𝐝𝐚𝐢𝐥𝐲 𝐏𝐀𝐑𝐁𝐄𝐒𝐒  means daily summed PAR data retrieved from the satellite-based 

Breathing Earth System Simulator (BESS); 𝐝𝐚𝐢𝐥𝐲 𝐍𝐈𝐑𝐯𝐏𝐄𝐂𝐟𝐨𝐨𝐭𝐩𝐫𝐢𝐧𝐭
𝐏𝐅  indicates 

temporally upscaled 𝐍𝐈𝐑𝐯𝐄𝐂𝐟𝐨𝐨𝐭𝐩𝐫𝐢𝐧𝐭
𝐏𝐅 . Red line indicates the linear regression model 

slope of overall sites. R2 is the coefficient of determination, p-value indicates the 

significance of the linear regression, and n is the number of samples used in the 

linear regression model. NIRvP is given in unit of mol m-2 d-1. Detailed site data are 

provided in (Table A4.7). 
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Figure 4.11 Seasonal variation of the product of NIRv from in situ and Planet Fusion 

(PF) in different footprint types and BESS daily PAR (left axis) and that of daily 

GPP (right axis). NIRvP is given in unit of mol m-2 d-1. 
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4. Discussion 

Overall, I found that matching Planet Fusion NIRvP to the flux tower 

footprint considerably improved the agreement with flux tower-

based GPP across sites compared to using a fixed footprint (100 m, 

a hectare area around tower; NDVIsensor, the footprint of in situ NDVI 

sensor) even when compared to the in situ NIRvP observations 

(Figure 4.6 and 4.7). The effects of matching the flux tower footprint 

on the regression slope between NIRvP and GPP was largest for the 

two wetland sites and a corn site (Figure 4.7). For daily GPP 

estimation from Planet Fusion data, the different approaches showed 

comparable performances (Figure 4.10). NIRvP considerably 

outperformed NIRv for GPP estimation around satellite overpass time, 

especially when pooling the data from all sites and using Planet 

Fusion NIRvP. A more detailed discussion on the different aspects is 

presented in the subsections below. 

 

4.1  Flux tower footprint matching and effects of spatial and temporal 

resolution on GPP estimation 

The high spatial resolution of Planet Fusion NIRvP (NIRvPPF) (3 m) 

allowed us to match the footprints of in situ NDVI sensors and eddy 

covariance systems with Planet Fusion pixels, which led to 

considerable improvement in the agreement between NIRvPPF  and 

flux tower GPP compared to either a fixed footprint (100 m by 100m) 

or the relatively small area covered by in situ NDVI sensors 

(NDVIsensor footprint)(Figure 4.3, 4.6, and 4.7). In fact, the 

performance of Planet Fusion NIRvP in daily flux tower footprints 

(NIRvPECfootprint
PF ) was even better than that of in situ sensors with bi-

hemispheric view, which did not fully cover the EC footprint (Figure 

4.3). This is a remarkable finding as it implies that the uncertainties 
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associated with satellite observations of NIRvP are smaller than the 

impacts of the footprint mismatch between in situ optical sensors and 

the flux tower footprint. 

An important aspect of our study was to characterize how the 

footprint mismatch affected the NIRvP-GPP relationships and to 

identify the factors explaining such patterns. I found that the effects 

of footprint mismatch had relatively small impacts on the NIRvP-GPP 

correlation for individual sites but large impacts on the data combined 

from all sites (Figure 4.6 and 4.7). This was due to inconsistent 

NIRvP-GPP regression slopes when the flux tower footprint was not 

matched (Figure 4.7). These results indicate that while the temporal 

GPP dynamics are relatively consistent in different parts of the 

ecosystems, the canopy structure factors such as leaf area index, 

leaf angles and clumping to which NIRvP is sensitive (Dechant et al., 

2022; Dechant et al., 2020) can vary considerably within the flux 

tower footprints. Freshwater wetland (US-Tw4) and Palustrine 

wetland (US-Myb) showed the highest sensitivity of regression 

slopes to the choice of footprint schemes (Figure 4.6 and 4.10). 

Although one might first suspect the impact of the water fraction or 

the spatial patterns of the water (Matthes et al., 2014) rather than 

vegetation canopy structure in the footprint of optical sensors to 

explain the different slopes in wetland ecosystems, NIRvP is largely 

insensitive to water background as both the NDVI factor and NIR 

reflectance have low values for water (Chen et al., 2018; Weiss and 

Crabtree, 2011). Therefore, the most likely explanation for the large 

sensitivity of wetland sites to the footprint type is the spatial 

heterogeneity in canopy structure. Apart from insufficient spatial 

coverage (Gamon, 2015), observations from in situ spectral sensors 

can also be particularly biased as they typically include the tower 
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structure and its surroundings which are not representative of the 

flux tower footprint as vegetation near the tower is cleared for the 

safety of the tower structure. The high consistency between NIRvP 

and GPP patterns at each site during the study period (Figure 4.11 

and S4.3) is likely due to the strong impact of environmental drivers 

such as PAR, temperature and humidity. 

I found that the NIRvP-GPP relationships indeed improved by 

footprint matching rather than other factors that could affect the 

relationship. As NIRvP is only a proxy for GPP but not a direct 

observation, the comparison of satellite NIRvP with ground GPP is 

not a direct ground validation and might be affected by other 

limitations of NIRvP to estimate GPP, in addition to other 

uncertainties related to satellite vs. ground observations. Therefore, 

I used two different ways to exclude such uncertainties as alternative 

factors explaining our findings of improved NIRvP-GPP relationships 

when matching Planet Fusion with flux tower footprints. First, I 

compared entirely in situ-based NIRvP-GPP relationships with 

relationships where the Planet Fusion area matched the footprint of 

the in situ NDVI sensor. As these results showed rather similar 

patterns in slope differences between sites (Figure 6 and 7), the main 

factor for different slopes indeed seems to be the footprint size and 

site location. Second, I also conducted a direct ground-validation 

analysis for NIRv and NIRvP and found strong agreement between 

Planet Fusion and in situ NIRv and NIRvP (Figure 4 and 5). This 

further confirms that the Planet Fusion -based satellite products are 

reliable and that the patterns in the results of NIRvP-GPP 

relationships for different footprints are indeed due to the area 

covered rather than other sources of uncertainty. Although I found 

the footprint mismatch to be the dominant factor explaining NIRvP-



 

 121 

GPP slope differences between sites, the photosynthetic pathway of 

the vegetation also needs to be taken into account. Among the 

cropland sites, the slope of Planet Fusion NIRvP against GPP in C4 

plants (corn in US-Bi2) was generally higher than that in C3 plants 

(alfalfa in US-Bi1) (Figure 4.6). This higher slopes of C4 compared 

to C3 plants is consistent with previous studies although I found a 

smaller difference (Badgley et al., 2019; Baldocchi et al., 2020; 

Dechant et al., 2022). I found that the gap-filling of Planet Fusion 

data had the effect of increasing the spread in NIRvP-GPP 

regression slopes (Figure 4.5). This effect, however, was small and 

mostly due to a single site (US-Myb; Palustrine wetland) and also 

cannot explain the differences between different footprint types as 

the gap-filled data was used for all of them. 

The high spatial resolution of Planet Fusion improved the 

performance of NIRvP-based GPP estimation more compared to the 

high temporal resolution. To quantify the effects of spatial and 

temporal resolution of satellite imagery on the NIRvP-based GPP 

estimation results, I conducted further analyses. First, I evaluated if 

the footprint matching could still be effective at the coarser spatial 

resolution of 30 m instead of 3 m. Although the performance of 30 m 

data was still relatively robust, better performance (R2 increase ~ 

0.06) was found for 3 m at some of the sites, especially at the wetland 

and corn sites (Figure 4.9; Table A4.6), where the water surface 

extent can change at scales below 30 m (Halabisky et al., 2016). In 

the direct ground validation for NIRv and NIRvP, I found that the 

coarse 500 m MODIS pixels had poor performance with large slope 

differences between the sites (Figure 4 and 5) due to low proportion 

of footprint area within a pixel (McCombs et al., 2019), while the 

finer 30 m HLS and 3 m Planet Fusion pixels showed robust 
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performance. Nevertheless, I found substantial land surface 

heterogeneity even within the 30 m satellite pixels (Figure A4.8) 

indicating the advantage of the Planet Fusion high-resolution 

imagery which cannot be replaced by fusion products based on 

MODIS-HLS without compromising the performance (Kong et al., 

2021). Second, I evaluated the impact of temporal resolution by 

comparing the results for daily matching of the EC footprint with that 

of matching the annual footprint (Figure A4.9). I found similar 

performance in the two cases. Although there is daily variation in the 

footprints at each site, the annual footprints are good representatives 

of the area measured by the flux tower because of a strongly 

dominant wind direction related to the typical meteorological 

conditions in this area on an annual time scale (Figure A4.3; Figure 

S4.8). These findings are, therefore, specific to the sites I used and 

bigger differences between annual and daily footprint matching are 

expected for other sites with more variable wind directions (Kim et 

al., 2006). 

The near-daily revisit frequency of CubeSats (Roy et al., 2021) 

allowed us to track canopy dynamics in detail. For the study period 

in each site, overall, CubeSats provided 49 – 56% of daily data when 

gap-filled data is removed, which is a higher daily retrieval rate 

compared to HLS (22 – 28%) (Figure 4.4; Table A4.5). The near-

daily Planet Fusion acquisition frequency enabled the detection of 

surface changes like mowing events (Figure S4.3 and S4.4) (Kong et 

al., 2021). Nonetheless, cloud-induced data gaps can still present a 

significant obstacle for uninterrupted land surface monitoring. Over 

the study sites, the Planet Fusion -based gap-filling process enabled 

daily tracking of photosynthesis (Figure 4.5; Table A4.5). Even 

though the data-gaps were not negligible throughout the study period 
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(Figure A4.8), Planet Fusion data were in general successfully gap-

filled (Figure 4.4) in part due to relatively short temporal gaps (Kong 

et al., 2021; Luo et al., 2018). While the gap-filling had considerable 

impacts on NIRv, the performance of Planet Fusion NIRvP compared 

to in situ NIRvP was robust even for gap-filled data (Figure 4.4 and 

4.5). Daily gap-filled NIRvPECfootprint
PF  responded to GPP drops caused 

by drastic surface changes (e.g., mowing) (Figure 4.8; Figure S4.3) 

which agrees with previous findings that Planet Fusion -based 

evapotranspiration maps are able to capture evaporation fluxes on a 

day-to-day basis  (Aragon et al., 2021). Further improvements in 

the capacity to track diurnal canopy dynamics may involve spatio-

temporal image fusion between CubeSat and geostationary satellites 

that scan the same area in every 5-15 minutes (Khan et al., 2021) 

or integration of ECOSTRESS data that measure thermal infrared 

with 70 m resolution every 1-5 days (Fisher et al., 2020; Li et al., 

2021). 

 

4.2  Roles of radiation component in GPP mapping 

At the time of satellite overpass, I found NIRvPPF estimated GPP 

better than NIRvPF when pooling data from all sites and also for most 

sites individually (Figure 4.6, 4.7 and 4.8). When NIRv was first 

proposed, it successfully explained the variation of GPP at the 

monthly time scale (Badgley et al., 2017). As the variations of daily 

NIRv and, above all, PAR values are mostly averaged out at monthly 

time scales, NIRv alone can estimate monthly GPP with reasonable 

performance. However, NIRv alone raises an issue for GPP 

estimation at the time of satellite overpass and daily scales as PAR 

plays an important role (Dechant et al., 2022; Dechant et al., 2020). 

Although PAR variations are most important for estimating diurnal 
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variations of GPP and NIRvP, PAR still plays an important role at the 

time of satellite overpass due to considerable seasonal PAR 

variations (Figure A4.2 and S4.3). In fact, when examining our 

results closely, a stronger tendency towards non-linear 

relationships to GPP can be observed for NIRv compared to NIRvP 

when considering sites individually (Figure 4.7). Somewhat similar 

non-linear effects have also been reported before for statistical GPP 

estimation from reflectance measured by the hyperspectral sensor 

without including PAR information (Dechant et al., 2019). However, 

another potential explanation for the non-linear effects at rather low 

values could be the non-zero NIRv values for senescent or dead 

vegetation outside of the main growing season when GPP is 

essentially zero (Figure S4.3). As PAR is low during those times, 

NIRvP has a somewhat dampened non-linearity compared to NIRv. 

Assuming that background effects are indeed partly causing the non-

linearities, using soil-adjusted NIRv may further improve the results 

(Jiang et al., 2021). Overall, the better performance of NIRvPECfootprint
PF  

for estimating GPP (Figure 4.6; Table A4.6) is consistent with both 

a mechanistic understanding of GPP drivers and the previous 

literature on the matter. 

While some aspects of the differences in performance of NIRv 

compared to NIRvP for GPP estimation (Figure 4.6 and 4.7) might 

appear counter-intuitive at first sight, a closer examination of the 

results can explain those patterns. In particular, the difference 

between NIRv and NIRvP for GPP estimation was considerably 

smaller for in situ data than for Planet Fusion data and for the latter 

it was considerably larger for pooled data from all sites than for 

individual sites. Furthermore, the slope consistency and R2 values 

between sites showed similar relative sensitivities to footprints for 
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NIRvPF and for NIRvPPF although the R2 values differed considerably 

in absolute values. All these results can be understood by taking into 

account the effects of gap-filling on NIRvPF, as the gap-filling led to 

decrease in agreement with in situ NIRv (NIRv𝑖𝑛 𝑠𝑖𝑡𝑢) (Figure A4.8) 

but this larger disagreement essentially disappeared for NIRvP 

(Figure 4.4 and 4.5). This compensatory effect of PAR may also 

suggest a critical control of PAR on regulating seasonal GPP 

variations at the time of satellite overpass. It should be noted that the 

effect of gap-filling on the performance of NIRvPF  was mostly 

reflected in the correlation to GPP at individual sites rather than in 

the slope consistency between sites (Figure 4.4 and 4.5).  

Daily PAR maps enable NIRvPF maps to conduct spatial upscaling 

of daily GPP estimation from point eddy covariance sites to landscape 

scale. Currently, estimates of GPP at eddy covariance sites cover 

only a small area of the terrestrial surface, with limited numbers of 

sites that are strongly biased geographically (Ciais et al., 2014; 

Schimel et al., 2015). I found that daily NIRvPECfootprint
PF , which was 

temporally upscaled from satellite overpassing time, was strongly 

correlated to daily GPP (Figure 4.10) as GPP at a specific time of the 

day with a cosine correction generally shows a strong linear 

relationship with daily GPP (Ryu et al., 2012; Zhang et al., 2018). In 

other words, the relationship between NIRvPECfootprint
PF  and GPP 

around the overpass time resulted in good performance of daily 

NIRvPECfootprint
PF  in estimating daily GPP (Figure 4.10). Furthermore, 

NIRvP includes information regarding canopy structure and the 

amount of incoming radiation absorbed and scattered by vegetation 

(Baldocchi et al., 2020; Dechant et al., 2022; Dechant et al., 2020). 

Assuming that canopy structure changes are small within a day, the 
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multiplication of daily PAR by Planet Fusion-derived NIRv will 

robustly estimate daily GPP. Consequently, NIRvECfootprint
PF  × 

daily PARBESS performed similarly to daily NIRvPECfootprint
PF  in estimating 

daily GPP (Figure 4.10 and 4.11). Accordingly, Planet Fusion -

derived NIRv combined with daily PAR maps enables us to generate 

daily GPP maps with a high degree of fidelity (Figure 4.10), which is 

consistent with the finding of previous studies at different scales 

(Jiang et al., 2021).  

 

4.3  Limitations and perspectives 

Our findings indicate that further tests of the slopes of the 

relationships between NIRvP and GPP are required. The study period 

for each site varied from 6 months to 1 year (Table 4.1), which may 

be sufficient for testing seasonal variation; however, it is insufficient 

for testing whether these slopes are stable over long periods. Several 

studies have reported strong correlations between NIRvP and GPP 

(Baldocchi et al., 2020; Dechant et al., 2022; Dechant et al., 2020), 

but the consistencies of their slopes over multiple years, which could 

include severe stress such as drought, have not been evaluated. Our 

study sites (cropland and wetlands) are well-known for low water 

stress. While Baldocchi et al. (2020) reported a strong and rather 

consistent relationship between NIRvP and GPP at an annual 

grassland site when pooling data from twelve years, the stability of 

slopes was not investigated. Also, the longer-term robustness of the 

relationships between NIRvP and GPP could differ between 

ecosystems. The accumulation of Planet Fusion data over longer 

periods will allow us to capture interannual variation in canopy GPP 

and test if the promising findings of Baldocchi et al. (2020) and 
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Badgley et al. (2019) also hold at finer spatio-temporal scales across 

ecosystems.  

Limitations are expected in the performance of NIRvP to capture 

shorter-term responses of GPP to vegetation stress as NIRvP is 

entirely based on canopy structure and radiation information and does 

not include physiological vegetation signals. In particular, NIRv 

closely approximates the product of the fraction of absorbed PAR 

(fPAR) times the fraction of photons that escape from the canopy 

(fesc) (Zeng et al., 2019). Therefore, NIRvP well captures APAR, 

the product of fPAR and PAR, which is a strong driver of GPP. 

Although there is convincing evidence that fesc can capture seasonal 

variations in light use efficiency (LUE) in crops in the absence of 

strong environmental stress (Dechant et al., 2020; Liu et al., 2020), 

fesc might not capture the faster physiological responses at the onset 

of droughts as fesc is driven by canopy structure variables such as 

leaf area index, clumping and leaf inclination (Badgley et al., 2017; 

Qiao et al., 2019; Zeng et al., 2019), which typically respond more 

slowly than leaf physiology. Therefore, remote sensing variables that 

carry physiological signals related to LUE such as the photochemical 

reflectance index (PRI) and physiological emission yield of sun-

induced chlorophyll fluorescence (ΦF) should be considered to refine 

NIRvP-based estimates of GPP in situations of strong environmental 

stress (Dechant et al., 2022; Kimm et al., 2021; Wang et al., 2020c). 

While SIF contains both the structural information of NIRvP and the 

physiological information of ΦF, the variations of ΦF tend to be so 

small that separating them from the structural component with the 

help of NIRvP might be necessary to use this information for 

improved GPP estimation (Dechant et al., 2022). 

Uncertainties remain in the satellite products and in situ 
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measurements. Because the radiometric accuracy of Planet Fusion 

data is linked to that of HLS (in this study) (PlanetFusionTeam, 

2021), the bias of HLS NIRv (NIRvHLS) against NIRv𝑖𝑛 𝑠𝑖𝑡𝑢 might lead 

to the bias of  Planet Fusion NIRv in the footprint of in situ NDVI 

sensor ( NIRvNDVIsensor
PF ) against NIRv𝑖𝑛 𝑠𝑖𝑡𝑢   as  (Figure 4.4). In 

addition, the absolute geolocation accuracy of the PlanetScope 

CubeSat data is less than 10 m RMSE (PlanetFusionTeam, 2021). 

Therefore, the discrepancy between NIRvNDVIsensor
PF  and NIRv𝑖𝑛 𝑠𝑖𝑡𝑢 

over US-Bi1 (Alfalfa), which was similar to the range of Planet 

Fusion NIRv in HLS pixel coverage that includes NDVIsensor 

(NIRvinHLS
PF ) (Figure A4.8), could be partly explained by geolocation 

uncertainties. Apart from the geolocation accuracy of the satellite 

imagery, the location of in situ spectral sensors can also contribute 

to biases in our results (Figure S4.1). Regarding the temporal 

patterns, Planet Fusion data will be associated with larger 

uncertainties during more extended gap periods (Figure A4.8; Figure 

4.4). In those periods, NIRvP tracked GPP better than NIRv did, 

which could be explained by the role of day-to-day variations of 

PAR in predicting GPP. Moreover, the study sites are mostly cloud-

free during the growing season, which is an ideal case, other sites 

might have broken clouds with shadows. In that case, the spatial 

mismatch between satellite-derived PAR and NIRv might degrade 

the performance of NIRvP-based GPP estimation as PAR with coarse 

spatial resolution cannot provide the radiation information separately 

between cloudy and cloud-free areas. In future works on cloudy 

areas, PAR derived from geostationary satellites with a high spatial 

resolution (Zhang et al., 2021) could be an option although the spatial 

resolution is still much coarser than the Planet Fusion imagery. 

Regarding in situ measurements, continuous eddy covariance 
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measurements can be relatively free from outliers compared to 

snapshot satellite imagery but sampling errors can also lead to 

outliers (Figure 4.6, Figure S4.4) even after integrating samples at 

20 Hz to 30-min data (Moffat et al., 2007; Richardson et al., 2006). 

At a daily time scale, uncertainty (one standard deviation) in tower-

derived GPP is typically assumed to be 15–20% of the measurements 

(Falge et al., 2002; Hagen et al., 2006; Richardson et al., 2006). 

Moreover, the assumptions made during the partitioning of GPP from 

NEE could induce uncertainty (Reichstein et al., 2005). 

Theoretically, both PAR and GPP should be zero in nighttime but 

gap-filled GPP have both negative and positive values in the 

nighttime due to an unideal temperature function of nighttime NEE. 

Therefore, the daily (0000hh-2400hh) GPP values are larger than 

daytime (0800hh-1800hh) GPP (Figure S4.9). Since I targeted to 

estimate daily GPP, which is needed for annual accumulated GPP, 

NIRvP–daily GPP relationship will be biased when I force nighttime 

GPP to 0 or exclude nighttime GPP in daily GPP (Figure S4.9). In the 

case of US-Snf (Pasture), the peak growing season over US-Snf 

(Pasture) was around December to June but the data were used from 

June to December in this study (Table 4.1). Hence, when vegetations 

are less active, the presence of cattle in US-Snf (Pasture), which 

can affect carbon dioxide fluxes (Baldocchi et al., 2012; Detto et al., 

2010), might influence the relationship between NIRvP and GPP. 

Regarding footprint matching between Planet Fusion NIRvP and GPP, 

I weighted Planet Fusion pixels within the flux footprints based on 

the contour lines rather than the spatially fully explicit footprint 

contributions per pixel. Therefore, I also encourage future studies to 

develop pixel-based footprint model for calculating the footprint 

contribution per pixel. 
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Matching the footprint between Planet Fusion-derived NIRvP and 

GPP measurements enables us to use the full potential of flux tower 

data for spatial upscaling. Previous studies have already pointed out 

the importance of the spatial heterogeneity within flux tower 

footprints as the primary source of uncertainty in spatial upscaling 

(Giannico et al., 2018; Ran et al., 2016) and the role of CubeSat data 

in a robust spatial upscaling (Ryu et al., 2019). As Planet Fusion 

NIRvP could be successfully matched to the flux tower footprint 

(Figure 4.2; Appendix 4.2) despite frequent mowing and water extent 

changes (Figure 4.7), it could, in principle, also be used as a new tool 

for characterizing the heterogeneity of the eddy covariance footprints 

of all FLUXNET sites. The important difference to previous 

approaches relying on NDVI or other greenness indicators (e.g. Chen 

et al. (2011a), Chen et al. (2012), Chu et al. (2021)) would be to use 

NIRv as proxy for GPP, assuming sufficiently constant PAR in the 

selected area. To characterize the spatial heterogeneity, one could 

use semi-variogram (Kim et al., 2006), which is a suitable 

geostatistical method for analyzing spatial patterns. Such an analysis 

could well lead to unexpected results as sites that were previously 

characterized as homogeneous landscapes (e.g., cropland) may show 

considerable spatial heterogeneities (Figure A4.8). Apart from the 

footprint characterization that might also be of general interest to the 

eddy covariance community, Planet Fusion NIRvP will allow us to also 

include sites with heterogeneous footprints and landcover for spatial 

upscaling, which have not previously been feasible as the traditional 

satellite products with coarser spatio- temporal resolution had to 

rely on a selection of homogeneous sites to avoid biased results 

(Chen et al., 2011a; Ran et al., 2016). Although the footprint matching 

also improved temporal correlation of NIRvP against GPP for each 



 

 131 

site (Figure 4.8), it was not as much as the convergence of slopes 

across the sites (Figure 4.7). NIRvP-based GPP estimation varied 

within the sites depending on the vegetation types and canopy 

structures but the slope of NIRvP-based daily GPP against in situ 

GPP over the study period were similar (Figure 4.10) because 

climate factors were the dominant drivers. Nevertheless, variations 

of NIRvP-GPP regression slopes could appear in very dense forest, 

ecosystems with high species diversity, and vertically heterogeneous 

canopies (Ishii et al., 2004), which were not tested in this study. In 

particular, evergreen needleleaf trees stay green during winter 

although their photosynthesis is nearly nil, which can lead to 

seasonally changing slopes between NIRvP and GPP (Kim et al., 

2021). 

Our results highlight the potential of CubeSat-based imagery for 

daily canopy GPP estimation. Previous studies have applied CubeSat 

datasets to monitor phenology, leaf area index, NDVI, and 

evapotranspiration (Aragon et al., 2018; Aragon et al., 2021; Houborg 

and McCabe, 2018b; Hwang et al., 2020; Kimm et al., 2020). The 

results of our study suggest that CubeSat imagery can be used to 

obtain daily canopy photosynthesis data at fine spatial and temporal 

resolution, thus overcoming limitations inherent in using only 

observations from individual sun-synchronous satellites such as 

MODIS and Landsat. Moreover, potential improvements of Planet 

Fusion -derived NIRv for NIRvP mapping have already been 

suggested (Jiang et al., 2021). In particular, Jiang et al. (2021) and 

Zeng et al. (2019) suggested methods to account for the non-zero 

NIRv values for bare soil or dead vegetation, which could lead to 

improvements in GPP estimation especially outside the main growing 

season. However, these approaches need additional information at 
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each site and only can predict GPP after the current season unless 

assumptions are made based on previous years’ data. Further 

studies should evaluate the performance of Planet Fusion NIRvP for 

an even broader range of ecosystem types in various geographical 

locations and physiological stress conditions including drought and 

flood. Incorporation of inexpensive spectral sensors into flux towers 

that can monitor NIRv (Garrity et al., 2010; Kim et al., 2019; Ryu et 

al., 2010) and using existing sensor networks to increase ground 

observation of NIRv across the globe (Carrer et al., 2021) will be a 

useful strategy for evaluating and improving CubeSat-based fine-

resolution GPP mapping. 
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5. Conclusion 

In this study, I evaluated the performance of satellite-derived 

NIRvP as a proxy for GPP by comparing it with in situ GPP from a 

flux tower network over a heterogeneous landscape consisting of 

mixed wetlands and croplands. I found that the best agreement 

between flux tower GPP and NIRvP calculated from the Planet 

Fusion-based product was achieved when matching the Planet 

Fusion imagery to the tower flux footprints. In fact, the agreement of 

Planet Fusion imagery matched to the flux tower footprint was even 

considerably better than the agreement between in situ NIRvP and 

tower GPP. The improvement for GPP estimation due to the flux 

tower footprint matching was evidenced by the higher across-site 

consistency in linear regression slopes between Planet Fusion NIRvP 

and GPP compared to either fixed footprint Planet Fusion NIRvP or in 

situ NIRvP. This indicates a large impact of the mismatch between 

flux tower footprint and the area covered by optical sensors due to 

spatial heterogeneity within the temporally varying flux tower 

footprint. I found the largest effects of such mismatches in wetland 

sites that have a temporally varying fraction of vegetation in a given 

area. The performance of Planet Fusion-based NIRvP was robust 

across sites and times in the growing season both for GPP estimation 

at the time of satellite overpass and for daily summed values. 

Accordingly, Planet Fusion NIRvP serves as a viable metric for 

creating daily, high spatial resolution GPP maps at the landscape 

scale which could prove very useful for precision agriculture or the 

monitoring of heterogeneous and dynamic natural ecosystems such 

as wetlands. I encourage future efforts to test the proposed approach 

in a wide variety of ecosystems during water-limited or light 

saturation periods. Overall, our results demonstrated significant 
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advantages of the high spatio-temporal resolution Planet Fusion 

products for daily canopy GPP estimation and for upscaling flux data 

for model validation and parameterization. More generally, our 

findings indicate the large potential of sensor data fusion for high 

fidelity vegetation monitoring at unprecedented spatial and temporal 

resolutions. 
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Appendix 
 

 
Figure A4.1 Evaluation of view geometry effects on in situ near-infrared radiation 

from vegetation (NIRv) from 2018 to 2019. Using MCD43A1 bidirectional 

reflectance distribution function parameters, I converted in situ bi-hemispheric 

reflectance into blue sky albedo at 1030hh (local time UTC-8) and compared it to 

a nadir bidirectional reflectance distribution function-adjusted reflectance (NBAR) 

product (MCD43A4). 
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Figure A4.2 Evaluation of photosynthetically active radiation (PAR) data in this 

study. (a) Seasonal variation in PAR throughout 2018 at three sites (US-Bi1, 

Alfalfa; US-Bi2, Corn; and US-Tw4, Freshwater wetland) and 2019 in two sites 

(US-Myb, Palustrine wetland; and US-Snf, Pasture), including instantaneous in 

situ PAR at satellite passing time (𝐏𝐀𝐑𝐬𝐚𝐭𝐞𝐥𝐥𝐢𝐭𝐞
𝐢𝐧 𝐬𝐢𝐭𝐮 ), in situ daily PAR (𝐏𝐀𝐑𝐝𝐚𝐢𝐥𝐲

𝐢𝐧 𝐬𝐢𝐭𝐮), and 

BESS daily PAR (𝐏𝐀𝐑𝐝𝐚𝐢𝐥𝐲
𝐁𝐄𝐒𝐒). (b) The relationship between BESS daily PAR and in 

situ daily PAR. Dashed black line is a 1:1 line (y = x). Red lines indicate the slopes 

of the linear regression models for each site. R2 is the coefficient of determination, 

p-value indicates the significance of the linear regression, and n is the number of 

samples used in the linear regression model. For the US-Snf site, the daily PAR 

value was approximately 89% lower than the mean of the other sites throughout 

2019; therefore, I applied a correction factor of 1.14 to all US-Snf PAR data.  
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Figure A4.3 Examples of daily eddy covariance (EC) footprints at sites (a) US-Bi1 

(Alfalfa), (b) US-Bi2 (Corn), (c) US-Tw4 (Freshwater wetland), and (d) US-Snf 

(Pasture) from (a–c) January 1–3, 2018 and from (d) December 29–31, 2019. 

Additionally, annual cumulative footprints were denoted over (a) US-Bi2 from 2017 

and (c) US-Tw4 from 2016. Contour lines delineate footprints within which (a–c) 

50–90% and (d) 50–80% of the cumulative flux originated. Image source: red–green–

black (RGB) Planet Fusion product (projection, WGS84/UTM zone 10N) for (a–c) 

January 1, 2018, and (d) December 29, 2019. 
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Figure A4.4 Examples of footprints for flux towers (white dots) at sites (a) US-Bi1 

(Alfalfa), (b) US-Bi2 (Corn), (c) US-Tw4 (Freshwater wetland), and (d) US-Snf 

(Pasture) for different footprint types including eddy covariance footprint on 

January 1, 2018 (orange), a fixed 100 m × 100 m footprint (green) around the 

eddy covariance tower, and Harmonized Landsat/Sentinel (inHLS) pixels (cyan) 

including the normalized difference vegetation index (NDVI) sensor footprint 

(yellow). Contour lines denote the footprints within which 50–90% (a-c) and 50–

80% (d) of the cumulative flux originated. Image source: RGB Planet Fusion surface 

reflectance product (projection, WGS84/UTM zone 10N) for (a–c) January 1, 2018, 

and (d) December 29, 2019. 
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Table A4.5 Comparison of NIRv and NIRvP derived from MODIS HSL, and 

observation-derived and gap-filled Planet Fusion (PF) data with in situ NIRv and 

NIRvP at each site. R2, coefficient of determination; RMSE, root mean square error; 

rbias, relative bias; slope, slope of linear regression; n, number of samples. 

Site ID R2 RMSE Bias rbias 

(%) 

slope R2 RMSE Bias rbia

s 

(%) 

slop

e 

n 

MODIS 

 NIRv NIRvP  

US-Bi1 0.4

2 

0.09 0.05 33.0 0.38 
0.82 95.80 46.26 17.7 0.73 365 

US-Bi2 0.9

3 

0.03 0.01 5.5 0.99 
0.94 49.44 1.60 1.0 0.98 364 

US-

Tw4 

0.9

4 

0.14 0.13 368.6 2.14 
0.94 

221.4

9 

196.6

4 

322.

6 
2.83 313 

US-

Myb 

0.7

4 

0.15 0.13 294.3 2.55 
0.89 

259.7

0 

216.1

5 

280.

7 
3.37 338 

US-Snf 0.8

0 

0.09 0.09 104.7 0.67 
0.94 

124.6

7 

118.3

8 
82.4 1.24 185 

Overall 0.4

4 

0.11 0.08 91.9 0.66 0.51 170.0

7 

111.1

7 
77.8 

0.81 1565 

HLS 

 NIR NIRvP  

US-Bi1 0.7

0 
0.09 0.08 37.6 1.01 0.85 

131.4

1 

107.8

8 
32.1 1.02 50 

US-Bi2 0.9

5 
0.04 

-

0.02 
-13.1 0.76 0.96 68.35 

-

34.32 

-

15.5 
0.77 48 

US-

Tw4 

0.8

4 
0.11 0.11 229.6 1.54 0.92 

182.6

8 

176.3

6 

216.

4 
1.80 41 

US-

Myb 

0.5

2 
0.02 0.01 18.5 0.91 0.64 35.22 16.50 16.1 0.95 42 

US-Snf 0.7

5 
0.07 0.06 63.1 1.02 0.91 

111.8

2 

102.8

9 
59.0 1.30 28 

Overall 0.6

9 

0.07 0.05 41.2 0.94 
0.73 

116.9

4 
69.62 36.4 0.92 

209 

Observed Planet Fusion 

 NIRv NIRvP  

US-Bi1 0.7

5 
0.09 0.08 39.2 1.04 0.88 

126.8

6 

107.0

5 
33.3 1.04 177 

US-Bi2 0.9

8 
0.02 

-

0.01 
-6.1 0.85 0.98 44.29 

-

17.28 

-

8.2 
0.85 184 

US-

Tw4 

0.8

3 
0.10 0.10 212.7 1.71 0.94 

165.6

8 

157.5

0 

198.

1 
1.94 176 

US-

Myb 

0.8

1 
0.01 0.01 9.4 0.69 0.92 15.62 5.95 6.3 0.81 174 

US-Snf 0.9

0 
0.05 0.05 50.1 0.71 0.98 69.76 68.14 42.1 1.01 101 

Overall 0.7

4 

0.07 0.04 41.8 0.98 
0.79 

102.7

6 
63.31 36.1 0.96 

812 

Gap-filled Planet Fusion 

 NIRv NIRvP  

US-Bi1 0.5

4 
0.12 0.10 59.5% 0.76 0.90 

121.8

7 

103.4

0 
39.7 1.03 365 

US-Bi2 0.9

8 
0.02 0.00 -0.5% 0.84 0.98 36.85 -9.12 

-

5.9 
0.85 364 

US-

Tw4 

0.8

6 
0.09 0.09 246.4% 1.74 0.94 

143.8

5 

128.2

6 

210.

4 
2.14 313 

US-

Myb 

0.8

2 
0.01 0.01 18.9% 0.65 0.94 15.21 6.79 8.8 0.86 338 

US-Snf 0.8

7 
0.05 0.05 59.9% 0.65 0.97 66.06 63.24 44.0 1.07 185 

Overall 0.6

9 

0.08 0.05 55.7% 0.99 
0.83 92.11 56.59 39.6 1.01 

1565 
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Table A4.6 Comparison of GPP in situ measurements at satellite passing time with 

NIRv (NIRvP) derived from in situ measurements and Planet Fusion for different 

footprint types. R2, coefficient of determination; slope, slope of linear regression; n, 

number of samples. 

Site ID  In situ NDVIsensor
 100m ECfootprint

 
ECfootprint 

 

(30 m 

resolution) 

NIRv 

US-

Bi1 

R2 0.76 0.56 0.57 0.60 0.61 

Slope 105.33 87.26 99.58 96.45 98.22 

n 365 365 365 359 298 

US-

Bi2 

R2 0.89 0.87 0.85 0.84 0.84 

Slope 158.20 183.93 231.13 152.68 152.55 

n 364 365 365 355 346 

US-

Tw4 

R2 0.92 0.87 0.88 0.88 0.93 

Slope 343.22 171.18 189.37 184.91 163.77 

n 313 365 365 354 66 

US-

Myb 

R2 0.69 0.59 0.57 0.81 0.77 

Slope 263.12 327.34 186.86 123.12 119.92 

n 338 365 365 360 274 

US-

Snf 

R2 0.82 0.80 0.87 0.77 0.63 

Slope 138.70 195.73 197.28 163.16 157.66 

n 185 185 185 181 132 

Overall 

R2 0.58 0.43 0.46 0.62 0.64 

Slope 105.98 76.43 94.85 101.59 99.78 

n 1565 1645 1645 1609 1116 

NIRvP 

US-

Bi1 

R2 0.71 0.78 0.79 0.80 0.81 

Slope 0.05 0.05 0.05 0.05 0.05 

n 365 365 365 359 298 

US-

Bi2 

R2 0.88 0.87 0.86 0.86 0.86 

Slope 0.09 0.10 0.12 0.08 0.08 

n 364 365 365 355 346 

US-

Tw4 

R2 0.87 0.91 0.86 0.89 0.83 

Slope 0.18 0.08 0.08 0.08 0.06 

n 313 364 364 354 66 

US-

Myb 

R2 0.84 0.83 0.83 0.92 0.90 

Slope 0.14 0.15 0.09 0.06 0.06 

n 338 365 365 360 274 

US-

Snf 

R2 0.83 0.85 0.85 0.88 0.85 

Slope 0.06 0.06 0.06 0.06 0.06 

n 185 185 185 181 132 

Overall 

R2 0.61 0.61 0.65 0.78 0.78 

Slope 0.06 0.05 0.06 0.06 0.06 

n 1565 1644 1644 1609 1116 
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Table A4.7 Comparison of in situ daily GPP measurements with daily NIRvP and 

NIRv × 𝐏𝐀𝐑𝐝𝐚𝐢𝐥𝐲
𝐁𝐄𝐒𝐒   for all sites. 

Site ID  Daily NIRvP NIRv x 𝐏𝐀𝐑𝐝𝐚𝐢𝐥𝐲
𝐁𝐄𝐒𝐒  

  𝐍𝐈𝐑𝐯𝐏𝒊𝒏 𝒔𝒊𝒕𝒖 𝐍𝐈𝐑𝐯𝐏𝐄𝐂𝐟𝐨𝐨𝐭𝐩𝐫𝐢𝐧𝐭
𝐏𝐅  In situ 

Planet 

Fusion 

US-Bi1 

R2 0.80 0.82 0.79 0.80 

Slope 0.80 0.67 0.68 0.69 

RMSE 2.33 4.51 3.21 4.24 

n 365 359 365 359 

US-Bi2 

R2 0.86 0.83 0.85 0.82 

Slope 1.17 0.98 1.02 1.01 

RMSE 2.62 2.80 2.63 2.83 

n 365 355 364 355 

US-

Tw4 

R2 0.90 0.91 0.90 0.89 

Slope 2.32 0.94 2.35 1.00 

RMSE 4.03 1.51 4.15 1.48 

n 341 354 313 354 

US-

Myb 

R2 0.90 0.92 0.85 0.92 

Slope 1.87 0.74 1.96 0.81 

RMSE 3.13 1.56 3.29 1.24 

n 339 360 338 360 

US-Snf 

R2 0.83 0.85 0.83 0.84 

Slope 0.86 0.67 0.78 0.70 

RMSE 1.13 2.85 1.37 2.56 

n 185 181 185 181 

Overall 

R2 0.67 0.80 0.62 0.79 

Slope 0.91 0.77 0.76 0.80 

RMSE 2.68 2.08 2.88 2.15 

n 1595 1609 1565 1609 
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Figure A4.8 (a) Spatial variation in Planet Fusion (PF) NIRv in inHLS footprints, 

which comprised two 30 m × 30 m boxes, and NDVIsensor footprints, which 

comprised 13 black boxes (3 m × 3 m in size) at site US-Bi1 (Alfalfa). (b) 

Seasonal variation in NIRv at site US-Bi1, derived from Planet Fusion with 

NDVIsensor footprint (red line), Planet Fusion with inHLS footprint (blue line), and in 

situ sensor (black dashed line), where black lines on top of the plot indicate gap-

filled data. Vertical lines indicate mean, maximum, and minimum values for 

𝐍𝐈𝐑𝐯𝐍𝐃𝐕𝐈𝐬𝐞𝐧𝐬𝐨𝐫
𝐏𝐅  and 𝐍𝐈𝐑𝐯𝐢𝐧𝐇𝐋𝐒

𝐏𝐅  data. (c) Differences between 𝐍𝐈𝐑𝐯𝐍𝐃𝐕𝐈𝐬𝐞𝐧𝐬𝐨𝐫
𝐏𝐅  and 

𝐍𝐈𝐑𝐯𝐢𝐧 𝐬𝐢𝐭𝐮 (black line). Blue and red lines indicate differences between maximum and 

minimum 𝐍𝐈𝐑𝐯𝐢𝐧𝐇𝐋𝐒
𝐏𝐅  and 𝐍𝐈𝐑𝐯𝐍𝐃𝐕𝐈𝐬𝐞𝐧𝐬𝐨𝐫

𝐏𝐅 , respectively. NIRv is given in unitless. 
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Figure A4.9 Comparison of NIRv and NIRvP measured derived from Planet Fusion 

(PF) in the annual cumulated eddy covariance footprint (𝐍𝐈𝐑𝐯(𝐍𝐈𝐑𝐯𝐏)𝐄𝐂𝐚𝐧𝐧𝐮𝐚𝐥
𝐏𝐅  ) with 

GPP measured in study sites (colored circles) around satellite overpassing time. Red 

lines indicate linear regression model slopes for all sites. R2 is the coefficient of 

determination, p-value indicates the significance of the linear regression, and n is 

the number of samples used in the linear regression model. I assumed that the shape 

of the cumulative footprint over US-Bi1 (Alfalfa) is similar to that over the nearby 

cropland site (i.e., US-Bi2, Corn), and I considered the inter-annual variations of 

cumulative footprints were small. The annual cumulative footprint over US-Tw4 

(Freshwater wetland) (2016) and US-Bi2 (2017) were used (Figure A3). NIRv and 

NIRvP are given in unitless and unit of μmol m-2 s-1 , respectively. 
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Supplementary Materials 

 

 

Figure S4.1 Location of fluxtower: registered in Ameriflux (Blue) and corrected 

location in this study (Red) over the study sites (Image source: Google Earth). 
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Figure S4.2 Maps of NIRvP derived from the combined Planet Fusion surface 

reflectance product and BESS daily PAR product throughout 2018 (projection, 

WGS84/UTM zone 10N; area, 30.6 km × 14.2 km = 433 km2). NIRvP is given in 

unit of mol m-2 d-1. 
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Figure S4.3 Seasonal variation of NIRvP from in situ and Planet Fusion (PF) in 

different footprint types (left axis), that of GPP (right axis; green), and in situ PAR 

(right axis; blue) around satellite passing time. NIRvP is given in unit of μmol m-2 

s-1.  
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Figure S4.4 Seasonal variation of NIRv from in situ and Planet Fusion (PF) in 

different footprint types (left axis), that of GPP (right axis; green), and in situ PAR 

(right axis; blue) around satellite passing time. NIRv is given in unitless.  
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Figure S4.5 The GPP trend (T) and detrended (D) GPP at each site. Linear 

relationships of gap-filled Planet Fusion (PF) NIRv and in situ NIRv with T and D at 

the satellite passing time are also shown. 𝐍𝐈𝐑𝐯𝐍𝐃𝐕𝐈𝐬𝐞𝐧𝐬𝐨𝐫
𝐏𝐅 , 𝐍𝐈𝐑𝐯𝟏𝟎𝟎𝐦

𝐏𝐅 , 𝐍𝐈𝐑𝐯𝐄𝐂𝐟𝐨𝐨𝐭𝐩𝐫𝐢𝐧𝐭
𝐏𝐅  

denotes Planet Fusion -derived NIRv around the local satellite overpassing time in 

different footprint type (i.e., NDVIsensor, 100m, and ECfootprint). Detailed site data for 

the entire study period are shown in (Figure S4).  
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Figure S4.6 Evaluation of Planet Fusion (PF) derived NIRv within eddy covariance 

(EC) footprint in different spatial resolution against GPP around satellite passing 

time. 𝐍𝐈𝐑𝐯𝐄𝐂𝐟𝐨𝐨𝐭𝐩𝐫𝐢𝐧𝐭
𝐏𝐅  denotes Planet Fusion-derived NIRv in daily eddy covariance 

footprints at the local satellite overpassing time. The linear relationships against 

GPP are shown. The detailed numbers are in (Table A6). 
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Figure S4.7 Seasonal variation of daily NIRvP from in situ and Planet Fusion (PF) in 

different footprint types (left axis) and that of daily GPP (right axis). NIRvP is given 

in unit of mol m-2 d-1. 
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Figure S4.8 Examples of daily eddy covariance (EC) footprints at sites (a) US-Bi1 

(Alfalfa), (b) US-Bi2 (Corn), (c) US-Tw4 (Freshwater wetland), (d) US-Myb 

(Palustrine wetland), and (e) US-Snf (Pasture) from July 1–10 (colored lines at 

each date), 2018 (a-c) and 2019 (d-e). Contour lines delineate footprints within 

which (a–c) 50–90% and (d) 50–80% of the cumulative flux originated. Image source: 

red–green–black (RGB) Planet Fusion surface reflectance product (projection, 

WGS84/UTM zone 10N) for (a–c) July 1, 2018, and (d-e) July 1, 2019. 
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Figure S4.9 Linear relationships between in situ-measured and Planet Fusion (PF)-

derived daily NIRvP and daily GPP at all sites (colored circles). Daily GPP is the 

whole day (0000hh – 2400hh) summed value and Daytime GPP is daytime 

(0800hh-1800hh) summed value. 𝐝𝐚𝐢𝐥𝐲 𝐏𝐀𝐑𝐁𝐄𝐒𝐒  means daily summed PAR data 

retrieved from the satellite-based Breathing Earth System Simulator (BESS). Red 

line indicates the linear regression model slope of overall sites. R2 is the coefficient 

of determination, p-value indicates the significance of the linear regression, and n 

is the number of samples used in the linear regression model. NIRvP is given in unit 

of mol m-2 d-1. 
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Chapter 5. Conclusion 

Enhancement of the spatiotemporal resolution of archived satellite 

datasets is essential for monitoring long-term changes in vegetation 

within heterogeneous landscapes. In Chapter 2, the proposed system 

enables us to monitor daily canopy photosynthesis dynamics among 

regions of interest worldwide with high spatial resolution. In Chapter 

3, I proposed a dual RSS-GAN model using Planet Fusion and 

Landsat 8 products for generating long-term, super-resolution 

satellite data. The dual RSS-GAN model retained the strengths of 

GAN-based methods in terms of rescaling and improving the 

underestimation of vegetation indices from Landsat 8. The proposed 

approach offers a promising direction for the adoption of dual RSS-

GAN models in monitoring long-term vegetation dynamics among 

regions of interest worldwide. In Chapter 4, I found that the best 

agreement between flux tower GPP and NIRvP calculated from the 

Planet Fusion was achieved when matching the Planet Fusion imagery 

to the tower flux footprints. In fact, the agreement between Planet 

Fusion NIRvP and tower GPP was even considerably better than the 

agreement between in situ NIRvP and tower GPP. This indicates a 

large impact of the mismatch between flux tower footprint and the 

area covered by optical sensors due to spatial heterogeneity within 

the temporally varying flux tower footprint. I found the largest effects 

of such mismatches in wetland sites that have a temporally varying 

fraction of vegetation in a given area. Accordingly, high spatial 

resolution GPP maps at the landscape scale could prove very useful 

for precision agriculture or the monitoring of heterogeneous and 

dynamic natural ecosystems such as wetlands. Overall, our results 

demonstrated significant advantages of the high spatiotemporal 

resolution satellite imageries for daily canopy GPP estimation and for 
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upscaling flux data for model validation and parameterization. More 

generally, our findings indicate the large potential of sensor data 

fusion for high fidelity vegetation monitoring at unprecedented spatial 

and temporal resolutions. I encourage future efforts to test the 

proposed approach in a wide variety of ecosystems across diverse 

environmental conditions. 

  



 

 155 

Bibliography 

Achard, F., Eva, H.D., Mayaux, P., Stibig, H.-J. and Belward, A., 2004. 

Improved estimates of net carbon emissions from land cover 

change in the tropics for the 1990s. Global Biogeochemical 

Cycles, 18(2), https://doi.org/10.1029/2003GB002142. 

Adeluyi, O., Harris, A., Verrelst, J., Foster, T. and Clay, G.D., 2021. 

Estimating the phenological dynamics of irrigated rice leaf area 

index using the combination of PROSAIL and Gaussian Process 

Regression. International Journal of Applied Earth Observation 

and Geoinformation, 102: 102454, 

https://doi.org/10.1016/j.jag.2021.102454. 

Alexandrov, T., 2009. A Method of Trend Extraction Using Singular 

Spectrum Analysis. REVSTAT – Statistical Journa, 7. 

Aragon, B., Houborg, R., Tu, K., Fisher, J.B. and McCabe, M., 2018. 

CubeSats Enable High Spatiotemporal Retrievals of Crop-

Water Use for Precision Agriculture. Remote Sensing, 10(12): 

1867, https://doi.org/10.3390/rs10121867. 

Aragon, B., Ziliani, M.G., Houborg, R., Franz, T.E. and McCabe, M.F., 

2021. CubeSats deliver new insights into agricultural water 

use at daily and 3 m resolutions. Scientific Reports, 11(1): 

12131, https://doi.org/10.1038/s41598-021-91646-w. 

Atkinson, P.M. and Curran, P.J., 1995. Defining an optimal size of 

support for remote sensing investigations. IEEE Transactions 

on Geoscience and Remote Sensing, 33(3): 768-776, 

https://doi.org10.1109/36.387592. 

https://doi.org/10.1029/2003GB002142
https://doi.org/10.1016/j.jag.2021.102454
https://doi.org/10.3390/rs10121867
https://doi.org/10.1038/s41598-021-91646-w
https://doi.org10.1109/36.387592


 

 156 

Badgley, G., Anderegg, L.D.L., Berry, J.A. and Field, C.B., 2019. 

Terrestrial gross primary production: Using NIRV to scale 

from site to globe. Global Change Biology, 25(11): 3731-3740, 

https://doi.org/10.1111/gcb.14729. 

Badgley, G., Field, C.B. and Berry, J.A., 2017. Canopy near-infrared 

reflectance and terrestrial photosynthesis. Science Advances, 

3(3): e1602244, https://doi.org/10.1126/sciadv.1602244. 

Baldocchi, D. et al., 2012. The challenges of measuring methane 

fluxes and concentrations over a peatland pasture. Agricultural 

and Forest Meteorology, 153: 177-187, 

https://doi.org/10.1016/j.agrformet.2011.04.013. 

Baldocchi, D. et al., 2001. FLUXNET: A New Tool to Study the 

Temporal and Spatial Variability of Ecosystem-Scale Carbon 

Dioxide, Water Vapor, and Energy Flux Densities. Bulletin of 

the American Meteorological Society, 82(11): 2415-2434, 

https://doi.org/10.1175/1520-

0477(2001)082<2415:Fantts>2.3.Co;2. 

Baldocchi, D.D. et al., 2020. Outgoing Near-Infrared Radiation From 

Vegetation Scales With Canopy Photosynthesis Across a 

Spectrum of Function, Structure, Physiological Capacity, and 

Weather. Journal of Geophysical Research: Biogeosciences, 

125(7): e2019JG005534, 

https://doi.org/10.1029/2019JG005534. 

Beaulieu, M., Foucher, S., Haberman, D. and Stewart, C., 2018. Deep 

Image-To-Image Transfer Applied to Resolution 

Enhancement of Sentinel-2 Images, IGARSS 2018 - 2018 

https://doi.org/10.1111/gcb.14729
https://doi.org/10.1126/sciadv.1602244
https://doi.org/10.1016/j.agrformet.2011.04.013
https://doi.org/10.1175/1520-0477(2001)082
https://doi.org/10.1175/1520-0477(2001)082
https://doi.org/10.1029/2019JG005534


 

 157 

IEEE International Geoscience and Remote Sensing 

Symposium, pp. 2611-2614, 

https://doi.org/10.1109/IGARSS.2018.8517655. 

Belov, A.M. and Denisova, A.Y., 2019. Spatial interpolation methods 

for spectral-spatial remote sensing image super-resolution 

algorithm based on gradient descent approach. Journal of 

Physics: Conference Series, 1368(3): 032006, 

https://doi.org/10.1088/1742-6596/1368/3/032006. 

Bessho, K. et al., 2016. An Introduction to Himawari-8/9- Japan's 

New-Generation Geostationary Meteorological Satellites. 気

象集誌. 第2輯, 94(2): 151-183, 

https://doi.org/10.2151/jmsj.2016-009. 

Bierkens, M., Finke, P. and De Willigen, P., 2000. Upscaling and 

downscaling methods for environmental research. Kluwer 

Academic,  

Blau, Y. and Michaeli, T., 2018. The perception-distortion tradeoff, 

Proceedings of the IEEE conference on computer vision and 

pattern recognition, pp. 6228-6237, 

https://doi.org/10.48550/arXiv.1711.06077. 

Blau, Y. and Michaeli, T., 2019. Rethinking Lossy Compression: The 

Rate-Distortion-Perception Tradeoff. In: C. Kamalika and S. 

Ruslan (Editors), Proceedings of the 36th International 

Conference on Machine Learning. PMLR, Proceedings of 

Machine Learning Research, pp. 675--685, 

https://doi.org/10.48550/arXiv.1901.07821. 

https://doi.org/10.1109/IGARSS.2018.8517655
https://doi.org/10.1088/1742-6596/1368/3/032006
https://doi.org/10.2151/jmsj.2016-009
https://doi.org/10.48550/arXiv.1711.06077
https://doi.org/10.48550/arXiv.1901.07821


 

 158 

Cao, H., Han, L. and Li, L., 2022. Harmonizing surface reflectance 

between Landsat-7 ETM + , Landsat-8 OLI, and Sentinel-2 

MSI over China. Environmental Science and Pollution Research, 

https://doi.org/10.1007/s11356-022-20771-4. 

Carrer, D. et al., 2021. Casual Rerouting of AERONET Sun/Sky 

Photometers: Toward a New Network of Ground 

Measurements Dedicated to the Monitoring of Surface 

Properties? Remote Sensing, 13(16): 3072, 

https://doi.org/10.3390/rs13163072. 

Chamberlain, S.D. et al., 2018. Soil properties and sediment accretion 

modulate methane fluxes from restored wetlands. Global 

Change Biology, 24(9): 4107-4121, 

https://doi.org/10.1111/gcb.14124. 

Chen, B. et al., 2009. Assessing Tower Flux Footprint Climatology 

and Scaling Between Remotely Sensed and Eddy Covariance 

Measurements. Boundary-Layer Meteorology, 130(2): 137-

167, https://doi.org/10.1007/s10546-008-9339-1. 

Chen, B., Chen, L., Huang, B., Michishita, R. and Xu, B., 2018. 

Dynamic monitoring of the Poyang Lake wetland by integrating 

Landsat and MODIS observations. ISPRS Journal of 

Photogrammetry and Remote Sensing, 139: 75-87, 

https://doi.org/10.1016/j.isprsjprs.2018.02.021. 

Chen, B. et al., 2011a. Assessing eddy-covariance flux tower 

location bias across the Fluxnet-Canada Research Network 

based on remote sensing and footprint modelling. Agricultural 

and Forest Meteorology, 151(1): 87-100, 

https://doi.org/10.1007/s11356-022-20771-4
https://doi.org/10.3390/rs13163072
https://doi.org/10.1111/gcb.14124
https://doi.org/10.1007/s10546-008-9339-1
https://doi.org/10.1016/j.isprsjprs.2018.02.021


 

 159 

https://doi.org/10.1016/j.agrformet.2010.09.005. 

Chen, B. et al., 2012. Characterizing spatial representativeness of 

flux tower eddy-covariance measurements across the 

Canadian Carbon Program Network using remote sensing and 

footprint analysis. Remote Sensing of Environment, 124: 742-

755, https://doi.org/10.1016/j.rse.2012.06.007. 

Chen, B., Huang, B. and Xu, B., 2015. Comparison of Spatiotemporal 

Fusion Models: A Review. Remote Sensing, 7(2): 1798-1835. 

Chen, J., Zhu, X., Vogelmann, J.E., Gao, F. and Jin, S., 2011b. A simple 

and effective method for filling gaps in Landsat ETM+ SLC-

off images. Remote Sensing of Environment, 115(4): 1053-

1064, https://doi.org/10.1016/j.rse.2010.12.010. 

Chen, Y., Cao, R., Chen, J., Liu, L. and Matsushita, B., 2021. A 

practical approach to reconstruct high-quality Landsat NDVI 

time-series data by gap filling and the Savitzky–Golay filter. 

ISPRS Journal of Photogrammetry and Remote Sensing, 180: 

174-190, https://doi.org/10.1016/j.isprsjprs.2021.08.015. 

Cho, S. et al., 2021. Evaluation of forest carbon uptake in South Korea 

using the national flux tower network, remote sensing, and 

data-driven technology. Agricultural and Forest Meteorology, 

311: 108653, 

https://doi.org/10.1016/j.agrformet.2021.108653. 

Choi, Y., Sharifahmadian, E. and Latifi, S., 2013. Effect of pre-

processing on satellite image fusion, The 17th CSI 

International Symposium on Computer Architecture & Digital 

https://doi.org/10.1016/j.agrformet.2010.09.005
https://doi.org/10.1016/j.rse.2012.06.007
https://doi.org/10.1016/j.rse.2010.12.010
https://doi.org/10.1016/j.isprsjprs.2021.08.015
https://doi.org/10.1016/j.agrformet.2021.108653


 

 160 

Systems (CADS 2013), pp. 111-115, 

https://doi.org/10.1109/CADS.2013.6714246. 

Chu, H. et al., 2018. Temporal Dynamics of Aerodynamic Canopy 

Height Derived From Eddy Covariance Momentum Flux Data 

Across North American Flux Networks. Geophysical Research 

Letters, 45(17): 9275-9287, 

https://doi.org/10.1029/2018GL079306. 

Chu, H. et al., 2021. Representativeness of Eddy-Covariance flux 

footprints for areas surrounding AmeriFlux sites. Agricultural 

and Forest Meteorology, 301-302: 108350, 

https://doi.org/10.1016/j.agrformet.2021.108350. 

Chung, S.-R., Ahn, M.-H., Han, K.-S., Lee, K.-T. and Shin, D.-B., 

2020. Meteorological Products of Geo-KOMPSAT 2A (GK2A) 

Satellite. Asia-Pacific Journal of Atmospheric Sciences, 56(2): 

185-185, https://doi.org/10.1007/s13143-020-00199-x. 

Ciais, P. et al., 2014. Current systematic carbon-cycle observations 

and the need for implementing a policy-relevant carbon 

observing system. Biogeosciences, 11(13): 3547-3602, 

https://doi.org/10.5194/bg-11-3547-2014. 

Claverie, M. et al., 2018. The Harmonized Landsat and Sentinel-2 

surface reflectance data set. Remote Sensing of Environment, 

219: 145-161, https://doi.org/10.1016/j.rse.2018.09.002. 

Cover, T.M., 1999. Elements of information theory. John Wiley & 

Sons,  

Dechant, B. et al., 2022. NIRVP: A robust structural proxy for sun-

https://doi.org/10.1109/CADS.2013.6714246
https://doi.org/10.1029/2018GL079306
https://doi.org/10.1016/j.agrformet.2021.108350
https://doi.org/10.1007/s13143-020-00199-x
https://doi.org/10.5194/bg-11-3547-2014
https://doi.org/10.1016/j.rse.2018.09.002


 

 161 

induced chlorophyll fluorescence and photosynthesis across 

scales. Remote Sensing of Environment, 268: 112763, 

https://doi.org/10.1016/j.rse.2021.112763. 

Dechant, B. et al., 2020. Canopy structure explains the relationship 

between photosynthesis and sun-induced chlorophyll 

fluorescence in crops. Remote Sensing of Environment, 241: 

111733, https://doi.org/10.1016/j.rse.2020.111733. 

Dechant, B., Ryu, Y. and Kang, M., 2019. Making full use of 

hyperspectral data for gross primary productivity estimation 

with multivariate regression: Mechanistic insights from 

observations and process-based simulations. Remote Sensing 

of Environment, 234: 111435, 

https://doi.org/10.1016/j.rse.2019.111435. 

Denton, E.L., Chintala, S., Szlam, A.D. and Fergus, R., 2015. Deep 

Generative Image Models using a Laplacian Pyramid of 

Adversarial Networks, NIPS. 

Detto, M., Baldocchi, D. and Katul, G.G., 2010. Scaling Properties of 

Biologically Active Scalar Concentration Fluctuations in the 

Atmospheric Surface Layer over a Managed Peatland. 

Boundary-Layer Meteorology, 136(3): 407-430, 

https://doi.org/10.1007/s10546-010-9514-z. 

Dong, C., Loy, C.C., He, K. and Tang, X., 2015. Image super-

resolution using deep convolutional networks. IEEE 

transactions on pattern analysis and machine intelligence, 

38(2): 295-307, 

https://doi.org/10.1109/TPAMI.2015.2439281. 

https://doi.org/10.1016/j.rse.2021.112763
https://doi.org/10.1016/j.rse.2020.111733
https://doi.org/10.1016/j.rse.2019.111435
https://doi.org/10.1007/s10546-010-9514-z
https://doi.org/10.1109/TPAMI.2015.2439281


 

 162 

Drusch, M. et al., 2012a. Sentinel-2: ESA's optical high-resolution 

mission for GMES operational services. Remote sensing of 

Environment, 120: 25-36, 

https://doi.org/10.1016/j.rse.2011.11.026. 

Drusch, M. et al., 2012b. Sentinel-2: ESA's Optical High-Resolution 

Mission for GMES Operational Services. Remote Sensing of 

Environment, 120: 25-36, 

https://doi.org/10.1016/j.rse.2011.11.026. 

Duffy, K., Vandal, T., Wang, W., Nemani, R. and Ganguly, A.R., 2019. 

Deep Learning Emulation of Multi-Angle Implementation of 

Atmospheric Correction (MAIAC), pp. arXiv:1910.13408. 

Duveiller, G. and Defourny, P., 2010. A conceptual framework to 

define the spatial resolution requirements for agricultural 

monitoring using remote sensing. Remote Sensing of 

Environment, 114(11): 2637-2650, 

https://doi.org/10.1016/j.rse.2010.06.001. 

Eichelmann, E. et al., 2018. The effect of land cover type and 

structure on evapotranspiration from agricultural and wetland 

sites in the Sacramento–San Joaquin River Delta, California. 

Agricultural and Forest Meteorology, 256-257: 179-195, 

https://doi.org/10.1016/j.agrformet.2018.03.007. 

Eichelmann, E. et al., 2021. AmeriFlux US-Tw4 Twitchell East End 

Wetland, Ver. 11-5, AmeriFlux AMP, 

https://doi.org/10.17190/AMF/1246151. 

Falge, E. et al., 2002. Seasonality of ecosystem respiration and gross 

https://doi.org/10.1016/j.rse.2011.11.026
https://doi.org/10.1016/j.rse.2011.11.026
https://doi.org/10.1016/j.rse.2010.06.001
https://doi.org/10.1016/j.agrformet.2018.03.007
https://doi.org/10.17190/AMF/1246151


 

 163 

primary production as derived from FLUXNET measurements. 

Agricultural and Forest Meteorology, 113(1): 53-74, 

https://doi.org/10.1016/S0168-1923(02)00102-8. 

Feddema, J.J. et al., 2005. The importance of land-cover change in 

simulating future climates. Science, 310(5754): 1674-1678, 

https://doi/10.1126/science.1118160. 

Feng, G., Masek, J., Schwaller, M. and Hall, F., 2006. On the blending 

of the Landsat and MODIS surface reflectance: predicting daily 

Landsat surface reflectance. IEEE Transactions on 

Geoscience and Remote Sensing, 44(8): 2207-2218, 

https://doi.org/10.1109/TGRS.2006.872081. 

Feng, G., Yufang, J., Schaaf, C.B. and Strahler, A.H., 2002. 

Bidirectional NDVI and atmospherically resistant BRDF 

inversion for vegetation canopy. IEEE Transactions on 

Geoscience and Remote Sensing, 40(6): 1269-1278, 

https://doi.org10.1109/TGRS.2002.800241. 

Fensholt, R., Sandholt, I., Proud, S.R., Stisen, S. and Rasmussen, M.O., 

2010. Assessment of MODIS sun-sensor geometry variations 

effect on observed NDVI using MSG SEVIRI geostationary 

data. International Journal of Remote Sensing, 31(23): 6163-

6187, https://doi.org/10.1080/01431160903401387. 

Fensholt, R., Sandholt, I., Stisen, S. and Tucker, C., 2006. Analysing 

NDVI for the African continent using the geostationary 

meteosat second generation SEVIRI sensor. Remote Sensing 

of Environment, 101(2): 212-229, 

https://doi.org/10.1016/j.rse.2005.11.013. 

https://doi.org/10.1016/S0168-1923(02)00102-8
https://doi/10.1126/science.1118160
https://doi.org/10.1109/TGRS.2006.872081
https://doi.org10.1109/TGRS.2002.800241
https://doi.org/10.1080/01431160903401387
https://doi.org/10.1016/j.rse.2005.11.013


 

 164 

Fisher, J.B. et al., 2020. ECOSTRESS: NASA's Next Generation 

Mission to Measure Evapotranspiration From the International 

Space Station. Water Resources Research, 56(4): 

e2019WR026058, https://doi.org/10.1029/2019WR026058. 

Frantz, D., 2019a. FORCE—Landsat + Sentinel-2 Analysis Ready 

Data and Beyond. Remote Sensing, 11(9), 

https://doi.org/10.3390/rs11091124. 

Frantz, D., 2019b. FORCE—Landsat + Sentinel-2 Analysis Ready 

Data and Beyond. Remote Sensing, 11(9): 1124, 

https://doi.org/10.3390/rs11091124. 

Gamon, J.A., 2015. Reviews and Syntheses: optical sampling of the 

flux tower footprint. Biogeosciences, 12(14): 4509-4523, 

https://doi.org/10.5194/bg-12-4509-2015. 

Gao, F., Masek, J. and Wolfe, R., 2009. Automated registration and 

orthorectification package for Landsat and Landsat-like data 

processing. Journal of Applied Remote Sensing, 3(1): 033515, 

https://doi.org/10.1117/1.3104620. 

Garrity, S.R., Vierling, L.A. and Bickford, K., 2010. A simple filtered 

photodiode instrument for continuous measurement of 

narrowband NDVI and PRI over vegetated canopies. 

Agricultural and Forest Meteorology, 150(3): 489-496, 

https://doi.org/10.1016/j.agrformet.2010.01.004. 

Gebbers, R. and Adamchuk, V.I., 2010. Precision Agriculture and 

Food Security. Science, 327(5967): 828-831, 

https://doi.org/10.1126/science.1183899. 

https://doi.org/10.1029/2019WR026058
https://doi.org/10.3390/rs11091124
https://doi.org/10.3390/rs11091124
https://doi.org/10.5194/bg-12-4509-2015
https://doi.org/10.1117/1.3104620
https://doi.org/10.1016/j.agrformet.2010.01.004
https://doi.org/10.1126/science.1183899


 

 165 

Geman, S., Bienenstock, E. and Doursat, R., 1992. Neural Networks 

and the Bias/Variance Dilemma. Neural Computation, 4(1): 1-

58, https://doi.org/10.1162/neco.1992.4.1.1. 

Gevaert, C.M. and García-Haro, F.J., 2015. A comparison of 

STARFM and an unmixing-based algorithm for Landsat and 

MODIS data fusion. Remote Sensing of Environment, 156: 34-

44, https://doi.org/10.1016/j.rse.2014.09.012. 

Ghil, M. et al., 2002. ADVANCED SPECTRAL METHODS FOR 

CLIMATIC TIME SERIES. Reviews of Geophysics, 40(1): 3-

1-3-41, https://doi.org/10.1029/2000RG000092. 

Giannico, V. et al., 2018. Contributions of landscape heterogeneity 

within the footprint of eddy-covariance towers to flux 

measurements. Agricultural and Forest Meteorology, 260-

261: 144-153, 

https://doi.org/10.1016/j.agrformet.2018.06.004. 

Golyandina, N., Korobeynikov, A. and Zhigljavsky, A., 2018. Singular 

spectrum analysis with R. Springer,  

Goodfellow, I. et al., 2014. Generative adversarial nets. Advances in 

neural information processing systems, 27, 

https://doi.org/10.48550/arXiv.1406.2661. 

Griffiths, P., Nendel, C. and Hostert, P., 2019. Intra-annual 

reflectance composites from Sentinel-2 and Landsat for 

national-scale crop and land cover mapping. Remote Sensing 

of Environment, 220: 135-151, 

https://doi.org/10.1016/j.rse.2018.10.031. 

https://doi.org/10.1162/neco.1992.4.1.1
https://doi.org/10.1016/j.rse.2014.09.012
https://doi.org/10.1029/2000RG000092
https://doi.org/10.1016/j.agrformet.2018.06.004
https://doi.org/10.48550/arXiv.1406.2661
https://doi.org/10.1016/j.rse.2018.10.031


 

 166 

Haboudane, D., Miller, J.R., Pattey, E., Zarco-Tejada, P.J. and 

Strachan, I.B., 2004. Hyperspectral vegetation indices and 

novel algorithms for predicting green LAI of crop canopies: 

Modeling and validation in the context of precision agriculture. 

Remote sensing of environment, 90(3): 337-352, 

https://doi.org/10.1016/j.rse.2003.12.013. 

Haboudane, D., Tremblay, N., Miller, J.R. and Vigneault, P., 2008. 

Remote estimation of crop chlorophyll content using spectral 

indices derived from hyperspectral data. IEEE Transactions 

on Geoscience and Remote Sensing, 46(2): 423-437, 

https://doi.org/10.1109/TGRS.2007.904836. 

Hagen, S.C. et al., 2006. Statistical uncertainty of eddy flux–based 

estimates of gross ecosystem carbon exchange at Howland 

Forest, Maine. Journal of Geophysical Research: Atmospheres, 

111(D8), https://doi.org/10.1029/2005JD006154. 

Halabisky, M., Moskal, L.M., Gillespie, A. and Hannam, M., 2016. 

Reconstructing semi-arid wetland surface water dynamics 

through spectral mixture analysis of a time series of Landsat 

satellite images (1984–2011). Remote Sensing of 

Environment, 177: 171-183, 

https://doi.org/10.1016/j.rse.2016.02.040. 

Hashimoto, H. et al., 2021. New generation geostationary satellite 

observations support seasonality in greenness of the Amazon 

evergreen forests. Nature Communications, 12(1): 684, 

https://doi.org/10.1038/s41467-021-20994-y. 

He, T., Zhang, Y., Liang, S., Yu, Y. and Wang, D., 2019. Developing 

https://doi.org/10.1016/j.rse.2003.12.013
https://doi.org/10.1109/TGRS.2007.904836
https://doi.org/10.1029/2005JD006154
https://doi.org/10.1016/j.rse.2016.02.040
https://doi.org/10.1038/s41467-021-20994-y


 

 167 

Land Surface Directional Reflectance and Albedo Products 

from Geostationary GOES-R and Himawari Data: Theoretical 

Basis, Operational Implementation, and Validation. Remote 

Sensing, 11(22): 2655, 

https://doi.org/doi:10.3390/rs11222655. 

Heinsch, F.A. et al., 2006. Evaluation of remote sensing based 

terrestrial productivity from MODIS using regional tower eddy 

flux network observations. IEEE Transactions on Geoscience 

and Remote Sensing, 44(7): 1908-1925, 

https://doi.org/10.1109/TGRS.2005.853936. 

Helder, D. et al., 2020. Observations and Recommendations for 

Coordinated Calibration Activities of Government and 

Commercial Optical Satellite Systems. Remote Sensing, 

12(15), https://doi.org/10.3390/rs12152468. 

Helder, D. et al., 2018. Observations and Recommendations for the 

Calibration of Landsat 8 OLI and Sentinel 2 MSI for Improved 

Data Interoperability. Remote Sensing, 10(9): 1340, 

https://doi.org/10.3390/rs10091340. 

Hemes, K.S. et al., 2019. Assessing the carbon and climate benefit of 

restoring degraded agricultural peat soils to managed wetlands. 

Agricultural and Forest Meteorology, 268: 202-214, 

https://doi.org/10.1016/j.agrformet.2019.01.017. 

Hemes, K.S., Verfaillie, J. and Baldocchi, D.D., 2020. Wildfire-Smoke 

Aerosols Lead to Increased Light Use Efficiency Among 

Agricultural and Restored Wetland Land Uses in California's 

Central Valley. Journal of Geophysical Research: 

https://doi.org/doi:10.3390/rs11222655
https://doi.org/10.1109/TGRS.2005.853936
https://doi.org/10.3390/rs12152468
https://doi.org/10.3390/rs10091340
https://doi.org/10.1016/j.agrformet.2019.01.017


 

 168 

Biogeosciences, 125(2): e2019JG005380, 

https://doi.org/10.1029/2019JG005380. 

Houborg, R. and McCabe, M.F., 2016. High-Resolution NDVI from 

Planet’s Constellation of Earth Observing Nano-Satellites: A 

New Data Source for Precision Agriculture. Remote Sensing, 

8(9), https://doi.org/10.3390/rs8090768. 

Houborg, R. and McCabe, M.F., 2018a. A Cubesat enabled Spatio-

Temporal Enhancement Method (CESTEM) utilizing Planet, 

Landsat and MODIS data. Remote Sensing of Environment, 209: 

211-226, https://doi.org/10.1016/j.rse.2018.02.067. 

Houborg, R. and McCabe, M.F., 2018b. Daily Retrieval of NDVI and 

LAI at 3 m Resolution via the Fusion of CubeSat, Landsat, and 

MODIS Data. Remote Sensing, 10(6): 890, 

https://doi.org/10.3390/rs10060890. 

Houborg, R. and McCabe, M.F., 2018c. A hybrid training approach for 

leaf area index estimation via Cubist and random forests 

machine-learning. ISPRS Journal of Photogrammetry and 

Remote Sensing, 135: 173-188, 

https://doi.org/10.1016/j.isprsjprs.2017.10.004. 

Houghton, R.A. and Nassikas, A.A., 2017. Global and regional fluxes 

of carbon from land use and land cover change 1850–2015. 

Global Biogeochemical Cycles, 31(3): 456-472, 

https://doi.org/10.1002/2016GB005546. 

Huang, Y. et al., 2018. BESS-Rice: A remote sensing derived and 

biophysical process-based rice productivity simulation model. 

https://doi.org/10.1029/2019JG005380
https://doi.org/10.3390/rs8090768
https://doi.org/10.1016/j.rse.2018.02.067
https://doi.org/10.3390/rs10060890
https://doi.org/10.1016/j.isprsjprs.2017.10.004
https://doi.org/10.1002/2016GB005546


 

 169 

Agricultural and Forest Meteorology, 256-257: 253-269, 

https://doi.org/10.1016/j.agrformet.2018.03.014. 

Hwang, Y. et al., 2020. Comprehensive assessments of carbon 

dynamics in an intermittently-irrigated rice paddy. 

Agricultural and Forest Meteorology, 285-286: 107933, 

https://doi.org/10.1016/j.agrformet.2020.107933. 

Hwang, Y., Ryu, Y. and Qu, S., 2022. Expanding vegetated areas by 

human activities and strengthening vegetation growth 

concurrently explain the greening of Seoul. Landscape and 

Urban Planning, 227: 104518, 

https://doi.org/10.1016/j.landurbplan.2022.104518. 

Irons, J.R., Dwyer, J.L. and Barsi, J.A., 2012. The next Landsat 

satellite: The Landsat data continuity mission. Remote Sensing 

of Environment, 122: 11-21, 

https://doi.org/10.1016/j.rse.2011.08.026. 

Ishii, H.T., Tanabe, S.-i. and Hiura, T., 2004. Exploring the 

Relationships Among Canopy Structure, Stand Productivity, 

and Biodiversity of Temperate Forest Ecosystems. Forest 

Science, 50(3): 342-355, 

https://doi.org/10.1093/forestscience/50.3.342. 

Jiang, C., Guan, K., Wu, G., Peng, B. and Wang, S., 2021. A daily, 

250m and real-time gross primary productivity product 

(2000–present) covering the contiguous United States. Earth 

Syst. Sci. Data, 13(2): 281-298, 

https://doi.org/10.5194/essd-13-281-2021. 

https://doi.org/10.1016/j.agrformet.2018.03.014
https://doi.org/10.1016/j.agrformet.2020.107933
https://doi.org/10.1016/j.landurbplan.2022.104518
https://doi.org/10.1016/j.rse.2011.08.026
https://doi.org/10.1093/forestscience/50.3.342
https://doi.org/10.5194/essd-13-281-2021


 

 170 

Johansen, K., Ziliani, M.G., Houborg, R., Franz, T.E. and McCabe, M.F., 

2022. CubeSat constellations provide enhanced crop 

phenology and digital agricultural insights using daily leaf area 

index retrievals. Scientific Reports, 12(1): 5244, 

https://doi.org/10.1038/s41598-022-09376-6. 

Ju, J. and Roy, D.P., 2008. The availability of cloud-free Landsat 

ETM+ data over the conterminous United States and globally. 

Remote Sensing of Environment, 112(3): 1196-1211, 

https://doi.org/10.1016/j.rse.2007.08.011. 

Justice, C.O. et al., 2002. An overview of MODIS Land data 

processing and product status. Remote Sensing of 

Environment, 83(1): 3-15, https://doi.org/10.1016/S0034-

4257(02)00084-6. 

Justice, C.O. et al., 1998. The Moderate Resolution Imaging 

Spectroradiometer (MODIS): land remote sensing for global 

change research. IEEE Transactions on Geoscience and 

Remote Sensing, 36(4): 1228-1249, 

https://doi.org/10.1109/36.701075. 

Karnewar, A. and Wang, O., 2020. Msg-gan: Multi-scale gradients 

for generative adversarial networks, Proceedings of the 

IEEE/CVF conference on computer vision and pattern 

recognition, pp. 7799-7808, 

https://doi.org/10.48550/arXiv.1903.06048. 

Kasak, K. et al., 2021. Restoring wetlands on intensive agricultural 

lands modifies nitrogen cycling microbial communities and 

reduces N2O production potential. Journal of Environmental 

https://doi.org/10.1038/s41598-022-09376-6
https://doi.org/10.1016/j.rse.2007.08.011
https://doi.org/10.1016/S0034-4257(02)00084-6
https://doi.org/10.1016/S0034-4257(02)00084-6
https://doi.org/10.1109/36.701075
https://doi.org/10.48550/arXiv.1903.06048


 

 171 

Management, 299: 113562, 

https://doi.org/10.1016/j.jenvman.2021.113562. 

Kasak, K. et al., 2020. Experimental harvesting of wetland plants to 

evaluate trade-offs between reducing methane emissions and 

removing nutrients accumulated to the biomass in constructed 

wetlands. Science of The Total Environment, 715: 136960, 

https://doi.org/10.1016/j.scitotenv.2020.136960. 

Kawulok, M., Tarasiewicz, T., Nalepa, J., Tyrna, D. and Kostrzewa, 

D., 2021. Deep Learning for Multiple-Image Super-

Resolution of Sentinel-2 Data, 2021 IEEE International 

Geoscience and Remote Sensing Symposium IGARSS, pp. 

3885-3888, 

https://doi.org/10.1109/IGARSS47720.2021.9553243. 

Khan, A.M. et al., 2021. Reviews and syntheses: Ongoing and 

emerging opportunities to improve environmental science 

using observations from the Advanced Baseline Imager on the 

Geostationary Operational Environmental Satellites. 

Biogeosciences, 18(13): 4117-4141, 

https://doi.org/10.5194/bg-18-4117-2021. 

Kim, J. et al., 2006. Upscaling fluxes from tower to landscape: 

Overlaying flux footprints on high-resolution (IKONOS) 

images of vegetation cover. Agricultural and Forest 

Meteorology, 136(3): 132-146, 

https://doi.org/10.1016/j.agrformet.2004.11.015. 

Kim, J. et al., 2021. Solar-induced chlorophyll fluorescence is non-

linearly related to canopy photosynthesis in a temperate 

https://doi.org/10.1016/j.jenvman.2021.113562
https://doi.org/10.1016/j.scitotenv.2020.136960
https://doi.org/10.1109/IGARSS47720.2021.9553243
https://doi.org/10.5194/bg-18-4117-2021
https://doi.org/10.1016/j.agrformet.2004.11.015


 

 172 

evergreen needleleaf forest during the fall transition. Remote 

Sensing of Environment, 258: 112362, 

https://doi.org/10.1016/j.rse.2021.112362. 

Kim, J., Ryu, Y., Jiang, C. and Hwang, Y., 2019. Continuous 

observation of vegetation canopy dynamics using an integrated 

low-cost, near-surface remote sensing system. Agricultural 

and Forest Meteorology, 264: 164-177, 

https://doi.org/10.1016/j.agrformet.2018.09.014. 

Kimm, H. et al., 2021. A physiological signal derived from sun-

induced chlorophyll fluorescence quantifies crop physiological 

response to environmental stresses in the U.S. Corn Belt. 

Environmental Research Letters. 

Kimm, H. et al., 2020. Deriving high-spatiotemporal-resolution leaf 

area index for agroecosystems in the U.S. Corn Belt using 

Planet Labs CubeSat and STAIR fusion data. Remote Sensing 

of Environment, 239: 111615, 

https://doi.org/10.1016/j.rse.2019.111615. 

Kljun, N., Calanca, P., Rotach, M.W. and Schmid, H.P., 2015. A simple 

two-dimensional parameterisation for Flux Footprint 

Prediction (FFP). Geosci. Model Dev., 8(11): 3695-3713, 

10.5194/gmd-8-3695-2015. 

Knox, S.H. et al., 2015. Agricultural peatland restoration: effects of 

land-use change on greenhouse gas (CO2 and CH4) fluxes in 

the Sacramento-San Joaquin Delta. Global Change Biology, 

21(2): 750-765, https://doi.org/10.1111/gcb.12745. 

https://doi.org/10.1016/j.rse.2021.112362
https://doi.org/10.1016/j.agrformet.2018.09.014
https://doi.org/10.1016/j.rse.2019.111615
https://doi.org/10.1111/gcb.12745


 

 173 

Kobayashi, H. and Iwabuchi, H., 2008. A coupled 1-D atmosphere 

and 3-D canopy radiative transfer model for canopy 

reflectance, light environment, and photosynthesis simulation 

in a heterogeneous landscape. Remote Sensing of Environment, 

112(1): 173-185, https://doi.org/10.1016/j.rse.2007.04.010. 

Kong, J. et al., 2021. Evaluation of four image fusion NDVI products 

against in-situ spectral-measurements over a heterogeneous 

rice paddy landscape. Agricultural and Forest Meteorology, 

297: 108255, 

https://doi.org/10.1016/j.agrformet.2020.108255. 

Kong, J. et al., 2022. Matching high resolution satellite data and flux 

tower footprints improves their agreement in photosynthesis 

estimates. Agricultural and Forest Meteorology, 316: 108878, 

https://doi.org/10.1016/j.agrformet.2022.108878. 

Kormann, R. and Meixner, F.X., 2001. An Analytical Footprint Model 

For Non-Neutral Stratification. Boundary-Layer Meteorology, 

99(2): 207-224, 10.1023/A:1018991015119. 

Kumari, S., Kambhammettu, B.V.N.P. and Niyogi, D., 2020. 

Sensitivity of Analytical Flux Footprint Models in Diverse 

Source-Receptor Configurations: A Field Experimental Study. 

Journal of Geophysical Research: Biogeosciences, 125(8): 

e2020JG005694, https://doi.org/10.1029/2020JG005694. 

Kusak, K., Rey-Sanchez, C., Szutu, D. and Baldocchi, D., 2020. 

AmeriFlux US-Snf Sherman Barn, Ver. 3-5, AmeriFlux AMP, 

https://doi.org/10.17190/AMF/1579718. 

https://doi.org/10.1016/j.rse.2007.04.010
https://doi.org/10.1016/j.agrformet.2020.108255
https://doi.org/10.1016/j.agrformet.2022.108878
https://doi.org/10.1029/2020JG005694
https://doi.org/10.17190/AMF/1579718


 

 174 

Lai, W.-S., Huang, J.-B., Ahuja, N. and Yang, M.-H., 2017. Deep 

laplacian pyramid networks for fast and accurate super-

resolution, Proceedings of the IEEE conference on computer 

vision and pattern recognition, pp. 624-632, 

https://doi.org/10.48550/arXiv.1704.03915. 

Latte, N. and Lejeune, P., 2020. PlanetScope Radiometric 

Normalization and Sentinel-2 Super-Resolution (2.5 m): A 

Straightforward Spectral-Spatial Fusion of Multi-Satellite 

Multi-Sensor Images Using Residual Convolutional Neural 

Networks. Remote Sensing, 12(15): 2366, 

https://doi.org/10.3390/rs12152366. 

Le Maire, G. et al., 2008. Calibration and validation of hyperspectral 

indices for the estimation of broadleaved forest leaf 

chlorophyll content, leaf mass per area, leaf area index and 

leaf canopy biomass. Remote sensing of environment, 112(10): 

3846-3864, https://doi.org/10.1016/j.rse.2008.06.005. 

Ledig, C. et al., 2017. Photo-realistic single image super-resolution 

using a generative adversarial network, Proceedings of the 

IEEE conference on computer vision and pattern recognition, 

pp. 4681-4690, https://doi.org/10.48550/arXiv.1609.04802. 

Lee, K.-S. et al., 2020. Development of Land Surface Albedo 

Algorithm for the GK-2A/AMI Instrument. Remote Sensing, 

12(15): 2500. 

Li, F., Kustas, W.P., Anderson, M.C., Prueger, J.H. and Scott, R.L., 

2008. Effect of remote sensing spatial resolution on 

interpreting tower-based flux observations. Remote Sensing 

https://doi.org/10.48550/arXiv.1704.03915
https://doi.org/10.3390/rs12152366
https://doi.org/10.1016/j.rse.2008.06.005
https://doi.org/10.48550/arXiv.1609.04802


 

 175 

of Environment, 112(2): 337-349, 

https://doi.org/10.1016/j.rse.2006.11.032. 

Li, X. et al., 2020. SFSDAF: An enhanced FSDAF that incorporates 

sub-pixel class fraction change information for spatio-

temporal image fusion. Remote Sensing of Environment, 237: 

111537, https://doi.org/10.1016/j.rse.2019.111537. 

Li, X. and Strahler, A.H., 1986. Geometric-Optical Bidirectional 

Reflectance Modeling of a Conifer Forest Canopy. IEEE 

Transactions on Geoscience and Remote Sensing, GE-24(6): 

906-919, 10.1109/TGRS.1986.289706. 

Li, X., Xiao, J., Fisher, J.B. and Baldocchi, D.D., 2021. ECOSTRESS 

estimates gross primary production with fine spatial resolution 

for different times of day from the International Space Station. 

Remote Sensing of Environment, 258: 112360, 

https://doi.org/10.1016/j.rse.2021.112360. 

Liang, S. et al., 2019. Evaluating the Spatial Representativeness of 

the MODerate Resolution Image Spectroradiometer Albedo 

Product (MCD43) at AmeriFlux Sites. Remote sensing., 11(5): 

547, https://doi.org/10.3390/rs11050547. 

Lindeberg, T., 1994. Scale-space theory: a basic tool for analyzing 

structures at different scales. Journal of Applied Statistics, 

21(1-2): 225-270, https://doi.org/10.1080/757582976. 

Liu, L. et al., 2020. Estimating Maize GPP using Near-infrared 

Radiance of Vegetation. Science of Remote Sensing: 100009, 

https://doi.org/10.1016/j.srs.2020.100009. 

https://doi.org/10.1016/j.rse.2006.11.032
https://doi.org/10.1016/j.rse.2019.111537
https://doi.org/10.1016/j.rse.2021.112360
https://doi.org/10.3390/rs11050547
https://doi.org/10.1080/757582976
https://doi.org/10.1016/j.srs.2020.100009


 

 176 

Liu, X., Liu, L., Hu, J. and Du, S., 2017a. Modeling the Footprint and 

Equivalent Radiance Transfer Path Length for Tower-Based 

Hemispherical Observations of Chlorophyll Fluorescence. 

Sensors (Basel), 17(5): 1131, 

https://doi.org/10.3390/s17051131. 

Liu, X., Liu, L., Hu, J. and Du, S., 2017b. Modeling the Footprint and 

Equivalent Radiance Transfer Path Length for Tower-Based 

Hemispherical Observations of Chlorophyll Fluorescence. 

Sensors, 17(5): 1131, https://doi.org/10.3390/s17051131. 

Lucht, W., Schaaf, C.B. and Strahler, A.H., 2000. An algorithm for the 

retrieval of albedo from space using semiempirical BRDF 

models. IEEE Transactions on Geoscience and Remote 

Sensing, 38(2): 977-998, https://doi.org/10.1109/36.841980. 

Luo, Y., Guan, K. and Peng, J., 2018. STAIR: A generic and fully-

automated method to fuse multiple sources of optical satellite 

data to generate a high-resolution, daily and cloud-/gap-free 

surface reflectance product. Remote Sensing of Environment, 

214: 87-99, https://doi.org/10.1016/j.rse.2018.04.042. 

Luo, Y., Guan, K., Peng, J., Wang, S. and Huang, Y., 2020. STAIR 2.0: 

A Generic and Automatic Algorithm to Fuse Modis, Landsat, 

and Sentinel-2 to Generate 10 m, Daily, and Cloud-/Gap-

Free Surface Reflectance Product. Remote Sensing, 12(19): 

3209, https://doi.org/doi:10.3390/rs12193209. 

Lyapustin, A., Martonchik, J., Wang, Y., Laszlo, I. and Korkin, S., 2011. 

Multiangle implementation of atmospheric correction (MAIAC): 

1. Radiative transfer basis and look-up tables. Journal of 

https://doi.org/10.3390/s17051131
https://doi.org/10.3390/s17051131
https://doi.org/10.1109/36.841980
https://doi.org/10.1016/j.rse.2018.04.042
https://doi.org/doi:10.3390/rs12193209


 

 177 

Geophysical Research: Atmospheres, 116(D3), 

https://doi.org/10.1029/2010JD014985. 

Mahecha, M.D. et al., 2007. Characterizing ecosystem-atmosphere 

interactions from short to interannual time scales. 

Biogeosciences, 4(5): 743-758, https://doi.org/10.5194/bg-

4-743-2007. 

Marcolla, B. and Cescatti, A., 2018. Geometry of the hemispherical 

radiometric footprint over plant canopies. Theoretical and 

Applied Climatology, 134(3): 981-990, 

https://doi.org/10.1007/s00704-017-2326-z. 

Masek, J.G. et al., 2020. Landsat 9: Empowering open science and 

applications through continuity. Remote Sensing of 

Environment, 248: 111968, 

https://doi.org/10.1016/j.rse.2020.111968. 

Matthes, J.H. et al., 2021. AmeriFlux US-Myb Mayberry Wetland, 

Ver. 12-5, AmeriFlux AMP, 

https://doi.org/10.17190/AMF/1246139. 

Matthes, J.H., Sturtevant, C., Verfaillie, J., Knox, S. and Baldocchi, D., 

2014. Parsing the variability in CH4 flux at a spatially 

heterogeneous wetland: Integrating multiple eddy covariance 

towers with high-resolution flux footprint analysis. Journal of 

Geophysical Research: Biogeosciences, 119(7): 1322-1339, 

https://doi.org/10.1002/2014jg002642. 

McCombs, A.G., Hiscox, A.L. and Suyker, A.E., 2019. Point-to-Grid 

Conversion in Flux Footprints: Implications of Method Choice 

https://doi.org/10.1029/2010JD014985
https://doi.org/10.5194/bg-4-743-2007
https://doi.org/10.5194/bg-4-743-2007
https://doi.org/10.1007/s00704-017-2326-z
https://doi.org/10.1016/j.rse.2020.111968
https://doi.org/10.17190/AMF/1246139
https://doi.org/10.1002/2014jg002642


 

 178 

and Spatial Resolution for Regional-Scale Studies. Boundary-

Layer Meteorology, 172(3): 457-479, 

https://doi.org/10.1007/s10546-019-00455-2. 

McCorkel, J., Efremova, B., Hair, J., Andrade, M. and Holben, B., 2020. 

GOES-16 ABI solar reflective channel validation for earth 

science application. Remote Sensing of Environment, 237: 

111438, https://doi.org/10.1016/j.rse.2019.111438. 

Mittal, A., Moorthy, A.K. and Bovik, A.C., 2012. No-Reference Image 

Quality Assessment in the Spatial Domain. IEEE Transactions 

on Image Processing, 21(12): 4695-4708, 

10.1109/TIP.2012.2214050. 

Miura, T., Nagai, S., Takeuchi, M., Ichii, K. and Yoshioka, H., 2019. 

Improved Characterisation of Vegetation and Land Surface 

Seasonal Dynamics in Central Japan with Himawari-8 

Hypertemporal Data. Scientific Reports, 9(1): 15692, 

https://doi.org/10.1038/s41598-019-52076-x. 

Miyato, T., Kataoka, T., Koyama, M. and Yoshida, Y., 2018. Spectral 

Normalization for Generative Adversarial Networks, 

International Conference on Learning Representations, 

https://doi.org/10.48550/arXiv.1802.05957. 

Moffat, A.M. et al., 2007. Comprehensive comparison of gap-filling 

techniques for eddy covariance net carbon fluxes. Agricultural 

and Forest Meteorology, 147(3): 209-232, 

https://doi.org/10.1016/j.agrformet.2007.08.011. 

Moreno-Martínez, Á. et al., 2020. Multispectral high resolution 

https://doi.org/10.1007/s10546-019-00455-2
https://doi.org/10.1016/j.rse.2019.111438
https://doi.org/10.1038/s41598-019-52076-x
https://doi.org/10.48550/arXiv.1802.05957
https://doi.org/10.1016/j.agrformet.2007.08.011


 

 179 

sensor fusion for smoothing and gap-filling in the cloud. 

Remote Sensing of Environment, 247: 111901, 

https://doi.org/10.1016/j.rse.2020.111901. 

Morton, D.C. et al., 2014. Amazon forests maintain consistent canopy 

structure and greenness during the dry season. Nature, 

506(7487): 221-224, https://doi.org/10.1038/nature13006. 

Myneni, R.B., Hall, F.G., Sellers, P.J. and Marshak, A.L., 1995. The 

interpretation of spectral vegetation indexes. IEEE 

Transactions on Geoscience and Remote Sensing, 33(2): 

481-486, https://doi.org/10.1109/TGRS.1995.8746029. 

Pastorello, G. et al., 2020. The FLUXNET2015 dataset and the 

ONEFlux processing pipeline for eddy covariance data. 

Scientific Data, 7(1): 225, https://doi.org/10.1038/s41597-

020-0534-3. 

Pennypacker, S. and Baldocchi, D., 2016. Seeing the Fields and 

Forests: Application of Surface-Layer Theory and Flux-

Tower Data to Calculating Vegetation Canopy Height. 

Boundary-Layer Meteorology, 158(2): 165-182, 

https://doi.org/10.1007/s10546-015-0090-0. 

Pielke Sr, R.A., 2005. Land use and climate change. Science, 

310(5754): 1625-1626, 

https://doi.org/10.1126/science.112052. 

Planet Fusion Team, 2022. Planet Fusion Monitoring Technical 

Specification, Version 1.0.0. In: P.F. Team (Editor), San 

Francisco, CA., https://support.planet.com/hc/en-

https://doi.org/10.1016/j.rse.2020.111901
https://doi.org/10.1038/nature13006
https://doi.org/10.1109/TGRS.1995.8746029
https://doi.org/10.1038/s41597-020-0534-3
https://doi.org/10.1038/s41597-020-0534-3
https://doi.org/10.1007/s10546-015-0090-0
https://doi.org/10.1126/science.112052
https://support.planet.com/hc/en-us/articles/4406292582673-Planet-Fusion-Monitoring-Technical-Specification.html


 

 180 

us/articles/4406292582673-Planet-Fusion-Monitoring-

Technical-Specification.html. 

PlanetFusionTeam, 2021. Planet Fusion Monitoring Technical 

Specification, Version 1.0.0-beta.3. In: P.F. Team (Editor), 

San Francisco, CA. 

Pohl, C. and Van Genderen, J.L., 1998. Review article Multisensor 

image fusion in remote sensing: Concepts, methods and 

applications. International Journal of Remote Sensing, 19(5): 

823-854, https://doi.org/10.1080/014311698215748. 

Prabha, T.V., Leclerc, M.Y. and Baldocchi, D., 2008. Comparison of 

In-Canopy Flux Footprints between Large-Eddy Simulation 

and the Lagrangian Simulation. Journal of Applied Meteorology 

and Climatology, 47(8): 2115-2128, 

https://doi.org/10.1175/2008jamc1814.1. 

Pringle, M.J., Schmidt, M. and Muir, J.S., 2009. Geostatistical 

interpolation of SLC-off Landsat ETM+ images. ISPRS 

Journal of Photogrammetry and Remote Sensing, 64(6): 654-

664, https://doi.org/10.1016/j.isprsjprs.2009.06.001. 

Proud, S.R. et al., 2014. The Normalization of Surface Anisotropy 

Effects Present in SEVIRI Reflectances by Using the MODIS 

BRDF Method. IEEE Transactions on Geoscience and Remote 

Sensing, 52(10): 6026-6039, 

https://doi.org/10.1109/TGRS.2013.2294602. 

Puig-Suari, J., Turner, C. and Ahlgren, W., 2001. Development of the 

standard CubeSat deployer and a CubeSat class PicoSatellite, 

https://support.planet.com/hc/en-us/articles/4406292582673-Planet-Fusion-Monitoring-Technical-Specification.html
https://support.planet.com/hc/en-us/articles/4406292582673-Planet-Fusion-Monitoring-Technical-Specification.html
https://doi.org/10.1080/014311698215748
https://doi.org/10.1175/2008jamc1814.1
https://doi.org/10.1016/j.isprsjprs.2009.06.001
https://doi.org/10.1109/TGRS.2013.2294602


 

 181 

2001 IEEE aerospace conference proceedings (Cat. No. 

01TH8542). IEEE, pp. 1/347-1/353 vol. 1, 

https://doi.org/10.1109/AERO.2001.931726. 

Qiao, K., Zhu, W., Xie, Z. and Li, P., 2019. Estimating the Seasonal 

Dynamics of the Leaf Area Index Using Piecewise LAI-VI 

Relationships Based on Phenophases. Remote Sensing, 11(6): 

689. 

Qiu, S., Zhu, Z. and He, B., 2019. Fmask 4.0: Improved cloud and 

cloud shadow detection in Landsats 4–8 and Sentinel-2 

imagery. Remote Sensing of Environment, 231: 111205, 

https://doi.org/10.1016/j.rse.2019.05.024. 

Rahmani, S., Strait, M., Merkurjev, D., Moeller, M. and Wittman, T., 

2010. An adaptive IHS pan-sharpening method. IEEE 

Geoscience and Remote Sensing Letters, 7(4): 746-750, 

https://doi.org/10.1109/LGRS.2010.2046715. 

Ran, Y. et al., 2016. Spatial representativeness and uncertainty of 

eddy covariance carbon flux measurements for upscaling net 

ecosystem productivity to the grid scale. Agricultural and 

Forest Meteorology, 230-231: 114-127, 

https://doi.org/10.1016/j.agrformet.2016.05.008. 

Rasmussen, C.E., 2004. Gaussian Processes in Machine Learning. In: 

O. Bousquet, U. von Luxburg and G. Rätsch (Editors), 

Advanced Lectures on Machine Learning: ML Summer Schools 

2003, Canberra, Australia, February 2 - 14, 2003, Tübingen, 

Germany, August 4 - 16, 2003, Revised Lectures. Springer 

Berlin Heidelberg, Berlin, Heidelberg, pp. 63-71, 

https://doi.org/10.1109/AERO.2001.931726
https://doi.org/10.1016/j.rse.2019.05.024
https://doi.org/10.1109/LGRS.2010.2046715
https://doi.org/10.1016/j.agrformet.2016.05.008


 

 182 

10.1007/978-3-540-28650-9_4. 

Reichstein, M. et al., 2005. On the separation of net ecosystem 

exchange into assimilation and ecosystem respiration: review 

and improved algorithm. Global Change Biology, 11(9): 1424-

1439, https://doi.org/10.1111/j.1365-2486.2005.001002.x. 

Ren, C., Wang, X., Gao, J., Zhou, X. and Chen, H., 2020. Unsupervised 

change detection in satellite images with generative 

adversarial network. IEEE Transactions on Geoscience and 

Remote Sensing, 59(12): 10047-10061, 

https://doi.org/10.1109/TGRS.2020.3043766. 

Rey-Sanchez, C. et al., in prep. Assessing Methane Emission 

Hotspots using Footprint-Weighed Flux maps. To be 

submitted to Journal of Geophysical Research: Biogeosciences. 

Rey-Sanchez, C., Szutu, D., Hemes, K., Verfaillie, J. and Baldocchi, 

D., 2021a. AmeriFlux US-Bi2 Bouldin Island corn, Ver. 11-5, 

AmeriFlux AMP, https://doi.org/10.17190/AMF/1419513. 

Rey-Sanchez, C. et al., 2021b. AmeriFlux US-Bi1 Bouldin Island 

Alfalfa, Ver. 5-5, AmeriFlux AMP, 

https://doi.org/10.17190/AMF/1480317. 

Rey-Sanchez, C. et al., 2021c. Evaluation of Atmospheric Boundary 

Layer Height From Wind Profiling Radar and Slab Models and 

Its Responses to Seasonality of Land Cover, Subsidence, and 

Advection. Journal of Geophysical Research: Atmospheres, 

126(7): e2020JD033775, 

https://doi.org/10.1029/2020JD033775. 

https://doi.org/10.1111/j.1365-2486.2005.001002.x
https://doi.org/10.1109/TGRS.2020.3043766
https://doi.org/10.17190/AMF/1419513
https://doi.org/10.17190/AMF/1480317
https://doi.org/10.1029/2020JD033775


 

 183 

Richardson, A.D. et al., 2006. A multi-site analysis of random error 

in tower-based measurements of carbon and energy fluxes. 

Agricultural and Forest Meteorology, 136(1): 1-18, 

https://doi.org/10.1016/j.agrformet.2006.01.007. 

Ronneberger, O., Fischer, P. and Brox, T., 2015. U-net: 

Convolutional networks for biomedical image segmentation, 

International Conference on Medical image computing and 

computer-assisted intervention. Springer, pp. 234-241, 

https://doi.org/10.1007/978-3-319-24574-4_28. 

Roth, K.L., Roberts, D.A., Dennison, P.E., Peterson, S.H. and Alonzo, 

M., 2015. The impact of spatial resolution on the classification 

of plant species and functional types within imaging 

spectrometer data. Remote Sensing of Environment, 171: 45-

57, https://doi.org/10.1016/j.rse.2015.10.004. 

Roujean, J.-L., Leroy, M. and Deschamps, P.-Y., 1992. A 

bidirectional reflectance model of the Earth's surface for the 

correction of remote sensing data. Journal of Geophysical 

Research: Atmospheres, 97(D18): 20455-20468, 

https://doi.org/10.1029/92JD01411. 

Rouse, J.W., Haas, R.H., Schell, J.A., Deering, D.W., 1974. Monitoring 

vegetation systems in the Great Plains with ERTS. Third 

ERTS Symposium(NASA SP-351 1): 309–317, 

https://ntrs.nasa.gov/citations/19740004927. 

Roy, D.P., Huang, H., Houborg, R. and Martins, V.S., 2021. A global 

analysis of the temporal availability of PlanetScope high spatial 

resolution multi-spectral imagery. Remote Sensing of 

https://doi.org/10.1016/j.agrformet.2006.01.007
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1016/j.rse.2015.10.004
https://doi.org/10.1029/92JD01411
https://ntrs.nasa.gov/citations/19740004927


 

 184 

Environment, 264: 112586, 

https://doi.org/10.1016/j.rse.2021.112586. 

Roy, D.P. et al., 2016a. Characterization of Landsat-7 to Landsat-8 

reflective wavelength and normalized difference vegetation 

index continuity. Remote Sensing of Environment, 185: 57-

70, https://doi.org/10.1016/j.rse.2015.12.024. 

Roy, D.P. et al., 2017. Examination of Sentinel-2A multi-spectral 

instrument (MSI) reflectance anisotropy and the suitability of 

a general method to normalize MSI reflectance to nadir BRDF 

adjusted reflectance. Remote Sensing of Environment, 199: 

25-38, https://doi.org/10.1016/j.rse.2017.06.019. 

Roy, D.P. et al., 2014a. Landsat-8: Science and product vision for 

terrestrial global change research. Remote Sensing of 

Environment, 145: 154-172, 

https://doi.org/10.1016/j.rse.2014.02.001. 

Roy, D.P. et al., 2014b. Landsat-8: Science and product vision for 

terrestrial global change research. Remote sensing of 

Environment, 145: 154-172. 

Roy, D.P. et al., 2016b. A general method to normalize Landsat 

reflectance data to nadir BRDF adjusted reflectance. Remote 

Sensing of Environment, 176: 255-271, 

https://doi.org/10.1016/j.rse.2016.01.023. 

Ryu, Y. et al., 2012. On the temporal upscaling of evapotranspiration 

from instantaneous remote sensing measurements to 8-day 

mean daily-sums. Agricultural and Forest Meteorology, 152: 

https://doi.org/10.1016/j.rse.2021.112586
https://doi.org/10.1016/j.rse.2015.12.024
https://doi.org/10.1016/j.rse.2017.06.019
https://doi.org/10.1016/j.rse.2014.02.001
https://doi.org/10.1016/j.rse.2016.01.023


 

 185 

212-222, https://doi.org/10.1016/j.agrformet.2011.09.010. 

Ryu, Y. et al., 2011. Integration of MODIS land and atmosphere 

products with a coupled-process model to estimate gross 

primary productivity and evapotranspiration from 1 km to 

global scales. Global Biogeochemical Cycles, 25(4), 

https://doi.org/10.1029/2011GB004053. 

Ryu, Y. et al., 2010. Testing the performance of a novel spectral 

reflectance sensor, built with light emitting diodes (LEDs), to 

monitor ecosystem metabolism, structure and function. 

Agricultural and Forest Meteorology, 150(12): 1597-1606, 

https://doi.org/10.1016/j.agrformet.2010.08.009. 

Ryu, Y., Berry, J.A. and Baldocchi, D.D., 2019. What is global 

photosynthesis? History, uncertainties and opportunities. 

Remote Sensing of Environment, 223: 95-114, 

https://doi.org/10.1016/j.rse.2019.01.016. 

Ryu, Y., Jiang, C., Kobayashi, H. and Detto, M., 2018. MODIS-derived 

global land products of shortwave radiation and diffuse and 

total photosynthetically active radiation at 5km resolution from 

2000. Remote Sensing of Environment, 204: 812-825, 

https://doi.org/10.1016/j.rse.2017.09.021. 

Ryu, Y., Kang, S., Moon, S.-K. and Kim, J., 2008. Evaluation of land 

surface radiation balance derived from moderate resolution 

imaging spectroradiometer (MODIS) over complex terrain and 

heterogeneous landscape on clear sky days. Agricultural and 

Forest Meteorology, 148(10): 1538-1552, 

https://doi.org/10.1016/j.agrformet.2008.05.008. 

https://doi.org/10.1016/j.agrformet.2011.09.010
https://doi.org/10.1029/2011GB004053
https://doi.org/10.1016/j.agrformet.2010.08.009
https://doi.org/10.1016/j.rse.2019.01.016
https://doi.org/10.1016/j.rse.2017.09.021
https://doi.org/10.1016/j.agrformet.2008.05.008


 

 186 

Ryu, Y., Lee, G., Jeon, S., Song, Y. and Kimm, H., 2014. Monitoring 

multi-layer canopy spring phenology of temperate deciduous 

and evergreen forests using low-cost spectral sensors. 

Remote Sensing of Environment, 149: 227-238, 

https://doi.org/10.1016/j.rse.2014.04.015. 

Salgueiro Romero, L., Marcello, J. and Vilaplana, V., 2020. Super-

Resolution of Sentinel-2 Imagery Using Generative 

Adversarial Networks. Remote Sensing, 12(15): 2424, 

https://doi.org/10.3390/rs12152424. 

Schaaf, C.B. et al., 2002. First operational BRDF, albedo nadir 

reflectance products from MODIS. Remote Sensing of 

Environment, 83(1): 135-148, 

https://doi.org/10.1016/S0034-4257(02)00091-3. 

Schaepman-Strub, G., Schaepman, M.E., Painter, T.H., Dangel, S. and 

Martonchik, J.V., 2006. Reflectance quantities in optical 

remote sensing—definitions and case studies. Remote Sensing 

of Environment, 103(1): 27-42, 

https://doi.org/10.1016/j.rse.2006.03.002. 

Scheffler, D., Hollstein, A., Diedrich, H., Segl, K. and Hostert, P., 

2017. AROSICS: An automated and robust open-source image 

co-registration software for multi-sensor satellite data. 

Remote sensing, 9(7): 676, 

https://doi.org/10.3390/rs9070676. 

Schimel, D. et al., 2015. Observing terrestrial ecosystems and the 

carbon cycle from space. Global Change Biology, 21(5): 

1762-1776, https://doi.org/10.1111/gcb.12822. 

https://doi.org/10.1016/j.rse.2014.04.015
https://doi.org/10.3390/rs12152424
https://doi.org/10.1016/S0034-4257(02)00091-3
https://doi.org/10.1016/j.rse.2006.03.002
https://doi.org/10.3390/rs9070676
https://doi.org/10.1111/gcb.12822


 

 187 

Schmid, H.P., 1997. Experimental design for flux measurements: 

matching scales of observations and fluxes. Agricultural and 

Forest Meteorology, 87(2): 179-200, 

https://doi.org/10.1016/S0168-1923(97)00011-7. 

Sellers, P.J., 1987. Canopy reflectance, photosynthesis, and 

transpiration, II. The role of biophysics in the linearity of their 

interdependence. Remote Sensing of Environment, 21(2): 

143-183, https://doi.org/10.1016/0034-4257(87)90051-4. 

Sellers, P.J., Berry, J.A., Collatz, G.J., Field, C.B. and Hall, F.G., 1992. 

Canopy reflectance, photosynthesis, and transpiration. III. A 

reanalysis using improved leaf models and a new canopy 

integration scheme. Remote Sensing of Environment, 42(3): 

187-216, https://doi.org/10.1016/0034-4257(92)90102-P. 

Seong, N.-H., Jung, D., Kim, J. and Han, K.-S., 2020. Evaluation of 

NDVI Estimation Considering Atmospheric and BRDF 

Correction through Himawari-8/AHI. Asia-Pacific Journal of 

Atmospheric Sciences, 56(2): 265-274, 

https://doi.org/10.1007/s13143-019-00167-0. 

Shang, R. and Zhu, Z., 2019. Harmonizing Landsat 8 and Sentinel-2: 

A time-series-based reflectance adjustment approach. 

Remote Sensing of Environment, 235: 111439, 

https://doi.org/10.1016/j.rse.2019.111439. 

Shannon, C.E., 1959. Coding theorems for a discrete source with a 

fidelity criterion. IRE Nat. Conv. Rec, 4(142-163): 1. 

Shendryk, Y., Rist, Y., Ticehurst, C. and Thorburn, P., 2019. Deep 

https://doi.org/10.1016/S0168-1923(97)00011-7
https://doi.org/10.1016/0034-4257(87)90051-4
https://doi.org/10.1016/0034-4257(92)90102-P
https://doi.org/10.1007/s13143-019-00167-0
https://doi.org/10.1016/j.rse.2019.111439


 

 188 

learning for multi-modal classification of cloud, shadow and 

land cover scenes in PlanetScope and Sentinel-2 imagery. 

ISPRS Journal of Photogrammetry and Remote Sensing, 157: 

124-136, https://doi.org/10.1016/j.isprsjprs.2019.08.018. 

Shu, H. et al., 2022. Fusing or filling: Which strategy can better 

reconstruct high-quality fine-resolution satellite time series? 

Science of Remote Sensing, 5: 100046, 

https://doi.org/10.1016/j.srs.2022.100046. 

Shuai, Y., Masek, J.G., Gao, F. and Schaaf, C.B., 2011. An algorithm 

for the retrieval of 30-m snow-free albedo from Landsat 

surface reflectance and MODIS BRDF. Remote Sensing of 

Environment, 115(9): 2204-2216, 

https://doi.org/10.1016/j.rse.2011.04.019. 

Shuai, Y., Masek, J.G., Gao, F., Schaaf, C.B. and He, T., 2014. An 

approach for the long-term 30-m land surface snow-free 

albedo retrieval from historic Landsat surface reflectance and 

MODIS-based a priori anisotropy knowledge. Remote Sensing 

of Environment, 152: 467-479, 

https://doi.org/10.1016/j.rse.2014.07.009. 

Sishodia, R.P., Ray, R.L. and Singh, S.K., 2020. Applications of 

Remote Sensing in Precision Agriculture: A Review. Remote 

Sensing, 12(19): 3136, https://doi.org/10.3390/rs12193136. 

Storey, J. et al., 2016. A note on the temporary misregistration of 

Landsat-8 Operational Land Imager (OLI) and Sentinel-2 

Multi Spectral Instrument (MSI) imagery. Remote Sensing of 

Environment, 186: 121-122, 

https://doi.org/10.1016/j.isprsjprs.2019.08.018
https://doi.org/10.1016/j.srs.2022.100046
https://doi.org/10.1016/j.rse.2011.04.019
https://doi.org/10.1016/j.rse.2014.07.009
https://doi.org/10.3390/rs12193136


 

 189 

https://doi.org/10.1016/j.rse.2016.08.025. 

Stow, D.A. et al., 2004. Remote sensing of vegetation and land-cover 

change in Arctic Tundra Ecosystems. Remote Sensing of 

Environment, 89(3): 281-308, 

https://doi.org/10.1016/j.rse.2003.10.018. 

Stoy, P.C., Khan, A.M., Wipf, A., Silverman, N. and Powell, S.L., 2022. 

The spatial variability of NDVI within a wheat field: 

Information content and implications for yield and grain protein 

monitoring. PloS one, 17(3): e0265243, 

https://doi.org/10.1371/journal.pone.0265243. 

Teillet, P.M., Staenz, K. and William, D.J., 1997. Effects of spectral, 

spatial, and radiometric characteristics on remote sensing 

vegetation indices of forested regions. Remote Sensing of 

Environment, 61(1): 139-149, 

https://doi.org/10.1016/S0034-4257(96)00248-9. 

Tran, N.N. et al., 2020. Seasonal Comparisons of Himawari-8 AHI 

and MODIS Vegetation Indices over Latitudinal Australian 

Grassland Sites. Remote Sensing, 12(15), 

https://doi.org/10.3390/rs12152494  

Tucker, C.J., 1979. Red and photographic infrared linear 

combinations for monitoring vegetation. Remote Sensing of 

Environment, 8(2): 127-150, https://doi.org/10.1016/0034-

4257(79)90013-0. 

Turner, B.L., Lambin, E.F. and Reenberg, A., 2007. The emergence 

of land change science for global environmental change and 

https://doi.org/10.1016/j.rse.2016.08.025
https://doi.org/10.1016/j.rse.2003.10.018
https://doi.org/10.1371/journal.pone.0265243
https://doi.org/10.1016/S0034-4257(96)00248-9
https://doi.org/10.3390/rs12152494
https://doi.org/10.1016/0034-4257(79)90013-0
https://doi.org/10.1016/0034-4257(79)90013-0


 

 190 

sustainability. Proceedings of the National Academy of 

Sciences, 104(52): 20666-20671, 

https://doi.org/10.1073/pnas.0704119104. 

Turner, M.G., O'Neill, R.V., Gardner, R.H. and Milne, B.T., 1989. 

Effects of changing spatial scale on the analysis of landscape 

pattern. Landscape Ecology, 3(3): 153-162, 

https://doi.org/10.1007/BF00131534. 

Valach, A.C. et al., 2021. Productive wetlands restored for carbon 

sequestration quickly become net CO2 sinks with site-level 

factors driving uptake variability. PLOS ONE, 16(3): 

e0248398, https://doi.org/10.1371/journal.pone.0248398. 

Verma, M. et al., 2015. Improving the performance of remote sensing 

models for capturing intra- and inter-annual variations in 

daily GPP: An analysis using global FLUXNET tower data. 

Agricultural and Forest Meteorology, 214-215: 416-429, 

https://doi.org/10.1016/j.agrformet.2015.09.005. 

Vermote, E.F., Tanre, D., Deuze, J.L., Herman, M. and Morcette, J., 

1997. Second Simulation of the Satellite Signal in the Solar 

Spectrum, 6S: an overview. IEEE Transactions on Geoscience 

and Remote Sensing, 35(3): 675-686, 

https://doi.org/10.1109/36.581987. 

Walther, S. et al., 2022. Technical note: A view from space on global 

flux towers by MODIS and Landsat: the FluxnetEO data set. 

Biogeosciences, 19(11): 2805-2840, 

https://doi.org/10.5194/bg-19-2805-2022. 

https://doi.org/10.1073/pnas.0704119104
https://doi.org/10.1007/BF00131534
https://doi.org/10.1371/journal.pone.0248398
https://doi.org/10.1016/j.agrformet.2015.09.005
https://doi.org/10.1109/36.581987
https://doi.org/10.5194/bg-19-2805-2022


 

 191 

Wang, J. et al., 2022. A new object-class based gap-filling method 

for PlanetScope satellite image time series. Remote Sensing 

of Environment, 280: 113136, 

https://doi.org/10.1016/j.rse.2022.113136. 

Wang, J. et al., 2020a. Multi-scale integration of satellite remote 

sensing improves characterization of dry-season green-up in 

an Amazon tropical evergreen forest. Remote Sensing of 

Environment, 246: 111865, 

https://doi.org/10.1016/j.rse.2020.111865. 

Wang, J.A. et al., 2020b. Extensive land cover change across Arctic–

Boreal Northwestern North America from disturbance and 

climate forcing. Global Change Biology, 26(2): 807-822, 

https://doi.org/10.1111/gcb.14804. 

Wang, X., Chen, J.M. and Ju, W., 2020c. Photochemical reflectance 

index (PRI) can be used to improve the relationship between 

gross primary productivity (GPP) and sun-induced 

chlorophyll fluorescence (SIF). Remote Sensing of 

Environment, 246: 111888, 

https://doi.org/10.1016/j.rse.2020.111888. 

Wang, X., Xie, L., Dong, C. and Shan, Y., 2021. Real-esrgan: Training 

real-world blind super-resolution with pure synthetic data, 

Proceedings of the IEEE/CVF International Conference on 

Computer Vision, pp. 1905-1914, 

https://doi.org/10.1109/ICCVW54120.2021.00217. 

Wang, X. et al., 2018a. Esrgan: Enhanced super-resolution 

generative adversarial networks, Proceedings of the European 

https://doi.org/10.1016/j.rse.2022.113136
https://doi.org/10.1016/j.rse.2020.111865
https://doi.org/10.1111/gcb.14804
https://doi.org/10.1016/j.rse.2020.111888
https://doi.org/10.1109/ICCVW54120.2021.00217


 

 192 

conference on computer vision (ECCV) workshops, pp. 0-0, 

https://doi.org/10.1007/978-3-030-11021-5_5. 

Wang, Z., Jiang, K., Yi, P., Han, Z. and He, Z., 2020d. Ultra-dense 

GAN for satellite imagery super-resolution. Neurocomputing, 

398: 328-337, https://doi.org/10.1016/j.neucom.2019.03.106. 

Wang, Z., Schaaf, C.B., Sun, Q., Shuai, Y. and Román, M.O., 2018b. 

Capturing rapid land surface dynamics with Collection V006 

MODIS BRDF/NBAR/Albedo (MCD43) products. Remote 

Sensing of Environment, 207: 50-64, 

https://doi.org/10.1016/j.rse.2018.02.001. 

Wanner, W., Li, X. and Strahler, A.H., 1995. On the derivation of 

kernels for kernel-driven models of bidirectional reflectance. 

Journal of Geophysical Research: Atmospheres, 100(D10): 

21077-21089, https://doi.org/10.1029/95JD02371. 

Weiss, D.J. et al., 2014. An effective approach for gap-filling 

continental scale remotely sensed time-series. ISPRS Journal 

of Photogrammetry and Remote Sensing, 98: 106-118, 

https://doi.org/10.1016/j.isprsjprs.2014.10.001. 

Weiss, D.J. and Crabtree, R.L., 2011. Percent surface water 

estimation from MODIS BRDF 16-day image composites. 

Remote Sensing of Environment, 115(8): 2035-2046, 

https://doi.org/10.1016/j.rse.2011.04.005. 

Wheeler, K.I. and Dietze, M.C., 2019. A Statistical Model for 

Estimating Midday NDVI from the Geostationary Operational 

Environmental Satellite (GOES) 16 and 17. Remote Sensing, 

https://doi.org/10.1007/978-3-030-11021-5_5
https://doi.org/10.1016/j.neucom.2019.03.106
https://doi.org/10.1016/j.rse.2018.02.001
https://doi.org/10.1029/95JD02371
https://doi.org/10.1016/j.isprsjprs.2014.10.001
https://doi.org/10.1016/j.rse.2011.04.005


 

 193 

11(21), https://doi.org/10.3390/rs11212507. 

Wheeler, K.I. and Dietze, M.C., 2021. Improving the monitoring of 

deciduous broadleaf phenology using the Geostationary 

Operational Environmental Satellite (GOES) 16 and 17. 

Biogeosciences, 18(6): 1971-1985, 

https://doi.org/10.5194/bg-18-1971-2021. 

Woodcock, C.E. and Strahler, A.H., 1987. The factor of scale in 

remote sensing. Remote Sensing of Environment, 21(3): 311-

332, https://doi.org/10.1016/0034-4257(87)90015-0. 

Wu, G. et al., 2020. Radiance-based NIRv as a proxy for GPP of corn 

and soybean. Environmental Research Letters, 15(3): 034009, 

https://doi.org/10.1088/1748-9326/ab65cc. 

Wu, P., Shen, H., Zhang, L. and Göttsche, F.-M., 2015. Integrated 

fusion of multi-scale polar-orbiting and geostationary 

satellite observations for the mapping of high spatial and 

temporal resolution land surface temperature. Remote Sensing 

of Environment, 156: 169-181, 

https://doi.org/10.1016/j.rse.2014.09.013. 

Wulder, M.A., Hermosilla, T., White, J.C., Hobart, G. and Masek, J.G., 

2021. Augmenting Landsat time series with Harmonized 

Landsat Sentinel-2 data products: Assessment of spectral 

correspondence. Science of Remote Sensing, 4: 100031, 

https://doi.org/10.1016/j.srs.2021.100031. 

Wulder, M.A. et al., 2019. Current status of Landsat program, science, 

and applications. Remote Sensing of Environment, 225: 127-

https://doi.org/10.3390/rs11212507
https://doi.org/10.5194/bg-18-1971-2021
https://doi.org/10.1016/0034-4257(87)90015-0
https://doi.org/10.1088/1748-9326/ab65cc
https://doi.org/10.1016/j.rse.2014.09.013
https://doi.org/10.1016/j.srs.2021.100031


 

 194 

147, https://doi.org/10.1016/j.rse.2019.02.015. 

Xiao, J., Fisher, J.B., Hashimoto, H., Ichii, K. and Parazoo, N.C., 2021. 

Emerging satellite observations for diurnal cycling of 

ecosystem processes. Nature Plants, 7(7): 877-887, 

https://doi.org/10.1038/s41477-021-00952-8. 

Yan, D., Zhang, X., Yu, Y. and Guo, W., 2016a. A Comparison of 

Tropical Rainforest Phenology Retrieved From Geostationary 

(SEVIRI) and Polar-Orbiting (MODIS) Sensors Across the 

Congo Basin. IEEE Transactions on Geoscience and Remote 

Sensing, 54(8): 4867-4881, 

https://doi.org/10.1109/TGRS.2016.2552462. 

Yan, L. and Roy, D.P., 2018. Large-Area Gap Filling of Landsat 

Reflectance Time Series by Spectral-Angle-Mapper Based 

Spatio-Temporal Similarity (SAMSTS). Remote Sensing, 

10(4): 609, https://doi.org/10.3390/rs10040609. 

Yan, L. and Roy, D.P., 2020. Spatially and temporally complete 

Landsat reflectance time series modelling: The fill-and-fit 

approach. Remote Sensing of Environment, 241: 111718, 

https://doi.org/10.1016/j.rse.2020.111718. 

Yan, L., Roy, D.P., Zhang, H., Li, J. and Huang, H., 2016b. An 

Automated Approach for Sub-Pixel Registration of Landsat-

8 Operational Land Imager (OLI) and Sentinel-2 Multi 

Spectral Instrument (MSI) Imagery. Remote Sensing, 8(6): 

520, https://doi.org/10.3390/rs8060520. 

Yang, H. and E, W., 2021. Generalization error of GAN from the 

https://doi.org/10.1016/j.rse.2019.02.015
https://doi.org/10.1038/s41477-021-00952-8
https://doi.org/10.1109/TGRS.2016.2552462
https://doi.org/10.3390/rs10040609
https://doi.org/10.1016/j.rse.2020.111718
https://doi.org/10.3390/rs8060520


 

 195 

discriminator’s perspective. Research in the Mathematical 

Sciences, 9(1): 8, https://doi.org/10.1007/s40687-021-

00306-y. 

Yang, H. and E, W., 2022. Generalization and Memorization: The Bias 

Potential Model. In: B. Joan, H. Jan and Z. Lenka (Editors), 

Proceedings of the 2nd Mathematical and Scientific Machine 

Learning Conference. PMLR, Proceedings of Machine Learning 

Research, pp. 1013--1043, 

https://doi.org/10.48550/arXiv.2011.14269. 

Yang, K. et al., 2018. Sun-induced chlorophyll fluorescence is more 

strongly related to absorbed light than to photosynthesis at 

half-hourly resolution in a rice paddy. Remote Sensing of 

Environment, 216: 658-673, 

https://doi.org/10.1016/j.rse.2018.07.008. 

Yang, X. and Lo, C., 2000. Relative radiometric normalization 

performance for change detection from multi-date satellite 

images. Photogrammetric engineering and remote sensing, 

66(8): 967-980. 

Yazici, Y., Foo, C.S., Winkler, S., Yap, K.H. and Chandrasekhar, V., 

2020. Empirical Analysis Of Overfitting And Mode Drop In Gan 

Training, 2020 IEEE International Conference on Image 

Processing (ICIP), pp. 1651-1655, 

10.1109/ICIP40778.2020.9191083. 

Yeom, J.-m. et al., 2018. Monitoring paddy productivity in North 

Korea employing geostationary satellite images integrated 

with GRAMI-rice model. Scientific Reports, 8(1): 16121, 

https://doi.org/10.1007/s40687-021-00306-y
https://doi.org/10.1007/s40687-021-00306-y
https://doi.org/10.48550/arXiv.2011.14269
https://doi.org/10.1016/j.rse.2018.07.008


 

 196 

https://doi/org/10.1038/s41598-018-34550-0. 

Yeom, J.-M. and Kim, H.-O., 2013. Feasibility of using 

Geostationary Ocean Colour Imager (GOCI) data for land 

applications after atmospheric correction and bidirectional 

reflectance distribution function modelling. International 

Journal of Remote Sensing, 34(20): 7329-7339, 

10.1080/2150704X.2013.817708. 

Yeom, J.-M., Roujean, J.-L., Han, K.-S., Lee, K.-S. and Kim, H.-

W., 2020. Thin cloud detection over land using background 

surface reflectance based on the BRDF model applied to 

Geostationary Ocean Color Imager (GOCI) satellite data sets. 

Remote Sensing of Environment, 239: 111610, 

https://doi.org/10.1016/j.rse.2019.111610. 

Yin, G. et al., 2019. Retrieval of High Spatiotemporal Resolution Leaf 

Area Index with Gaussian Processes, Wireless Sensor 

Network, and Satellite Data Fusion. Remote Sensing, 11(3): 

244, https://doi/org/doi:10.3390/rs11030244. 

Yost, M.A. et al., 2017. Long-term impact of a precision agriculture 

system on grain crop production. Precision Agriculture, 18(5): 

823-842, https://doi.org/10.1007/s11119-016-9490-5. 

Zeng, Y. et al., 2019. A practical approach for estimating the escape 

ratio of near-infrared solar-induced chlorophyll fluorescence. 

Remote Sensing of Environment, 232: 111209, 

https://doi.org/10.1016/j.rse.2019.05.028. 

Zhang, H. et al., 2021. Retrieving high-resolution surface 

https://doi/org/10.1038/s41598-018-34550-0
https://doi.org/10.1016/j.rse.2019.111610
https://doi/org/doi:10.3390/rs11030244
https://doi.org/10.1007/s11119-016-9490-5
https://doi.org/10.1016/j.rse.2019.05.028


 

 197 

photosynthetically active radiation from the MODIS and 

GOES-16 ABI data. Remote Sensing of Environment, 260: 

112436, https://doi.org/10.1016/j.rse.2021.112436. 

Zhang, Y. et al., 2018. On the relationship between sub-daily 

instantaneous and daily total gross primary production: 

Implications for interpreting satellite-based SIF retrievals. 

Remote Sensing of Environment, 205: 276-289, 

https://doi.org/10.1016/j.rse.2017.12.009. 

Zhang, Z. et al., 2020. Reduction of structural impacts and distinction 

of photosynthetic pathways in a global estimation of GPP from 

space-borne solar-induced chlorophyll fluorescence. Remote 

Sensing of Environment, 240: 111722, 

https://doi.org/10.1016/j.rse.2020.111722. 

Zhou, W., Bovik, A.C., Sheikh, H.R. and Simoncelli, E.P., 2004. Image 

quality assessment: from error visibility to structural 

similarity. IEEE Transactions on Image Processing, 13(4): 

600-612, https://doi.org/10.1109/TIP.2003.819861. 

Zhu, X., Cai, F., Tian, J. and Williams, T.K.-A., 2018. Spatiotemporal 

Fusion of Multisource Remote Sensing Data: Literature Survey, 

Taxonomy, Principles, Applications, and Future Directions. 

Remote Sensing, 10(4): 527, 

https://doi.org/10.3390/rs10040527. 

Zhu, X., Chen, J., Gao, F., Chen, X. and Masek, J.G., 2010. An 

enhanced spatial and temporal adaptive reflectance fusion 

model for complex heterogeneous regions. Remote Sensing of 

Environment, 114(11): 2610-2623, 

https://doi.org/10.1016/j.rse.2021.112436
https://doi.org/10.1016/j.rse.2017.12.009
https://doi.org/10.1016/j.rse.2020.111722
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.3390/rs10040527


 

 198 

https://doi.org/10.1016/j.rse.2010.05.032. 

Zhu, X. and Helmer, E.H., 2018. An automatic method for screening 

clouds and cloud shadows in optical satellite image time series 

in cloudy regions. Remote Sensing of Environment, 214: 135-

153, https://doi.org/10.1016/j.rse.2018.05.024. 

Zhu, X. et al., 2016. A flexible spatiotemporal method for fusing 

satellite images with different resolutions. Remote Sensing of 

Environment, 172: 165-177, 

https://doi.org/10.1016/j.rse.2015.11.016. 

Zhu, X., Liu, D. and Chen, J., 2012. A new geostatistical approach for 

filling gaps in Landsat ETM+ SLC-off images. Remote 

Sensing of Environment, 124: 49-60, 

https://doi.org/10.1016/j.rse.2012.04.019. 

Zhukov, B., Oertel, D., Lanzl, F. and Reinhackel, G., 1999. Unmixing-

based multisensor multiresolution image fusion. IEEE 

Transactions on Geoscience and Remote Sensing, 37(3): 

1212-1226, https://doi.org10.1109/36.763276. 

Ziliani, M.G. et al., 2022. Early season prediction of within-field crop 

yield variability by assimilating CubeSat data into a crop model. 

Agricultural and Forest Meteorology, 313: 108736, 

https://doi.org/10.1016/j.agrformet.2021.108736. 

 

  

https://doi.org/10.1016/j.rse.2010.05.032
https://doi.org/10.1016/j.rse.2018.05.024
https://doi.org/10.1016/j.rse.2015.11.016
https://doi.org/10.1016/j.rse.2012.04.019
https://doi.org10.1109/36.763276
https://doi.org/10.1016/j.agrformet.2021.108736


 

 199 

Abstract in Korea 

시공간 해상도 향상을 통한 식생 변화 모니터링 

 

공주원  

서울대학교 환경대학원 협동과정 조경학 

논문지도교수: 류영렬 

 

육상 생태계에서 대기권과 생물권의 상호 작용을 이해하기 위해서는 

식생 변화의 모니터링이 필요하다. 이 때, 위성영상은 지표면을 관측하

여 식생지도를 제공할 수 있지만, 지표변화의 상세한 정보는 구름이나 

위성 이미지의 공간 해상도에 의해 제한되었다. 또한 위성영상의 시공간 

해상도가 식생지도를 통한 광합성 모니터링에 미치는 영향은 완전히 밝

혀지지 않았다. 

본 논문에서는 고해상도 식생 지도를 일단위로 생성하기 위성 영상

의 시공간 해상도를 향상시키는 것을 목표로 하였다. 고해상도 위성영상

을 활용한 식생 변화 모니터링을 시공간적으로 확장하기 위해 1) 정지

궤도 위성을 활용한 영상융합을 통해 시간해상도 향상, 2) 적대적생성네

트워크를 활용한 공간해상도 향상, 3) 시공간해상도가 높은 위성영상을 

토지피복이 균질하지 않은 공간에서 식물 광합성 모니터링을 수행하였다. 

이처럼, 위성기반 원격탐지에서 새로운 기술이 등장함에 따라 현재 및 

과거의 위성영상은 시공간 해상도 측면에서 향상되어 식생 변화의 모니

터링 할 수 있다. 

제2장에서는 정지궤도위성영상을 활용하는 시공간 영상융합으로 식

물의 광합성을 모니터링 했을 때, 시간해상도가 향상됨을 보였다. 시공

간 영상융합 시, 구름탐지, 양방향 반사 함수 조정, 공간 등록, 시공간 

융합, 시공간 결측치 보완 등의 과정을 거친다. 이 영상융합 산출물은 

경작관리 등으로 식생 지수의 연간 변동이 큰 두 장소(농경지와 낙엽수

림)에서 평가하였다. 그 결과, 시공간 영상융합 산출물은 결측치 없이 
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현장관측을 예측하였다 (R2 = 0.71, 상대 편향 = 5.64% 농경지; R2 = 

0.79, 상대 편향 = -13.8%, 활엽수림). 시공간 영상융합은 식생 지도

의 시공간 해상도를 점진적으로 개선하여, 식물 생장기동안 위성영상이 

현장 관측을 과소 평가를 줄였다. 영상융합은 높은 시공간 해상도로 광

합성 지도를 일간격으로 생성하기에 이를 활용하여 위성 영상의 제한된 

시공간 해상도로 밝혀지지 않은 식물변화의 과정을 발견하길 기대한다. 

식생의 공간분포은 정밀농업과 토지 피복 변화 모니터링을 위해 필

수적이다. 고해상도 위성영상으로 지구 표면을 관측하는 것을 용이하게 

해졌다. 특히 Planet Fusion은 초소형위성군 데이터를 최대한 활용해 데

이터 결측이 없는 3m 공간 해상도의 지표 표면 반사도이다. 그러나 과

거 위성 센서(Landsat의 경우 30~60m)의 공간 해상도는 식생의 공간

적 변화를 상세 분석하는 것을 제한했다. 제3장에서는 Landsat 데이터

의 공간 해상도를 향상하기 위해 Planet Fusion 및 Landsat 8 데이터를 

사용하여 이중 적대적 생성 네트워크(the dual RSS-GAN)를 학습시켜, 

고해상도 정규화 식생 지수(NDVI)와 식물 근적외선 반사(NIRv)도를 

생성하는 한다. 타워기반 현장 식생지수(최대 8년)와 드론기반 초분광지

도로 the dual RSS-GAN의 성능을 대한민국 내 두 대상지(농경지와 활

엽수림)에서 평가했다. The dual RSS-GAN은 Landsat 8 영상의 공간해

상도를 향상시켜 공간 표현을 보완하고 식생 지수의 계절적 변화를 포착

했다(R2> 0.96). 그리고 the dual RSS-GAN은 Landsat 8 식생 지수가 

현장에 비해 과소 평가되는 것을 완화했다. 현장 관측에 비해 이중 

RSS-GAN과 Landsat 8의 상대 편향 값 각각 -0.8% 에서 -1.5%, -

10.3% 에서 -4.6% 였다. 이러한 개선은 Planet Fusion의 공간정보를 

이중 RSS-GAN로 학습하였기에 가능했다. 헤당 연구 결과는 Landsat 

영상의 공간 해상도를 향상시켜 숨겨진 공간 정보를 제공하는 새로운 접

근 방식이다. 

고해상도에서 식물 광합성 지도는 토지피복이 복잡한 공간에서 탄소 

순환 모니터링시 필수적이다. 그러나 Sentinel-2, Landsat 및 MODIS

와 같이 태양 동조 궤도에 있는 위성은 공간 해상도가 높거나 시간 해상
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도 높은 위성영상만 제공할 수 있다. 최근 발사된 초소형위성군은 이러

한 해상도 한계을 극복할 수 있다. 특히 Planet Fusion은 초소형위성 자

료의 시공간 해상도로 지표면을 관측할 수 있다. 4장에서, Planet Fusion 

지표반사도를 이용하여 식생에서 반사된 근적외선 복사(NIRvP)를 3m 

해상도 지도를 일간격으로 생성했다. 그런 다음 미국 캘리포니아주 새크

라멘토-샌 호아킨 델타의 플럭스 타워 네트워크 데이터와 비교하여 식

물 광합성을 추정하기 위한 NIRvP 지도의 성능을 평가하였다. 전체적으

로 NIRvP 지도는 습지의 잦은 수위 변화에도 불구하고 개별 대상지의 

식물 광합성의 시간적 변화를 포착하였다. 그러나 대상지 전체에 대한 

NIRvP 지도와 식물 광합성 사이의 관계는 NIRvP 지도를 플럭스 타워 

관측범위와 일치시킬 때만 높은 상관관계를 보였다. 관측범위를 일치시

킬 경우, NIRvP 지도는 식물 광합성을 추정하는 데 있어 현장 NIRvP보

다 우수한 성능을 보였다. 이러한 성능 차이는 플럭스 타워 관측범위를 

일치시킬 때, 연구 대상지 간의 NIRvP-식물 광합성 관계의 기울기가 

일관성을 보였기 때문이다. 본 연구 결과는 위성 관측을 플럭스 타워 관

측범위와 일치시키는 것의 중요성을 보여주고 높은 시공간 해상도로 식

물 광합성을 원격으로 모니터링하는 초소형위성군 자료의 잠재력을 보여

준다. 

 

Keyword: 초해상도 (Super-resolution), 위성원격탐사, 광합성, 

큐브위성, 정지궤도위성, 적대적생성네트워크(GAN) 
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