1,503 research outputs found

    VISUAL SEMANTIC SEGMENTATION AND ITS APPLICATIONS

    Get PDF
    This dissertation addresses the difficulties of semantic segmentation when dealing with an extensive collection of images and 3D point clouds. Due to the ubiquity of digital cameras that help capture the world around us, as well as the advanced scanning techniques that are able to record 3D replicas of real cities, the sheer amount of visual data available presents many opportunities for both academic research and industrial applications. But the mere quantity of data also poses a tremendous challenge. In particular, the problem of distilling useful information from such a large repository of visual data has attracted ongoing interests in the fields of computer vision and data mining. Structural Semantics are fundamental to understanding both natural and man-made objects. Buildings, for example, are like languages in that they are made up of repeated structures or patterns that can be captured in images. In order to find these recurring patterns in images, I present an unsupervised frequent visual pattern mining approach that goes beyond co-location to identify spatially coherent visual patterns, regardless of their shape, size, locations and orientation. First, my approach categorizes visual items from scale-invariant image primitives with similar appearance using a suite of polynomial-time algorithms that have been designed to identify consistent structural associations among visual items, representing frequent visual patterns. After detecting repetitive image patterns, I use unsupervised and automatic segmentation of the identified patterns to generate more semantically meaningful representations. The underlying assumption is that pixels capturing the same portion of image patterns are visually consistent, while pixels that come from different backdrops are usually inconsistent. I further extend this approach to perform automatic segmentation of foreground objects from an Internet photo collection of landmark locations. New scanning technologies have successfully advanced the digital acquisition of large-scale urban landscapes. In addressing semantic segmentation and reconstruction of this data using LiDAR point clouds and geo-registered images of large-scale residential areas, I develop a complete system that simultaneously uses classification and segmentation methods to first identify different object categories and then apply category-specific reconstruction techniques to create visually pleasing and complete scene models

    MatrixCity: A Large-scale City Dataset for City-scale Neural Rendering and Beyond

    Full text link
    Neural radiance fields (NeRF) and its subsequent variants have led to remarkable progress in neural rendering. While most of recent neural rendering works focus on objects and small-scale scenes, developing neural rendering methods for city-scale scenes is of great potential in many real-world applications. However, this line of research is impeded by the absence of a comprehensive and high-quality dataset, yet collecting such a dataset over real city-scale scenes is costly, sensitive, and technically difficult. To this end, we build a large-scale, comprehensive, and high-quality synthetic dataset for city-scale neural rendering researches. Leveraging the Unreal Engine 5 City Sample project, we develop a pipeline to easily collect aerial and street city views, accompanied by ground-truth camera poses and a range of additional data modalities. Flexible controls over environmental factors like light, weather, human and car crowd are also available in our pipeline, supporting the need of various tasks covering city-scale neural rendering and beyond. The resulting pilot dataset, MatrixCity, contains 67k aerial images and 452k street images from two city maps of total size 28km228km^2. On top of MatrixCity, a thorough benchmark is also conducted, which not only reveals unique challenges of the task of city-scale neural rendering, but also highlights potential improvements for future works. The dataset and code will be publicly available at our project page: https://city-super.github.io/matrixcity/.Comment: Accepted to ICCV 2023. Project page: $\href{https://city-super.github.io/matrixcity/}{this\, https\, URL}

    Automatic 3D Building Detection and Modeling from Airborne LiDAR Point Clouds

    Get PDF
    Urban reconstruction, with an emphasis on man-made structure modeling, is an active research area with broad impact on several potential applications. Urban reconstruction combines photogrammetry, remote sensing, computer vision, and computer graphics. Even though there is a huge volume of work that has been done, many problems still remain unsolved. Automation is one of the key focus areas in this research. In this work, a fast, completely automated method to create 3D watertight building models from airborne LiDAR (Light Detection and Ranging) point clouds is presented. The developed method analyzes the scene content and produces multi-layer rooftops, with complex rigorous boundaries and vertical walls, that connect rooftops to the ground. The graph cuts algorithm is used to separate vegetative elements from the rest of the scene content, which is based on the local analysis about the properties of the local implicit surface patch. The ground terrain and building rooftop footprints are then extracted, utilizing the developed strategy, a two-step hierarchical Euclidean clustering. The method presented here adopts a divide-and-conquer scheme. Once the building footprints are segmented from the terrain and vegetative areas, the whole scene is divided into individual pendent processing units which represent potential points on the rooftop. For each individual building region, significant features on the rooftop are further detected using a specifically designed region-growing algorithm with surface smoothness constraints. The principal orientation of each building rooftop feature is calculated using a minimum bounding box fitting technique, and is used to guide the refinement of shapes and boundaries of the rooftop parts. Boundaries for all of these features are refined for the purpose of producing strict description. Once the description of the rooftops is achieved, polygonal mesh models are generated by creating surface patches with outlines defined by detected vertices to produce triangulated mesh models. These triangulated mesh models are suitable for many applications, such as 3D mapping, urban planning and augmented reality

    PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON APPLICATIONS OF AUGMENTED REALITY ENVIRONMENTS 1 Augmented Reality for Construction Site Monitoring and Documentation

    Get PDF
    Abstract—Augmented Reality allows for an on-site presentation of information that is registered to the physical environment. Applications from civil engineering, which require users to process complex information, are among those which can benefit particularly highly from such a presentation. In this paper, we will describe how to use Augmented Reality (AR) to support monitoring and documentation of construction site progress. For these tasks, the staff responsible usually requires fast and comprehensible access to progress information to enable comparison to the as-built status as well as to as-planned data. Instead of tediously searching and mapping related information to the actual construction site environment, our AR system allows for the access of information right where it is needed. This is achieved by superimposing progress as well as as-planned information onto the user’s view of the physical environment. For this purpose, we present an approach that uses aerial 3D reconstruction to automatically capture progress information and a mobile AR client for on-site visualization. Within this paper, we will describe in greater detail how to capture 3D, how to register the AR system within the physical outdoor environment, how to visualize progress information in a comprehensible way in an AR overlay and how to interact with this kind of information. By implementing such an AR system, we are able to provide an overview about the possibilities and future applications of AR in the construction industry

    Semantic Modeling of Outdoor Scenes for the Creation of Virtual Environments and Simulations

    Get PDF
    Efforts from both academia and industry have adopted photogrammetric techniques to generate visually compelling 3D models for the creation of virtual environments and simulations. However, such generated meshes do not contain semantic information for distinguishing between objects. To allow both user- and system-level interaction with the meshes, and enhance the visual acuity of the scene, classifying the generated point clouds and associated meshes is a necessary step. This paper presents a point cloud/mesh classification and segmentation framework. The proposed framework provides a novel way of extracting object information – i.e., individual tree locations and related features while considering the data quality issues presented in a photogrammetric-generated point cloud. A case study has been conducted using data that were collected at the University of Southern California to evaluate the proposed framework

    AUTOMATIC IMAGE TO MODEL ALIGNMENT FOR PHOTO-REALISTIC URBAN MODEL RECONSTRUCTION

    Get PDF
    We introduce a hybrid approach in which images of an urban scene are automatically alignedwith a base geometry of the scene to determine model-relative external camera parameters. Thealgorithm takes as input a model of the scene and images with approximate external cameraparameters and aligns the images to the model by extracting the facades from the images andaligning the facades with the model by minimizing over a multivariate objective function. Theresulting image-pose pairs can be used to render photo-realistic views of the model via texturemapping.Several natural extensions to the base hybrid reconstruction technique are also introduced. Theseextensions, which include vanishing point based calibration refinement and video stream basedreconstruction, increase the accuracy of the base algorithm, reduce the amount of data that mustbe provided by the user as input to the algorithm, and provide a mechanism for automaticallycalibrating a large set of images for post processing steps such as automatic model enhancementand fly-through model visualization.Traditionally, photo-realistic urban reconstruction has been approached from purely image-basedor model-based approaches. Recently, research has been conducted on hybrid approaches, whichcombine the use of images and models. Such approaches typically require user assistance forcamera calibration. Our approach is an improvement over these methods because it does notrequire user assistance for camera calibration

    Digital modeling of the impact of the 1755 Lisbon earthquake

    Get PDF
    Toys have played a role in the development of 3D skills for architects. As a continuation of this, games, a subgenre of which are city building games, the father of all is SimCity, a variant of construction management games, underlay a socio-economic model. Outgoing from a general view of the role of toys and games in building the skills of architects, we focus on the modelling of the impact of earthquakes on urban areas. The particular case considered is Lisbon 1755, set into the context of related developments such as l'Aquila 2009 and Bucharest 1977. We examined the 3D modelling of the city, which can be the base for computer games, namely the GIS based, Google Earth and Second Life. For all these modells we filled forms which are provided in the annexes, to see the usability and potential improvements, which will be considered in the model we propose. The later builds a game with a socio-economic component, but both later ones have the social component of crowd sourcing participation. The Second Life concept can be extended with narratives of chance like in board games, to realise the immersion like in a novel in the historic time depicted, organising for example virtual events in the public space framework modelled. Different Levels of Detail are identified as necessary in order to on one side identify the landmarks of the image of the city in the perception of inhabitants and tourists and on the other hand to model populations of buildings for future economic studies, based on a structural mechanics instead of statistical approach. Outgoing from this analysis we propose an own concept to model the impact of the 1755 earthquake on Lisbon. We based our concept on the analysis of the space and time aspects in the memory of the pre-disaster city, and considered 72 landmark buildings which can be symbolically modeled as spaces, based on a 2D to 3D concept. Depending on where they were situated, these have been affected by the earthquake or not. We provide besides the overview of the literature on games for architecture on urbanism purposes also this one on memory. This includes on its side a game, for lessons learned in the identification of the landmarks of the city. Apart of the game, there is a guided tour with timeline and the 3D model in itself. Codes are provided. For the analysis we used different views of the city: eye-level, silhouette (from the river) and aerial. This can be the basis of a future augmented reality application including the 3D model and the photos/ engravings of the time. The socio-economic component will be based on the modeling of material resources necessary to retrofit or reconstruct, for the detailedly considered „pombalino” buildings. But first of all identifying the urban morphology through 3D modeling is serving as a basis for master planning, especially the strategic planning of the minimal urban structure, in both preventive pre-earthquake intervention and post-earthquake reconstruction, as aimed for in the „Lisbon in motion” workshop and planned related ones

    Algorithms for the reconstruction, analysis, repairing and enhancement of 3D urban models from multiple data sources

    Get PDF
    Over the last few years, there has been a notorious growth in the field of digitization of 3D buildings and urban environments. The substantial improvement of both scanning hardware and reconstruction algorithms has led to the development of representations of buildings and cities that can be remotely transmitted and inspected in real-time. Among the applications that implement these technologies are several GPS navigators and virtual globes such as Google Earth or the tools provided by the Institut Cartogràfic i Geològic de Catalunya. In particular, in this thesis, we conceptualize cities as a collection of individual buildings. Hence, we focus on the individual processing of one structure at a time, rather than on the larger-scale processing of urban environments. Nowadays, there is a wide diversity of digitization technologies, and the choice of the appropriate one is key for each particular application. Roughly, these techniques can be grouped around three main families: - Time-of-flight (terrestrial and aerial LiDAR). - Photogrammetry (street-level, satellite, and aerial imagery). - Human-edited vector data (cadastre and other map sources). Each of these has its advantages in terms of covered area, data quality, economic cost, and processing effort. Plane and car-mounted LiDAR devices are optimal for sweeping huge areas, but acquiring and calibrating such devices is not a trivial task. Moreover, the capturing process is done by scan lines, which need to be registered using GPS and inertial data. As an alternative, terrestrial LiDAR devices are more accessible but cover smaller areas, and their sampling strategy usually produces massive point clouds with over-represented plain regions. A more inexpensive option is street-level imagery. A dense set of images captured with a commodity camera can be fed to state-of-the-art multi-view stereo algorithms to produce realistic-enough reconstructions. One other advantage of this approach is capturing high-quality color data, whereas the geometric information is usually lacking. In this thesis, we analyze in-depth some of the shortcomings of these data-acquisition methods and propose new ways to overcome them. Mainly, we focus on the technologies that allow high-quality digitization of individual buildings. These are terrestrial LiDAR for geometric information and street-level imagery for color information. Our main goal is the processing and completion of detailed 3D urban representations. For this, we will work with multiple data sources and combine them when possible to produce models that can be inspected in real-time. Our research has focused on the following contributions: - Effective and feature-preserving simplification of massive point clouds. - Developing normal estimation algorithms explicitly designed for LiDAR data. - Low-stretch panoramic representation for point clouds. - Semantic analysis of street-level imagery for improved multi-view stereo reconstruction. - Color improvement through heuristic techniques and the registration of LiDAR and imagery data. - Efficient and faithful visualization of massive point clouds using image-based techniques.Durant els darrers anys, hi ha hagut un creixement notori en el camp de la digitalització d'edificis en 3D i entorns urbans. La millora substancial tant del maquinari d'escaneig com dels algorismes de reconstrucció ha portat al desenvolupament de representacions d'edificis i ciutats que es poden transmetre i inspeccionar remotament en temps real. Entre les aplicacions que implementen aquestes tecnologies hi ha diversos navegadors GPS i globus virtuals com Google Earth o les eines proporcionades per l'Institut Cartogràfic i Geològic de Catalunya. En particular, en aquesta tesi, conceptualitzem les ciutats com una col·lecció d'edificis individuals. Per tant, ens centrem en el processament individual d'una estructura a la vegada, en lloc del processament a gran escala d'entorns urbans. Avui en dia, hi ha una àmplia diversitat de tecnologies de digitalització i la selecció de l'adequada és clau per a cada aplicació particular. Aproximadament, aquestes tècniques es poden agrupar en tres famílies principals: - Temps de vol (LiDAR terrestre i aeri). - Fotogrametria (imatges a escala de carrer, de satèl·lit i aèries). - Dades vectorials editades per humans (cadastre i altres fonts de mapes). Cadascun d'ells presenta els seus avantatges en termes d'àrea coberta, qualitat de les dades, cost econòmic i esforç de processament. Els dispositius LiDAR muntats en avió i en cotxe són òptims per escombrar àrees enormes, però adquirir i calibrar aquests dispositius no és una tasca trivial. A més, el procés de captura es realitza mitjançant línies d'escaneig, que cal registrar mitjançant GPS i dades inercials. Com a alternativa, els dispositius terrestres de LiDAR són més accessibles, però cobreixen àrees més petites, i la seva estratègia de mostreig sol produir núvols de punts massius amb regions planes sobrerepresentades. Una opció més barata són les imatges a escala de carrer. Es pot fer servir un conjunt dens d'imatges capturades amb una càmera de qualitat mitjana per obtenir reconstruccions prou realistes mitjançant algorismes estèreo d'última generació per produir. Un altre avantatge d'aquest mètode és la captura de dades de color d'alta qualitat. Tanmateix, la informació geomètrica resultant sol ser de baixa qualitat. En aquesta tesi, analitzem en profunditat algunes de les mancances d'aquests mètodes d'adquisició de dades i proposem noves maneres de superar-les. Principalment, ens centrem en les tecnologies que permeten una digitalització d'alta qualitat d'edificis individuals. Es tracta de LiDAR terrestre per obtenir informació geomètrica i imatges a escala de carrer per obtenir informació sobre colors. El nostre objectiu principal és el processament i la millora de representacions urbanes 3D amb molt detall. Per a això, treballarem amb diverses fonts de dades i les combinarem quan sigui possible per produir models que es puguin inspeccionar en temps real. La nostra investigació s'ha centrat en les següents contribucions: - Simplificació eficaç de núvols de punts massius, preservant detalls d'alta resolució. - Desenvolupament d'algoritmes d'estimació normal dissenyats explícitament per a dades LiDAR. - Representació panoràmica de baixa distorsió per a núvols de punts. - Anàlisi semàntica d'imatges a escala de carrer per millorar la reconstrucció estèreo de façanes. - Millora del color mitjançant tècniques heurístiques i el registre de dades LiDAR i imatge. - Visualització eficient i fidel de núvols de punts massius mitjançant tècniques basades en imatges

    A window to the past through modern urban environments: Developing a photogrammetric workflow for the orientation parameter estimation of historical images

    Get PDF
    The ongoing process of digitization in archives is providing access to ever-increasing historical image collections. In many of these repositories, images can typically be viewed in a list or gallery view. Due to the growing number of digitized objects, this type of visualization is becoming increasingly complex. Among other things, it is difficult to determine how many photographs show a particular object and spatial information can only be communicated via metadata. Within the scope of this thesis, research is conducted on the automated determination and provision of this spatial data. Enhanced visualization options make this information more eas- ily accessible to scientists as well as citizens. Different types of visualizations can be presented in three-dimensional (3D), Virtual Reality (VR) or Augmented Reality (AR) applications. However, applications of this type require the estimation of the photographer’s point of view. In the photogrammetric context, this is referred to as estimating the interior and exterior orientation parameters of the camera. For determination of orientation parameters for single images, there are the established methods of Direct Linear Transformation (DLT) or photogrammetric space resection. Using these methods requires the assignment of measured object points to their homologue image points. This is feasible for single images, but quickly becomes impractical due to the large amount of images available in archives. Thus, for larger image collections, usually the Structure-from-Motion (SfM) method is chosen, which allows the simultaneous estimation of the interior as well as the exterior orientation of the cameras. While this method yields good results especially for sequential, contemporary image data, its application to unsorted historical photographs poses a major challenge. In the context of this work, which is mainly limited to scenarios of urban terrestrial photographs, the reasons for failure of the SfM process are identified. In contrast to sequential image collections, pairs of images from different points in time or from varying viewpoints show huge differences in terms of scene representation such as deviations in the lighting situation, building state, or seasonal changes. Since homologue image points have to be found automatically in image pairs or image sequences in the feature matching procedure of SfM, these image differences pose the most complex problem. In order to test different feature matching methods, it is necessary to use a pre-oriented historical dataset. Since such a benchmark dataset did not exist yet, eight historical image triples (corresponding to 24 image pairs) are oriented in this work by manual selection of homologue image points. This dataset allows the evaluation of frequently new published methods in feature matching. The initial methods used, which are based on algorithmic procedures for feature matching (e.g., Scale Invariant Feature Transform (SIFT)), provide satisfactory results for only few of the image pairs in this dataset. By introducing methods that use neural networks for feature detection and feature description, homologue features can be reliably found for a large fraction of image pairs in the benchmark dataset. In addition to a successful feature matching strategy, determining camera orientation requires an initial estimate of the principal distance. Hence for historical images, the principal distance cannot be directly determined as the camera information is usually lost during the process of digitizing the analog original. A possible solution to this problem is to use three vanishing points that are automatically detected in the historical image and from which the principal distance can then be determined. The combination of principal distance estimation and robust feature matching is integrated into the SfM process and allows the determination of the interior and exterior camera orientation parameters of historical images. Based on these results, a workflow is designed that allows archives to be directly connected to 3D applications. A search query in archives is usually performed using keywords, which have to be assigned to the corresponding object as metadata. Therefore, a keyword search for a specific building also results in hits on drawings, paintings, events, interior or detailed views directly connected to this building. However, for the successful application of SfM in an urban context, primarily the photographic exterior view of the building is of interest. While the images for a single building can be sorted by hand, this process is too time-consuming for multiple buildings. Therefore, in collaboration with the Competence Center for Scalable Data Services and Solutions (ScaDS), an approach is developed to filter historical photographs by image similarities. This method reliably enables the search for content-similar views via the selection of one or more query images. By linking this content-based image retrieval with the SfM approach, automatic determination of camera parameters for a large number of historical photographs is possible. The developed method represents a significant improvement over commercial and open-source SfM standard solutions. The result of this work is a complete workflow from archive to application that automatically filters images and calculates the camera parameters. The expected accuracy of a few meters for the camera position is sufficient for the presented applications in this work, but offer further potential for improvement. A connection to archives, which will automatically exchange photographs and positions via interfaces, is currently under development. This makes it possible to retrieve interior and exterior orientation parameters directly from historical photography as metadata which opens up new fields of research.:1 Introduction 1 1.1 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Historical image data and archives . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Structure-from-Motion for historical images . . . . . . . . . . . . . . . . . . . 4 1.3.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3.2 Selection of images and preprocessing . . . . . . . . . . . . . . . . . . 5 1.3.3 Feature detection, feature description and feature matching . . . . . . 6 1.3.3.1 Feature detection . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3.3.2 Feature description . . . . . . . . . . . . . . . . . . . . . . . 9 1.3.3.3 Feature matching . . . . . . . . . . . . . . . . . . . . . . . . 10 1.3.3.4 Geometric verification and robust estimators . . . . . . . . . 13 1.3.3.5 Joint methods . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.3.4 Initial parameterization . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.3.5 Bundle adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 1.3.6 Dense reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 1.3.7 Georeferencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 1.4 Research objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2 Generation of a benchmark dataset using historical photographs for the evaluation of feature matching methods 29 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.1.1 Image differences based on digitization and image medium . . . . . . . 30 2.1.2 Image differences based on different cameras and acquisition technique 31 2.1.3 Object differences based on different dates of acquisition . . . . . . . . 31 2.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.3 The image dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.4 Comparison of different feature detection and description methods . . . . . . 35 2.4.1 Oriented FAST and Rotated BRIEF (ORB) . . . . . . . . . . . . . . . 36 2.4.2 Maximally Stable Extremal Region Detector (MSER) . . . . . . . . . 36 2.4.3 Radiation-invariant Feature Transform (RIFT) . . . . . . . . . . . . . 36 2.4.4 Feature matching and outlier removal . . . . . . . . . . . . . . . . . . 36 2.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.6 Conclusions and future work . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3 Photogrammetry as a link between image repository and 4D applications 45 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 IX Contents 3.2 Multimodal access on repositories . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.2.1 Conventional access . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.2.2 Virtual access using online collections . . . . . . . . . . . . . . . . . . 48 3.2.3 Virtual museums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.3 Workflow and access strategies . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.3.2 Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.3.3 Photogrammetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.3.4 Browser access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.3.5 VR and AR access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 4 An adapted Structure-from-Motion Workflow for the orientation of historical images 69 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 4.2 Related Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4.2.1 Historical images for 3D reconstruction . . . . . . . . . . . . . . . . . 72 4.2.2 Algorithmic Feature Detection and Matching . . . . . . . . . . . . . . 73 4.2.3 Feature Detection and Matching using Convolutional Neural Networks 74 4.3 Feature Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 4.4 Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.4.1 Step 1: Data preparation . . . . . . . . . . . . . . . . . . . . . . . . . 78 4.4.2 Step 2.1: Feature Detection and Matching . . . . . . . . . . . . . . . . 78 4.4.3 Step 2.2: Vanishing Point Detection and Principal Distance Estimation 80 4.4.4 Step 3: Scene Reconstruction . . . . . . . . . . . . . . . . . . . . . . . 80 4.4.5 Comparison with Three Other State-of-the-Art SfM Workflows . . . . 81 4.5 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 4.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 4.7 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 4.8 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 4.A Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 5 Fully automated pose estimation of historical images 97 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 5.2.1 Image Retrieval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 5.2.2 Feature Detection and Matching . . . . . . . . . . . . . . . . . . . . . 101 5.3 Data Preparation: Image Retrieval . . . . . . . . . . . . . . . . . . . . . . . . 102 5.3.1 Experiment and Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 5.3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 5.3.2.1 Layer Extraction Approach (LEA) . . . . . . . . . . . . . . . 104 5.3.2.2 Attentive Deep Local Features (DELF) Approach . . . . . . 105 5.3.3 Results and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 106 5.4 Camera Pose Estimation of Historical Images Using Photogrammetric Methods 110 5.4.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 5.4.1.1 Benchmark Datasets . . . . . . . . . . . . . . . . . . . . . . . 111 5.4.1.2 Retrieval Datasets . . . . . . . . . . . . . . . . . . . . . . . . 113 5.4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 5.4.2.1 Feature Detection and Matching . . . . . . . . . . . . . . . . 115 5.4.2.2 Geometric Verification and Camera Pose Estimation . . . . . 116 5.4.3 Results and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 117 5.5 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 5.A Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 6 Related publications 129 6.1 Photogrammetric analysis of historical image repositores for virtual reconstruction in the field of digital humanities . . . . . . . . . . . . . . . . . . . . . . . 130 6.2 Feature matching of historical images based on geometry of quadrilaterals . . 131 6.3 Geo-information technologies for a multimodal access on historical photographs and maps for research and communication in urban history . . . . . . . . . . 132 6.4 An automated pipeline for a browser-based, city-scale mobile 4D VR application based on historical images . . . . . . . . . . . . . . . . . . . . . . . . . . 133 6.5 Software and content design of a browser-based mobile 4D VR application to explore historical city architecture . . . . . . . . . . . . . . . . . . . . . . . . 134 7 Synthesis 135 7.1 Summary of the developed workflows . . . . . . . . . . . . . . . . . . . . . . . 135 7.1.1 Error assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 7.1.2 Accuracy estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 7.1.3 Transfer of the workflow . . . . . . . . . . . . . . . . . . . . . . . . . . 141 7.2 Developments and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 8 Appendix 149 8.1 Setup for the feature matching evaluation . . . . . . . . . . . . . . . . . . . . 149 8.2 Transformation from COLMAP coordinate system to OpenGL . . . . . . . . 150 References 151 List of Figures 165 List of Tables 167 List of Abbreviations 169Der andauernde Prozess der Digitalisierung in Archiven ermöglicht den Zugriff auf immer größer werdende historische Bildbestände. In vielen Repositorien können die Bilder typischerweise in einer Listen- oder Gallerieansicht betrachtet werden. Aufgrund der steigenden Zahl an digitalisierten Objekten wird diese Art der Visualisierung zunehmend unübersichtlicher. Es kann u.a. nur noch schwierig bestimmt werden, wie viele Fotografien ein bestimmtes Motiv zeigen. Des Weiteren können räumliche Informationen bisher nur über Metadaten vermittelt werden. Im Rahmen der Arbeit wird an der automatisierten Ermittlung und Bereitstellung dieser räumlichen Daten geforscht. Erweiterte Visualisierungsmöglichkeiten machen diese Informationen Wissenschaftlern sowie Bürgern einfacher zugänglich. Diese Visualisierungen können u.a. in drei-dimensionalen (3D), Virtual Reality (VR) oder Augmented Reality (AR) Anwendungen präsentiert werden. Allerdings erfordern Anwendungen dieser Art die Schätzung des Standpunktes des Fotografen. Im photogrammetrischen Kontext spricht man dabei von der Schätzung der inneren und äußeren Orientierungsparameter der Kamera. Zur Bestimmung der Orientierungsparameter für Einzelbilder existieren die etablierten Verfahren der direkten linearen Transformation oder des photogrammetrischen Rückwärtsschnittes. Dazu muss eine Zuordnung von gemessenen Objektpunkten zu ihren homologen Bildpunkten erfolgen. Das ist für einzelne Bilder realisierbar, wird aber aufgrund der großen Menge an Bildern in Archiven schnell nicht mehr praktikabel. Für größere Bildverbände wird im photogrammetrischen Kontext somit üblicherweise das Verfahren Structure-from-Motion (SfM) gewählt, das die simultane Schätzung der inneren sowie der äußeren Orientierung der Kameras ermöglicht. Während diese Methode vor allem für sequenzielle, gegenwärtige Bildverbände gute Ergebnisse liefert, stellt die Anwendung auf unsortierten historischen Fotografien eine große Herausforderung dar. Im Rahmen der Arbeit, die sich größtenteils auf Szenarien stadträumlicher terrestrischer Fotografien beschränkt, werden zuerst die Gründe für das Scheitern des SfM Prozesses identifiziert. Im Gegensatz zu sequenziellen Bildverbänden zeigen Bildpaare aus unterschiedlichen zeitlichen Epochen oder von unterschiedlichen Standpunkten enorme Differenzen hinsichtlich der Szenendarstellung. Dies können u.a. Unterschiede in der Beleuchtungssituation, des Aufnahmezeitpunktes oder Schäden am originalen analogen Medium sein. Da für die Merkmalszuordnung in SfM automatisiert homologe Bildpunkte in Bildpaaren bzw. Bildsequenzen gefunden werden müssen, stellen diese Bilddifferenzen die größte Schwierigkeit dar. Um verschiedene Verfahren der Merkmalszuordnung testen zu können, ist es notwendig einen vororientierten historischen Datensatz zu verwenden. Da solch ein Benchmark-Datensatz noch nicht existierte, werden im Rahmen der Arbeit durch manuelle Selektion homologer Bildpunkte acht historische Bildtripel (entspricht 24 Bildpaaren) orientiert, die anschließend genutzt werden, um neu publizierte Verfahren bei der Merkmalszuordnung zu evaluieren. Die ersten verwendeten Methoden, die algorithmische Verfahren zur Merkmalszuordnung nutzen (z.B. Scale Invariant Feature Transform (SIFT)), liefern nur für wenige Bildpaare des Datensatzes zufriedenstellende Ergebnisse. Erst durch die Verwendung von Verfahren, die neuronale Netze zur Merkmalsdetektion und Merkmalsbeschreibung einsetzen, können für einen großen Teil der historischen Bilder des Benchmark-Datensatzes zuverlässig homologe Bildpunkte gefunden werden. Die Bestimmung der Kameraorientierung erfordert zusätzlich zur Merkmalszuordnung eine initiale Schätzung der Kamerakonstante, die jedoch im Zuge der Digitalisierung des analogen Bildes nicht mehr direkt zu ermitteln ist. Eine mögliche Lösung dieses Problems ist die Verwendung von drei Fluchtpunkten, die automatisiert im historischen Bild detektiert werden und aus denen dann die Kamerakonstante bestimmt werden kann. Die Kombination aus Schätzung der Kamerakonstante und robuster Merkmalszuordnung wird in den SfM Prozess integriert und erlaubt die Bestimmung der Kameraorientierung historischer Bilder. Auf Grundlage dieser Ergebnisse wird ein Arbeitsablauf konzipiert, der es ermöglicht, Archive mittels dieses photogrammetrischen Verfahrens direkt an 3D-Anwendungen anzubinden. Eine Suchanfrage in Archiven erfolgt üblicherweise über Schlagworte, die dann als Metadaten dem entsprechenden Objekt zugeordnet sein müssen. Eine Suche nach einem bestimmten Gebäude generiert deshalb u.a. Treffer zu Zeichnungen, Gemälden, Veranstaltungen, Innen- oder Detailansichten. Für die erfolgreiche Anwendung von SfM im stadträumlichen Kontext interessiert jedoch v.a. die fotografische Außenansicht des Gebäudes. Während die Bilder für ein einzelnes Gebäude von Hand sortiert werden können, ist dieser Prozess für mehrere Gebäude zu zeitaufwendig. Daher wird in Zusammenarbeit mit dem Competence Center for Scalable Data Services and Solutions (ScaDS) ein Ansatz entwickelt, um historische Fotografien über Bildähnlichkeiten zu filtern. Dieser ermöglicht zuverlässig über die Auswahl eines oder mehrerer Suchbilder die Suche nach inhaltsähnlichen Ansichten. Durch die Verknüpfung der inhaltsbasierten Suche mit dem SfM Ansatz ist es möglich, automatisiert für eine große Anzahl historischer Fotografien die Kameraparameter zu bestimmen. Das entwickelte Verfahren stellt eine deutliche Verbesserung im Vergleich zu kommerziellen und open-source SfM Standardlösungen dar. Das Ergebnis dieser Arbeit ist ein kompletter Arbeitsablauf vom Archiv bis zur Applikation, der automatisch Bilder filtert und diese orientiert. Die zu erwartende Genauigkeit von wenigen Metern für die Kameraposition sind ausreichend für die dargestellten Anwendungen in dieser Arbeit, bieten aber weiteres Verbesserungspotential. Eine Anbindung an Archive, die über Schnittstellen automatisch Fotografien und Positionen austauschen soll, befindet sich bereits in der Entwicklung. Dadurch ist es möglich, innere und äußere Orientierungsparameter direkt von der historischen Fotografie als Metadaten abzurufen, was neue Forschungsfelder eröffnet.:1 Introduction 1 1.1 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Historical image data and archives . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Structure-from-Motion for historical images . . . . . . . . . . . . . . . . . . . 4 1.3.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3.2 Selection of images and preprocessing . . . . . . . . . . . . . . . . . . 5 1.3.3 Feature detection, feature description and feature matching . . . . . . 6 1.3.3.1 Feature detection . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3.3.2 Feature description . . . . . . . . . . . . . . . . . . . . . . . 9 1.3.3.3 Feature matching . . . . . . . . . . . . . . . . . . . . . . . . 10 1.3.3.4 Geometric verification and robust estimators . . . . . . . . . 13 1.3.3.5 Joint methods . . . . . . . . . . . . . . . .
    corecore