
University of Kentucky University of Kentucky 

UKnowledge UKnowledge 

University of Kentucky Master's Theses Graduate School 

2001 

AUTOMATIC IMAGE TO MODEL ALIGNMENT FOR PHOTO-AUTOMATIC IMAGE TO MODEL ALIGNMENT FOR PHOTO-

REALISTIC URBAN MODEL RECONSTRUCTION REALISTIC URBAN MODEL RECONSTRUCTION 

Mike Partington 
University of Kentucky, lexpart@juno.com 

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you. 

Recommended Citation Recommended Citation 
Partington, Mike, "AUTOMATIC IMAGE TO MODEL ALIGNMENT FOR PHOTO-REALISTIC URBAN MODEL 
RECONSTRUCTION" (2001). University of Kentucky Master's Theses. 218. 
https://uknowledge.uky.edu/gradschool_theses/218 

This Thesis is brought to you for free and open access by the Graduate School at UKnowledge. It has been accepted 
for inclusion in University of Kentucky Master's Theses by an authorized administrator of UKnowledge. For more 
information, please contact UKnowledge@lsv.uky.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Kentucky

https://core.ac.uk/display/232559166?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/gradschool_theses
https://uknowledge.uky.edu/gradschool
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu


ABSTRACT OF THESIS

AUTOMATIC IMAGE TO MODEL ALIGNMENT FOR PHOTO-
REALISTIC URBAN MODEL RECONSTRUCTION

We introduce a hybrid approach in which images of an urban scene are automatically aligned
with a base geometry of the scene to determine model-relative external camera parameters.  The
algorithm takes as input a model of the scene and images with approximate external camera
parameters and aligns the images to the model by extracting the facades from the images and
aligning the facades with the model by minimizing over a multivariate objective function.  The
resulting image-pose pairs can be used to render photo-realistic views of the model via texture
mapping.

Several natural extensions to the base hybrid reconstruction technique are also introduced.  These
extensions, which include vanishing point based calibration refinement and video stream based
reconstruction, increase the accuracy of the base algorithm, reduce the amount of data that must
be provided by the user as input to the algorithm, and provide a mechanism for automatically
calibrating a large set of images for post processing steps such as automatic model enhancement
and fly-through model visualization.

Traditionally, photo-realistic urban reconstruction has been approached from purely image-based
or model-based approaches.  Recently, research has been conducted on hybrid approaches, which
combine the use of images and models.  Such approaches typically require user assistance for
camera calibration.  Our approach is an improvement over these methods because it does not
require user assistance for camera calibration.

Keywords: Urban Model Reconstruction, Facade Extraction, Vanishing Points, Photo-realistic
Models, Image to Model Alignment.
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Chapter 1

Introduction

An active area of research in computer vision is the automatic reconstruction of 3D urban

models from imagery.  Such models are useful in a number of important tasks such as city

planning, disaster route planning, and traffic management.  Accurately rendered models can

support advanced visualization tasks such as site walk/fly-throughs and mission planning.  An

automated system that is capable of providing geometric as well as image-based 3D models of

urban regions reduces the time and cost required by human assisted approaches to creating such

models.  As a consequence, there has been a focus on accurate reconstruction of urban models

using a variety of techniques.

Due to the large coverage provided by high altitude and space borne sensors, as well as

observable building boundaries, a significant amount of research has been focused on

reconstruction of sites using aerial images [1][2][3][4][5][6].  Approaches range from active

radar such as interferrometric synthetic aperture radar (IFSAR) [7], to fully passive techniques

[3][4].  These approaches have made dramatic progress in the previous ten years and are now

reporting building reconstruction accuracies of over 95% for reasonably complex datasets [7][8].

A significant drawback of these approaches, however, is that they focus on the

acquisition of a three-dimensional model (typically a building footprint and rooftop shape) that is

observable from aerial data only.  Although approaches to detecting windows, doors, and other

model substructure from aerial images have been suggested [9][10], the final model is restricted

to resolutions limited by the aerial sensors and the extreme foreshortening of the building facade

based on the viewing position of the sensor.  Even images taken at oblique angles will most

likely not reveal a significant building façade due to occlusion by other buildings and structures



2

located at the site.  In addition, structural details will be beyond the resolution of many aerial

sensors. These approaches, while very useful for accurate reconstruction of a site’s base-

geometry, do not address the incorporation of high-resolution, ground level imagery that may be

available for the site in question.

In contrast to this approach, other researchers have focused on reconstruction of urban

scenes exclusively from ground level imagery [11][12].  Ground level approaches use images

taken at relatively close range to the urban structures and then use these images for tasks such as

model reconstruction and view interpolation.  Various approaches have developed for varying

types of input including single snapshots and video sequences with varying amounts of camera

calibration information [11][12][13][14].  Typically in ground level approaches a representation

of a scene must be pieced together from multiple images.  This need to combine information

from various sources results in several complexities such as multi-image structural correlation

and resolving overlapping textures.  However, due to the close range nature of the photography,

ground level approaches can yield detailed and photo-realistically accurate models and views of

urban structures.

Of the many such approaches that have been investigated, the most promising determine

relative camera transformation parameters and use this information to construct a 3D model

using feature correspondences and epipolar geometry [11][13][14][15].  However, although

capable of accurately reconstructing point locations on a structure, these approaches regularly

yield uneven surfaces that do not render realistically from arbitrary views.  This is due to error in

the derived point locations to which model surfaces must be fitted.  Furthermore, techniques

based on feature correlation may perform poorly in the presence of occlusions or other factors

that change the feature point characteristics between images.
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The goal of the research presented in this thesis is to produce photo-realistic models of

buildings in urban environments.  Photo-realistic models are perceptually identical to a

photograph of a building.  Achieving photo-realism requires that models are capable of

representing accurate surface substructure (windows, doors, alcoves), surface texture (bricks,

wood siding, stucco), and radiometric properties (color, reflectance).  Models that exhibit photo-

realistic characteristics are desirable for uses such as architectural analysis, real-estate

commerce, virtual tourism, and entertainment.

Techniques for creating photo-realistic models fall into two categories.  Model-based

approaches attempt to create a photo-realistic effect by creating a geometrically detailed model.

These approaches define significant (i.e. likely to be observable from the expected set of viewing

angles) physical and visual aspects of a structure using automated or semi-automated methods.

For example, model-based approaches may produce a distinct modular component for each brick

in a wall, for each pane of glass in a window, and for each piece of trim or gutter on a façade.

Each of these model components are typically assigned radiometric and material properties that

render a realistic effect.

Researchers have focused on the different technical challenges related to automatic

model acquisition for several decades.  Approaches include shape from shading [16][17][18],

feature detection and grouping [9][19], surface fitting [20], surface estimation [21][22][23], and

color and reflectance computation [24][25][26][27][28].  Although this type of explicit geometric

description of the scene leads to high resolution and often visually accurate imagery, these

approaches are prohibitively costly for wide scale applications.  They also typically require a

significant amount of user assistance in order to create a model that is sufficiently detailed to

provide a photo-realistic appearance.  The advantage of the model-based approach, however, is



4

that an explicit model is provided by the reconstruction system.  Simulations, geometric and

material databases, and other applications may require the details afforded by an explicit three-

dimensional site model [29][30].

On the other hand, image-based approaches seek to produce a set of visually accurate

views of a scene directly from a set of images without the need for an explicit geometric

representation [11][12][14][31].  Generally speaking, these techniques rely upon the existence of

precise, known camera parameters in order to effectively interpolate views directly in projective

space.  Some image-based techniques assume that such information is available with image sets

[12].  Others attempt to estimate camera parameters based on urban characteristics or image

feature correlation techniques [32][33][34][35].  In any case, image-based approaches suffer

from the problem of having to interpolate views from existing data.  Effectively interpolating

views, particularly of arbitrary, non-planar surfaces, can be very difficult; however, several

techniques have been developed to address this problem [11][12][36].  In spite of these

approaches, in any given sequence set of images of a scene, there is a high probability that some

portion of the scene structures will not be observed in any of the images.  If this portion of the

structure is then viewed from a novel location, interpolation will most likely fail to produce a

coherent, realistic scene.

The approach presented in this thesis is a hybrid approach.  The technique is driven by

the observation that aerial data is a rich source of information for the base geometry of a site,

while incorporated ground-level imagery is important for achieving a complete photo-realistic

and high resolution model.  Ground level imagery, if aligned to a base model, can be used for

effective image interpolation.  As demonstrated by Debevec [36], if a set of images of a scene

are available, then a rendering of the scene can be constructed by interpolating between images
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whose camera parameters are near the viewing position.  The value of a rendered pixel at a given

model location can be interpolated by using a weighted average of near images based on

proximity to the viewing position.  Alternatively, a non interpolative technique can be used in

instances where a large number of views are available by utilizing the observation that an image

projected onto a structure will yield an accurate visualization of the structure within a locus

about the camera location.  As a viewer moves through a scene, the image most nearly matching

the current viewing parameters can be loaded and projected onto the base model to yield an

accurate representation from the current viewing location.  As the viewer moves, other images

are loaded and projected to continue to provide an accurate visualization at new viewing

locations.  In order to realize such a system, we need a method for acquiring the image-pose

pairs used by the algorithm.  Hence, an automated algorithm that is capable of determining

accurate frame-by-frame camera parameters is desirable.  The hybrid approach presented here is

such an algorithm.

The approach presented in this thesis assumes that a base model is acquired initially using

techniques introduced by [1][7].  Then, ground level images of the scene are automatically

aligned to the model by extracting the facades from each image and minimizing the alignment

error between the facade and the model.  The data required by this approach is a simple model

(see Section 2.4.1) of a structure or group of structures, images of the structures, the approximate

extrinsic camera parameters for each image (see Section 2.4.2), and the internal parameters of

the camera.  Figure 1 depicts the type of data used by the system. Building boundaries and their

three-dimensional outline are derived using aerial or other techniques such as straightforward by-

hand modeling of the significant building boundaries (see Figure 1a).  Ground level images

captured at the site are then aligned to the model (Figure 1b).
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(a) 
  

(b) 

Figure 1. (a) Rendered 3D model used as input to the alignment algorithm.  (b) Ground level
image of the structure.

Once a three-dimensional model of the site is available, the approach proceeds in two

phases for each image (see Figure 2).  The first phase extracts façades from the image using a

vanishing point analysis technique.  The second phase aligns extracted façades with the base

model by automatically estimating the camera parameters that align facade features in the image

with those on the model.  This estimation is performed by minimizing over an objective function

which measures the fit between a particular image-pose pair and the model.  The output is

camera parameters for each image that correspond to the minimum value of the fitting error

function between the extracted facades and the model.  This information can then be used to

project the image onto the model or for accurate rendering from a wide range of views and for

post-processing techniques such as multi-image registration and model enhancement.  Hybrid

rendering approaches can exploit the set of image-pose pairs to further refine pose estimations

and to sequentially process video sequences (see Appendix A).
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Figure 2. Flow of the hybrid approach.

The data created by the algorithm can also be used to create a photo-realistic environment

without projecting the images onto a model provided that a sufficient number of images of a

scene are available and the potential viewing positions of an agent are bounded.  A given

image/pose pair will be accurate within some neighborhood about the actual camera parameters.

As an agent moves through a scene, the appropriate image can be loaded from an image database

based on the agent's current viewing parameters, i.e. the image with the pose that most closely

matches the agent's viewing parameters.  Provided that enough image/pose pairs are available,

the model can be explored by users who require a photo-realistic experience.  A disadvantage of

this approach is the limited allowed mobility of the agent.  The photo-realistic effect will occur

only while the agent is moving within the bounds of the parameter space of the image database.
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Due to the dense coverage of camera parameter space provided by video sequences, video is a

good medium for obtaining data for use by this technique.

1.1 Thesis

We assert that reconstruction of photo-realistic urban models is improved in both quality

and in equipment and user cost by the automatic alignment approach described above.  An

integral part of this automatic alignment algorithm is the accurate extraction of building facades

from images.  We assert that facades can be accurately extracted from urban imagery by utilizing

vanishing points.  This assertion is based on the observation that facades typically contain a high

degree of parallel structure relative to non-urban scenery (see Section 3.2).  Other than ground

level image acquisition, the approach described herein is completely automated.

This thesis will show that the hybrid approach is a viable method for extracting façades

and automatically aligning images to models under the following conditions:

1 Input images are primarily dominated by building facades.

2 The photographed facades contain significant features that are parallel in the world.  In

particular, the rooftop should be straight and parallel to other facade features.

3 Façade edges are straight and parallel.

Condition (1) is required because the façade extraction algorithm assumes that groups of

lines that share a vanishing point arise from building facades.  If the percentage of image space

occupied by facades is not sufficiently high, then the algorithm may not be able recognize the

vanishing points induced by the facades.  Condition (2) is also required for the façade extraction

algorithm to correctly identify vanishing points.  The algorithm identifies vanishing points by

finding clusters of line intersections.  If facades do not contain significant parallel structure, then

prominent intersection clusters will not be formed.  Condition (3) is needed in order for the
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image to model alignment minimization routine to correctly align images to the model.  The

alignment algorithm attempts to align extracted facades to façade edges in the model.  If these

edges are not represented in the extracted façade lines, then the minimization routine will

produce an incorrect alignment.  Façade edges that are straight and parallel to other surface

features should be extracted by the façade extraction algorithm, thus maximizing the success of

our approach.

Figure 3 shows two images of building facades.  Image (a) represents an ideal input

image for this algorithm while image (b) represents an image that is ill-suited for this algorithm.

In image (a), for each face that is visible, the boundary lines of the face are also visible,

providing the alignment algorithm with a good chance of extracting façade edges that are

represented in the model.  In addition, opposing boundary lines for the faces are visible, meaning

that the entire width or length of the face is included in the image.  Although image (b) contains

several buildings, facade structure does not dominate the image.  Rather, individual buildings

occupy only small portions of the image area.  In addition, the image is not sufficiently close to

any particular building to provide photo-realistic quality data for a synthesized near view.  The

structures that are close to the camera are occluded by trees.  Finally, the grainy texture of the

image will decrease the ability of the line finder to accurately detect edges.
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(a)     

 
(b) 

Figure 3. (a) An example of an image that is well suited for the automatic alignment algorithm,
and (b) one that is ill-suited for the algorithm.

1.2 Photo-realistic model reconstruction difficulties

Automatic and semi-automatic photo-realistic model reconstruction is difficult for several

reasons.  Model-based approaches are dependent on the accuracy of the model and the ability of

a rendering algorithm to create visually convincing views.  Creating such models is prohibitively

expensive for large scale applications.  On the other hand, purely image based approaches are

dependent on the accuracy of the provided or calculated pose information.  One approach to

ensuring that pose information is highly accurate is to use precisely calibrated equipment so that

both intrinsic and extrinsic camera parameters are known [12].  This calibration equipment can

be both expensive and cumbersome to operate.  Other approaches automatically correlate images

by finding image to image correspondences and estimating pose information [13][14][31].

These automated approaches are difficult to implement due to scene variations between viewing

angles such as lighting differences, occlusions, and variations in surface textures.  Yet another

approach is to estimate pose information by using invariant geometric properties exhibited by

urban structures [1][13][32].  In contrast, the approach described in this thesis does not require

multiple, overlapping views of the building to be acquired.  Though multiple views can be
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exploited for increased performance (see Appendix A), the fundamental algorithm is designed

for a single view.

The hybrid approach reduces image correspondence problems by assuming the existence

of a base model.  However, whether a model is acquired manually or automatically through

means such as aerial reconstruction, the model will contain some amount of error which may

affect the outcome of the image to model alignment.  It is also difficult to align ground-truth

images to the model.  Construction of an objective function that accurately computes the degree

to which an image/pose pair align with a model is subject to the same correspondence problem as

other automated registration techniques.

Regardless of whether the hybrid approach or a purely image based approach is used, if

the estimated pose parameters are not accurate, then the resulting view reconstructions will not

be convincing.  Consider an example of the hybrid approach in which an image is projected onto

a model.  Figure 4 (a) shows a model and the location of a camera as measured at image

acquisition time.  The model, referred to as Model M, was acquired by hand measurements of the

structure and is accurate to within 10 cm at any vertex.  Figure 4 (b) is an 1440x960 pixel image

of the structure represented by Model M taken at the camera location.  This image will be

referred to as image A throughout the subsequent discussion.  When the image is projected onto

Model M using the exact camera parameters, the model is given a photo-realistic appearance as

shown in Figure 5 (a).  If the camera parameters are in error by only a small amount, then the

resulting projection loses its realistic appearance.  Figure 5 (b) shows the model when the image

is projected from a slightly different location than the actual image location.
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Camera 
location 

(a) 
    

(b) 

Figure 4. (a) Model M. Model of house with measured camera location.  (b) Image A. Image of
structure at the camera location.

(a) 
  

(b) 

Example of 
warping 

Figure 5. (a) Novel view of Model M with Image A projected from the measured camera
location.  (b) Novel view of Model M with Image A projected with perturbed camera parameters.
The image was projected from a location with 0.3 m of error in two translation parameters and 1
degree of  error in a rotational parameter.

To further complicate matters, a single image of a structure, when projected onto a model

of the structure, yields a representation that is accurate only when viewed from the camera

location.  Consider again Figure 5a in which an aligned image/pose pair are used to project the

image onto the model.  When the same projection is viewed from a different location, as shown

in Figure 6, features of the model, such as the roof vents and chimney become distorted.  This

phenomenon is caused by unmodelled structure in the image.  We assume that façade surfaces
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are planar and do not compensate for nonplanar structure.  Rather, we argue that, as explained

above, we can somewhat compensate for unmodelled structure by acquiring a large set of images

from a variety of viewing locations and load the image that is most appropriate for the current

viewer parameters.  The effectiveness of this technique is dependent on both the amount and

shape of the unmodelled structure and on the distance between neighboring images.  Image-

based approaches also suffer from image illumination variance.  Shadow and lighting differences

for different cameras can produce conflicting values for the characteristics of a given surface

location.  These differences can be compensated for using techniques developed for image

interpolation and mosaicing [11][36].

Windows appear to 
face to the left 

(a) 

 

 
(b) 

Blurred 
features 

Figure 6. Model M viewed from novel positions that show how features can appear distorted
when a single image is projected and viewed from a vastly different location.  Note that the
vertical features on the roof are blurred and the windows appear to face the wrong way.
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Chapter 2

Preliminaries and Related Work

Although the automated, hybrid approach presented in this thesis has not been explored

previously, it is built upon a long research history in various areas within computer vision.  In

this section we introduce several of the key concepts underlying the hybrid approach and the

work most closely related to each.

2.1.1 Vanishing Point Extraction

A key step in automatic alignment of imagery to the approximately planar structure found

in urban environments is the detection of significant vanishing points in the scene.  Vanishing

point extraction from 2D imagery has been a topic of research for many years [37][38][39][40].

Most approaches are based on intersecting lines in the image and searching for concentrations of

intersections.  The most commonly used approach, as explained by Barnard [37], utilizes a

Gaussian sphere to bound the image line intersection space.  In Barnard’s method, image lines

are projected from the camera center through a Gaussian sphere to form great circles on the

sphere.  Clusters of intersections of great circles correspond to vanishing points.  The clusters are

found on the sphere by a histogramming technique, or other methods [40].  In addition to the

Gaussian sphere approach, various image space approaches for finding vanishing points have

also been explored [39][41].  Most of the proposed vanishing point extraction techniques are

hampered by the need to bound and equally divide the intersection space of image lines.

Our approach is an image space approach in which lines are extended and intersected.

Intersections are then grouped to detect significant intersections that arise from image structure.

However, rather than use a histogramming technique in which the image space is segmented into

roughly equal regions, we base our intersection grouping method on an analysis of the expected
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intersection errors.  Intersections are grouped by calculating whether the intersections lie within

the region bounded by the expected error in an intersections’ locations.  Although

computationally complex, the technique avoids the need to develop an image space segmentation

algorithm and results in very accurate groupings of intersections (see Section 4.2.2.3).

2.1.2 3D reconstruction from vanishing points

Once lines are known to share a vanishing point in image space, probabilistically, we

assume that the lines are parallel in world space and can be used to compute 3D characteristics.

For example, if two lines in the image are known to be parallel in the world, then the direction

cosines of the world lines can be found using perspective projective geometry characteristics

[42].  Such information can be used to refine approximations and to test hypothesis about the

structure in a scene.  Shufelt uses assumptions about image objects to enhance the accuracy of

the vanishing point extraction process and to more accurately reconstruct buildings from aerial

imagery [41].  Rather than searching simply for vanishing points to indicate the presence of

manmade structure, he searches for groups of vanishing points that are consistent with expected

structures in the scene.  For example, rectangular objects, when viewed from aerial perspective,

are expected to produce two vanishing points that are related by the relative orientation between

the ground plane normal and the camera normal.  Utilizing this information allows for more

accurate object extraction in aerial photography.  Teller uses multiple images of urban scenes to

perform multi-image registration for the purpose of refining approximated camera parameters.

He utilizes the vanishing points induced by the images for this registration step.  He then uses the

registered and calibrated images to reconstruct scene objects in 3D [32].
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2.1.3 Aerial reconstruction research

The technique presented here also relies upon the existence of an accurate base geometry

of the subject structure or group of structures.  A source of such base models is 3D aerial

reconstruction, a field which has been explored intensively since the early 1980’s.  Although

several aerial reconstruction systems have been developed that are capable of reconstructing

models of various types of buildings with high accuracy [4][5][6][7][30][43], reliance upon

aerial reconstruction techniques for base models introduces some restrictions on the type of

urban structures that can be used in the hybrid approach.  These restrictions are introduced by the

ability of current aerial reconstruction systems to accurately reconstruct buildings of only certain

types.

Early aerial reconstruction techniques were only able to construct 2D models of buildings

[44][45], which would be wholly unsuitable for the hybrid approach.  As technology advanced,

3D reconstruction became possible for restricted building shapes and roof types [8][46].  More

recently, aerial reconstruction systems have advanced to the point of being able to accurately

extract buildings with complicated footprints and with roof types of various parametric classes

[6][7].  These recent techniques have the ability to provide models of sufficient accuracy for our

automatic image to model alignment approach.  However, until aerial reconstruction techniques

can conquer the roof complexities and complex footprint types that occur in some buildings,

other methods will have to be used on these structures for obtaining models suitable as input to

the automatic alignment algorithm.

2.1.4 Ground level reconstruction

Ground level reconstruction is currently an active area in computer vision research.  Most

techniques are based on multi-image registration and analysis [47].  However, approaches vary

in how they register the images.  Some techniques assume that the exact camera parameters are
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provided with the input images [12].  Others attempt to determine these parameters through

feature correlation [11][15][35][48] or vanishing point techniques [32].  Pollefeys uses image

correspondences to perform auto calibration of camera parameters in reconstructing objects of

varied shape and size [14].  He assumes that image to image camera parameter variation is

relatively small and uses this information to improve feature correlation and guess camera

locations.  Stereo reconstruction techniques are then used to reconstruct the scene’s 3D structure

from image correspondences.  The process iteratively improves the reconstruction as each image

in the sequence is processed.  Similarly, Beardsley uses feature correspondences in a sequence of

video images to determine relative camera calibration parameters over groupings of three

consecutive images [31].  This process also iteratively improves an estimated 3D model as each

additional image is analyzed. Faugeras uses feature correspondences to calibrate cameras but

enlists the help of the user for 3D reconstruction [11].  After the cameras are calibrated, the user

selects sets of parallel lines in the image, which are then used to determine information such as

surface normals.  Finally, the model is given a photo-realistic appearance by utilizing mosaicing

techniques. Teller approaches the problem by constructing spherical mosaics using highly

calibrated and dense imagery at tightly spaced nodes in a scene.  He relaxes camera calibration

requirements somewhat by aligning vanishing points between nodes.  He then reconstructs scene

geometry from feature correspondences and the abundance of calibrated imagery using various

techniques developed over the last decade.

An approach particularly related to the hybrid approach presented in this thesis was

developed by Debevec [13].  His semi-automated approach builds primitive models of a structure

with the help of the user.  The user selects lines in the image set and fits parametric structures to

the selected lines to create an initial model.  This model is then used to further refine the
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alignment between model and image.  However, the technique relies upon the user to select line

correspondences between images and models, which greatly simplifies the image to model

alignment problem.  We seek to eliminate user assistance altogether.

2.1.5 Facade extraction

Although there is not a large body of research available on urban facade extraction, there

are several reconstruction algorithms that extract facades from images during the 3D

reconstruction process.  Wang utilizes aerial techniques to extract facades from an image [9][10].

The technique extracts facades by locating rooftops and identifying adjacent regions that match

expected facade characteristics.  The results of this effort are hampered by the extremely

foreshortened nature of aerial data and poor resolution of fine structure at distant viewing

locations.  Teller extracts facades by searching for dense regions of appropriately oriented lines

[33].  The technique is similar to the “plane-sweep” technique introduced by Collins [1] for

detecting planar rooftops.  The approach relies on the availability of well calibrated imagery to

predict the orientation of horizontal lines in a scene.  After identifying horizontal lines, it is

relatively safe to conclude that a region of space occupied densely by horizontal lines

corresponds to a facade in the context of an urban environment.  Although very accurate, this

approach relies on precisely calibrated imagery.  Our efforts differ from these approaches in that

we utilize vanishing points exclusively for facade extraction with no assumptions about camera

parameters.

2.2 Summary of Related Research

As discussed above, there are many areas of computer vision research in 3D

reconstruction that relate to the hybrid approach.  Table 1 summaries the research documented

above by selecting a representative sample from recent 3D reconstruction contributions.
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Table 1. Comparison of selected 3D reconstruction techniques.

Research Year Related Features
Beardsley, Torr,
Zisserman

1996 Automated, image-based approach using video sequences.  Use
feature correlation to compute relative camera transformation
matrices via trifocal tensor.  No camera parameters are required.
Estimates 3D structure with first image grouping and refines
with each successive grouping.

Debevec, Taylor,
Malik

1996 Semi-automated, hybrid approach using snapshots.  User assists
image correlation by selecting lines in an image to create a base
geometry.  Base geometry used for further image alignment
again utilizing user selected lines.  Requires internal camera
parameters.  Constructs novel views using view-dependent
texture mapping.

Faugeras, Robert,
Laveau

1997 Semi-automated, image-based approach using snapshots.  Use
feature correlation to compute relative camera transformation
matrices.  No camera parameters are required.  User assists
geometric reconstruction by selecting parallel lines.  Textures
are mapped onto the reconstructed geometry using mosaicing.

Collins, Jaynes,
Cheng, Wang, Stolle,
Schultz, Hanson,
Riseman

1997 Automated approach using aerial imagery. Internal and external
camera parameters are required.  Reconstructs building
footprints, heights, and  rooftops via corner graph construction
and model fitting.  Projects image information onto base
geometry to yield low resolution surface detail.

Pollefeys, Koch,
Vergauwen,
Deknuydt,
Luc Van Gool

2000 Automated, image-based approach using video sequences.  Uses
feature correlation to compute relative camera transformation
matrices. No camera parameters are required.  Reconstructs
structure after all images have been calibrated using
stereoscopic triangulation techniques.

Teller 2000 Automated, image-based approach using hemispherical image
nodes.  Requires knowledge of internal camera parameters and
estimate of external camera parameters.  Uses vanishing points
to refine external camera parameters.  Computes coarse surface
structure and texture maps this surface with image information.
Finishes by adding relief map to surfaces.

Partington, Jaynes 2001 Automated, hybrid-approach using snapshots or video.
Requires a base geometry and internal camera parameters and
approximate external camera parameters for each snapshot or
for the first image in a sequence.  Uses vanishing points to
extract facades and aligns the facades with the base geometry.
Calculate pose information is used to texture map the model
with image data.
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2.3 Advantages of the hybrid approach

The hybrid approach described in this thesis for creating photo-realistic models is a step

towards not only automating the model creation process, but also towards greatly simplifying it.

The idea of the approach is to project ground truth images onto a simple model in order to give

the model a realistic appearance.  The method does not rely on human assistance or precisely

calibrated imagery to align an image with a model.  Rather, we use assumptions about how

buildings look to programmatically determine precisely where an image of a building was taken.

Hence, the amount of user assistance needed to create a photo-realistic model using the approach

is greatly reduced over conventional approaches.

Automatic image to model alignment has several advantages over other approaches to

photo-realistic model reconstruction.  Provided that a building model is available, the required

equipment -- a digital camera and a GPS sensor or tape measure -- is relatively low cost.  The

hybrid approach further reduces cost by decreasing the need for human assistance.  The operator

of the digital camera need only be aware of relatively simple guidelines for image acquisition in

order to gather data (see Section 2.4.2).  Although the operator must record the approximate

location and orientation of the camera for each image, this pose information need only be

accurate to within a few feet in location and a couple degrees in orientation (see Section 6.5),

which can be accomplished using the GPS sensor, a tape measurer, or even educated guessing.

Due to the simplicity of the data acquisition process, little training is needed for gathering data.

Finally, because this process is automated, it opens the door to a whole host of automated

reconstruction possibilities including automatic model enhancement and even automatic model

creation.
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2.4 Data Requirements

The input data for the automatic image to model alignment algorithm consists of

image/pose estimation pairs and a basic model.  Methods for acquiring a base model are beyond

the scope of this paper and will not be discussed in detail.  The chosen model creation method is

significant only in its ability to generate a wire-frame model that is sufficiently accurate for the

image to model alignment to converge to the correct aligned location.  Even hand approaches are

adequate if they can yield the needed accuracy.

2.4.1 Model Requirements

The model of the target building or group of buildings need only include façade base

planes.  The location of model vertices within the scene's coordinate system should be accurate

to within a few inches.  The model's accuracy is crucial during the error minimization stage of

the automatic alignment algorithm.  During this stage, image lines will be compared with model

lines to determine how well the model "fits" the image.  In addition to meeting basic accuracy

requirements, it is helpful to anticipate which building features are likely to be extracted by the

facade extractor and, if possible, to include some of these features in the model.  In general, the

more the number of correspondences between extracted façade data and model data, the greater

the accuracy of the automatic alignment.  Finally, when acquiring a model, because the model

defines the coordinate system for camera location approximations, it is a good idea to choose

model units that correspond to easily measured world units, such as feet or meters.

2.4.2 Image Capture & Pose Estimation Requirements

Several guidelines can be followed to help ensure that the image data of a scene will be

suitable for our hybrid approach.  First, the approximate position and orientation of the camera in

model space coordinates should be recorded as each image is taken.  This approximate position

will be used as the starting point for the alignment algorithm and should be accurate to within
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two degrees in orientation and three to four feet in location as determined in chapter 6.5.

Second, images should be taken in as high resolution as possible.  Using high resolution images

facilitates the facade extraction algorithm by providing it with detailed and accurate lines.  Third,

obstructions in the images should be kept to a minimum.  Trees, fences, people, and other

obstructions can hide crucial facade features, resulting in decreased building facade extraction

performance.  Finally, images should avoid face transition boundaries, i.e., locations where a

face is barely visible or barely not visible.  As explained in Section 5.3, locations where faces

come in and out of view can correspond to discontinuities in the alignment objective function.

Pragmatically, we have found that somewhat unconstrained imagery can be used by the system.

For example, results in Chapter 6 show that users can be asked to “take several images of the

building facades” with little or no other instructions.  Rotational parameters must be accurate to

within one to two degrees (see Section 6.5), which is within the accuracies that can be expected

from differential GPS sensors or when fitting video sequences (see Appendix A).

2.5 Contributions

This thesis enhances the current body of research on photo-realistic urban model

reconstruction.  In particular, our research makes the following contributions:

1 a new, automated, hybrid approach for creating photo-realistic models of urban

structures.

2 a new algorithm for robust and automatic extraction of building facades from vanishing

points.

3 an extension to the hybrid approach for minimizing image-to-model alignment error

based on aligning extracted vanishing points in camera space along a vanishing line.

This technique is useful when multiple views are available.
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This thesis does not attempt to address approaches for creating the base models needed as

input to the hybrid approach.  Aerial reconstruction is discussed as an example to show that such

approaches exist and that the resulting models are widely available.  The chosen approach is

important only to the degree that it produces accurate results in terms of error in the

reconstructed base geometries.  Many approaches are available that constrain planimetric error to

0.2-0.3 meters and alimetric error to 0.3 meters, which satisfies the accuracy demands required

by the hybrid approach.  Because only a wire frame model is required, even simple, hand created

models can serve as input to the algorithm.

2.6 Guide to the thesis

Chapter 1 summarizes the approach explained in this thesis and compares it to other

approaches.  The thesis statement itself is located in Section 1.1.  Chapter 2 further explains the

approach taken by this thesis and includes motivation.  In particular, Section 3.2 explains the

reasoning for using vanishing points to extract building facades.  describes the façade extraction

algorithm in detail, beginning with line segment extraction in Section 4.1 and ending with

vanishing point group thinning in Section 4.2.3.  Chapter 5 begins with a discussion of

multivariate minimization and then explains how this technique is applied to the hybrid approach

to automatically align image/pose pairs with base models.  Our objective function for the

minimization is defined in Section 5.2.  The objective function’s strengths and weaknesses are

discussed in Section 5.3.    Section 6.1 explains the experimental setup for evaluating the

performance and viability of the hybrid approach.  Chapter 6 also documents the results of

running the experiments.  Chapter 7 summarizes the conclusions that can be drawn from this

research and suggests strategies for improving the approach.  Finally, extensions of the hybrid
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approach to video, including temporal assisted alignment and error minimization using vanishing

lines, as well as preliminary results from these extensions, are considered in Appendix A.
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Chapter 3

Automatic Alignment Basics

The algorithm for automatic image to model alignment consists of two steps: building

façade extraction, and model alignment. The success of model alignment is dependent on the

quality of façade lines extracted by the façade extractor and the accuracy of the provided base

model.  During model alignment, the facade boundary lines are automatically aligned with the

base model.  If the alignment is successful, then the image can be projected onto the model to

create a photo-realistic model of the building from viewpoints that neighbor the position of the

acquired image.  As stated earlier, it is assumed that a base model is provided via some 3D

reconstruction technique (see Section 2.4).  This section will discuss the building extraction and

model alignment algorithms.  Before discussing the details of these algorithms, it is helpful to

review the basic principles involved in extracting objects, and in particular buildings, from an

image.

3.1 Feature Extraction

When searching for particular feature in an image it is necessary to define the invariant

characteristics of the information.  In particular, features that are invariant to the set of

transforms that the model can potentially undergo are important to the detection and recognition

of the object in the scene.  Hence, the success of the façade detection algorithm is dependent on

its ability to identify façade features that are invariant under the perspective transform.

3.2 Invariant Façade Properties

Although buildings can consist of all shapes and sizes, they are predominantly

constructed using combinations of flat surfaces that meet at right angles.  In particular, in urban

environments building surfaces generally have surface markings such as windows, doors,
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buttresses, color changes, texture changes, and trim that are aligned horizontally or vertically

along the building's faces (see Figure 7).

Figure 7. Building demonstrating parallel facade structure in the form of windows, trim, and face
boundaries.

  These building characteristics, common to many human-made structures, are a key

component of our algorithm that will automatically extract these features and align them to the

base model.  Such regularity can be exploited to extract building facades from imagery.  In

particular, common properties exhibited by all of these facade features lead directly to the

identification of facades in the image by extracting image structure that conforms to these

properties.

Building facades consist of straight lines.  However, this characteristic is also shared by

many objects that are not related to buildings.  Although extracting straight lines in a typical

ground level scene will most likely segment building boundaries as well as building surface

markings, it will also potentially segment straight line features arising from structures such as

sidewalks, road edges, and fences.  All noise that is extracted with the building facades could

decrease the ability of the algorithm to automatically align an image with the model.

The invariant property declaration that buildings are made from straight lines can be

refined to say that buildings are made from straight, parallel lines.  In most instances, the
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building characteristics mentioned above consist of lines that are not only straight, but are also

approximately parallel in world space.  Because a given building face typically has multiple

rectangular structures such as windows and doors, as well as elongated rectangular surface

markings arising from trim, brick, or other decorative texturing, it can be reasoned that most

building faces will consist of relatively dense parallel structure.  Although it is true that there are

other world objects that exhibit parallel structure, few have as a high a concentration of parallel

lines as building facades in our domain.  In addition, because we expect that the goal of the user

is to capture facade structure in the image, we assume that most world parallel structure in the

scene will arise from building facades.  Therefore, by finding parallel lines in an image, it is

possible to extract buildings without picking up too much unrelated noise.

3.3 The perspective transform

By assuming that building facades can be meaningfully separated from other image

structures through analysis of parallel and planar surface structure, the problem of extracting

buildings from an image is reduced to the problem of extracting significant parallel lines in the

world.  However, due to the perspective transform, when an image is taken of parallel lines, the

lines are typically not parallel in the image.  Rather, the lines converge to a common point

referred to as a vanishing point.  The only time that parallel world lines will be exactly parallel in

an image is when the surface normal of the plane that contains the lines is parallel to the camera

normal.  The vast majority of the time, parallel lines will converge to a vanishing point.  The

location of the vanishing point is dependent on the orientation of the lines and on the orientation

of the surface that contains the lines with respect to the camera normal.  The greater the angle

between the camera normal and the surface normal, the more rapidly the lines will converge.  

Equation 1 and Equation 2 define this relationship between the camera normal and the
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normal of the surface containing parallel lines and demonstrate that the only situation in image

space parallel lines arise from world space parallel lines is when these normals are parallel.  The

relationship between the location of a vanishing point (u,v)T , as defined in Equation 1, and line

L, where (b1, b2, b3)T  are the direction cosines of L, is given by Equation 2.
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Note that for b3=0, indicating that L is perpendicular to the camera normal, the location of the

vanishing point is undefined.  Also, note that as b1 and b2 approach zero, indicating a decrease in

the angle between L and the camera normal, the location of the vanishing point approaches the

image center.

Equation 2 points out one of the fundamental difficulties in finding vanishing points in an

image.  As stated above, when the surface normal of the world plane containing parallel lines is

nearly parallel to the camera normal, the location of the vanishing point approaches infinity.

Hence, it becomes difficult, if not impossible, to state with any certainty where the vanishing

point resides.  All vanishing point detection algorithms must deal with this problem.  Our

approach to handling this situation is detailed in Section 4.2.2.  As our algorithm is not

dependent on calculating the exact location of the vanishing point, but rather only an

approximate location, this problem does not significantly impact the outcome of the approach.

Vanishing points are used solely for line grouping.  At no point do we attempt to pinpoint the

exact location of the vanishing point, in spite of the fact that we can approximate it.
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3.4 Challenges of the vanishing point approach

By finding vanishing points in an image and the lines that induce them, it is possible to

identify world parallel lines, and in turn, building facades.  Unfortunately, any arbitrary pair of

image lines may give rise to an intersection that is not necessarily a vanishing point.  We refer to

lines that are not parallel in the world and incidentally intersect as incoherent lines.  Hence,

before committing to the vanishing point approach, the types of image structure that lead to

incoherent lines should be studied.

A key aspect of our approach is its ability to separate arbitrary incoherent lines from the

lines that are likely to have arisen from parallel world structure.  The incoherent lines arise from

three situations.  The first of these situations is image structure that contains line intersections

due to non-building objects in the world.  For example, a Ferris wheel consists of straight lines

that converge to a single point.  The Ferris wheel lines are not, in reality, parallel.  Nevertheless,

they would be considered parallel by this approach.  However, given a vanishing point we can

approximated the relative orientation of the camera optic axis and the planar facade that

presumable gave arise to the intersection.  We can thus test whether a given vanishing point is

likely to have arisen from model structure.  The probability of a false vanishing point lying near

an expected vanishing point is dramatic and unlikely.

Second, some straight line image features may accidentally pass through a vanishing

point or may chance to converge with other random lines in the same location, thus inducing a

vanishing point.  The probability of this effect happening in sufficient concentration to confuse

the algorithm is relatively low and can be further reduced using by the same exclusion technique

mentioned above.

Third, and perhaps most important, there are other world objects that contain parallel

lines.  Examples include fences, light posts, sidewalks, and other manmade features.  If these
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features are located in high concentration in an image, and have orientation similar to that of the

modeled structure, then they will likely be extracted as buildings by this algorithm.  The risk of

these incoherent lines, though real, is softened by the fact that the objects that cause them

typically do not overlap building surfaces in images in high concentration.  For example,

sidewalks, which are located on the ground plane, will not overlap building faces in an image of

the building.  Utility poles are normally far apart, reducing their effect on the occluded facades.

Fences, on the other hand, if located in front of a building in an image, could prevent the

algorithm from aligning the image correctly with the model.  It is hoped that all of these issues

can either be avoided by a trained operator, or that they will not be significant enough to render

our automatic image to alignment approach infeasible for a given scene.  As shown by Lowe

[49][50], there are a set of image features including parallelism that remain invariant over a large

set of image views.  These features are, of themselves, insufficient information to establish

structure in an image.  However, they provide evidence of structure and can be used to trigger

further processing or to test additional criteria in order to establish the existence of structure.  For

example, an instance of three lines sharing a vanishing point provides some evidence of structure

that is parallel in the world.  The existence of additional lines that also share the vanishing point

can provide sufficient probabilistic evidence of such structure.  In our technique, we assume that

facades will be exhibit a high degree of parallel and planar structure, which will produce

vanishing points with sufficient evidence to conclude the existence of the facades themselves.

We sort the intersections based on how many lines gave support to them and keep only those

intersections with four or more such lines.
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Chapter 4

Façade Detection

The algorithm used for facade extraction is based on the invariant property that world

parallel lines converge to a vanishing point under the perspective transform.  This chapter

describes in detail the steps of this algorithm.

4.1 Line Segment Extraction

The process of automatic image to model alignment begins with extracting lines from

image data.  Although facades are primarily composed of horizontal and vertical features, under

the perspective transform, the lines associated with these features can be transformed to all

possible orientations.  Therefore, in order to extract all facade lines, the line finder must be

capable of extracting lines of arbitrary orientation.  A line finder that is well suited to this task is

the orthogonal regression line finder [51][52].  This line finder is not only capable of extracting

lines of arbitrary orientation, but also of arbitrary length.  The implementation of the orthogonal

regression line finder used for the results of this thesis comes from the Horatio image processing

package developed by McLauchlan [53].  A detailed discussion of orthogonal regression is

beyond the scope of this paper.  The basic idea is based on perceptual grouping techniques (see

Section 4.2.1.1).  The line finder is run with a low RMS threshold for our approach due to the

need to extract lines with as great orientation accuracy as possible.  In addition, segments less

than 20 pixels in length are discarded.

4.2 Line Pencil Extraction

After lines are extracted from an image, the lines are filtered to extract groups of lines

that share a common vanishing point.  These groups, called line pencils, are considered likely to

have arisen from common parallel structure in the world.  If it is known that the image being
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filtered contains a facade, then it is likely that the line pencils produced by the filter arose from

the facade.  The vanishing point filtering algorithm consists of four main steps.  These steps are

first, grouping collinear line segments into single lines; second, searching for vanishing points;

third, grouping line segments by vanishing point; fourth, hollowing out vanishing point groups.

4.2.1 Collinear Line Segment Combining

When lines are extracted from an image of a real facade, it is common for long lines to be

extracted as disconnected collinear segments.  This is caused by variations in surface texture,

lighting, obstructions, and other "noise" effects [54].  Each of these extracted line segments will

be nearly, but not exactly collinear.  The shorter the segment, the greater the potential magnitude

of orientation and endpoint location errors.  During vanishing point searching, the line segments

will be extended beyond image boundaries to form intersections with other lines.  Even small

errors in line segment orientation can lead to large errors in intersection location.  Therefore,

such collinear segments should be combined into one line in order to reduce not only the overall

number of lines, but also to minimize small segment error magnification.

4.2.1.1 Line Segment Collinearity Constraints

Line segments are grouped based on orientation and distance constraints (see Figure 8).

This grouping process is similar to that of Boldt [51] and other perceptual organization

techniques [49][50] that group image features based on image features that tend to be invariant

over a large set of views, such as collinearity and parallelism.  In order for two segments to be

considered collinear, both constraints must be satisfied.  The orientation constraint is a maximum

allowed difference in angular orientation.  The slope of line segments is converted to degrees in

order to make this difference calculation.  The distance constraint is a maximum distance from

the endpoints of one line segment to the line containing another segment.  This value is
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calculated for two segments by calculating the perpendicular distance from the endpoints of one

segment to the line containing the other segment.  Note that this definition of proximity is not

symmetric.  Hence, it is possible for segment A to satisfy the collinearity constraints with a line

segment B, while segment B does not satisfy the collinearity constraints with segment A.  The

orientation and distance threshold values are based on the expected error in the locations of line

segments in the image.

t

1

2

Figure 8. Line segments 1 and 2 are considered collinear with segment t if the distance of the
endpoints of 1 and 2 to the line containing t are within the collinearity distance threshold and if
the angles between t and 1 and t and 2 are within the angular difference threshold.  In this
example, although 1 and 2 meet the distance threshold, 2 does not meet the angular difference
threshold.  Thus, segment 1 would be considered collinear with segment t, while segment 2
would not.

After collinear grouping is performed for every line segment in the image, it is possible

for a given segment to belong to multiple groups.  Each line segment is then assigned to a single

group based on the number of segments in the group.  The group with the most segments is

considered the “strongest” group, and “claims” all of its contributing line segments.  A group

“claims” its line segments by removing its line segments from other groups to which they

belong.  After a group claims its segments, the next strongest group then claims its segments and

so on until all segments belong to only one group.  During this process, it is possible for some

groups to completely disappear as all of their segments can be claimed by stronger groups.  The

end result is a set of grouped collinear line segments, with each line segment belonging to at

most one group.

An example of the grouping result is shown in Figure 9 and Figure 10.  The lines

extracted from Image A are shown in Figure 9.  A representative set of seven approximately
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collinear line segment groupings is shown in Figure 10.  In this particular set, each cluster of

collinear segments is composed of up to 37 segments.

Figure 9. Line segments extracted from Image A by the line finder.

Figure 10. Representative set of approximately collinear segment groups from Image A.  In all,
over 200 groups were found.
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4.2.1.2 Line Segment Averaging

Next, the line segments within each group are averaged to form a single line.  The line

segments are averaged by converting each segment to (r, θ) coordinate space, by averaging the

(r, θ) values, and then converting the average value back to Euclidean space.  This averaging

method, though usable, does have at least one undesirable characteristic.  It is possible for the

resulting average line to poorly fit its contributing line segments.  This can occur when all of the

line segments are oriented in a stair-stepped fashion as depicted in Figure 11.  Because most of

the line segments have a common orientation, the average orientation of the lines will be close to

the orientation of this dominant subset of line segments.  This will result in an average line that

does not closely fit all of the contributing line segments.  The desired average line is the line that

passes most closely near all segment endpoints.  This goal could be achieved, at the expense of

run time, by replacing line segment averaging with a line fitting technique such as least squares

minimization.

Computed
Average Line

Desired
Average Line

Figure 11. The stair-stepped orientation of the line segments averages to form a line that does not
pass near all of the line segments.

Figure 12 shows a representative set of collinear segment groups from Image A and their

associated average lines.  The segment groups are drawn in black and the average lines are

drawn in orange.  Note that a few of the line segments do not lie exactly on the average line.
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This behavior is expected due to the nature of the collinearity constraints.  Segments need only

be approximately collinear as defined by the constraints to be grouped together.

Figure 12. Segment groups (shown in black) and associated average lines (shown in orange)
from image A.

4.2.1.3 Strength Threshold

The new lines created by line segment group averaging are screened for a threshold

strength (see Figure 13).  Lines that are not sufficiently strong are discarded.  The strength of a

line is determined by perpendicularly projecting the line's contributing line segments onto the

line and calculating the percentage of the line that is covered by the projected segments.  The

threshold itself is somewhat arbitrary.  It should be large enough to discard lines that are formed

by chance groupings of segments and small enough to preserve groups that are formed from

actual collinear segments.  In corner regions, where average lines can become relatively short

due to clipping by image boundaries, the average lines are considered to have a length longer
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than their actual clipped length.  Without this compensation, nearly all lines in corner regions

will be preserved, thwarting the goals of the line segment grouping step.

Contributing Line Segments
Average Line

(a)

Projected and Merged Segments
Average Line

(b)

Figure 13.  (a) A group of segments and the resulting average line.  (b) Segments projected onto
the average line and merged.  If the average line is not covered by a threshold percentage by its
line segments, then the average line is discarded.

Figure 14 shows the lines resulting from running the line segment grouping and

averaging algorithm on Image A prior to filtering lines using the strength threshold.  Figure 15

shows the line set after applying the strength threshold.  Note that only the lines arising from

significant straight structure in the image remain.
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Figure 14. Average lines from Image A prior to applying the strength threshold.
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Figure 15. Average lines from Image A that remain after applying the strength threshold.

4.2.2 Vanishing Point Detection

The lines produced by collinear line segment combining are used to identify vanishing

point pencils.  The basic idea of the pencil identification algorithm is to compute the intersection

of every pair of lines and then to group the intersections by proximity.  However, this simple

concept is complicated by the fact that all line segments contain error.  Within the body of a line

segment, this error is bounded by the inherent error of the image, the accuracy of the line finder,

and the error introduced by collinear line segment grouping.  However, beyond the endpoints of

the line segment, the error grows linearly with distance from the segment endpoints.  Thus, as a

line segment is extended far from the image boundaries, the location of the segment becomes

less and less certain, making the region of space potentially inhabited by the segment larger and

larger.  When two such line segments are intersected, the intersection location is affected by the
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error of the line segments.  As the intersection of two line segments moves farther from the

image boundaries, it can become impossible to state the location of the intersection with

certainty.  Rather, it can only be stated that the intersection lies within some region of space that

is bounded by the error of the line segments.

4.2.2.1 Error Model

In order to quantify and compensate for the error in lines, it is necessary to develop an

error model for lines and for intersections.  The error in a line segment can be parameterized as

error in the line segment's endpoint locations (see Figure 16).

Figure 16.  The error in a line segment is modeled as error in endpoint locations.  The line
segment's actual endpoints could lie anywhere on the dotted lines.  The length of the dotted lines
is related to image error properties.

The region of space inhabitable by the line segment is bounded by the box formed by perturbing

the segment’s endpoints perpendicularly by the maximum expected endpoint error.  The region

of space inhabitable by an extension of the line segment is bounded by the diagonals of the line

segment's error bounding box (see Figure 17).

Line Segment
Error Cone

Figure 17. The shaded region represents the region of space inhabitable by the line when
accounting for line segment endpoint error.  This region is termed an error cone.
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This error region is the shape of two symmetric triangles that touch at the center of the line

segment.  One half of this region, or the region extending from the end of either endpoint, is

termed the error cone of the line segment.  The location of the intersection of two line segments

is bounded by the intersection of the line segments' error cones (see Figure 18).  This region is

termed the intersection's error box.

a

b

c

d

Line
Error Cone Boundaries

Figure 18. The intersections of the lines’ error cones form the error box.  Points a, b, c, and d are
the error box vertices.

4.2.2.2 Unbounded Error

The error box intersection error model defines the region of space inhabitable by an

intersection.  However, this error box can, in some cases, be unbounded.  Consider the case

where the angular difference between two line segments is less than the sum of half the angular

widths of the line segments' error cones (see Figure 19).  Note that there is no intersection

between the inner error cone boundaries of the lines.  In order for the error box to be bounded,

the error cone lines of one line must both intersect both lines of another line's error cone.
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 Lines
 Error Cone Boundaries

a

b

Figure 19.  Error cone lines a and b do not intersect in the direction of the lines’ intersection.
This results in an error box of infinite size.

When an error box is unbounded, there is no longer any certainty in the intersection's

location.  When intersections are being grouped together in the next step of the algorithm, this

uncertainty in location can lead to problems.  On one hand, the intersection may be so far from

any other intersections that it will not be grouped at all.  On the other hand, so many intersections

may fall within the intersection’s error box that many intersections could be falsely grouped

together.  In order to avoid these uncertain conditions, intersections with unbounded error boxes

are either discarded or given the special designation of "parallel intersection".

If all unbounded intersections were simply discarded, then no image space parallel line

groups would be extracted by the vanishing point filter.  If a group of lines are parallel in an

image, then the intersection error box of any two lines in the group will be unbounded.  Hence,

simply discarding these intersections will effectively discard all image space parallel lines from

vanishing point extraction, and, in turn, from the results of the façade extraction algorithm.  In

order to preserve the intersections of image space parallel lines, these intersections are added to

their own intersection pool.  Rather than calculating the exact location of these intersections, they

are assigned an orientation value based on the orientations of the contributing lines.  During the

vanishing point grouping step, the parallel intersections are grouped based on orientation only,

rather than on physical proximity.
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4.2.2.3 Intersection Grouping

After all intersection error boxes are formed, the intersections are grouped based on

proximity.  Rather than attempting to segment the infinite intersection space into regions, the

intersections are grouped by cohabitation of error boxes.  Two intersections are grouped together

if the center of each intersection's error box lies within the other intersection's error box (see

Figure 20).  Note that the center of an error box is defined as the intersection of the line segments

disregarding error, i.e. the intersection of the error cones' axie.  This definition is chosen as a

consequence of the shape of error boxes.  Error boxes of nearly parallel lines are long and

narrow.  These error boxes, by nature of their length, can often contain completely unrelated

intersections (see Figure 21).  If intersections are grouped by overlap of the error boxes alone,

then these long error boxes will engulf lots of intersections and have the highest intersection

group strengths.  The end result would be groups of lines that do not converge to a single point,

but rather to a long region of space.

Error Box Lines
Error Box Centers

C

A

B

Figure 20. The centers of error boxes A and B both lie within each others error boxes.  These
intersections are grouped together.  However, neither center lies within error box C, excluding C
from the intersection group.
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Error Box
Lines
Intersections

Figure 21. Although the error box contains the group of intersections at the right, the error box
lines do not correspond to the same vanishing point.  Thus, intersections are grouped only by
mutual cohabitation of error box centers in the error boxes.

Once all possible intersection groups are formed, the intersection group with the highest

number of intersections "claims" the line segments that form its intersections.  The claimed line

segments are then removed from weaker groups that also claim them.  This claiming process

continues, with the strongest remaining group getting the next claim, until all groups have

claimed or have been deleted by virtue of other groups' claims.  The end result is groups of line

segments with the segments in each group passing through a common region of space, i.e. a

vanishing point line pencil.

Figure 22 shows the result of vanishing point extraction and grouping on Image A.  Each

line pencil is displayed in a separate image.  Although 7 line pencils were extracted from Image

A, only 4 are shown because three of the groups consisted of less than four lines each.  Groups

having only a few lines can be discarded because they do not contain sufficient evidence to

conclude from our assumptions that they arise from world parallel structure (see Section 3.2).  In

Figure 22, group (a) arises from facade structure that is parallel to the ground plane in world

space. Group (b) arises from structure that is perpendicular to the ground plane in world space.
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Group (c) also arose from structure that is perpendicular to the ground plane, but had orientation

sufficiently different from group (b) to not be grouped together.  Group (d) is an intersection

cluster arising from the intersection of roof planes.  This group can be eliminated based on the

expected location of vanishing points due to the relative orientation of the model faces to the

camera optic axis (see Section 3.4)

 
(a)  (b)

 
(c) (d)

Figure 22. Line pencils extracted from Image A sorted by the number of lines in the pencil.
Group (a) had the most lines while group (d) had the fewest lines.

4.2.3 Vanishing Point Group Thinning

Some surface textures, such as brick, have an abundance of parallel surface features.  The

resulting vanishing point group may contain many lines that are spatially separated by only a

short distance. It is likely that most of these surface features will not be represented in the simple

models used as input to this algorithm.  Because the starting location of the alignment

minimization is only an approximation, it is possible that the model edges could incorrectly align
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to these interior surface features.  Therefore it is desirable to decrease the number of these

features contained in the vanishing point filter output.

The number of lines in a vanishing line pencil can be decreased using the same technique

as was used to eliminate vanishing points based on image location (see 3.4).  By utilizing the

approximate camera parameters provided as input to the algorithm, we can predict the location of

projected model edges in image space.  We can thus eliminate lines that are not in regions that

are likely to be inhabited by a projected model line.  However, it is still possible for a dense set

of lines to be located within these regions of high probability, which could result in local minima

in the alignment objective function (see Chapter 5).  To reduce the probability of dense clusters

of lines in this situation, we can decrease the density of these lines by using the following

heuristic approach.

The heuristic for reducing the number of lines in a vanishing point group is "If there is a

dense bundle of lines, then only the boundary lines of the bundle need to be preserved".  In other

words, given a sorted set of lines in a vanishing point group, eliminate lines that are relatively

close to both neighbors in the sorted set.  This heuristic is based on two observations.  First, even

if a dense bundle does contain a line that corresponds to a model line, then each of the other lines

will represent a local minimum in the error function that will likely thwart the alignment process.

Second, if there is a pattern of dense lines, then it is likely that the lines arose from the same

surface.  Because the model generally contains only surface boundary lines, then the boundary

lines of the group are likely to correspond to model lines.

A line group is thus thinned by sorting the group’s lines relative to the shared vanishing

point, searching for bundles in the group, and removing the lines interior to bundles.  First, the

lines are sorted by orientation relative to the vanishing point.  In some cases, such as when two
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lines intersect, it is not clear what the sorted order of the lines should be (see Figure 23).  In order

to eliminate these situations each line is treated as if it were formed from the vanishing point

error box center and the line endpoint farthest from the vanishing point.  This eliminates all

intersections and establishes an absolute ordering of the lines.  Second, the line group is split into

subgroups based on the median angular difference between adjacent lines in the group.  Gaps

between adjacent lines that are larger than the threshold act as subgroup separators.  Third, the

lines interior to each subgroup are discarded (see Figure 24).  Finally, the subgroups are merged

back together to form a single group.  The result is the original group with certain regions of the

group corresponding to dense bundles removed.

A

B

Figure 23. The relative ordering of segments A and B is not clear.  New lines are created from
the vanishing point and the endpoints of A and B, which removes the ambiguity.



48

Bundle 1

Bundle 2

(a)

Bundle 1

Bundle 2

(b)

Figure 24.  (a) Bundles 1 and 2 will be separated in the first thinning step.  Next, bundles 1 and 2
will be hollowed out.  (b) The lines remaining after the thinning step is complete.

Figure 25 shows the line pencils extracted from Image A after this thinning step.  Note

that the densely packed line pencils are affected the greatest by the thinning step.  The number of

lines in pencil (a) in Figure 22 was reduced from 72 to 35, whereas the number of lines in pencil

(c) was reduced from 8 to 7.
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(a) (b)

 
(c) (d)

Figure 25. Result of thinning the line pencils extracted from Image A and shown in Figure 15.

Now that we have extracted sets of lines that are likely to have arisen from structure that

is represented in the model, we proceed with a discussion of how alignment of these lines with

the model is to be performed.  We begin with a general discussion of multivariate alignment and

then define the objective function we use for the alignment.
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Chapter 5

Automatic Alignment

The human vision system has the ability to quickly evaluate images for various qualities.

For example, if lines are extracted from a region of an image, it is relatively easy to find the

region given only the extracted lines.  Likewise, it is relatively easy to hand align an image of a

model with the model.  On the other hand, accomplishing this task programmatically is difficult

due to the complexity of constructing a function that accurately reflects the degree to which an

image is aligned with the model.  Such a function would be relatively easy to construct if image

line to model line correspondences were known.  However, these correspondences are not

known, requiring the use of a general technique.

Given the set of lines produced by the techniques in Chapter 4, model alignment must

compute the external camera parameters that best align the model with these lines.  To

accomplish this, it must search the camera parameter space consisting of six degrees of freedom,

requiring that the alignment routine minimize over six variables.  We begin with a general

discussion of multivariate alignment and the desirable characteristics of an objective function

before proceeding with a discussion of the details of the objective function used by our

algorithm.

5.1 Multivariate Minimization

Developing a function for measuring alignment quality requires an understanding of

multivariate minimization techniques.  Most multivariate minimization techniques operate by

measuring the value of the function at a point, perturbing the point, determining the difference

between the new function value and the original value, and perturbing the point again based on

the function values.  Conceptually, the minimization routine searches across the surface of a
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function looking for the function's minimum value.  If there is a local minimum in the function,

then the minimization technique may falsely report the local minimum as the overall minimum.

If there are discontinuities in the function, then the behavior of the minimization routine can

become unstable.  Thus, when determining an objective function for aligning images with

models, care should be taken to reduce the probability of local minima in the function and of

discontinuities in the function.  In particular, these characteristics should be avoided near the

alignment location.  In addition, the minimum value of the fitting function should be located at

the alignment location of the image and the model, thus ensuring that the function will correctly

recognize the aligned condition.  If a function can be developed that satisfies these requirements,

then a minimization technique should be able to find the alignment location.

5.2 Objective Function

We now consider an approach to defining an objective function for the purpose of

aligning the extracted line set (see Chapter 4) with the base model provided as input to the

algorithm (see Section 2.4).  In order for alignment to occur, the object function should be

minimum at alignment and smoothly increasing from there.  Ensuring these requirements are met

is a good starting point for defining the function.  In the precisely aligned state the model lines

should align exactly with image lines.  The error of this state should be zero, provided that all

model lines are represented in the image.  It is assumed that there are no other orientations close

to the aligned orientation that will align the model with image lines as accurately as the actual

aligned orientation.  Thus, in the region near the aligned orientation, the error function value is

expected to be greater than zero.  In fact, as the orientation of the camera is changed even

slightly from the aligned position, model lines and image lines begin to diverge, lending

credibility to this assumption.  Hence, by basing the value of the objective function on the
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distance between model lines and image lines, it is possible to create a function that will be zero

at the aligned location and non-zero in the region near the aligned location.

In some cases, model lines will not directly correspond to lines in an image.  Lines can be

excluded from an image by occlusion, lighting, or other noise effects.  In these cases, the error

function will not be zero at the aligned location.  Rather, the value will be related to the distance

from the unrepresented model line to the nearest image line.  If the unrepresented model line is

moved closer to the closest image line while disturbing the remaining model lines only slightly,

then it is possible for the error function value to decrease.  In other words, when model lines are

not represented by image lines, the minimum value of the error function may not be at the

aligned location.

By scaling the error function it is possible to decrease the probability that the error

function minimum will reside at some location other than the correct aligned location.  The basic

idea is to give nearly aligned lines a greater effect on the error function value than lines that are

not nearly aligned.  If several lines are nearly aligned, then the combined weight of several

unaligned lines should be required to pull the lines out of alignment.  This alignment weighting

can be accomplished by translating the distance measurement through a function, such as a

logarithm, that changes the rate of increase of the error value.  By using this technique the error

value can be made to decrease and increase rapidly as lines come into and out of alignment.  If

most of the model lines are represented by image lines, then the combined "weight" of the

aligned lines will outweigh the error contributions of the unrepresented lines.  Note that for this

technique to be effective, the slope of the error contribution of an unrepresented line must be

relatively small compared to the slope of the error contribution of a represented line.  A constant
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factor can be used to ensure that the error function rate of increase decreases rapidly outside of

the region that is near alignment.

Based on these arguments, the alignment objective function is defined in Equations 5, 6,

and 7.  Equation 5 defines the raw error value for a single, visible, model edge endpoint.
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Equation 3

The distance from the endpoint of the model edge (pt) to an image segment is measured as the

perpendicular distance from the endpoint to the plane containing the image segment and passing

through the camera center (see Figure 26).

 

Camera 
Center 

Model edge in 
Camera Space 

Image 

Plane formed from 
Camera Center and Image 
line 

Distance from model line 
endpoints to plane 

Image segment 

Plane π 

Figure 26. Image line to model line distance is measured from the model line in camera space to
the plane formed from the image line and the camera center.
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Note that this measurement is performed in camera space, meaning that the model projection

onto the 2D image plane need not be performed.  The two endpoint distances are then combined

as defined in Equation 6.
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Equation 4

The log function is used to ensure that the error value grows rapidly near the aligned location and

more slowly as the segment moves out of alignment.  As described above, this technique helps

ensure that a good alignment is not outweighed by the combined weights of several close but

invalid alignments.  Finally, the minimum measured error value between a given model line and

all image line segments contributes to the final objective function value as shown in Equation 7.

The individual error values are combined using a simple sum.

( )( )∑
−

=

−

=

=
1

0

1

0

,min
n

i
ji

m

j

IMDE

Equation 5

Equation 5. Objective function E definition. Mi is visible model line i; Ij is the normal of the
plane containing image line j and the camera center C. P(pt, N, C) is the perpendicular distance
from point pt to the plane containing C and having normal N.

Note that this error computation occurs in camera space, not in image space.  By performing this

computation in camera space we avoid errors introduced in the projection from camera to image

space [55].

Figure 27 and Figure 28 show the behavior of the objective function for the trivial case of

one model edge and one line segment.  As model segment m moves away from the plane

containing image segment i and passing through the camera center, the value of D increases

logarithmically.  Figure 29 shows the behavior of the objective function as model line m with

endpoints initially lying in the plane containing segment i rotates out of alignment.
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Figure 27. Model line m moving away from aligned position with image segment i.

D vs. P

0

0.5

1

1.5

2

2.5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

P0,P1

D

Figure 28. Value of D given equal values of P0 and P1.
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D vs. Rotation of Model Segment from Image Segment Plane 
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Figure 29. Value of D as m rotates away from segment plane i.

Figure 30 depicts a slightly more complex, and yet still trivial situation with a single,

triangle and an associated projection.  The value of E as the triangle comes out of alignment with

the associated image lines over two of the six external camera parameters is shown in Figure 31.

Note that the minimum of E lies at the aligned location and that E is monotonically decreasing in

the region near the aligned location.  This indicates that E satisfies the requirements for an

objective function for this simple dataset.

Figure 30. Image of a model consisting of a single triangular patch.
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Figure 31. Value of objective function as the X and Y orientation parameters are perturbed about
the aligned camera position.  The function minimum lies at the center of the graph, which is also
the aligned camera position.

Next, consider the situation depicted in Figure 32, in which a model consisting of two

faces is viewed such that one of the faces is barely visible.  The value of E as the face drifts out

of view is shown in Figure 33.  There is a sharp discontinuity in the function value along the

edge of space at which the face is barely visible.  This example shows the need to avoid face

transition boundaries for isolated, single views.
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Figure 32. Image of two triangular patches meeting at a right angle.  The camera is positioned
near the face transition boundary for the left face.
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5.3 Objective Function Fitness

In the general case, the defined objective function meets some of the multivariate

minimization objective function requirements and falls short on others.  In particular, the

function's minimum value is typically located at the aligned location and the function is

continuous as long as model faces do not appear or disappear, i.e. transition from back faces to

front faces and vice-versa.  However, the function does not guarantee that there are no local

minima near the aligned location.  Nor does it guarantee that the minimum value will be at the

aligned location and that there are no discontinuities near the aligned location.  Thus, there will

be situations in which the minimization routine cannot be expected to converge to the aligned

location.  For example, reconsider the case where a model face is just barely visible in an image.

If the starting point of the minimization is on the side of the discontinuity that does not contain

the actual aligned position, or even if the starting location is near the boundary, then the iterative

minimization process may chose the wrong slope to follow resulting in a misalignment.

5.4 Photo-realistic and Hybrid Rendering

After determining camera parameters that align an image with a model, the image can be

projected onto the model from the camera location to give the model a photo-realistic effect.

Several techniques have been developed for mapping image textures onto surfaces [11][12][13].

These techniques range from cutting textures against facade boundaries to selecting pixel values

from images based on proximity to the image camera location.

Alternatively, a non interpolative technique can be used in instances where a large

number of views are available by utilizing the observation that an image projected onto a

structure will yield an accurate visualization of the structure within a locus about the camera

location.  As a viewer enters a scene, the image most nearly matching the current viewing
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parameters can be loaded and projected onto the base model to yield an accurate representation

from the current viewing location.  As the viewer moves through the scene, other images are

loaded and projected to continue to provide an accurate visualization at new viewing locations

For the examples shown in this thesis, texture mapping was performed using OpenGL

[56].  OpenGL integrates projective texture mapping into its functional architecture making it

very useful for 3D visualization using complex models and imagery.
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Chapter 6

Results and Analysis

Evaluating the performance of the automatic alignment algorithm requires careful

quantitative analysis as well as subjective measures such as visual correctness.  It is

straightforward to determine the quality of the alignment by visual inspection; however,

accurately evaluating the alignment is hampered by the difficulty of developing an alignment

objective function.  The final fitting error between an image and a model for a particular image-

model pair does not indicate whether the error arises from multiple unaligned model edges or a

single unaligned edge.  Therefore, rather than formulating a single correctness metric, we

evaluate each step of the algorithm independently and then attempt to quantify the overall results

based on these incremental evaluations.

6.1 Experimental Setup

The algorithm was tested on two datasets referred to as the house dataset (see Figure 34)

and as the Hardymon dataset (see Figure 36).  The house scene consists of a simple, residential

dwelling and various occluding objects such as shrubs and trees.  The residential dwelling is a

"ranch" style house with four primary walls and a four sided, sloping roof.  Windows, doors, and

trim add surface features to the brick veneer exterior.  A model of the house was created using

hand measurements of primary building features (see Figure 1).  The model, which is measured

in units of feet, is accurate to within 3 inches at any vertex through physical measurements.

Images of the house were acquired using a digital camera set at 1440x960 resolution.  Images of

the building were taken at the locations indicated in Figure 34.
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Figure 34. Location of images taken of the house scene.  Location 1 is below the level of the
ground.  Location 2 is about eye level above the ground.  Location 3 is a few feet above ground
level.

The Hardymon dataset includes a three-dimensional model and images taken of the

Hardymon building located at the University of Kentucky.  The model was constructed from

architectural drawings and is also accurate to within 3 inches at any vertex1.  The Hardymon

model includes only the façade features from the ground up to the bottom of the trim that is

located along the top edge of the building (see Figure 35).

                                                                
1 Accuracies reported by architectural firm responsible for building design and general contracting in building
reconstruction.
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Figure 35. Rendering of Hardymon model.  The model does not contain any detailed surface
structure.

Three digital video sequences at 720x480 resolution were acquired at different locations around

the building.  Single shots were selected from these video sequences for testing our algorithm on

isolated images.  The location of the images is shown in Figure 36.  All cameras are at roughly

eye level above ground.
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Figure 36. Top view of Hardymon scene with camera locations.

For each image, the initial camera parameters were supplied by a user who estimated both

camera orientation and position using a simple interface that presents the model to the user in a

graphical format.

The algorithm was then run for both datasets and the resulting camera parameters were

compared to the initial parameters.  In addition, the model was rendered with the final

parameters.  The results of these runs are shown in Section 6.4.
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6.2 Line Finder Performance

The evaluation of the alignment algorithm begins with a simple analysis of the line finder

used at the beginning of the algorithm.  In order to evaluate the effectiveness of the line finder it

is helpful to define the concept of ideal lines.  Ideal lines are the lines in the image that

correspond to model edges.  The lines extracted by a perfect line finder would include all of the

ideal lines.  Measuring the percentage of ideal lines that are extracted by the line finder versus

the number of ideal lines represented in the image serves to characterize the starting point of the

remainder of the alignment algorithm.  The line finder was run on all test images and the

percentage of ideal lines extracted by the line finder was calculated.  The results of this analysis

are shown in Table 2.

Table 2. Line finder and facade extractor performance.

1 2 3 1 2 3 4 5
Total Output Lines 970 1456 1071 278 206 412 296 359
Visible Ideal Lines 15 10 16 25 11 9 44 42
Ideal Lines Represented 13 10 12 18 8 8 21 19
% Ideal Represented 87% 100% 75% 72% 73% 89% 48% 45%
Concentration of Ideal Lines 1% 1% 1% 6% 4% 2% 7% 5%
Total Output Lines 22 57 26 28 32 33 27 36
# Arising from Façades 21 49 20 26 31 29 23 30
Concentation from Facades 95% 86% 77% 93% 97% 88% 85% 83%
# that are Ideal 6 7 4 7 5 4 10 7
Concentration of Ideal Lines 27% 12% 15% 25% 16% 12% 37% 19%
Output Ideal / Input Ideal 46% 70% 33% 39% 63% 50% 48% 37%

House Hardymon

Façade Extractor

Line Finder

Ideally, we would want the line finder to detect all ideal lines in an image.  As shown in

Table 2, this is not always the case.  In most of the images, the line finder succeeded in detecting

more than half of the ideal lines.  For scenes containing many ideal lines, this should be

sufficient.  However, for scenes with few ideal lines, the failure to detect half of the lines could

result in an inability to reach good alignment.

The concentration of ideal lines in the line finder output is fairly small.  This indicates

there is a significant amount of noise in the output of the line finder in the form of lines arising
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from the planar facade.  This demonstrates the need for an algorithm that reduces the number of

lines in the line set while preserving the ideal lines.

6.3 Façade Extraction Performance

The façade extractor performance was measured in several ways.  The primary goal of

the extractor is to detect building facades (see Chapter 4).  Therefore, the output was analyzed

for the percentage of lines that are related to building facades.  An additional goal of the façade

extractor is to reduce the number of building lines while preserving lines that correspond to ideal

lines (see Section 4.2.3).  The performance of the extractor in achieving this goal was measured

by comparing the percentage of ideal lines versus total lines prior to and after the extraction

algorithm.  Every ideal line that is represented in the extractor input should also be represented in

the extractor output if the extractor is performing optimally.

Table 2 also contains the results of the façade extractor performance for both the

Hardymon and house scenes.  The façade extractor dramatically reduced the number of lines in

the test images while preserving façade structure.  In all cases the concentration of lines arising

from façade structure in the output of the extractor was greater than 70%, and in one case as high

as 97%.  This is especially meaningful given the small number of lines involved.  In all but one

case, the number of lines output by the façade extractor that were not related to a façade was six

or less.  In addition, the extractor favored ideal lines over other lines.  Although image lines were

reduced by greater than an order of magnitude by the façade extractor, the number of ideal lines

was reduced by 67% in the worst case and less than 50% in three cases.

6.4 Image to Model Alignment Performance

An analysis of the iterative alignment step of the algorithm begins by characterizing the

objective function on real data.  Although results of the objective functions behavior on simple
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synthetic data are shown in Section 5.2, it is necessary to characterize the function on real data

due to the complexity and noise introduced by imagery of real scenes.  The objective function

was sampled in a region of camera space centered on the aligned location.  In order to better

interpret and visualize the data, only two of the six external camera parameters were perturbed at

any given sampling point.  The results of the fitting function, over different values of the

adjusted camera parameters, were graphed using 3D surface maps.  The resulting surface maps

were used to visually evaluate the quality of the objective function for alignment minimization.

Figure 37 and Figure 38 show a resulting graph for the house and Hardymon datasets

respectively.  In Figure 37, the minimum value of the objective function lies at the aligned

camera location, which is located at the center of the graph.  However, the region around the

minimum is monotonic within only a foot or so in the Y direction.  There is also a false local

minimum to the positive X direction of the aligned location.  Hence, for this image and model

alignment, the probability of finding a correctly aligned value decreases rapidly as error is

introduced into the initial parameters.  Note that although this graph provides only a 3D cross

section of a six-variable function, and thus cannot be used to fully define the behavior of the

function, it does provide insight into the function's behavior.
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Figure 37. Objective function characterization over X and Y translation perturbation at the
aligned camera location in house image 2.  Cliffs in the function probably arise from locations in
camera parameter space where a model line comes into or out of view.  The correct alignment
and the alignment recovered using filtered data are shown.

In Figure 38, the minimum value of the objective function is not located at the aligned

location.  This is probably caused by the fact that only 7 of 26 lines in the filtered line set are

ideal lines (see Table 2).  The remaining 19 lines are then noise that can pull the objective

function minimum out of a true alignment.
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Figure 38. Value of objective function near aligned camera location for Hardymon image 1
perturbed over the X and Y transation parameters.  The correct alignment and the alignment
recovered using filtered data are shown.

Next, we consider the performance of the iterative alignment algorithm when using ideal

line sets as input lines.  Running the alignment routine on ideal lines is useful because it

eliminates the effects of noisy data on the alignment.  In other words, it measures the

performance of the alignment minimization routine under the best possible conditions, thus

setting an upper bound on the quality of the overall automatic alignment algorithm's

performance.  The ideal line set for each image was be extracted by hand by selecting lines in the

images that correspond to model lines.  The final objective function error for each alignment is

shown in Table 3.  Initial and final camera parameters are shown in Table 4.  Renderings of the

model using the initial camera location and the aligned imagery are shown in Figure 39, Figure

40, and Figure 41 to provide material for visual analysis.
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Table 3. Final value of objective function when using exact lines and facade extractor output for
alignment.

FINAL VALUE OF
OBJECTIVE FUNCTION

Image Ideal
Lines

Façade
Extractor
Output

House 1 3.652 9.665
House 2 2.603 5.034
House 3 11.243 17.733
Hardymon 1 49.085 43.782
Hardymon 2 10.497 8.082
Hardymon 3 18.934 13.624
Hardymon 4 50.519 83.811
Hardymon 5 54.139 46.684
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Table 4. Camera parameters for datasets.  The initial (start), correct, and aligned camera
parameters resulting from filtered and full line data are shown.

X Y Z X Y Z
start -9 1 -52 2 -164 3
filtered -9.37009 0.803631 -52.94819 2.165603 -163.723 2.931383
correct -9.457621 0.714817 -53.01716 2.375017 -163.6628 2.707198
full -9.212412 1.156724 -52.1007 2.140459 -163.7621 2.464464
start 2 3 -61 -1 -167 1
filtered 1.914438 3.82924 -60.48767 -0.450069 -166.6611 0.827767
correct 3.497897 2.970762 -61.64317 0.179054 -168.8954 1.105556
full 2.238652 3.221134 -60.73638 -0.092868 -167.1586 1.034427
start 69 8 39 -6 42 1
filtered 70.01309 8.363791 38.38669 -6.534494 41.92584 0.28679
correct 68.84719 8.830737 39.68284 -6.045843 41.43477 1.339421
start -22.639 127.8483 24.29557 -81.40722 1.25538 30.47781
filtered -21.46845 128.8948 24.07372 -81.6534 -0.002766 31.01325
correct -20.89737 128.0853 24.225 -81.8596 0.797541 30.83661
start -10.8081 145.5096 26.98523 -80.87163 1.87501 59.76706
filtered -9.415159 144.3373 26.27651 -81.98269 2.380739 60.82447
correct -10.39146 146.4511 26.16548 -80.91814 1.748588 59.58506
start 25 -56 23 99 181 -12
filtered 24.26784 -55.50758 22.11371 98.60674 180.1858 -9.628523
correct 26.87034 -59.14938 23.53913 98.59577 182.2099 -9.820246
start 177 -32 23 -80 1 199
filtered 177.4686 -33.52274 23.89679 -79.16331 0.994464 199.6985
correct 174.1489 -30.03685 23.66429 -79.65289 1.206049 197.6719
full 176.7898 -31.95739 23.35282 -80.39786 0.975779 199.877
start 166 -32 24 -80 0 214
filtered 166.0146 -31.27525 24.46902 -79.88201 -0.115651 214.1463
correct 165.783 -31.94559 24.04988 -79.98226 -0.144614 213.6885

Location Orientation

House 1

House 2

Hardymon 4

Hardymon 5

House 3

Hardymon 1

Hardymon 2

Hardymon 3
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Figure 39. House model with House image 1 projected onto model after alignment using exact
lines.

 

Figure 40. House model with House image 2 projected onto model after alignment using exact
lines.
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Figure 41. Hardymon model with Hardymon image 1 projected onto model after alignment using
exact lines.

We now consider the performance of the alignment algorithm on filtered real data.

Alignment results on several test images are shown below.  For each image, we will explain why

the image did or did not align well.

Figure 42. House image 2 projected from  aligned position as determined from filtered lines.

Figure 42 shows the result of the alignment of image 2 of the house dataset.  Note that a

misalignment occurred along the bottom of the roof edge.  The joint between the soffit and the

fascia aligned with the top of the gutter, rather that with the bottom of the gutter.  This is because
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of the overabundance of lines that were extracted in this region of the image (see Figure 43).

With many local minima, it is easy for this type of misalignment to occur.

Figure 43. Lines extracted by the facade extractor on image 2 of the house dataset.

Figure 44. House image 1 projected from  aligned position as determined from filtered lines.

Figure 44 shows the result of the alignment of image 1 of the house dataset.  The house

model stops with the brick; therefore, the bottom of the brick in the image should align with the

bottom edge of the model.  This did not occur because the line along the bottom of the brick on

the right side of the house was not extracted clearly by the line finder.  However, in spite of this

misalignment, the model has a very realistic appearance.  In particular, the roof aligned very well

as evidenced by the natural appearance of the gutter projected onto the planar fascia of the
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model.  The same alignment was run with the original, unfiltered lines and rendered in Figure 45.

The model is rendered from a unique view to emphasize the differing results between running

with filtered data and with the full line data.

  

(a) (b)

Figure 45. Alignment results using filtered (a) and unfiltered (b) data.  The filtered alignment
renders more realistically.

The roof line and brick line aligned better using the filtered data, in spite of the fact that the

alignment error for the filtered data was 9.665 as opposed to 2.674 for the unfiltered data.  The

unfiltered data has a lower error due to the abundance of local minima arising from the line

density throughout the image.
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Figure 46. Hardymon image 3 projected from  aligned position as determined from filtered lines.

Image 3 from the Hardymon dataset aligned very poorly (see Figure 46).  As shown in

Table 2, only four ideal lines were extracted by the facade extractor for this image.  The

remaining 29 lines that were extracted aligned falsely with model edges, resulting in a poor

overall alignment.  The number of ideal lines extracted by the facade extractor could be

increased by utilizing higher resolution imagery with better lighting.  In addition, incorporating

more facade features in the model, such as windows, will result in more ideal lines interior to a

surface that are likely to be extracted by the facade extractor (see Section 7.1).
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(a) (b)

Figure 47. View of Hardymon model with (b) and without (a) projected image.  Hardymon
image 4 is projected from  aligned position as determined from filtered lines.

The alignment of image 4 from the Hardymon dataset, shown in Figure 47 is visually

compelling.  Portions of the facade closest to the user are aligned with sufficient accuracy to

appear to be a detailed 3D model of the structure.  This image aligned well due to the high

number of model lines extracted by the facade extractor (see Table 2).

6.5 Results

In order to better understand the convergence characteristics of the automatic alignment

algorithm, the algorithm was tested to see how well it converges to the correct aligned position

giving varying amounts of initial pose error.  The algorithm was iteratively run after perturbing

the pose information over a range of error amounts.  At the conclusion of each iteration, the

distance from the correct aligned parameters to the parameters calculated for the iteration was

measured.  We perturbed the pose information one parameter at a time over all parameters.  A

graph of one of the perturbation runs is shown in Figure 48.
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Figure 48. Error in final camera orientation (OERR) with perturbed Z rotation input.  This chart
shows that rotational orientation is recovered for Z rotation perturbations with 1 degree of the
aligned location.  The orientation error does not appear to have much impact on the final
translation error (LERR).

This particular run was a perturbation of the Z orientation parameter.  The resulting final

translation error (LERR) is graphed in blue and orientation error (OERR) is graphed in purple.

This graph shows that for this particular scene, the alignment algorithm was able to absorb

between –1.7 feet and 1.0 feet of error in the Z orientation without adversely affecting the result

of the alignment.  Location alignment was not greatly affected by error in the orientation

parameters.  Similar results were obtained with perturbations of the other parameters (see Table

5).  This data gives some indication of the convergence characteristics of the alignment

algorithm.  Due to differing levels of model complexity and orientations, the convergence ranges

will likely vary across an image set.  However, this data indicates that the algorithm is likely to

converge if initial orientation parameters are within one to two degrees of correct alignment and
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if position parameters are within two to four feet of correct alignment.  These requirements are

within the accuracies provided by simple estimation and measurement techniques such as

differential GPS.

Table 5. Alignment algorithm convergence analysis results.  Each parameter was perturbed
independently and the range of perturbation that yielded a good alignment is indicated.
Parameters X, Y, and Z are in units of feet.  Parameters XO, YO, and ZO are in units of degrees.

Perturbed
Parameter

Recovery
Range

X (-2.0, 1.9)
Y (-3.9, 3.1)
Z (-2.9, 2.3)

XO (-1.7, 0.7)
YO (-2.9, 2.2)
ZO (-1.7, 1.0)
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Chapter 7

Conclusions

Several conclusions can be drawn from the data collected and analyzed in this thesis.  In

particular, there is sufficient evidence to prove the viability of the hybrid approach to automatic

image to model alignment.  The algorithm is shown to work effectively under certain conditions.

The data also supports the conclusion that the weakest point in the alignment algorithm is the

facade extraction step.  Alignments are very successful when ideal lines are used as the

alignment input line set.  Nevertheless, the facade extractor does preserve a sufficient

concentration of ideal lines to yield a good alignment in situations in which model boundary

edges are likely to be detected by the line finder and not be confused by other near lines.

7.1 Future Work

Results in Chapter 6 show that good alignment can be expected as long as the facade

extractor output contains a high concentration of exact lines.  Therefore, techniques for

enhancing the facade extractor output will have a significant impact on the overall performance

of the algorithm.  As described in Sections 4.2.2 and 4.2.3, such techniques can exploit the

existence of approximate initial camera parameters to predict the location of vanishing points

and facade boundary lines.  In addition, models can be constructed to incorporate features that

are likely to be extracted by the facade extractor.
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Appendix A 

Extensions of the Approach to Video

Although our main focus has been the development of a robust image-to-model

alignment technique for single images, we introduce several natural extensions of this approach

to video sequences.  Video sequences have the desirable characteristics of dense coverage of

camera parameter space as well as low variable in camera parameters between successive

images.  These characteristics can be exploited by the hybrid approach to both increase the

quality of alignments and to decrease the amount of information that must be provided by the

user as input to the algorithm.

A.1 Temporal Alignment Approach

The alignment minimization step of the automatic image to model alignment algorithm is

designed to be robust within some relatively large neighborhood about the actual aligned camera

parameters (see Section 6.4).  If a relatively small upper bound can be assumed on the

perturbation of the estimated camera parameters with respect to aligned parameters, then

complexities associated with the alignment minimization algorithm can be reduced.  For

example, as described above, the input image data for the automatic alignment algorithm must be

accompanied by approximate camera parameters.  Although allowing approximations rather than

exact parameters is a usability and data acquisition expense improvement, it is still a burden to

the user.  If it is known that a sequence of images were taken with sufficient temporal frequency

to estimate total camera parameter variation between adjacent image pairs, then the need for

approximate camera parameters for each image can be discarded.  The reasoning for this

conclusion is described as follows.  As an agent moves through a scene, there is typically some

bound on the speed at which the agent can change its viewing parameters.  If the agent is a

person, then this bound can be derived from normal walking speed and typical head movements.
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Video sequences, which typically occur at frequencies between 20 to 30 frames per second,

combined with typical human movement patterns, introduce a bounds on the image to image

camera parameter variability.  This bounds is within the convergence requirements of our

automatic alignment approach.  Hence, if a particular frame's aligned camera parameters are

known, then these parameters can act as the estimated camera parameters for the next frame from

the video sequence.  Therefore, given only an approximate location for the initial image of a

video sequence, the camera parameters for the entire sequence can be determined.

A.2 Vanishing Line Constraint

The existence of a sequence of images of the same structure, or a commonly oriented

group of structures, allows for refinement of the aligned image parameters.  As the vanishing

points associated with each image are derived, they can be compared to the vanishing point

locations from previous images to determine whether they fit the image sequence.  The

motivation for this approach arises from the observation that all lines in parallel planes with

surface normal (A,B,C) will lie on a common "vanishing line" defined as
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[42].  Thus, some subset of vanishing points of each image of a

building or group of buildings will share a vanishing line.  If the vanishing points of a new image

do not lie on the vanishing lines as derived from other images, then it can be assumed that the

new image is not aligned properly and the algorithm can take some action to correct the

situation.  Furthermore, after a number of images have been processed, the aligned camera

parameters can be adjusted to minimize error of the vanishing points along the vanishing lines,

leading to more accurate alignment results.



83

A.3 Preliminary Results

The video sequences described in Chapter 6 were used to test the ability of our algorithm

to align successive images using the temporal alignment approach described in Section A.1.  For

each video sequence, an aligned set of camera parameters were provided for the first image in

the sequence.  The computed camera parameters for each image were then used for the

subsequent image.

In each sequence, the algorithm was able to maintain alignment for several frames before

losing alignment beyond recovery.  The alignment was lost when a particularly ill-suited image

was processed yielding a poor alignment.  This alignment was then beyond the ability of the

algorithm to recover on the subsequent image.  This problem could be solved using the following

methods.  First, the bad alignment could simply be dropped from sequence as if it had never

occurred.  The subsequent image would then be aligned using the aligned camera parameters of

the most recent well aligned image.  The vanishing line constraint approach described in Section

A.2 could be used to test the quality of the alignment in addition to the raw objective function

value provided at alignment termination.  Alternatively, the algorithm could keep track of the

cameras motion over time and use this motion to predict the aligned location of the next image in

a sequence.  If the result of the alignment algorithm did not follow the type of motion expected

by the sequence processing algorithm, then recovery measures could be taken such as skipping

images until a good alignment is found or by attempting to restart the motion estimation process.
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