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ABSTRACT OF DISSERTATION

VISUAL SEMANTIC SEGMENTATION AND ITS APPLICATIONS

This dissertation addresses the difficulties of semantic segmentation when dealing
with an extensive collection of images and 3D point clouds. Due to the ubiquity of
digital cameras that help capture the world around us, as well as the advanced scan-
ning techniques that are able to record 3D replicas of real cities, the sheer amount
of visual data available presents many opportunities for both academic research and
industrial applications. But the mere quantity of data also poses a tremendous chal-
lenge. In particular, the problem of distilling useful information from such a large
repository of visual data has attracted ongoing interests in the fields of computer
vision and data mining.

Structural Semantics are fundamental to understanding both natural and man-
made objects. Buildings, for example, are like languages in that they are made up
of repeated structures or patterns that can be captured in images. In order to find
these recurring patterns in images, I present an unsupervised frequent visual pattern
mining approach that goes beyond co-location to identify spatially coherent visual
patterns, regardless of their shape, size, locations and orientation.

First, my approach categorizes visual items from scale-invariant image primitives
with similar appearance using a suite of polynomial-time algorithms that have been
designed to identify consistent structural associations among visual items, represent-
ing frequent visual patterns. After detecting repetitive image patterns, I use un-
supervised and automatic segmentation of the identified patterns to generate more
semantically meaningful representations. The underlying assumption is that pixels
capturing the same portion of image patterns are visually consistent, while pixels
that come from different backdrops are usually inconsistent. I further extend this
approach to perform automatic segmentation of foreground objects from an Internet
photo collection of landmark locations.

New scanning technologies have successfully advanced the digital acquisition of
large-scale urban landscapes. In addressing semantic segmentation and reconstruc-
tion of this data using LiDAR point clouds and geo-registered images of large-scale
residential areas, I develop a complete system that simultaneously uses classification
and segmentation methods to first identify different object categories and then apply



category-specific reconstruction techniques to create visually pleasing and complete
scene models.

KEYWORDS: Automatic Segmentation, Frequent Visual Pattern Mining, Simulta-
neous Classification and Segmentation, Internet Photo Collections, LiDAR Data
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Chapter 1 Introduction

1.1 Motivation and Contributions

Segmentation is the process of dividing data into a set of groups, each of which con-

tains similar elements. In image segmentation, for example, the pixels of an image are

decomposed and grouped into regions that have visual similarities and/or share com-

mon properties. Image segmentation is one of the most intensely studied processes

because it serves as a starting point for solving many other vision-related problems

and has greatly advanced the field of object recognition, 3D reconstruction and image

understanding. In the more recent state-of-the-art algorithms, the boundaries of the

detected regions [7, 60, 94] often coincide with the true object boundaries; neverthe-

less, cutting out the objects of interest using semantic labels still requires high-level

knowledge for further merging, refinement and understanding. This problem is known

as the visual “semantic gap,” defined in [98] as “the lack of coincidence between the

information that one can extract from the visual data and the interpretation that the

same data have for a user in a given situation”.

Interactive segmentation, on the other hand, uses a persons knowledge of the

location, size, colors and/or boundaries to help segment a target object from an

image, for example via a user-provided bounding box [59, 86] and strokes [11, 62].

As the digital cameras that capture our world become more and more ubiquitous,

however, the sheer amount of data that is being generated makes manual labeling
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extremely labor intensive, and even simple tasks such as selecting bounding boxes

become daunting.

Another related line of research is object recognition, which focuses on detecting

and classifying objects in images. The idea of concurrently recognizing and segment-

ing objects has been employed by [13,37,105,116]. However, most object recognition

algorithms need a relatively large training dataset and target object categories that

are predefined, which is impractical due to the huge number of object classes in the

real world.

Besides images, significant advances in scanning technologies have been useful

in the digital acquisition of large scale urban landscapes. For example, Google has

added laser scanners to its StreetView sensor platform, making it possible to acquire

both range and appearance information from urban environments at the same time.

Furthermore, we expect that this 3D point cloud and image data will be available

to the public in the near future. Many efforts have already been made to achieve

accurate semantic segmentation and classification, but the typical method involves a

monocular video sequence filmed at the street level. Traditional approaches employ

2D appearance information, such as color, texture, and shape [47, 67, 71] and have

achieved impressive results. However, a drawback of appearance-based features is

that appearances may change dramatically under different imaging conditions. For

example, a scene may have different appearances depending on the time of day or

the season. With recent advances in 3D imaging, 3D structure information has been

used for semantic segmentation and recognition [12, 121, 126]. Specifically, when the

input is a video sequence rather than a still image, the available motion-based cues
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contain a large amount of 3D information that can be used for segmentation and

recognition. Unlike the information derived from still images, moreover, these cues

are not subject to appearance changes. Due, in part, to the inaccurate or low-density

point clouds reconstructed from these images, however, the recognition rate still needs

to be improved.

The research presented in this dissertation aims at automatic semantic segmen-

tation and its applications for images and ground-based LiDAR (LIght Detection

And Ranging) point clouds. Towards this goal, I have contributed a few innovative

algorithms for three different visual data sources including a set of images with repet-

itive patterns embedded, Internet photo collections taken at landmark locations, and

residential scenes captured in ground-based LiDAR data.

(a) (b)

(c) (d)

Figure 1.1: Sample images with repeated visual patterns.
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Repetitive Pattern Mining and Segmentation from Images Visual semantics

can be regarded as a specific set of relationships that connect visual words carrying

specific meanings. For example, the four corners of a window and the relationships

between these corners as shown in Figure 1.1(c) suggest the existence of a window.

Assume that semantics manifest themselves through repetition. For example, the

structure of windows is repeatedly exhibited in building structures. The ultimate

goal, therefore, is to find frequently occurring patterns that are composed of visual

features in images. To achieve this goal, existing methods typically sample the fea-

tures randomly within a small spatial neighborhood (e.g., [16, 124]), and search for

frequently co-occurring features within the sampled neighborhood and/or require a

supervised training set of features for a particular classification purpose(e.g., [22–24]).

These approaches lack a systematic method for globally capturing visual structural

semantics or patterns and are often unable to detect complex patterns that appear

at random locations within one or multiple images and that vary in either size or

shape, or have missing features. I develop a method for unsupervised learning of

high-order structural semantics in images represented by frequently co-occurring fea-

tures with consistent spatial relationships. In addition to the detection problem, I

develop a frequent visual pattern segmentation algorithm that provides more seman-

tically rich representation. A simple method is to use the bounding box or convex

hull of the key features that make up the visual patterns. However, this is unlikely

to achieve satisfactory results for complex shapes such as a human figure. Instead,

I present an unsupervised and automatic segmentation method of the frequently oc-

curring patterns by leveraging the unique advantage provided by large collections
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of images: redundancy. With the assumption that subjects of interest are often

consistent across multiple images with varying backdrops, the repeatedly appearing

objects are segmented based on an integrated set of evidence including low variance

in foreground and/or consistent visual cues in color and edges.

Image Segmentation based on Internet Photo Collections Given the growth

of Internet Photo collections, we now have a visual index of all major cities and tourist

sites in the world. However, it is still a difficult task to capture a perfect shot with

one’s own camera when visiting these places. With the seminal work by Snavely

et al. [99] that used Internet photo collections (IPC) for 3D reconstruction and vi-

sualization, many image editing operations have been developed to unlock the rich

information contained in IPCs. Among these image enhancement techniques, one

important prerequisite is the segmentation of the foreground. As opposed to inter-

active segmentation methods that rely on user interaction to learn the foreground

and background appearance models, I develop an algorithm that can automatically

acquire training data based on the IPC and achieves high quality foreground segmen-

tation.

Semantic Segmentation and Reconstruction of Residential Scenes from Li-

DAR Data Due to their vast applications in many areas, 3D reconstruction and

modeling of urban environment have long been an active topic in many research com-

munities, from computer graphics, computer vision, and photogrammetry to remote

sensing. Based on the type of input data (2D vs 3D), the reconstruction scale (single
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building vs. block/city), and the output models (facade, 2.5D, or full 3D), many al-

gorithms and systems have been developed, enabling the faster production of better

3D models. Even though much progress has been made, as pointed out in a recent

survey by Musialski et al. [78], “automatic large-scale reconstruction remains an open

problem.” Existing methods either use airborne LiDAR data to generate 2.5D models

that lack street-level details (e.g., [56, 83, 131]) or use ground-level images or LiDAR

for street-side modeling only (e.g., [26, 119]). While fusion of ground-and-airborne

data can produce the most complete model (e.g., [29]), the fidelity of the model

could be improved. In addition, the output models from existing approaches are usu-

ally produce a lot of polygons (sometimes per building) with little semantic labeling,

which is why I develop a complete system to semantically segment and reconstruct 3D

models from ground-based LiDAR point clouds. As opposed to previous urban mod-

eling approaches, our system is designed for residential scenes, which has long been

overlooked. Admittedly, the low-rise houses and landscape in surburban/residential

areas are less glamorous to work with from a visualization standpoint, but they are

equally important from a simulation or city planning standpoint since they are liter-

ally everywhere. For these areas, automation is important because of the large scale.

Our system fills the void of automatic segmentation and reconstruction of residential

areas with semantic tags from ground-based LiDAR data.

1.1.1 Innovations

The overall contribution of this dissertation are its innovations in semantic segmen-

tation and its applications to images and 3D point clouds. It makes a few solid steps
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towards the goal of visual data segmentation and semantics understanding. It also

provides some new insights into these challenging research areas. In addition to the

overall contributions, some of the technical innovations necessitated by this research

have led to several publications in related conferences and journals.

Finding Repetitive Patterns in Images My approach starts by cataloguing the

visual features of images into a set of visual items. Next, strong associations be-

tween two classes of visual features evidenced by consistent and frequent geometric

relationships are identified. Finally, these pairwise associations are used to compose

more complex and complete structural patterns present in the images. My approach

makes the following contributions: I articulate an idea for mining frequent consistent

associations among visual items in images regardless of their size, shape and orienta-

tion; I develop a polynomial-time algorithm for mining maximal associations between

pairs of visual items; and I develop a polynomial-time method for extracting frequent

high-order structural visual patterns among more than two visual items. Experiments

on synthetic data and a variety of real-world datasets demonstrate the efficiency and

effectiveness of the proposed methods. This is the joint work with Yin Hu, Jinze Liu

and Ruigang Yang, first published in [31], ICCV1 2009.

Automatic Visual Pattern Segmentation In addition to the detection prob-

lem, I also address the problem of frequent visual pattern segmentation. The basic

idea is straightforward. Through frequent pattern mining, feature correspondences

between different instances of a visual pattern can be established. Using these cor-

1IEEE International Conference on Computer Vision
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respondences, I can warp all instances of the same visual pattern into a reference

view. For a foreground pixel, all of the warped pixels should be similar; and for a

background pixel, the warped pixels should differ significantly since they are from dif-

ferent backdrops. By counting the statistical coherence of warped pixels, I can make

a per-pixel decision whether it is foreground or not, achieving the goal of automatic

segmentation. A similar idea has been explored in [65], IEEE TVCG2.

Automatic Image Segmentation based on Internet Photo Collections I de-

sign a novel foreground and background segmentation algorithm that automatically

differentiates foreground based on image appearance statistics obtained from Internet

photo collections of landmark locations, surveyed over a variety of different illumi-

nation conditions. Compared to many existing segmentation methods, this approach

requires no user interaction to obtain a high quality foreground segmentation. Even

for complicated scenes with multiple foreground layers, only minimal user interaction

is needed to separate foreground layers. This is a part of the joint work with Chenxi

Zhang, Oliver Wang, Pierre Georgel, Ruigang Yang, James Davis, Jan-Michael Frahm

and Marc Pollefeys, first published in [125], IEEE TVCG2.

Semantic Segmentation and Reconstruction of Residential Scenes from Li-

DAR Data Starting with ground-based LiDAR point clouds with registered color

images, I first segment the unorganized 3D points into distinctive categories including

houses, plants, street lights, etc. Then for each category we develop unique solutions

to reconstruct its 3D model, taking advantage of prior information about this partic-

2IEEE Transactions on Visualization and Computer Graphics
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ular category. For example, common objects, such as street lights, are replaced by

similar 3D models found on the Internet. Plants are modeled with billboard tech-

niques, which are known to be visually convincing. The outcome of our system is

a set of visually complete 3D models consisting of common static objects in an ur-

ban scene, including not only houses, but also plants, street lights, mailboxes, etc.

Each object has its own semantic labeling. To the best of my knowledge, it is the

first complete system that can automatically segment and reconstruct high-quality

3D models from ground-based LiDAR data. This is the joint work with Hui Lin,

Yu Zhou, Guiliang Lu, Mao Ye, Chenxi Zhang, Ligang Liu and Ruigang Yang, first

presented in [66], ACM SIGGRAPH3 2013.

Online Building Segmentation from Ground-based LiDAR Data in Urban

Scenes I present a fast and accurate building segmentation algorithm from ground-

based LiDAR points. The basic idea is that buildings can be observed in a street

view and are separated by empty spaces such as alleys. By progressively projecting

3D points onto street views along the scanning path, buildings can be detected as

large regions with dense points. The main contribution is to automatically segment

buildings from large scale unorganized point clouds with online performance and

without requiring any training data. This is the joint work with Ruigang Yang, first

published in [32], 3DV4 2013.

3ACM Transaction on Graphics - SIGGRAPH 2013 Conference Proceedings
4Third Joint 3DIM/3DPVT Conference
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1.2 Dissertation Outline

The rest of this dissertation is organized as followings. In Chapter 2, I review the

related work on semantic segmentation of images and LiDAR point clouds in the liter-

ature. Chapter 3 presents the automatic and unsupervised algorithms used to extract

and segment structural semantics, i.e., frequently occurring patterns that are com-

posed of visual features in images. Chapter 4 describes the automatic segmentation

of a personal photo based on Internet photo collections. Chapter 5 details semantic

segmentation and its application to the 3D reconstruction of residential scenes from

ground-based LiDAR data. Finally, I conclude the dissertation in Chapter 6.
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Chapter 2 Related Work

Image segmentation is an intensely studied problem that serves as a starting point

for solving many other computer vision problems. Given the large body of work

on this topic, it is beyond the scope of this dissertation to provide a comprehensive

review. Interested readers are referred to computer vision and image processing

textbooks such as [101] and [36] that summarize classical segmentation methods. In

this chapter, I mainly discuss the semantic segmentation methods used on images and

3D point clouds that are relevant to the methods presented later in the dissertation.

2.1 Finding Frequent Visual Patterns

Frequent visual pattern mining is a relatively new research topic bridging the areas of

computer vision and data mining. In this section, I begin by briefly reviewing extant

research, most of which is conducted in the fields of computer vision or data mining.

Research in the field of image processing has enabled the extraction of scale-

invariant visual primitives. The extracted visual primitives are typically further

quantized into a small set of visual items, where each visual item contains prim-

itives of a similar appearance. An image therefore contains a collection of visual

items. With a dictionary of visual items available, the bag-of-words model [57,61,91]

is proposed to treat images analogous to text documents while ignoring spatial in-

formation. This simple but effective model has many important applications. For

example, given a target object, image retrieval systems (such as [80, 82, 96]) output
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a set of representative images from a large database. Our approach differs from the

typical image retrieval methods in that we do not have any target object to begin

with, but instead we seek to find similar patterns within the entire collection of im-

ages. Thus, the search space of our problem is significantly larger than that of other

image retrieval systems.

In the data mining community, traditional spatial data mining mainly focuses

on finding spatial association rules within the tagged map database, such as [50].

Some image mining approaches such as [41, 49, 97] can also discover frequent spatial

patterns in images regardless of rotation, scaling and translation. However, [49]

assumes that the model parts can be identified without any ambiguities and missing

detections is thus less effective on a real-world image. Some other work, such as [102,

103, 124], proposed a technique for translating image features into a transactional

database from which the co-located features can then be mined using frequent itemset

mining. However, associated primitives are not limited to being spatially co-located

(for example, see the long pencils in Figure 3.2). Our work is substantially different

from their work, since we try to detect strong pairwise associations over the entire

image space.

Our pattern composition algorithm bears some similarity to frequent subgraph

mining. Approaches to frequent subgraph mining have been well studied both in a

collection of graphs [75, 85, 122] and in one sparse single graph [52]. However, these

approaches are often quite time-consuming, since they need intensive graph isomor-

phism tests, require exhaustive searching and generate a large number of subgraphs.

Our problem formulation develops a heuristic approach, which enables fast and ac-

12



curate pattern mining. In addition, traditional approaches are limited to unweighted

graphs and cannot be effectively applied to weighted graphs. In our case, the numer-

ical weight of the edges of the weighted graph represent the relationship between the

features of an image.

Part-based approaches have also been used to learn, detect and recognize object

models in images, such as the sparse flexible model [16], the constellation model [23],

the star model [24], the pictorial structure [22] and the semi-local parts [89,90]. They

typically assign a frequently occurring pattern to a connected graphical structure

built upon a collection of parts, where each part corresponds to a local image patch.

In general, these methods are computationally expensive, and need to provide some

restrictive priors, such as the known number of parts and spatial proximity.

Another related line of research is object recognition which focuses on detecting,

classifying and even segmenting objects in images. The idea of concurrently recog-

nizing and segmenting objects has been explored in [5, 13, 37, 58, 88, 105, 116]. Most

object recognition algorithms need a relatively large training dataset and require the

object to constitute a dominant portion of the input image, which often implicitly

brings the need for pre-segmentation.

By providing just one additional image, co-segmentation aims to simultaneously

segment the similar objects embedded in a pair of images with different backgrounds.

Co-segmentation typically utilizes a global appearance model for the foreground ob-

ject, such as appearance (color and/or filter bank) histograms [40, 87, 109]. It is

further extended to incorporate human interaction in [8] and handle more than two

images in [46].
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Methods used in texel discovery also relate to our work. A texel is defined as a

texture element which repeatedly occurs in a particular texture. Hays et al. fit a 2D

lattice structure to detect texels in [39]. In [3], Ahuja et al. detect and infer partially

occluded texels by learning the substructures in a segmentation tree. Relying on the

assumption that texels are distributed in a regular grid with many occurrences, these

techniques will have a difficult time in finding large but less-structured patterns. In

addition, we do not assume spatial regularity of similar patterns.

2.2 Image Editing using Internet Photo Collections

With the prevalence of consumer cameras and large-scale photograph storage web-

sites, 3D modeling from IPCs has become a hot topic in recent years [1, 26, 30, 99].

Snavely et al. [99] presented pioneering work using photographs from IPCs to com-

pute a 3D model reconstruction and recover camera poses. Furukawa and Ponce [30]

presented efficient clustering and filtering algorithms for parallel reconstruction that

enforced inter-cluster consistency constraints over the entire reconstruction. Subse-

quently, Agarwal et al. [1] and Frahm et al. [26] advanced the state-of-the-art of city

scale reconstruction from IPCs, with improved geometric accuracy and computational

performance. Our work leverages new sources of prior information for use in personal

photo segmentation.

There have been several techniques for image editing using a large number of

images downloaded from the web, such as colorizing gray-scale images [18, 69], en-

hancing CG images [44], enhancing face images using good example prior photos of

the same person [45], and image completion [19,33,38,115].
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Interactive image segmentation brings a user’s prior knowledge of the location,

size, color, and depth boundaries to segment a target object from an image, for

example via a user-provided bounding box [59,86] and strokes [11,62]. However, even

simple labeling tasks such as dragging a bounding box may still be daunting when

dealing with lots of images. We leverage the opportunity that IPCs registered to the

same model allow, enabling us to measure color consistency between the personal

photo and IPC and filter out foreground and background color seeds, in order to

obtain high quality segmentation.

2.3 Semantic Segmentation and Modeling for Urban Environment

The problem of 3D point cloud segmentation and classification has received consider-

able attention in recent years, due to the increasingly availability of active 3D sensors,

such as LiDAR devices. A line of research focuses on applying sophisticated machine

learning techniques of a Markov Random Field model to classify point clouds, such

as [6, 77, 127]. Golovinskiy et al. [35] propose a system to segment and recognize ob-

jects in point clouds of urban scenes. A potential object location is found by clustering

nearby points, followed by applying a min-cut approach [34] to segment points for

each object, and finally by classifying segmented objects based on shape descriptors

and contextual information. These methods require manually labeling a few training

data sets and the feature computation and inference is often time-consuming for large

scale data. Compared to these methods, our approach is fully unsupervised and very

efficient at processing a large amount of data.

Recently, Stamos et al. [100] proposed an online algorithm to classify scanned
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points into five distinct classes (vegetation, vertical, horizontal, car and curb regions)

during data acquisition. This is a very interesting and promising approach; however,

they are somehow working on organized point clouds as data points are arriving at a

sensor one by one in a scanline so that many useful local features can be computed

more efficiently. Our method, on the other hand, can work on a large unorganized

list of points, even when no spatial information between points is readily available,

and still achieves online performance. Another method for the real-time detection of

repeated structures in point clouds is presented in [27].

Korah et al. [51] used a strip histogram grid representation encoding an urban

scene as a grid of vertical strips, each of which corresponds to a 3D population

histogram. This representation segments objects by grouping similar adjacent strips

together. Although this method is very efficient, it does not work well for terrestrial

scans with partial roofs or no roofs, and it would break a building object into many

segments if there were a large height discontinuity within a single building, such as

Fig. 5.14(a)(d). In addition, as we have discussed, the approaches that only work

on airborne LiDAR data (e.g., [74]) are not easily extended to ground-based data

because roofs are only partially observed or even completely missing.

Wang et al. [112] propose an automatic heuristic window detection algorithm on

facades detected by RANSAC [25] plane fitting. In [127,132], some image processing

and segmentation techniques are applied to range images from laser scanners, which

require a relatively long running time. Carlberg et al. [14] propose a segmentation

method that uses triangulation to reconstruct surfaces. Alternatively, our online

segmentation approach works on raw and unorganized large-scale point clouds.
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Another research topic is scene parsing, which refers to the process of simulta-

neously classifying and segmenting objects in images (e.g., [12, 121, 126, 128]). They

typically leverage the reconstructed point clouds from images and some contextual

features to classify each pixel into ground, trees, buildings, etc. In particular, [128]

further partitions a detected building object into sub-facades.

The problem of building modeling has received considerable attention in recent

years, due largely to the increasing ubiquity of digital cameras and availability of

active 3D sensors, such as LiDAR devices. Given the large body of work in this

broad topic, it is beyond the scope of this dissertation to provide a comprehensive

review. Interested readers are referred to two recent survey papers by Vanegas et

al. [108] and Musialski et al. [78].

One topic of emphasis in recent research has been the reconstruction of 3D build-

ings from images or video sequences(e.g., [4,113,118]). One of the pioneering papers

in this area introduces the Facade system [20], in which an operator interactively

selects corresponding lines between images and building primitives (blocks etc.), and

the system automatically estimates the camera pose and refines the primitives to fit

the images. Today, the typical approach is to use structure from motion (SfM) tech-

niques to estimate the camera motion as well as a set of sparse 3D points, followed

by either user interaction(e.g., [95]) or dense stereo matching to generate the final

model(e.g., [26]).

Alternatively the input can be 3D point clouds from LiDAR devices; the focus

is usually to refine the scanned data and create a more usable mesh or parametric

model(e.g., [28,84]). This is also the main focus of our system. Recent papers in this
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category often take advantage of the repetition and symmetric structures in buildings.

Müller et al. developed an automatic approach for facade reconstruction with CGA

shapes using ortho-rectified photos [76]. This method works well with highly regular

and repetitive facades. Later the system was extended to allow regular photos that

have perspective distortions [106]. Using 3D scans as input, the SmartBoxes technique

focuses on high-rise buildings with many repetitive structural elements [79]. From a

user-selected structural element, the system automatically finds similar copies in the

input 3D point cloud. These repetitive elements are merged and refined, leading to a

better final model. Automatic detection of symmetric or repetitive patterns has also

been developed, in either 2D [92,117], 3D [10,81], or a combination of both [64]. They

typically make a strong assumption about the layout of the symmetric or repetitive

patterns, usually on a rectilinear grid, to optimize for facade processing. Similar as-

sumptions have also been applied to interior reconstruction with great success [120].

Given our emphasis on residential houses, however, we do not make such an assump-

tion. Li et al. [63] detects global regularities among primitives to better fit the scanned

data, but they cannot handle completely missing surface patches like the roof area

in our case. More recently, Vanegas et al. [107] presented a system to reconstruct

Manhanttan-World Building masses from 3D range scans. Assuming the building is

made of axis-aligned boxes, this system is able to produce water-tight building models

in the presence of significant missing data. The main limitation is that it is unable

to handle slanted surfaces.

In the area of automatic reconstruction on a large scale, approaches using ground-

based data, either images (e.g., [26, 42, 119]) or 3D point clouds [28], usually focus
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only on the facade, or whatever can be captured. On the other hand, approaches

with airborne data generate 2.5D models, since only the roof is captured (e.g., [21,55,

56,83,129]. In both scenarios, few assumptions are made about the scene; therefore,

they are usually more adaptable to different building/scene types. The downside is

that the model is only in good quality from the viewpoint where it was originally

captured. In our targeted setup – houses of a few stories, we can capture parts of

both viewpoints, but neither is complete. In order to complete the model, we make

a few common assumptions. These assumptions also allow us to provide semantic

labeling for the final model. As we will demonstrate later, our approach is able to

handle significant amounts of missing data, particularly in the roof area. There are

approaches that combine both ground and aerial data sources (e.g. [29,48]) for large

scale reconstruction, but our approach also benefits from more data coverage.

As pointed out by other researchers [78], it is difficult to directly compare these

different reconstruction methods since they were all developed in different contexts

with different emphases. Nevertheless, we have compared our results with two state-

of-the-art algorithms. The first uses a piecewise-planar assumption about the scene

geometry [17], which is also the foundation for our house reconstruction scheme. The

second focuses on building 2.5D models for large scale reconstruction from aerial

scans [130]. Both methods are automatic. The comparisons demonstrate the advan-

tage of our approach for the task of reconstructing residential houses from ground-

based 3D point data.
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Chapter 3 Repetitive Pattern Mining and Segmentation from Images

In this chapter, I present a frequent structural pattern mining and segmentation

method to discover recurring patterns as visual semantics in images. As digital cam-

eras become popular to capture our real world, how to distill useful information from

a vast image collection has been attracting ongoing interest in the fields of computer

vision and data mining. Among many aspects of image understanding, the auto-

matic identification of frequently visual patterns is a fundamental topic that serves

as the foundations for high-level tasks such as data compression, pattern recognition,

and visual information retrieval. Figure 1.1 shows a set of images, each of which

contains repeated visual patterns. For example, the pattern of Starbucks logos in

Figure 1.1(a) is a major characteristic of the picture. However, given the complex

interplay of lighting and perspective, the same visual pattern (e.g., a Starbucks logo)

can have dramatically different pose and appearance changes. The general approach

to address this problem is to extract repetition from low-level visual items (words).

Though visual items, each of which corresponds to similar SIFT features, are typi-

cally invariant or less sensitive to lighting or perspective changes, they are limited

to small local image patches. Composing complex patterns from these visual items

that represent high-order structural meanings is very difficult, if not impossible. We

present a frequent structural pattern mining method to discover recurring patterns

in images (e.g., the left image in Figure 3.12), and we further explore to address the

segmentation problem to get more semantically meaningful representation of visual
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patterns (e.g., the right image in Figure 3.12). Most existing approaches to mining

visual patterns rely on a preprocessing step that collects image features into a trans-

actional database, where traditional pattern mining algorithms can then be applied.

For example, to find patterns from images such as those shown in Figure 1.1, Yuan

et al. [124] extract sample patches from the image. Each patch is then converted into

a transaction, and visual features within the patch become items in the transaction,

allowing the application of frequent itemset mining.

Though promising, this method is limited by a number of factors. First, the loca-

tions, sizes and shapes of visual patterns may vary. Without any prior information, it

is difficult to automatically determine the appropriate locations and sizes of sampled

patches. One possible solution is dense sampling at all possible locations and scales.

However, it would artificially increase the occurrences of features in the resulting

transactional database, making it difficult to determine whether the frequency of a

discovered pattern is due to over-sampling or its true presence in the image. Sec-

ond and most importantly, patterns detected by transactional pattern mining (such

as [102, 103, 124]) remove structural information which encodes crucial semantics of

image patterns. As an analogy, the set of letters {m, a, n} occurring frequently in

a text does not necessarily imply frequent occurrences of the word “man” — the

same set of letters may also occur in the words “name”, “Maine”, “main” and so

on. Analogous to the aforementioned problem, different compositions of co-occurring

visual items might have vastly different spatial relationships with image semantics.

Extracting visual patterns from unstructured data, in particular, images, a set of vi-

sual items in a visual pattern not only co-occur, but also maintain consistent spatial
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Figure 3.1: A pipeline for the extraction of structural visual patterns from images.

relationships for encoding more structural meanings.

To preserve structural relationships of features in images, one intuitive solution

is to treat an image as a graph where each vertex represents an image feature and

each edge carries the spatial relationship between two features. Consequently, the

frequent visual patterns look like frequent subgraphs. However, the discovery of

such visual patterns challenges existing subgraph mining algorithms in the following

two aspects. First, traditional subgraph mining is limited to categorically labeled

graphs; it is non-trivial to convert the numerical weights of edges representing the

relationships between features in images into discrete labels. Second, the obtained

graph is usually dense since spatial relationships exist between any pair of features.

Realizing subgraph isomorphism is NP-complete, it is computationally intractable to

perform subgraph mining on a large image collection (typically with tens of thousands

of features).

Our approach starts by cataloguing the visual features of images into a set of visual

items. Next, strong associations between two classes of visual features evidenced by

consistent and frequent geometric relationships are identified. Finally, these pairwise

associations are used to compose more complex and complete structural patterns
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present in the images. With the assumption that frequently occurring objects are

visually consistent across multiple images with varying backdrops, we are able to

further segment visual patterns automatically. The overview of the pipeline is shown

in Figure 3.1.

3.1 Preliminary

An image dataset can be represented by a set of visual features, such as SIFT fea-

tures [73], extracted from salient image patches. We call each feature a visual prim-

itive, denoted as f . For example, in Figure 3.2, every red dot in the middle fig-

ure corresponds to an extracted visual feature and hence is recognized as a visual

primitive. A primitive defined on an image patch can be represented by a vector

fi = [xi, si, θi,di], where 2D vector xi is the patch centroid, si is the scale of the

patch, θi is the patch orientation, and the 128-dimensional vector di encodes the

appearance of the patch.

Figure 3.2: An illustration of frequent visual patterns. The left image contains pencils
in different poses. The middle one depicts the detected visual primitives centered in
red dots, with blue and green ellipses representing the two dominant visual items.
The right image reflects the association between the two items.

Primitives in an image have structural relations. More often than not, these
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relations encode important structural semantics of image patterns. For example, the

primitive locates at the tip of a pencil and the primitive locates at the eraser of the

pencil bear a structural relation that implies the presence of the pencil. For two

primitives fi and fj, we represent their spatial relationship as the relation function

l(fi, fj). As discovered in [15, 43], l(fi, fj) can be defined as a 4D vector [D(fi, fj),

S(fi, fj), H(fi, fj), H(fj, fi)], where D(fi, fj) is the relative spatial distance between fi

and fj (Eq. 3.1a), S(fi, fj) is their relative scale difference (Eq. 3.1b), H(fi, fj) is the

heading from fi to fj (Eq. 3.1c), and H(fj, fi) is the heading from fj to fi (Eq. 3.1d):

D(fi, fj) = ‖xi − xj‖2/
√
s2i + s2j (3.1a)

S(fi, fj) = (si − sj)/
√
s2i + s2j (3.1b)

H(fi, fj) = ∆θ(arctan(xi − xj)− θi) (3.1c)

H(fj, fi) = ∆θ(arctan(xj − xi)− θj), (3.1d)

where function ∆θ(·) ∈ [−π,+π] calculates the principal angle. The representation

is invariant to translation, scaling and rotation, and robust to small distortion.

Visual primitives can be further cataloged into visual items based on their simi-

larity of appearance. Using k-means clustering [72], for example, we can identify two

dominant visual items from all the visual primitives in Figure 3.2, corresponding to

the tips and erasers of the pencils respectively.

Given two visual items α and β, let Iα and Iβ be the primitive sets of item α and β,

respectively. Let Ix be a subset of primitives in Iα, and let Iy be a subset of primitives

in Iβ, i.e., Ix ⊆ Iα and Iy ⊆ Iβ. Let ψ(Ix, Iy) be a set of relations each of which

connects one primitive in Ix and one primitive in Iy and no two relations connect
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a common primitive. We say ψ(Ix, Iy) is an association between Ix and Iy, if

relations in ψ(Ix, Iy) are consistent (defined in Section 3.2). In Figure 3.2, there exist

consistent spatial relations, such as distances and relative directions, between every

tip primitive and the corresponding eraser primitive on the same pencil. Therefore,

there exists an association between the two visual items — the tips and the erasers.

It is worth mentioning that two visual items might have more than one association.

In face images, for example, there exist two associations between eyes and noses

because the association between the left eye and nose is different from the association

between the right eye and nose in terms of the angle. It is important to find all

maximal distinct associations between a pair of visual items. We address the problem

of mining maximal pairwise associations in Section 3.2.

With a subset of visual primitives F = {f(1), f(2), · · · , f(p)}, a visual pattern in-

stance P = 〈F,R〉 is defined by F and a set of relations R between any pair of

primitives in F , R = {l(fi, fj)|fi, fj ∈ F}. Given two pattern instances P1 = 〈F1, R1〉

and P2 = 〈F2, R2〉, we say the two instances are identical if there exists a one-to-one

mapping g : F1 7→ F2, such that

1. ∀fi ∈ F1, g(fi) ∈ F2, and g(fi) belongs to the same visual item as fi;

2. ∀fi, fj ∈ F1, i 6= j, l(fi, fj) and l(g(fi),g(fj)) belong to the same association.

A pattern is frequent, if there exist at least δ identical pattern instances in the images.

The method developed for mining all structural patterns is presented in Section 3.3.

In the example of Figure 3.2, the association between the visual item of tips and

the visual item of erasers forms a pencil in the figure. Every pencil is a pattern
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instance. Please note that this example is a simple pattern consisting of only two

items. The method proposed in this chapter can be generally applied to finding

patterns composed of an arbitrary number of items if applicable.

3.2 Mining Maximal Pairwise Associations

In this section, we present an algorithm that looks for associations between a pair of

visual items.

3.2.1 Maximal Association Subgraph

Given two sets of primitives Iα of item α and Iβ of item β, relations between the

pairs of primitives can be represented by a weighted complete bipartite graph G =

〈U, V,E, ω〉. In this graph, every vertex u ∈ U represents a primitive in Iα and every

vertex v ∈ V represents a primitive in Iβ. E is the set of edges between nodes in

U and V . Every edge e ∈ E represents a relation between a primitive in Iα and a

primitive in Iβ. A weight function ω, equivalent to the relation function l, computes

the geometric relationship between two primitives. Without loss of generality, we

assume all edges can be sorted into descending or ascending orders given weight ω,

such as the relative spatial distance D.

Within a bipartite graph G, a matching M ⊆ E is a set of edges, none of which

connects the same vertices. Let UM ⊆ U and VM ⊆ V be the sets of vertices incident

to edges in M . We call GM =< UM , VM ,M, ω > the induced subgraph of G by the

matching M . A matching-induced subgraph GM ⊆ G is a maximal association

subgraph if it is:

26



1. weight-consistent: MSE(GM) ≤ ε,

MSE(GM) =
1

|M |
∑
e∈M

(ω(e)− ω(ê))2,

where ê = arg mine∈M ω(e);

2. maximal: there exists no G′M , s.t. GM ⊂ G′M and G′M is weight-consistent.

The first condition requires that the relations in an association are consistent so

that the weights of all the edges in M should not deviate much from ω(ê), where ê

is a representative edge of M . The deviation is measured by the mean of squared

errors (MSE) between the weight of ê and the rest edges in M . The weight of the

representative edge within a matching, ω(ê), can be the mean of all the weights, or

the minimum or maximum weight. In our case, since the consistency among all the

weights within a matching is of a bigger concern than a centered Gaussian distribu-

tion of all the weights, we choose the least weighted edge as the representative edge.

The second condition indicates that the identified association has to be maximal,

i.e., no additional relation can be added to increase the size of the association while

preserving the consistency. If GM is a maximal association subgraph, the set of rela-

tions represented by the edges in M can be acknowledged as a candidate association

between the visual items α and β. M is called a candidate association matching. The

acknowledged association associates the primitives represented by vertices in UM to

the corresponding primitives represented by vertices in VM . The cardinality of M ,

equal to the number of relations within the association, is therefore the frequency of

the association.

27



Algorithm 1 Pairwise Association Mining

1: W ← ∅, M ← ∅
2: sort Ei,j based on ω(e), e ∈ Ei,j
3: for e← arg mine∈Ei,j ω(e) do
4: W ← W ∪ {e}
5: M ′ ← maximum matching of GW

6: if |M ′| ≥ |M | then
7: if M ′ does not satisfy consistency then
8: if M satisfies consistency then
9: M is a candidate association matching
10: end if
11: end if
12: M ←M ′

13: while M does not satisfy consistency do
14: remove ẽ← arg mine∈W ω(e) from W
15: if ẽ ∈M then
16: M ← maximum matching of GW

17: end if
18: end while
19: end if
20: E = E\{e}
21: end for

3.2.2 Algorithm

It is important to note that the maximal association problem is different from the

conventional maximum cardinality bipartite matching problem in bipartite graph

[114], where one maximum matching is found between two sets of nodes. We are

looking for a set of maximal weight-consistent matchings and the induced maximal

association subgraphs, representing all possible associations between two sets of visual

primitives. For example, we are interested in identifying both the association between

the left eye and nose and the association between the right eye and nose, instead

of a merged association between the eyes and nose with the maximum cardinality

though. As a result, the number of putative associations that need to be evaluated
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is the number of all possible subgraph matchings in G.

A naive way to find the maximal pairwise association subgraphs is to enumerate

all potential subgraphs and identify the ones that satisfy the constraints. However,

this approach is intractable, since there exist
∑|U |

i=1
|V |!
i!

possible subgraphs assuming

|U | ≤ |V |. Instead, we develop a polynomial-time algorithm to address this problem.

Our algorithm first sorts the edges in the increasing order of their weights. It

then operates by moving a dynamic window across the sorted edges and looking for

maximal association subgraphs embedded in the window. Starting empty with no

edges, the window W grows by alternating the following two operations iteratively.

• Adding a new edge: At each step, the least weighted unvisited edge e is

added into the window, and the window becomes W ′ = W ∪ {e}. We need to

determine whether the current maximum matching MW is still maximum after

adding new edge. The problem is equivalent to finding an augmenting path

with respect to MW .

A vertex in GW ′ is called unmatched if the vertex is not incident to any edge

in MW . An augmenting path is a path that begins and ends on unmatched

vertices, while its edges belong alternatively to MW and not to MW . If there

exists an augmenting path p from v to u with respect to the existing matching

MW , a new maximum matching MW ′ can be formed by tracking the precedence

of u till the other unmatched vertex v, and replacing the edges of p that are in

MW with those not in MW [9]. The cardinality of the maximum matching MW ′

grows by one.
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The window keeps growing by adding new edges as long as the obtained maxi-

mum matching satisfies the weight-consistent property. If the weight-consistent

property doesn’t hold for the maximum matching MW ′ in the current window

W ′ after a new edge is added, a local maximum is reached. The subgraph

induced by MW will be acknowledged as a candidate maximal association sub-

graph.

• Deleting an edge: In order to get out of local maximum and to discover

new associations, the edge with the smallest weight in the current window will

be deleted. If the removed edge is part of the current maximum matching,

the current matching will be reduced. To avoid missing other matchings, a new

search will be conducted to find potential matching with higher cardinality. The

least weighted edges will be deleted continuously until the obtained maximum

matching fulfills the weight-consistent property. Then the window will try to

add new edges again.

Intuitively, the window growing period corresponds to the process of extending an

association into a maximal one, while the shrinking period is the process when the

window is shifting into a different association. These two processes alternate, making

the window wriggle through the edge list.

After all the edges have been visited, the algorithm terminates and returns all the

candidate associations, as presented in Algorithm 1.

Lemma 3.2.1. The subgraph induced by a candidate association matching is a max-

imal association subgraph.
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Proof. We prove this lemma by contradiction. First, a matching will not be ac-

knowledged as a candidate association matching until the weight-consistent con-

dition is broken. Assume a candidate association matching M does not hold for

the maximal property, then there is an edge ê such that M ∪ {ê} is still a match-

ing and MSE(M ∪ {ê}) ≤ ε. Let ẽ be the edge with the smallest weight in M ,

ẽ = arg mine∈M ω(e). Find an edge e′ such that e′ is the edge with the smallest

weight among all the edges in the set {e|ω(e) ≥ ω(em), e ∩ em = ∅,∀em ∈M}. Then

ω(e′) must be less than or equal to ω(ê). So we have

MSE(M ∪ {e′})

=
1

|M |+ 1
(
∑
e∈M

(ω(e)− ω(ẽ))2 + (ω(e′)− ω(ẽ))2)

≤ 1

|M |+ 1
(
∑
e∈M

(ω(e)− ω(ẽ))2 + (ω(ê)− ω(ẽ))2)

= MSE(M ∪ {ê})

≤ ε.

Therefore M shouldn’t be acknowledged as a candidate association matching, because

e′ could be added to make a larger matching without breaking the weight-consistent

property, which is a contradiction. So the subgraph induced by M is weight-consistent

and maximal, which leads to the conclusion that the induced subgraph is a maximal

association subgraph.

Lemma 3.2.2. Assume the maximum matching of GW is unique for any GW , where

GW is the subgraph of G induced by window W . Then the algorithm will find all

candidate association matchings.
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Proof. As indicated in the algorithm, the window WM grows as long as the maximum

matching M within it holds the weight-consistent property. When this condition

is broken due to a new incoming edge e′, there does not exist an edge ê, where

ω(ê) ≥ ω(e′), such that M ′ = M ∪ {ê} is a weight-consistent maximum matching

according to the proof of Lemma 3.2.1. Then M is a candidate association matching.

In the process of removing edges, the window will keep removing the edge having

the smallest weight in the window, until the maximum matching within it meets

the weight-consistent property. Similarly, when WM has dropped e′, there exists no

ê, where ω(ê) ≤ ω(e′), such that M ′ = M ∪ {ê} is a weight-consistent maximum

matching. So the deleting operation will not cause any loss of candidate association

matchings as well.

With Lemma 3.2.1 and Lemma 3.2.2, it is straightforward to conclude that the

algorithm can find all maximal association subgraphs, if the subgraph induced by a

window has a unique maximum matching for every window.

3.2.3 Complexity

The algorithm visits each edge at most twice, one for adding it into the current window

while the other for removing it from the window. When an edge e is added to the

current window, a new maximum matching MW∪{e} for GW∪{e} will be searched.

This can be done by finding an augmenting path within GW∪{e} with respect to

MW [9]. The time cost for one such step is equivalent to a breadth-first search in

GW∪{e}, with time complexity O(|W |), where |W | is the number of edges in the
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window. When removing an edge e, the time cost is O(1) if e is not in the current

maximum matching MW . Otherwise, augmenting path will also be searched in the

remaining window W\{e}, with respect to the remaining matching MW\{e}. So it

costs O(|W | − 1) time. Overall, adding or dropping an edge from W triggers the

search for the maximum matching which costs O(|W |) time. For each edge, it will

be added and dropped exactly once. Therefore, the total cost for mining association

subgraphs is O(|E|2) time.

3.3 Pattern Composition

Following the identification of pairwise associations among all visual items, we propose

methods to build more complex structural patterns from pairwise associations.

3.3.1 Frequent Subgraph Mining

Intuitively, after clustering visual primitives into visual items and discovering pairwise

associations between any two visual items, we can construct a graph G = (V,E),

where the set of vertices V corresponds to all detected visual primitives in images; and

the set of edges E contains a pair (vi, vj), where vi ∈ V represents primitive fi, vj ∈ V

represents primitive fj, fi and fj are from the same image and the link l(fi, fj) belongs

to an association between the visual item of fi and the visual item of fj. Therefore, we

can further label the graph G = (V,E); that is, each vertex is labeled with the visual

item it belongs to and each edge is labeled with its corresponding association. Two

connected subgraphs G1 = (V1, E1) and G2 = (V2, E2) are isomorphic, if there exists

a one-to-one and onto mapping π from G1 to G2 such that vertex labels of π(V1)
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and vertex labels of V2 are equal, and edge labels of π(E1) and edge labels of E2 are

equal; notice that, this definition is exactly the same as the definition of identical

pattern instances introduced in Section 3.1. In this way, the problem of frequent

visual patterns mining in images becomes a problem of finding frequent subgraphs in

the labeled graph G. Frequent subgraph mining algorithms, e.g., [52, 75, 85], can be

applied to such graphs for resolving recurring patterns. Here, we briefly summarize

the general framework of frequent subgraph mining in Algorithm 2. The algorithm

stats by enumerating all frequent single edge subgraphs, i.e., pairwise associations,

and then iteratively proceeds as follows: generate all candidate size (k+1) subgraphs

by adding one additional edge connecting to each size k subgraph (function Generate);

compute their frequency by performing the subgraph isomorphism tests (function

Count); and the candidate subgraphs whose frequency is at least δ are kept for the

next level.

Algorithm 2 Frequent Subgraph Mining

1: F1 ← all frequent size-1 subgraphs in G
2: F ← F1

3: k ← 1
4: while Fk 6= ∅ do
5: Ck+1 ← Generate(Fk, δ)
6: Fk+1 ← ∅
7: for each C in Ck+1 do
8: freq ← Count(C, Ck+1)
9: if freq ≥ δ then
10: add C to Fk+1

11: end if
12: end for
13: F ← F ∪ Fk+1

14: k ← k + 1
15: end while
16: return F
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However, this approach might not be feasible for pattern mining from images:

first, it is time-consuming due to the inherent complexity of exhaustive subgraph

mining algorithms though many speed-up procedures can be applied; second, frequent

subgraph mining typically generates a large number of overlapping patterns, making

it difficult to interpret the results. A single image can have tens of thousands of

extracted visual primitives. The set of possible relations grows exponentially as the

number of primitives increasing. Therefore, in order to perform pattern mining on

images, it is crucial to address the issue on scalability while preserving the capability

of discovering dominant recurring patterns.

3.3.2 A Polynomial-time Heuristic Algorithm

We propose a heuristic method to construct frequent structural patterns based on

the pairwise associations among items. Our method aims at discovering dominant

frequent patterns, resolving their compositions of primitives and significantly reducing

the time complexity of pattern mining in large graphs.

Association Graph

In this section, we define an association matrix for every pairwise association in order

to capture association information between items. Suppose two primitive sets Iα of

item α and Iβ of item β have nα and nβ primitives respectively, and let ϕ denote

an association between α and β. Let f iα be the ith primitive in Iα and f jβ be the jth
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Figure 3.3: An example of pattern composition. The shape of a vertex represents
an item, including triangle(I1), circle(I2) and diamond(I3). The number i inside a
vertex refers to the ith primitive of the corresponding item. The pairwise associations
are represented by colored edges, blue(ϕ1), pink(ϕ2), green(ϕ3), and yellow(ϕ4). In
(a), each node represents a primitive labeled by the index of the item that it belongs
to, and frequent patterns are exhibited by frequent subgraphs in the figure. Based
on the consistent pairwise associations shown in (b), the association graph G can
be constructed as (c), where every vertex represents a visual item and every edge
represents a pairwise association. Associated with each edge is the corresponding
association matrix. The problem of finding a visual pattern is converted to the
search for a maximal path with the support no smaller than the required minimum
frequency. One maximal path in this graph is composed of the blue edge, green edge
and pink edge. Starting from I1 and ϕ1, the support of this path can be calculated
by ‖(1, 1) · Aϕ1

I1,I2 · A
ϕ3

I2,I3 · (A
ϕ2

I1,I3)
T‖1 = ‖θI1‖ = ‖(1, 1)‖1 = 2. Therefore this pattern

is supported by 2 instances. The exact composition of primitives can be recovered
through following operations: θI3 = θI1 · A

ϕ2

I1,I3 = (0, 1, 0, 1), i.e., {1, 2} in I1 connect

{2, 4} in I3 respectively; θI2 = θI3 · (A
ϕ3

I2,I3)
T = (1, 0, 1, 0), i.e., {2, 4} in I3 connect

{1, 3} in I2 respectively. Another maximal path would be obtained from the yellow
edges in (a), which is supported by 2 instances as well.

primitive in Iβ. An association matrix Aϕα,β is an nα × nβ matrix with entries

ai,j =

{
1 , l(f iα, f

j
β) ∈ ϕ;

0 , otherwise.

where l(f iα, f
j
β) is the relation between f iα and f jβ. It is easy to prove that an association

matrix Aϕβ,α = (Aϕα,β)T .

To indicate which primitives are involved in the association, we also define an

association vector θIα for an item Iα, which is a nα-dimensional binary row vector with

1’s for primitives having the association and 0’s for others. Assume ϕ is an association

between Iα and Iβ. Given the association vector θIα of item Iα, the primitives of
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Iβ that are contained in ϕ can be determined by calculating its association vector

θIβ = θIα · A
ϕ
α,β.

With association matrices, we can abstract the original graph into a much more

compact graph which is named as the association graph, G = 〈VG, EG〉. Every node in

the vertex set VG represents an item, and every edge in the edge set EG corresponds

to an association between two items and is assigned by the corresponding association

matrix. Since there might be more than one association for two visual items, the

association graph is therefore an undirected multi-graph that allows multiple edges

between two vertices.

Pattern Construction

Let eϕIi,Ij be an edge in the association graph G that represents the association ϕ

between Ii and Ij. For a path p = eϕ1
I1,I2e

ϕ2
I2,I3 · · · e

ϕm−1
Im−1,Im in G, p describes an as-

sociation pattern among items I1, I2, · · · , Im. The frequency of the pattern is the

number of its instances, determined by the support of the path p, which is defined as

the number of primitives that are involved in this pattern within each item on the

path p. Mathematically, we can calculate the association vector of Im by

θIm = θI1A
ϕ1

I1,I2A
ϕ2

I2,I3 · · · A
ϕm−1

Im−1,Im , (3.2)

and then get the support of p by support(p) = ‖θIm‖1.

Starting from an edge eϕiIi,Ij in the association graph G, such as the edge represent-

ing the most frequent association, we extend this edge into a maximum path whose

support is greater than the required minimum frequency of a pattern. Initiating with
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p(1) = eϕ1
I1,I2 , the algorithm gives a path of length i, p(i) = eϕ1

I1,I2e
ϕ2
I2,I3 · · · e

ϕi
Ii,Ii+1

at the

i-th step. We can compute the association vector of item Ii+1 for this pattern, θIi+1

using Equation (3.2) by initiating θI1 as 1, a row vector with all the entries of 1. For

every unvisited edge e
ϕi+1

Ii+1,Ij that is incident from the vertex of Ii+1, we calculate the

1-norm
∥∥∥θIi+1

· Aϕi+1

Ii+1,Ij

∥∥∥
1
, which is the resulted support if e

ϕi+1
Ii+1,Ij is appended to p(i).

The algorithm then constructs p(i+1) by greedily picking an unvisited edge with the

largest value of resulted supports and appending it to p(i).

To extract dominant patterns from G, the process is similar to a depth-first tra-

verse of all the edges instead of vertices. A priority queue is maintained to provide

the next “best” edge as the starting edge based on their support. Once a pattern is

found, all edges contained in the path will be removed from the queue. The algorithm

will continue until the queue becomes empty. An example of this composition process

is shown in Figure 3.3.

Complexity

Regarding the computational complexity, the algorithm traverses all the edges in EG

to compose a pattern in the worst case, with a time cost of O(|VG| + |EG|). Such

composing procedures need to be performed at most |EG| times. Therefore the time

complexity of the pattern composition is (|EG|2 + |VG||EG|).

The proposed pattern composition algorithm significantly improves the complex-

ity by reducing

1. Scale of graph vertex set: The vertex set of the association graph, VG, is
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the set of all visual items, rather than the set of all primitives;

2. Scale of graph edge set: The edge set of the association graph, EG, conse-

quently becomes the set of all pairwise associations, rather than the set of all

primitive-primitive relations;

3. Complexity: The time complexity of the algorithm is polynomial to the size

of the vertex set and the edge set, instead of exponential.

The exact primitive structures are obtained simultaneously through the operations

on association vectors/matrices.

3.4 Segmentation of Frequent Occurring Patterns from Images

Given the extracted frequent appearing visual patterns, one trivial segmentation

method is to use the bounding box or convex hull of the key features that make

up the visual patterns. However, this is unlikely to achieve satisfactory results for

complex shapes.

We define “foreground” as a recurring target object, and “background” as the

rest unrelated image regions. Foreground-background segmentation is equivalent to

computing an optimal binary labeling map Zi for image Xi, where each element

zi(p) ∈ {0, 1} indicates whether pixel p ∈ Xi belongs to foreground (zi(p) = 1)

or to background (zi(p) = 0); that is the binary Markov Random Field (MRF)

minimization problem. However, segmenting every pattern instance from all images

simultaneously needs to optimize a system with a huge number of unknowns, i.e.,

the total number of pixels in the image dataset. In order to make this problem
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tractable, we focus on segmenting one image at a time using information received from

the remaining images. Our approach starts from establishing dense correspondences

between any pair of images. The next step computes a cost (color variance) map

Ci for image Xi with the help of estimated dense correspondences between Xi and

any other image. It is reasonable to expect that pixels capturing the same portion

of visual patterns are visually consistent, i.e., with low color variance; in contrast,

the color variance of the pixels that come from different backdrops is usually high.

Incorporating this cue, we then formulate an MRF energy minimization framework to

segment pattern instances. Finally, we adopt the well-known graph-cut approach [11]

to solve the problem.

3.4.1 Homography-based Dense Correspondences Establishment

When the target recurring object is planar or its depth variation is small compared

to the distance to the camera’s center of projection, the target object can be approx-

imately modeled by a planar surface. We can simply use homography transformation

to represent the dense correspondences between the instances of the target object

documented in different images. Given images Xi and Xj, suppose the pattern in-

stance Pi ⊂ Xi and Pj ⊂ Xj, we can estimate the homography Hij through the SIFT

features only around Pi and Pj without searching the entire image space. The out-

liers can be removed by RANSAC [25] on a relatively small portion of image features.

In this way, we can compute the dense correspondences between any pair of images

Xi and Xj. To avoid the exhaustive pair-wise alignments, we can first randomly

select a reference image Xr, and then find the correspondences from image Xr to
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Xj given Hjr = H−1rj . Thus, the transformation from Xi to Xj can be computed as

Hij = HrjHir = HrjH
−1
ri . In practice, performing (n − 1) homography estimations

from one reference image, where n is the number of images, is sufficient to get all

dense correspondences between any pair of images.

3.4.2 Variance Map Generation

Given an image Xi and a set of correspondences between Xi and any other image,

we then propose to generate a cost map Ci, where each element ci(pi) corresponds to

visual dissimilarity measure of the series consisting of pixel pi in image Xi and its

matched pixels in other images.

To compute the cost ci(pi) of pixel pi in image Xi, suppose we find pi’s corre-

spondences p1 in image X1, p2 in image X2, and up to pm in image Xm; we can

simply compute ci(pi) as the color variance of the series:

ci(pi) = Var (Xi(pi), X1(p1), · · ·Xm(pm)) , (3.3)

where Xj(pj)1≤j≤m is the color of the pixel pj in image Xj. However, to be more

robust to image noise and matching errors, we use the approximate matching strategy

similar to [53] to compute Ci, that is instead of selecting pi’s exact matched pixel pj

in image Xj, we search the pj’s neighboring pixel qj, where color Xj(qj) is closest

to the reference color Xi(pi), and efficiently compute the color variance in a greedy

manner as:

qj = arg min
qj∈N(pj)

|Xj(qj)−Xi(pi)| , j 6= i, (3.4)

ci(pi) = Var (Xi(pi), X1(q1), · · · , Xm(qm)) , (3.5)

41



where N(pj) represents a search window centered at pixel pj in image Xj with the

size of w, and in our experiments, we typically set w = 5 × 5. This procedure is

illustrated in Figure 3.4.

Image j

Image 1

…

p

p1q1

p2

q2
pm(qm)

Image 2 Image m

cj (p)=Var(                )…
p q1 q2 qm…

Figure 3.4: An illustration to compute the color variance ci(pi). Suppose pixel pi
finds its correspondences p1 in image X1, and up to pm in image Xm, and p1’s
neighboring pixel q1 has the smallest color difference with pi and so on and so forth;
then the cost ci(pi) is the variance of the color values of {pi,q1,q2 · · ·qm}.

3.4.3 Incorporating Visual Cues

Given a variance map Ci of image Xi, we can formulate the variance map Ci as a cost

function V into the data term defined in Eq. 3.6:

V (zi(p)) =

{
exp(−ci(p)/αb) if zi(p) = 0,
1− exp(−ci(p)/αf ) if zi(p) = 1.

(3.6)

The explanation of Eq. 3.6 is that if the color variance ci(p) is small, which implies

that the pixel p in image Ii finds visually consistent matches in the rest of images, it

should be considered as foreground (zi(p) = 1). On the contrary, a large color variance

42



ci(p) indicates that pixel p fails to find visually consistent matches. Therefore, it

should be labeled as background (zi(p) = 0).

In addition, we can also take advantage of color information to increase the ro-

bustness of segmentation. In the variance map, the color pixels with very low variance

can be thought as the seed pixels for foreground while the color pixels with a very

high variance are regarded as background seeds. Here, the foreground color seeds

F are the color values of the pixels whose variances are less than 0.1 percentile in

Ci. Similarly, the background color seeds B are the color values of the pixels whose

variances are greater than 99th percentile in Ci. We further cluster the foreground

color seeds F into 5 clusters using k-means, and denote the foreground clusters as

F . Similarly, we cluster the background color seeds B into 50 clusters and denote

the background clusters as B. The function min(Xi(p),F) is the normalized distance

from the color of pixel p to the nearest cluster center in F and so is min(Xi(p),B).

The color similarity measure can be defined as

Θ(zi(p)) =

{
min(Xi(p),B) if zi(p) = 0,
min(Xi(p),F) if zi(p) = 1.

(3.7)

The intuition of Eq. 3.7 is that if the color of pixel p is similar to the foreground

pixels, p is likely to be labeled as foreground as well. This assumption is widely used

in the interactive segmentation methods.

In our experiments, suppose vf is set to the 0.1 percentile in the variance map

Ci and vb is set to the 99th percentile in Ci, we set αf = 7 × vf and αb = 0.5 × vb

in Eq. 3.6, which would make the data cost V (zi(p) = 1) < 0.15 with the variance

ci(p) = vf and V (zi(p) = 0) < 0.15 with the variance ci(p) = vb.
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3.4.4 Energy Minimization

Now, we present the complete binary labeling MRF model, and use the graph-cut al-

gorithm [11] to minimize the following energy functional with smoothness constraints

to segment the target object:

Z∗i = arg min
Zi

(Ed + γEs), (3.8)

where Ed is the data term, Es is the smoothness term and γ balances the relative

importance. Ed is the linear combination of the three cost functions defined as

Ed =
∑
p∈Xi

(1− λ)V (zi(p)) + λΘ(zi(p)), (3.9)

where V , and Θ are defined in Eq. 3.6 and Eq. 3.7, respectively. The smoothness

term is defined as

Es =
∑

p,q∈Xi
‖p−q‖∞=1

a(p,q)δ(zi(p) 6= zi(q)), (3.10)

which enforces the neighboring pixels should be assigned to the same label except

at the object boundaries, where normally a(p,q) is large when pixels p and q are

visually similar and a(p,q) is close to zero when pixels p and q look very different:

a(p,q) = exp
(
− β‖Xi(p)−Xi(q)‖∞

)
; (3.11)

where in all of our experiments we set β = 1/20, γ = 0.2 in Eq. 3.8 and λ = 0.3 in

Eq. 3.9.

3.5 Experiments

We first evaluate the efficiency and effectiveness of the proposed pairwise association

mining algorithm and the pattern composition algorithm through synthetic experi-
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ments. Next, we demonstrate the utility of the proposed algorithms for unsupervised

learning of visual semantics from both single images and two image datasets with re-

peated patterns. Given the extensive amount of labeling required in figures here, we

rely on color to differentiate different groups and depict composite patterns. Please

refer to the electronic PDF copy for better viewing figures in color with magnification.

3.5.1 Evaluation on Synthetic Datasets

We evaluate the efficiency and effectiveness of the proposed pairwise association min-

ing algorithm and the pattern composition algorithm through synthetic experiments.

Pairwise Association

In this experiment, we generated two items for every dataset and applied the pairwise

association mining algorithm. Each item consisted of a set of primitives, and one or

more associations were embedded within a background of random relations between

primitives from different items. The first dataset is to show how the algorithm works

when discovering a pairwise association. 20 primitives were included in each item,

therefore 400 edges (relations) were generated in total. An association that consisted

of 15 relations was embedded. A sliding window dynamically grows or shrinks on

the ordered edge set and a maximum matching is found in each step. Figure 3.5(a)

shows the variations of MSE of the weights of edges in the maximum matchings

found at every step, where the horizontal axis represents the position of the window.

Figure 3.5(b) plots the number of edges in each maximum matching (size of each

matching) found at every step. One candidate (the largest) association is located
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(a) (b)

Figure 3.5: An illustration of the pairwise algorithm for finding a single association.
(a) shows the change of MSE of the maximum matchings found at every step when
the sliding window moves through a sorted edge list. (b) shows the corresponding
sizes of the maximum matchings.
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Figure 3.6: Experimental results on synthetic datasets with different scales.

around the 100th edge, where the MSE is small and the size of the maximum matching

reaches a local peak. This association consists of 15 edges, which is the same as the

ground truth. Generally, a matching would be indicated as an association when the

size reaches a local peak and when the MSE remains small. Note that, in Figure 3.5,

the MSE of some other regions is also low, but their sizes are too small to be indicated

as an association.

Figure 3.6 shows the scalability of the algorithm. The experiment was car-

ried out on 5 datasets with different sizes of items. The number of primitives in
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each item varied from 100 to 500, and the number of edges ranged from 10, 000 to

250, 000 accordingly. For every dataset, two associations were embedded between

the pair of items, and the size of each association was one third of the size of the

item. Figure 3.6(a) shows the running time of the algorithm, which is consistent

with the analytical conclusion that the time complexity for mining pairwise associ-

ations is polynomial. Figure 3.6(b) presents the sensitivity of the obtained associ-

ations when the size of items is gradually increased. The sensitivity is denoted as

#true positives
#true instances of embedded association

. More than 95% of the embedded associa-

tions can be resolved in all datasets.

Next, we evaluated the performance of our algorithm when the number of asso-

ciations varied. We incrementally embedded up to 5 associations into the dataset in

which there were 500 primitives in each item. The size of every embedded association

was 100. As shown in Figure 3.7(a), the running time of the algorithm is roughly the

same despite the change of the number of associations, since our algorithm is almost

invariant to the number of associations. For every association embedded, more than

95% of relations are always resolved, according to Figure 3.7(b), demonstrating its

ability to identify multiple associations with two items.

Pattern Composition

To examine the effectiveness of the pattern composition algorithm, a synthetic 2D

scene was constructed, where the locations and orientations of primitives were ran-

domly generated and several patterns were also embedded with random orientations.

In Figure 3.8, each column consists of a group of experimental results on a synthetic
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Figure 3.7: Experimental results on synthetic datasets with a different number of
associations.

2D scene. The figures in the first row are the original scenes. The figures in the

second row show the embedded ground-truth patterns, where identical pattern in-

stances are colored the same. There were two different patterns in the first scene (red

and green), each of which consisted of 2 items. In the second scene, every pattern

instance was composed of 3 primitives. The third scene was more complicated with

4 primitives in the green pattern. The third row shows the results after applying the

pairwise association mining algorithm on each scene, and the relations belonging to

the same pairwise association are colored the same. Primitives with the same shapes

are considered to be from the same item. There were respectively 5, 6 and 6 different

associations discovered in each scene. Afterwards, both the pattern composition algo-

rithm and the subgraph mining algorithm were applied to extract the set of maximal

patterns.

The results of this extraction are respectively shown on the fourth and fifth line.

The pattern composition algorithm is able to identify almost exactly the same set of

embedded patterns, although there might be some missing edges.

The method of subgraph mining can detect frequently occurring subgraphs as well,
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Algorithm scene 1 scene 2 scene 3
Pattern Composition 0.049788sec 0.042806sec 0.048114sec

Subgraph Mining 0.489734sec 0.527052sec 0.384014sec

Figure 3.8: Experimental results on three sets of synthetic 2D scenes.

which provide possible compositions of patterns. While subgraph mining algorithm

is also able to discover all embedded patterns, it performed one order of magnitude

slower than our pattern composition algorithm — the run-time comparison is below
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the figures representing each scene. We expect the pattern composition algorithm’s

speed to increase with an experiment of a larger scale. Furthermore, the subgraph

mining algorithm may generate far more patterns than what have been embedded,

making it difficult to interpret.

With the minimum frequency set as 2, there were 10, 89 and 31 patterns found in

each scene. In contrast, the number of patterns resulting from the pattern composi-

tion algorithm were respectively, 9, 7 and 9. The multiple colors of the edges in the

same pattern instances are due to redundant and overlapping subgraphs discovered.

3.5.2 Evaluation on Real Images

Repeated visual patterns can be found in one single image where multiple copies of

patterns are embedded. Besides the simple pencil example as shown in Figure 3.2, our

first experiment tested the algorithm on the section of shelves in the grocery store.

Due to the space limitation, we only show a small segment of long panorama image [2]

in Figure 3.9(a). Repeated patterns representing different snack boxes are present in

the image but their positions are random. Our goal is to discover the set of features

that can represent or summarize each pattern in the image. There are totally 14, 288

SIFT features extracted in the original image shown Figure 3.9(a). These features are

further clustered into 1, 000 clusters using k-means. Associations are then searched

between every pair of feature clusters and are used to label the edges between features

in the image. The heuristic pattern composition is then applied to discover complex

patterns with consistent structural relationships according to the method detailed in

Section 3.3 as shown in Figure 3.9 (b)(c). Please note that most of the discovered
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patterns in each dataset are strong patterns, or near-strong patterns (almost cliques)

meaning that there exists all (major) pair-wise associations among clusters within

the patterns.

One thing worth mentioning is that our algorithm is able to automatically discover

the global occurrence of patterns independent of its spatial locations and neighbor-

hood. For example, the snack box “CHEEZE IT” appears at several locations in the

image, but they are able to be identified due to the fact that they have consistent

structural patterns. Approaches based on the spatial random partition technique [123]

may find some of the patterns, but there is no guarantee to detect and locate the re-

peated subimages in each retrieval. However, using our approach, we can successfully

and efficiently find most of the common image parts.

Comparison between Pattern Composition Algorithms We test the both pat-

tern composition algorithms, the frequent subgraph mining and the polynomial-time

heuristic methods proposed in Section 3.3 for the grocery image (Figure 3.9) on a

single core working at 2.53GHz; the running time was 33 minutes for the frequent

subgraph mining algorithm, but only 7 seconds for the heuristic approach. Further-

more, frequent subgraph mining outputs 30, 653 visual patterns, most of them are

overlapped and this large number of patterns are almost impossible to visualize and

interpret; however, the heuristic approach only yields 5 patterns as shown in Fig-

ure 3.9 (c).

Feature detection on image may miss pattern components and lead to incomplete-

ness of associations among visual items. For example, a complete pattern of “Wheat

Thins” (the green-colored pattern) comprises a clique of 4 features, such as the left-

51



(a)

(b)

support=3 support=5 support=7 support=15 support=4

(c)

Figure 3.9: Visual patterns discovered in the grocery image. (a) is the input image.
(b) shows the frequent visual patterns marked in different colors according to the
actual items that they belong for better viewing. (c) shows some patterns with
magnification and the corresponding support values.
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most instance on the top shelf. The rest instances on the top shelf all miss the top

feature and its associations. To capture the homogeneity of the pattern structure,

our proposed algorithm searches among all instances for the common path (instead

of a maximal subgraph) that has the highest support (Figure 3.9 (c)). Features and

associations specific to each instance are then used to extend the common path into

a subgraph that represents the pattern instance.

Our next experiment concerns repeated patterns in buildings. Recent work on

identifying patterns in images typically find only simple and highly repetitive pat-

terns [111]. However, as shown in Figure 3.10 (a), structures such as windows, doors,

and sculptures can be versatile and vary greatly in lengths and shapes. The ap-

proach [111] will fail in this images. Our approach however is able to detect almost

all repeated structural patterns in the building facade as shown in Figure 3.10 (b)(c).

Independent of spatial proximity, our approach is able to discover long associations

as shown in the repeated long windows in the middle part of the image (the red and

blue patterns (the 3rd one in Figure 3.10 (c))).

For both of these images, our method is capable of extracting almost all of the

embedded structural patterns without any prior knowledge of the locations, the sizes

or the number of patterns.

Besides one single image, our method can be easily adapted to mine patterns

across multiple images. We show the visual pattern mining and segmentation results

on an image dataset consisting of 11 images with 26 Starbucks logos embedded under

various pose and illumination changes in Figure 3.11 and Figure 3.12. Our frequent

visual pattern mining algorithm can successfully detect 22 visual pattern instances; all
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support=5 support=3 support=4 support=5

(c)

Figure 3.10: Visual patterns discovered in an image of a building facade. (a) is the
input image. (b) shows the frequent visual patterns in different colors. (c) highlights
the patterns with magnification and reports the corresponding support values.
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Figure 3.11: Discovered Visual patterns and segmentation of the Starbucks Logo
dataset. The 1st and 4th columns consist of original images overlaid by the detected
visual patterns marked in red, the 2nd and 5th columns visualize the corresponding
variance maps and the 3rd and 6th columns show the corresponding segmentation.

of them correspond to the relationship among some visual primitives detected on the

siren embedded in the Starbucks Logos. Our algorithm is able to automatically detect

the meaningful repeated structural patterns independent of their spatial locations,

scales, orientation variations and lighting changes.

As the Starbucks logo is planar for most cases, we can estimate homography

transformation between visual primitives around the detected pattern instances and

the resultant variance value is consistently low within the foreground, therefore we

can get satisfactory segmentation result. Note that, if an image Xi contains multiple
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Figure 3.12: Discovered Visual patterns and segmentation of the Starbucks Logo
dataset (continue). The left image is the original image overlaid by the same detected
pattern as Figure 3.11, the middle image visualizes its variance map and the right
one is the segmentation result.

copies of the same pattern, we simply create multiple copies of Xi, each of which cor-

responds to one and only one pattern instance. We can achieve overall segmentation

accuracy of 97.86± 1.72% on the whole dataset. Our algorithm is able to automati-

cally detect and segment the meaningful repeated structural patterns independent of

their spatial locations, scales, orientation variations and lighting changes. Moreover,

identifying the frequent visual patterns makes a good initial guess on the location of

the target object of interests, which improves the homography estimation accuracy

and facilitate high quality variance map generation. Last but not least, with the help

of multiple pattern instances in images, the illumination bias in a small portion of

images is also reduced and we can still segment the image under different illumination

conditions without re-estimating its global appearance model.

Last, we demonstrate the results by applying the algorithm on the face dataset

from the Caltech-101 database [54] (435 images of 23 persons). Figure 3.13 shows
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a few examples of the discovered visual patterns associated with the precision1 and

recall2 scores. The face dataset is more challenging due to the weak textures and

individual difference of human faces. Consequentially, the repeatability of SIFT fea-

tures is quite limited and the ambiguity of SIFT descriptor is higher than the above

shown experiments. Each pattern has high precision means that it is important to

capture semantics in face. Still, the recall for each of the pattern is not very high

especially for more complicated structural patterns such as the pattern shown in the

fourth row. This is because the chance of missing features is too high to support the

complex patterns.

Among all discovered patterns, each contains a long-range structural pattern and

indeed carries meaningful semantics. For example, the first row contains a pattern

composed by forehead and mouth. The second row represents a pattern which consists

of forehead and two eyes. The third row depicts a pattern linking forehead, two eyes

and mouth. The fourth row shows the pattern with forehead, nose, a left eye and

mouth; and notice that there exist a clique linking a left eye, nose and mouth together.

Therefore, our method is able to detect more robust long-range patterns comparing

to the results demonstrated in [124], where only local patterns can be detected such

as features localized at eye corners. We also demonstrate both of the qualitative and

quantitative results on segmentation of the face database in Figure 3.14.

1precision = ]positive detects/(]positive detects + ]false detects)
2recall = ]positive detects/(]positive detects + ]miss detects)
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Figure 3.13: Visual patterns discovered in the face dataset. Each row shows the same
pattern across different images and the corresponding precision and recall scores are
reported in the last column.

Comparison with Co-segmentation

By courtesy of the authors of [40], we used their implementation and the parameters

recommended in [40] to generate the co-segmentation results as shown in Figure 3.15.

When the foreground color bears great similarity with the background color, e.g.,

the first and second rows in Figure 3.15, it cannot distinguish the foreground and

background well. In addition, when the illumination conditions between the image

pair are quite different, e.g., the last row in Figure 3.15, co-segmentation may fail to

get meaningful foreground.
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Figure 3.14: Segmentation on the face dataset. The 1st and 4th columns consist of
original images, the 2nd and 5th columns visualize the corresponding variance maps
and the 3rd and 6th columns show the corresponding segmentation. The overall
segmentation accuracy is 81.05± 8.14%.

A Failed Segmentation Case

The fundamental assumption we make is that the same visual pattern is embedded on

different backdrops. In Figure 3.16, we present a case in which there is no background

at all. Even though the visual pattern (“RITZ” snack box in Figure 3.9 (b)) is

correctly detected, suppose we expect to only cut out the 3rd “RITZ” snack box in the

bottom row of Figure 3.9 (a), due to those “RITZ” snack boxes are put together, the

same offset (homography transformation) would also transfer nearby “RITZ” snack

boxes accordingly, so that the resultant variance values on other “RITZ” snack boxes
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Figure 3.15: Co-segmentation [40]: each row corresponds to an image pair and their
segmentation.

are also quite low, and our algorithm is unable to produce a satisfactory segmentation.

3.6 Summary

In this chapter, we present a novel framework to find frequent high-order structural

patterns from unstructured images. Compared to previous visual pattern mining

approaches that translate an image into a transactional database based on some

heuristic rules (such as spatial proximity), we regard spatial coherence as the major

criterion to link visual items or primitives to form meaningful patterns. Toward

that design goal, we develop a set of novel and efficient algorithms to find optimal
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Figure 3.16: A Failed case: the left image visualizes a portion of the variance map tar-
geted at the 3rd “RITZ” snack box in Figure 3.9 and the right one is the segmentation
where nearby “RITZ” snack boxes are also labeled as foreground.

pair-wise matches among all detected visual items. This allows us to find visual

patterns of all sizes, from small ones close by to large ones that are relatively far

apart. As demonstrated by the results, our approach is robust in finding meaningful

visual patterns from a variety of images. We also present a novel framework to

segment frequent structural patterns from a large collection of images. Compared to

the traditional segmentation approaches that involve user interactions, we utilize the

redundant information brought by the images themselves to segment the re-occurring

visual patterns in a fully automatic and supervised manner. To approach this goal,

we first established dense correspondences among pattern instances, computed a per-

pixel cost, and finally extracted the target object. As demonstrated by the results,

our approach is robust in segmenting meaningful frequent structural visual patterns

from a variety of images.
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Chapter 4 Image Segmentation based on Internet Photo Collections

With the seminal work by Snavely et al [99] that used Internet photo collections

(IPCs) for 3D reconstruction and visualization, many image editing operations have

been developed to unlock the rich information contained in IPCs. Among these image

editing techniques, one important prerequisite is the segmentation of the foreground.

This chapter presents an automatic image segmentation technique for a personal

photo taken at a landmark location with the help of an IPC surveying roughly the

same place. As demonstrated in Figure 4.1, by using the rich IPC taken at Notre-

Dame, the foreground of a casual cellphone image can be automatically segmented

out, which can further help to turn the photo into a stereoscopic image with minimal

user interaction [125] or even remove the entire foreground and replace with the

background Notre-Dame (Internet-based Inpainting [115]).

Figure 4.1: Example of Automatic Image Segmentation based on IPC. From left to
right: samples of IPC of Notre-Dame, the original image, foreground segmentation
and stereoscopic image conversion.
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4.1 3D Reconstruction from Internet Photo Collections and Personal

Photo Registration

For IPCs that span a unique landmark, we reconstruct the camera locations using

Bundler [99], which is an incremental structure-from-motion pipeline. We increase

the density of the obtained point cloud by using PMVS [30]. Given a new image

Q of one’s personal photo, in order to perform image enhancement we first need to

register Q to the reconstructed 3D landmark model M. This can be considered as

performing an incremental update of the reconstructed model.

4.2 Segmentation of Foreground Objects based on Internet Photo Col-

lections

As opposed to interactive segmentation methods that rely on user interaction to learn

the foreground and background appearance models, our method can acquire training

data automatically based on the Internet photo collection. Similar to Section 3.4, the

fundamental assumption we make here is that a pixel belonging to the background

landmark is likely to be photometrically consistent across other views, whereas a

foreground pixel usually is not.

Our method first projects the 3D model M onto the image Q denoted by m.

Due to the power of large scale IPCs, we found that often times we have numerous

images from nearby camera poses. When selecting from the set S of these images,

we favor images that have not only similar camera location and orientation, but also

similar image condition (e.g., color distribution) to image Q. Suppose a visible 2D
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point p ∈ m is projected from the 3D point P ∈ M and we denote its neighboring

3D point set as N(P ) = {P ′ : ‖P − P ′‖2 ≤ 3 · l}, where l is the average spacing

between two closest 3D points in M. We then compute NCC(p, Ii), the normalized

cross correlation of the color values of the projection of N(P ) on the image Q and

the projection on an image Ii ∈ S. We consider p is consistent between the image

Q and the image Ii if NCC(p, Ii) ≥ 0.6 or p is inconsistent if NCC(p, Ii) ≤ 0.2. If

NCC(p, Ii) is low because the projection of N(P ) lies on occlusion boundary, we still

treat p as inconsistent between image Q and Ii. If p is consistent with the majority,

i.e., over 80% of total number of images in S, p is classified into the background seed

set B; similarly, if p is inconsistent with majority, p is classified into the foreground

seed set F .

Figure 4.2: Segmentation results: (top left) the original image superimposed with the
bounding box prior for Grabcut, (top right) red dots for background color seeds and
blue dots for foreground color seeds, (bottom left) the result of Grabcut, (bottom
right) the result of our automatic approach.
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We revise the initial setup of Grabcut [86] framework (similar to the method

used in Section 3.4) in two aspects: (1) we use automatically generated training

data F and B to initially build the Gaussian Mixture Models for foreground and

background instead of user-provided bounding box; (2) we add a constant penalty

to the unary term of each pixel p ∈ F (or p ∈ B) if p is labeled as background (or

foreground) at the first run. We then perform the iterative energy minimization from

Grabcut [86] to compute the segmentation. Figure 4.2 and Figure 4.3 compare fully

automatic segmentation results from our method with Grabcut. Due to our precise

color seeds used to train the appearance models for both foreground and background,

our automatic approach achieves more accurate and meaningful segmentation than

Grabcut. More results are shown in the experiments.

Figure 4.3: Segmentation results for an image taken in a cluttered scene: from left to
right, the original image superimposed with the bounding box prior for Grabcut, the
result of Grabcut, the result of our automatic approach and interactively separated
different (color coded) foreground objects.
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Figure 4.4: Segmentation results of Berlin Dom dataset. Each column shows the
results for one personal photo. From top to bottom, the original image superimposed
with the bounding box prior for Grabcut, foreground and background color seeds (red
for background and blue for foreground), the result of our automatic approach and
the result of Grabcut.

4.3 Experiments

We first demonstrate our automatic segmentation results from four scenes and com-

pare them against Grabcut [86] with accurate user-provided bounding box priors as

shown in Figure 4.4, Figure 4.5 and Figure 4.6. Thanks to the precise color distribu-
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Figure 4.5: Segmentation results of Trevi Fountain and the Great Sphinx of Giza
datasets. Each column shows the results for one personal photo. From top to bottom,
the original image superimposed with the bounding box prior for Grabcut, foreground
and background color seeds (red for background and blue for foreground), the result
of our automatic approach and the result of Grabcut.

tion of the seeds automatically generated by visual consistency check based on IPC,

our automatic segmentation approach outperforms the state-of-the-art Grabcut [86]

approach.

Next, we conducted a user study to evaluate how realistic our automatic segmen-

tation results are compared to the processing results from the state-of-the-art image

editing tools, e.g., Photoshop. Four Photoshop experts were asked to process four

images for segmentation as shown in Figure 4.7. Based on the design goal of our

system, we hypothesize that using our system will be able to complete the segmen-

tation significantly quicker than using Photoshop, the state-of-the-art image editing
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Figure 4.6: Segmentation results of Notre-Dame dataset. Each column shows the
results for one personal photo. From top to bottom, the original image superimposed
with the bounding box prior for Grabcut, foreground and background color seeds (red
for background and blue for foreground), the result of our automatic approach and
the result of Grabcut.

tool. The average time required to complete the foreground segmentation task is 34

seconds compared to 140 seconds using Photoshop. ANOVA tests confirm that the

time differences are statistical significant (F = 10.87, p − value = 0.008 < 0.01),

which validates our hypothesis.
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Figure 4.7: Comparison with Photoshop. From left to right: original images, our
results and Photoshop results.

Twenty-five users are asked to compare the Photoshop segmentation results with

our results on the same images. To avoid bias, images from two methods are ran-

domly ordered and users do not know which images come from which method. Users

were required to select one of five preference choices: (1) Image 1 is much better than

Image 2; (2) Image 1 is slightly better than Image 2; (3) Image 1 is equal to Image

69



2; (4) Image 1 is slightly worse than Image 2; and (5) Image 1 is much worse than

Image 2. The user study shows that 6% thought ours are much better than Pho-

toshop’s; 22% thought ours are slightly better than Photoshop’s; 25% thought ours

are equal to Photoshop’s; 24% thought ours are slightly worse than Photoshop’s and

23% thought ours are much worse than Photoshop’s. For this quantitative analysis,

we can see that our results achieves comparable quality as Photoshop. It is worth to

point out that if taking Photoshop segmentation as the ground truth, our automatic

foreground segmentation achieves an average error rate of 3% , with minimum error

rate of 0.7% and maximum error rate of 8.7% typically due to multiple foreground

layers clutters, for example, Figure 4.3 and the last row in Figure 4.7. This indicates

that our approach is capable of automatically producing comparable foreground seg-

mentation to handtuned foreground segmentation maps in Photoshop. The error rate

is computed as the percentage of mislabeled pixels. Fully automatic image segmenta-

tion is a challenging task. As shown in Figure 4.3, our automatic approach sometimes

is not sufficient to further separate foreground layers. Therefore, we still require user

interaction to separate the foreground layers in a clutter scene.

4.4 Summary

In this chapter, we approach the automatic photo segmentation from a novel direction

– using IPCs. Our work leverages the 3D background models reconstructed from

IPCs of the same landmark. With the rich information from large scale IPCs, we

believe that by augmenting one’s personal photo with depth information, as well as

the surrounding appearance information, a number of interesting photo enhancement
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can be achieved. The Application that we have explored in this chapter is automatic

image segmentation which can further facilitate stereoscopic view synthesis [125] and

image impainting [115].
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Chapter 5 Semantic Segmentation and Reconstruction of Residential

Scenes from LiDAR Data

In this chapter, I present a comprehensive system to semantically segment point

clouds and reconstruct detailed 3D models. Starting with LiDAR data with registered

color images, we first segment the unorganized 3D points into distinctive categories

including houses, plants, street lights, etc. Then for each category we develop unique

solutions to reconstruct its 3D model, taking advantage of the prior information

about this particular category. For example, common objects, such as street lights,

are replaced by similar 3D models found on the Internet. Plants are modeled with

billboard techniques, which are known to be visually convincing. Special emphasis

is put on the reconstruction of houses. The typical properties of buildings, such as

piece-wise planar structures, convexity, and symmetry, are used to develop an efficient

reconstruction algorithm that can deal with incomplete data. The outcome of our

system is a set of visually complete 3D models consisting of common static objects in

an urban scene, including not only houses, but also plants, street lights, mailboxes,

etc. Each object has its own semantic labeling. The overview of the pipeline is shown

in Figure 5.1.

The primary target of our system is residential areas. Many of existing modeling

approaches, in particular those generating models with high details and rich tex-

tures, deal almost exclusively with multiple-story or high-rise buildings (e.g. [76,79]).

These buildings are typically found in downtown and highly populated urban areas.
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Figure 5.1: The pipeline of semantic segmentation and reconstruction of LiDAR point
clouds. From left to right: (a) semantically labeled 3D point cloud; (b) reconstructed
objects using category-specific methods, including billboard trees, replaced common
objects, and a building. The color-code on the building shows recognized different
building parts; (c) textured 3D models on a ground plane, and (d) an overview of an
automatically reconstructed large-scale scene.

The structural details are repetitive and regular, from which user-defined grammar

rules can be used to regularize the reconstruction to generate clean output. This

kind of repetition is not available in residential areas. In addition, thanks to popular

modeling tools such as Google Sketchup, many of these metropolitan areas already

have 3D models. Admittedly, those low-rise houses in suburban/residiental areas are

less glamorous to work with from a visualization standpoint, but they are equally

important from a simulation or city planning standpoint since they are literally ev-

erywhere. For these areas, automation is important because of the large scale. Prior

approaches to reconstruct these areas are developed with aerial data [21, 55], which

produce no details below roof. The system presented in this chapter fills the void of

automatic decomposition and reconstruction of residential areas from ground-based

LiDAR data.

The data is acquired by a mobile LiDAR scanning platform as shown in Fig-

ure 5.2 which consists of two LiDAR sensor heads (Optech Lynx Mobile Mapper

V200), multi-channel GPS, high-precision inertial measurement unit (IMU), distance
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Figure 5.2: A high-quality mobile LiDAR scanning platform.

measurement instrument (DMI), and a high-resolution panoramic video camera (La-

dybug 3). The scanning trajectory is also recorded with GPS and IMU. A 3D point

is documented in the Universal Transverse Mercator (UTM) coordinate system with

easting and northing and elevation reading. The images and point clouds from LiDAR

sensors are roughly registered and geo-referenced.

5.1 Semantic Segmentation on Point Clouds

We define the following categories in our current implementation: houses, plants,

mailboxes, street lights, waste bins, cars and ground, which are common objects seen

in a residential area. From our scanned data, we manually label a section as the

training data set and adopt the semantic segmentation approach similar to Zhang et

al. [126]. It should be mentioned that other alternatives such as [35] and [121] can

also be applied to perform this task.

In order to deal with our point cloud data, we have made a few changes to the
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Figure 5.3: Grouping point clouds into superpoints and super-regions. (left) Super-
points of a point cloud; (right) super-regions of the point cloud.

original method. First, we group points into superpoints, analogues to the superpixel

concept in image segmentation. We randomly start with a seed point and group

its neighbors into a superpoint based on two thresholds: the maximum number of

points and the maximum distance between points. This process repeats until all

points are processed. In our experiments, these two numbers are set to 100 and 0.3m,

respectively. Second, we use the Adaboost classifiers. Third, we introduce a new

concept called super-region to differentiate objects with similar superpoint features

but at different scales, such as houses and cars, cars and waste bins, etc. We group

superpoints by a region growing algorithm with a threshold of the angle difference

between superpoint normals; in this way, most coplanar superpoints are grouped into

a large super-region and remaining small super-regions can be further combined using

a similar grouping method based on distance as above-mentioned. Figure 5.3 shows

an example. For each super-region, we compute the following features:

• Height: the maximum height of a super-region.
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• Volume: the volume of the bounding box of a super-region.

• Area: the maximum area of the bounding box of a super-region.

• Planarity difference: the sum of difference of planarity among adjacent super-

points in one super-region.

• Length: the length between maximum and minimum superpoint height.

These additional features are added to its superpoints; together with other superpoint

features as defined in [126], the augmented feature vectors are used for training. After

the classification stage, the result is further grouped into connected components, each

with its own semantic label.

For each point set labeled as a house, it will be further segmented into differ-

ent classes, including columns, roofs and walls. The same segmentation method is

adopted with one additional superpoint feature: surrounding emptiness, which mea-

sures the number of points within a neighboring bounding box around each superpoint

center. The bounding box size is set to 0.5m, which is roughly twice the size of a

typical column. This feature is mainly used to identify columns.

5.2 Online Building Segmentation from Ground-based LiDAR Data

To further speed-up building segmentation from LiDAR data, we present an auto-

matic and efficient online algorithm to segment buildings from ground-based LiDAR

scans in urban scenes. Our main focus is to detect and segment independent build-

ings that are disconnected from each other; some examples are shown in Figure 5.4.
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Figure 5.4: Examples of independent buildings that we aim to segment. Top: a
downtown area. Bottom: houses in a suburban area. Notice that, we do not aim to
segment the connected sub-facades in the black box.

The basic idea is straightforward. As building facades are often constructed nearly

parallel to a street, by projecting a point cloud in a street view, a large dense area can

be easily detected as a candidate building. Our main contribution is to automatically

segment buildings from large scale unorganized point clouds with online performance

and without requiring any training data.

5.2.1 Overview

We focus on segmentation of buildings from ground-level LiDAR data, where both

point clouds with rich street-level details and the scanning/driving trajectory can be

obtained. We first regularly sample positions every 0.5m along the driving path P

and compute a local orthogonal coordinate system at each position p which consists
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Figure 5.5: Overview of our building segmentation system. The input is a point cloud
near a position on the driving path (a), where a virtual camera is placed viewing along
the direction (green arrow) perpendicular to the local driving direction (red arrow)
and the vector vertically up from the ground to capture the depth map (b) under
orthographic projection. We can then create a histogram (c) with the horizontal axis
corresponding to the positions sampled at every 0.5m along the driving route and
vertical axis corresponding to the number of visible foreground pixels in the box with
1m width in depth maps (e.g., the red box in (b)). A sufficiently long consecutive
subsequence where values are all above a certain threshold can be identified as shown
in the blue subsequence bounded by two green lines in (c), and the 3D points which lie
within the frustum defined by two camera positions corresponding to the endpoints of
the subsequence and their viewing directions (d) are regarded as a candidate building
(e) with color coding based on height.

of a local driving direction dp, left-viewing direction vp perpendicular to dp and the

vector vertically up from the ground. At each position p, we can efficiently load

the 3D points Xp at a roughly 50m radius. Next, we virtually place a left-viewing

camera CL
p at position p looking along the direction of vp. A right-viewing camera
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CR
p can be similarly defined looking along the direction −vp. As the techniques

applied to a left-viewing camera CL
p also work for a right-viewing camera CR

p , we only

discuss the methods to process CL
p in the followings. We render a depth map ILp by

orthographically projecting Xp onto a camera CL
p . By counting the number of visible

foreground pixels nLp in ILp at each position p, we can generate a histogram HL with

the horizontal axis corresponding to the positions and the vertical axis corresponding

to the number of visible foreground pixels. After thresholding HL, a consecutive

subsequence S in HL where values are all greater than the predefined threshold (1/4

depth map size) and span at least 6m long can be identified and the 3D points which

lie within the frustum defined by two camera positions p1 and p2 corresponding to

the endpoints of S and the viewing directions of p1 and p2 are regarded as a building

candidate. The whole processing pipeline is summarized in Figure 5.5.

5.2.2 Data Loading

The sheer amount of LiDAR data poses tremendous challenges for point cloud loading,

rendering and processing. In order to efficiently manage and process the LiDAR data,

we divide the point cloud into several 20m × 20m tiles along the UTM easting and

northing directions. Notice that, a tile only contains an unorganized list of points; we

only know the points in a tile are within the 20m×20m dimension without any other

information on the spatial relationship between points, and thus, we can still say

our input point clouds are unorganized. In our cases, the average number of points

in a tile is around 700K and the maximum number is around 5.1M. Therefore, it is

even possible to load the 5 × 5 tiled data in a 32-bit machine with single-precision
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Figure 5.6: Illustration of progressively loading tiled data. Given a position p1, our
system can load the 5×5 tiles around p1 shown in purple and blue. When it moves to
p2 in the same tile, no update is needed. However, when it moves to p3 in a different
tile, the purple tiles are deallocated and the green tiles are loaded into memory, but
the blue ones are unchanged.

(after shifting the large UTM coordinates by a global offset); in practice, loading and

processing our data, the memory never exceeds over 1.2GB.

Given a position p, we can easily get the tile Tp containing p and the neighboring

5× 5 tiles centered at Tp. Figure 5.6 demonstrates a procedure to progressively load

the tiled data as p moves along the driving path. This implies that, at each position

p, 3D points Xp at a roughly 50m radius are loaded. Though our LiDAR sensor can

support up to 200m range, in practice, we found the data captured over 40m is already

quite sparse for further modeling and rendering (see Figure 5.15). Therefore, 50m is

a safe range for efficiently processing the data without sacrificing much performance.
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5.2.3 Depth Map Rendering

At a position p, we place two virtual orthographic cameras CL
p and CR

p viewing along

vp and −vp, respectively. The view volume of a camera is set up with the coordinates

for the left and right clipping planes to −0.5m and +0.5m, respectively; the coordi-

nates for the bottom and top clipping planes to +1m and +11m, respectively; and

the coordinates for the near and far clipping planes to 0.1m and +50m, respectively.

An output depth map is rendered with the size of 20 × 200 pixels (see the red box

in Figure 5.5(b)). The parameters reflect physical properties of typical buildings and

landscapes. For example, an alley between buildings is usually at least 1m width, a

building/house is constructed a little higher than a street but 1m usually works fine

to tolerate the height difference, and a U.S. single family house is usually around 10m

high, though high-rise buildings are much higher than this.

5.2.4 Building Segmentation

At each position p, we count the number of visible foreground pixels nLp in ILp , which

reflects the number of visible 3D points in CL
p . As a position moves along the driving

path, we generate a histogram HL = {(i(p), nLp )|p ∈ P}, where i(p) represents the

integer index of p and the index set {i(p)} is consecutive, with the horizontal axis

corresponding to the positions and the vertical axis corresponding to the number of

visible foreground pixels captured at each position (see Figure 5.5(c)).

At a position p, if nLp ≤ 1000, which is less than 1/4 depth image size, we regard

CL
p as viewing an empty space or an alley between buildings. Accordingly, if a
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Figure 5.7: Illustration of checking whether the projection x′ of a 3D point x lies
in the dashed area encapsulated by the projected camera positions p′1 and p′2 and
projected viewing directions v′1 and v′2.

consecutive subsequence S = {(i(p), nLp )|nLp > 1000} ⊂ HL and |S| >= 12, which

means a camera continuously observes dense areas during a drive at least 6m long as

a camera position is sampled every 0.5m, we regard S as corresponding to a candidate

building B. (see Figure 5.5(c)(d))

Suppose i(p1) and i(p2) are the lower bound and upper bound of the indices of

S, respectively, and nLp1 , n
L
p1
≤ 1000, the building B represented by S is bounded

by two nearby alleys which are viewed by cameras placing at p1 viewing along the

direction v1, and p2 viewing along the direction v2. In order to check whether a 3D

point x ∈ X belongs to the building B, we first project x, p1, p2, v1 and v2 onto

the UTM easting-northing plane as x′, p′1, p
′
2, v

′
1 and v′2. As shown in Figure 5.7, in

order to check whether x′ lies within the dashed area encapsulated by the projected

camera positions p′1 and p′2 and projected viewing directions v′1 and v′2, we compute

the following equations: a = u · (
−−→
p′1 p

′
2×
−−→
p′1 x

′), b = u · (
−−→
p′1 x

′×v′1), c = u · (v′2×
−−→
p′2 x

′),

where u = (0, 0, 1)T . It can be easily verified that x′ is in the dashed area if a ≥ 0,
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Figure 5.8: Pictures of various building styles in chronical orders. From left to right:
(a) American Colonial styles between the 17 and 19th century; (b) Neoclassical style
(early 19th century) that reflects classic ideas of order and symmetry; (c) Victorian
house styles (late 19th century) with elaborated decorations; (d) Bungalow Styles
in the early 20th century, compact, economical and informal; (e) “Neo” house styles
(recently built homes) that borrow details with historic styles and combine them with
modern features.

b ≥ 0 and c ≥ 0 for a left camera CL
p , or a ≤ 0, b ≤ 0 and c ≤ 0 for a right camera

CR
p . In this way, all points in B can be segmented.

5.3 House Modeling

Given the segmented buildings, our next focus is automatic modeling of stand-alone

buildings, such as single-family houses in suburban areas. As shown in Figure 5.8,

there are many different building styles. Compared to high-rises in downtown, the

symmetry and repetitiveness are less dominant. This is particularly true for recently

built houses with the “neo” style that combine different historic styles with new

features. Nevertheless, we can see that even though there are many variations in

building styles, the fundamental structures are the same: a combination of convex
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blocks with tilted roofs. The variations in styles are usually manifested in terms of

construction materials, level of decorations, layout of windows, and slopes of roofs,

etc. None of them changes the underlying structural semantics of a building.

The key to our modeling pipeline is to decompose and reconstruct the segmented

building point cloud into basic blocks using a few pre-defined reconstruction con-

straints, namely, planarity, symmetry and convexity. With these basic blocks in

place, details such as columns and eaves are further extracted and processed. The

algorithm is proposed by Hui Lin and detailed in [66]. By using the planarity and

symmetry assumption, this method can successfully reconstruct complete water-tight

3D building models with sematic tags from significant incomplete and noisy LiDAR

scans.

5.4 Texture Mapping

To compute texture maps for a reconstructed building model, we first automatically

find the nearby camera views that capture the model, and then back-project the

views to the planar surfaces of the model. However, images and point clouds may

not be perfectly aligned, and a model is only approximately reconstructed. Thus,

texture maps generated from the direct back projection would produce noticeable

misalignment. In order to alleviate these errors, we propose an algorithm of content-

preserving warps inspired by [68] based on 2D-3D line correspondences. We further

fuse the multiple overlapping views using a multi-label MRF energy minimization

framework similar to [95]. Details are presented below.
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5.4.1 Back-projection

As the reconstructed model M and images are geo-referenced and the scanning tra-

jectory is also recorded, the images capturing M can be easily retrieved. In order

to compute the texture map Tp of a plane P in M from an image I, as P might be

entirely or partially occluded by other planes in M and/or nearby models (typically

two along the driving path), we need to perform a visibility test on P first. We use

the standard two-pass z-buffer algorithm: given the projection matrix of I, we render

M and nearby models and then render the plane P to get the visibility estimation

and the texture map through back-projection.

5.4.2 Content-preserving Warps based on 2D-3D Line Correspondences

The texture maps generated from the direct back projection would produce noticeable

misalignment due to the registration error and imperfect model fitting. We propose

an algorithm of content-preserving warps to generate a distorted image I ′ where 2D

edges are better aligned with 3D lines in M . Our method is inspired by [68], however,

different from point correspondences used in their method, we establish 2D-3D line

correspondences between a model M and an image I because line features are much

more stable than point features across different modalities.

We extract a set of line segments from an image I using the LSD algorithm [110].

We denote a projected 3D edge segment of M onto an image I as lM . An image

edge segment lI is matched to the model edge segment lM if they have short distance

(less than 20 pixels), small angle (less than 15◦), similar length (the longer one is no
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more than twice the length of the shorter one), and sufficient overlapping (at least

half of the shorter one can be projected onto the other segment). In order to prune

the wrong line matches, one observation is that the larger the model plane is, the

more likely line matches can be found. Therefore, we sort the model planes according

to plane size in a descending order, and iteratively apply robust planar homography

fitting algorithm based on RANSAC [25] to prune wrong line matches for each model

plane, so that model edges from the large planes find their matches first, and model

edges from the small planes can be adjusted accordingly.

To refine a texture map, we synthesize a new image I ′ from an image I where

matched 2D image edges and projected 3D model edges are co-aligned. We use the

content preserving warps similar to [68], which divides an image into a quad mesh

and compute a distorted quad mesh minimizing an energy functional consisting of a

data term and a smoothness term. Different from their method, we encode 2D-3D

line matches into the data term instead of point correspondences. Our new data

term ensures a line lI to align lM by minimizing the total square of point-to-line

distance between sample points on line lI and line lM . The warped image I ′ can then

be generated by a standard texture mapping algorithm according to the distorted

quad mesh. We then compute a texture map for each model plane through the back-

projection algorithm based on the warped image I ′. As shown in Figure 5.9, the

misalignment artifacts can be reduced by our approach.
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Figure 5.9: Comparison on two texture mapping algorithms. 1st row shows the
detected image edges (red) and projected model edges (blue); the misalignment is
obvious due to the registration error. 2nd row shows the automatically extracted
correspondences between image edges (red) and model edges (blue). In 3rd row and
4th row, the left part shows the results from the original back-projection texture
mapping where the imperfection marked by red circles are improved by our method
shown in the right part.

5.4.3 Multiple Texture Fusion

To fuse the texture maps for a model plane P from overlapping camera views, we

apply a multi-label MRF energy minimization framework similar to [95], where the
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data term is a weighted sum of two terms: preference for a frontal view and preference

for a camera view that has a large number of visible pixels of P ’s projection; and the

smoothness term encourages neighboring pixels should have same labels.

5.5 Landscape Modeling

Given the semantic labels for the remaining points, we have developed simple and

effective methods to reconstruct other objects. These objects enrich the visual realism

of the final model.

5.5.1 Plant Reconstruction

Plants, including trees and shrubberies, are integral parts of our living environment.

A number of reconstruction methods have been developed to model trees from LiDAR

data (e.g., [70], or even images (e.g., [104]). While these methods can generate very

high quality geometric tree models, we choose to develop a fully automatic method

suitable for large-scale reconstruction. Toward this goal, we choose to adopt the light-

weight billboard representation for visually-plausible plant models. Our plant model

consists of two orthogonal planes and one billboard image. The key is to extract from

the input the billboard image and find the tree trunk (the axis of rotation).

First, we project each plant point set onto the nearest corresponding image. A

shape mask is extracted as the billboard image. The point set is also projected onto

the ground plane normal direction (i.e., the z axis) and the point density along the

z axis is measured. A sharp increase (3 times) in density means a transition from

trunk to foliage. If no trunk is detected, the center z axis of 3D bounding box is used
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Figure 5.10: Tree Reconstruction. From left to right: (a) corresponding color image
of point clouds; (b) point clouds with color coded horizontal density, the dotted line
shows the trunk/leaf boundary; (c) the texture and point clouds are off by some
pixels; (d) rendered billboard tree with the corrected texture.

as the axis of rotation. If the ratio of x and y axes of the 3D bounding box is too big

or too small, it is likely to be a shrubbery, therefore we segment it into parts with

equal length of x and y axes. We usually use a 2:1 ratio as the threshold for cutting.

Another problem we have to deal with is misalignment of images. We segment the

billboard images into superpixels and cluster the superpixels into three groups (trunk,

leaf, and error) according to average chroma value of pixels in the image. Then the

error superpixels will be automatically replaced by randomly selected leaf superpixels.

Figure 5.10 illustrates the entire process.

5.5.2 Model Replacement

Other frequently occurring static objects in residential landscape such as mailboxes

and street lights are often hard to directly reconstruct using simplified geometric

models from the cluttered, incomplete and noisy data. Inspired by the recent success

of model replacement applied to indoor scene modeling (e.g., [93]), we download the

similar models from Google 3D Warehouse, and use PCA to estimate global scaling

89



and an initial pose between the models and the recognized raw points and further

align them using iterative closest point (ICP) method; in this way, points from a

categorized object (e.g., a mailbox) are replaced by the corresponding model.

5.6 Experiments

5.6.1 Results on Semantic Segmentation

Figure 5.11 shows two datasets from our scanning platform. The top (Div-A) is a

upscale residential area (containing over 150 million points) while the bottom (Div-

B) is an average residential area (containing over 183 million points) that was newly

built.

Figure 5.11: Ground-based LiDAR Datasets: (top) a high-end subdivision (Div-A);
(bottom) an average subdivision that is newly built (Div-B).

In order for training and evaluation, we have labeled both Div-A and Div-B. We

used Div-A for training and Div-B for evaluation. One segmented scene is shown
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in Figure 5.1(a). The precision and recall of automatic segmentation is shown in

Table 5.1. Compared to previous semantic segmentation methods (e.g., [126]), our

accuracy is noticeably higher, partially due to our high-quality input. We also report

the precision (P) and recall (R) of the house classes: walls (P = 94%, R = 98%),

roofs (P = 94%, R = 81%) and columns (P = 72%, R = 87%). It should be

emphasized that all of our subsequent modeling results use only semantic labels from

the classifier’s output, not the ground-truth. In addition, our house modeling is not

sensitive to mislabeling since it is highly regularized by various constraints.

Timing Performance Our semantic segmentation algorithm takes about 40 min-

utes for labeling Div-B including feature extraction, classification and segmentation.

This residential subdivision includes 53 houses.

5.6.2 Results on Online Building Segmentation

We have also tested our online building segmentation algorithm on three large-scale

data sets: (1) Subdivision 1, a very dense dataset of a typical U.S. subdivision of mass-

producted single-family houses contains 184.28M points collected from a 2, 672m drive

with average driving speed 5.17km/h; (2) Subdivision 2, a sparse dataset of another

subdivision contains 61.32M points collected from a 3, 887m drive with average driv-

ing speed 26.06km/h; (3) Downtown, a moderately dense dataset of a typical U.S.

downtown area of buildings varying in either sizes or styles contains 139.20M points

collected from a 3, 614m drive with average driving speed 12.89km/h. The results

are shown in Figure 5.12, Figure 5.13 and Figure 5.14. A scanning path is shown
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Figure 5.12: Results on the Subdivision 1 dataset. Left: The whole point cloud is
rendered based on height in the earth tone color scheme overlaid with the scanning
path in red and detected buildings labeled with purple markers. Right: Some exam-
ples of detected “buildings” corresponding to the labels shown in the left image with
color coding based on height from blue to red.

as a red line strip. For better visualizing a detected building B, we compute the

mean coordinate for all points in B whose elevation is 3m higher than the ground

height along the corresponding scanning path; each mean coordinate representing a

detected building is shown as a purple marker. Please refer to the electronic PDF

copy at high magnification for better viewing. We propose the following three mea-

sures to quantitatively evaluate our algorithm performance: (1) Detection Rate (DR)

= #Correct Detection (without duplicates) / #All Buildings, (2) Perfect Segmen-

tation Rate (PSR) = #Successful Segmented Buildings / #Correct Detection, (3)

Correctness Rate (CR) = #Correct Detection / #All Detection.

Figure 5.12 shows the results of building detection and segmentation on Subdi-

vision 1 dataset. There are total 231 buildings detected and segmented, with 10

buildings missing detected along the driving path, 7 imperfect segments of the cases

that a building is split into parts and two buildings are wrongly merged in one seg-

ment, and 9 false positives; DR = 92.31%, PSR = 94.17%, and CR = 96.10%. Notice
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Figure 5.13: Results on the Subdivision 2 dataset. Top: The whole point cloud is
rendered based on height in the earth tone color scheme overlaid with the scanning
path in red and detected buildings labeled with purple markers. Bottom: Some
close-up views highlighting the labeled districts in top.

that, in this scan, some houses are scanned more than once, so that there are dupli-

cates in the detected buildings and the purple markers representing the same building

may not be exactly co-located. For example, Figure 5.12(c) and (d) contain the same

building, but one is scanned from the front facade and the other is scanned from the

backyard. In both cases, the points are enclosed from the corresponding scan path

and extending around 50m towards the opposite side, so that the resulting excerpted

points have different landscapes and calculated mean locations (purple markers) are

shifted. The duplicates can be merged by using a simple heuristic approach, that is

checking whether a large amount of data are shared among nearby segments, which
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Figure 5.14: Results on the Downtown dataset. Top: The whole point cloud is
rendered based on height in the earth tone color scheme overlaid with the scanning
path in red and detected buildings labeled with purple markers. Some examples of
detected buildings corresponding to the labels shown in the top image with color
coding based on height from blue to red. Notice that the middle building is split into
two segments due to the insufficient points acquired at the seam indicated by black
arrows.

can be efficient to compute the overlapping area ratio between two dashed regions as

shown in Figure 5.7.

Figure 5.13 shows the results on Subdivision 2 dataset. There are total 133 seg-

ments, with 31 buildings missing detected, 13 imperfect segments and 16 false posi-

tives; DR = 79.05%, PSR = 88.89%, and CR = 87.97%.

Figure 5.14 shows the results on Downtown dataset. There are total 55 segments,

with 3 buildings missing detected, 4 imperfect segments and 11 false positives; DR =

93.62%, PSR = 90.91%, and CR = 80.00%.

The data set specification and performance evaluation is summarized in Table. 5.2.

The overall DR = 86.46%, PSR = 91.46%, and CR = 91.41% across different data

sets varying in either point density or building and landscape styles.
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Timing Performance We have implemented our algorithm on a desktop PC with

an Intel® CoreTM i5 processor 3.20GHZ, 4GB of RAM, AMD® RadeonTM HD 7570

graphics card and OCZ® Vertex 4 solid state drive (SSD). The input and output

data are all in binary format. Our current unoptimized implementation runs on a

single core with the OpenGL rendering pipeline. In the column of “Processing Time”

in Table. 5.2, the first number is the run time including data loading, depth map

rendering, histogram analysis and building detection for a whole dataset. The second

number is the run time for cutting out and outputting the points of all detected

buildings. For the Subdivision 1 dataset, loading the 184.28M points, rendering

5, 346 depth maps and detecting and locating the 231 objects takes 81.01 seconds

and segmenting and saving the dense points for the detected buildings takes 228.76

seconds; the total run time is 309.77 seconds and frames per second (FPS) is 17.26

in terms of processing the 5, 346 depth maps. As the point density in Subdivision 2

dataset is sparse, the number of points in each segment is much less and the resultant

run time for exporting data is only 22.52s and the FPS is 95.76. The FPS for the

Downtown dataset is 33.86. To sum up, our algorithm is very efficient and achieves

online performance.

Limitations

In addition to the connected sub-facades that our approach is not designed to han-

dle [128], there are some other limitations in our proposed method.

Missing detection As point density decreases with the distance from the sensor,

it is expected that the a building far away from the scanning path has much less points.

96



Figure 5.15: Depth map comparison of point density changes at different distances
from the Subdivision 2 dataset. Notice that, the driving speeds around the three
positions are almost the same, so that distance-to-sensor plays the key role in point
density changes.

Figure 5.15 shows a depth map comparison of point density changes at different

distances. The rightmost depth map in Figure 5.15 captures the building marked in

the green circle in Figure 5.13, and because of the insufficient points acquired at a

large distance, our algorithm fails to detect it as a building; however, if the building

was detected, it would be very hard to perform further manipulation such as modeling

and rendering on this sparse point cloud. This explains why there are a relatively

large number of missing detected buildings that are far away from the scanning path

in the Subdivision 2 dataset.

Imperfect segments When there are flourishing trees or shrubs planting in

front of the space in-between two buildings, our algorithm may falsely combine the

two buildings and the trees in a single segment, for example Fig 5.12(f).

Another situation is that a building might be split into two or more segments

because of insufficient points (holes) in a building due to transparent objects like

glass (see Figure 5.14(b,c)) and structures with self-occlusion like concave areas (see

Figure 5.16). And if none of parts is longer than 6m wide, it also causes missing

detection.
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Figure 5.16: An example of a building with self-occlusion. The concave area is not
scanned at all, resulting in two separate houses instead of one.

False positives Our current implementation cannot distinguish well between

buildings and flourishing trees and shrubs, for example Figure 5.12(g). However, we

can still achieve overall CR=91.41% in our data sets of different districts of a city. In

a case of scanning on the road with abundant street trees, our algorithm might be

brittle; but most likely, buildings are severely occluded by the trees making it hard

to perform further reconstruction and rendering on insufficient point samples with

many holes on buildings. Scene Parsing algorithms on color images and some point

cloud processing techniques like local normal distribution and local plane fitting can

help to reduce the false detection but might incur high computation overhead.

5.6.3 Reconstruction Results

We show modeling results on Div-A and Div-B datasets. Since the symmetry and

convexity of the basic blocks are the only assumptions we make, our algorithm is

capable of modeling a variety of houses and dealing with significant missing data.

As shown in Figure 5.17 (1st, 2nd and 3rd rows), we correctly model the houses

composed of several gables and box structures at different scales, location and nested
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Figure 5.17: Results on ground-based LiDAR datasets. Each row shows the result
of one house. 1st and 2nd columns: point clouds color coding based on height in two
perspectives, 3rd and 5th columns: reconstructed models, and 4th and 6th columns:
reconstructed models with textures.

structures, and with missing point scan at various levels.

All houses in Div-B are automatically reconstructed together with other categorized

and modeled objects such as trees and mailboxes in the landscape can be seen in the ac-

companying video. Figure 5.1(d) shows the overview of the large-scale reconstruction

results overlaid on the geo-registered satellite image.

More complex structures and complicated composition of building blocks are often

found in Div-A. As shown in Figure 5.17 (4th row) and Figure 5.18, the houses consist

of multiple gables, hipped structures and even octagonal shapes. Figure 5.18 shows

an overall view of the reconstructed Div-A dataset without textures.
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Figure 5.18: An overall view of reconstructed houses in Div-A.

5.7 Summary

In this chapter, we present a complete system for residential scene modeling from

3D point cloud captured by mobile scanners. By first recognizing individual objects,

we develop and apply category-specific reconstruction methods to obtain visually
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pleasing polygonal models in the presence of occlusions and incomplete data. Our

system requires very little human intervention and therefore is suitable for large-scale

modeling. We also present an algorithm to automatically segment buildings from

unorganized 3D point clouds. The key idea is to project points onto the street views

along the scanning path and identify dense regions as buildings separated by sparse

spaces as alleys. Our algorithm is easy to implement and very efficient with online

performance. Experiments show that our approach is able to produce satisfactory

results for data sets from different districts in a city varying in either point density

and building and landscape styles.
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Chapter 6 Conclusion and Future Work

In this dissertation, I have explored the semantic segmentation of a collection of

images and LiDAR point clouds. My research work consists of three parts:

• Repetitive Pattern Mining and Segmentation from Images

• Image Segmentation based on Internet Photo Collections

• Semantic Segmentation and Reconstruction of Residential Scenes from LiDAR

Data

In this chapter, I summarize the technical innovations and propose several possi-

bilities for future work.

6.1 Innovations

This dissertation has included the following five innovations:

• Finding Repetitive Patterns in Images I investigate finding frequent and

consistent associations among visual items in an image regardless of their size,

shape and orientation. I develop a polynomial-time algorithm for mining max-

imal associations between pairs of visual items, and I develop a polynomial-

time method for extracting frequent high-order structural visual patterns among

more than two visual items. Experiments on synthetic data and a variety of

real-world datasets demonstrate the efficiency and effectiveness of our methods.
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• Automatic Visual Pattern Segmentation I develop a novel framework to

segment frequent structural patterns from a large collection of images. Unlike

the traditional segmentation approaches that involve user interactions, my ap-

proach utilizes the redundant information brought by the images themselves

to segment the re-occurring visual patterns in a fully automatic and super-

vised manner. To achieve this goal, I first established dense correspondences

among pattern instances, then computed a per-pixel cost, and finally extracted

the target object. As demonstrated by the results, my approach is effective at

segmenting meaningful visual patterns from a variety of images.

• Automatic Image Segmentation based on Internet Photo Collections

I develop a novel segmentation algorithm that automatically differentiates the

foreground from the background using image appearance statistics obtained

from Internet photo collections that were taken at landmark locations and that

survey the same scenes under a variety of lighting conditions. Compared to

many existing segmentation methods, my method requires no user interaction

to obtain a high quality foreground segmentation.

• Semantic Segmentation and Reconstruction of Residential Scenes from

LiDAR Data I design a complete system for modeling residential scenes using

3D point clouds captured by mobile scanners. After first recognizing individ-

ual objects, I apply category-specific reconstruction methods to obtain visually

pleasing polygonal models despite occlusions and incomplete data. Our system

requires very little human intervention and is therefore suitable for large-scale
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modeling.

• Online Building Segmentation from Ground-based LiDAR Data in

Urban Scenes I develop a fast and accurate building segmentation algorithm

from ground-based LiDAR points. The basic idea is that buildings observed

from a street view can be separated by empty spaces such as alleys. By progres-

sively projecting 3D points onto street views along the scanning path, buildings

can be detected as large regions with dense points. The main contribution is

to automatically segment buildings from large scale unorganized point clouds

with online performance and without requiring any training data.

6.2 Future Work

I believe there are many directions for future research in this area. First, I plan to

utilize the semantic information that obtained from frequent visual pattern mining

to perform object extraction and modeling. In particular, this information can be

used to automatically recover partially occluded regions, as long as they are a part of

repeated visual patterns. The discovered patterns can also be used in compression.

We already see some progress in this regard. In [111], Wang et al. use a brute force

method to find repeated patches within a single image for compression. While some

very good results have been obtained, their method will not scale up. Our efficient

method will enable compression on a large scale and can potentially increase the

compression ratio.

Second, my current automatic segmentation approach is unable to separate fore-
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ground layers in a cluttered scene. I think it is worth exploring the information not

only from Internet photo collections, but also from one’s personal photo collections in

order to automatically find frequently appearing persons as a guideline for foreground

priors.

Third, regarding the semantic segmentation and reconstruction of residential

scenes, we should be able to use the semantic labels inherent in our model to sup-

port editing and re-targeting. In terms of modeling quality, some fine details on

the house, such as hand-rails and staircases, are not reconstructed in our current

approach. These details are only represented with a few sparse points. They are

however, visible in the images. I plan to improve our segmentation algorithm by

using both depth and color to recognize and replace these details. In addition, I

plan to automatically cluster points in the same category to find different objects.

Overall, the combination of pattern recognition algorithms with geometry processing

should lead to better models that support not only high-fidelity visualization, but

also editing and eventually searching.

Last but not least, I think there are some ways to further improve my online

building segmentation method. First, I would like to extend our current single-

core implementation to multi-core or even to GPU to accelerate the point cloud

segmentation. Second, we can work with a fully organized point cloud with rich

information on the adjacent points, so that the nearest neighbor operations, normal

computation and local plane fitting should be much more efficient. Therefore, we

can not only speed up the bottleneck of segmenting and exporting point clouds, but

also efficiently filter out many false positives by using simple yet effective techniques
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like computing local normal distribution. Third, by incorporating registered color

data, we believe it is possible to further improve the performance and to segment

sub-facades in a downtown scene such as [128]. Fourth, when a scanning path is

not readily available, as the LiDAR data are geo-referenced, we can import road

information from a GIS database or simply let a user interactively draw a path to

segment buildings along a street.
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