10,415 research outputs found

    Human scalp potentials reflect a mixture of decision-related signals during perceptual choices

    Get PDF
    Single-unit animal studies have consistently reported decision-related activity mirroring a process of temporal accumulation of sensory evidence to a fixed internal decision boundary. To date, our understanding of how response patterns seen in single-unit data manifest themselves at the macroscopic level of brain activity obtained from human neuroimaging data remains limited. Here, we use single-trial analysis of human electroencephalography data to show that population responses on the scalp can capture choice-predictive activity that builds up gradually over time with a rate proportional to the amount of sensory evidence, consistent with the properties of a drift-diffusion-like process as characterized by computational modeling. Interestingly, at time of choice, scalp potentials continue to appear parametrically modulated by the amount of sensory evidence rather than converging to a fixed decision boundary as predicted by our model. We show that trial-to-trial fluctuations in these response-locked signals exert independent leverage on behavior compared with the rate of evidence accumulation earlier in the trial. These results suggest that in addition to accumulator signals, population responses on the scalp reflect the influence of other decision-related signals that continue to covary with the amount of evidence at time of choice

    Motivational context for response inhibition influences proactive involvement of attention

    Get PDF
    Motoric inhibition is ingrained in human cognition and implicated in pervasive neurological diseases and disorders. The present electroencephalographic (EEG) study investigated proactive motivational adjustments in attention during response inhibition. We compared go-trial data from a stop-signal task, in which infrequently presented stop-signals required response cancellation without extrinsic incentives ("standard-stop"), to data where a monetary reward was posted on some stop-signals ("rewarded-stop"). A novel EEG analysis was used to directly model the covariation between response time and the attention-related N1 component. A positive relationship between response time and N1 amplitudes was found in the standard-stop context, but not in the rewarded-stop context. Simultaneously, average go-trial N1 amplitudes were larger in the rewarded-stop context. This suggests that down-regulation of go-signal-directed attention is dynamically adjusted in the standard-stop trials, but is overridden by a more generalized increase in attention in reward-motivated trials. Further, a diffusion process model indicated that behavior between contexts was the result of partially opposing evidence accumulation processes. Together these analyses suggest that response inhibition relies on dynamic and flexible proactive adjustments of low-level processes and that contextual changes can alter their interplay. This could prove to have ramifications for clinical disorders involving deficient response inhibition and impulsivity

    Within-Subject Joint Independent Component Analysis of Simultaneous fMRI/ERP in an Auditory Oddball Paradigm

    Get PDF
    The integration of event-related potential (ERP) and functional magnetic resonance imaging (fMRI) can contribute to characterizing neural networks with high temporal and spatial resolution. This research aimed to determine the sensitivity and limitations of applying joint independent component analysis (jICA) within-subjects, for ERP and fMRI data collected simultaneously in a parametric auditory frequency oddball paradigm. In a group of 20 subjects, an increase in ERP peak amplitude ranging 1–8 μV in the time window of the P300 (350–700 ms), and a correlated increase in fMRI signal in a network of regions including the right superior temporal and supramarginal gyri, was observed with the increase in deviant frequency difference. JICA of the same ERP and fMRI group data revealed activity in a similar network, albeit with stronger amplitude and larger extent. In addition, activity in the left pre- and post-central gyri, likely associated with right hand somato-motor response, was observed only with the jICA approach. Within-subject, the jICA approach revealed significantly stronger and more extensive activity in the brain regions associated with the auditory P300 than the P300 linear regression analysis. The results suggest that with the incorporation of spatial and temporal information from both imaging modalities, jICA may be a more sensitive method for extracting common sources of activity between ERP and fMRI

    Estimation in discretely observed diffusions killed at a threshold

    Get PDF
    Parameter estimation in diffusion processes from discrete observations up to a first-hitting time is clearly of practical relevance, but does not seem to have been studied so far. In neuroscience, many models for the membrane potential evolution involve the presence of an upper threshold. Data are modeled as discretely observed diffusions which are killed when the threshold is reached. Statistical inference is often based on the misspecified likelihood ignoring the presence of the threshold causing severe bias, e.g. the bias incurred in the drift parameters of the Ornstein-Uhlenbeck model for biological relevant parameters can be up to 25-100%. We calculate or approximate the likelihood function of the killed process. When estimating from a single trajectory, considerable bias may still be present, and the distribution of the estimates can be heavily skewed and with a huge variance. Parametric bootstrap is effective in correcting the bias. Standard asymptotic results do not apply, but consistency and asymptotic normality may be recovered when multiple trajectories are observed, if the mean first-passage time through the threshold is finite. Numerical examples illustrate the results and an experimental data set of intracellular recordings of the membrane potential of a motoneuron is analyzed.Comment: 29 pages, 5 figure

    Causality in the association between p300 and alpha event-related desynchronization

    Get PDF
    Recent findings indicated that both P300 and alpha event-related desynchronization (alpha-ERD) were associated, and similarly involved in cognitive brain functioning, e.g., attention allocation and memory updating. However, an explicit causal influence between the neural generators of P300 and alpha-ERD has not yet been investigated. In the present study, using an oddball task paradigm, we assessed the task effect (target vs. non-target) on P300 and alpha-ERD elicited by stimuli of four sensory modalities, i.e., audition, vision, somatosensory, and pain, estimated their respective neural generators, and investigated the information flow among their neural generators using time-varying effective connectivity in the target condition. Across sensory modalities, the scalp topographies of P300 and alpha-ERD were similar and respectively maximal at parietal and occipital regions in the target condition. Source analysis revealed that P300 and alpha-ERD were mainly generated from posterior cingulate cortex and occipital lobe respectively. As revealed by time-varying effective connectivity, the cortical information was consistently flowed from alpha-ERD sources to P300 sources in the target condition for all four sensory modalities. All these findings showed that P300 in the target condition is modulated by the changes of alpha-ERD, which would be useful to explore neural mechanism of cognitive information processing in the human brain.published_or_final_versio

    Unraveling the influence of trial-based motivational changes on performance monitoring stages in a flanker task

    Get PDF
    Performance monitoring (PM) is a vital component of adaptive behavior and known to be influenced by motivation. We examined effects of potential gain (PG) and loss avoidance (LA) on neural correlates of PM at different processing stages, using a task with trial-based changes in these motivational contexts. Findings suggest more attention is allocated to the PG context, with higher amplitudes for respective correlates of stimulus and feedback processing. The PG context favored rapid responses, while the LA context emphasized accurate responses. Lower response thresholds in the PG context after correct responses derived from a drift–diffusion model also indicate a more approach-oriented response style in the PG context. This cognitive shift is mirrored in neural correlates: negative feedback in the PG context elicited a higher feedback-related negativity (FRN) and higher theta power, whereas positive feedback in the LA context elicited higher P3a and P3b amplitudes, as well as higher theta power. There was no effect of motivational context on response-locked brain activity. Given the similar frequency of negative feedback in both contexts, the elevated FRN and theta power in PG trials cannot be attributed to variations in reward prediction error. The observed variations in the FRN indicate that the effect of outcome valence is modulated by motivational salience

    Advance Preparation in Task-Switching: Converging Evidence from Behavioral, Brain Activation, and Model-Based Approaches

    Get PDF
    Recent research has taken advantage of the temporal and spatial resolution of event-related brain potentials (ERPs) and functional magnetic resonance imaging (fMRI) to identify the time course and neural circuitry of preparatory processes required to switch between different tasks. Here we overview some key findings contributing to understanding strategic processes in advance preparation. Findings from these methodologies are compatible with advance preparation conceptualized as a set of processes activated for both switch and repeat trials, but with substantial variability as a function of individual differences and task requirements. We then highlight new approaches that attempt to capitalize on this variability to link behavior and brain activation patterns. One approach examines correlations among behavioral, ERP and fMRI measures. A second “model-based” approach accounts for differences in preparatory processes by estimating quantitative model parameters that reflect latent psychological processes. We argue that integration of behavioral and neuroscientific methodologies is key to understanding the complex nature of advance preparation in task-switching

    The cognitive and neural dynamics of memory-based decisions

    Get PDF
    The recent years have seen the rise of neuroeconomics, a scientific discipline investigating the cognitive and neural principles of value-based decision making. While neuroeconomists made significant progress in characterizing basic computations of value-based decision making, the critical role of memory has all-too-often been neglected. Within this cumulative dissertation thesis, I present four manuscripts, which address the relation of memory and decision making. Manuscript 1 reviews empirical evidence which demonstrates that memory-based decisions are biased in favor of choice options which can be recalled from memory. Adopting cognitive process models, Manuscript 2 demonstrates that this memory bias is rather due to a single decision process, as compared to a dual-process account of memory-based decisions. Manuscript 3 focuses on the temporal dynamics of memory retrieval and choice formation, outlining altered evidence accumulation dynamics of memory-based versus standard value-based decisions. Finally, Manuscript 4 takes the first steps toward a cognitive process model which accounts for the temporal dynamics of both, memory retrieval and decision making. While every manuscript can be approached individually, the synopsis part of this dissertation thesis discusses them in a broader perspective, drawing on the neuroeconomic framework by Rangel et al. (2008). All in all, this dissertation thesis advocates for neuroeconomics to take memory processes more seriously. Future research will especially profit from a deeper understanding of the temporal dynamics of memory retrieval and its relation to decision making
    corecore