
s 

 
 

 
Philiastides, M., Heekeren, H., and Sajda, P. (2014) Human scalp potentials 
reflect a mixture of decision-related signals during perceptual choices. 
Journal of Neuroscience, 34 (50). pp. 16877-16889 
  
 
Copyright © 2014 The Authors 
 
 
http://eprints.gla.ac.uk/100315 
 
 
 
Deposited on:  15 December 2014 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
Enlighten – Research publications by members of the University of Glasgow 

http://eprints.gla.ac.uk 

http://eprints.gla.ac.uk/100315
http://eprints.gla.ac.uk/
http://eprints.gla.ac.uk/


Behavioral/Cognitive

Human Scalp Potentials Reflect a Mixture of Decision-
Related Signals during Perceptual Choices

Marios G. Philiastides,1 Hauke R. Heekeren,2,3 and Paul Sajda4

1Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, G12 8QB, United Kingdom, 2Department of Education and Psychology, Freie
Universität Berlin, 14195 Berlin, Germany, 3Max Planck Institute for Human Development, 14195 Berlin, Germany, and 4Department of Biomedical
Engineering, Columbia University, New York, New York 10027

Single-unit animal studies have consistently reported decision-related activity mirroring a process of temporal accumulation of sensory
evidence to a fixed internal decision boundary. To date, our understanding of how response patterns seen in single-unit data manifest
themselves at the macroscopic level of brain activity obtained from human neuroimaging data remains limited. Here, we use single-trial
analysis of human electroencephalography data to show that population responses on the scalp can capture choice-predictive activity
that builds up gradually over time with a rate proportional to the amount of sensory evidence, consistent with the properties of a
drift-diffusion-like process as characterized by computational modeling. Interestingly, at time of choice, scalp potentials continue to
appear parametrically modulated by the amount of sensory evidence rather than converging to a fixed decision boundary as predicted by
our model. We show that trial-to-trial fluctuations in these response-locked signals exert independent leverage on behavior compared
with the rate of evidence accumulation earlier in the trial. These results suggest that in addition to accumulator signals, population
responses on the scalp reflect the influence of other decision-related signals that continue to covary with the amount of evidence at time
of choice.
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Introduction
In recent years, the study of the computational and neurobiolog-
ical basis of perceptual decision making has received considerable
attention (Bogacz et al., 2006; Gold and Shadlen, 2007; Heekeren
et al., 2008; Ratcliff and McKoon, 2008; Sajda et al., 2009; Purcell
et al., 2010; Gold and Heekeren, 2013; Shadlen and Kiani, 2013).
Current computational accounts posit that perceptual decisions
involve an integrative mechanism in which sensory evidence sup-
porting different decision alternatives accumulates over time to a
preset internal decision boundary (Ratcliff, 1978; Usher and Mc-
Clelland, 2001; Ratcliff and Smith, 2004; Palmer et al., 2005).
Correspondingly, several non-human primate (NHP) neuro-
physiology studies have revealed patterns of single-unit activity
that are in agreement with this integrative mechanism in senso-

rimotor areas guiding choice, such as the lateral intraparietal area
(LIP), the frontal eye fields (FEFs), and the superior colliculus
(SC; Horwitz and Newsome, 1999; Kim and Shadlen, 1999;
Shadlen and Newsome, 2001; Gold and Shadlen, 2007). Specifi-
cally, firing rates of a subset of neurons in these areas build up
over time with a rate proportional to the amount of sensory
evidence (i.e., difficulty of the task) and eventually converge to a
common firing level (decision boundary) as the animal commits
to a choice.

Although these NHP findings have motivated several human
electrophysiology studies to look for neural correlates of similar
decision-related activity (Philiastides and Sajda, 2006; Philias-
tides et al., 2006; Donner et al., 2009; Ratcliff et al., 2009; de Lange
et al., 2010; O’Connell et al., 2012; Wyart et al., 2012; van Vugt et
al., 2012; Cheadle et al., 2014; Polanía et al., 2014), our under-
standing of how response patterns seen in single-unit data man-
ifest themselves at the level of scalp activity obtained from a
population of neurons remains limited. Major limiting factors
include the heterogeneity of neuronal responses in the areas from
which individual neurons are selected (Ding and Gold, 2010,
2012b; Meister et al., 2013), the constraints imposed by the selec-
tion procedure itself, which often requires neurons to exhibit
persistent and choice-predictive activity (Gnadt and Andersen,
1988), and crucially the influence of a wider network of regions
that can simultaneously encode other decision-related variables
such as choice certainty, expected reward, or embodied decision
signals (Kiani and Shadlen, 2009; Ding and Gold, 2010, 2012a,b,
2013; Nomoto et al., 2010; Meister et al., 2013).
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Here we used a visual decision-making
task and human electroencephalography
(EEG) coupled with computational mod-
eling to investigate the extent to which
population responses as captured by scalp
potentials resemble the pattern of activity
reported previously in single-unit experi-
ments. Our findings suggest that, similar
to NHP neurophysiology, EEG responses
exhibit a gradual build-up of activity,
the slope of which is proportional to the
amount of sensory evidence in the stimulus.
Unlike single-unit activity from choice-
selective neurons and computational mod-
eling predictions of a “common boundary”
at time of choice, however, scalp potentials
appear to reflect the additional influence of
other quantities correlating with decision
difficulty and therefore continue to appear
as being parametrically modulated by the
amount of sensory evidence.

Materials and Methods
Participants. Twenty-five right-handed volun-
teers participated in the study (13 female; mean
age, 26.5 years; range, 21–35 years). All had
normal or corrected-to-normal vision and re-
ported no history of neurological problems. In-
formed consent was obtained according to
procedures approved by the local ethics commit-
tee of the Charité, University Medicine Berlin.

Stimuli and task. We used a set of 30 face and
30 car grayscale images (size 500 � 500 pixels, 8
bits/pixel). Face images were obtained from a
database provided by the Max Planck Institute
or Biological Cybernetics in Tübingen, Ger-
many (Troje and Bülthoff, 1996; http://faces.
kyb.tuebingen.mpg.de/). Car images were
sourced from the web. We ensured that spatial
frequency, luminance, and contrast were
equalized across all images. The magnitude
spectrum of each image was adjusted to the
average magnitude spectrum of all images in
the database. The phase spectrum was manip-
ulated so that noisy images characterized by
their percentage phase coherence were gener-
ated (Dakin et al., 2002). We used a total of four
different phase coherence values (22, 24.5, 27,
and 29.5%), chosen based on behavioral pilot
experiments such that the overall behavioral per-
formance spanned psychophysical threshold. At
each of the four phase coherence levels we gener-
ated multiple frames for every image.

Participants performed a visual face-versus-
car categorization task (Philiastides et al.,
2011) by discriminating dynamically updating
sequences of either face or car images (Fig. 1A).
Image sequences were presented in rapid serial
visual presentation (RSVP) fashion at a frame
rate of 30 frames per second (i.e., 33.3 ms per
frame without gaps). Each trial consisted of a single sequence with a series
of images from the same stimulus class (i.e., either a face or a car) at one
of the four possible phase coherence levels. Importantly, within each
phase coherence level, the overall amount of noise remained unchanged,
whereas the spatial distribution of the noise varied across individual
frames such that different parts of the underlying image could be revealed
sequentially.

A Dell Precision 360 Workstation with nVidia Quadro FX500/FX600
graphics card and Presentation software (Neurobehavioral Systems)
controlled the stimulus presentation. We presented stimuli at a distance
of 1.5 m to the subject on a Dell 2001 FP TFT display (resolution, 1600 �
1200 pixels; refresh rate, 60 Hz). Each image subtended 4.76° � 4.76° of
visual angle. We instructed subjects to fixate in the center of the monitor
and respond as accurately and as quickly as possible by pressing one of
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Figure 1. Experimental design, behavioral, and computational modeling results. A, Schematic representation of our behavioral
paradigm. For each trial, a noisy and rapidly updating (every 33.3 ms) dynamic stimulus of either a face or a car image, at one of four
possible phase coherence levels, was presented for a maximum of 1.25 s. Within this time subjects had to indicate their choice by
pressing a button. The dynamic stimulus was interrupted upon subjects’ response and it was followed by a variable delay lasting
between 1.5 and 2 s. ITI, Intertrial interval. B, Average proportion of correct choices, across subjects, as a function of the phase
coherence of our stimuli. Performance improved as phase coherence increased. C, Average RT, across subjects, as a function of the
phase coherence of our stimuli. Mean RT decreased as phase coherence increased. In B and C curves are average model fits to the
behavioral data using the diffusion model of Palmer et al. (2005). D, Average DDM drift rates as a function of the phase coherence
of our stimuli. Drift rates increased as phase coherence increased. Shaded region represents SEs across subjects. E, DDM non-
decision time distribution across participants indicating a sizeable between-subject variability.
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two buttons—left for faces and right for cars— using their right index
and middle fingers, respectively. As soon as a response was made, the
RSVP sequence was interrupted and it was followed by an intertrial in-
terval, which varied randomly in the range 1500 –2000 ms (increments of
100 ms). The RSVP sequence was allowed to remain on the screen for a
maximum of 1.25 s. If subjects failed to respond within the 1.25 s period
the trial was marked as a no-choice trial and was excluded from further
analysis. We used a total of 480 trials (i.e., 60 trials per perceptual cate-
gory and phase coherence level) during the course of the experiment. We
presented trials in four blocks of 120 trials to allow subjects to rest briefly
between blocks.

EEG data acquisition. We acquired EEG data in a dark, electrically and
acoustically shielded cabin (Industrial Acoustics Company) using Brain-
Amp DC amplifiers (Brain Products GmbH) from 74 Ag/AgCl scalp
electrodes placed according to the 10 –10 system (EasyCap GmbH). In
addition, we collected eye movement data from three periocular elec-
trodes placed below the left eye and at the left and right outer canthi. We
referenced all electrodes to the left mastoid with a chin ground. Electrode
impedances were kept �20 k�.

Data were sampled at 1000 Hz and filtered on-line with an analog
bandpass filter of 0.1–250 Hz. We used a software-based 0.5 Hz high-pass
filter to remove DC drifts and 50 and 100 Hz notch filters to minimize
line noise artifacts. These filters were applied noncausally (using
MATLAB filtfilt) to avoid phase-related distortions. We also re-
referenced data to the average of all channels. To obtain accurate stimu-
lus event and response onset times we collected these signals on two
external channels on the EEG amplifiers to ensure synchronization with
the EEG data.

Eye-movement artifact removal. Before the main experiment, we asked
subjects to complete an eye movement calibration experiment during
which they were instructed to blink repeatedly upon the appearance of a
white fixation cross in the center of the screen and then to make several
horizontal and vertical saccades according to the position of the fixation
cross. The fixation cross subtended 0.6° � 0.6° of visual angle. Horizontal
saccades subtended 20° and vertical saccades subtended 15°. We used this
procedure to determine linear components associated with eye blinks
and saccades (using principal component analysis) and to later project
these artifacts out of the EEG data collected for the main experiment
(Parra et al., 2003). Additional trials with strong eye movement or other
movement artifacts were manually removed by inspection.

Drift diffusion modeling. We fit our behavioral data [accuracy and
response time (RT)] with the power-rate drift diffusion model (DDM)
introduced by Palmer et al. (2005) which, in a manner similar to other
versions of the diffusion model (Bogacz et al., 2006), assumes a stochastic
accumulation of sensory evidence over time, toward one of two decision
boundaries corresponding to the two choices. The model returns esti-
mates of internal components of processing such as the rate of evidence
accumulation (drift rate), the distance between decision boundaries con-
trolling the amount of evidence required for a decision (decision bound-
ary), and the duration of non-decision processes (non-decision time),
which include stimulus encoding and response production. In short, the
model tries to simultaneously fit the proportion of correct choices (i.e.,
psychometric function), Pc(s), and the mean reaction time profile (chro-
nometric function), RT(s), by assuming that the drift rate, �, is a power
function of the stimulus strength, s:

Pc�s� �
1

1 � e�2 A� (1)

RT�s� �
A

�
tanh�A�� � TR. (2)

Pc(s) is estimated using a logistic function (Eq. 1), where � � (ks) �, with
the sensitivity parameter k, the decision boundary A, and the power
scaling exponent � as free parameters. The mean response time RT(s) is
a rescaled version of the original logistic function with an additive time
constant TR representing non-decision time (the fourth free parameter
of the model).

For each subject, the free parameters were iteratively adjusted to max-
imize the summed log likelihood of the predicted mean response time
and accuracy (see Palmer et al., 2005, their Eqs. 3–5). For a more detailed
interpretation of the model and its parameters, refer to Palmer et al.
(2005). For completion, we compared the fits of this model with those of
the simpler proportional-rate (linear) model, by the same authors, and
found that the power-rate diffusion model we used here provided a better
fit to the behavioral data (mean � 2 � 2.5 vs 7.8 for the linear model with
7 df).

Crucially, this version of DDM predicts a common decision boundary
across the different levels of sensory evidence. To validate this further, we
also fit the data with the full Ratcliff DDM and allowed the decision
boundaries to change as a function of stimulus evidence (Ratcliff,
1978)—including a variant in which the boundaries were additionally
allowed to decay as a function of time to account for the urgency to make
a response in more difficult trials (Milosavljevic et al., 2010). To fit the
DDM we used the diffusion model analysis toolbox (DMAT, http://ppw.
kuleuven.be/okp/dmatoolbox/; Vandekerckhove and Tuerlinckx, 2007).
We used the same model-fitting procedures we described earlier (Phili-
astides et al., 2011). The model that best fit behavior in the most parsi-
monious way was one in which drift rate was the only parameter varying
with task difficulty. We viewed this as additional evidence that decision
boundaries remained unchanged across the different levels of sensory
evidence. Crucially, repeating all relevant analyses using model estimates
obtained from this analysis (rather than those from Palmer et al., 2005)
yielded virtually identical results.

Single-trial EEG analysis. We used a multivariate linear discriminant
analysis to discriminate between the highest (29.5% phase coherence)
and lowest (22% phase coherence) levels of sensory evidence, locked
either to the onset of the stimulus or to the subjects’ response (stimulus-
and response-locked analysis, respectively). Unlike conventional,
univariate, trial-average event-related potential analysis techniques,
multivariate algorithms are designed to spatially integrate information
across the multidimensional sensor space, rather than across trials, to
increase signal-to-noise ratio (SNR). Specifically, our method tried to
identify a projection in the multidimensional EEG data, denoted as x(t),
that maximally discriminated between the two conditions of interest. A
weighting vector w (spatial filter) was used to generate a one-
dimensional projection y(t) from D channels in the EEG data:

y�t� � wT x�t) � �
i�1

D

wixi(t). (3)

Our method learned the spatial weighting vector w that led to the maxi-
mal separation (discrimination) between the two groups of trials along
the projection y(t) using a regularized Fisher discriminant (Duda et al.,
2001; Blankertz et al., 2011). Specifically, the projection vector w is de-
fined as w � Sc (m2 � m1), where mi is the estimated mean of condition
i and Sc � 1/2(S1 	 S2) is the estimated common covariance matrix (i.e.,
the average of the condition-wise empirical covariance matrices, Si �
1/(n�1)�j�1

n (xj � mi)(xj � mi)
T, with n � number of trials). To treat

potential estimation errors we replaced the condition-wise covariance
matrices with regularized versions of these matrices: S̃i � (1 � �)Si 	
�vI, with � � [0, 1] being the regularization term and v the average
eigenvalue of the original Si (i.e., trace(Si)/D, with D being the dimen-
sionality of our EEG space). Note that � � 0 yields unregularized estima-
tion and � � 1 assumes spherical covariance matrices. Here, we
optimized � using leave-one-out cross validation (� values, mean 
 SD:
0.098 
 0.159 and 0.118 
 0.153 for stimulus- and response-locked
analysis, respectively).

The analysis was repeated separately for each subject. We used this
approach to learn w for different windows (of duration � 50 ms) cen-
tered at various latencies relative to the onset of the stimulus (�100
before to 1000 ms after the stimulus, in increments of 10 ms) and the
subjects’ response (�600 ms before to 500 ms after the response, in
increments of 10 ms). Note that y(t) is an aggregate representation of the
data over all sensors and, compared with individual channel data, is
assumed to be a better estimator of the underlying neural activity and is
often thought to have better SNR and reduced interference from sources
that do not contribute to the discrimination (Parra et al., 2005).
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We quantified the performance of the classifier for each time window
of interest by using the area under a receiver operator characteristic
(ROC) curve (Green and Swets, 1966), referred to as Az, with a leave-one-out
cross-validation approach (Duda et al., 2001). To assess the significance of
the resultant discriminating component we used a bootstrapping technique
in which we performed the leave-one-out test after randomizing the

truth labels of our trials. We repeated this randomization procedure 1000
times to produce a probability distribution for Az and estimate the Az

leading to a significance level of p � 0.01.
To visualize the profile of the discriminating components across indi-

vidual trials, we constructed discriminant component maps (as seen in
Figs. 2E and, later, 4E). To do so we applied the spatial filter w of the
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window that resulted in the highest discrimination performance across a
more extended time range of the data. Each row of one such discriminant
component map represents a single trial across time. In addition we
sorted trials (i.e., the rows of these maps) based on the amplitude of the
discriminating component in the time window of maximum discrimina-
tion. We also used this approach to compute the temporal profile of the
discriminating component, y(t), as a function of the sensory evidence
dimension (as seen in Figs. 2C,D and, later, 4C,D). In the stimulus-locked
analysis we used the resulting temporal profiles to look for evidence of a
gradual build-up of activity leading up to the point of maximum discrim-
ination and to extract single-trial build-up rates of this accumulating
activity. Build-up rates (slopes) were computed using linear regression
between onset and peak time of the accumulating activity extracted from
individual participants. We extracted subject-specific accumulation on-
set times by selecting (through visual inspection) the time point at which
the discriminating activity began to rise in a monotonic fashion after an
initial dip in the data following any early (nondiscriminative) evoked
responses present in the data (as seen in Fig. 2C,D).

Given the linearity of our model, we also computed scalp topographies
of the discriminating components resulting from Equation 3 by estimat-
ing a forward model for each component:

a �
Xy

yTy
, (4)

where the EEG data and discriminating components are now in a matrix
and vector notation, respectively, for convenience (i.e., time is now a
dimension of X and y). This forward model (Eq. 4) is a normalized
correlation between the discriminating component y and the activity in
X and it describes the electrical coupling between them. Strong coupling
indicates low attenuation of the component and can be visualized as the
intensity of vector a. We used these scalp projections as a means of
localizing the underlying neuronal sources (see next section).

Distributed source reconstruction. To spatially localize the resultant dis-
criminating component activity associated with stimulus- and response-
locked discriminating components, we used a distributed source
reconstruction approach based on empirical Bayes (Phillips et al., 2005;
Friston et al., 2006, 2008) as implemented in SPM8 (http://www.fil.ion.
ucl.ac.uk/spm/). The method allows for an automatic selection of multi-
ple cortical sources with compact spatial support that are specified in
terms of empirical priors, while the inversion scheme allows for a sparse
solution for distributed sources (for details, see Phillips et al., 2005; Fris-
ton et al., 2006, 2008). We used a three-sphere head model, which com-
prised three concentric meshes corresponding to the scalp, the skull, and
the cortex. The electrode locations were coregistered to the meshes using
fiducials in both spaces and the head shape of the average MNI brain.

To compute the electrode activity to be projected onto these locations
we applied Equation 4 to extract the temporal evolution of scalp activity
that was correlated with the stimulus- and response-locked components
yielding peak discrimination performance. More specifically, we com-
puted a forward model indexed by time, a(t), in 1 ms increments in the
range 350 –750 ms after the stimulus and 200 ms before until 100 ms after
the response, respectively.

Single-trial logistic regression analyses. We used logistic regression to
examine how neural activity associated with the accumulation build-up
rate (extracted from the stimulus-locked analysis from individual subject
data) and the component amplitude at time of choice (extracted from the
response-locked analysis from individual subject data) correlated with
participants’ behavioral performance. To factor out the effect of task
difficulty in our analyses we first z-scored at each level of sensory evi-
dence, separately, both the single-trial build-up rates and the EEG com-
ponent amplitudes at time of choice. Subsequently, we proceeded to
perform different regression analyses on these trial-to-trial residual fluc-
tuations. Regression analyses were performed separately for each subject.

To assess how the fluctuations in the build-up rate of stimulus-locked
activity influenced participants’ probability of making a correct choice,
we performed the following regression analysis:

PCorrect � �1 � e���0	�1�y�buildup rate����1. (5)

Further, to confirm that these fluctuations in the build-up rate pro-
vide more explanatory power than can already be explained away by
RTs, we included RTs as an additional predictor in the following
regression analysis:

PCorrect � �1 � e���0	�1�y�buildup rate�	�2�RT���1. (6)

To assess how the fluctuations in the amplitude of response-locked ac-
tivity influenced participants’ probability of making a correct choice, we
performed the following regression analysis:

PCorrect � �1 � e���0	�1�y�amplitude @ RT����1. (7)

In all cases we tested whether the regression coefficients resulting across
subjects (�1 values in Eqs. 5–7) came from a distribution with mean
different from zero (using separate two-tailed t test).

Finally, to assess whether the component amplitudes at time of choice
provided more explanatory power for the probability of a correct re-
sponse than what was already conferred by the build-up rate of the accu-
mulating activity earlier in the trial, we included both measures as
predictors in a third regression analysis:

PCorrect � �1 � e���0	�1�y�buildup rate�	�2�(amplitude @ RT)���1. (8)

As before, we performed a two-tailed t test to assess whether regression
coefficients for the component amplitude at time of choice (�2 values in
Eq. 8) came from a distribution with mean different from zero.

Spectral analysis. To compute spectral estimates of EEG activity in the
beta band (13–30 Hz), we used a multitaper method as described by
Mitra and Pesaran (1999). To generate power spectral density estimates
over rolandic cortex (sensors C1/C3/C5, CP1/CP3/CP5) at time of
choice, we applied a multitaper window Fourier transform centered on
the motor response (400 ms window, 8 Hz spectral smoothing), to indi-
vidual trials across the four levels of sensory evidence. The results were
magnitude-squared and averaged across tapers, trials, and sensors. To
quantify the strength of the responses we converted the resulting power
estimates P(�) into units of percentage change from prestimulus base-
line, according to:

P��� �
P��� � Pb���

Pb���
	 100%, (9)

where Pb(�) denotes the average power spectral density in the prestimu-
lus period (starting 500 ms before stimulus onset).

Results
Behavioral and modeling performance
Our behavioral data indicated that the level of sensory evidence in
the stimulus had a strong effect on subjects’ choices. Specifically,
the amount of sensory evidence was positively correlated with
accuracy (t(98) � 14.19, p � 0.001; Fig. 1B) and negatively corre-
lated with RT (t(98) � �5.78, p � 0.001; Fig. 1C). We also fit this
accuracy and RT data with a power-rate DDM (Palmer et al.,
2005). The model fit our subjects’ psychometric and chronomet-
ric functions well (Eqs. 1, 2; all R 2 � 0.8) revealing a systematic
increase in the rate of evidence accumulation (drift rate) as a
function of the amount of sensory evidence (F(3,72) � 130.11, p �
0.001; Fig. 1D).

Crucially, our DDM predicts a common decision boundary
across the different levels of sensory evidence. To validate this
further we also fit the data with the full Ratcliff DDM and allowed
the decision boundaries to change as a function of stimulus evi-
dence (Ratcliff, 1978)—including a variant in which the bound-
aries were additionally allowed to decay as a function of time to
account for the urgency to make a response in more difficult trials
(Milosavljevic et al., 2010). We found that whereas drift rate was
changing as a function of task difficulty, the decision boundaries
remained unchanged, endorsing the notion of a common bound-
ary across levels of sensory evidence.
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Stimulus-locked EEG analysis
In analyzing the EEG data we were initially interested in identi-
fying signals exhibiting a gradual build-up of activity consistent
with a process of sensory evidence integration. We hypothesize
that if such signals exist we should observe a ramp-like activity
later in the trial with a build-up rate proportional to the amount
of stimulus evidence and drift rate estimates from the DDM.
Furthermore, we hypothesize that trial-by-trial changes in the
build-up rate of such activity should be predictive of behavioral
performance even within nominally identical stimuli (i.e., after
factoring out overall task difficulty effects).

To test these hypotheses we used a multivariate linear classifier
designed to spatially integrate information across the multidi-
mensional sensor space (Materials and Methods, Eq. 3) such that
trial-to-trial variability was preserved. To obtain robust signa-
tures of the relevant EEG activity (quantity “y” in Eq. 3) we first
discriminated between the highest and lowest phase coherence
trials. We used the area under a ROC curve (i.e., Az value) with a
leave-one-out cross validation approach to quantify the classifier’s
performance at various time windows locked to the onset of the
stimulus. Persistent accumulating activity with a build-up rate pro-
portional to the amount of sensory evidence should result in a grad-
ual increase in the classifier’s performance while the traces for easy
and more difficult trials diverge as a function of elapsed time.

Indeed, we observed that the classifier’s performance began to
increase gradually after 300 ms and peaked around 700 ms post-
stimulus, on average. This pattern was clearly visible in individual
(Fig. 2A) as well as in the group results (Fig. 2B). Importantly, we
found that individual discriminator performance peaked before
each participant’s mean response time suggesting that differences
in motor preparation across levels of sensory evidence are un-
likely to have contributed to classifier performance. To further
mitigate this concern we repeated the discrimination analysis
making sure that the data from the last 100 ms before the re-
sponse were excluded from the training of the classifier. We
found that the gradual build-up and overall discrimination per-
formance remained unchanged (Fig. 2B, inset).

Having identified subject-specific spatial projections in the
data for the time window yielding maximum discrimination be-
tween the highest and lowest levels of sensory evidence we applied
these projections (using Eq. 3) to an extended time window as
well as to trials from the remaining levels of sensory evidence.
This exercise can be thought of as subjecting the relevant data
through the same neural generators responsible for discriminat-
ing between the two extreme levels of sensory evidence and was
designed to serve two main purposes.

First, we characterized the temporal profile of the resulting
discriminating component beyond the point of maximum dis-
crimination and we demonstrated that there exists a postsensory,
gradual, build-up of activity (see Fig. 2C for individual and Fig.
2D for group results). At the same time we extracted onset times
and build-up rates (slopes) for these accumulating signals. In line
with the temporal evolution of the classifier’s performance, neu-
ral activity began to rise gradually around 350 ms poststimulus,
on average (Fig. 2D). Second, we treated the trials from the two
intermediate levels of sensory evidence as “unseen” data (inde-
pendent of those used to train the classifier), to more convinc-
ingly test for a true parametric effect on the build-up rate
associated with the different levels of sensory evidence (i.e.,
build-up rate 22 � 24.5 � 27 � 29.5% phase coherence).

Using this approach we demonstrated that the build-up rates
from the two intermediate levels were in fact situated between the
two extreme conditions used to originally train the classifier,

thereby establishing a systematic effect across the four levels of
incoming evidence (F(3,72) � 56,07, p � 0.001, post hoc paired t
tests, all p values �0.001; Fig. 2F). Correspondingly, we also
found a significant correlation between the build-up rates and the
drift rate estimates resulting from the DDM (r � 0.95, p � 0.001,
Fig. 3A), linking the ramp-like activity in our data with a drift
diffusion-like process of evidence accumulation, in line with
NHP neurophysiology reports (Horwitz and Newsome, 1999;
Kim and Shadlen, 1999; Shadlen and Newsome, 2001; Gold and
Shadlen, 2007).

To test whether these effects are driven primarily by one of the
image categories we looked at the ramp-like activity separately for
faces and cars. We found no significant difference in the average
slope of the two perceptual categories across subjects (two-tailed,
paired t test, p � 0.1; Fig. 2D, inset), consistent with a general-
purpose accumulation of decision evidence. Moreover, to test
whether there are additional discriminating components specific
to image category or choice, we trained two separate classifiers to
discriminate directly along these dimensions (i.e., face-vs-car im-
ages over all levels of sensory evidence and face-vs-car choices at
the lowest level of sensory evidence to exploit error trials). Dis-
crimination performance was not statistically reliable along these
dimensions during the gradual build-up of activity observed above
(see Fig. 5A). Any activity discriminating category or choice on the
scalp (rather than sensory evidence) could arise only if the generators
for each category (or choice) are spatially separable. The absence of
these effects suggests that during decision formation in higher-level
brain areas, pools of neurons with different category and choice se-
lectivity operate within the same area(s) and, as such, their individual
contributions cannot be separated on the scalp.

Thus far we focused our analysis on mean estimates of the
build-up rate of the accumulating activity obtained from our
data. Our multivariate EEG analysis, however, offered an oppor-
tunity to additionally exploit the trial-by-trial variability in the
data in establishing a concrete association between neural activity
and behavioral outcome. As expected, our individual subject data
revealed significant neuronal variability across trials during the
period of evidence accumulation, a finding that was clearly visible
even for trials within the same level of sensory evidence (Fig. 2E).
If this trial-by-trial variability in the build-up rate of the EEG
activity embodies intertrial differences in the quality of the evi-
dence accumulation itself, then trials with higher build-up rates
should lead to more accurate decisions.

To test this prediction formally, we performed a separate
single-trial regression analysis whereby the single-trial slopes ex-
tracted during the build-up of activity from individual subjects
were used to predict the probability of a correct choice (Eq. 5).
Importantly, we designed this analysis to address potentially con-
founding stimulus effects, such as the level of stimulus difficulty/
salience. As stimulus difficulty could be reflected in the slope of
EEG activity (e.g., overall higher build-up rates for easier, com-
pared with more difficult, trials) and because accuracy, on aver-
age, was greater for easy than difficult trials (Fig. 1B), it seemed
possible that a correlation could arise artifactually.

To address this issue we first separated trials into the four
different levels of sensory evidence and for each of them we com-
puted the trial-to-trial deviations around the mean build-up rate.
We then performed the single-trial regression analysis using only
these residual fluctuations, effectively exposing correlations
across trials within the same level of sensory evidence. Crucially,
we found that the trial-by-trial perturbations in the build-up rate
of our accumulating activity were a significant predictor of our
subjects’ accuracy on individual trials (p � 0.001; Fig. 3B). Ad-
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ditionally, we confirmed that these trial-by-trial fluctuations ex-
erted independent influence on the likelihood of a correct
response compared with response times (Eq. 6, p � 0.001). This is
consistent with previous findings showing that single-trial esti-
mates of drift rate are only partially correlated with response
time, due to the high degree of variability in decision processing
(Ratcliff et al., 2009; here, mean correlation between build-up
rate and RTs, r � 0.36).

To provide further support that the onset time of the ramp-
like activity in the EEG corresponds to the start of the decision
process itself, we exploited the substantial variability we observed
across subjects in the non-decision time parameter of the DDM
(minimum: 329 ms, maximum: 615 ms; Fig. 1E). Non-decision
time represents the time spent in early sensory processing (i.e.,
predecision sensory events) as well as in programming a motor
response (after committing to a choice). The extent of the vari-
ability in this parameter coupled with the nature of our task,
which required participants to make speeded responses (thereby
minimizing variance in motor execution; Müller-Gethmann et
al., 2003; Klein-Flügge et al., 2013), suggests that this variance is
largely due to interindividual differences in the events preceding

the decision process (i.e., early sensory component of non-
decision time). According to this interpretation, individual deci-
sion onset times should shift in time by a corresponding amount.
Consistent with this prediction we found a significant, across-
subject, correlation between non-decision times from the DDM
and accumulation onset times extracted from our neural data
(r � 0.70, p � 0.001; Fig. 3C).

Finally, despite requiring our subjects to maintain fixation
during the stimulus presentation, we wanted to unequivocally
rule out the potentially confounding influences of eye move-
ments on the observed effects (e.g., more eye movements in dif-
ficult compared with easier trials). To this end we repeated all
discrimination analyses using only the far frontal electrodes (Fp1,
Fpz, Fp2)—which are affected the most by eye movements—and
showed that our classifier’s performance was significantly re-
duced (see Fig. 5A), suggesting that eye movements were not the
primary driver of the observed effects.

Response-locked EEG analysis
As highlighted earlier, our behavioral and modeling results sug-
gest that at the conclusion of the decision process (i.e., as one
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commits to a choice) the observed build-up of activity should, on
average, converge to a common level regardless of the amount of
sensory evidence. This common boundary response profile has
been traced repeatedly in individual neurons in areas of the pari-
etal and prefrontal cortex of monkeys (Horwitz and Newsome,
1999; Kim and Shadlen, 1999; Shadlen and Newsome, 2001; Gold
and Shadlen, 2007), but it remains unclear whether a corre-
sponding effect exists at the level of population responses re-
corded on the surface of the scalp in humans.

To test this formally we aligned our data to the onset of sub-
jects’ responses and trained a classifier to discriminate between
high- and low-sensory evidence trials (in the same way we per-
formed our analysis on stimulus-locked data earlier). A common
boundary response profile should hamper our classifier’s ability
to discriminate between the two conditions in a systematic way,
with the poorest performance nearer the time of response. In
contrast, if additional quantities that covary with the amount of
decision evidence (e.g., choice certainty, expected reward, etc.),
are superimposed onto the signal recorded on the scalp, our anal-
ysis should yield the opposite result, with classifier performance
increasing around the time of choice.

These predictions stem from the fact that our classifier is de-
signed to return activity from processes that help maximize the
difference across the two conditions of interest while minimizing
the effect of processes common to both conditions. Activity re-
lated to the process of evidence accumulation leading to a com-
mon decision boundary at time of choice would no longer
contribute to the discrimination across conditions and would
therefore be “unmixed” from other decision-related signals ulti-
mately responsible for driving discriminator performance.

Our findings were consistent with the latter interpretation.
Specifically, our classifier’s performance peaked shortly before
subjects’ choice (40 ms before the response, on average) and this
pattern was clearly visible in individual (Fig. 4A) as well as in the
group results (Fig. 4B). Similar to our stimulus-locked analysis,

we applied subject-specific spatial discriminating projections to
an extended time window as well as to trials from the remaining
levels of sensory evidence (those excluded from classifier train-
ing). Rather than a convergence to a common amplitude at time
of choice, the temporal profile of the resulting discriminating
component revealed, on average, a systematic amplitude modu-
lation as a function of sensory evidence, clearly discernible in
individual (Fig. 4C) as well as in the group results (F(3,72) �
108.93, p � 0.001, post hoc paired t tests, all p values �0.001;
Fig. 4D).

To test whether this activity is choice predictive, we performed
a separate regression analysis whereby we used the trial-by-trial
discriminator component amplitudes (Fig. 4E) to predict the
probability of a correct response (Eq. 7). Importantly, we first
factored out the influence of task difficulty (as in the stimulus-
locked analysis) and used only the residual trial-by-trial compo-
nent amplitudes as predictors to expose correlations within each
of the levels of sensory evidence. We found that these trial-by-
trial amplitude fluctuations were a significant predictor of sub-
jects’ accuracy (p � 0.001; Fig. 4F). Crucially, although these
amplitude fluctuations were weakly correlated with the
build-up rate of accumulation we computed earlier (r � 0.16,
p � 0.001), they exerted independent leverage on the likeli-
hood of a correct response (Eq. 8, p � 0.001). This finding
confirms that EEG amplitudes at time of choice are not a mere
manifestation of the process of evidence accumulation but,
rather, embody the additional influence of other postsensory,
decision-related signals.

To further rule out the possibility that differences in motor
preparation (i.e., vigor) contributed to the observed effects, we
looked at beta-band desynchronization, which can be used as an
index of the vigor and intention to initiate a motor response
(Pfurtscheller and Neuper, 1997; Schnitzler et al., 1997; Formag-
gio et al., 2008). Specifically, if participants were responding with
a more forceful button press during easier trials, one would ex-
pect a systematic decrease in beta power as the level of sensory
evidence increases (i.e., a negative correlation), primarily over
perirolandic cortex. We tested this formally by computing beta
power (13–30 Hz) within a window centered on the response (Eq.
9). Although there was a clear power reduction in the beta band as
expected, this reduction was not modulated by the level of sen-
sory evidence (F(3,72) � 1.36, p � 0.26; Fig. 5B).

One signal likely contributing to the amplitude effects around
the time of response is choice certainty (i.e., confidence). Though
our task was not designed to capture confidence directly (e.g.,
through post-decision confidence reports), we used a DDM-
inspired proxy of decision confidence to test the extent to which
our discriminating activity correlates with such quantity. This
exploratory analysis was motivated by recent neurophysiology
reports (Ding and Gold, 2010, 2012b; Nomoto et al., 2010; Fetsch
et al., 2014) proposing that choice confidence (a form of reward-
predicting signal) can be computed continuously as the decision
process unfolds, culminating shortly before a response. In the
context of the DDM used here, confidence can be estimated as the
SNR in the amount of accumulated evidence (Ding and Gold,
2013), with more confident trials arising due to higher SNR.
More specifically, as evidence is sampled (independently) from a
normal distribution in infinitesimal time steps, the overall
amount of accumulated evidence (i.e., signal) can be computed
as the product of the drift rate (slope of accumulation) and
elapsed time. Similarly, the SD in the accumulated evidence (i.e.,
noise) resulting from a drift diffusion process increases propor-
tionally to the square root of elapsed time (Ross, 1996).

4

Figure 4. Response-locked discriminating activity. A, Classifier performance (Az) during
high-vs-low sensory evidence discrimination of response-locked data for a representative sub-
ject. The dashed line represents the subject-specific Az value leading to a significance level of
p � 0.01, estimated using a bootstrap test. The scalp topography is associated with the dis-
criminating component estimated at time of maximum discrimination. B, Mean classifier per-
formance and scalp topography across subjects (N � 25). Shaded region represents SE across
subjects. C, The temporal profile of the discriminating component activity averaged across trials
(for the same participant as in A) for each level of sensory evidence, obtained by applying the
subject-specific spatial projections estimated at the time of maximum discrimination (gray
window) for an extended time window around the subjects’ response (�600 to 500 ms around
the response). Note that the traces at time of choice (vertical dashed line) appear to be para-
metrically modulated by the amount of sensory evidence, rather than converging to a common
“threshold.” D, The mean temporal profile of the discriminating component across subjects for
each level of sensory evidence. Same convention as in C. Shaded region represents SE across
subjects. E, Single-trial discriminant component maps for the same data shown in C. Each row in
these maps represents discriminant component amplitudes, y(t), for a single trial across time.
The panels, from top to bottom, are sorted by the amount of sensory evidence (high to low). We
sorted the trials within each panel by the mean component amplitude (y) in the window of
maximum discrimination (shown in gray). Note single-trial variability within each level of sen-
sory evidence. F, Trial-by-trial fluctuations in component amplitude at time of choice were
positively correlated with the probability of making a correct response (Eq. 7). To visualize this
association the data points were computed by grouping trials into five bins based on the devi-
ations in component amplitude. Importantly, the curve is a fit of Equation 7 to individual trials.
Error bars represent SEs across subjects. G, Trial-by-trial deviations from the mean component
amplitude at time of choice were positively correlated with a DDM-derived proxy of decision
confidence, which in turn is inversely proportional to the square root of decision time (DT; see
text for details). The data points were obtained following the same procedure as in F. Impor-
tantly, the curve is a linear fit to individual trials. Error bars represent SEs across subjects.
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As our DDM predicted a common de-
cision boundary (i.e., same amount of ac-
cumulated evidence, on average) across
levels of task difficulty at time of choice,
our measure of confidence simply be-
comes inversely proportional to the
square root of the total decision time
(DT � time of choice � build-up onset
time). We made use of this prediction to
formally test whether discriminating ac-
tivity at time of choice is indeed related to
a DDM-inspired measure of decision con-
fidence. Specifically, we performed a
single-trial linear regression analysis and
demonstrated that the discriminator
component amplitude at time of choice
was a reliable predictor of our confidence
proxy (i.e., 1/��DT� on each trial (p �
0.001; Fig. 4G).

Exploratory source reconstruction
Taking advantage of the linearity of our
multivariate model, we also computed scalp
projections (i.e., estimated a forward model;
Eq. 4) of the discriminating activity as a
means of interpreting the neuroanatomical
significance of both the stimulus-locked and
response-locked component activity. The
scalp topographies for the time point of
peak discrimination in the two analyses can be seen in Figures 2 and
3, top (individual and group results). To test the reliability of the
scalp topographies over the gradual build-up of discriminating ac-
tivity (in the stimulus-locked analysis) we looked at the spatial
weights (w in Eq. 3) for each window along the decision phase and
found they were very highly correlated (mean r � 0.9), suggesting
the same set of generators operates during this period. Correspond-
ingly, the forward models associated with these windows were very
similar (see Fig. 5A). Interestingly, the scalp topographies for the
stimulus- and response-locked discriminating activity were also
qualitatively very similar, suggesting that evidence accumulation

and other decision-related signals at time of choice might be en-
coded in partially overlapping networks, consistent with recent re-
ports from NHP neurophysiology (Kiani and Shadlen, 2009; Ding
and Gold, 2013).

To test this formally we used these scalp projections as a means
of localizing the underlying neural generators for our stimulus-
and response-locked components using a Bayesian distributed
source reconstruction technique as implemented in SPM8 (Fris-
ton et al., 2008; see Materials and Methods). This technique was
able to account for �98% of the variance in our data in both
cases. More specifically, activity associated with stimulus-locked

Figure 6. Neuronal source reconstruction. Source localization linked to stimulus-locked (red) and response-locked (green)
discriminating activity, respectively. Note the distributed nature of the identified network as well as the overlap between the two
analyses in posterior parietal cortex. Slice coordinates are given in millimeters in MNI space.
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activity was identified in regions of the prefrontal (inferior frontal
gyrus) and parietal (medial intraparietal sulcus, posterior cingu-
late cortex) cortices (Fig. 6; red), areas that have previously been
implicated in decision making and evidence accumulation
(Heekeren et al., 2004; Ploran et al., 2007; Tosoni et al., 2008;
Filimon et al., 2013). Interestingly, our source reconstruction
also revealed bilateral clusters in superior temporal sulcus, sug-
gesting that higher-level sensory areas encoding object categories
might also exhibit decision-related build-up of activity.

Noteworthy is that discriminating activity at time of choice
(Fig. 6; green) was identified in the same regions of the parietal
cortex found to be associated with evidence accumulation above,
lending support to the notion that quantities such as choice con-
fidence might also be represented in the process of evidence ac-
cumulation itself. Additionally, we identified bilateral clusters of
activity in parietal operculum that were extending into insular
cortex as well as in the superior frontal sulcus. Finally, there was
an additional activation in motor cortex indicating that decision
variables might also be encoded in regions controlling the motor
effectors used to indicate the choice, in line with recent reports on
the embodiment of decision making (Donner et al., 2009; Sher-
win and Sajda, 2013).

Discussion
The neural basis of perceptual decision making has often been
viewed as a window into the fundamental processes of cognition
(Shadlen and Kiani, 2013). Pioneered in awake behaving animal
studies, notably in NHPs, these efforts originally focused on iden-
tifying single-unit activity, or activity arising from small neuronal
populations, which could explain variance or predict aspects of
the stimulus or behavior. More recently there has been substan-
tial effort to identify neural correlates of perceptual decision-
making processing in humans using neuroimaging, such as fMRI,
EEG, and MEG (Donner et al., 2007; Philiastides and Sajda, 2007;
Ploran et al., 2007; Heekeren et al., 2008; Tosoni et al., 2008; Sajda
et al., 2009; Noppeney et al., 2010; Philiastides et al., 2011; Siegel
et al., 2011; Wyart et al., 2012; Filimon et al., 2013).

In this paper we used a dynamic stimulus paradigm, while
analyzing the trial-to-trial variability in the evoked EEG within
the context of sequential sampling models, to show that at the
macroscopic scale of EEG, multiple neural correlates reflecting
different aspects of the decision-making processes are superim-
posed, both in space and time. Here we demonstrated that a
careful analysis, which tracks trial-to-trial variability as a function
of time in the trial, relative to the stimulus presentation and/or
the response, could be used to tease them apart. More specifically,
we showed that stimulus-locked signatures of evidence appearing
as early as 300 ms poststimulus could be disentangled from other
choice-predictive signals, which continue, on average, to covary
positively with the amount of sensory evidence near the time of
choice. We also showed that a DDM-inspired proxy of choice
confidence could potentially account (in part) for these late
response-locked signals.

Recent NHP (Kiani and Shadlen, 2009; Fetsch et al., 2014) and
human EEG (De Martino et al., 2013; Zizlsperger et al., 2014)
studies using more direct measures of confidence reported that
such quantities emerge from the same generators involved in
stimulus evidence accumulation. Consistent with this interpreta-
tion, our distributed source analysis revealed that the network
correlates of stimulus- and response-locked signals partially
overlap in topology. Nonetheless, they each also showed unique
cortical generators that ultimately help to further differentiate
them from one another. One of the generators uniquely associ-

ated with response-locked signals was found in an area of the
premotor/motor apparatus, providing support that (at least for
RT tasks) decisions can also be implemented in the areas that
guide subsequent actions (Donner et al., 2009; Sherwin and Sa-
jda, 2013) while emphasizing that multiple signals could be en-
coded in parallel near the time of choice.

It is clear from our work that a spatially distributed view of the
perceptual decision-making process can yield insight that would
not be seen if recordings were made from a single area, or at the
level of single neurons or small populations. Although under-
standing the microcircuitry of processes underlying decision
making will continue to require recordings at the single-unit
and/or small-population level of activity, particularly in NHPs, it
is also clear that macro-scale networks are only observable if one
takes the entire brain into account. In fact, one would not expect a
one-to-one correspondence between activity generated at the
micro-scale and that observed at the macro-scale.

For example, even though single-unit recordings in NHPs have
consistently reported neural activity from choice-selective neurons
(i.e., from a “winning decision pool”) in SC and LIP to converge to a
common firing level (Horwitz and Newsome, 1999; Shadlen and
Newsome, 2001; Roitman and Shadlen, 2002), decision-related
neurons that are selective for an action other than the chosen one
do not converge to a common activity level at time of choice (for
an example, see Roitman and Shadlen, 2002, their Fig. 7A). Be-
cause the EEG signal reflects population responses, it is reason-
able to assume that scalp activity would, instead, represent the
absolute difference in activity between the two response profiles
described above. This is because, mechanistically, the difference
signal likely comes about through mutual inhibition between the
competing pools of integrator neurons (Larsen and Bogacz,
2010). In this context, increased inhibition on one group releases
inhibition on the other, thereby producing a positive potential on
the scalp. As such, the observed scalp activity would not converge
to a common decision boundary at time of choice but, rather,
would appear stronger (more positive) for higher levels of sen-
sory evidence.

Recent reports showing that spatial derivatives of human scalp
EEG yield activity profiles that match what is seen in single-unit
activity in NHPs, in terms of accumulation of stimulus evidence
to a common boundary (Kelly and O’Connell, 2013), are in fact
surprising given the distributed nature of the EEG recordings and
the spatial averaging that naturally results from ohmic conduc-
tion and low-pass filtering of the CSF and the skull (Nunez and
Srinivasan, 2005). We performed a similar current source density
analysis (Perrin et al., 1989) on our data and found no such
convergence to a common boundary, suggesting that their obser-
vation may be specific to their experimental paradigm (e.g.,
where changes in sensory evidence must first be detected in back-
ground noise and then accumulated to form a decision).

More specifically, in the study by Kelly and O’Connell (2013),
the direction discrimination task was designed such that the dy-
namic motion stimulus was continuously active, whereby long
periods of pure noise were interleaved with periods of partially
coherent motion based on which choice was made. As such, the
design included both a detection and a discrimination compo-
nent. Though the task is attractive, as it eliminates early evoked
responses associated with transient visual responses, it is mark-
edly different from most perceptual decision-making tasks that
study evidence accumulation, because detection is usually not
included as an additional component. It is noteworthy that RTs
described by Kelly and O’Connell (2013) are long relative to other
comparable two-alternative forced-choice RT tasks, suggesting
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that perhaps the combined detection and discrimination task
taps on additional cognitive processes, thereby leading to a com-
mon boundary. For example, the temporal expectation that co-
herent motion would appear (caused by the long interstimulus
intervals), together with the added time required to detect the
stimulus at different motion strengths, could lead to persistent
increases in amplitude and latency shifts of P300-like signals
(Gerson et al., 2005; Rohenkohl and Nobre, 2011), which mix on
the scalp with accumulator signals related to discrimination,
causing the curves to seemly match at time of choice.

In addition, recent evidence points to a substantial heteroge-
neity in the responses of individual neurons in LIP, FEFs, and SC
in terms of their reflecting evidence accumulation to a common
boundary as well as in encoding other decision variables that are
parametrically modulated by the amount of sensory evidence
near the time of choice (Ding and Gold, 2010, 2012b, 2013; No-
moto et al., 2010; Meister et al., 2013). Importantly, this hetero-
geneity is seen both at the level of local neuronal populations and
in areas across the brain. We would expect such heterogeneity to
obscure any activity representing accumulation of evidence to a
common boundary, at least when measured with scalp EEG. It is
important to consider whether findings at the macroscopic level
of EEG truly reflect the same underlying processes of accumula-
tion of evidence to a common boundary or are instead explain-
able by differences and idiosyncrasies in the stimulus/task design,
relative to those used in NHP studies.

Ultimately, identifying the constituent, mechanistic processes
underlying perceptual decision making will require both micro-
scopic and macroscopic approaches that leverage advantages of
performing experiments in NHPs and/or human subjects. Al-
though the goal is to integrate the results into a common view of
perceptual decision making, our study suggests that caution is
required when designing human neuroimaging studies based on
direct translation of single-unit patterns of activity because the res-
olution of the measured neural activity is substantially different.

Intriguingly, our results can form the foundation upon which
future studies using macroscopic approaches can continue to
interrogate the neural systems underlying human decision mak-
ing. Similarly, being able to noninvasively exploit different
decision-related variables on a trial-by-trial basis can be used in
the development of cognitive interfaces that help inform a diverse
set of socioeconomic problems. These may range from brain–
computer-interface design for augmenting decision making, par-
ticularly in problems relying on inconclusive or ambiguous
evidence (e.g., image analysis; Sajda et al., 2007; Parra et al.,
2008), to identifying psychopathological precursors to behavioral
changes resulting from cognitive decline and major neuropsychi-
atric disorders (e.g., schizophrenia; Lesh et al., 2011).
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