47 research outputs found

    Fixed-point analysis of a network of routers with persistent TCP/UDP flows and class-based weighted fair queuing

    Get PDF
    Fixed-point models have already been successfully used to analytically study networks consisting of persistent TCP flows only, or mixed TCP/UDP flows with a single queue per link and differentiated buffer management for these two types of flows. In the current study, we propose a nested fixed-point analytical method to obtain the throughput of persistent TCP and UDP flows in a network of routers supporting class-based weighted fair queuing allowing the use of separate queues for each class. In particular, we study the case of two classes where one of the classes uses drop-tail queue management and is intended for only UDP traffic. The other class targeting TCP, but also allowing UDP traffic for the purpose of generality, is assumed to employ active queue management. The effectiveness of the proposed analytical method is validated in terms of accuracy using ns-3 simulations and the required computational effort. © 2016, Springer Science+Business Media New York

    Automated Inference System for End-To-End Diagnosis of Network Performance Issues in Client-Terminal Devices

    Full text link
    Traditional network diagnosis methods of Client-Terminal Device (CTD) problems tend to be laborintensive, time consuming, and contribute to increased customer dissatisfaction. In this paper, we propose an automated solution for rapidly diagnose the root causes of network performance issues in CTD. Based on a new intelligent inference technique, we create the Intelligent Automated Client Diagnostic (IACD) system, which only relies on collection of Transmission Control Protocol (TCP) packet traces. Using soft-margin Support Vector Machine (SVM) classifiers, the system (i) distinguishes link problems from client problems and (ii) identifies characteristics unique to the specific fault to report the root cause. The modular design of the system enables support for new access link and fault types. Experimental evaluation demonstrated the capability of the IACD system to distinguish between faulty and healthy links and to diagnose the client faults with 98% accuracy. The system can perform fault diagnosis independent of the user's specific TCP implementation, enabling diagnosis of diverse range of client devicesComment: arXiv admin note: substantial text overlap with arXiv:1207.356

    Chronology of the development of Active Queue Management algorithms of RED family. Part 1: from 1993 up to 2005

    Get PDF
    This work is the first part of a large bibliographic review of active queue management algorithms of the Random Early Detection (RED) family, presented in the scientific press from 1993 to 2023. The first part will provide data on algorithms published from 1993 to 2005

    Improved congestion control for packet switched data networks and the Internet

    Get PDF
    Congestion control is one of the fundamental issues in computer networks. Without proper congestion control mechanisms there is the possibility of inefficient utilization of resources, ultimately leading to network collapse. Hence congestion control is an effort to adapt the performance of a network to changes in the traffic load without adversely affecting users perceived utilities. This thesis is a step in the direction of improved network congestion control. Traditionally the Internet has adopted a best effort policy while relying on an end-to-end mechanism. Complex functions are implemented by end users, keeping the core routers of network simple and scalable. This policy also helps in updating the software at the users' end. Thus, currently most of the functionality of the current Internet lie within the end users' protocols, particularly within Transmission Control Protocol (TCP). This strategy has worked fine to date, but networks have evolved and the traffic volume has increased many fold; hence routers need to be involved in controlling traffic, particularly during periods of congestion. Other benefits of using routers to control the flow of traffic would be facilitating the introduction of differentiated services or offering different qualities of service to different users. Any real congestion episode due to demand of greater than available bandwidth, or congestion created on a particular target host by computer viruses, will hamper the smooth execution of the offered network services. Thus, the role of congestion control mechanisms in modern computer networks is very crucial. In order to find effective solutions to congestion control, in this thesis we use feedback control system models of computer networks. The closed loop formed by TCPIIP between the end hosts, through intermediate routers, relies on implicit feedback of congestion information through returning acknowledgements. This feedback information about the congestion state of the network can be in the form of lost packets, changes in round trip time and rate of arrival of acknowledgements. Thus, end hosts can either execute reactive or proactive congestion control mechanisms. The former approach uses duplicate acknowledgements and timeouts as congestion signals, as done in TCP Reno, whereas the latter approach depends on changes in the round trip time, as in TCP Vegas. The protocols employing the second approach are still in their infancy as they cannot co-exist safely with protocols employing the first approach. Whereas TCP Reno and its mutations, such as TCP Sack, are presently widely used in computer networks, including the current Internet. These protocols require packet losses to happen before they can detect congestion, thus inherently leading to wastage of time and network bandwidth. Active Queue Management (AQM) is an alternative approach which provides congestion feedback from routers to end users. It makes a network to behave as a sensitive closed loop feedback control system, with a response time of one round trip time, congestion information being delivered to the end host to reduce data sending rates before actual packets losses happen. From this congestion information, end hosts can reduce their congestion window size, thus pumping fewer packets into a congested network until the congestion period is over and routers stop sending congestion signals. Keeping both approaches in view, we have adopted a two-pronged strategy to address the problem of congestion control. They are to adapt the network at its edges as well as its core routers. We begin by introducing TCPIIP based computer networks and defining the congestion control problem. Next we look at different proactive end-to-end protocols, including TCP Vegas due to its better fairness properties. We address the incompatibility problem between TCP Vegas and TCP Reno by using ECN based on Random Early Detection (RED) algorithm to adjust parameters of TCP Vegas. Further, we develop two alternative algorithms, namely optimal minimum variance and generalized optimal minimum variance, for fair end-to-end protocols. The relationship between (p, 1) proportionally fair algorithm and the generalized algorithm is investigated along with conditions for its stable operation. Noteworthy is a novel treatment of the issue of transient fairness. This represents the work done on congestion control at the edges of network. Next, we focus on router-based congestion control algorithms and start with a survey of previous work done in that direction. We select the RED algorithm for further work due to it being recommended for the implementation of AQM. First we devise a new Hybrid RED algorithm which employs instantaneous queue size along with an exponential weighted moving average queue size for making decisions about packet marking/dropping, and adjusts the average value during periods of low traffic. This algorithm improves the link utilization and packet loss rate as compared to basic RED. We further propose a control theory based Auto-tuning RED algorithm that adapts to changing traffic load. This algorithm can clamp the average queue size to a desired reference value which can be used to estimate queuing delays for Quality of Service purposes. As an alternative approach to router-based congestion control, we investigate Proportional, Proportional-Integral (PI) and Proportional-Integral-Derivative (PID) principles based control algorithms for AQM. New control-theoretic RED and frequency response based PI and PID control algorithms are developed and their performance is compared with that of existing algorithms. Later we transform the RED and PI principle based algorithms into their adaptive versions using the well known square root of p formula. The performance of these load adaptive algorithms is compared with that of the previously developed fixed parameter algorithms. Apart from some recent research, most of the previous efforts on the design of congestion control algorithms have been heuristic. This thesis provides an effective use of control theory principles in the design of congestion control algorithms. We develop fixed-parameter-type feedback congestion control algorithms as well as their adaptive versions. All of the newly proposed algorithms are evaluated by using ns-based simulations. The thesis concludes with a number of research proposals emanating from the work reported

    Queues with Congestion-dependent Feedback

    Get PDF
    This dissertation expands the theory of feedback queueing systems and applies a number of these models to a performance analysis of the Transmission Control Protocol, a flow control protocol commonly used in the Internet

    Sixth Goddard Conference on Mass Storage Systems and Technologies Held in Cooperation with the Fifteenth IEEE Symposium on Mass Storage Systems

    Get PDF
    This document contains copies of those technical papers received in time for publication prior to the Sixth Goddard Conference on Mass Storage Systems and Technologies which is being held in cooperation with the Fifteenth IEEE Symposium on Mass Storage Systems at the University of Maryland-University College Inn and Conference Center March 23-26, 1998. As one of an ongoing series, this Conference continues to provide a forum for discussion of issues relevant to the management of large volumes of data. The Conference encourages all interested organizations to discuss long term mass storage requirements and experiences in fielding solutions. Emphasis is on current and future practical solutions addressing issues in data management, storage systems and media, data acquisition, long term retention of data, and data distribution. This year's discussion topics include architecture, tape optimization, new technology, performance, standards, site reports, vendor solutions. Tutorials will be available on shared file systems, file system backups, data mining, and the dynamics of obsolescence

    Performance Modeling Framework for CORBA Based Distributed Systems

    Get PDF
    The CORBA platform is increasingly popular in distributed computing due to its ability to hide complex implementation issues from application developers. However, performance consequences of the underlying techniques often remain visible to software developers. Moreover, new performance concerns may emerge because of additional layering and indirection. Performance modeling allows developers to understand and predict the performance of CORBA based systems. In this wor
    corecore