
Telecommun Syst (2017) 64:585–598
DOI 10.1007/s11235-016-0191-1

Fixed-point analysis of a network of routers with persistent
TCP/UDP flows and class-based weighted fair queuing

Caglar Tunc1 · Nail Akar1

Published online: 8 July 2016
© Springer Science+Business Media New York 2016

Abstract Fixed-point models have already been success-
fully used to analytically study networks consisting of
persistent TCP flows only, or mixed TCP/UDP flows with a
single queue per link and differentiated buffer management
for these two types of flows. In the current study, we propose
a nested fixed-point analytical method to obtain the through-
put of persistent TCP and UDP flows in a network of routers
supporting class-based weighted fair queuing allowing the
use of separate queues for each class. In particular, we study
the case of two classes where one of the classes uses drop-
tail queue management and is intended for only UDP traffic.
The other class targeting TCP, but also allowing UDP traffic
for the purpose of generality, is assumed to employ active
queue management. The effectiveness of the proposed ana-
lytical method is validated in terms of accuracy using ns-3
simulations and the required computational effort.

Keywords TCP · Active queue management · UDP ·
Class-based weighted fair queuing · Fixed-point analysis

This work is supported by the Science and Research Council of
Turkey (Tubitak) under projects no. 111E106 and 115E360.

B Nail Akar
akar@ee.bilkent.edu.tr

Caglar Tunc
caglar@ee.bilkent.edu.tr

1 Electrical and Electronics Engineering Department, Bilkent
University, Ankara, Turkey

1 Introduction

In today’s Internet, transmission control protocol (TCP)
and user datagram protocol (UDP) are the most dominant
protocols for the transport layer. Using drop-tail queue man-
agement mechanism on links carrying TCP traffic results in
the so-called “full queues” and “lock-out” problems which
are discussed in [8]. The full queues problemcanbedescribed
as the buffer being occupied most of the time which leads to
large queuing delays and thus reduced TCP throughput. On
the other hand, the lock-out problem refers to a case in which
a single or a few flows dominate the queue space while other
flows using the same link starve because of synchronization
or other timing effects. In order to mitigate the full queues
problem, active queue management (AQM) techniques have
been proposed which drop packets without waiting for the
queue to be full [8]. The AQM drop decision is generally
probabilistic on certain queue parameters to mitigate the
lock-out problem [8]. In this paper, we do not delve into
the problem of parameter optimization for AQM but rather
assume that the parametrization of a given AQM scheme is
given.

Increasing use of real-time voice and video applications
has led to changes in the “UDP to TCP ratio” trend in today’s
Internet which is further discussed in [28]. Since UDP does
not have a congestion control mechanism as TCP, TCP flows
sharing the same link with UDP flows may starve because of
UDPflows’ unresponsive behavior, known as congestion col-
lapse [16,34]. Obviously, this is not desirable for applications
using TCP. In this paper, we envision class-based queuing at
the network links to address the congestion collapse prob-
lem. We focus on the particular case of two classes, namely
classes 1 and 2, where persistent UDP flows can join either
Class 1 or Class 2 and TCP flows are only allowed to join
Class 2. If all UDP flows join Class 1, then we have complete

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11235-016-0191-1&domain=pdf

586 C. Tunc, N. Akar

isolation between UDP and TCP flows. On the other hand,
if all UDP flows join Class 2, then we would not have any
isolation, allowing us to study both the two extreme cases
with a unifying framework. We envision the use of AQM for
Class 2 queues and drop-tail as the buffermanagementmech-
anism for Class 1. We also assume Class-based Weighted
Fair Queuing (CBWFQ)-based scheduling among per-class
queueswhich refers to a set of link-based techniques inwhich
each class receives aweighted fair share of link resources and
the buffermanagement of a class is configured independently
of others. CBWFQ is a termcoined byCisco and is elaborated
in several references including [7,13,23]. Weighted Round
Robin (WRR) and Deficit Round Robin (DRR) are specific
schemes for weighted fair queuing [24,42] where the lat-
ter scheme is proposed for variable-sized packets [42]. The
DRR algorithm is shown to achieve near-perfect weighted
fairness in terms of throughput while requiring less compu-
tational complexity to process a packet when compared with
other mechanisms. Themain goal of this paper is to devise an
analytical method to calculate the performance experienced
by the persistent TCP and UDP flows using the network, in
terms of the per-flow throughputs. Although it may be desir-
able to analyse cases with more than two classes of traffic,
such scenarios inwhich TCPflowsmay further be segregated
into further classes depending on their flow lengths, quality
of service requirements, etc., as in [44], are left for future
research.

In the literature, fixed-point iterative models have been
used to study a network consisting of persistent TCP flows
only in [9,18,19]. For the case of TCP andUDPflows queued
in a single buffer at the network links, an extended fixed-point
model is proposed in [39] to study the impact of differentiated
buffer management on the performance of TCP/UDP flows.
However, to the best of our knowledge, a specific method
has not been proposed in the literature to study a network
of routers carrying persistent TCP/UDP flows and per-class
queuing at the network links. The goal of this paper is to fill
this research gap and devise a fixed-point analytical model
for this scenario.

The main contributions of this study are given as follows.
Using the TCP send rate formula provided in [9], we propose
a nested fixed-point iterative algorithm to study a network of
routers of arbitrary topology using CBWFQ-based schedul-
ing on inter-router links andwhich is offeredwith an arbitrary
number of persistent TCP/UDPflows. The nested fixed-point
model consists of one single outer loop with two inner loops,
one loop per class. We validate the accuracy of the model by
employing ns-3 simulations.Moreover, we demonstrate con-
vergence statistics of the fixed-point iterations by providing
the number of iterations and the computation time required
until convergence for various scenarios. Although we do not
have a formal proof for the convergence of the proposed
algorithm, we observed that the algorithm always converged

within plausible amount of time for all the network scenarios
we studied.

The paper is organized as follows. In Sect. 2, we reca-
pitulate the related work. We present the nested fixed-point
iterations to obtain the per-flow throughputs in networkswith
per-class queuing offeredwith persistent TCP andUDPflows
in Sect. 3. The proposed analytical method is validated by
ns-3 simulations with various numerical examples in Sect. 4.
Finally, we conclude.

2 Related work

In this section, we summarize the related work in the
following three categories: AQM techniques, TCP-UDP
interaction, and analytical models for TCP.

2.1 AQM techniques

In the literature, there are several AQM techniques proposed
such as random early detection (RED) [17,22], early random
drop (ERD) [21], random exponential marking (REM) [4].
Performance of various AQMmechanisms in terms of packet
travel times and packet loss probabilities is studied in [20].
Optimization of AQM parameters for various traffic scenar-
ios has also been an active area of research; see for example
[45] that studies a RED-controlled router that automatically
tunes its RED parameters, and also [43] for a self-tuning pro-
portional and integral-type feedback controller extension of
the basic RED. The reference [33] uses a traffic prediction
technique to decide packet drops in AQM whereas in [25],
another controller design is proposed to increase the perfor-
mance of AQM for TCP traffic. As stated before, we assume
a certain variant of RED as the particular AQM mechanism
to be used in this study although the work can be extended
to more general AQM mechanisms.

2.2 TCP-UDP interaction

There are several studies that focus on improving the perfor-
mances of TCP’s congestion control mechanism and UDP’s
unresponsive behavior. The reference [14] proposes a TCP
variant which uses a novel AQM technique to increase TCP’s
end-to-end delay performance whereas a variant of UDP that
employs congestion control as in TCP is studied in [10]. The
references [37] and [40] aim at providing bandwidth guaran-
tees to TCP flows in cloud networks with both TCP and UDP
flows. To mitigate the TCP starvation problem, per-class
queuing has been proposed in which flows using different
transport layers are classified into separate service queues per
transport layer [44]. On the other hand, a class-based buffer
management approach is proposed in [3] in which packets

123

Fixed-point analysis of a network of routers... 587

belonging to different classes experience different dropping
policies to preserve TCP/UDP fairness.

2.3 Analytical models for TCP

In the literature, different analytical expressions have been
proposed for characterizing the send rate of TCP’s conges-
tion control mechanism as a function of the packet loss and
round trip delay [27,29,31,35,36]. In this study, we use the
TCP send rate formula proposed in [36] which captures not
only the fast retransmit mechanism of TCP Reno but also
the effect of the time-out mechanism. The other TCP models
proposed in [29,31,35] ignore certain features of TCP and
consequently over-estimate TCP throughput while propos-
ing simpler expressions. Using fixed-point iterations using
the analytical expression for TCP flows’ send rates given in
[36], one can study the behavior of a TCP flow in a net-
work of AQM routers offered with persistent TCP flows [9].
A similar fixed-point analysis following an M/D/1 queuing
model for eachAQM link is given in [19]. An elaborate queu-
ing analysis is proposed by [41] for a finite queue with its
arrivals controlled by the random early detection algorithm.
The authors of [41] study the exact dynamics of this queue
and provide the stability and the rates of convergence to the
stationary distribution and obtain the packet loss probability
and the waiting time distributions for this queue. In [32],
the authors have developed a methodology to model and
obtain the expected transient behavior of networkswithAQM
routers supporting TCP flows. An analytical framework for

modeling a network of RED queues with mixed UDP and
TCP traffic is introduced in [1] which only allows one single
queue for both traffic types but differentiated buffer manage-
ment as opposed to per-class queuing. However, to the best
of our knowledge, amethod has not been proposed to analyse
a network containing persistent TCP/UDP traffic and routers
with per-class queuing. The goal of this paper is to devise an
analytical model based on the work of [9] that enables us to
analyse networks offeredwith persistent TCP andUDPflows
in a network of routers using CBWFQ-based scheduling on
inter-router links.

3 Fixed-point analysis of a network of routers

We assume a network of routers that are offered with persis-
tent UDP and TCP flows. Consider a link v that interconnects
two routers, in a network with V links, with transmission
capacity Cv (in units of bps). The link v employs a vari-
ant of WFQ among the two queues Q(1)

v and Q(2)
v which

are assigned the scheduling weights w
(1)
v , 0 ≤ w

(1)
v ≤ 1,

and w
(2)
v = 1 − w

(1)
v , respectively. Moreover, let B(1)

v and
B(2)

v denote the queue sizes of Q(1)
v and Q(2)

v , respectively.
The throughput, i.e., the average queue drainage rate, of the
queues Q(1)

v and Q(2)
v , are denoted by C (1)

v and C (2)
v , respec-

tively. If both queues are non-empty, thenC (l)
v = Cvw

(l)
v , l =

1, 2. However, these quantities can not exceed the queue
demands in which case we will have empty queues and the
queue’s throughput will be equal to its demand. Drop-tail
queue management is envisioned for the queue Q(1)

v since
TCP flows are not allowed to join the queue Q(1)

v . Let the
probability drop function at the queue Q(1)

v be denoted by
p(1)
v (x (1)

v) where x (1)
v is the queue occupancy of Q(1)

v . On
the other hand, all TCP and optionally some UDP flows are
allowed to join Q(2)

v . Therefore, we propose to use REDwith
probability drop function p(2)

v (x (2)
v) where x (2)

v is the current
queue occupancy of Q(2)

v . For the fluid fixed-point analy-
sis, we need to have an injective probability drop function
which leads us to the generic expression given in Eq. (1) for
p(2)
v (x (2)

v) that reduces to the gentle variant of RED (G-RED)
of [15] when p(2)min

v and t (2)min
v are set to zero. In particular,

the quantity p(2)
v (x (2)

v) equals

p(2)
v (x (2)

v) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p(2)min
v

t (2)min
v

x (2)
v , 0 ≤ x (2)

v ≤ t (2)min
v ,

p(2)min
v + x (2)

v − t (2)min
v

t (2)max
v − t (2)min

v

(p(2)max
v − p(2)min

v), t (2)min
v ≤ x (2)

v ≤ t (2)max
v ,

p(2)max
v + x (2)

v − t (2)max
v

t (2)max
v

(1 − p(2)max
v), t (2)max

v ≤ x (2)
v ≤ 2t (2)max

v ,

1, 2t (2)max
v ≤ x (2)

v ≤ B(2)
v .

(1)

Note that the parameters p(2)min
v and t (2)min

v are to be set to
values very close to zero in the numerical experiments to be
compatible with the G-RED curve that is used in [9]. The
generic G-RED curve we use in the analysis for all the links
is depicted in Fig. 1. For the traffic demands, we assume K (1)

U

persistentUDPflows, eachflow labeled as i (1)u = 1, . . . , K (1)
U

that belong to class 1. Similarly, we assume K (2)
U persistent

UDP and K (2)
T persistent TCP flows for class 2 where the

UDP flows are labeled as i (2)U = 1, . . . , K (2)
U and TCP flows

are labeled as i (2)T = 1, . . . , K (2)
T . In case there is no isolation

123

588 C. Tunc, N. Akar

Fig. 1 The generic G-RED drop probability curve

between TCP and UDP flows, then we have K (1)
U = 0. If

we have complete isolation, then K (2)
U = 0. Partial isolation

betweenTCP andUDPflows can also be addressed by setting
K (l)
U > 0, l = 1, 2 in this general framework. Let V

i (2)T
be the

ordered set of links for flow i (2)T which can be found using
Dijkstra’s shortest path algorithm with all the link weights
set to one, i.e., min-hop path [11]. In order to express the TCP
send rate of each flow, the round-trip time and the end-to-end
loss probability needs to be calculated.Denoting the one-way
fixed propagation delay of a link v by Pv , the expected round-
trip time for flow i (2)T , denoted by R

i (2)T
, can be expressed as:

R
i (2)T

= 2
∑

v∈V
i(2)T

Pv +
∑

v∈V
i(2)T

x (2)
v

C (2)
v

, (2)

where the first term is the two-way fixed propagation delay
for TCP flow i (2)T and the second term is the queuing delay

experienced by the flow i (2)T on its route. Let q
i (2)T

be the

end-to-end loss probability of TCP flow i (2)T which can be
expressed as follows:

q
i (2)T

= 1 −
∏

v∈V
i(2)T

(1 − p(2)
v). (3)

Similarly, let V
i (1)U

and V
i (2)U

be the ordered set of links used

by UDP flows i (1)U and i (2)U , respectively. Consequently, the
end-to-end loss probabilities for these flows can be written
as follows:

q
i (l)U

= 1 −
∏

v∈V
i(l)U

(1 − p(l)
v), l = 1, 2. (4)

In the literature, several expressions in various complexities
have been proposed for the TCP send rate of an individ-
ual flow [22]. In our proposed model, we use the TCP send

rate expression suggested by [36] which is shown to capture
TCP’s fast retransmit and timeout mechanisms. The max-
imum congestion window size Wmax is determined at the
beginning of TCP flow establishment [36]. For the purpose
of using this expression, we first define the expected value of
the unconstrained window size denoted by E[W

i (2)T
] of flow

i (2)T based on [36]:

E
[
W

i (2)T

]
= 2 + b

3b
+

√
√
√
√

8(1 − q
i (2)T

)

3bq
i (2)T

+
(
2 + b

3b

)2

, (5)

where the parameter b is the number of packets acknowl-
edged by a received ACK. Many TCP receivers send one
cumulativeACK for two consecutive packets received; there-
fore b is typically set to two.We also have the probability that
loss in a window of size w is detected by time-outs denoted
by Q

i (2)T
(w)=

min

⎛

⎜
⎜
⎝1,

(

1−
(
1−q

i (2)T

)3
) (

1 +
(
1 − q

i (2)T

)3
) (

1 −
(
1 − q

i (2)T

)w−3
))

1 −
(
1 − q

i (2)T

)w

⎞

⎟
⎟
⎠.

(6)

Using the identities (5) and (6), and on the basis of work in
[36], one can write the TCP send rate of flow i (2)T , namely

T (i (2)T) =

1−q
i(2)T

q
i(2)T

+ E
[
W

i (2)T

]
+ Q

i (2)T

(
E

[
W

i (2)T

])
1

1−q
i(2)T

R
i (2)T

(
b
2 E[W

i (2)T
]+1

)
+Q

i (2)T

(
E[W

i (2)T
]
)
T0F

(
i (2)T

)
1

1−q
i(2)T

(7)

if E[W
i (2)T

] < Wmax . Otherwise, T (i (2)T) =

1−q
i(2)T

q
i(2)T

+ Wmax +
Q
i(2)T

(Wmax)

1−q
i(2)T

R
i (2)T

(

b
8Wmax +

1−q
i(2)T

q
i(2)T

Wmax + 2

)

+ Q
i (2)T

(Wmax)T0F(i (2)T) 1
1−q

i(2)T

(8)

where T0 denotes the timeout period and F(i (2)T) =

1 + q
i (2)T

+ 2q2
i (2)T

+ 4q3
i (2)T

+ 8q4
i (2)T

+ 16q5
i (2)T

+ 32q6
i (2)T

. (9)

For detailed derivation of the TCP send rate, we refer the
reader to [36]. Note that the TCP send rate formula in (8)
assumes that TCP ACK traffic does not encounter losses on
the way back, which is not typically the case. By TCP ACK
traffic prioritization over other data traffic as in [26], not only

123

Fixed-point analysis of a network of routers... 589

TCP performance can be improved in general but Eq. (8)
provides a more precise characterization for the TCP send
rate in real networks. This is the approach we take in the
current study. Moreover, let Y (i (2)T) denote the throughput of

the TCP flow i (2)T :

Y (i (2)T) = T
(
i (2)T

) (
1 − q

i (2)T

)
, (10)

which is the main performance metric of interest that we
attempt to obtain analytically.

Let the send rates of UDP flows i (1)U and i (2)U be denoted

by T (i (1)U) and T (i (2)U), respectively. Recall that the send rate
of TCP flows can be calculated using (8). Given the loss
probabilities for each link, the total traffic demand on link
v’s two queues, denoted by D(1)

v and D(2)
v , can be calcu-

lated. For this purpose, let SU (v, l) be the set of UDP flows
which use queue Q(l)

v , l = 1, 2. For i (l)U ∈ SU (v, l), let
Z

v,i (l)U
be the set of ordered links ordered as the route of the

flow i (l)U until it reaches the link v again for l = 1, 2. Sim-
ilarly, let ST (v) be the set of TCP flows which use queue
Q(2)

v . For i (2)T ∈ ST (v), let Z
v,i (2)T

be the set of ordered

links that constitute the route of the flow i (2)T until it reaches
the link v. With these definitions, it is not difficult to write
demands D(1)

v and D(2)
v as in Eqs. (11) and (12), respec-

tively.

D(1)
v =

∑

i (1)U ∈SU (v,1)

T (i (1)U)
∏

u∈Z
v,i(1)U

(1 − p(1)
u), (11)

D(2)
v =

∑

i (2)U ∈SU (v,2)

T (i (2)U)
∏

u∈Z
v,i(2)U

(1 − p(2)
u)

+
∑

i (2)T ∈ST (v)

T (i (2)T)
∏

u∈Z
v,i(2)T

(1 − p(2)
u). (12)

The link loss probabilities can then be written as follows:

p(l)
v =

⎧
⎨

⎩

1 − C(l)
v

D(l)
v

, C (l)
v ≤ D(l)

v , l = 1, 2.

0, otherwise
(13)

Once we know p(l)
v , l = 1, 2, the per-flow throughputs for

UDP flows, denoted by Y (i (l)U), of the flow i (l)U , l = 1, 2, can
be found by using the following identity:

Y (i (l)U) = T (i (l)U)(1 − q
i (l)U

), l = 1, 2. (14)

We propose a nested fixed-Point Iterations (NFPI) algo-
rithm to solve the per-flow TCP and UDP throughputs in
Algorithm 1 whose nomenclature is provided in Table 1. The
algorithm consists of an outer loop and two inner loops (one

Table 1 Nomenclature of Algorithm 1

Input

Q(j)
v Queue of class j on link v

Cv Capacity of link v (bps)

w
(j)
v Scheduling weight of class j on link v

T (i (j)U) Send rate of UDP flow i (j)U (bps)

xlv Binary search thresh. for x (2)
v , l ∈ {−,+}

ε j Tolerance parameters, 1 ≤ j ≤ 3 (bps)

ζ Threshold convergence parameter (bits)

t (2)min
v G-RED parameters

t (2)max
v

p(2)min
v

p(2)max
v

Output

x (j)
v Queue occupancy of Q(j)

v (bits)

p(j)
v Loss probability of link v for class j

C (j)
v Queue drain rate of Q(j)

v (bps)

D(j)
v Demand on link v for class j (bps)

q
i (j)U

Loss prob. for UDP flow i (j)U in class j

q
i (2)T

Loss prob. of TCP flow i (2)T

T (i (2)T) Send rate of TCP flow i (2)T (bps)

Y (i (2)T) Throughput of TCP flow i (2)T (bps)

Y (i (j)U) Throughput of UDP flow i (j)U (bps)

inner loop per class). We initially set C (l)
v = Cvw

(l)
v , l =

1, 2,∀v ∈ V . Then, given C (1)
v , we use fixed-point iter-

ations to solve D(1)
v and p(1)

v for all v ∈ V . Once the
demands D(1)

v are found then we decide which of the class
1 queues are empty by comparing D(1)

v against C (1)
v . Hav-

ing obtained D(1)
v , we use fixed-point iterations to solve for

per-flow throughputs of UDP and TCP flows sharing class 2
queues using a similar scheme as in [9] which is detailed in
Algorithm 1. One of the differences of our scheme than that
of [9] in this step is the combined treatment of both UDP and
TCP flows. Moreover, we solve class 2 queues one link at
a time using binary search. To explain, we fix a link v. For
the most recent values of T (i (l)T) for l = 1, 2, we solve for

q
i (2)T

, and new send rates T̄ (i (l)T) for TCP flows using link v.

After all new send rates are obtained, we equate T (i (l)T) to

T̄ (i (l)T). Then, after calculating D(2)
v , we decide whether x (2)

v

is empty or not by comparing D(2)
v against C (2)

v . If C (2)
v is

123

590 C. Tunc, N. Akar

Initialization: p(1)
v ← 0; p(2)

v ← 0; x (2)
v ← 0; ∀v ∈ V ;

C (1)
v ← Cvw

(1)
v ; C (2)

v ← Cv(1 − w
(1)
v); ∀v ∈ V ;

while Maximum throughput difference between two subsequent iterations is larger than ε1 do

Start with Class 1 first;

while Max. throughput difference between two subsequent Class 1 iterations is larger than ε2 do

Find the loss probability p(1)
v for each link v in accordance with Eqn. (13);

Find end-to-end drop probabilities q
i (1)U

of flows from Eqn. (4);

Find the demand D(1)
v on each link v on the basis of Eqn. (11);

end

Continue with Class 2;

while Max. throughput difference between two subsequent Class 2 iterations is larger than ε3 do

Initialization: p(2)
v ← 0; x (2)

v ← 0; x+
v ← 2t (2)max

v ; x−
v ← 0; ∀v ∈ V ;

for v = 1: total number of links TCP flows utilize do

is_solved ← 0;

while is_solved �= 1 do

For flows using v, find end-to-end drop probabilities q
i (2)U

and q
i (2)T

from Eqn. (3) and Eqn. (4) ;

For TCP flows using v, find new send rates T̄ (i (2)T) from Eqn. (8) ;

After solving T̄ (i (2)T) for all flows, T (i (2)T) ← T̄ (i (2)T);

Find the demand D(2)
v based on Eqn. (12);

if
(
D(2)

v (1 − p(2)
v) ≤ C (2)

v and x (2)
v = 0

)
or D(2)

v (1 − p(2)
v) = C (2)

v or x+
v − x−

v ≤ ζ then

is_solved ← 1;

else if D(2)
v (1 − p(2)

v) > C (2)
v then

x−
v ← x (2)

v ;

x (2)
v ← (x (2)

v + x+
v)/2;

else if D(2)
v (1 − p(2)

v) < C (2)
v then

x+
v ← x (2)

v ;

x (2)
v ← (x (2)

v + x−
v)/2;

end

Find p(2)
v from x (2)

v in accordance with Eqn. (1) ;
end

end
end

Start capacity update process;

if D(1)
v > C (1)

v and D(2)
v < C (2)

v then

C (1)
v ←− C (1)

v + (C (2)
v − D(2)

v);

C (2)
v ←− C (2)

v − (C (2)
v − D(2)

v);

else if D(1)
v < C (1)

v and D(2)
v > C (2)

v then

C (2)
v ←− C (2)

v + (C (1)
v − D(1)

v);

C (1)
v ←− C (1)

v − (C (1)
v − D(1)

v);

else if D(1)
v > C (1)

v and D(2)
v > C (2)

v then

C (1)
v ←− Cvw

(1)
v ;

C (2)
v ←− Cv(1 − w

(1)
v);

end
end

Algorithm 1: Nested Fixed-Point Iterative (NFPI) Algorithm

123

Fixed-point analysis of a network of routers... 591

greater than D(2)
v , we decide it is empty. Otherwise, we find

x (2)
v with a binary search between 0 and 2t (2)max

v . We repeat
this binary search method to solve for all links carrying TCP
flows. Subsequent to the fixed-point iterations, the capacity
update process is established in the following manner. If the
demand D(1)

v is less than C (1)
v and D(2)

v is greater than C (2)
v ,

excess capacity inC (1)
v is handed to class 2. Similarly, excess

capacity in C (2)
v can be given to class 1. Finally, if both D(1)

v

and D(2)
v are larger than C (1)

v and C (2)
v , respectively, we set

both capacities to their guaranteed values, C (1)
v to Cvw

(1)
v

and C (2)
v to Cv(1 − w

(1)
v). Obtaining the class 1 and 2 per-

flow throughputs in this manner concludes one iteration of
the outer loop. Subsequently, this process repeats itself until
convergence on the quantities p(l)

v and x (l)
v for all v ∈ V and

l = 1, 2.Althoughwe do not have a formal proof, we reached
convergence in all the numerical examples we studied.

4 Numerical examples

In the first two numerical examples, we provide two differ-
ent network topologies to assess the accuracy of the proposed
NFPI algorithm implemented using Matlab by comparing
the results with that of simulations using ns-3. We based
our ns-3 simulations on the study presented in [38] which
consists of an ns-3 implementation of IETF differentiated
services (Diffserv) architecture [6]. The Expedited Forward-
ing (EF) class in this implementation has strict priority over
other classes and uses drop-tail queue management and is
dedicated to TCP acknowledgment packets in our study. The
Assured Forwarding (AF) class AF1 is mapped to class 1 in
our study whereas AF2 is mapped to class 2. On the other
hand, AF1 uses drop-tail whereas AF2 uses G-RED buffer
management. A DRR scheduler serves the two AF queues
with configurable scheduling weights. The routes for the
flows are obtained using Dijkstra’s shortest path algorithm
for both analysis and simulations with all link weights set to
unity. The network parameters used throughout the numeri-
cal examples of this study are listed in Table 2.We set p(2)min

v

to zero in ns-3 simulations; however, in NFPI, the parameter

Table 2 Network parameters used in the numerical examples

Packet size P 1000 Bytes

t (2)min
v 30P

t (2)max
v 90P

B(2)
v 180P

p(2)min
v 0

p(2)max
v 0.1

Time-out parameter T0 0.2 s

Fig. 2 The network topology for Example I.

Table 3 Simulation results for Example I in terms of per-flow through-
puts

Flow Throughput (Mbps)

w
(1)
v = 0.25 w

(1)
v = 0.50 w

(1)
v = 0.75

ns-3 NFPI ns-3 NFPI ns-3 NFPI

TCP 1-10 3.017 2.979 2.022 1.941 0.986 0.929

TCP 2-11 1.539 1.543 1.125 1.118 0.676 0.643

TCP 3-12 3.069 2.979 2.061 1.941 1.004 0.929

UDP 1-10 0.601 0.639 1.351 1.426 2.263 2.327

UDP 2-11 0.439 0.456 0.852 0.886 1.255 1.284

UDP 3-12 1.304 1.405 2.561 2.688 3.793 3.889

p(2)min
v is set to 0.001 for all links as explained before. UDP

traffic is assumed to be Poisson for simulation purposes.

4.1 Example I

We first study the network topology given in Fig. 2. We
assume full isolation betweenUDP andTCPflows; only TCP
flows join class 2. The network includes one TCP and one
UDP flow from Router i to Router i + 9 for 1 ≤ i ≤ 3,
which amounts to six overall flows. All links in this simple
network have the same capacityCv = 10Mbps and propaga-
tion delay Pv = 2 ms for 1 ≤ v ≤ 11 except for link 2 whose
propagation delay P2 is set to 20ms.We study three different
scenarios concerning w

(1)
v = 0.25, 0.50, 0.75 for all v. The

send rates are set to 10 Mbps for UDP flows between routers
1–10 and 3–12, and it is set to 5 Mbps for the flow between
routers 2–11. Finally, five ns-3 simulations are carried out
each having a duration of 500 sec. and average throughput
results are reported. The results obtained by ns-3 and the
NFPI analytical method are presented in Table 3. The results
obtained by NFPI match the simulation results acceptably
well in all three scenarios for all the six flows. The number
of inner loop iterations required until convergence at each
outer loop for the three different w(1)

v values are presented in
Table 4 demonstrating the rapid convergence of NFPI.

123

592 C. Tunc, N. Akar

Table 4 Number of required
iterations for the two inner loops
at each turn of the outer loop for
Example I

w
(1)
v : 0.25 0.5 0.75

Outer 1:

Class 1: 5 5 5

Class 2: 4 4 4

Outer 2:

Class 1: 4 4 4

Class 2: 1 1 1

Outer 3:

Class 1: 3 3 3

Class 2: 1 1 1

Outer 4:

Class 1: 1 1 1

Class 2: 1 1 1

Total

Outer: 4 4 4

Class 1: 13 13 13

Class 2: 7 7 7

Fig. 3 NSF network topology of Example II

4.2 Example II

In Example II, we employ the NSF network topology given
in Fig. 3 which consists of 14 nodes with 21 links [5,12].
The propagation delays of the network links can be obtained
from the inter-nodal distances given in [5]. The link capaci-
ties Cv are set to 10 Mbps for all the links. Furthermore, 20
UDP and 20 TCP flows are assumed in Example II where all
UDP flows have a network send rate of 3 Mbps. For repro-
ducibility purposes, the source and destination nodes for each
flow are given in Table 5. Recall that minimum hop routing
is employed in this study. In case of two or more minimum
hop paths for a given flow, one of such paths is used for the
flow, which is explicitly given at the end of Table 5 again for
reproducibility.

Three different scenarios corresponding to the choice of
w

(2)
v = 0.25, 0.50, 0.75 are used for comparison between

NFPI and ns-3 simulations. The average of two simulation

Table 5 Source-destination node pairs for all the forty flows used in
Example II

Flow Source Dest. Flow Source Dest.

TCP1 CO DC UDP1 DC GA

TCP2 TX CA1 UDP2 CA2 CO

TCP3a MI TX UDP3 NE UT

TCP4 UT TX UDP4 NJ CA2

TCP5 IL WA UDP5 UT CA2

TCP6 UT CO UDP6 UT NE

TCP7 NJ WA UDP7 CO DC

TCP8 WA CA2 UDP8f NE CA2

TCP9b PA MI UDP9 DC NY

TCP10 PA NE UDP10g NE CA1

TCP11 GA CO UDP11 UT TX

TCP12 MI CA2 UDP12h IL UT

TCP13c PA CA2 UDP13 IL PA

TCP14d TX IL UDP14 UT CA1

TCP15 MI CA1 UDP15 TX GA

TCP16 NY MI UDP16 CA1 UT

TCP17 NE CO UDP17 NJ WA

TCP18 PA TX UDP18 NY MI

TCP19 NJ GA UDP19 NE IL

TCP20e CO NY UDP20 UT NE

a MI-UT-CO-TX path is used
b PA-NJ-MI path is used
c PA-GA-TX-CA2 path is used
d TX-CA2-WA-IL path is used
e CO-UT-MI-NY path is used
f NE-CO-TX-CA2 path is used
g NE-CO-UT-CA1 path is used
h IL-WA-CA1-UT path is used

runs each with a duration of 100 s are reported for each sce-
nario. TCP throughput values obtained by ns-3 simulations
and the NFPI analytical method are presented in Figs. 4a,
5a, and 6a, whereas Figs. 4b, 5b, and 6b present the UDP
throughputs for each scenario. For the sake of comparison,
we also present the TCP and UDP flow-level throughputs
when all UDP flows join Class 2 for which there is no isola-
tion between UDP and TCP traffic in Fig. 7.

In all scenarios we tried, we have been able to accurately
estimate the TCP and UDP per-flow throughput by the NFPI
algorithm when compared with ns-3 simulations. The mean
and maximum per-flow percentage throughput errors while
usingNFPI in comparisonwith ns-3 simulations are provided
in Table 6. The number of inner loop iterations required until

123

Fixed-point analysis of a network of routers... 593

TCP flow index i

0 5 10 15 20

T
hr

ou
gh

pu
t (

M
bp

s)

0

2

4

6

8

10

(a) Throughput of TCP flow i (w
v
(2)=0.25)

NFPI
NS3

UDP flow index i
0 5 10 15 20

T
hr

ou
gh

pu
t (

M
bp

s)

0

0.5

1

1.5

2

2.5

3

3.5

(b) Throughput of UDP flow i (w
v
(2)=0.25)

NFPI
NS3

Fig. 4 a TCP and b UDP per-flow throughputs when w
(2)
v = 0.25, ∀v ∈ V

TCP flow index i
0 5 10 15 20

T
hr

ou
gh

pu
t (

M
bp

s)

0

2

4

6

8

10

(a) Throughput of TCP flow i (w
v
(2)=0.50)

NFPI
NS3

UDP flow index i
0 5 10 15 20

T
hr

ou
gh

pu
t (

M
bp

s)

0

0.5

1

1.5

2

2.5

3

3.5

(b) Throughput of UDP flow i (w
v
(2)=0.50)

NFPI
NS3

Fig. 5 a TCP and b UDP per-flow throughputs when w
(2)
v = 0.50, ∀v ∈ V

convergence for each outer loop for three different w(1)
v val-

ues and also the no isolation case are presented in Table 7.
We have the following observations. Although the general

throughput figures are captured for all scenarios we tested
for both TCP and UDP, approximation errors are inevitable
caused by several factors including the shortcoming of the
TCP send rate formula in describing each and every detail
of the TCP protocol, overall carried ACK traffic which is
neglected in the analysis, the fluid analysis framework that
does not perfectly describe the packet-by-packet transmis-
sion aspect of each link, etc. When no isolation takes place
between TCP and UDP flows, some of the TCP flows (that
contend with UDP flows on their way) get hampered, for
example TCP flows 3 and 4. Such starvation of TCP flows
can be avoided with per-class queuing and the choice of a

relatively larger scheduling weight for class 2. Note that this
starvation mitigation effect is almost perfectly captured by
NFPI for these two flows.We also observe that the outer loop
takes at most a few iterations to converge. The inner loop
corresponding to class 2 flows is relatively slower requiring
more iterations.

4.3 Example III

In the third example, we study the convergence time of the
NFPI algorithm implemented with Matlab using a ring
network topology with N nodes. Computations for NFPI
are carried out on a mobile workstation equipped with Intel
Quad Core i7-4712HQ processor and we used Matlab tic
and toc commands to obtain the computational run-times for

123

594 C. Tunc, N. Akar

TCP flow index i

T
hr

ou
gh

pu
t (

M
bp

s)

0

2

4

6

8

10

(a) Throughput of TCP flow i (w
v
(2)=0.75)

NFPI
NS3

UDP flow index i
0 5 10 15 20 0 5 10 15 20

T
hr

ou
gh

pu
t (

M
bp

s)

0

0.5

1

1.5

2

2.5

3

3.5

(b) Throughput of UDP flow i (w
v
(2)=0.75)

NFPI
NS3

Fig. 6 a TCP and b UDP per-flow throughputs when w
(2)
v = 0.75, ∀v ∈ V

TCP flow index i
0 5 10 15 20

T
hr

ou
gh

pu
t (

M
bp

s)

0

2

4

6

8

10

(a) Throughput of TCP flow i (no isolation)

NFPI
NS3

UDP flow index i
0 5 10 15 20

T
hr

ou
gh

pu
t (

M
bp

s)

0

0.5

1

1.5

2

2.5

3

3.5

(b) Throughput of UDP flow i (no isolation)

NFPI
NS3

Fig. 7 a TCP and b UDP per-flow throughputs when no isolation is employed between TCP and UDP

NFPI. Link capacities and propagation delays are set to 100
Mbps and 1 ms, respectively. The parameter w

(1)
v is set to

0.5 for all links. Other parameters are the same as in the
first two examples. Fig. 8 depicts the behavior of the con-
vergence time of NFPI with respect to the number of nodes
N in the ring for three different UDP send rates. In order
to fix the UDP send rates, we define a new parameter Lv as
follows:

Lv =
∑

i (1)U ∈SU (v,1)

T (i (1)U). (15)

Note that the total UDP demand on link v sums up to Lv

and all links in a ring network with an odd number of nodes

have the same Lv value. We obtain numerical results for
Lv = 30, 50, 70 Mbps.

To demonstrate the possible reasons of the differences
between convergence times for different UDP send rates,
the number of inner loop iterations required at each turn of
the outer loop for five different UDP send rates are given in
Table 8 for the case N is set to 13. We have the following
observations related to NFPI computational run-times. As
expected, the convergence time of the proposed algorithm is
quadratic in the number of nodes N since there are O(N 2)

flows in this example. Even for a 11-node ring networkwhere
wehave 110TCPand110UDPflows,NFPI convergeswithin
45 seconds in all studied cases. Moreover, we observe that
convergence times appear to be slightly dependent on the
amount of overall UDP demand.

123

Fixed-point analysis of a network of routers... 595

Table 6 Mean and maximum
per-flow percentage throughput
errors while using NFPI in
comparison with ns-3
simulations

w
(1)
v 0.25 0.50 0.75 TCP/UDP in one queue

Mean % error (TCP) 4.40 5.58 6.83 11.95

Max. % error (TCP) 14.63 18.59 21.02 39.33

Mean % error (UDP) 11.06 4.42 2.33 1.29

Max. % error (UDP) 63.38 24.72 8.44 4.93

Table 7 Number of inner loop iterations required until convergence
for each outer loop for three different w

(1)
v values and also for the no

isolation case

w
(1)
v : 0.25 0.5 0.75 No isolation

Outer 1

Class 1: 6 5 4 –

Class 2: 7 6 7 25

Outer 2

Class 1: 1 1 1 –

Class 2: 29 14 20 1

Outer 3

Class 1: 4 3 3 –

Class 2: 32 67 32 –

Outer 4

Class 1: 1 1 1 –

Class 2: 132 35 1 –

Outer 5

Class 1: 2 2 −− –

Class 2: 5 17 −− –

Outer 6

Class 1: 1 1 −− –

Class 2: 1 1 −− –

Total

Outer: 6 6 4 2

Class 1: 15 13 9 –

Class 2: 226 140 60 26

4.4 Example IV

In the final example, we study the effect of the number of
TCP and UDP flows on the convergence time for a different
topology given in Fig. 9 which is a 10-node Italian net-
work [30]. Inter-nodal distances for this topology is obtained
from the study in [2]. We also compare the convergence time
and throughput performance of NFPI with the Static Shar-
ing (SS) approximation for which the outer loop runs only

Number of nodes
3 5 7 9 11 13 15

C
on

ve
rg

en
ce

 ti
m

e
(s

ec
on

ds
)

30

60

90

120

150
L

v
 = 30 Mbps

L
v
 = 50 Mbps

L
v
 = 70 Mbps

Fig. 8 Convergence time of the algorithm in a ring network as a func-
tion of the number of nodes

Table 8 Number of inner loop iterations for each turn of the outer loop
for five different UDP send rates in the 13-node ring network

Lv: 30 40 50 60 70

Outer 1

Class 1: 67 69 71 45 49

Class 2: 11 11 11 11 11

Outer 2

Class 1: 1 1 1 1 1

Class 2: 10 10 2 1 1

Outer 3

Class 1: 1 1 1 – –

Class 2: 1 1 1 – –

Total

Outer: 3 3 3 2 2

Class 1: 69 71 73 46 50

Class 2: 22 22 14 12 12

123

596 C. Tunc, N. Akar

Fig. 9 10-node Italian network topology of Example IV

Table 9 The computation times and themeanUDPandTCP throughput
for the 10-node Italian network for three different values of α and K

K α T (sec) Mean throughput (Mbps)

NFPI SS TCP UDP

NFPI SS NFPI SS

10 0.3 6.41 2.15 22.89 13.90 20.05 18.17

0.5 33.69 4.81 34.20 19.75 14.55 13.65

0.7 44.25 6.01 45.17 25.00 8.81 8.62

50 0.3 46.28 5.89 51.42 41.47 64.29 52.36

0.5 54.00 6.67 75.82 55.25 48.59 43.86

0.7 57.36 8.14 97.16 63.06 34.34 32.65

250 0.3 77.21 19.95 87.65 85.70 86.06 76.72

0.5 86.40 23.43 102.56 97.06 80.00 76.07

0.7 107.41 26.82 116.87 101.29 66.85 65.54

once and the capacity sharing step is skipped that is used
at the end of each outer loop. The SS scheme refers to one
in which the TCP and UDP flows are completely isolated
using static time sharing and methods to compute the TCP
and UDP throughputs are already available in the literature.
For this study, we construct fifty instances at each of which
the source-destination pairs are assigned randomly and NFPI
and SS results are computed. All UDP send rates are fixed to
3 Mbps. The link capacities are set to 10 Mbps for all links,
and the propagation delays of the links are obtained from the
inter-nodal distances. Scheduling weights w

(i)
v , i = 1, 2 are

fixed to 0.5. Let K denote the total number of flows in the
network.We assignαK of these flows toTCPand the remain-
ing (1 − α)K to UDP, for any α ≥ 0 satisfying αK ∈ Z.
Mean convergence time T andmean per-class throughput for
nine different cases corresponding to α = 0.3, 0.5, 0.7 and
K = 10, 50, 250 are presented in Table 9. We observe that

the throughput performances of both TCP and UDP flows
are improved because of the dynamic capacity sharing in
CBWFQ compared to SS. However, NFPI requires much
longer convergence times than SS due to the few turns the
outer loop requires until convergence. Note that SS corre-
sponds to the outcome of one single turn of the outer loop.
When the number of TCP flows increases, the convergence
times also appear to increase stemming from the fact that
the inner loop for TCP flows generally tends to require more
iterations than the other inner loop for class 1. When the
topology is fixed, the required computation time increases
with increased number of flows but at a less than linear rate.

5 Conclusions

We propose a nested fixed-point iterative method for finding
the throughput of persistent UDP and TCP flows in a net-
work of routers supporting per-class queuingwith two classes
when TCP ACK traffic is given strict priority over all other
types of traffic. With ns-3 simulations, we have been able
to demonstrate the validity of the proposed analysis method
for different per-class scheduling weights. The findings of
this research can be used for provisioning Diffserv links in
IP networks. Future work consists of modeling ACK traf-
fic more accurately extending to scenarios where TCP ACK
traffic does not possess strict priority, and also the study of
cases with more than two traffic classes for improved traffic
management.

Acknowledgements We would like to thank Mr. Gokhan Calis for the
ns-3 code he produced as part of his MS thesis which is then used to
validate the analytical model of the paper.

References

1. Abouzeid, A. A., & Roy, S. (2002). Modeling random early detec-
tion in a differentiated services network. Computer Networks,
40(4), 537–556.

2. Ali, M. (2005). Routing of 40-gb/s streams in wavelength-routed
heterogeneous optical networks. IEEE Journal on Selected Areas
in Communications, 23(8), 1632–1642.

3. Alvarez-Flores, E., Ramos-Munoz, J., Ameigeiras, P., & Lopez-
Soler, J. (2011). Selective packet dropping for VoIP and TCP flows.
Telecommunication Systems, 46(1), 1–16.

4. Athuraliya, S., Low, S., Li, V., & Yin, Q. (2001). REM: Active
queue management. IEEE Network, 15(3), 48–53.

5. Betker, A., Gerlach, C., Hülsermann, R., Jäger, M., Barry, M.,
Bodamer, S., Späth, J., Gauger, C., & Köhn, M. (2003). Refer-
ence transport network scenarios. http://www.ikr.uni-stuttgart.de/
INDSimLib/Usage/

6. Blake, S., Black, D., Carlson, M., Davies, E., Wang, Z., & Weiss,
W. (1998). An architecture for differentiated service. RFC 2475
(Informational). http://www.ietf.org/rfc/rfc2475.txt. Updated by
RFC 3260

123

http://www.ikr.uni-stuttgart.de/INDSimLib/Usage/
http://www.ikr.uni-stuttgart.de/INDSimLib/Usage/
http://www.ietf.org/rfc/rfc2475.txt

Fixed-point analysis of a network of routers... 597

7. Boney, J. (2005). Cisco IOS in a nutshell (2nd ed.). Sebastopol:
O’Reilly.

8. Braden, B., Clark, D., Crowcroft, J., Davie, B., Deering, S., Estrin,
D., Floyd, S., Jacobson, V., Minshall, G., Partridge, C., Peterson,
L., Ramakrishnan, K., Shenker, S., Wroclawski, J., & Zhang, L.
(1998). Recommendations on queue management and congestion
avoidance in the Internet. RFC 2309

9. Bu, T., & Towsley, D. (2001). Fixed point approximations for TCP
behavior in an AQM network. SIGMETRICS Performance Evalu-
ation Review, 29(1), 216–225.

10. Chang, H. Y., Lee, W. T., & Wei, H. W. (2014). A novel proto-
col UDCP for improving fairness and maintaining the high-speed
rate of UDP. Intelligent Information Hiding andMultimedia Signal
Processing (IIHMSP), 2014, 698–701.

11. Chen, J. C. (2003). Dijkstra’s shortest path algorithm. Formalized
Mathematics, 11(3), 237–247.

12. Chinoy, B., &Braun, H.W. (1992). The national science foundation
network. Technical Report GA-A21029, SDSC

13. Cisco: QoS: Congestion Management Configuration Guide, Cisco
IOS Release 15 (2013)

14. Farzaneh, N., Monsefi, R., Yaghmaee, M., & Mohajerzadeh, A.
(2013). A novel congestion control protocol with AQM support for
IP-based networks. Telecommunication Systems, 52(1), 229–244.

15. Floyd, S. (2000). Recommendation on using the gentle_ variant of
RED. URL: http://www.icir.org/floyd/red/gentle.html

16. Floyd, S., & Fall, K. (1999). Promoting the use of end-to-end
congestion control in the Internet. IEEE/ACMTransactions onNet-
working, 7(4), 458–472.

17. Floyd, S., & Jacobson, V. (1993). Random early detection gateways
for congestion avoidance. IEEE/ACMTransactions onNetworking,
1(4), 397–413.

18. Garetto,M., Cigno, R. L., Meo,M., &Marsan,M. A. (2004). Mod-
eling short-lived TCP connections with open multiclass queuing
networks. Computer Networks, 44(2), 153–176.

19. Gibbens, R.J., Sargood, S.K., Eijl, C.V., Kelly, F.P., Azmoodeh, H.,
Macfadyen, R.N., & Macfadyen, N.W. (2000). Fixed-point mod-
els for the end-to-end performance analysis of IP networks. In:
13th ITC specialist seminar: IP traffic measurement, modeling and
management. Monterey, CA

20. Grochla, K. (2008). Simulation comparison of active queue man-
agement algorithms in TCP/IP networks. Telecommunication Sys-
tems, 39(2), 131–136.

21. Hashem,E.S. (1989).Analysis of randomdrop for gateway conges-
tion control. Ph.D. thesis, Massachusetts Institute of Technology,
Cambridge

22. Hassan,M., & Jain, R. (2004).High performance TCP/IP network-
ing: Concepts, issues, and solutions. London: Pearson.

23. Held, G. (2002). Quality of service in a Cisco networking environ-
ment. Hoboken: Wiley.

24. Ji, L., Arvanitis, T., & Woolley, S. (2003). Fair weighted round
robin scheduling scheme for DiffServ networks. Electronics Let-
ters, 39(3), 333–335.

25. Kahe, G., Jahangir, A., & Ebrahimi, B. (2014). AQM controller
design for TCP networks based on a new control strategy. Telecom-
munication Systems, 57(4), 295–311.

26. Kalampoukas, L., Varma, A., &Ramakrishnan, K. (1998). Improv-
ing TCP throughput over two-way asymmetric links: Analysis and
solutions. ACM SIGMETRICS Performance Evaluation Review,
26(1), 78–89.

27. Kooij, R., van der Mei, R., & Yang, R. (2010). TCP and WEB
browsing performance in case of bi-directional packet loss. Com-
puter Communications, 33, S50–S57.

28. Lee, D., Carpenter, B. E., & Brownlee, N. (2010). Media streaming
observations: Trends in UDP to TCP ratio. International Journal
on Advances in Systems and Measurements, 3(3 & 4), 147–162.

29. Mahdavi, J., & Floyd, S. (1997). TCP-friendly unicast rate-based
flow control.Technical note sent to the end2end-interest mailing
list

30. Mantelet, G., Cassidy, A., Tremblay, C., Plant, D. V., Littlewood,
P., & Bélanger, M. P. (2013). Establishment of dynamic lightpaths
in filterless optical networks. Journal of Optical Communications
and Networking, 5(9), 1057–1065.

31. Mathis, M., Semke, J., Mahdavi, J., & Ott, T. (1997). The macro-
scopic behavior of the TCP congestion avoidance algorithm.
SIGCOMM Computer Communication Review, 27(3), 67–82.

32. Misra, V., Gong,W. B., & Towsley, D. (2000). Fluid-based analysis
of a network of aqm routers supporting tcpflowswith an application
to red. SIGCOMMComputer Communication Review, 30(4), 151–
160.

33. Na, Z., Guo, Q., Gao, Z., Zhen, J., & Wang, C. (2012). A novel
adaptive traffic prediction AQM algorithm. Telecommunication
Systems, 49(1), 149–160.

34. Nagle, J. (1995). Congestion control in IP/TCP internetworks.
ACM SIGCOMM Computer Communication Review, 25(1), 61–
65.

35. Ott, T.J., Kemperman, J.H.B., &Mathis, M. (1996). The stationary
behavior of ideal TCP congestion avoidance

36. Padhye, J., Firoiu, V., Towsley, D., & Kurose, J. (1998). Model-
ing TCP throughput: A simple model and its empirical validation.
SIGCOMM Computer Communication Review, 28(4), 303–314.

37. Popa, L., Yalagandula, P., Banerjee, S., Mogul, J. C., Turner, Y.,
& Santos, J. R. (2013). ElasticSwitch: Practical work-conserving
bandwidth guarantees for cloud computing. SIGCOMMComputer
Communication Review, 43(4), 351–362.

38. Ramroop, S. (2011). A diffserv model for the NS-3 simulator.
http://www.eng.uwi.tt/depts/elec/staff/rvadams/sramroop/

39. Ranjan, P., La, R.J., & Abed, E.H. (2002). Bifurcations of TCP and
UDP traffic under RED. Proc. MED 2002

40. Rodrigues, H., Santos, J. R., Turner, Y., Soares, P., & Guedes, D.
(2011). Gatekeeper: Supporting bandwidth guarantees for multi-
tenant datacenter networks. Proceedings of the 3rd Conference on
I/O Virtualization (pp. 6–6)., WIOV’11 Berkeley, CA: USENIX
Association.

41. Sharma, V., Virtamo, J., & Lassila, P. (2002). Performance analysis
of the random early detection algorithm. Probability in the Engi-
neering and Informational Sciences, 16, 367–388.

42. Shreedhar,M.,&Varghese, G. (1995). Efficient fair queueing using
deficit round robin. SIGCOMMComputer Communication Review,
25(4), 231–242.

43. Xiong, N., Pan, Y., Jia, X., Park, J. H., & Li, Y. (2009). Design
and analysis of a self-tuning feedback controller for the internet.
Computer Networks, 53(11), 1784–1797.

44. Yilmaz, S., & Matta, I. (2001). On class-based isolation of UDP,
short-lived and long-lived TCP flows. In: Proceedings of ninth
international symposium on modeling, analysis and simulation of
computer and telecommunication systems, 2001. pp. 415–422

45. Zhang, H., Towsley, D., Hollot, C. V., & Misra, V. (2003). A
self-tuning structure for adaptation in TCP/AQM networks. SIG-
METRICS Performance Evaluation Review, 31(1), 302–303.

123

http://www.icir.org/floyd/red/gentle.html
http://www.eng.uwi.tt/depts/elec/staff/rvadams/sramroop/

598 C. Tunc, N. Akar

Caglar Tunc received the B.S.
degree from Bilkent University
in 2013 in electrical and elec-
tronics engineering. He is cur-
rently pursuing the M.S. degree
in the same department. His cur-
rent research interests are in
energy harvesting wireless com-
munications, green communica-
tions, stochastic modeling and
algorithmic aspects of computer
and communication systems.

Nail Akar received his B.S.
degree from Middle East Tech-
nical University, Turkey, in 1987
and M.S. and Ph.D. degrees
fromBilkent University, Ankara,
Turkey, in 1989 and 1994,
respectively, all in electrical and
electronics engineering. From
1994 to 1996, he was a vis-
iting scholar and a visiting
assistant professor in the Com-
puter Science Telecommunica-
tions program at the University
of Missouri - Kansas City, USA.
He joined the Technology Plan-

ning and Integration group at Long Distance Division, Sprint, Overland
Park, Kansas, in 1996, where he held a senior member of technical
staff position from 1999 to 2000. Since 2000, he has been with Bilkent
University, Turkey, currently as a Professor, at the Electrical and Elec-
tronics Engineering Department. He visited the School of Computing,
University of Missouri - Kansas City, as a Fulbright scholar in 2010
for a period of six months. His current research interests include perfor-
mance analysis of computer and communication systems and networks,
performance evaluation tools and methodologies, design and engineer-
ing of optical and wireless networks, queuing systems, and resource
management.

123

	Fixed-point analysis of a network of routers with persistent TCP/UDP flows and class-based weighted fair queuing
	Abstract
	1 Introduction
	2 Related work
	2.1 AQM techniques
	2.2 TCP-UDP interaction
	2.3 Analytical models for TCP

	3 Fixed-point analysis of a network of routers
	4 Numerical examples
	4.1 Example I
	4.2 Example II
	4.3 Example III
	4.4 Example IV

	5 Conclusions
	Acknowledgements
	References

