
DEPARTMENT OF COMPUTER SCIENCE
SERIES OF PUBLICATIONS A

REPORT A-2000-3

Performance Modeling Framework for
CORBA Based Distributed Systems

Pekka Kähkipuro

To be presented, with the permission of the Faculty of Science
of the University of Helsinki, for public criticism in Auditorium
XII, University Main Building, on August 25th, 2000, at 12
o’clock noon.

UNIVERSITY OF HELSINKI

FINLAND

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/14916938?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Contact information

Postal address:
Department of Computer Science
P.O. Box 26 (Teollisuuskatu 23)
FIN-00014 University of Helsinki
Finland

Email address: postmaster@cs.Helsinki.FI

URL: http://www.cs.Helsinki.FI/

Telephone: +358 9 1911

Telefax: +358 9 191 44441

ISSN 1238-8645
ISBN 951-45-9496-7
Computing Reviews (1998) Classification: C.2.4, C.4, D.2.2
Helsinki 2000
Helsinki University Printing House

i

Performance Modeling Framework for CORBA Based
Distributed Systems

Pekka Kähkipuro

Department of Computer Science
P.O. Box 26, FIN-00014 University of Helsinki, Finland
Pekka.Kahkipuro@cs.Helsinki.FI

PhD Thesis, Series of Publications A, Report A-2000-3
Helsinki, May 2000, 151 + 16 pages
ISSN 1238-8645, ISBN 951-45-9496-7

Abstract

The CORBA platform is increasingly popular in distributed computing
due to its ability to hide complex implementation issues from application
developers. However, performance consequences of the underlying tech-
niques often remain visible to software developers. Moreover, new per-
formance concerns may emerge because of additional layering and indi-
rection. Performance modeling allows developers to understand and pre-
dict the performance of CORBA based systems.

In this work, we propose a performance modeling framework for sup-
porting the development of CORBA based distributed systems. The main
elements of the framework are (1) a notation for expressing the perform-
ance models, (2) a set of modeling techniques for representing common
solutions in CORBA based systems, (3) an algorithm for solving the re-
sulting models for a number of relevant metrics, (4) a tool for automating
some of the tasks required by the framework, and (5) a methodology for
creating and modifying the models.

Our modeling notation is based on the Unified Modeling Language
(UML). To include performance related information into UML diagrams,
we define several extensions that conform to the standard UML exten-
sion mechanisms. Special techniques are proposed for supporting layered
modeling so that different aspects of the system can be described with
separate and interrelated UML diagrams.

ii

To solve UML based performance models, we transform the models into
queuing networks with simultaneous resource possessions. The networks
are further decomposed into a set of auxiliary product-form queuing net-
works, and iteration is used for finding an approximate solution that re-
spects the mutual dependencies between the auxiliary networks. This al-
gorithm combines existing approximation techniques in a novel way so
that commonly occurring situations in object-oriented systems, such as
callbacks and recursive calls, can be dealt with.

Our concise methodology defines a layered structure for modeling
CORBA based distributed systems. In addition, it describes activities for
creating and refining the models. We also present a prototype tool and
discuss a case study where the results of a performance model are com-
pared to metrics obtained from an actual system. The case study confirms
that a relatively complex CORBA based system can be modeled with the
framework without significant difficulties.

Computing Reviews (1998) Categories and Subject Descriptors:
C.2.4 Computer-communication networks: Distributed Systems
C.4 Performance of systems – Modeling techniques
D.2.2 Software engineering: Design Tools and Techniques

General terms:
Design, Performance

Additional Key Words and Phrases:
CORBA, mean value analysis, middleware, queuing network models,
software performance engineering, Unified Modeling Language

iii

Acknowledgements

I wish to thank my advisor Prof. Martti Tienari for his guidance and en-
couragement during the years that I have been working at the University
of Helsinki. It would have been practically impossible to realize this
work without his support. Prof. Kimmo Raatikainen has also given me
excellent professional guidance. He has given me valuable advice on
both the subject matter of my work and also on the the process of pro-
ducing the results. I would also like to thank Prof. Murray Woodside for
his valuable and highly professional comments that significantly im-
proved the quality of my work. It makes no sense to leave anything half-
finished. Finally, a special thanks is due to Prof. Timo Alanko. More than
once, he has guided me to the right track in my choice of tools and tech-
niques for this work. However, there is no match for the support that I
have received from my wife Marjatta. She has patiently watched me im-
plementing my endless performance tests, and she has tolerated and sup-
ported me during the long months that I have spent writing this work.

Helsinki, August 2000

Pekka Kähkipuro

v

Contents

1. Introduction 1
1.1 Scope of the work... 3
1.2 Goals.. 5
1.3 Related research ... 7
1.4 Outline of the work .. 11

2. The Common Object Request Broker Architecture 13
2.1 Introduction to CORBA.. 13
2.2 Future directions for CORBA... 18
2.3 Performance issues in CORBA based applications.................. 19
2.4 Application-level performance heuristics................................ 21
2.5 Technical requirements for the framework.............................. 24
2.6 Summary.. 25

3. Performance modeling framework architecture 27
3.1 Elements of the framework... 27
3.2 Four performance model representations 29

4. The method of decomposition 33
4.1 Introduction to queuing networks ... 33
4.2 Solutions for product-form queuing networks......................... 36
4.3 Queuing networks and distributed objects............................... 42
4.4 Augmented queuing networks .. 43
4.5 Introduction to the method of decomposition.......................... 46
4.6 The method of decomposition... 57
4.7 Examples.. 62
4.8 Discussion.. 69
4.9 Summary.. 72

5. UML based performance modeling 75
5.1 The Unified Modeling Language .. 75
5.2 Resource representation.. 84
5.3 Workload representation... 86

vi CONTENTS

5.4 Triggering properties .. 88
5.5 Service demand binding ... 90
5.6 Network connections .. 91
5.7 Run-time configuration... 92
5.8 Creating the AQN representation.. 93
5.9 Example ... 95
5.10 Discussion.. 99
5.11 Summary...100

6. Performance modeling methodology 101
6.1 Goal and overview...101
6.2 Layered model structure ..102
6.3 Extending use cases for performance modeling......................104
6.4 Defining the software performance model106
6.5 Defining the system performance model................................109
6.6 Model validation ...113
6.7 Relationship with software engineering115
6.8 Summary...117

7. Experimental results 119
7.1 Tool prototype...119
7.2 Overview of the case study..122
7.3 The application layer ...123
7.4 The interface layer...124
7.5 The behavior layer...126
7.6 The network and infrastructure layers129
7.7 The deployment layer ..131
7.8 Model validation ...132
7.9 Discussion...134
7.10 Summary...135

8. Conclusions 137

References 141

Appendix A. Abstract grammar for the PML notation

Appendix B. IDL specification for the electronic commerce system

Appendix C. PML specification for the electronic commerce system

1

Chapter 1

Introduction

Distributed computing is increasingly popular in the development of
commercial information systems. This trend is unlikely to change due to
the increasing demand for distributed solutions and also because of the
continuous progress in PC-based hardware solutions and communications
technology. However, distributed systems also entail difficulties that
cannot be ignored by system developers and end users. Some of them
arise from the complexity implied by the distribution of system compo-
nents. Additional difficulties are caused by the heterogeneity that is hard
to avoid in any reasonably sized system.

The CORBA platform from the Object Management Group
[OMG99d] has been created to overcome difficulties encountered in het-
erogeneous distributed systems. Distribution transparencies have a key
role in the CORBA platform, since they hide many problematic aspects
of distribution and heterogeneity from software developers and end users
[ISO95, Käh98b]. For example, the location transparency hides the loca-
tion of system components, and the access transparency masks out differ-
ences in accessing various elements in the system. In addition, the
CORBA platform defines tools and techniques for making software de-
velopment easier. For example, the IDL language allows the specification
of interfaces in a way that is independent of any programming language.
Similar concepts are available in other object-oriented middleware envi-
ronments, such as the Java platform from Sun Microsystems [Sun99] and
the COM platform from Microsoft [Mic98].

While CORBA and other object-oriented middleware platforms may
considerably facilitate the construction of distributed systems, a number
of drawbacks have also been observed. In particular, the performance of
middleware based systems may be significantly inferior to the perform-
ance of similar systems that have been implemented with lower-level

2 1 INTRODUCTION

tools. In many cases, the middleware itself results in a significant over-
head by introducing additional layering and indirection. In addition, the
use of middleware may lead to software architectures with unsatisfactory
performance. In particular, the ease of implementing remote communi-
cation with the CORBA platform may mislead software engineers to use
remote invocations excessively. As a result, the responsiveness of the
software may drop significantly.

To improve the performance of middleware based distributed systems,
benchmarking [OMG99a, Gra91] and performance heuristics [Käh98a]
can provide useful hints for the development work. They help developers
to find promising technologies and architectures but, unfortunately, they
do not give any quantitative estimates for the performance of the result-
ing system. In addition, such techniques provide assistance only during a
few steps in the software life cycle. A more comprehensive approach,
software performance engineering (SPE), has been proposed to over-
come these limitations. It refers to a complete methodology and a set of
supporting tools for constructing software systems to meet performance
objectives [Smi90].

The role of performance modeling is essential in SPE, as it allows de-
signs to be validated against performance requirements at all stages of
software development. The idea is to build a series of predictive per-
formance models of the system using the available information, and to
solve it for the relevant metrics, such as the average response time,
throughput, and utilization. However, traditional performance modeling
has concentrated on centralized systems and communication issues in cli-
ent/server systems [Men94, Smi90, Hav98]. Less attention has been paid
to a number of issues that are important for CORBA based distributed
systems. Such issues include the modeling of software server contention
together with hardware contention, the decomposition of large and com-
plex systems into manageable parts or layers, the support for designs at
different levels of abstraction, and the support for refining performance
models as the software design develops. An essential feature in CORBA
based systems is the existence of a middleware layer that hides a number
implementation issues from application developers but strongly affects
the performance of applications. Traditional performance modeling tech-
niques provide only weak support for middleware based designs. Moreo-
ver, there is little support for programming techniques commonly used in
CORBA based systems, such as callback mechanisms and recursive calls.

Most traditional performance modeling approaches use specialized
modeling notations and assume an in-depth understanding of the under-

1.1 Scope of the work 3

lying modeling techniques. This makes them unattractive for general-
purpose software engineering. It is both costly and error prone to convert
the results of software design into, say, stochastic Petri nets that depict
exactly the same system with the same behavior. This cognitive gap be-
tween software engineering concepts and performance modeling ap-
proaches has been pointed out by several authors [Utt97, Wat97, Sho98].

1.1 Scope of the work

In this work, we describe a performance modeling framework for sup-
porting the development and maintenance of CORBA based distributed
systems. The framework produces predictive performance models that
can be used for obtaining performance related information on the target
system at all stages of its development. For this purpose, the framework
contains (1) a suitable notation for expressing the performance models,
(2) a set of modeling techniques with representative examples, (3) an al-
gorithm for solving the models, (4) a tool for automating some of the
tasks required by the framework, and (5) a methodology for creating and
refining the models during the system life cycle.

The scope of our framework is further limited by the following un-
derlying technologies:

� The Unified Modeling Language (with minor extensions) is used
for representing the performance models,

� Stochastic queuing networks are used as an underlying technical
representation for the performance models,

� Mean value analysis based approximations are used for solving the
queuing networks,

� Object-oriented analysis and design methodologies are used as a
reference environment for our performance modeling methodology,

� Existing SPE methodologies are used for covering those perform-
ance related tasks that are not part of performance modeling.

The primary domain for the Unified Modeling Language (UML) [Rat97]
is functional modeling of software systems, but the language has enough
expressive power for performance modeling as well [Poo99, Dou99,
OMG99i]. To represent performance related features that are not covered
by the core UML, we use the standard UML extension mechanisms. The
main advantage of using UML in our framework is the possibility to cre-

4 1 INTRODUCTION

ate both functional and performance models in parallel with the same de-
sign tools and with the same diagrams, and thereby reduce the cognitive
gap between these domains. Since there is currently no human-readable
textual representation for the UML, we use our own notation, Perform-
ance Modeling Language (PML), for representing those UML features
that are relevant for performance modeling.

The UML allows models to be written in different ways, and not all of
them are suitable for performance modeling. Therefore, we define a set
of UML modeling techniques that support the construction of perform-
ance models for CORBA based distributed systems. To cope with the
complexity of distributed systems, the proposed techniques divide the
overall model into a set of understandable UML diagrams. Most of these
techniques have been published earlier in [Käh99b].

To provide practical support for software engineering, the framework
needs an algorithm for solving the performance models for the relevant
performance metrics. We follow a stepwise approach. First, a UML
based performance model is transformed into a stochastic queuing net-
work with simultaneous resource possessions. Second, the resulting
queuing network is decomposed into auxiliary queuing networks without
simultaneous resource possessions. This way, each of the networks can
be solved efficiently for the relevant metrics. However, a number of de-
pendencies exist between the auxiliary networks and, hence, they cannot
be solved independently. As a last step, we use iteration for solving the
set of interdependent queuing networks. An early version of this algo-
rithm was presented in [Käh99a] but it has been extended significantly to
support the needs of the framework.

In our implementation of the above algorithm, we use an approximate
version of mean value analysis (MVA) for solving the auxiliary queuing
networks. A number of alternative techniques could have been used in-
stead. They include other approximate algorithms [Agr85], simulation
[Raa89a], and exact algorithms [Con89, Hav89]. However, the use of ap-
proximate MVA is well motivated in our work. On one hand, approxi-
mate MVA is computationally inexpensive compared to the alternatives.
Hence, we can solve large models in a fairly short time, thus making the
framework suitable for complex and sizeable systems. On the other hand,
the selected MVA approximation has been used extensively and is
known to be quite robust. Therefore, it is relatively safe to embed the al-
gorithm into a tool that hides it from software developers. The use of
MVA based techniques has also some drawbacks. There is only a limited
choice of available scheduling disciplines and service time distributions

1.2 Goals 5

for system resources. Also, distributions of the obtained metrics are not
available. Hence, we rule out in our current implementation of the
framework a substantial class of modeling tasks where distributions are
considered significant [Raa89a]. Moreover, MVA approximations do not
always produce accurate results (see e.g. [Hei84, Agr85]). However, the
known limitations of approximate MVA are acceptable in our work,
since our focus is on performance engineering issues.

Finally, we specify a concise performance modeling methodology in
order to link our framework into the software engineering process. The
methodology is intended to be used in parallel with existing UML based
analysis and design methodologies (e.g. [Sou98, Jac98]). In addition, we
assume that developers are using a suitable SPE approach (e.g. [Smi90,
Jai91, Men94]) for those activities that are not directly related to per-
formance models. Our methodology primarily indicates how to structure
the performance model and how to obtain enough input data for the
model during the software engineering process. It does not, for example,
specify how the resulting metrics should be used for guiding the devel-
opment process. Hence, it can be seen as an extension for UML based
analysis and design methodologies and existing SPE approaches.

1.2 Goals

The main goal for the performance modeling framework is to offer a suf-
ficient set of modeling techniques for supporting software performance
engineering of CORBA based distributed systems. To reach this goal,
four generic requirements must be met.

First, the framework should produce performance models that can be
solved automatically in a reasonable amount of time for the relevant per-
formance metrics, such as throughputs, response times, utilizations, and
queue lengths. It is permissible to use approximate algorithms for pro-
ducing the solutions, since the focus is on performance engineering. Very
little structural limitations should be imposed for the application design.
In particular, the framework should support all those design techniques
that are commonly used for CORBA based systems. This way, the
framework can be easily integrated with various development tools and
methodologies.

Second, we require the framework to support the usual style of UML
modeling as proposed in the UML standard [Rat97] and in the literature
(e.g. [Eri98, Jac98, Dou99, Rum99]). This way, it is possible to extend

6 1 INTRODUCTION

existing functional models into performance models without rewriting
them.

Third, we require the framework to clearly distinguish between differ-
ent architectural aspects of CORBA based distributed systems. The
framework should allow designers to keep application objects, system in-
frastructure, hardware resources, and network topology in separate UML
diagrams. This way, it is possible to experiment with different design al-
ternatives in some parts of the system without modifying other parts.
This requirement is elaborated in Section 2.5 once the CORBA platform
has been presented in more detail.

Fourth, the framework should support incremental development style,
since this is commonly used with object-oriented analysis and design
[Eri98, Jac98, Sou98]. In particular, it should be possible to build abstract
and solvable performance models already in the analysis phase when the
infrastructure and hardware issues are still unknown. Also, it should be
possible to upgrade the first tentative models into more accurate ones
without the need to write a completely new set of UML diagrams.

The main contributions of our work can be found from three areas.
The first contribution is the proposed collection of UML based modeling
techniques for describing CORBA based distributed systems. In earlier
performance-related approaches, UML has mainly been used for de-
scribing the performance requirements, and the actual performance mod-
els have been described with traditional notations. In our approach, UML
provides the primary representation for the performance models, and the
proposed modeling techniques ensure that the resulting models can be
solved for the relevant performance metrics. This approach has two ad-
vantages. First, the use of functional modeling notation reduces the cog-
nitive gap between software designers and performance analysts. As a re-
sult, the same tools and modeling techniques can be used for functional
modeling and performance modeling. Second, the UML has been specifi-
cally designed for representing large and complex systems in a flexible
way, and this characteristic has been preserved in our framework.

The second contribution is the iterative algorithm for solving queuing
networks with simultaneous resource possessions. The proposed algo-
rithm combines existing iterative and approximation techniques in a
novel way so that the special requirements of our framework can be satis-
fied. In particular, the algorihm allows synchronous and asynchronous
messages to be sent between arbitrary elements in the system without re-
quiring a layered calling structure for the elements in the model. This

1.3 Related research 7

feature is useful for modeling systems where callbacks lead to cyclic de-
pendencies between system elements.

The third contribution is the presentation of an overall framework for
analyzing and predicting the performance of CORBA based distributed
systems. Previous work on the performance of CORBA based systems
has concentrated on measuring the response times of round trip calls un-
der varying conditions. In addition, a number of qualitative heuristics
have been proposed for improving application performance. Our work,
on the other hand, provides a complete methodology and a set of tools for
predicting quantitatively the performance of CORBA based systems. The
proposed performance modeling framework strongly relies on previous
results on performance modeling, but we add the elements that are neces-
sary for modeling CORBA based systems. In particular, we propose
modeling techniques for keeping apart the CORBA infrastructure and the
application logic so that changes in either domain can be implemented
without affecting the other domain.

1.3 Related research

We briefly discuss related research in three areas. First, we present per-
formance modeling techniques that are suitable for representing complex
software systems, such as those based on the CORBA platform. Second,
we discuss existing work on the performance of CORBA based systems.
Finally, we point out some performance modeling approaches that bear
similarities to our framework.

Performance models for complex software systems

The support for simultaneous resource possessions is an essential feature
for performance modeling techniques that can be applied to complex
software systems. Synchronous calls to software servers are an important
source for simultaneous resource possessions in CORBA based systems
since the caller stays blocked until it obtains a reply from the server. Si-
multaneous resource possessions can also arise from the co-existence of
software and hardware resources in the same model.

Early work in this area includes the method of surrogates that uses
two product-form queuing networks for modeling different parts of the
queuing delay caused by simultaneous resource possessions [Jac82].
Both networks contain a surrogate delay server that represents the com-
ponent of the queuing delay captured by the other network. An approxi-

8 1 INTRODUCTION

mate solution is found with an iterative algorithm that solves the models
alternatively and propagates the intermediate results between them.

Stochastic Rendezvous Networks (SRNs) have been proposed for
modeling systems where software or hardware objects interact with the
rendezvous mechanism [Woo95]. The rendezvous mechanism can be
used to model different interaction types present in software systems, in-
cluding those using simultaneous resource possessions. For example, a
synchronous CORBA operation request can be modeled as a special case
of a rendezvous. The solution for a SRN can be found with an iteration
technique that computes a series of intermediate solutions using an MVA
approximation and continues until the estimated throughputs converge.

The method of layers has been proposed for solving complex systems
with one or more layers of software servers [Rol92, Rol95]. Each layer is
allowed to call services from the layer immediately below it, thus intro-
ducing simultaneous resource possession. To find a solution for the lay-
ered queuing network (LQN) model, an iterative algorithm is used for
solving the layers until successive response time estimates converge. A
second queuing network is used for determining queuing delays in hard-
ware devices, and the results are combined with the software server
model to produce performance estimates for the overall system.

A similar layered queuing network model is proposed in [Ram98] for
representing client-server systems where communication is carried out
with synchronous and asynchronous messages. Unlike the method of lay-
ers, this approach requires that the complete flow of messages through
the clients and servers be specified. Hence, the model is closer to the ac-
tual software and may be easier to construct. An approximate solution is
obtained by iterating back and forth between the layers until the results
converge.

Performance of CORBA based systems

Existing work on the performance of CORBA concentrates on the im-
plementations of the development platform and the run-time infrastruc-
ture. The results of a comparative study between CORBA and low-level
mechanisms in an ATM network have been reported in [Gok96]. For
simple scalar types in a remote operation, the measurements reveal that
CORBA implementations achieve 75% to 80% of the throughput of
socket-based C and C++ implementations. For complex data structures,
the throughput of CORBA implementations is only about 33% of the
lower-level implementations. Further results show that a significant

1.3 Related research 9

amount of time is spent in presentation layer conversions and data copy-
ing [Gok98a]. In one particular test, 42% of the client node’s CPU proc-
essing time was spent in copying and marshaling the data. An additional
source of overhead in several CORBA implementations is the routing of
invocations to their handlers at the server side. A detailed study shows
several reasons for this overhead. For example, long chains of function
calls may occur due to the layered structure of the CORBA implementa-
tion. Furthermore, it was found that linear searching and costly string
comparisons were used in one of the CORBA infrastructure implementa-
tions. For this particular product, almost 72% of the CPU time at the
server node was spent for invocation routing and demarshaling.

The above findings led to the implementation of TAO, a high-per-
formance real-time CORBA implementation with several improvements
over conventional products [Gok98a, Sch98b]. For example, invocation
routing bypasses the logical ORB layers and accesses directly the target
methods. Also, presentation layer conversions are minimized by support-
ing multiple encoding strategies depending on the application’s needs. In
addition, excessive data copying and long chains of function calls are re-
duced by using special compiler optimizations that automatically omit
unnecessary copying of data between the CORBA infrastructure and the
application. These optimizations offer significant performance improve-
ments over traditional implementations. For example, when sending data
structures over the network, the latency of the enhanced IIOP protocol
implementation is approximately one fourth of the latency imposed by
the original protocol implementation obtained from SunSoft.

Performance benchmarking with well-defined workloads is an impor-
tant area of research. A report produced by the Charles University makes
a thorough comparison between three CORBA implementations
[MLC98]. The comparison reveals significant performance differences
between the products. For simple data types, the longest response time
was 5.9 times longer than the shortest response time. For a large array of
complex data types, the slowest product was 27 times slower than the
fastest one. The study also reveals an important observation that is com-
mon to all measured products: the overhead of an invocation overshad-
ows the impact of argument sizes and types, unless passing a very large
number of complex arguments. Recently, the Object Management Group
has investigated the possibility of defining guidelines for conducting
CORBA benchmarks [OMG99a].

10 1 INTRODUCTION

Performance modeling frameworks

A classical example of an integrated framework for performance model-
ing is described in [Smi90] as a part of a complete SPE approach. Two
separate notations are proposed for performance models: execution
graphs represent the software structure and information processing
graphs model the overall system. A set of modeling techniques is de-
scribed for commonly occurring situations in software engineering. Also,
the requirements for tool support are discussed, and an example tool is
presented. Finally, the approach presents a methodology for gathering
data in order to produce the performance models. In a later work, a meth-
odology is proposed for transforming object-oriented designs manually
into performance models that fit into this framework [Smi97].

A repository-based performance modeling framework is presented and
discussed in [Wat97]. The framework uses a common repository for inte-
grating a number of heterogeneous modeling tools and techniques. Stan-
dard object-oriented notation is used for representing the application
structure, but proprietary notations are defined for specifying workloads
and the execution environment. The models are solved with a discrete
event simulation tool. The framework’s strength is in the possibility to
use separately developed tools. However, if general-purpose tools are
used – as preferred by software engineers – the support for performance
modeling is not necessarily sufficient for all performance engineering
purposes. Also, the processing time for making the necessary transforma-
tions between the tools is relatively long (i.e. in the order of minutes)
even for simple models in the proposed framework implementation. This
may reduce the framework’s usability for iterative development.

An extensive performance modeling framework is being developed on
the basis of layered queuing networks. In [Sho98], an complex example
is presented for applying performance modeling to a telecommunication
system. The example outlines an approach that aims at making perform-
ance engineering more accessible to software developers. The paper also
describes requirements for a performance oriented design tool. In a recent
paper, Petriu and Wang propose an approach for transforming high-level
UML diagrams into layered queuing networks [Pet99]. In this approach,
communication-related architectural patterns in the system design are
automatically converted into LQN diagrams using a graph rewriting sys-
tem. The paper describes transformations for most communication pat-
terns occurring in distributed systems. The advantage of this approach is
the use of the well-known UML notation for representing an abstract

1.4 Outline of the work 11

view of the architecture, while the LQN representation allows the model
to be solved with existing algorithms.

A closely related issue is the creation of performance models from
non-UML notations, such as the Specification and Description Language
(SDL). In particular, Steppler proposes to use an SDL based design
methodology for producing formal specifications for communication
systems, and to use the SPEET tool for evaluating these systems by
means of simulation and emulation [Ste98]. While the proposed approach
is well suited for communication oriented systems, it may be less usable
for complex software systems where communication is only one of the
elements that affects the overall performance.

1.4 Outline of the work

The rest of this work is structured as follows. Chapter 2 presents the
CORBA platform and discusses some performance aspects of CORBA
based applications. Also, it formulates additional technical requirements
for the framework. Chapter 3 provides an overview of the framework ar-
chitecture. On one hand, it defines the main elements of the framework
and, on the other hand, it describes the required performance model rep-
resentations. Chapter 4 starts with an introduction to queuing networks.
Then, augmented queuing networks are defined for providing better sup-
port for distributed CORBA based systems. Finally, an algorithm is de-
scribed for solving augmented queuing networks. Chapter 5 is dedicated
to UML based performance modeling. It starts with an introduction to
UML, and continues with the presentation of UML based performance
modeling notation and a set of UML based performance modeling tech-
niques for CORBA based systems. Chapter 6 describes a concise per-
formance modeling methodology that allows the framework to be used
with object-oriented analysis and design approaches. Chapter 7 discusses
a tool prototype and presents a case study with some practical results.
Chapter 8 provides concluding remarks and proposes plans for future
work.

13

Chapter 2

The Common Object Request Broker
Architecture

In this chapter, we briefly present the CORBA platform and discuss its
future development. In addition, we point out some general performance
issues in CORBA based applications, and review several performance
improvement techniques at the application level. Finally, we discuss
technical requirements for our performance modeling framework im-
posed by the technical choices in the CORBA platform.

2.1 Introduction to CORBA

The Object Management Group (OMG) is a consortium of more than 800
organizations attempting to create a common technology base for object-
oriented distributed systems. The objective of the OMG is to promote
portability, reusability, and interoperability of software through the use of
object-oriented technologies. The OMG pursues its goals by providing a
common architecture and a set of specifications [OMG92].

The OMG started its work by specifying the Object Management Ar-
chitecture (OMA) to provide an overall framework for its activities and
further specifications [OMG92]. The OMA defines a reference model
that divides the problem space of distributed systems into four distinct
sub-spaces, as illustrated in Figure 1. Two of them, the application ob-
jects and the CORBAfacilities, are concerned with application level is-
sues, while the other two, the object request broker and the COR-
BAservices, concentrate on the basic technology for distributed comput-
ing. For system providers, the reference model offers a conceptual
framework for identifying their role in the marketplace. For user organi-

14 2 THE COMMON OBJECT REQUEST BROKER ARCHITECTURE

zations, the reference model gives a high-level architecture according to
which they can partition their systems.

The object request broker (ORB) enables communication between dif-
ferent parts of the system, and isolates them for each other so that hetero-
geneous technologies can be used. The technical details of the ORB are
given separately in the Common Object Request Broker Architecture
(CORBA). In this work, we concentrate on version 2.3 of the CORBA
specification [OMG99d].

The CORBAservices define a set of general-purpose building blocks
for helping the work of application programmers. On one hand, they in-
crease programmer productivity by offering ready-made solutions for
commonly occurring programming needs and, on the other hand, they in-
crease application portability by offering these solutions in the same way
in all environments.

The CORBAfacilities provide generic frameworks and high-level
building blocks for CORBA based systems. Horizontal CORBAfacilities
are intended to cover domain-independent needs, such as systems man-
agement, internationalization, user interface management, and work pro-
cess automation. Vertical CORBAfacilities provide high-level building
blocks for specific application domains, such as the telecommunications
industry.

Application objects in the OMA reference model represent functions
and services that are specific to a particular application. The design prin-
ciples and implementation techniques for application objects and COR-
BAfacilities are similar, but their scope is different: application objects

Horizontal Vertical

CORBAfacilities

CORBAservices

Application objects

Object request broker

Figure 1. The OMA reference model [OMG92].

2.1 Introduction to CORBA 15

are only intended for a particular application or a system, and they are
not described in OMG’s specifications.

The technical structure of the ORB and its interfaces are illustrated in
Figure 2. A CORBA client can be anything that has the ability to request
operations on objects. For example, ready-made software packages, end-
user applications, and scripts can all be CORBA clients. An object imple-
mentation is an executable system component that creates one or more
CORBA objects and provides the necessary run-time support for per-
forming operations on them. An object implementation contains defini-
tions for creating the objects, and program code for carrying out the op-
erations. The implementation of an operation is called a method. Object
implementations are the concrete components responsible for realizing
the service abstraction that the clients perceive through object interfaces.

IDL stubs allows clients to invoke operations. A stub accepts the cli-
ent’s invocation as a local call, transforms the invocation into a network
message, and sends it to the appropriate object implementation. For many
compiled programming languages, there is a separate stub for each opera-
tion in an interface, and the stubs are linked permanently to the client ex-
ecutables. The implementation details of the stubs depend on the selected
technology and the operating environment. The stubs are responsible for
encoding the request parameters, dispatching the requests to the object
implementations, and decoding the subsequent replies. In addition, the
stubs report exceptions to the clients so that they can handle abnormal

Normal call
interface

Implementation
repository

Interface
repository

Up-call
interface

ORB-dependent interface

Object type dependent stubs and skeletons

There may be multiple object adapters

Identical interface for all ORB implementations

Object request broker core

Dynamic
skeleton

Object
adapter

ORB
interface

Static IDL
skeleton

IDL
stubs

Dynamic
invocation
interface

Client Object implementation

Figure 2. The Object Request Broker [OMG99d].

16 2 THE COMMON OBJECT REQUEST BROKER ARCHITECTURE

conditions in a controlled way. Exceptions may be raised by the ORB or
by the object implementation.

An object adapter allows the ORB core to deliver operation requests
to the appropriate object implementations. In addition, it allows object
implementations to use the ORB’s services. An object adapter supports
operations for registering new objects, activating and deactivating exist-
ing objects, and accessing object information maintained by the ORB.
Currently, the CORBA specification defines only one object adapter, the
portable object adapter (POA), for supporting objects that are imple-
mented with ordinary programs and processes. However, additional ob-
ject adapters may be defined for other kinds of objects, such as those us-
ing an object database [Rev96].

An IDL skeleton is the server-side counterpart for an IDL stub. It re-
ceives operation invocations from the ORB and transforms them into lo-
cal calls to the object implementation. The detailed structure of the IDL
skeleton depends on the object adapter and the object implementation’s
programming language. For many compiled languages, there is a separate
skeleton for each operation in an interface, and the skeletons are linked
permanently to the object implementation executables. The skeleton is
responsible for hiding all communication details from the programmer
who implements the objects. The hidden details include decoding the re-
quest parameters, encoding the reply, sending it to the client, and treating
abnormal situations that may result from communication failures.

The dynamic invocation interface (DII) allows clients to invoke opera-
tions that were not known at the time of compiling the client executable.
When using the DII, the client does not need an IDL stub. Instead, it
makes a series of calls to the DII and thereby gives a detailed description
of the operation request. The client must identify the target object, the
operation to be invoked, the parameter values, the parameter types, the
type of the expected result, etc. When the request has been fully speci-
fied, the client sends it to the object implementation with a separate call
and examines the results when the invocation has been completed.

The dynamic skeleton interface (DSI) allows object implementations
to accept requests that were unknown at the time of compiling the appli-
cation. Hence, there is no need for interface-specific IDL skeletons when
using the DSI. If an operation request is received through the DSI, it is
converted into a data structure that contains all necessary information for
interpreting the request. When the operation has been completed, the re-
sults are returned to the DSI that transforms them into a network message
and sends them to the client. The client has no way of knowing whether

2.1 Introduction to CORBA 17

the request has been executed through the DSI or through an IDL skele-
ton at the server side.

The object request broker core is responsible for delivering requests
and replies between clients and object implementations. In addition, the
ORB core also maintains location and access transparencies for CORBA
objects. For this purpose, CORBA objects are never identified directly
through their network address. Instead, the ORB core generates and
maintains a unique identifier, object reference, for every object under its
control. In addition, the ORB implements an internal location service that
maps object references to the corresponding network addresses. The
ORB core also takes care of other technical activities, such as the en-
forcement of secure communication and the maintenance of implicit
status information during transaction processing.

The implementation and interface repositories maintain information
about the object implementations and interfaces that are available in the
system. Finally, the ORB interface supports general-purpose operations
that can be used by the clients and object implementations. For example,
there are operations for initializing the ORB and for finding out a set of
initial object references that allow the applications to start their operation.

The CORBA specification also defines a number of additional tech-
nologies for supporting the use of ORBs in different environments. The
OMG Interface Definition Language (IDL) allows system developers to
specify object interfaces in a way that is independent of any specific pro-
gramming language or operating environment. A number of language
mappings indicate how the interfaces specified with the IDL are used in
different programming language environments. The mappings define
how IDL data types and interfaces are represented, and how the corre-
sponding operations are invoked and implemented. Version 2.3 of the
CORBA specification contains language mappings for Ada, C, C++, Co-
bol, Java, and Smalltalk. CORBA implementations use precompilers to
generate IDL stubs and skeletons that conform to the specified language
mappings.

The interoperability architecture in the CORBA specification de-
scribes how different ORB products can cooperate. At the heart of the ar-
chitecture, the GIOP and IIOP protocols provide the means for sending
requests and replies across technology boundaries. The GIOP defines the
transfer syntax for requests and replies, and the IIOP specifies how GIOP
messages are transmitted using the TCP/IP protocol. In addition, the in-
terworking architecture is specified to provide a mapping between
CORBA and the Component Object Model (COM) from Microsoft.

18 2 THE COMMON OBJECT REQUEST BROKER ARCHITECTURE

The ORB provides adequate means for implementing communication
between system elements, but it provides limited support for application
development in other respects. To compensate this insufficiency, the
CORBAservices define a comprehensive set of low-level building blocks
for system developers [OMG98a]. We briefly mention some of the most
important services. The Naming Service allows applications to give
names to objects and to organize them into hierarchical name spaces. The
Event Service provides basic support for asynchronous and many-to-
many communication. Recently, the Notification Service has been de-
fined to enhance the functionality of the Event Service in telecommuni-
cations environments [OMG99e]. The Life Cycle Service provides
mechanisms for creating, moving, copying, and deleting objects. The
Concurrency Control Service regulates access to objects so that their
consistency is not compromised by requests coming from multiple con-
current computations. The Transactions Service supports transactions in
distributed environments. The Security Service supports the development
of secure distributed applications by providing a set of general security
facilities. The Trading Object Service supports the advertising and dis-
covery of services available in the system.

2.2 Future directions for CORBA

The CORBA specification is currently evolving towards the next genera-
tion and a number of new elements are being added to it. We briefly dis-
cuss three important elements that are likely to influence the performance
of CORBA based applications.

The first important addition is the CORBA Messaging Specification
[OMG99f]. It extends the current call-reply communication model with
several asynchronous invocation modes. The reply for an asynchronous
invocation can be obtained either by polling or by providing a callback
interface that receives the reply as a return call. With the time independ-
ent invocation model, it is possible that the original client no longer ex-
ists when the reply is returned and accepted by some other entity in the
system. The specification also defines a generic framework for control-
ling the quality of service (QoS) of communication. For example, it is
possible to control message ordering, deadlines, time-to-live, routing
policy, and hop count. The QoS framework can also be used for control-
ling the normal synchronous communication.

2.3 Performance issues in CORBA based applications 19

Another important new element is the Real-Time CORBA Specifica-
tion [OMG99g]. It regulates the control of critical resources, such as
threads, protocols, and connections, so that systems can be built to meet
hard and statistical real-time requirements. In addition to defining an in-
terface for the real-time ORB and a number of interfaces for controlling
the essential resources, the specification also describes the Scheduling
Service. Its purpose is to abstract away many of the low-level details that
are needed for enforcing fixed priority real-time scheduling policies. Cur-
rently, the specification does not incorporate dynamic scheduling.

Finally, the CORBA Component Model (CCM) specification provides
a comprehensive framework for developing, deploying, and using
CORBA based software components [OMG99h]. The CCM combines a
number of essential features from several CORBAservices and allows
them to be used through high-level abstractions. Unlike traditional ob-
jects in the CORBA environment, components are allowed to support
multiple interfaces. The Component Implementation Definition Lan-
guage (CIDL) has a key role in the specification, since it allows develop-
ers to specify various aspects of security, transaction processing, persis-
tence, and event handling without writing program code. The CCM also
defines a programming model for supporting the run-time control of
components. Finally, the specification defines an XML based distribution
format for supporting the distribution, aggregation, and deployment of
components.

2.3 Performance issues in CORBA based applications

The performance of CORBA based applications may be threatened in a
number of ways. We briefly review some of the threats that are discussed
in the literature. The following topics are discussed:

� Distribution transparencies,
� Marshaling and demarshaling of parameters,
� Invocation routing,
� Network bandwidth and latency,
� The use of network connections,
� Server contention,
� Server activation and deactivation,
� The effect of ORB abstractions on the design work.

20 2 THE COMMON OBJECT REQUEST BROKER ARCHITECTURE

Distribution transparencies are an important source of performance
problems. They are often successful in hiding the complexity of the un-
derlying techniques, but some of the performance implications cannot be
hidden. Moreover, transparencies may imply additional processing that is
not easy to predict. For example, there may be additional lookup mes-
sages for locating an object. The “black box” approach adopted by many
CORBA vendors makes it difficult to analyze the impact of distribution
transparencies on performance. Proposals have been made to allow appli-
cations to gain control over middleware performance. For example, it has
been argued that all distribution transparencies need standardized access
and control mechanisms for managing the performance aspects of the
underlying transparency implementations [Mar94].

The marshaling and demarshaling of network messages are a com-
mon source of performance problems [Gok98b]. These activities take
place during every CORBA interaction and, consequently, small ineffi-
ciencies may build up into serious performance problems. Unfortunately,
marshaling and demarshaling is often beyond the control of application
programmers. Hence, it may be difficult to bypass or fix inefficient mar-
shaling code of an ORB implementation.

Invocation routing refers to the actions that take place when an opera-
tion request arrives at the server node and gets routed to the correct desti-
nation. A special daemon process is often used for locating the object
implementation and for delivering the request. Daemons add processing
overhead and may become performance bottlenecks in highly loaded en-
vironments [Sch97, Gok97]. The scheduling of threads and processes at
the server node may also cause performance problems [Sch98a].

Network bandwidth can be a limiting factor in some applications, such
as those running in wireless mobile environments [OMG98c] and those
transferring large amounts of data over the network [Gok98a]. Network
latency is also a well-known issue, but its effect on the application be-
havior can be reduced with well known techniques, such as caching and
pre-fetching. However, there is an additional problem in CORBA based
systems: unpredictability due to distribution transparencies. Depending
on the configuration, an invocation may sometimes take several seconds
(e.g. to an object behind a congested Internet connection) and sometimes
only a few microseconds (e.g. to an object in the same process).

Inefficient use of communication resources has been observed to
cause performance problems. For example, ORB implementations may
close and reopen TCP/IP connections unnecessarily, and use multiple
connections when it might be more efficient to multiplex a single con-

2.4 Application-level performance heuristics 21

nection. The optimal way of using communication resources is applica-
tion dependent and, therefore, some form of control is needed for appli-
cation developers. Some ORB implementations allow connections to be
controlled with configuration parameters (e.g. [Inp99]).

Contention at software servers is a well-known performance issue. In
the CORBA platform, this may be avoided by using a multi-threaded
object implementation instead of a single-threaded one. The correct
choice depends on several factors, such as the implementation cost, ap-
plication workload and performance requirements. However, there is an
additional concern related to the CORBA platform: contention may occur
at internal servers that are not visible for application developers. Even if
application-level servers were designed to withstand high workloads, the
system may fail to reach its performance goals due to excessive conten-
tion at internal servers.

The activation and deactivation of CORBA servers may also cause
performance problems. To allow applications to optimize their use of
hardware and software resources, the CORBA specification supports
various activation and deactivation mechanisms and policies. However, it
may be difficult to make correct decisions as to when and where a par-
ticular server should be activated. Some CORBA implementations make
these decisions transparently from applications (e.g. [BEA99]), but it
may be difficult to configure such mechanisms so that they correctly pre-
dict the behavior of the applications.

Finally, it should be noted that the high-level abstractions provided by
CORBA platform might sometimes mislead application developers to ig-
nore the physical reality. Distribution transparencies together with object-
orientation can make the implementation of remote interactions and dis-
tributed systems straightforward and easy. However, the cost of remote
interactions and other potential performance problems do not vanish with
the improved programmer productivity.

2.4 Application-level performance heuristics

A number of application-level guidelines have been proposed for im-
proving the performance of CORBA based systems. They are often pre-
sented with design patterns, a popular technique for documenting soft-
ware design expertise in a structured way [Gam94, Cop96]. We briefly
discuss the following heuristics:

22 2 THE COMMON OBJECT REQUEST BROKER ARCHITECTURE

� Increasing the amount of parallel execution,
� Reducing the number system elements,
� Reducing the amount of communication,
� Improving the architecture of CORBA based systems.

When discussing the guidelines, we also point out the underlying techni-
cal motivations in the CORBA architecture. A more generic set of appli-
cation-level heuristics is given in [Smi90].

Increasing parallelism

Synchronous calls are the primary method of invoking operations on
CORBA objects. In many cases, however, the waiting time at the client
side could be used for other purposes. A number of application-level
techniques have been proposed to increase parallelism during operation
invocations. A common technique is to replace synchronous operation
invocations with fully or partially asynchronous communication
[Mow97]. For example, the server can invoke a callback routine on the
client when the requested operation has been completed. The CORBA
Messaging specification provides advanced tools for implementing such
techniques.

Another technique for increasing parallelism is to use threads with
synchronous communication. At the server side, the object adapter can
launch a new thread for each incoming request. This technique is trans-
parent to the application code apart from the need to synchronize the si-
multaneous access to the object’s internal state. At the client side, a spe-
cial thread can be spawned for waiting for the reply while other threads
continue as usual. A special technique has been proposed for hiding the
use of threads in CORBA clients [Hel96]. When the client application in-
vokes an operation, a new thread is launched transparently for waiting for
the server’s reply. The client’s main thread continues executing the appli-
cation code until it attempts to use the results of the pending invocation.
If the server has already delivered the results, the client application code
simply accesses them. However, if the server is still executing the re-
quest, the client blocks until the results become available.

Reducing the number of system elements

A large number of generated IDL stubs and skeletons increase the over-
head of routing invocations to object implementations. Compiler optimi-
zation techniques can alleviate the problem [Eid97] but they cannot

2.4 Application-level performance heuristics 23

eliminate it completely. Several possibilities exist for reducing the num-
ber of interfaces, operations, and attributes in CORBA based applica-
tions. For example, an interface can offer two generic operations, get and
set, for supporting access to any number of attributes [Mow97]. Simi-
larly, it is possible to reduce the number of operations and interfaces by
abstracting away differences that exist between them. The Any data type
can be used as a placeholder for generic parameters that can change their
type from one invocation to another. However, the Any data type entails
the use of meta-information at run-time and this may incur a serious deg-
radation of performance in some cases [Zie96, MLC98].

Reducing the amount of communication

The amount of remote communication is a typical target for optimiza-
tions due to the limitations imposed by network bandwidth and latency.
There are several techniques for reducing remote communication in
CORBA based systems. We briefly discuss three of them. First, the client
stubs can be modified to maintain a local cache of remote objects
[Mow97, Inp99]. This way, access to the remote object is minimized but
the client can still maintain the abstract view provided by the IDL inter-
face. Second, an application-level object can be divided into two half-
objects that use an optimized protocol for maintaining the necessary state
information in both halves [Mes94]. This way, both half-objects can lo-
cally support non-optimized CORBA interfaces, but the overall design
can avoid most of the related overhead.

The third technique for reducing the communication overhead is to
replicate CORBA objects in the network. This way, clients can invoke
operations locally while the replicated servers synchronize in the back-
ground. Some ORB implementations provide ready-made solutions for
creating multiple implementations for a single object reference [DEC96],
but standard CORBA facilities can also be used for implementing object
replication [Mow97]. An important use of replication is the implementa-
tion of high availability through virtual synchrony [Maf97]. This tech-
nique uses a group abstraction mechanism for ensuring that the request of
a client succeeds if there is at least one operational replica in the group.
In process-oriented applications with very little persistent data, virtual
synchrony can implement reliable system behavior with much less over-
head compared to traditional ACID type transaction processing.

24 2 THE COMMON OBJECT REQUEST BROKER ARCHITECTURE

Improving the software architecture

Correct IDL design may strongly influence the performance of the sys-
tem. In particular, it is usually more efficient to use a single invocation
for carrying large amounts of data instead of having multiple invocations
with less data [MLC98]. Accordingly, if a long sequence of calls to
primitive operations is replaced by a single and more complex invoca-
tion, the responsiveness of the system may increase significantly [Sla99].

The CORBAservices have been designed to support general-purpose
needs in various application domains and, hence, they may be inefficient
for some applications. An application-specific layer can be introduced
between the client and a general-purpose CORBAservice for reducing the
number of calls and the amount of data to be transferred. For example,
the context-relative CORBA naming service can be hidden under a sim-
plified interface that uses a single naming context [Mow97].

2.5 Technical requirements for the framework

We can now formulate additional technical requirements for our per-
formance modeling framework. The following requirements reflect the
architectural choices of the CORBA specification and the possibilities
that it offers for implementing information systems:

� Support for complex hidden interactions,
� Support for flexible changes in configurations,
� Interface support,
� Support for heterogeneity.

Complex hidden interactions emerge from the implementation of distri-
bution transparencies. A simple application-level interaction may entail
interactions between infrastructure objects for locating, activating, and
accessing the relevant application objects. Such activities impact the per-
formance of the system but are not visible at the application level. The
performance modeling framework should support the representation of
such mechanisms without forcing them to be mixed with the application
logic. Different CORBA implementations use different mechanisms and,
consequently, the framework should not be limited to a single set of
mechanisms.

2.6 Summary 25

In many CORBA based systems, it is possible to modify the run-time
configuration without any changes in the logical application architecture
or program code. For example, the locations of application objects can be
changed so that remote interactions turn into local ones and vice versa.
Similar flexibility should be available in the performance modeling
framework so that developers can evaluate application designs in differ-
ent run-time configurations. In particular, this should be possible without
any changes in the model at the application level.

Interfaces and the IDL language have a central role in the design of
CORBA based systems and, consequently, the framework should allow
developers to specify performance models for designs that use the IDL as
the main specification language. In particular, there should be modeling
constructs for directly representing interfaces and operations as they ap-
pear in the IDL.

Finally, the performance modeling framework should support hetero-
geneity wherever it is allowed in the CORBA platform. For example, a
single model should be able contain heterogeneous hardware elements
and network connections. In particular, there must be a way to model dif-
ferent CPU speeds and network latencies. In addition, it should be possi-
ble to model systems consisting of multiple CORBA environments hav-
ing different internal implementations. Moreover, the framework should
not depend on any programming language specific notation since
CORBA itself is programming language independent.

2.6 Summary

In this chapter, we have given an overview of the CORBA 2.3 platform
and related CORBAservices. In addition, we have presented important
elements in the next generation of the CORBA platform. A number of
potential performance problems in CORBA based system have been dis-
cussed, and possible application-level techniques have been proposed for
reducing their adverse effect. Finally, we have formulated a set of addi-
tional technical requirements for the performance modeling framework.

27

Chapter 3

Performance modeling framework
architecture

In this chapter, we present the architecture of our performance modeling
framework. On one hand, we identify the main elements of the frame-
work and discuss briefly their mutual relationships. On the other hand,
we present the four performance model representations that are used by
the framework. This provides an introduction to the technical details of
the framework.

3.1 Elements of the framework

The performance modeling framework can be divided into the following
five elements:

� A UML based modeling notation,
� A set of performance modeling techniques,
� The method of decomposition for solving the models,
� A performance modeling and analysis tool,
� A performance modeling methodology.

These elements and their relationships are illustrated in Figure 3.
The performance modeling methodology links the framework to the

software engineering process. It indicates how to obtain performance re-
lated information from the requirements specifications, and how the per-
formance modeling techniques can be used at different stages of systems
development to produce useful performance models. A layered model
structure is also defined so that developers can divide performance mod-
els into more manageable sub-models. The use of layers also allows a

28 3 PERFORMANCE MODELING FRAMEWORK ARCHITECTURE

complex model to be built in a stepwise process that proceeds in parallel
with software development.

The UML based performance modeling notation is a subset of the full
UML notation with a few extensions for indicating performance related
information in otherwise normal UML diagrams. The proposed exten-
sions comply with the standard UML extension mechanisms. The nota-
tion prepares the ground for applying the actual performance modeling
techniques.

The proposed set of performance modeling techniques provides suffi-
cient means for creating precise performance models of complex distrib-
uted systems based on the CORBA platform. In particular, a number of
techniques allow application level issues to be separated from the infra-
structure and the network. The proposed techniques are close to the nor-
mal UML modeling style as presented in the UML standard and literature
(e.g. [Rat97, Eri98, Jac98]). Therefore, they allow existing functional
UML models to be extended into performance models.

The performance modeling and analysis tool automates some of the
tasks required by the framework. In particular, it transforms UML based
performance models into a solvable format, produces an approximate
solution for the performance model, and converts the solution into a set
of relevant performance metrics to be used in the performance modeling
methodology. This is the current functionality of our prototype tool.
However, a full tool implementation could have additional features, such

Performance
modeling

methodology

The method of
decomposition

Produce overall model
structure and parameters

Software
engineering

process

Produce
relevant

performance
metrics

Performance
modeling and
analysis tool

Performance
modeling

techniques

Produce model in a
precise UML format

UML based
modeling notation

Figure 3. Elements of the performance modeling framework.

3.2 Four performance model representations 29

as capabilities for graphical modeling and for the visualization of the
metrics obtained for the models.

The method of decomposition (MOD) provides the foundation for the
framework since it describes a decomposition technique and an iterative
algorithm that allows us to solve the performance models that result from
UML based modeling techniques. The key element in the algorithm is the
support for simultaneous resource possessions that arise, for example,
from synchronous operation invocations. The MOD alone, however, is
unsuitable for modeling large distributed systems due to its low-level
representation of the modeled system. Hence, the method of decomposi-
tion is used as an underlying technique for solving the higher-level UML
based models.

3.2 Four performance model representations

The technical aspects of the framework and the operation of the modeling
and analysis tool can be described in terms of four performance model
representations. The framework defines mappings between the represen-
tations, as shown in Figure 4. The idea is to start from the UML repre-
sentation and proceed downward using the mappings. Once the bottom
has been reached, an approximate solution can be found for the model.
The mappings also indicate how the obtained metrics can be propagated
upwards.

The UML representation describes the system with UML diagrams.
This representation may contain purely functional elements that are not
needed for performance modeling. To reduce the complexity of the dia-
grams, we assume that the UML representation is divided into separate
layers corresponding to different parts of the system, such as the applica-
tion, the infrastructure, and the network.

The PML representation (Performance Modeling Language) provides
an accurate textual notation for representing performance related ele-
ments in the UML diagrams. The PML representation has the same lay-
ered structure as the UML representation, and the mapping from UML to
PML is straightforward. The purpose of this representation is to filter out
those features that have no significance for performance modeling, such
as graphical UML variations and purely functional parts of the UML
model. Moreover, the PML representation has an important role in the
development of the framework, as it is currently the input format for the
prototype implementation of the modeling and analysis tool. However,

30 3 PERFORMANCE MODELING FRAMEWORK ARCHITECTURE

the use of PML is not mandatory, and any other human-understandable
UML representation could be used instead. For example, we might later
opt for the human-usable textual UML notation that is currently being
developed by the OMG [OMG99b]. For the purposes of this work, how-
ever, the current PML based approach is sufficient.

The AQN representation (Augmented Queuing Network) describes
the target system as a queuing network that can contain simultaneous re-
source possessions and, therefore, is not necessarily product-form. This
representation allows the use of the method of decomposition for solving
the model. The AQN representation is obtained from the PML represen-
tation by expanding object classes into object instances that correspond
to individual resources in the system. Moreover, the UML collaboration
and sequence diagrams describing the behavior of the application and the
infrastructure are combined into one or more workload specifications.
Each workload specification can be visualized with a collaboration dia-
gram that indicates how the system’s resources are used by that particular
workload.

The QN representation (Queuing Network) consists of product-form
queuing networks with mutual dependencies that relate them to the same
overall system. The QN representation is obtained from the AQN repre-
sentation during the initial steps of the method of decomposition. The re-
sulting queuing networks contain a number of unknown parameters and,
to solve the networks while respecting the mutual dependencies, iteration
has to be used. The transformation from the AQN representation into the

UML representation

PML representation

1. Normalize model into text
form and remove elements

not relevant for performance
modeling

QN results

AQN representation

QN representation

2. Expand classes into
objects and combine

diagrams into one collabora-
tion diagram per workload

3. Transform diagrams into
product-form queuing

networks with approximate
parameters

AQN results

PML results

UML results

8. Propagate
metrics

7. Propagate
metrics

6. Propagate
metrics

4. Solve
with MVA

5. Adjust QN parameters until throughputs are
close enough in all queuing networks

Figure 4. Four performance model representations.

3.2 Four performance model representations 31

QN representation involves a number of approximations that are needed
to make the queuing networks solvable with efficient algorithms.

Similar tiered architectures are common in performance modeling
[Agr85, Hav98], but the top representation is often a sophisticated per-
formance modeling notation, such as a variant of stochastic Petri nets, to
support advanced modeling techniques. In our case, a non-technical top
representation is used for hiding most of the underlying performance
modeling issues and for making the models closer to the functional mod-
els used by software engineers.

33

Chapter 4

The method of decomposition

This chapter extends traditional queuing networks to support the model-
ing of CORBA based distributed systems. We start with a brief introduc-
tion to queuing networks, and present a number of algorithms for solving
them. We focus on approximate algorithms that can solve large models
efficiently. Next, we define augmented queuing networks that contain
extensions to cope with the needs of CORBA based distributed systems.
Finally, we present the method of decomposition for solving augmented
queuing networks. It combines existing decomposition and approxima-
tion techniques in a new way for dealing with needs of our framework.

4.1 Introduction to queuing networks

Queuing networks provide a straightforward way to model computer
systems at an abstract level so that a number essential performance char-
acteristics can be represented in an easy-to-use manner. The static struc-
ture of a system is represented in terms of resources1 that correspond to
hardware devices, such as CPUs or disks, and software resources, such as
CORBA object implementations. It is assumed that access to each re-
source is controlled by a queue of requests. A resource is characterized
by its scheduling discipline and service time distribution. The dynamic
aspects of the system are modeled with jobs that correspond to threads of
execution accessing system resources. A job can represent, for example,
a series of actions requested by an end user or a background task running
in the system. Routing probabilities indicate how jobs move from one re-
source to another, and service demands indicate the average amount of

1 Resources in queuing networks are often referred to as servers or service centers.

However, to avoid confusion with CORBA servers, we use the term resource.

34 4 THE METHOD OF DECOMPOSITION

service per visit, in time units, that jobs require from the resource. Ser-
vice demands can be obtained, for example, through measurements or by
examining the program code for the jobs. Service demands are also a
good candidate for calibrating a model to match the measurements from
an existing system. See Section 6.6 for more details.

In this work, we consider multi-class queuing networks, where jobs
are partitioned into several classes according to the way they are using
resources. Each class consists of independent jobs that have the same
pattern of using resources. We distinguish between two kinds of classes:
closed classes have a fixed number of jobs, and open classes have a vari-
able number of jobs that may enter and leave the system. A closed queu-
ing network contains closed classes, an open queuing network contains
open ones, and a mixed queuing network has both kinds of classes.

To ensure that a queuing network can be solved efficiently, a number
of assumptions must be made so that the requirements for product-form
queuing networks are met. In a product-form queuing network, the prob-
ability of a state of the system can be represented as a product of re-
source-specific factors that only depend on the type and state of the re-
source, without any side effects across resources. Product-form queuing
networks are also called separable since the states of the individual
resources can be considered separately.

Baskett, Chandy, Muntz, and Palacios have shown that a relatively
large set of multi-class queuing networks (referred to as BCMP networks)
satisfies the product-form requirements [Bas75]. BCMP networks can
have resources with the following four scheduling disciplines:

� First-come-first-served (FCFS),
� Processor sharing (PS), where incoming jobs start receiving service

immediately with a rate that is inversely proportional to the number
of jobs currently being served,

� Preemptive-resume last-come-first-served (LCFS), and
� Infinite server (IS), where incoming jobs start receiving service

immediately at the nominal rate.

Resources in the three first types are collectively called queuing re-
sources, and those of the last type are called delay resources. For FCFS
resources, the service time must be exponentially distributed and the dis-
tribution must be the same for all classes of jobs. For other types of re-
sources, each class of jobs can have a different service time distribution,

4.1 Introduction to queuing networks 35

and the distributions must be Coxian. This requirement it is equivalent to
requiring that the distributions have rational Laplace transforms [Cox55].

The PS scheduling discipline is a limiting case of the more practical
round robin (RR) discipline. In RR scheduling, each job is given a fixed
quantum of service time. If the job does not finish execution during the
allocated time quantum, it is placed at the end of the queue and the next
job is taken into service. When the quantum in the RR discipline ap-
proaches to zero, the RR discipline becomes the PS discipline. Variants
of the RR scheduling are commonly used in time-sharing operating sys-
tems and, hence, PS can be considered as a reasonable approximation for
modeling processor scheduling in actual operating systems.

For open classes in BCMP networks, the time between successive ar-
rivals should be exponentially distributed and no bulk arrivals are per-
mitted. Two types of arrival processes are supported. In the first type, the
total arrival rate to the network is Poisson and the mean rate is allowed to
depend on the total number of jobs in the network. In the second type,
there is a separate Poisson arrival stream for every open class in the net-
work, and the arrival rate is allowed to depend on the number of jobs in
the class itself. It is also essential that the jobs in the network are inde-
pendent of each other, and they advance in the queuing network with
routing probabilities that do not depend on the state of the network.

The class of product-form networks has been further extended by sev-
eral authors (e.g. [Kel76, Bar76], see [Con89] for a discussion). Further-
more, Denning and Buzen [Den78] have formulated a set of operational
requirements that lead to product-form queuing networks. Unlike the sto-
chastic assumptions for BCMP networks, these requirements state opera-
tionally testable conditions for the behavior of the resources. For exam-
ple, the system is required be flow balanced (i.e. the number of arrivals
for a resource must be the same as the number of departures for a given
observation period) and the resources must be homogeneous (i.e. the
routing of the jobs must be independent of queue lengths, and the service
completion time must not depend on the queue length of other resources).
For the purposes of this work, however, the BCMP requirements are ade-
quate for two reasons. On one hand, they provide a sufficient foundation
for justifying approximations that are needed for modeling CORBA
based distributed systems. On the other hand, they have been widely used
for performance modeling and the predicted performance metrics are
relatively accurate even when the requirements are not completely valid
for the modeled system.

36 4 THE METHOD OF DECOMPOSITION

4.2 Solutions for product-form queuing networks

We now present exact and approximate algorithms for solving open,
closed and mixed multi-class queuing networks that satisfy the product-
form requirements. These algorithms are needed later when we describe
the details of the method of decomposition. In order to avoid computa-
tionally unattractive algorithms, we limit ourselves to average perform-
ance measures. Hence, we do not discuss algorithms for solving steady-
state probabilities of the networks since this would essentially require
solving the underlying continuous-time Markov chains. See [Hav98] and
[Con89] for additional algorithms for solving product-form queuing net-
works.

The first algorithm solves open product-form queuing networks. This
algorithm is based on two fundamental results: the arrival theorem for
open product-form queuing networks [Sev81] and Little’s law [Lit61].
The arrival theorem states that a job arriving at a resource sees the re-
source’s queue in its steady-state distribution. Little’s law in turn de-
scribes a direct relationship between the average queue length n, the
throughput X, and the average residence time R:

n = XR.

Little’s law can be applied to individual classes and to the aggregate of
all classes in the model. The above results lead to a straightforward algo-
rithm for the performance metrics of open product-form queuing net-
works. A derivation can be found, for example, in [Men94]. In the algo-
rithm, the service demands of individual visits to a resource are com-
bined into total service demand. It can be obtained from a queuing net-
work description by summing up the individual service demands multi-
plied by their execution probabilities.

Algorithm 1. Exact solution for open product-form queuing net-
works. The input parameters are the number of resources K, the number
of classes R, the arrival rate λr for each class r, and the total average
service demand Di,r for each resource i and class r.

Step 1. Compute the utilization Ui,r for class r jobs in each resource i,
and the total utilization Ui for each resource i:

rirri DU ,, λ= and .
1

,∑
=

=
R

r
rii UU

4.2 Solutions for product-form queuing networks 37

To ensure the stability of the model, it is required that Ui < 1 for all
queuing resources i.

Step 2. Compute the average queue length ni,r for each resource i with
class r jobs, and the average total number of jobs ni for each resource i:

−
=

resourcequeuingaisif
1

resourcedelayaisif

,

,

, i
U

U
iD

n

i

ri

rir

ri

λ
 and .

1
,∑

=
=

R

r
rii nn

Step 3. Compute the average residence time Ri,r for class r jobs in
each resource i, and the average response time Rr for each class r:

−
=

resourcequeuingaisif
1

resourcedelayaisif

,

,

, i
U

D
iD

R

i

ri

ri

ri and .
1

,∑
=

=
K

i
rir RR (1)

The interaction between jobs in different classes can be observed in for-
mula (1). For queuing resources, the average residence time of a job is
inversely proportional to the idle time that remains when the service
demand of all classes has been taken into account.

For closed product-form queuing networks, the arrival theorem is
slightly different. When a job arrives at a resource, it sees the resource’s
queue in a state that corresponds to the steady-state distribution of the
same network with one less job in its own class [Sev81]. As a conse-
quence, the exact solution for closed product-form queuing networks can
be obtained recursively by using the solutions of networks with one less
job in each class. This idea is implemented by the exact mean value
analysis (MVA) algorithm [Rei80].

Algorithm 2. Exact MVA for closed product-form queuing networks.
The input parameters are the number of resources K, the number of
classes R, the population Nr for each class r, and the total average service
demand Di,r for each resource i and class r.

Step 1. Let N = (j1, j2, … , jR) be a vector describing the population
of each class. Let ni(N) indicate the average total queue length at re-
source i for population vector N , and let ni(N – 1r) be the average total

38 4 THE METHOD OF DECOMPOSITION

queue length at resource i for population vector N with one class r job
removed. Initialize ni(0) = 0 for all i = 1, … , K.

Step 2. For j1 = 0, … , N1; j2 = 0, … , N2; … ; jR = 0, … NR (j1 changes
most rapidly) perform steps 3 to 5.

Step 3. For all classes r and all resources i compute the average resi-
dence time Ri,r(N) for the population vector N = (j1, j2, … , jR):

−+
=

.resourcequeuingaisif)]1(1[

resourcedelayaisif
)(

,

,
, iNnD

iD
NR

riri

ri
ri (2)

Step 4. For all classes r compute the throughput Xr(N) for the popu-
lation vector N :

.
)(

)(
1 ,∑ =

= K

i ri

r
r

NR

j
NX

Step 5. For all resources i compute the average queue length ni(N)
for the current population vector N :

).()()(,
1

NRNXNn ri

R

r
ri ∑

=
=

The trouble with the exact MVA algorithm is its computational cost due
to the recursive use of average queue lengths in formula (2). Hence, the
solution for a multi-class model with a population vector (N1, N2, … , NR)
requires the solution of)1(1 +Π = r

R
r N separate models, yielding time

complexity))1((1 +Π×× = r
R
r NKRO . In real systems where performance

issues are relevant, the actual number of classes and jobs is often rela-
tively high, and the cost of using exact MVA may become prohibitive.

Schweitzer has proposed an approximation for breaking the recursion
in the exact MVA algorithm (see e.g. [Jai91] and [Men94] for discus-
sions). The approximation is based on the assumption that the number of
class r jobs at each resource increases proportionally to the total number
of class r customers in the model. Using the above notations, we have

r

r

ri

rri

N

N

Nn

Nn 1

)(

)1(

,

, −=
−

4.2 Solutions for product-form queuing networks 39

and therefore

).(
1

)1(,, Nn
N

N
Nn ri

r

r
rri

−=− (3)

This result can be applied directly to the recursive expression in formula
(2). The approximate MVA algorithm starts with a set of initial estimates
for queue lengths ni,r(N) and calculates successive estimates by substi-
tuting the recursion in formula (2) with the result in equation (3). Itera-
tion stops when successive estimates for queue lengths are sufficiently
close. The initial queue length estimates are obtained by assuming that
class r jobs are equally distributed among those resources i that have a
non-zero class r service demand Di,r.

Algorithm 3. Approximate MVA for closed product-form queuing
networks. The input parameters are the number of resources K, the num-
ber of classes R, the population Nr for each class r, the total average
service demand Di,r for each resource i and class r, and the error toler-
ance ε for successive queue length estimates

Step 1. For all classes r and all resources i initialize the queue length
estimates ei,r(N) for the population vector N = (N1, N2, … , NR):

=
>

=
,0if0

0if/
)(

,

,
,

ri

rirr
ri D

DKN
Ne

where Kr indicates the number of those resources i for which the service
demand Di,r > 0.

Step 2. For all classes r and all resources i propagate the estimated av-
erage queue lengths to be the current average queue lengths:

).()(,, NeNn riri =

Step 3. For all classes r and all resources i compute the average queue
lengths with one less job in each class:

=−
≠

=−
rtNn

N

N
rtNn

Nn
ri

r

r

ri

tri if)(
1

if)(
)1(

,

,

,

for all t = 1, … , R.

40 4 THE METHOD OF DECOMPOSITION

Step 4. For all classes r and all resources i compute the average resi-
dence time for the population vector N :

 −+= ∑

=

.resourcequeuingaisif)1(1

resourcedelayaisif

)(

1
,,

,

, iNnD

iD

NR R

t
rtiri

ri

ri

Step 5. For all classes r compute the throughput for the population
vector N :

.
)(

)(
1 ,∑ =

= K

i ri

r
r

NR

N
NX

Step 6. For all classes r and all resources i compute the new queue
length estimates for the population vector N :

).()()(,, NRNXNe rirri =

Step 7. If the maximum relative error for successive queue length es-
timates satisfies the condition

ε<
−

)(

)()(
max

,

,,

, Ne

NnNe

ri

riri

ri

then terminate the algorithm. Otherwise, continue from step 2.

The time complexity for each iteration is O(K × R). Experience has
shown that the computation required by approximate MVA is signifi-
cantly lower than that of exact MVA for complex models. The conver-
gence of the algorithm has been proven by Agrawal [Agr85] and typical
errors have been reported to be less than 20% [Hei84]. The approxima-
tion proposed by Schweitzer has been further improved by the Linearizer
algorithm [Cha82]. However, increased accuracy is achieved at the ex-
pense of added cost: the time complexity for each iteration is O(K × R2)
[Sil90]. In this work, we use the Schweitzer approximation but the
framework could also be used with other variants of the MVA algorithm.

We now combine Algorithms 1 and 3 to produce an approximate so-
lution for mixed product-form queuing networks [Men94]. A mixed
model is divided into two submodels: the open submodel is formed by

4.2 Solutions for product-form queuing networks 41

the open classes, and the closed submodel by the closed ones. The algo-
rithm starts by solving the resource utilizations in the open submodel.
The service demands in the closed submodel are multiplied with an
elongation factor to reflect the contention in open classes. The elongation
factor is inversely proportional to the idle time remaining from open
classes as indicated by equation (4). This is a special case of the ap-
proximate load concealment transformation discussed in [Agr85]. The
closed submodel with elongated service demands is solved with the ap-
proximate MVA algorithm. Finally, the residence times of the open
submodel are adjusted to reflect the contention of jobs in closed classes.
This is done by adding the average queue length of the closed submodel
to the number of jobs seen by arriving jobs in the open submodel.

Algorithm 4. Approximate solution for mixed product-form queuing
networks. The input parameters are the number of resources K, the open
classes numbered from 1 to O (the open submodel), the closed classes
numbered from O + 1 to C (the closed submodel), the arrival rate λr for
each open class r, the population Nr for each closed class r, and the total
average service demand Di,r for each resource i and class r.

Step 1. Solve the open submodel with Algorithm 1 to get utilizations
Ui,r = λrDi,r for all resources i and all open classes r = 1, … , O.

Step 2. For all resources i compute the open submodel utilization:

.
1

,, ∑
=

=
O

r
riopeni UU

Step 3. For all resources i and all closed classes r = O + 1 , … , C
compute the adjusted service demand:

.
1 ,

,
,

openi

ri
ri U

D
D

−
=′ (4)

Step 4. Using the adjusted service demands, solve the closed
submodel with Algorithm 3. Obtain the following results for all resources
i and all closed classes r = O + 1, … , C: average residence time Ri,r,
average queue length ni,r, and throughput Xr.

Step 5. For all resources i compute the average queue length of closed
jobs:

42 4 THE METHOD OF DECOMPOSITION

.
1

,, ∑
+=

=
C

Or
riclosedi nn

Step 6. For all resources i and open classes r = 1, … , O compute the
average residence time:

.
1

)1(

,

,,
,

openi

closediri
ri U

nD
R

−
+

=

4.3 Queuing networks and distributed objects

Queuing networks provide an established tool for analyzing the perform-
ance of centralized information systems, but they are also suitable for
modeling object-oriented distributed systems. Objects in CORBA based
systems and resources in queuing networks have at least two important
similarities. First, both provide abstractions for hiding the details of in-
ternal structure and implementation techniques. For objects, the abstrac-
tion is given by the set of supported interfaces and operations. For queu-
ing network resources, the abstraction is given by the service demands.
Second, both have scheduling disciplines that determine how incoming
operation requests or jobs are served. This is obvious for resources in
queuing networks, but is also easily observable for objects. For example,
a single-threaded object implementation in a typical CORBA environ-
ment enforces the FCFS discipline for incoming operation requests, and a
multi-threaded implementation reflects often directly the CPU scheduling
discipline of the underlying operating system.

Unfortunately, there are also valid arguments against using queuing
networks for modeling CORBA based distributed systems. The following
two problems are particularly challenging:

� Simultaneous resource possessions is not supported,
� Queuing networks of CORBA based systems are often too complex

for software engineering purposes.

In traditional queuing networks, it is assumed that a job can only use a
single resource at a time, and simultaneous resource possession is not
possible. However, simultaneous resource possession occurs frequently
in CORBA based distributed systems, since the basic communication

4.4 Augmented queuing networks 43

primitive is a synchronous call that blocks the caller until it gets the re-
ply. Furthermore, it is commonplace to use nested invocations, so that
several objects are blocked unless multi-threading is used in the object
implementations. In addition, most software and hardware resources in
object-oriented systems are represented in terms of objects. If a client
wishes to access such resources, it must first acquire the possession of the
corresponding object and simultaneous resource possession may result.

The second problem, excessive complexity, is a consequence of the
intricate structure of CORBA based distributed systems. In a reasonably
accurate queuing network model, resources would exist for representing
the application (e.g. CORBA object implementations), the infrastructure
(e.g. ORB daemons), the hardware (e.g. CPUs and disks), and the net-
work (e.g. network latency). Even a simple invocation at the application
level would access a large number of them. To specify the queuing net-
work would require the tedious task of analyzing the full execution path
of jobs for obtaining the service demands for all system resources. If the
system is modified during an iterative design process, the whole proce-
dure must be repeated to obtain the changed service demands before the
model can be solved again for performance metrics.

The first problem is addressed in Sections 4.4, 4.5, and 4.6 where we
extend queuing networks to support simultaneous resource possession.
The second problem is studied in Chapter 5 where we propose modeling
techniques for dealing with complex CORBA based systems.

4.4 Augmented queuing networks

We now define augmented queuing networks (AQNs) for supporting the
performance modeling of CORBA based distributed systems. When com-
pared to product-form BCMP networks, AQNs have the two important
extensions. On one hand, a job can possess more than one resource at a
time and, on the other hand, each access to a resource can be specified
and solved separately. The first extension is an essential requirement for
CORBA based systems. The second extension is needed to produce an
adequate implementation for the first one, since a more fine-grained
workload specification is required for analyzing the effect of simultane-
ous resource possessions. It essentially means that service demands must
be specified for individual resource accesses instead of giving the service
demand totals on a class by class basis as in traditional queuing network
models. This extension is particularly useful from the software engi-

44 4 THE METHOD OF DECOMPOSITION

neering point of view since it brings performance models and the ob-
tained results closer to the functional descriptions of software behavior.

To support simultaneous resource possession in AQNs, we define two
ways for jobs to access resources (see e.g. [Jac82]):

� Direct use,
� Synchronous call.

A direct use refers to the usual way of accessing resources in queuing
networks, i.e. a job can access exactly one resource at a time. Direct uses
are like asynchronous one-way messages to indicate the transfer of exe-
cution between resources. A synchronous call, on the other hand, refers
to a nested flow of control. A job first gains possession of a primary re-
source and access it for a given service time (which may also be zero).
After having accessed the primary resource, the job keeps the primary re-
source to itself and accesses a secondary resource. When the service time
for secondary resource is over, both resources are released. Synchronous
calls can be nested so that the job may proceed to another secondary re-
source without first releasing the already reserved secondary resource.
There is no limit to the depth of nesting.

We use simple UML sequence diagrams to represent AQNs (see also
[Poo99]). Figure 5 shows a model with three resources and a single class
of five jobs. Resources are represented as UML objects. Delay resources
are instances of the Delay object class2 and queuing resources are ins-
tances of the Queue class. Time proceeds from top to bottom in the dia-
gram, and a sequence of arrows indicates how the resources are used by
the jobs. For closed models, we write down explicitly the class popula-
tion and sometimes we also draw an arrow from the last resource access

2 If there is a danger of confusion, we use the term object class to denote UML classes

and the term workload class or job class to denote classes in queuing networks.

1

1

1

N = 5

D : Delay A : Queue B : Queue

1

Figure 5. An AQN with three direct uses and one synchronous call.

4.4 Augmented queuing networks 45

back to the top of the diagram. For open models, the arrival rate for the
job class is given. An enlargement in a resource’s lifeline indicates that a
job is accessing the resource. A gray area in the enlargement indicates
that the job is in service. A white area before the gray area indicates that
the job is queuing for the resource, and a white area after the gray area
indicates that the job is waiting for a reply from an embedded synchro-
nous call. Numerical values for service demands (the gray area) and resi-
dence times (the gray and white areas together) may also be given in the
diagram. To comply with the UML notation, we use an open arrowhead
to indicate a direct use, a filled arrowhead to indicate a synchronous call,
and a dashed arrow to indicate the return from a synchronous call. The
primary resource’s activation period is extended to cover the time it stays
blocked during the execution of the synchronous call. The simple exam-
ple in Figure 5 contains three direct uses and one synchronous call.

We allow synchronous calls to have several characteristics that in-
crease their usability in performance modeling. First, they can be chained
to arbitrary length. In such a chain, the last resource cannot be accessed
until a job has acquired possession of all resources in the chain before it.
Second, synchronous calls can introduce cycles in the dependency graph
of the resources. For example, a model may contain two CORBA objects
that are allowed to make synchronous calls to each other. Such configu-
rations may arise in object-oriented systems through the use of callback
mechanisms. Third, recursion is allowed. In other words, a job that is
currently accessing a resource is allowed to make a synchronous call to
the same resource during this access. Recursion is interpreted as an elon-
gation of the original call. Indirect recursion is also supported, i.e. a job
may call the resource indirectly in a nested call through some other re-
source. Fourth, it is possible to access the same resource both through di-
rect use and synchronous calls. For example, an application can access
the same CORBA object with synchronous invocations and with asyn-
chronous messages that allow the caller to proceed execution while the
object implementation is executing the operation.

Before proceeding to the algorithm for solving AQNs, we briefly dis-
cuss two simplifying transformations. They both preserve the perform-
ance characteristics of the models while making them easier to handle:

� If there is a nested direct use of a resource i during a synchronous
call, this direct use can be replaced by an additional synchronous
call to i after the first one.

46 4 THE METHOD OF DECOMPOSITION

� If a delay resource is making a synchronous call, this call can be
changed to a direct use of the called resource.

These transformations are illustrated in Figure 6. The first one results
from the definitions for direct uses and synchronous calls. The second
one reflects the fact that delay resources never impose queuing for jobs.
Hence, we may later assume that there are no direct uses within synchro-
nous calls and that delay resources never make synchronous calls. How-
ever, we still allow such constructs to appear in UML sequence diagrams
for added convenience to the designer.

4.5 Introduction to the method of decomposition

We now give an informal introduction to the method of decomposition
(MOD) that can be used for solving AQNs. Decomposition is a known
technique for solving queuing networks (see e.g. [Agr85, Men94,
Con89]), and our approach combines existing techniques in a novel way
to satisfy the requirements of our framework. Full details of the algo-
rithm are presented in Section 4.6.

Decomposing an AQN

In general, an AQN cannot be represented as a product-form queuing net-
work. The source of the problem is the congestion in the secondary re-
source during a synchronous call, since it affects the queue lengths of
both the blocked resource and the secondary resource itself. Conse-
quently, the states of these two resources cannot be considered sepa-
rately. To solve the problem, we decompose the AQN into multiple

A B C A B C

:Delay A :Delay A

Figure 6. Simplifying transformations for AQNs.

4.5 Introduction to the method of decomposition 47

queuing networks so that the primary and secondary resources of a syn-
chronous call are always in different networks. As a result, we get a set
of product-form multi-class queuing networks that can be solved effi-
ciently. This approach is related to the technique proposed in [Jac82].
Their approach is suited for simple cases where the result can be repre-
sented with two product-form queuing networks, while our approach can
be applied to complex AQNs requiring a large number of auxiliary prod-
uct-form networks for sufficiently accurate modeling.

We use the term secondary resource to denote any resource that re-
ceives at least one synchronous call in the AQN. All other resources are
called primary resources. We now transform the AQN into a primary
network by removing all secondary resources and all accesses to them,
and by adding a surrogate delay resource, Surr. The open and closed
classes of the original AQN are preserved in the primary network.

To model the effect of accessing secondary resources without actually
having them in the primary network, we make the following two changes
to the service demands in the primary network:

� For each direct use a of a primary resource, the service demand Da

is increased by the sum of the residence times obtained for syn-
chronous calls that are executed during the direct use a.

� For each class r, the service demand DSurr,r of the surrogate device
is defined to be the sum of the residence times for all direct uses of
secondary resources in class r.

The first transformation elongates the primary resource’s service demand
by the time it takes to complete all nested synchronous calls to secondary
resources. The second transformation models direct uses of secondary re-
sources with an equivalent delay in the primary network. As a result, all
accesses to secondary resources are reflected in the service demands for
the primary network.

Unfortunately, the primary network cannot be solved unless we know
the residence times for accessing the secondary resources. Therefore, we
create a set of secondary networks. For each secondary resource i, we
create a secondary network Sec(i) that has two resources: the secondary
resource i itself and an auxiliary delay resource, Aux, for modeling the
time the jobs are spending elsewhere in the system.

To model contention for secondary resources, classes of jobs are
specified for the secondary networks. Each class r in the original AQN

48 4 THE METHOD OF DECOMPOSITION

generates at most two secondary classes for a secondary network Sec(i).
The following two rules apply:

� If there are synchronous calls from class r to the secondary re-
source i, a closed secondary class s is created, and its population Ns

is the maximum number of synchronous calls that can reach the
secondary resource in parallel (i.e. without passing through com-
mon queuing resources or synchronous calls). For example, if there
is a single synchronous call from class r to resource i, then Ns = 1.

� If class r has direct uses of the secondary resource i, a secondary
class s is created. If class r is open, so is s and the arrival rates are
equal. If class r is closed, so is s and the populations are equal.

The first rule reflects the basic characteristic of a synchronous call that
allows at most one client to queue for the secondary resource. Other cli-
ents are waiting in the primary resource’s queue and do not appear in the
secondary network unless they can reach the resource through some other
chain of access. The second rule treats direct uses of secondary resources
as if the resources were part of the primary network and the whole popu-
lation was allowed to queue for them.

We now describe the workloads for the secondary classes. All direct
uses and synchronous calls to a secondary resource i in the original AQN
are transformed into direct uses of i in the network Sec(i), and the service
demands are kept the same. However, if the original access contains
nested synchronous calls to some other secondary resources, the service
demand of the original accesses is increased by the sum of the residence
times obtained for these nested synchronous calls. As a result, there are
also dependencies between secondary classes.

To ensure that closed secondary classes correctly represent the con-
tention in the secondary resources, the service demands of the auxiliary
delay devices must be adjusted appropriately. The idea is to keep the
throughputs of secondary classes equal to the throughputs of the calling
classes in the primary queuing network. This way, primary and secon-
dary networks can be considered to represent different parts of the same
overall system. If we know the residence time Ri of the secondary re-
source i, the population Ns of the secondary class s, the throughput Xr of
the corresponding primary class r, we can apply Little’s law to solve the
service demand for the auxiliary delay resource Aux:

4.5 Introduction to the method of decomposition 49

.i
r

s
AuxAux R

X

N
RD −== (5)

There is no need to specify the service demand for the auxiliary resource
in open secondary classes, since the amount of contention for the secon-
dary resource is determined by the arrival rate.

Consider the example in Figure 5. The only secondary resource is B
and, hence, the original AQN is decomposed into two networks, Prim
and Sec(B). The secondary network Sec(B) has two classes, the first one
represents direct uses of B and the second one models synchronous calls
to B. This is illustrated in Figure 7. The dotted arrows descending from
the original AQN show how the original service demands are moved to
the primary and secondary networks. The horizontal dotted arrows indi-
cate the two types of dependencies that exist between the networks. On
one hand, the service demands of the primary network depend on the
residence times RB,1 and RB,2 obtained from the secondary network. On
the other hand, the service demands DAux,1 and DAux,2 of the auxiliary re-
source in the secondary network are obtained from the throughput XPrim

of the primary network by using equation (5).

1

1

1

N = 5

D : Delay A : Queue B : Queue

1

1

1

N = 5

D : Delay A : Queue Surr : Delay B : Queue Aux : Delay

1N = 5

1
N = 1

Original AQN

Prim Sec(B)

RB,2

RB,1

DAux,1

DAux,2XPrim

RA

DSurr

Figure 7. Transformation of the AQN in Figure 5 into pri-
mary and secondary networks.

50 4 THE METHOD OF DECOMPOSITION

Solving primary and secondary networks simultaneously

After decomposition, the resulting primary and secondary networks can-
not be solved independently since input parameters for some networks
require the existence of a solution for some other networks, and circles
can exist in the dependence diagram. Therefore, we solve the queuing
networks simultaneously with iteration. This approach is a special case of
the methodology proposed by [Agr85]. During each repetition, we adjust
the input parameters of the networks with the outcome of the previous
repetition until the throughputs of secondary classes are sufficiently close
to the throughputs of the corresponding primary classes. As a result, we
get a solution that gives performance metrics for all networks and re-
spects the mutual dependencies that exist between primary and secondary
networks. The main steps of the algorithm are:

1. Decompose the AQN into primary and secondary networks.
2. Initialize the input parameters of the primary and secondary net-

works by assuming no contention for secondary resources.
3. Solve the primary and secondary queuing networks. Obtain aver-

age residence times, throughputs, and average queue lengths for all
resources in all networks.

4. Distribute the residence times obtained for resources to the indi-
vidual accesses that contributed to the service demands of those
resources.

5. Compute the maximum relative error for secondary network
throughputs when compared to the throughputs of the corre-
sponding primary classes. If the error is less than a given constant
ε, terminate algorithm.

6. Compute service demands for resources in primary and secondary
classes. Determine the service demand Di,r for a resource i in a
primary or secondary class r by adding together the service de-
mands of all accesses from class r to resource i.

7. Compute service demands for surrogate resources in primary
classes. Determine the service demand DSurr,r by adding together
the service demands of all direct uses of secondary resources in
class r.

8. Adjust the service demand of auxiliary delay devices in secondary
classes so that all closed secondary classes have the same through-
put with their corresponding primary class.

9. Jump to step 3.

4.5 Introduction to the method of decomposition 51

Full details for each step are given in Algorithm 5 in Section 4.6. We
now illustrate the steps by solving the example model in Figure 7. We
use the notations of Figure 7 and assume that ε = 0.0001. The initializa-
tion step 2 produces the following service demand approximations:

DA = 2, DSurr = 1, DAux,1 = 0, DAux,2 = 0.

After solving the primary and secondary networks, the following results
are obtained:

RA = 8.03077, RD = 1, XPrim = 0.498466,
RB,1 = 6, XSec(B),1 = 0.833333,
RB,2 = 6, XSec(B),2 = 0.166667.

Step 4 is trivial since all obtained residence times are associated with ex-
actly one resource. The maximum relative error

671795.0
0.498466

0.498466-0.166667
,

0.498466

0.498466-0.833333
max =

=Error

is greater than ε so we continue the algorithm. In steps 6, 7, and 8, the
obtained metrics are used to compute new values for the missing pa-
rameters:

DA = 7, DSurr = 6, DAux,1 = 4.03077, DAux,2 = 0.

Formula (5) produces a negative result for DAux,2 due to the substantial
difference that exists between the throughput estimates for the primary
and secondary networks, so we use zero instead. Similar excessive cor-
rections occur during the first iterations of the algorithm but they disap-
pear when the estimates get more accurate. When the adjusted network is
solved again in step 3, a new set of results is obtained:

RA = 28.1077, RD = 1, XPrim = 0.142419,
RB,1 = 3.77396, XAux,1 = 0.640637,
RB,2 = 2.7827, XAux,2 = 0.359363.

The process continues until the maximum relative error for throughputs
XAux,1 and XAux,2 less than ε. In this case, 18 iterations are needed. The fi-
nal set of results is the following:

52 4 THE METHOD OF DECOMPOSITION

RA = 9.80524, RD = 1, XPrim = 0.384312,
RB,1 = 2.20551, XAux,1 = 0.384311,
RB,2 = 1.58382, XAux,2 = 0.384293.

Hence, the average response time for a job is RD + RB,1 + RA = 13.0108.

Dividing residence times between multiple calls

When there are multiple accesses a1, … , an from class r jobs to a re-
source i, the service demands D1, … , Dn of these accesses are added to-
gether in step 6 to produce the total service demand Di,r. This is a well-
known technique for obtaining queuing network parameters from soft-
ware specifications [Smi90]. In our case, however, the obtained total
residence time Ri,r must also be divided back to the contributing accesses
in step 4. This information is used in step 6 when new service demand
estimates are calculated for those accesses that have nested synchronous
calls.

Since all contributing accesses are queuing for the same resource, it is
reasonable to assume that the average waiting time is approximately the
same for all accesses of resource i from class r (see [Hav98] for a discus-
sion on this approximation). We use the notation Wi,r to represent this av-
erage waiting time. The average residence time for access ak is now
given by

krik DWR += ,

for all k = 1, … , n. When we sum up these equations and solve Wi,r we
obtain

()riri

n

k
k

n

k
kri DR

n
DR

n
W ,,

11
,

11 −=

 −= ∑∑

==

and therefore

k
riri

k D
n

DR
R +

−
= ,, (6)

for all k = 1, … , n. This formula is used in step 4 of the algorithm to
divide the total residence time to the contributing accesses. If i is a delay
resource, we have Ri,r = Di,r and the formula can be reduced to the
exepected form: Rk = Dk for all k = 1, … , n.

4.5 Introduction to the method of decomposition 53

Recursion

Recursion refers to a synchronous call to a resource when the same re-
source is already being accessed by the same job. Recursion is commonly
used in object-oriented systems as it allows objects to use the same serv-
ices that they are offering for their clients. Since our target is in object-
oriented systems, the performance aspects of recursive calls need to be
studied in more detail.

Recursion can be interpreted as an elongation of the ongoing access
during which the recursive call takes place. Since the target resource is
already being accessed by the job, we may assume that there is no addi-
tional waiting time before the recursive call starts receiving service. This
assumption holds for many object-oriented systems, since invocations to
the object itself can be routed directly to the target method to increase ef-
ficiency. As a result, the normal invocation scheduling is bypassed and
no waiting occurs. This observation implies a change to the results so far
since equation (6) no longer holds for recursive accesses. Instead, the
residence time for a recursive access is always equal to the service de-
mand. Waiting can only occur before the non-recursive access that pre-
cedes the recursion. Hence, the divider n in equation (6) should be the
number of non-recursive accesses from class r to resource i.

Recursion has also an effect on the total service demand that is nor-
mally obtained by summing up individual service demands in steps 6 and
7 of the algorithm. Let a0 be a non-recursive access from class r to a
queuing resource i representing an object implementation, and let D0 be
the service demand for a0. Let a1, … , an be recursive calls that take place
during a0 with service demands D1, … , Dn. Denote the combined access
with symbol acomb and the combined service demand with Dcomb. We may
assume FCFS scheduling for resource i, since it is the most straightfor-
ward way to implement objects that impose queuing for incoming re-
quests. In addition, we follow the BCMP requirements and assume that
the distributions for the service demands D1, … , Dn are negative expo-
nential. As a result, the combined service demand

∑
=

=
n

k
kcomb DD

0

is hypo-exponentially distributed and we have a disagreement with the
BCMP requirement that only allow negative exponential distributions
with FCFS scheduling. Intuitively speaking, the variability of the com-
bined access acomb is smaller compared to an equally long access that is

54 4 THE METHOD OF DECOMPOSITION

not composed of multiple parts. The decreased variability reduces con-
tention for the resource and, consequently, the resulting average resi-
dence times are shorter. If we solve the primary and secondary queuing
networks without any corrections, the obtained residence time estimates
would be too high.

To take into account the reduced contention due to recursive calls, we
replace the combined service demand Dcomb with a slightly smaller value.
Essentially, we are trying to find an exponentially distributed service de-
mand with average combD′ that produces the same residence time Rcomb as

the combined hypo-exponentially distributed service demand. We make
an assumption that the arrival process for class r jobs in resource i is
Poisson with arrival rate λi,r. The first and second moments for the hypo-
exponentially distributed service demand are

∑
=

=
n

k
kD

0
1α and .

0

22
12 ∑

=

+=
n

k
kDαα

We can now apply the Pollaczek-Khinchin formula for M|G|1 queues to
solve the residence time:

.
)1(2 1,

2,
1 αλ

αλ
α

ri

ri
combR

−
+= (7)

On the other hand, the standard result for the residence time of M|M|1
queues implies that

.
1 , combri

comb
comb D

D
R

′−
′

=
λ

(8)

Hence, we can solve the adjusted service demand:

.
1 , combri

comb
comb R

R
D

λ+
=′

If there is no recursion (i.e. Dk = 0 for all k = 1, … , n) the above equa-
tions can be reduced to the expected result: combcomb DD =′ .

The above technique for adjusting the service demand of recursive
calls makes it possible to use the efficient and robust algorithms pre-
sented in Section 4.2. Alternatively, we could have selected an algorithm
that supports general service time distributions at FCFS resources (e.g.
[Cha75, Shu77]). However, these algorithms are also approximations and

4.5 Introduction to the method of decomposition 55

they lead to solutions that are computationally more expensive and less
robust. See [Agr85] for a discussion. The assumption that the arrival pro-
cess is Poisson is essential for obtaining equations (7) and (8). While this
assumption is not valid for BCMP networks in general, Shum and Buzen
also used a similar assumption in their algorithm that supports general
service time distributions at FCFS resources [Shu77]. The final motiva-
tion for the proposed technique arises from experience. We have ob-
served significant increases in accuracy for open classes. See Section 4.7
for an example.

Convergence

The algorithm in its basic form does not converge in all situations. In
particular, if there are several chains of nested synchronous calls that ac-
cess the same set of resources in different orders, the number of depend-
encies between the primary and secondary increases and the proposed
formulas for adjusting service demands may yield excessive corrections.
As a result, the algorithm starts oscillating around a solution but does not
converge towards it. It should be noted, however, that this is not a com-
mon phenomenon. According to our experience, convergence problems
occur typically when the implementation of the model is prone to have
deadlocks. AQNs that represent realistic systems typically have no con-
vergence problems.

To improve convergence in problematic situations, we do not use the
computed service demands directly. Instead, we use a weighted average
of the computed value and the value obtained from the previous iteration.
Let ω be an attenuation factor that denotes the weight of the previous
value. The computed service demands are adjusted using the following
formula:

() ,1 previouscomputedadjustd DDD ωω +−=

where Dadjusted denotes the value that is used in the algorithm, Dcomputed

denotes the value that is obtained directly from computation, and Dprevious

indicates the value of Dadjusted during the previous iteration.
We have observed that the value ω = 0.3 is sufficient for ensuring

convergence in most problematic models. To be on the safe side, though,
our prototype tool defaults to ω = 0.5. The drawback of using this tech-
nique is slower convergence for those models that have no convergence
problems. However, our experimentation shows that the price is not too
high. For example, the example in Figure 5 requires 18 iterations without

56 4 THE METHOD OF DECOMPOSITION

adjustment, and 23 iterations with the attenuation factor ω = 0.5. For
simple models that would normally converge in one or two iterations, the
value ω = 0.5 usually produces around 15 iterations.

High utilization in open classes

An additional convergence problem may occur when the utilization of a
queuing resource is close to 100% in an open class. Depending on the
structure of the model, the algorithm may produce too large estimates for
the service demands, and the intermediate utilization estimate of the re-
source may incorrectly become greater than 1. The result is an unstable
network and the algorithm terminates prematurely.

A solution to the above problem can be found by examining the algo-
rithm in detail. The idea of the algorithm is to propagate information
between primary and secondary networks in two different ways. On one
hand, the residence times of secondary resources are propagated upwards
in the hierarchy of synchronous calls until they reach the primary net-
work. On the other hand, the secondary networks are synchronized with
the primary network by using the throughputs of the primary classes for
adjusting the service demands of auxiliary resources.

Suppose now that we have a model with unstable primary or secon-
dary networks. From the rules for decomposing the AQN, we know that
an open class is either a primary class or a secondary class that models
direct uses of secondary resources. This implies that open classes can
only exist at the top two levels in the hierarchy of synchronous calls.
Therefore, the algorithm can propagate residence times of secondary re-
sources successfully upwards except for the last step. In addition, we
know that the throughput of a stable open class is equal to its arrival rate.
Consequently, we can synchronize secondary networks with the assumed
throughputs of open primary classes even if the open primary network
cannot be solved. If the primary network has closed classes, we can use
the last valid throughput estimate as an approximation and synchronize
secondary classes with that.

The above observations lead to some trivial changes for the algorithm.
First, if an unstable primary or secondary network is observed during it-
eration, the algorithm continues as usual except that the unstable net-
works (and all other networks that depend on them) are left unsolved.
Second, the service demands of auxiliary resources are computed using
the last valid throughput estimate of the corresponding closed primary
class or the arrival rate of the corresponding open primary class. If an

4.6 The method of decomposition 57

unstable network becomes stable after one or more iterations, we revert
to the original algorithm. Otherwise the algorithm continues with the un-
stable networks as indicated. Experience has shown that the revised algo-
rithm converges even when the utilization of some queuing resources re-
mains greater than 100%. Therefore, the termination condition can be the
same for the revised algorithm, but a post-termination check must be
added to ensure that the utilization of all queuing resources is less than 1.

Figure 8 illustrates convergence in a mixed AQN with high resource
utilization (90%). The graph shows the utilizations of a queuing resource
during iteration for three different values of the attenuation factor ω. Al-
ready the second iteration produces incorrect utilizations for ω = 0 and
ω = 0.5. However, the revised algorithm quickly recovers from this ir-
regular situation and converges in 10 iterations for ω = 0 and in 22 itera-
tions for ω = 0.5. It is possible to verify the obtained results by increasing
the attenuation factor high enough so that the utilization remains less than
1 during the complete algorithm. In this case, the value ω = 0.985 is suf-
ficiently high to have this effect. The algorithm converges to the same so-
lution but now it requires 726 iterations. Notice the logarithmic x-axis for
the iteration sequence numbers.

4.6 The method of decomposition

The various techniques presented in Section 4.5 are now combined into a
complete algorithm.

0.5

1

1.5

2

2.5

3

3.5

1 10 100 1000

Iteration sequence number

U
ti

liz
at

io
n

Figure 8. Convergence in a mixed AQN with high resource utilization.

ω = 0

ω = 0.5
ω = 0.985

58 4 THE METHOD OF DECOMPOSITION

Algorithm 5. The method of decomposition for solving AQNs. The in-
put for the algorithm is an augmented queuing network M defined by the
following parameters:

K Set of resources,
R Set of classes (open or closed),
Nr Population for each closed class r,
λr Arrival rate for each open class r,
A Set of accesses to resources,
Children(a) Set of first-level synchronous calls during access a,
Da Service demand for an access a,
ε Error tolerance,
ω Weight of previous result during iteration.

An access a ∈ A is characterized by the following properties: it is associ-
ated to a class r ∈ R, it has a target resource i ∈ K, it may be recursive or
non-recursive, and it may be a direct use or a synchronous call. For an
access a, define the set Subtree(a) to contain all synchronous calls that
are executed during a either directly or indirectly. Hence, Subtree(a)
contains all calls in Children(a) and those calls that are made during
these calls, and so on.

Step 1. Define the set of secondary resources to contain all targets of
synchronous calls. Transform M into primary queuing network Prim by
removing all secondary resources. The original set of classes R remains
the same for Prim except that accesses to secondary resources are re-
moved. In addition, add a surrogate delay resource Surr.

For each secondary resource i, create a secondary queuing network
Sec(i). The network has two resources: i itself and an auxiliary delay re-
source Aux. Two kinds of classes are created for secondary networks:

� For each class r in the original model M making synchronous calls
to resource i, create a closed secondary class s ∈ Sec(i). The popu-
lation of s is determined by the number of separate invocation se-
quences that can reach resource i without passing through a com-
mon queuing resource or a common synchronous call. If class r is
closed, the population of class s limited by that of class r: Ns ≤ Nr.

� For each class r in the original model M making direct use of re-
source i, create a secondary class s ∈ Sec(i). If class r is open with

4.6 The method of decomposition 59

arrival rate λr, then class s is also open and λs = λr. If class r is
closed with population Nr, then class s is also closed and Ns = Nr.

For a secondary class s, the notation Root(s) indicates the primary class r
that induced the secondary class through the above rules. For a primary
class r, we define Root(r) = r. For each secondary class s, the symbol
Dev(s) indicates the unique secondary device in the corresponding secon-
dary network. Define the following two sets: Access(i, r) contains all ac-
cesses from class r to resource i excluding direct uses of secondary
resources, and Direct(r) contains all direct uses of secondary resources in
a primary class r. In addition, define the following subsets: AccessR(i, r)
contains all recursive accesses in Access(i, r), AccessN(i, r) contains all
non-recursive accesses in Access(i, r), DirectR(r) contains all recursive
uses in Direct(r), and DirectN(r) contains all non-recursive uses in Di-
rect(r).

Step 2. Initialize the service demands in primary and secondary net-
works. For each resource i and class r,

∑ ∑
∈ ∈

+=

),()(
,

riAccessa aSubtreeb
bari DDD .

Initialize the service demand of the surrogate delay resource in each pri-
mary class r:

∑ ∑
∈ ∈

+=

)()(
,

rDirecta aSubtreeb
barSurr DDD .

Initialize the service demand of the auxiliary delay resource in each sec-
ondary class r:

.0, =rAuxD

Step 3. Solve the primary and secondary networks with algorithm 4 to
obtain the following metrics for each resource i and class r: average resi-
dence time Ri,r, average queue length ni,r, and throughput Xr. If one or
more networks contain unstable open classes or undefined service de-
mands, leave these networks unsolved and skip also step 4 for them. In
this case, ensure that all primary classes r have a throughput associated
with them. If r is open, use the arrival rate λr, and if r is closed, use the
last valid throughput that was obtained during a previous iteration.

60 4 THE METHOD OF DECOMPOSITION

Step 4. For each resource i and class r, use the obtained residence
time Ri,r to compute the residence times for individual accesses
a ∈ Access(i, r):

∈

∈+
−

=
).,(allfor

),(allfor
),(

,,

riAccessRaD

riAccessNaD
riAccessN

DR

R

a

a
riri

a

For each primary class r, use the obtained residence time RSurr,r of the
surrogate resource to compute the residence times for direct uses of
secondary resources a ∈ Direct(r):

∈

∈+
−

=
).(allfor

)(allfor
)(

,,

rDirectRaD

rDirectNaD
rDirectN

DR

R

a

a
rSurrrSurr

a

Step 5. Compute the maximum relative error in the throughputs of all
closed secondary classes r:

.max
)(

)(

rRoot

rRootr

r X

XX
Error

−
=

If Error ≤ ε, terminate the algorithm, otherwise continue from step 6.
After termination, check the stability of the model by computing the
utilization of all queuing resources i:

= ∑
∑

∈

∈

resource.secondaryaisif

resourceprimaryaisif

)(
,

,

iDX

iDX
U

iSecr
rir

Rr
rir

i

If Ui < 1 for all queuing resources i the model is stable, otherwise not.
Step 6. Compute service demands for resources in primary and secon-

dary networks. For all resources i and classes r such that there are no re-
cursive calls from r to i,

.)1(,
),()(

,
prev
ri

riAccessa aChildrenb
bari DRDD ωω +

+−= ∑ ∑

∈ ∈

The symbol prev
riD , indicates the value of Di,r during the previous iteration.

If some of the terms on the right-hand side are not available due to un-

4.6 The method of decomposition 61

solved networks, do not compute the result. If there are nested recursive
calls (i.e. AccessR(r, i) ≠ ∅), compute the first and second moment for
the service demand of the combined call:

2

),()(),(

2

)(

2
12

),()(),()(
1

++

++=

++

+=

∑ ∑∑ ∑

∑ ∑∑ ∑

∈ ∈∈ ∈

∈ ∈∈ ∈

riAccessNa aChildrenb
ba

riAccessRa aChildrenb
ba

riAccessNa aChildrenb
ba

riAccessRa aChildrenb
ba

RDRD

RDRD

αα

α

(9)

Compute the average residence time for the combined call:

.
)1(2 1)(

2)(
1 α

α
α

rRoot

rRoot

X

X
R

−
+= (10)

The service demand estimate is now given by

() .
1

1 ,
)(

,
prev
ri

rRoot
ri D

RX

R
D ωω +

+
−= (11)

Step 7. For each primary class r that has no recursive direct uses,
compute the service demand for the surrogate resource

() .1 ,
)()(

,
prev

rSurr
rDirecta aChildrenb

barSurr DRDD ωω +

+−= ∑ ∑

∈ ∈

The symbol prev
rSurrD , indicates the value of DSurr,r during the previous it-

eration. If some of the terms on the right-hand side are not available due
to unsolved networks, do not compute the result. If there are recursive di-
rect uses (i.e. DirectR(r) ≠ ∅), a smaller service demand estimate is used.
This service demand is obtained as in formulas (9), (10), and (11) except
that AccessN(i, r) is replaced by DirectN(r), AccessR(i, r) is replaced by
DirectR(r), and Di,r is replaced by DSurr,r.

Step 8. For each secondary class r, compute the service demand for
the auxiliary resource

() .1 ,),(
)(

,
prev

rAuxrrDev
rRoot

r
rAux DR

X

N
D ωω +

−−=

62 4 THE METHOD OF DECOMPOSITION

The symbol prev
rAuxD , indicates the value of DAux,r during the previous itera-

tion. If DAux,r gets a negative value as a result of this step, set DAux,r = 0.
Step 9. Jump to step 3.

4.7 Examples

We now illustrate the method of decomposition with five examples. In
addition, we examine the accuracy of the algorithm by presenting simu-
lated results for the proposed models. These examples represent com-
monly occurring design alternatives in distributed CORBA based sys-
tems. However, they do not cover all possible approaches that can be
dealt with the method of decomposition. It is a topic for further study to
produce an exhaustive analysis of the results in all relevant cases. See
[Els98] for an example of an automated approach that might be used as a
starting point for such a study.

The accuracy of our results is given as a percentage deviation from
simulated values. Simulation results were obtained using the method of
batch means, where the initial transient interval of a long simulation run
is removed and the run is divided into several batches [Jai91]. All simu-
lated values have a 95% confidence interval within ± 5% of the reported
result.

The first example is a closed AQN with three queuing servers and two
classes of jobs. In the first class, all three servers are accessed in a se-
quence of nested synchronous calls. In the second class, only the second
and third servers are accessed. Once the jobs have completed the calls,

10N = 10

Server1 : Queue Think : Delay

10

Server2 : Queue

30

10

30

N = 10

10

Server3 : Queue

10

Figure 9. A closed AQN with two classes of jobs.

4.7 Examples 63

they pause for 30 time units and start over. An additional delay resource
represents the pause.

The model is illustrated in Figure 9. Figure 10 shows the average re-
sponse times for the jobs in the first class, and Figure 11 shows the aver-
age response times for the jobs in the second class. In these figures, the
total population varies between 2 and 20, and it is divided evenly be-
tween the two classes. We define the response time to be the full cycle
time including both the accesses to the model’s resources and the think

0

50

100

150

200

250

2 4 6 8 10 12 14 16 18 20

Total population

A
ve

ra
g

e
re

sp
o

n
se

 t
im

e

Figure 11. Average response times for the jobs in the second
class of the model in Figure 9.

0

500

1000

1500

2000

2500

3000

2 4 6 8 10 12 14 16 18 20

Total population

A
ve

ra
g

e
re

sp
o

n
se

 t
im

e

Figure 10. Average response times for the jobs in the first
class of the model in Figure 9.

MOD

Simulated

MOD

Simulated

64 4 THE METHOD OF DECOMPOSITION

10N = 10

Front1 :
Queue

Front2 :
Queue

Server1 :
Queue

Server2 :
Queue

Server3 :
Queue

Daem1 :
Queue

Daem2 :
Queue

Low1 :
Queue

Low2 :
Queue

Think :
Delay

10

10

10

10

10

10

30

10N = 10

10

10

10

10

30

10N = 10

10

10

10

10

30

Figure 12. A closed AQN with three classes of jobs.

0

100

200

300

400

500

600

700

800

3 6 9 12 15 18 21 24 27 30

Total population

A
ve

ra
g

e
re

sp
o

n
se

 t
im

e

Figure 13. Average response times for the jobs in the first
class of the model in Figure 12.

MOD

Simulated

4.7 Examples 65

time represented by an additional access to a delay resource. For the jobs
in the first class, the greatest difference between the computed response
time and the simulated value is 19.3%. For the second class, the maxi-
mum error is 7.7%.

The second example illustrates a more complex system with two dae-
mon processes, five server processes and two low-level services. In all
three classes of the system, jobs first access either one of the daemons
and then proceed to the server processes where sequences of nested syn-
chronous calls take place. Jobs in different classes use different calling
paths for accessing the same server processes and low-level services. The
model is illustrated in Figure 12, and the average response times for the
jobs in the first (upper) class are illustrated in Figure 13. Again, the total
population is divided evenly between the three workloads. The greatest
difference between the computed response time and the simulated value
is 17.8% in Figure 13. For the other two classes with the same total
populations, the maximum differences are 8.1% and 15.3%.

The third example is a simple open AQN with recursion. The model
has two resources: an application server AppSrv and a data server
DataSrv. Jobs arrive at the application server and make synchronous calls
to the data server. After returning to the application server, the jobs make
two recursive calls to the application server’s own services and call the
data server once more. The model is illustrated in Figure 14.

Figure 15 shows average response times for different arrival rates. It
also shows response time estimates without the service demand adjust-
ment for recursive calls (see Section 4.5 for more details). When the
system is far from saturation, the relative error from the simulated value
is under 10%, but when the system approaches saturation the relative er-
ror also increases (e.g. the error is 14% when λ = 0.03 and the utilization

10
λ = 0.02

AppSrv : Queue DataSrv : Queue

5

5

5

5

Figure 14. An open AQN with recursion

66 4 THE METHOD OF DECOMPOSITION

of the application server is 86%). It is typical for open classes that the
relative error increases with high utilization and, consequently, the esti-
mates produced by the MOD algorithm are less reliable when the system
is close to saturation. This is not surprising as open queuing networks are
known to be less robust than closed models when the resource utilization
is high [Agr85].

The fourth example illustrates recursion in a closed AQN with two
classes of jobs and three resources. In the first class, jobs start by ac-
cessing the AppSrv and DataSrv resources through synchronous calls
from FrontSrv. Then, the jobs invoke the AppSrv resource in a sequence
of recursive accesses in a way that is similar to the previous example.
Jobs in the second class increase the load of the system by accessing all
three resources without recursion. The model is illustrated in Figure 16.

Figure 17 shows the average response times for the jobs in the first
class with the total population ranging from 2 to 20. The population is
divided evenly between the two classes. The figure also shows response
time estimates without the service demand adjustment for recursive calls.
The relative error for the estimated value is 25% when the total popula-
tion is two but the error is significangly less for higher populations (e.g.
2% for a population of 20 jobs). It should be noted that the effect of the
service demand adjustment is much smaller compared to the previous
open AQN example. This is a common phenomenon for closed AQNs
with recursion.

30

50
70
90

110

130
150

170
190

210

0.01 0.015 0.02 0.025 0.03

Arrival rate

A
ve

ra
g

e
re

sp
o

n
se

 t
im

e

Figure 15. Average response times for the model in Figure 14.

Simulated

Unadjusted

MOD

4.7 Examples 67

5

N = 10

AppSrv : Queue DataSrv : Queue

2

5

5

5

FrontSrv : Queue

10

2

5

5

2

10

2

5

5

N = 10

Figure 16. A closed AQN with recursion.

0

100

200

300

400

500

600

2 4 6 8 10 12 14 16 18 20

Total population

A
ve

ra
g

e
re

sp
o

n
se

 t
im

e

Figure 17. Average response times for the jobs in the first
class in Figure 16.

MOD
Unadjusted
Simulated

68 4 THE METHOD OF DECOMPOSITION

The fifth example is a mixed AQN that contains both software and
hardware resources. The AppSr1, AppSr2, SubSr, DataSr1, and DataSr2
resources represent application and database processes. The CPU1,
CPU2, Disk1, and Disk2 resources represent the hardware. All accesses
to software resources are mapped directly to hardware resources through
synchronous calls (i.e. the time to access the primary resource is zero).
This way, jobs must first gain access to a software resource before they
can start using the necessary CPU and disk resources to accomplish their
task. The model is illustrated in Figure 18.

In the presented model, DataSr1 and DataSr2 represent multi-
threaded software servers that spawn a new thread for every incoming
request. As a result, they do not impose queuing for their clients and the
use of a delay resource is appropriate. Multi-threaded software servers
utilize hardware resources just like single-threaded servers, and this us-

N = 10

AppSr1 :
Queue

AppSr2 :
Queue

DataSr1 :
Delay

DataSr2 :
Delay

SubSr :
Queue

CPU1 :
Queue

CPU2 :
Queue

Disk1 :
Queue

Disk2 :
Queue

Pause :
Delay

5

5

10

2

10

5

100

N = 10
5

2

10

5

10

100

0.3λ = 1

0.3λ = 1

Figure 18. A mixed AQN with software and hardware re-
sources.

4.8 Discussion 69

4.8 Discussion

We briefly summarize the method of decomposition from two view-
points. First, we discuss the approximations used in different parts of the
algorithm. Second, we consider the time complexity of the algorithm.

age is represented by synchronous calls to the appropriate disk and CPU
devices. When applying the method of decomposition, these synchronous
calls are actually transformed into delays for the multi-threaded resource,
and the length of the delay is determined by the amount of contention for
the relevant hardware devices.

The model has four classes of jobs. The first two classes are closed
and they represent the workloads imposed by clients. The last two classes
are open, and they model the background load of the CPUs correspond-
ing to a utilization level of 30%. Operating systems typically provide
tools for measuring CPU utilization. Figure 19 illustrates the average re-
sponse times for jobs in the first class with different total populations.
Again, the total population is divided evenly between the first and the
second class. In Figure 19, the greatest difference between the computed
and simulated response times is 7.3%.

0

100

200

300

400

500

600

2 4 6 8 10 12 14 16 18 20

Total population

A
ve

ra
g

e
re

sp
o

n
se

 t
im

e

Figure 19. Average response times for the jobs in the first
class in Figure 18.

Simulated

MOD

70 4 THE METHOD OF DECOMPOSITION

Summary of approximations

In step 3 of the method of decomposition, mixed product-form queuing
networks are solved with Algorithm 4 that uses three approximations.
First, the BCMP requirements are violated by allowing different service
demands for FCFS resources in different classes. This approximation is
originally proposed by Bard to extend the applicability of the MVA algo-
rithm [Bar79]. Second, the Schweitzer approximation is used to avoid re-
cursion when solving the closed submodel of mixed product-form net-
works. We might improve the accuracy of this approximation by using a
more advanced MVA variant, such as the Linearizer algorithm. Third, the
impact of open classes is taken into account through the load conceal-
ment transformation. The effect of open classes is represented by elon-
gating the service demands of queuing resources before the closed sub-
model is solved. See [Agr85] for a discussion on the use of load con-
cealment. The last two approximations might be avoided by using an ex-
act method for solving the underlying product-form queuing networks
(e.g. one of the algorithms presented in [Con89]). However, the cost of
this approach becomes prohibitive for large models.

Several approximations are also used when the original AQN is di-
vided into primary and secondary networks. The first one of these ap-
proximations eliminates simultaneous resource possession by increasing
service demands of those accesses that have embedded synchronous
calls. The increase in service demand equals to the time it takes to exe-
cute the embedded calls. This is a special case of the state aggregation
transformation where the idea is to combine a set of strongly interacting
states with a single state. A common way to use this transformation is to
combine multiple resources into a single flow-equivalent resource
[Men94, Jai91, Hav98]. In our case, however, state aggregation is applied
on an access-by-access basis. As a result, we can remove all problematic
states, i.e. those where a single job imposes queuing at several resources,
but we can still keep track of individual resources and obtain perform-
ance metrics for them. See [Agr85] for a general discussion on state ag-
gregation.

The second approximation required by the decomposition is the use of
delay resources to represent various delays in the model. In the primary
network, a delay resource is added to represent the delay imposed by di-
rect uses of secondary resources. In the secondary networks, delay re-
sources are added to represent the combined delay imposed by all other
resources in the system. Iteration is needed to find approximate values

4.8 Discussion 71

for these delays. Jacobson and Lazowska use a similar approximation in
their algorithm for solving queuing networks with simultaneous resource
possessions [Jac82]. Unlike the MOD algorithm, however, their approach
is limited to two layers of resources. A similar technique, the method of
complementary delays, can also be used for modeling programs with in-
ternal concurrency [Hei83].

The third approximation takes place in step 6 of the algorithm where
the total service demand for a resource is formed by adding together the
service demands of all accesses to that resource. For FIFO servers in
BCMP networks, this technique is valid only if the accesses have expo-
nential service time distribution and the mean is the same for all of them.
Unfortunately, FIFO is typically the only available scheduling discipline
for software servers, but accesses have usually unequal service demands.
This is a strong limitation that should be taken into account when esti-
mating the use of the method of decomposition. If the different service
demands do not follow the BCMP requirements, the algorithm still
works, but the results may not be reliable.

The fourth approximation required by the decomposition is the tech-
nique for distributing the obtained residence times to the individual ac-
cesses that contributed to the service demand (step 4 in the MOD algo-
rithm). This approximation follows loosely the methodology proposed by
Haverkort for solving polling models [Hav98]. The idea is to consider the
individual accesses of the resource as a set of separate queues that are
polled by the resource.

The fifth approximation during the decomposition is the technique for
reducing the service demand of recursive calls during step 6 of the
method of decomposition. In our approach, we reduce the service de-
mand of the resource to model the effect of recursion. However, this also
reduces the resource’s utilization and may yield too optimistic estimates
for its saturation behavior. A similar approach is also used by Shum and
Buzen to support non-exponential service demand distributions for FCFS
resources [Shu77]. However, they propose to change the kernel of the
MVA algorithm while our proposal keeps the MVA algorithm untouched
and modifies the input data to obtain a similar effect. It might be possible
to increase the accuracy of our algorithm by adding full support for the
techniques proposed by Shum and Buzen, although this may reduce the
robustness of the algorithm [Agr85].

Our framework does not currently support priorities. However, a
number of known approximations, such as the shadow server approach
from Sevcik [Sev77], could be used for adding support for priorities.

72 4 THE METHOD OF DECOMPOSITION

Agrawal provides an extensive discussion on MVA based approxima-
tions for treating priorities [Agr85]. However, it was not felt necessary to
include these techniques into the MOD algorithm, since there is very lit-
tle support for priorities in the current implementations for the CORBA
platform. This is expected to change with future implementations of the
real-time CORBA specification, and our performance modeling frame-
work can be extended correspondingly.

Time complexity

We now consider the time complexity of each iteration of the MOD algo-
rithm. Let |R| be the number of classes in the AQN, |K| the number of re-
sources in the AQN, m the average number of accesses made by a class
of jobs to a single resource, and n the average number of synchronous
calls made by an access in the system. The values for m and n depend on
the structure of the system being modeled. The complexity of step 3 re-
quires that we know the time complexity of the MVA or a similar tech-
nique. If we use the Schweitzer approximate MVA and impose a limit to
the number of iterations, the time complexity of solving the primary
queuing network is O(|K||R|) and the time complexity of solving the sec-
ondary queuing networks is O(2|K||R|) = O(|K||R|). Hence the time com-
plexity of step 3 is O(|K||R|). Since the time complexities of steps 4
through 8 are O(m|K||R|), O(|R|), O(mn|R||K|), O(mn|R|), and O(|R|), we
may conclude that the time complexity of one iteration of the method of
decomposition is O(mn|R||K|).

While there is no predefined limit for the number of iterations,
experimentation has shown that most models require less than 30. Also,
the size of the model has virtually no effect on the required number of
iterations. Hence, we may conclude that time complexity is not an obsta-
cle for using the method of decomposition for solving complex models.

4.9 Summary

In this chapter, we have defined augmented queuing networks that can be
used for specifying performance models of CORBA based distributed
systems. The support for synchronous calls is particularly important since
it leads to straightforward modeling of communication in such systems.

We have also presented an algorithm for solving AQNs for a number
of relevant performance metrics. The idea in the algorithm is to decom-
pose an AQN into a set of product-form queuing networks. The parame-

4.9 Summary 73

ters of these networks are not completely defined after decomposition,
but a number of mutual dependencies can be pointed out between them.
An iterative technique is used to determine approximate values for the
missing parameters. During each iteration, we solve the set of auxiliary
networks with efficient MVA based algorithms and the obtained results
are used to change the parameters for the next iteration.

The algorithm supports recursion and circular calling dependencies
between resources. Both are commonly used in object-oriented systems.
In addition, special attention has been paid to the convergence of the al-
gorithm in order to make it suitable for practical software engineering.
The algorithm uses approximations that are based on known techniques
and have been used in various contexts. Hence, the method of decompo-
sition can be considered as a novel combination of existing techniques
for solving queuing networks representing CORBA based distributed
systems.

75

Chapter 5

UML based performance modeling

In this chapter, we describe a UML based performance modeling notation
and define a collection of modeling techniques for specifying high-level
performance models of CORBA based distributed systems. The proposed
techniques support the modeling of relatively complex systems by di-
viding the overall model into a set of simple and manageable UML dia-
grams.

We start with a brief introduction to the UML and focus on those
UML features that are used in our framework. Then, we gradually build
up our collection of modeling techniques for CORBA based distributed
systems. Along with the relevant UML diagrams, we also present the cor-
responding performance modeling language (PML) constructs. An ab-
stract grammar for the PML is given in Appendix A, and the detailed
syntax and semantics are discussed in [Käh99c]. The PML is a textual
notation for those elements in UML diagrams that are relevant for per-
formance modeling. In this work, the main purpose of PML is to facili-
tate the automatic analysis of performance models while the actual mod-
eling is done with the UML. Finally, we describe how UML and PML
representations can be transformed into solvable AQN representations.

5.1 The Unified Modeling Language

We have chosen the UML notation for our framework because of its in-
creasing popularity in the object community and because it is particularly
well suited for large and complex systems. In this work, version 1.1 of
the UML is used. Comprehensive discussions on the UML are given, for
example, in [Rat97, Eri98, Rum99].

The Unified Modeling Language is a notation for specifying, visualiz-
ing, constructing, and documenting the artifacts of software systems. In

76 5 UML BASED PERFORMANCE MODELING

addition, the UML can be used for business modeling and describing
other non-software systems [Rat97]. It builds upon ideas and techniques
that were developed in earlier object-oriented methodologies. In particu-
lar, the OMT [Rum91], Booch [Boo94], and OOSE [Jac92] methodolo-
gies had an important influence on the UML. The first draft version of
the UML was released in 1995 by Rational Software Corporation. Ver-
sion 1.1 of the specification was published in 1997 and later adopted by
the OMG. Further development of the UML specification is now an inte-
gral part of OMG’s activities.

The primary goal of the UML is to provide an easy-to-use visual mod-
eling language for developing and exchanging various kinds of models.
Unlike earlier notations that were usually integral parts of development
methodologies, UML is trying to be independent of the development pro-
cesses, development tools, and programming languages. To reach these
goals and to ensure semantic consistency across different modeling envi-
ronments, two important objectives have been set. On one hand, there is a
need to define a formal basis for the modeling language and, on the other
hand, standard extensibility and specialization mechanisms are needed to
ensure compatible extensions of the core UML in different environments.
Finally, the UML attempts to provide support for various high-level de-
velopment practices and concepts in the domain of object technologies.
For example, special modeling techniques are proposed for supporting
frameworks, patterns, and components.

The UML specification has two essential parts. The UML Semantics
defines the abstract syntax and the exact semantics for the core modeling
concepts. The UML Notation Guide defines the corresponding graphical
notations. The notation guide also provides examples for using UML. An
important extension to the UML is the Object Constraint Language
(OCL). It is used for specifying well-formedness rules in the UML se-
mantics document, but it can also be used for describing application-spe-
cific constraints and expressions, such as preconditions and postcondi-
tions for operations. The core UML has been extended towards different
application domains by using standard extension features. Version 1.1 of
the specification contains extensions for business modeling and for Ra-
tional Software’s own Objectory software engineering methodology. Ad-
ditional extensions are being specified by the OMG.

5.1 The Unified Modeling Language 77

Diagram types

There are nine diagram types in the UML. Each diagram type describes a
part of the system from a certain point of view. A complete model usu-
ally contains several interrelated UML diagrams that together provide a
complete picture of the target system. The following diagram types are
available:

� Use case diagrams,
� Class diagrams,
� Object diagrams,
� Statechart diagrams,
� Sequence diagrams,
� Collaboration diagrams,
� Activity diagrams,
� Component diagrams,
� Deployment diagrams.

A use case diagram shows the relationships between external actors and
uses cases describing the system. Use cases are short descriptions of the
system’s functionality as seen by end users and other external actors
when they are interacting with the system. Use cases are a widespread
technique for specifying system requirements in object-oriented analysis
and design methodologies [Jac92, Jac98, Sou98]. Use case diagrams pro-
vide a tool for organizing the use cases and their mutual relationships but
the actual use case descriptions are not part of the diagram.

A class diagram shows the static structure of the system in terms of
classes and their relationships. A class diagram may also contain other
modeling elements, such as interfaces, packages and individual objects.
Class diagrams have an essential role in object-oriented analysis and de-
sign, as they provide the main tool for describing the logical organization
of the system being modeled. Figure 20 contains an example of a simple
class diagram. It contains a generic class representing a directory entry,
and two detailed classes for files and directories. Both are subclasses of
the generic directory entry class.

An object diagram shows a snapshot of the system’s static structure in
terms of objects and links between them. However, since class diagrams
are allowed to contain objects, the UML specification does not make a
clear distinction between class and object diagrams.

78 5 UML BASED PERFORMANCE MODELING

A statechart diagram shows the states of an object in a particular
class. It also indicates the state transitions that can be triggered by vari-
ous events, such as messages that are sent by other objects in the system.
Statechart diagrams are often drawn only for those classes that have
clearly distinguishable states and change their behavior depending on
their state.

A sequence diagram shows an interaction between objects as a se-
quence of messages. The time dimension makes the diagrams particularly
easy to read. Sequence diagrams may also contain classes instead of ob-
jects. In such cases, however, the diagram should indicate all alternative
interactions that may take place at run-time.

A collaboration diagram is also used for presenting interactions be-
tween objects but now the context is an object diagram indicating links
between the participating objects. Hence, collaboration diagrams do not
have a time dimension and, accordingly, the order of messages must be
indicated with sequence numbers. Collaboration diagrams can also con-
tain classes instead of objects. Sequence and collaboration diagrams of-
ten provide alternative ways to express the same information. Figure 21
illustrates a simple interaction with sequence and collaboration diagrams.

An activity diagram is a special kind of state diagram in which most
states represent the execution of an operation and most transitions are
triggered by the completion of these operations. The scope of an activity
diagram may vary from a set of use cases to the implementation of a sin-
gle operation. Activity diagrams are often used in situations where most
events are generated internally by a procedural flow of actions, while
statechart diagrams are more appropriate in the presence of externally
generated asynchronous events.

A component diagram shows the compile-time and run-time depend-
encies between software components, such as source code components,

DirectoryEntry
{abstract}

Size : Long
Created : Date

Delete()

File Directory

*

{disjoint}

Figure 20. A class diagram example.

5.1 The Unified Modeling Language 79

binary components, and executable components. Component diagrams
provide a link from the logical design to the actual implementation mod-
ules that make up the system configuration. If there are changes in the
logical design, the component diagrams can be used to track down the
necessary changes to the individual components.

A deployment diagram shows the run-time configuration of a system.
This may include, for example, nodes, processes, run-time software com-
ponents, and objects. Deployment diagrams are used to describe the
physical architecture of the system as opposed to its logical structure or
behavior. Figure 22 illustrates a deployment diagram with two nodes and
a component in each node. The AppServer component in the server node
is offering the AppService interface that the user interface component is
using from the client node.

We use five UML diagram types in our performance modeling
framework. First, class diagrams are used to describe the static structure
of the performance model. This includes the model’s resources and the
operations that provide access to them. Second, collaboration diagrams
are used for describing the model’s workloads through sequences of op-
erations to the model’s resources. Each workload is characterized by a
separate collaboration diagram. Third, sequence diagrams provide an al-

: MessageBox : Button : Text

Paint()

Paint()

PaintBackground()

Paint()

: MessageBox

: Button : Text

1: Paint()

1.1: PaintBackground()

1.2: Paint() 1.3: Paint()

Figure 21. A sequence diagram (left) and a collaboration dia-
gram (right) can be used to model the same interaction.

ServerNode : IntelPC ClientNode : IntelPC
«Ethernet»

: AppServer : UserInterface

AppService

Figure 22. A deployment diagram example.

80 5 UML BASED PERFORMANCE MODELING

ternative way to represent the workloads. Both diagram types can be used
interchangeably in our framework. Unless otherwise noted, the term col-
laboration diagram is used to indicate that either diagram type can be
used. Fourth, deployment diagrams are used to describe the actual run-
time configuration of the model. Finally, object diagrams are used to
model the run-time configuration when there is not enough information
for deployment diagrams. This may happen, for example, at an early
stage of the development cycle.

Basic modeling concepts

The UML defines general-purpose modeling concepts that can be used in
all diagrams. These concepts include

� Packages,
� Dependencies,
� Notes.

A package is a grouping of model elements. Packages are intended for
organizing complex models and they can contain all kinds of modeling
elements, such as diagrams and other packages. A dependency indicates a
semantic relationship between two or more model elements, such as a re-
finement or a usage relationship. Dependencies are indicated with dashed
arrows. A note is a graphical symbol that contains textual information,
such as comments, constraints, or implementation examples. Figure 23
illustrates the use of packages, dependencies, and notes.

A large number of UML elements are dedicated to the static structure
of the model. Important static modeling concepts include

� Classes,
� Associations,
� Composition,
� Generalization,
� Objects,
� Interfaces.

A class is a description for a set of objects with similar structure, behav-
ior, and relationships. The notation for a class is a rectangle with three
compartments. The top compartment contains the class name and other
general properties of the class. The optional middle and bottom com-

5.1 The Unified Modeling Language 81

partments contain the attributes and operations of the class. There is a
rich variety of options for presenting them at different levels of detail.
The example in Figure 20 contains three classes: DirectoryEntry, File,
and Directory.

An association indicates relationships between two or more classes. A
recursive association may be defined from a class to itself. An associa-
tion end may indicate its multiplicity, i.e. the range of allowed cardinal-
ities, with a list of integers or integer intervals. An asterisk (*) indicates
an unlimited upper bound in an interval. An association end may also
have an arrowhead for indicating unidirectional navigability, and a hol-
low diamond for indicating aggregation. The example in Figure 20 uses
aggregation to indicate that a directory may contain any number of di-
rectory entries.

Composition is a special form of aggregation that implies strong own-
ership and coincident lifetimes. Composition can be shown by drawing
an association with a filled diamond. An alternative way to indicate com-
position is to draw class symbols inside the container class, or to include
the contained classes in its list of attributes. Figure 24 illustrates three
ways to indicate composition in a class diagram.

Generalization is a relationship between a more general element and a
more specific element that is consistent with the first element and adds

AppPackage

CORBA
services

Business
Logic

The BusinessLogic
package depends on the
CORBAservices package.

Figure 23. A diagram with packages, dependencies, and a note.

Address

String

2Line

Code

1Zip

String

1City

String

1State

Address

Line : String 2

Zip : Code

City : String

State : String

Address

Line[2] : String
Zip : Code
City : String
State : String

Figure 24. Three ways to indicate composition.

82 5 UML BASED PERFORMANCE MODELING

new information. Inheritance relationship between classes is a common
case of generalization. The notation for generalization is a solid line from
the more specific element to the more general element and a hollow tri-
angle at the end of the line. Figure 20 illustrates generalization: the
DirectoryEntry class is a generalization of the File and Directory classes.

An object is an instance of a class with an identity and a set of attrib-
ute values. The notation for an object is a rectangle with two compart-
ments. The top compartment contains an optional object name followed
by a colon and a class name. All three elements are underlined. The op-
tional bottom compartment shows a list of attribute names, types, and
values. Objects can be composed like classes. A link indicates a relation-
ship between two or more objects, and it is an instance of an association
between the classes that correspond to these objects.

An interface specifies externally visible operations of a class, compo-
nent, or other similar entity, without specifying its internal structure. An
interface can be considered as a class that only has a list of abstract op-
erations. The notation for an interface is that of a class with the addition
of the text «interface» at the name compartment. The notation for inter-
face realization is a small circle representing the interface and a solid line
to the elements that support it. If a class or other modeling element is
using an interface, a dependency arrow can be drawn from this element
to the interface. This is illustrated in Figure 22 where the AppServer
component realizes the AppService interface.

The modeling of dynamic behavior requires additional UML ele-
ments. We only discuss those elements that are needed in sequence and
collaboration diagrams. Both diagrams use messages to model the com-
munication between objects. Common message types include

� Simple messages,
� Synchronous calls,
� Asynchronous messages.

A simple message represents flat flow of control and it is denoted with an
open arrowhead (). A synchronous call represents nested flow of con-
trol, such as a procedural call, and it is denoted with a filled arrowhead
(). The return from the call may be indicated with a dashed line and an
open arrowhead (). An asynchronous message represents explicit
asynchronous communication within procedural execution and it is de-
noted with a half-arrowhead (). Figure 21 illustrates the use of syn-
chronous calls.

5.1 The Unified Modeling Language 83

Hierarchical sequence numbering can be used to indicate the order of
messages. Messages that are sent at a particular level of procedural calls
are prefixed with the sequence expression of their procedural level. In
Figure 21, for example, messages 1.1, 1.2, and 1.3 are sent sequentially
during the activation of message 1. Concurrent execution is indicated
with labels. For instance, messages 1.1a and 1.1b would be sent concur-
rently within the activation of message 1.1. A sequence expression may
be preceded by a guard condition in square brackets. The corresponding
message is sent only if the condition evaluates to true. In a similar way,
iteration can be indicated with an asterisk followed by an iteration ex-
pression. The UML does not mandate any particular syntax for the guard
conditions and iteration expressions. The following example illustrates
both concepts:

[x > 0] 1.1 *[i = 1..5]: Update(i)

Sequence expressions are often omitted from sequence diagrams, since
the time axes already indicates the execution order.

Extension techniques

Extension techniques have a key role in the UML as they offer a con-
trolled way to broaden the scope of the language while keeping the UML
core relatively small. The following extension techniques are available:

� Stereotypes,
� Properties,
� Constraints.

A stereotype defines a new modeling element that is based on an existing
one. The appearance and form of the stereotype is the same as that of the
original element but the intent is different. In many cases, the aim of a
stereotype is to indicate a specific usage. Stereotypes are represented in
the same way as the base elements except that the name of the stereotype
is placed above the element name within angle brackets (« »). It is also
possible to define graphical icons for representing stereotypes. The UML
specification itself defines various stereotypes to be used in different dia-
grams. For example, dependency has a number stereotypes, such as
«call», «copy», and «instance», that indicate the nature of the dependen-
cies that may exist between modeling elements.

84 5 UML BASED PERFORMANCE MODELING

User defined properties can be specified for any UML modeling ele-
ments using tagged values. A tagged value has the general form

keyword = value

where keyword indicates the name of the property and value is a string
indicating the corresponding value. The value can be omitted for proper-
ties of the Boolean type. In such cases, the value is assumed to be true.
The properties of an element are specified in a list of tagged values that is
placed inside a pair of braces. For example, the tagged value abstract in
Figure 20 indicates that DirectoryEntry is an abstract class, i.e. it cannot
have instances of its own.

A constraint is a semantic condition that is required to be true at all
times. Constraint texts are placed within a pair of braces and a dashed
line or arrow can be used to indicate the scope and direction of the con-
straint. For example, the constraint disjoint in Figure 20 specifies that the
inheritance relationship is disjoint, i.e. the File and Directory subclasses
cannot have common instances. The object constraint languages can be
used to describe complex constraints.

In our framework, we are using properties as our primary extension
technique. The main reason for selecting this approach is its user-friend-
liness: adding properties does not change the structure of the UML dia-
gram and, consequently, properties can be embedded into existing UML
designs with little effort. In addition, most UML modeling tools already
have strong support for properties. The expressive power of properties is
somewhat limited and, therefore, it has been necessary to define one ad-
ditional stereotype for specifying the characteristics of a network con-
nection. See Section 5.6 for more details.

5.2 Resource representation

We now proceed to the modeling techniques that are specific to our
framework. The primary goal is to use UML for representing perform-
ance models of CORBA based distributed systems. We start with the
modeling of resources.

Software and hardware resources are represented with UML classes.
To distinguish these resource classes from other classes, we mark them
with the queue or delay properties. The queue property denotes a queuing
resource, such as a single-threaded software server or a physical device.

5.2 Resource representation 85

The delay property denotes a delay resource, such as think time, network
delay, or a multi-threaded software server that does not impose queuing
for its clients.

A request to an operation in a resource class indicates an access to that
resource. In addition, a request to an operation in a non-resource class
that is contained within some resource class is also considered as an ac-
cess to that resource. Service demands for these operations can be de-
fined explicitly with user-named properties. An operation may have a
single property for the total service demand (e.g. d = 10), or it may have
multiple properties to indicate the individual elements of the service de-
mand. For example, there may be separate properties for the disk, CPU,
and network adapter. Service demands are given in time units. For soft-
ware resources, service demand indicates the measured or estimated time
to execute the operation using whatever hardware resources necessary.
For hardware resources, service demand indicates the actual time during
which the corresponding device performs some work.

The model designer can freely select the symbols for service demands.
If a symbol is not used in any triggering condition (see Section 5.4) and if
it is not explicitly bound to a lower-level resource (see Section 5.5), the
service demand represented by the symbol is directly associated with the
resource to which the property is attached. In our examples, we com-

CDatabase
{queue}

Read() {cpu=10,disk=50}
Status() {cpu=5}
Write() {cpu=10,disk=80}

class CDatabase {
 property queue;
 Read() {cpu=10,disk=50};
 Status() {cpu=5};
 Write() {cpu=10,disk=80};
};

Figure 25. A queuing resource with three operations.

«interface»
IDatabase

Read() {cpu=10,disk=50}
Status() {cpu=5}
Write() {cpu=10,disk=80}

interface IDatabase {
 Read() {cpu=10,disk=50};
 Status() {cpu=5};
 Write() {cpu=10,disk=80};
};

class CDatabase {
 property queue;
 realizes IDatabase;
};

CDatabase
{queue} IDatabase

Figure 26. An example interface.

86 5 UML BASED PERFORMANCE MODELING

monly use the following symbols: d denotes the measured or estimated
service demand that is usually bound directly to the associated resource,
cpu denotes service demand to be bound to the CPU resource, disk de-
notes service demand to be bound to the hard disk, and adapter denotes
the service demand to be bound to the network adapter.

Accurate service demands are difficult to obtain without measuring
real systems. Therefore, estimates are often used at early stages of devel-
opment to produce approximate performance models. Service demands
are not mandatory in class diagrams since they can be also defined in the
workload descriptions. Figure 25 illustrates a resource class CDatabase
with three operations. The service demands of the operations are divided
into CPU and disk components.

Service demands can also be specified for interfaces. Figure 26 shows
how the CDatabase resource can be specified with an explicit interface.
Resource classes can be used like any other UML classes and mixed
freely with non-resource classes. To simplify the instantiation of re-
sources, we assume the existence of two predefined resource classes,
Queue and Delay, that do not have any operations or attributes. Their
definitions are given in Figure 27.

5.3 Workload representation

Performance workloads are modeled with collaboration diagrams (work-
load diagrams). For closed workloads, the number of jobs is indicated
with the population property. For open workloads, the arrival rate of jobs
is indicated with the arrivalrate property. To comply with the require-
ments for BCMP networks, we only allow Poisson arrival processes in
open workloads. Workload diagrams resemble those used for the AQN
representation but there are two differences. First, workload diagrams
usually contain classes instead of objects. This way, the defined work-
loads are generic, and the indicated service demands are divided between

Queue
{queue}

class Queue {
 property queue;
};
class Delay {
 property delay;
};

Delay
{delay}

Figure 27. Definitions for the Queue and Delay classes.

5.3 Workload representation 87

the instances of the target class. Second, only application level resources
need to be shown since infrastructure and network resources are activated
with triggering properties (see Section 5.4). Figure 28 illustrates a simple
workload diagram where 100 users are accessing a database through a
front-end application.

Service demands need not be specified explicitly in workload dia-
grams if they are given in class or interface specifications. Service de-
mands in workload diagrams override those given elsewhere. It is possi-
ble to use anonymous invocations that only indicate the target resource
but do not name the operation. They always require explicit service de-
mand. The example in Figure 28 models the think time of the end user
with an anonymous access to the User delay resource.

The thinktime property can be used to represent think time or any
similar delay when there is no need to explicitly present the correspond-
ing delay resource (e.g. the end user). For instance, the example in Figure
28 can be specified in a more concise form by omitting the User class to-
gether with the anonymous invocation to it, and by adding the thinktime
property to the diagram.

Any class can be marked with the singleuser property. This Boolean
property affects the class itself and all resources that it contains. An ac-
cess to a singleuser resource is considered to have no contention. As a re-
sult, its service demand is simply added to the value of the thinktime
property. Effectively, resources that are marked with the singleuser prop-
erty are excluded from the underlying AQN model except for the in-
crease in think time. This is typically done for user workstations and
other similar resources that are dedicated to a single job and cannot im-
pose queuing. In some cases, however, it may be preferable to simplify

User
{delay}

collaboration MainLoad {
 property population=100;
 1: CFront.Start() {cpu=10};
 1.1: CDatabase.Read();
 1.2: CDatabase.Write();
 2: User() {d=500};
};

actor User { property delay; };
class CFront { property queue; };

CDatabase
{queue}

1: Start() {cpu=10}

CFront
{queue}

1.1: Read() 1.2: Write()

2: {d=500}

{population=100}

Figure 28. An example workload diagram.

88 5 UML BASED PERFORMANCE MODELING

the model by leaving out such resources and by increasing the thinktime
property explicitly.

For conditional messages in collaboration diagrams, we specify a per-
formance oriented shorthand notation. Instead of giving a guard condi-
tion, we write down explicitly the execution probability for the message.
This way, the message

[x > 0] 1: Operation() {probability = 0.7}

can be shortened to

[0.7] 1: Operation()

in performance models. The same notation is also used for iteration. For
example, the expression

1.1: *[i = 1..10]: Operation()

can be replaced with

[10] 1.1: Operation()

This shorthand notation can be used in sequence and collaboration dia-
grams, and it is the only way to express conditional execution and itera-
tion in PML. It may sometimes be difficult to estimate the correct execu-
tion probabilities and iteration counts since both can be data dependent.
Such data dependencies are further discussed in [Smi90] together with a
number of examples for obtaining acceptable estimates.

5.4 Triggering properties

Triggering properties represent side effects of the application behavior in
the infrastructure and in the network. These effects are normally ex-
cluded from application-level workload diagrams to keep them readable.
Examples include network delays and context switching delays during
inter-process communication. Any UML class may specify up to nine
triggering properties, as listed in Table 1.

The value of a triggering property is a reference to a collaboration
diagram (triggering diagram) describing the actions that take place when
the triggering condition is satisfied. We use UML package names to indi-
cate these references, but it is possible to use other referencing mecha-

5.4 Triggering properties 89

nisms, such as dependency stereotypes. Figure 29 illustrates a process
with a constant context switch delay when a request or a reply arrives
from another process. Requests that are sent and received within the
same process do not satisfy the requestin condition and do not have a
delay associated with them.

A triggering diagram can use the service demand values of the opera-
tion that satisfies the triggering condition. Suppose, for example, that
each operation contains an adapter property representing the use of the
network adapter. Figure 30 illustrates a node where the adapter property
is mapped to the Adapter device. Service demands in triggering diagrams
can be adjusted with arithmetic expressions. For instance, a fast network
adapter might be modeled with the property d = adapter * 0.9. These and
similar arithmetic expressions can refer to properties that have been
specified for any modeling element. For example, if the CNode class has

Table 1. Triggering properties.

Property Triggering condition
requestin Request from an outside class
replyin Reply sent by an outside class
msgin Any incoming message (i.e. requestin or replyin)
requestout Request to an outside class
replyout Reply to an outside class
msgout Any outgoing message (i.e. requestout or replyout)
requestpeer Request sent between first-level contained classes
replypeer Reply sent between first-level contained classes
msgpeer Any internal message (i.e. requestpeer or replypeer)

CProcessMsgin

CProcess
{msgin=CProcessMsgin}

CtxSwitch : Delay

class CProcess {
 property msgin=CProcessMsgin;
 CtxSwitch : Delay;
};

collaboration CProcessMsgin {
 1: CtxSwitch() {d=2};
};

CtxSwitch : Delay
1: {d=2}

Figure 29. A process with a constant context switch delay for
incoming messages

90 5 UML BASED PERFORMANCE MODELING

an AdapterRate property for indicating the relative rate of the adapter, the
service demand of the network adapter could be defined with the expres-
sion d = adapter * CNode.prop.AdapterRate.

5.5 Service demand binding

If a service demand property is not used in any triggering condition, the
service demand is associated directly with the object that receives the in-
vocation. In some cases, however, the service demand should be bound
to some other resource. For example, if the model includes a CPU re-
source for each node, the service demands of software server requests
should be bound to the CPU resource in order to model CPU contention.

Service demand binding is implemented by declaring a binding re-
source, such as a CPU, with a binding property. The binding resource is
often placed inside a container class, such as a node, to indicate the scope
of the binding. The binding property indicates the name of the service
demand property it binds. Figure 31 illustrates how the cpu and disk
properties can be bound to model CPU and disk contention. Arithmetic
expressions can be used in binding properties. For example, the binding
expression d = cpu * 1.5 could be used to model a slow CPU.

Nested service demand binding is allowed. For example, a disk driver

CNodeRequestin

CNode
{requestin=CNodeRequestin}

Adapter : Queue

class CNode {
 property requestin=CNodeRequestin;
 Adapter : Queue;
};

collaboration CnodeRequestin {
 1: Adapter() {d=adapter};
};

Adapter : Queue
1: {d=adapter}

Figure 30. The service demand of the network adapter de-
pends on the request satisfying the triggering condition.

CNode

Cpu : Queue {d=cpu}
Disk : Queue {d=disk}

class CNode {
 Cpu : Queue {d=cpu};
 Disk : Queue {d=disk};
};

Figure 31. Service demand binding

5.6 Network connections 91

resource could bind all application-level service demands for file access.
The service demand of this resource might then be bound to the actual
hard disk. It is also possible to bind the same service demand more than
once. For example, if a node has two disks and data accesses are equally
divided between them, this might be modeled by splitting the service
demand of each disk access with the binding property d = disk * 0.5 for
both disks.

5.6 Network connections

In UML deployment diagrams, a connection between nodes may be re-
fined by a stereotype for identifying the communication protocol or the
network medium (e.g. «TCP/IP» or «Ethernet»). We propose an exten-
sion to the UML for specifying the details of such association refine-
ments. Essentially, we need the same triggering properties that are avail-
able for UML classes. Hence, we define a class stereotype «connection»
for specifying association stereotypes for network connections. Usually,
connection classes contain a delay resource for representing network de-
lays and a number of queuing resources for modeling physical devices,
such as modems or routers. These resources are typically accessed only
from triggering diagrams. In other words, network access is typically a
side effect of some other behavior in the system. Figure 32 shows a con-
nection with a constant delay for each message that passes between two
nodes in a «LAN». Figure 33 shows how this connection can be used in a
deployment diagram.

LANMsgpeer

«connection»
LAN

{msgpeer=LANMsgpeer}

Latency : Delay

connection LAN {
 property msgpeer=LANMsgpeer;
 Latency : Delay;
};

collaboration LANMsgpeer {
 1: Latency() {d=5};
};

Latency : Delay
1: {d=5}

Figure 32. An example definition for a network connection.

92 5 UML BASED PERFORMANCE MODELING

5.7 Run-time configuration

A description of the run-time configuration is needed for obtaining per-
formance metrics for the modeled system. This can be carried out with
deployment diagrams containing elements for the relevant physical enti-
ties, such as nodes, networks, and processes. Application objects are in-
stantiated to their appropriate locations in the configuration. Figure 33
illustrates a deployment diagram of a simple system that contains three
nodes attached to a LAN.

In many cases, however, the full run-time configuration is not known.
In such cases, the configuration can be described with simple object dia-
grams, and the effect of some deployment choices is not present in the
obtained results. Still, it may be possible to obtain useful metrics for the
model. For example, the model might be used for identifying potential
bottlenecks in the software design.

The full configuration of complex systems may be specified with sev-
eral deployment diagrams. For example, there may be separate diagrams
for each node, and an additional diagram for the network connections
between the nodes.

MyLAN : LAN {
 Node1 : CNode {
 : CProcess {
 : CFront;
 [2] : CDatabase;
 };
 };
 Node2 : CNode {
 : CProcess {
 : CFront;
 };
 };
 Node3 : CNode {
 : CProcess {
 : CDatabase;
 };
 };
};

«LAN»

Node2 : CNode

:CProcess

:CFront

Node3 : CNode

:CProcess

:CDatabase

Node1 : CNode

:CProcess

:CFront

:CDatabase 2

Figure 33. An example deployment diagram.

5.8 Creating the AQN representation 93

5.8 Creating the AQN representation

So far, we have discussed how performance models can be represented in
terms of UML modeling elements and diagrams. We now describe how
such models can be transformed into multi-class AQNs so that the
method of decomposition can be applied. Section 5.9 illustrates the trans-
formation with an example.

Classes. The transformation of UML classes is straightforward. Each in-
stance of a resource class is mapped to an AQN resource. All other
classes disappear during the transformation. The actual number of in-
stances for a particular resource class is determined from the object and
deployment diagrams. An additional thinktime delay resource is added to
the AQN.

Workloads. Each workload diagram is transformed into a class of jobs in
the resulting AQN. The mapping is implemented in four steps. First, the
thinktime property is mapped to an access to the thinktime resource. Sec-
ond, the service demands for all invocations are determined from the
workload, class, and interface specifications. The values in workload
diagrams override those given elsewhere. If the target of an invocation is
a non-resource class, the service demand is attributed to the closest sur-
rounding resource class. Third, all accesses to singleuser resources are
handled by increasing the service demand of the thinktime resource
appropriately.

The fourth step during workload transformation is the expansion of
class invocations into one or more accesses to resource objects. We use a
special class resolution algorithm for this purpose. The algorithm is
based on the use of resource contexts that are defined by packages and
composite objects. For the first invocation in a workload diagram, the
initial resolution context is the current package. For all subsequent invo-
cations, resolution is first attempted in the chain of invocations that pre-
ceded the current one. If this fails, resolution is attempted in the smallest
context containing the object that executed the previous invocation. If
there is no match in the initial context, resolution is attempted in the next
surrounding context, and so forth until the whole system is the resolution
context.

When one or more instances of the target class are found in a resolu-
tion context, the service demand is distributed evenly among them, and
the subsequent resolution contexts are determined by these instances.

94 5 UML BASED PERFORMANCE MODELING

Hence, a single invocation in a workload diagram may spawn any num-
ber of invocations in the AQN representation. The class resolution algo-
rithm can be overridden by explicitly specifying a resolution context for
the operation, or by using a named target object.

Consider the example in Figure 33. If the Read operation were in-
voked after an operation in Node2, the service demand would be distrib-
uted evenly between all three instances of the CDatabase class. How-
ever, if we did the same inside Node1, only the two database instances in
Node1 would be accessed. To ensure that all databases are accessed
evenly, we can indicate the intended resolution scope explicitly with a
compound name, such as MyLAN.Read. Such compound names can
contain any number of elements to indicate the exact scope for the
operation.

Triggering properties. If an invocation in a workload diagram satisfies a
triggering condition, a sequence of additional resource accesses are cop-
ied from the corresponding triggering diagram into the workload dia-
gram. A single message in a workload diagram may satisfy any number
of triggering conditions for several objects. For example, an access to a
remote object generates a message that leaves a node, passes through a
network, and enters another node. As a result, three triggering diagrams
might be involved in the transformation. If the message being expanded
is a synchronous call, the calling object remains blocked during the addi-
tional accesses, and also the backward path is checked for triggering
conditions. Otherwise, the sending resource is released immediately and
direct uses are generated.

Service demand binding. The transformation generates additional invo-
cations for service demand bindings. After the original access, a new ac-
cess is made to the binding resource. If the target resource of the original
access is a queuing device, the binding is transformed into a synchronous
call. If the target resource of the original access is a delay device, a direct
use is generated from the binding. Notice that the service demand of the
original target resource may become zero after this transformation (i.e.
all service demand properties get bound). This is typical for software re-
sources when the performance model also includes a CPU resource.

Conditional execution and iteration. Conditional execution and itera-
tion are both handled after expanding triggering properties and service
demand bindings into additional resource accesses. For both cases, we

5.9 Example 95

require that the UML model contains a factor f indicating the branching
probability (f < 1) or the repetition count (f > 1). The shorthand notation
presented in Section 5.3 gives a convenient way for expressing this fac-
tor. All service demands that are within the affected execution path are
simply multiplied by f. A single service demand may be multiplied by
several factors if there are nested conditional messages and iterations.

Network connections. Association stereotypes representing network
connections are treated as if they were container classes for the nodes
that are contained within the network. Accordingly, the transformation
for network connections is the same as the mapping for classes that have
triggering properties or service demand bindings.

5.9 Example

This section illustrates UML based performance modeling with a simple
example of a network monitoring system. The system operates as fol-
lows. A number of receiver objects accept messages from network ele-
ments and forward them to handler objects that are responsible for exe-
cuting appropriate actions. A special database object maintains descrip-
tions for the actions. The essential elements of the system are represented
by the CReceiver, CHandler, and CDatabase classes. To illustrate the use
of interfaces, the operations of the CHandler class are defined in the
IHandler interface. Figure 34 illustrates the static structure of the system.
Service demand estimates for the operations are in milliseconds.

1

1..*

IHandler
CReceiver

{queue}

ReceiveJob() {cpu=10}

class CReceiver {
 property queue;
 ReceiveJob() {cpu=10};
};
class CHandler {
 property queue;
 realizes IHandler;
};
class CDatabase {
 property queue;
 GetActions() {cpu=10,disk=50};
};
interface IHandler {
 AcceptJob() {cpu=5};
 DoActions() {cpu=20};
};

CHandler
{queue}

CDatabase
{queue}

GetActions {cpu=10, disk=50}

«interface»
IHandler

AcceptJob {cpu=5}
DoActions {cpu=20}

Figure 34. The static structure of the example system.

96 5 UML BASED PERFORMANCE MODELING

The model has two workloads: a background load for the database and
the main load. The workloads are illustrated in Figure 35. The back-
ground load has an estimated rate of 1 database query per second. The
main load represents the handling of messages from network elements. In
steps 1 and 2, a message is received and forwarded to a handler. In steps
2.2 and 2.3, the handler consults the database and executes appropriate
actions. We estimate an arrival rate of 7 messages per second.

The system uses an object-oriented infrastructure for implementing
object communication. To keep the example short, we model the infra-
structure with simple communication delays. A more detailed model
would map communication delays to appropriate lower-level resources.
We assume that there is an average 3 ms delay when the sender and re-

collaboration BgLoad {
 property arrivalrate=0.001;
 1: GetActions();
};

collaboration Jobs {
 property arrivalrate=0.007;
 property adjustopen=1;
 1: ReceiveJob();
 2: AcceptJob();
 2.1: GetActions();
 2.2: DoActions();
};

1: GetActions() CDatabase

1: ReceiveJob() CReceiver

CHandler

CDatabase

2: AcceptJob()

2.1: GetActions()

2.2: DoActions()

{arrivalrate=0.007}

{arrivalrate=0.001}

Figure 35. Workloads for the example system.

«connection»
LAN

{msgpeer=LANMsgpeer}

Latency : Delay

connection LAN {
 property msgpeer=LANMsgpeer;
 Latency : Delay;
};
collaboration LANMsgpeer {
 1: Latency() {d=3};
};

node CNode {
 property msgpeer=CNodeMsgpeer;
 Ctxswitch : Delay;
 Cpu : Queue {d=cpu};
 Disk : Queue {d=disk};
};
collaboration CNodeMsgpeer {
 1: Ctxswitch() {d=2};
};

«node»
CNode

{msgpeer=CNodeMsgpeer}

Ctxswitch : Delay
Cpu : Queue {d=cpu}
Disk : Queue {d=disk}

CNodeMsgpeer

Ctxswitch :
Delay

1: {d=2}

LANMsgpeer

Latency :
Delay

1: {d=3}

Figure 36. Node and network specifications for the example system.

5.9 Example 97

ceiver are in different nodes, and a 2 ms context switch delay when they
are in the same node. We also model hardware resource contention by
presenting explicit CPU and disk resources for all nodes. The service
demands for application level operation requests are bound to these re-
sources. The definitions for the network infrastructure and the nodes are
illustrated in Figure 36.

We consider two different configurations for the system. The basic
configuration has a single server node containing a receiver, a handler,
and a database. The advanced configuration has a receiver in one server
node and three handlers together with a database in another server node.
These configurations are illustrated in Figure 37.

When the basic configuration is transformed into the AQN represen-
tation, the result contains six resources and two job classes as illustrated
in Figure 38. Three issues are worth noting. First, the actual execution
takes place exclusively in hardware resources as a result of service de-
mand binding. Software resources are only controlling the order of ac-
cessing the hardware.

Second, the Ctxswitch resource illustrates the use of triggering proper-
ties. It is accessed three times, once for the AcceptJob message and twice
for the synchronous call GetActions. However, there is no context switch
for the recursive call DoActions.

Finally, the complexity of the diagram is worth noting. The AQN in
Figure 38 was generated from a simple model with only three applica-
tion-level messages in a single node. This way, number of automatically
generated messages is small and the sequence diagram in Figure 38 is

MyLAN : LAN {
 Server1 : CNode {
 : CReceiver;
 : CDatabase;
 : CHandler;
 };
};

MyLAN : LAN {
 Server1 : CNode {
 : CReceiver;
 };
 Server2 : CNode {
 : CDatabase;
 [3] : CHandler;
 };
};

Server1 : CNode

:CHandler :CDatabase:CReceiver

«LAN»
Server1 : CNode

:CReceiver

Server2 : CNode

:CHandler

:CDatabase

3

Basic configuration

Advanced configuration

Figure 37. Two configurations for the example system.

98 5 UML BASED PERFORMANCE MODELING

still readable. However, more complex models would produce larger and
less readable diagrams. This observation provides an additional justifica-
tion for the proposed modeling techniques.

When the advanced configuration in Figure 37 is transformed into the
AQN representation, the result contains twelve resources and 35 mes-
sages between them. In Figure 39, we use the PML notation for illustrat-
ing the result of the transformation. The list of instantiated resources is
given before the actual workload messages.

A point worth noting in the advanced configuration is the expansion
of the AcceptJob message into several resource accesses. There are three
Handler instances in the AQN and the service demand of the AcceptJob
message is divided evenly between them. In addition, all nested accesses
that are made during the activation of AcceptJob are divided in three
equal shares. Notice that the recursive call DoActions is routed to a single
handler unlike the AcceptJob message. This is because the current job is
already accessing one of the three handlers and it does not make sense to
route a recursive access to any other handler.

: CReceiver : CHandler : CDatabase Cpu :
Queue

Ctxswitch :
Delay

Disk :
Queue

GetActions()

10

50

λ = 0.001

ReceiveJob()

λ = 0.007 10

2

AcceptJob() 5

2

10

50

2

DoActions()

20

GetActions()

Figure 38. The AQN representation for the basic configuration.

5.10 Discussion 99

5.10 Discussion

We briefly discuss two limitations of the proposed modeling techniques
and consider potential improvements. The first limitation is the lack of
support for all UML features in collaboration diagrams. In particular, it is
not possible to spawn, kill, or synchronize threads, although multi-
threading is supported as explained in Section 4.7. To have full thread
support, the MOD algorithm should be extended so that explicitly created
threads are transformed into additional classes of jobs in the primary and
secondary networks. The details of this proposal are a topic for further re-
search.

The second limitation is the partial support for UML diagram types.
We intentionally use a relatively small set of UML elements in order to
keep the framework easy to use. However, UML state and activity dia-
grams can express performance related information in a convenient man-
ner, and future extensions of the framework should take them into con-

MyLAN.Latency : Delay;
MyLAN.Server1.$CReceiver : Queue;
MyLAN.Server1.Cpu : Queue;
MyLAN.Server1.Ctxswitch : Delay;
MyLAN.Server1.Disk : Queue;
MyLAN.Server2.Cpu : Queue;
MyLAN.Server2.Ctxswitch : Delay;
MyLAN.Server2.Database : Queue;
MyLAN.Server2.Disk : Queue;
MyLAN.Server2.Handler[1] : Queue;
MyLAN.Server2.Handler[2] : Queue;
MyLAN.Server2.Handler[3] : Queue;

collaboration BgLoad {
 property arrivalrate = 0.001;
 1: GetActions() {d=0};
 1.1: Cpu() {d=10};
 1.2: Disk() {d=50};
};
collaboration Jobs {
 property arrivalrate = 0.007;
 1: ReceiveJob() {d=0};
 1.1: Cpu() {d=10};
 2: Latency() {d=1};
 3: Latency() {d=1};
 4: Latency() {d=1};
 5: AcceptJob() {d=0};

 5.1: Cpu() {d=1.66667};
 5.2: Ctxswitch() {d=0.666667};
 5.3: GetActions() {d=0};
 5.3.1: Cpu() {d=3.33333};
 5.3.2: Disk() {d=16.6667};
 5.4: Ctxswitch() {d=0.666667};
 5.5: DoActions() {d=0};
 5.5.1: Cpu() {d=6.66667};
 6: AcceptJob() {d=0};
 6.1: Cpu() {d=1.66667};
 6.2: Ctxswitch() {d=0.666667};
 6.3: GetActions() {d=0};
 6.3.1: Cpu() {d=3.33333};
 6.3.2: Disk() {d=16.6667};
 6.4: Ctxswitch() {d=0.666667};
 6.5: DoActions() {d=0};
 6.5.1: Cpu() {d=6.66667};
 7: AcceptJob() {d=0};
 7.1: Cpu() {d=1.66667};
 7.2: Ctxswitch() {d=0.666667};
 7.3: GetActions() {d=0};
 7.3.1: Cpu() {d=3.33333};
 7.3.2: Disk() {d=16.6667};
 7.4: Ctxswitch() {d=0.666667};
 7.5: DoActions() {d=0};
 7.5.1: Cpu() {d=6.66667};
};

Figure 39. The AQN representation for the advanced configuration.

100 5 UML BASED PERFORMANCE MODELING

sideration. For example, state diagrams indicate how objects change their
behavior based on previous behavior, and this information should be
taken into account when generating the AQN representation from high-
level UML diagrams. In the same way, activity diagrams might be used
to combine several workload diagrams into a single class of jobs for the
AQN representation. This way, complex workload specifications could
be split into smaller pieces.

Currently, the UML is rapidly progressing towards new directions.
There is an ongoing initiative to specify the requirements for UML 2.0,
and this initiative may change the way performance-related information
is represented with UML [OMG99j]. The emerging UML profile for
scheduling, performance, and time may also influence our framework
[OMG99i]. An interesting feature in the framework could also be the
support for stating performance requirements in UML diagrams. Such
requirements can be specified with the current UML notation but they are
currently treated as informal comments. Ideally, a modeling tool could
automatically point out performance violations in the system design by
comparing requirements against computed performance metrics.

5.11 Summary

In this chapter, we have presented a performance modeling notation that
is based on the UML. In addition, a collection of modeling techniques
has been proposed for CORBA based distributed systems.

In the proposed techniques, UML class diagrams are used for model-
ing resources in the performance models, and UML collaboration dia-
grams are used for representing the relevant workloads. In addition, a
number of techniques have been proposed for increasing the modeling
flexibility. Triggering properties and service demand binding are used for
separating application-level specifications from the side effects that ap-
plication behavior may have on the infrastructure. The «connection»
stereotype has been proposed for describing the behavior of network
connections. All proposed techniques are compatible with the core UML
and follow the guidelines for UML extensions. Moreover, the techniques
allow the coexistence of performance related modeling elements with
other UML elements.

Finally, we have described how the UML diagrams can be trans-
formed into the AQN representation. This way, a number of relevant per-
formance metrics can be obtained for the models.

101

Chapter 6

Performance modeling methodology

In this chapter, we describe a concise methodology for using the per-
formance modeling framework in the development of CORBA based
distributed systems. First, we state the goals of the methodology and give
an overview of its elements. Second, we describe a generic layered
structure for performance models. Third, we propose a number of mod-
eling activities for producing and refining performance models. Finally,
we discuss how the methodology is related to software engineering. The
primary contribution of this chapter is to indicate how the proposed mod-
eling techniques can be used to enhance object-oriented software engi-
neering practices.

6.1 Goal and overview

The goal of the performance modeling methodology is to support the
creation, refinement, and exploitation of performance models in the de-
velopment of CORBA based distributed systems. The methodology is in-
tended to complement UML based software engineering methodologies,
such as the Catalysis approach [Sou98] and the Unified Method [Jac98].
Our methodology focuses on performance model creation and refinement
and, consequently, other elements of software performance engineering
should be taken from dedicated SPE methodologies [Smi90, Jai91,
Men94, Woo98].

Our methodology consists of a layered model structure for CORBA
based distributed systems, and a number of modeling activities for creat-
ing and refining the models. The idea is to populate the skeletal model
structure by the modeling activities in a stepwise process that progresses
in parallel with the software engineering process. For this purpose, the
following modeling activities have been identified:

102 6 PERFORMANCE MODELING METHODOLOGY

� Extending use cases for performance modeling,
� Defining the software performance model,
� Defining the system performance model,
� Model validation and calibration.

The rest of this chapter briefly describes the layered model structure and
each of the above activities.

6.2 Layered model structure

To cope with the complexity of CORBA based distributed systems, we
separate performance modeling concerns into the following six layers:

� Application layer,
� Interface layer,
� Behavior layer,
� Infrastructure layer,
� Network layer,
� Deployment layer.

While the modeling techniques in Chapter 5 are designed to support this
layering, it may sometimes be useful to have a slightly different structure
for the performance model. For example, it may be appropriate to merge
two adjacent layers for simple systems. In complex environments, on the
other hand, it may be useful to divide a layer into multiple sublayers.

The application layer describes the application’s static structure with
UML class diagrams. Resources that are relevant for performance mod-
eling are indicated with the delay or queue properties. In addition, if op-
erations have been explicitly given in class diagrams, they may be
equipped with service demand properties. Some middleware services that
are explicitly visible at the application logic, such as the CORBA Nam-
ing Service, can also be modeled at this layer. Since the application layer
requires only a few additional properties in otherwise normal class dia-
grams, it may be possible to maintain a single set of UML class diagrams
for both functional and performance modeling.

The interface layer describes operations that are implemented by ap-
plication layer objects. The use of an explicit interface layer reflects the
object-oriented principle of separating interfaces from implementations
(see [Käh98b] for a discussion). For CORBA based systems, a natural

6.2 Layered model structure 103

way of representing interfaces is to use the OMG IDL, although UML
diagrams can also be used. The framework requires interfaces to be ex-
tended with service demands for each operation, unless these service de-
mands have already been given at the application layer. Certain parts of
service demand (e.g. marshaling time and network latency) could be in-
ferred automatically from the interface specifications in well-controlled
environments where the data contents of CORBA invocations are known
in advance. However, as service demands highly depend on the seman-
tics of the target operation, we assume in the current version of the
framework that they are given explicitly in all cases.

The behavior layer describes the application’s behavior in terms of
interactions between application layer objects. The behavior layer is
modeled with UML collaboration diagrams. All diagrams that represent
essential workloads for the system must be extended with the framework
features. This effectively means that a choice must be made between
open and closed workloads. For the former, the arrival rate needs to be
specified and, for the latter, the population is required. In addition, the
probabilities of conditional execution paths and the number of repetitions
for iterative execution paths must be estimated and noted explicitly in the
workload diagrams.

The infrastructure layer describes the infrastructure support for the
applications. This may include, for example, the middleware, the operat-
ing system, and the hardware. This layer is represented with class dia-
grams equipped with triggering properties and corresponding collabora-
tion diagrams. Additional links between applications and the infrastruc-
ture layer can be created with service demand binding. Elements at this
layer, such as processes and nodes, are organized into nested classes ac-
cording to their physical structure. In complex models, this layer can be
further divided into sublayers that correspond to the various elements of
the infrastructure, such as the operating system and the middleware.

The network layer describes the performance characteristics of the
underlying network. In particular, the «connection» stereotype allows
network connections to use the same techniques that are available for the
infrastructure layer. The network layer can be divided into sub-layers for
modeling the network details. For example, LAN and WAN connections
might be in separate layers.

The deployment layer specifies the run-time configuration in terms of
objects, processes, nodes, networks, etc. with deployment diagrams. This
layer can be described at different levels of detail. For example, at an
early stage of development, it may be useful to instantiate only the appli-

104 6 PERFORMANCE MODELING METHODOLOGY

cation objects. Later, when the effect of network traffic is investigated,
network layer objects might be added. Finally, a full model with all lay-
ers might be specified when the final system configuration needs to be
validated.

The proposed performance model structure reflects the layered archi-
tectures that are commonly used for designing and analyzing CORBA
based distributed systems [Käh98b]. A similar but less sophisticated lay-
ered performance model structure is discussed in [Wat97]. This approach
divides performance models into three submodels that loosely correspond
to our application, behavior, and deployment layers. A different model-
ing tool is used for each layer. In our case, it is assumed that all perform-
ance specification work is done with UML based tools and, conse-
quently, a more fine-grained layering can be used to reflect better the
structure of the target system.

6.3 Extending use cases for performance modeling

In our modeling framework, we exploit use case in two ways. On one
hand, performance requirements can be specified with use cases and, on
the other hand, the system workload can also be described with them.

Specifying performance requirements with use cases

The primary goal for use cases is to specify the functionality of the sys-
tem. However, use cases should also specify related non-functional re-
quirements, such as responsiveness, availability, accuracy, and recovery
time [Jac92]. Some of the non-functional requirements are performance
related and, hence, they can be used to validate the design and the actual
system at different stages of development. For this to be successful, two
conditions must be met. Performance related requirements must be

� Measurable and sufficiently detailed,
� Compatible with the metrics obtainable from the framework.

The first condition calls for detailed requirements like “the response time
for this interaction must be within 3 seconds in 90% of all cases and it
should never exceed 30 seconds”. See [Men94] for additional discussion.
The second condition says that requirements in user understandable met-
rics, or natural forecasting units (see [Smi90]), must be converted into
metrics that can be obtained from our framework. These metrics are

6.3 Extending use cases for performance modeling 105

� Average response times,
� Throughputs,
� Utilizations,
� Queue lengths.

Some of the above metrics, such as the queue length of a particular re-
source, are not provided directly by the method of decomposition, but
they can be easily obtained by applying Little’s law. If the requirements
are stated in natural forecasting units, the transformation may require ad-
ditional information, such as the measured or estimated distribution of
transaction types and other domain specific information.

Some performance requirements, especially those related to the over-
all throughput of the system, are not necessarily associated with any par-
ticular use case. Therefore, system analysts must explicitly look for such
requirements and deal with them appropriately. Sometimes system-wide
requirements can be converted into use case specific ones.

Describing workloads with use cases

If we wish to define system workloads with use cases, they must contain
relevant scalability factors that indicate the expected intensity of the in-
volved actions. Several issues need to be considered.

As a first step, it is important to identify use cases that are relevant for
the performance of the system and to concentrate on them. If a use case is
executed relatively seldom (e.g. a daily report) it should be left outside
consideration, unless it is executed during a performance sensitive time
period (e.g. during the nightly batch window).

Second, the correct scalability factors must be identified for the rele-
vant use cases. A choice must be made between open and closed work-
loads. For open workloads, only the arrival rate needs to be estimated and
the performance models tend to be relatively simple. For closed work-
loads, the expected number of users or workstations and the estimated
think time must be specified. The resulting models are often more com-
plex but the results may also be more accurate. It is possible to start mod-
eling with open workloads and turn them into closed ones when more in-
formation becomes available.

Third, workloads must be formed correctly from the relevant use
cases. The mapping between use cases and workloads is not necessarily
one-to-one. For example, the complexity of the involved operations may
force the analyst to describe a single logical sequence of actions with

106 6 PERFORMANCE MODELING METHODOLOGY

multiple use cases [Jac92, Jac98, Sou98]. When defining workloads for
the model, such use cases should be combined to form a single workload.

Fourth, conditional and iterative executions need special considera-
tion. If a use case has several alternative execution paths, the probabili-
ties for each path should be estimated and noted down. For iterative exe-
cutions, the average number of iterations should also be estimated.

6.4 Defining the software performance model

A software performance model is a high-level performance model of the
application software. It is used when there is little or no information on
the available infrastructure, hardware, or network. This way, developers
can have a coarse performance model of the system already at an early
stage of systems development. It must be borne in mind, however, that
the metrics obtained from such models are often optimistic due to the
missing elements.

In spite of the shortcomings caused by missing information, software
performance models can be used for several purposes. We briefly men-
tion three of them. First, the obtained metrics can be used to validate
software designs against performance requirements. Unfortunately, the
fact that the metrics at this stage are usually optimistic implies that some
unsuitable designs pass this first check. Second, the models can help to
identify critical elements in the application so that further modeling and
design efforts can be focused on those elements. Finally, the software
performance model provides a good starting point for building the system
performance model that yields more accurate performance estimates
when more design information is available.

A software performance model contains elements from the applica-
tion, interface, behavior, and deployment layers. We briefly discuss how
each layer can be obtained.

The application layer can be obtained from functional class diagrams
with a straightforward transformation. The designer must identify and
mark all resource classes representing software resources, as opposed to,
say, container classes for structuring the system or interface classes for
representing object capabilities. A distinction has to be made between
queuing and delay resources. For example, a single-threaded CORBA
object implementation is a queuing resource, while a multi-threaded im-
plementation is typically a delay resource since it avoids queuing by
spawning a new thread for each incoming operation request.

6.4 Defining the software performance model 107

An optional task is the transformation of the application layer class
diagrams into a format that better supports performance modeling. This
may involve, for example, the removal of classes that are estimated not to
be relevant for the performance of the system. This task simplifies later
performance modeling and may improve the accuracy of the estimates
but, as a side effect, it leads to separate class diagrams for the functional
and performance models.

The interface layer may be obtained in different ways. If there is an
IDL specification for the application interfaces, the complete interface
layer can be specified by converting the IDL specification into UML in-
terfaces and by equipping all operations with service demand estimates.
However, if no IDL specification is available, a minimal approach may
be taken by identifying those operations that are used at the behavior
layer and by listing them in application layer diagrams with service de-
mand estimates. As a result, the application and interface layers get
merged. In both cases, service demand estimates can be either deduced
from the operation descriptions, or they can be measured from a bench-
mark or a prototype. See [Jai91] for a discussion on making measure-
ments, [Smi90] for obtaining estimates by analyzing the software struc-
ture, and [Gra91] for using benchmarks.

There are two practical ways to represent service demands. In the first
approach, they are expressed directly by using the execution time that has
been obtained, say, from measurements made for a prototype system. The
advantage of this approach is the simplicity of interpreting the results
since the performance estimates are given in the same units as the meas-
urements. However, there may be differences in CPU speeds, CPU ar-
chitectures, hard disk access times, etc. As a result, the same operation
may have different service demands depending on its environment, and
this may lead to inaccuracies in the model. There are ways to solve this
difficulty at the infrastructure layer by using service demand binding (see
Section 6.5), but this layer is not typically used in the software perform-
ance model.

The second way to represent service demands is to use normalized
units to take into account differences in the hardware and software envi-
ronment. For example, we might normalize CPU demands into machine
cycles of a reference CPU. However, this approach complicates the inter-
pretation of the results for the software performance model, since the
obtained metrics must be converted back to environment-specific metrics
before they can be used. If the infrastructure layer is included into the
model, this conversion can be automated

108 6 PERFORMANCE MODELING METHODOLOGY

A related issue is the question of using one or several service demand
properties for a single operation. For example, there might be properties
for representing the time to execute the actual operation, the time to mar-
shal and demarshal the parameters, and time spent in the network. If the
service demands have been obtained by measuring the total execution
time of an operation in a prototype, it is usually better to have only one
service demand property that directly reflects the measurement. This
modeling style postpones the (usually inaccurate) decision that has to be
made on the time shares for each property. If the need arises, the total
execution time can be logically divided into several components at the in-
frastructure layer. However, if the service demands have been obtained
from multiple measurements or from a detailed analysis of the software
structure, it may be advisable to use several properties. This way, the
model captures all information that is available on the system.

The behavior layer is created from those use cases that are relevant for
the performance of the system. We assume that these use cases have been
extended appropriately as discussed in Section 6.3. The procedure is
straightforward: each step in the use case is converted into one or more
messages in a workload diagram. Delays that are external to the system,
such as think time or a call to an outside system, can be modeled either
with the thinktime property or with explicit delay resources. The resulting
workload diagrams must invoke only those operations that are available
at the interface layer. For conditional and iterative messages, the esti-
mated probabilities and repetition counts must be indicated at the work-
load diagram. If the service demand of a particular operation depends on
the workload, the collaboration diagram may contain service demand es-
timates that override those given at the interface layer. Finally, the esti-
mated arrival rates for open workloads, and the populations for closed
workloads must be copied from the relevant use cases to the workload
diagrams.

The deployment layer for the software performance model is needed to
make the model solvable. At this stage, however, the deployment layer
can be a simple object diagram without any information on the applica-
tion structure, infrastructure, hardware, or network. The essential thing is
to estimate the number of application level class instances.

In many cases, however, more information is available for building
the deployment layer. For example, the locality of objects may be known
with respect to other objects. In such cases, the deployment layer may
contain additional objects for indicating the relevant modeling elements,
such as processes, nodes, and networks. This information is used by the

6.5 Defining the system performance model 109

class resolution algorithm for mapping class-level invocations into object
accesses.

6.5 Defining the system performance model

A system performance model is a full performance model of the target
system. It contains all elements of the software performance model and
additional information on the execution environment, the software infra-
structure, the network, and the hardware. As a result, the model yields
more precise metrics that can be used for tasks that were not possible
with the software performance model. The system performance model
can be defined at multiple levels of accuracy depending on the available
information and on the goals of the modeling work. Hence, there may be
several system performance models for the same target system at differ-
ent stages of its lifetime.

The increased accuracy of system performance models makes them
suitable for a number of tasks that cannot be carried out satisfactorily
with software performance models. In particular, the metrics obtained
from the model can be used to perform a full check of the system design
against performance requirements. If the design does not meet the set re-
quirements, the model also gives information on the possible causes of
the problem. For example, an unsatisfactory response time may result
from software or hardware bottlenecks, or from the delays caused by too
many operation requests over the network. The former can be detected by
looking at the utilization of resources, and the latter by checking the time
share of network latency in the response time of a workload diagram.
Another possible use for a system performance model is capacity plan-
ning for an existing or a future system. The goal of capacity planning is
to predict the time in future when the system does not meet its perform-
ance goals due to increasing workloads, and to prevent this from hap-
pening in the most cost-effective way. See [Men94] and [Jai91] for ex-
tensive discussions.

A system performance model contains elements from all six layers.
The application, interface, and behavior layers are similar to those de-
fined for the software performance model. However, design decisions
concerning the infrastructure may affect the software design and entail
changes for the software performance model. For example, the designer
might choose a particular CORBA platform and decide to use the avail-
able OMG Naming Service for configuration management. As a result,

110 6 PERFORMANCE MODELING METHODOLOGY

the behavior of some application classes must be changed to use the
service. In addition, the objects that implement the Naming Service must
appear among application objects in order to be accessible by them in the
relevant collaboration diagrams.

The infrastructure layer models the software and hardware support
that is needed for running the applications. The infrastructure layer is
created by identifying software and hardware entities that are not part of
the application but may affect the performance of the system. This layer
commonly includes hardware resources, such as CPUs and hard disks,
software resources, such as ORB daemons and operating system services,
and elements for defining the software structure, such as processes,
nodes, and software component wrappers. The layer is defined with class
diagrams where the identified elements are represented by classes that
are nested according to their physical structure. For example, a PC based
workstation could be modeled with a node class that has attributes for
representing a CPU, a hard disk resource, a network adapter, and an ORB
daemon.

The influence of application activities on the infrastructure is modeled
with triggering properties and service demand binding. The former is
used for representing the side effects of messages passing between appli-
cation objects, and the latter is used for mapping the execution of appli-
cation operations into relevant hardware resources, such as the CPU and
the hard disk.

When service demand binding is used to map service demands from
the interface layer into the infrastructure layer, the effect of triggering
conditions must be taken into account. There are two cases to consider.
In the first case, the service demands indicate only the time to execute the
operations. In this case, the service demand can be mapped directly to the
infrastructure resource. In the second case, the service demand estimates
at the interface layer include both the time to execute the operation and
the infrastructure overhead. Such estimates can be obtained, for example,
from prototype measurements. In this case, the infrastructure overhead
(i.e. the service demand modeled by triggering conditions) must be sub-
tracted from the interface layer service demand before mapping the
service demand to the relevant hardware resource. Suppose, for example,
that we have measured service demands for all operations and we esti-
mate that the one-way communication delay is 0.5 ms. If the measured
execution time for a synchronous call is t ms, the correct service demand
for the CPU would be t – 1 ms. Figure 40 illustrates the infrastructure
layer for implementing this example.

6.5 Defining the system performance model 111

Additional problems arise from heterogeneous hardware and software.
A possible technique is to multiply service demands with a suitable factor
before they are bound to an infrastructure resource or used in triggering
properties. For example, if the service demand for the CPU resource has
been obtained from a 120 MHz Intel Pentium PC, an approximation for a
300 MHz machine could be obtained by multiplying the service demands
with the factor 120/300. This could be expressed with a binding property
d = 0.4 * cpu. To cope with such differences in the infrastructure, multi-
ple definitions for nodes and other infrastructure elements may be
needed. For example, there may be separate definitions for a 120 MHz
node and a 300 MHz one. Inheritance can be used to avoid the rewriting
of modeling elements that are common for both types of nodes.

The network layer is created in the same way as the infrastructure
layer except that the identified resources are now related to the network-
ing environment, and the structuring elements reflect the network topol-
ogy. The essential modeling techniques, such as triggering properties and
service demand binding, remain the same.

An additional issue has to be considered if network contention has an
important role for the performance of the system and the model needs to
be precise. MVA based performance analysis techniques are seldom suf-
ficient for modeling network communications accurately due to the small
set of available service time distributions, resource types, and scheduling
disciplines. Also, the workload specification techniques in the framework
are oriented towards software development and, consequently, they do
not provide enough information for specifying network traffic at the
protocol level. For example, to build a satisfactory model of an ATM

«connection»
LAN

{msgpeer=LANMsgpeer}

Latency : Delay

connection LAN {
 property msgpeer=LANMsgpeer;
 Latency : Delay;
};
collaboration LANMsgpeer {
 1: Latency() {d=0.5};
};

class CNode {
 Cpu : Queue {d=cpu-1};
};

CNode

Cpu : Queue {d=cpu–1}

LANMsgpeer

Latency :
Delay

1: {d=0.5}

Figure 40. Network delays are subtracted from the interface
layer service demands before mapping them to the CPU re-
source.

112 6 PERFORMANCE MODELING METHODOLOGY

switch, both the structure of the switch and the traffic patterns need to be
taken into account [Bey98, Dau99]. As a result, we may conclude that
our framework is not well suited for building detailed network communi-
cation models and, therefore, the modeling should be carried out with
techniques and tools that are outside the scope of this work. See, e.g.,
[Hav98] for a discussion on a number of available techniques.

If external techniques are used for modeling the communication net-
work, triggering properties and service demand binding provide a
straightforward way to incorporate the results of such models into the
system performance model. A special delay resource is first added to all
network connections that employ such externally estimated delays. We
describe two possible ways to use the added delay resources. On one
hand, if the delay is the same for all messages passing through particular
network connection, a triggering property can be used to invoke the delay
resource. As a result, the behavior layer remains unchanged. On the other
hand, if we want to have a message-by-message control over the delay,
we can use service demand binding and introduce an additional service
demand property for each message to indicate the correct delay. The
price of this technique is the added complexity in the behavior layer.
Sometimes, the metrics that are obtained from our framework can be fed
to the external communications model as input parameters. In such cases,
iteration may be needed to produce a combination of two models that
have a compatible set of results and input parameters.

An alternative technique for modeling externally estimated delays is
to extend the framework with load-dependent resources. In this approach,
the service demand of the external resource is first estimated separately
for different queue lengths, and a special load-dependent resource is then
introduced into the system performance model. This technique requires a
special version of the approximate MVA algorithm for handling load-de-
pendent resources [Men94].

In some cases, network delays may be several orders of magnitude
smaller than delays caused by software and hardware contention. This is
the case with many LAN based applications if the messages do not con-
tain large amounts of data, such as multimedia or large images. In such
cases, the network layer can be removed altogether and the network de-
lays can be included into the delays at the infrastructure layer.

The deployment layer is obtained by instantiating objects for the
classes that have been specified at the application, infrastructure, and
network layers. Possible objects include network connections, nodes,
processes, software components, and application specific objects. The lo-

6.6 Model validation 113

cation of objects is indicated by using composition in deployment dia-
grams. In some cases, the appropriate number of objects and their loca-
tions can be determined from use cases but, more often, there are various
configuration choices that the designer wishes to experiment with.

When experimenting with the different configuration choices, there
are a number of things that the designer can do with deployment dia-
grams. For example, he can change the multiplicity of class instances
provided that the class supports replication. He can also change the loca-
tion of class instances if the class is not tied to any physical entity. In ad-
dition, he can switch between the queue and delay attributes of CORBA
object implementations to experiment the effect of using a multi-threaded
implementation instead of a single-threaded implementation, or vice
versa. Moreover, he can add any new attributes to the instantiated re-
sources to experiment with new hardware or infrastructure configura-
tions. For example, a new CPU resource could be added to a node to ex-
periment the effect of using multi-processor servers. Finally, any class
specific properties can be overridden in the deployment diagram. For in-
stance, the effect of a different communication media can be experi-
mented by overriding the relevant triggering properties.

An additional check must be made to identify those resources that are
queuing resources in the technical sense but are only used by a single job
at a time and, therefore, do not impose queuing for their clients. For ex-
ample, there may be resources in a client application that are only used
by a single end user. To ensure that the model does not incorrectly im-
pose contention on such resources, they can be marked with the
singleuser property. In many cases, it is appropriate to mark all worksta-
tion nodes with the singleuser property.

6.6 Model validation

The validation of performance models is an essential part of software
performance engineering. It improves the accuracy of the model and in-
creases the developer’s understanding of the target system. We briefly
discuss three tasks that are related to the validation of performance mod-
els: instrumentation, testing against performance requirements, and
model calibration. We concentrate on issues that are specific to our
framework. More information on validation can be found, for example, in
[Men94] and [Jai91].

114 6 PERFORMANCE MODELING METHODOLOGY

In performance sensitive systems, application instrumentation is im-
portant for at least two reasons. On one hand, the metrics that can be ob-
tained from generic performance monitoring tools are seldom those that
are the most relevant for the system, such as the average response time of
a critical end user interaction. On the other hand, explicit software in-
strumentation allows designers to have full control over the measurement
process. This way, the system under test is affected minimally by the
measurement process, the results are more accurate, and they are easier to
interpret. The instrumentation of operations in IDL interfaces is relatively
easy in several CORBA implementations due to the available interceptor
mechanisms [Ion97, Inp99]. These mechanisms can be embedded into
CORBA interfaces without modifying the application code. There is an
ongoing initiative to include such interceptors into the CORBA specifi-
cation [OMG99c]. If the performance model has been constructed using
the guidelines in Section 6.4, our framework also produces response time
estimates for the operations in IDL specifications. We may conclude that
operations at IDL interfaces are good candidates for instrumentation.

The testing of CORBA based systems against performance require-
ments is particularly challenging due to the flexibility of the CORBA
platform. The available distribution transparencies support a large num-
ber of configuration choices. Therefore, the testing of a prototype or a
complete system should follow a rigorous methodology to avoid unnec-
essary work and erroneous conclusions. A naïve approach, where one
factor at a time is changed to see its impact on the performance, is un-
likely to succeed due to the complex interactions caused by the omni-
present middleware. A number of possible methodologies and test de-
signs are proposed in [Jai91].

The second problematic issue in the testing of CORBA based systems
is the black box approach adopted by many ORB vendors. The source
code of the ORB implementation is seldom available for detailed analy-
sis. The implementation’s threading policies, activation policies, sched-
uling disciplines, and other operational choices may strongly influence
the performance of the system – especially with a large number of con-
current clients and intense workloads [Sch98a, Lit98]. Unfortunately,
such effects may be difficult to predict only by reading the product’s
documentation. To cope with this problem, we suggest a two-phase test-
ing methodology. First, an initial set of experiments should be designed
and carried out for gaining an understanding of the system and the se-
lected middleware platform. Once the results of the first round have been
analyzed and the effect of the CORBA implementation has been under-

6.7 Relationship with software engineering 115

stood, a second round of experiments should be carried out to produce
the final test results that aim to validate the system against performance
requirements.

The calibration of performance models is particularly useful for ca-
pacity planning where the figures obtained from performance predictions
are directly used for decision making. Calibration means that the model
is changed to match with the actual system. It is possible to use all parts
of a performance model for calibration, but the infrastructure layer in our
framework is particularly well suited for this purpose. Minor changes at
the infrastructure layer can affect the behavior of the complete system. In
addition, the application logic remains unaffected by such changes.
Flowers and Dowdy discuss and compare a number of techniques for
calibrating queuing network models [Flo89].

In our framework, the key techniques for calibration are service de-
mand binding and triggering properties. Suppose, for example, that a per-
formance model yields shorter response times than the actual system and
we wish to calibrate the model by increasing our service demand esti-
mates, say, with 20%. This calibration can be implemented with a single
change in the model by using the factor 1.2 in the binding property that
maps service demands to the CPU resource. Triggering properties on the
other hand can be used for making modifications that are specific to a
particular resource. For example, if we suspect that a service implemen-
tation imposes excessive queuing due to internal concurrency control
mechanisms, we can add a special queuing resource and use triggering
properties to invoke this resource during each access to the service. This
way, the additional queuing at the service implementation is taken into
account with minimal changes to other parts of the model.

6.7 Relationship with software engineering

This section briefly discusses the relationship between our performance
modeling methodology and object-oriented software engineering. The
three first modeling activities, extending use cases, defining the software
performance model, and defining the system performance model, are di-
rectly connected to the requirements specification, analysis, and design
phases of systems development. The last modeling activity, validation, is
related to several phases.

If use cases are the primary tool for specifying system requirements,
the use case extension activities given in Section 6.3 are a natural exten-

116 6 PERFORMANCE MODELING METHODOLOGY

sion to the requirements specification phase. However, if use cases are
not employed for describing requirements, the information in use cases
should nevertheless be created for essential workloads. A possible tech-
nique is to use performance walkthroughs, as suggested by [Smi90], and
document the results with extended use cases that already contain the ad-
ditions required by the framework. After this, performance modeling can
proceed as usual.

Our methodology assumes the existence of two separate performance
models: the software performance model and the system performance
model. This separation reflects the practice of many object-oriented
methodologies to distinguish between analysis and design phases
[Boo94, Rum91, Jac92, Jac98]. The analysis phase creates a conceptual
model for the system so that its functionality can be described in a struc-
tured manner. The design phase in turn specifies an implementation-ori-
ented model that contains enough technical details for constructing the
system with the selected development tools and ready-made components.

The software performance model exploits the results of the analysis
phase for producing meaningful performance estimates that can assist in
validating and refining the analysis model. In some cases, however, in-
termediate software performance models can be created during the analy-
sis phase to provide guidance in analysis phase decisions. The goals of
our software performance model are close to those of the software exe-
cution model proposed by Smith [Smi90]. However, our approach yields
more accurate results as we propose to use queuing networks already at
this stage.

The system performance model in turn uses the results of the design
phase for providing an in-depth understanding of the performance as-
pects of the system, and for yielding accurate predictions for the final im-
plementation. However, it is also possible to build preliminary system
performance models during the design phase in order to validate a par-
ticular design decision or experiment with different alternatives.

Performance model validation is related to several phases in systems
development: instrumentation is part of implementation, performance
testing is part of overall system testing, and calibration often precedes
deployment. Validation may not be required for short-lived systems.
However, long-lived systems are likely to become targets for capacity
planning and, consequently, an accurate and validated performance
model is needed for them. Also, a need may arise to revise the function-
ality of the system, and it may be beneficial to validate the performance
model so that it can be used during the development of the new function-

6.8 Summary 117

ality. In some cases, it may be necessary to validate a performance model
before the actual system exists. This can be carried out with a prototype
implementation that represents performance sensitive elements of the
system with sufficient accuracy.

6.8 Summary

In this chapter, we have presented a methodology for supporting the
creation, refinement, and exploitation of performance models in the de-
velopment of CORBA based distributed systems. The methodology de-
fines a generic performance model structure that contains six layers for
representing system from different points of view. The layers are: the ap-
plication layer, the interface layer, the behavior layer, the infrastructure
layer, the network layer, and the deployment layer.

The methodology specifies four activities that can be performed at
various phases of systems development. The first activity extends use
cases for performance modeling purposes, and it is intended to take place
during requirements specification. The second activity produces the
software performance model based on information that is obtained during
the analysis phase. The third activity produces the system performance
model based on the detailed information produced by the design phase.
Finally, the fourth activity validates the model against the actual system
or a prototype. Its main purpose is to support capacity planning and fur-
ther development of the target system.

The main contribution of this chapter is to indicate how object-ori-
ented software engineering can proceed in parallel with performance en-
gineering practices. This involves resolving a fair amount of practical
details, and we have covered these details from the viewpoint of our own
performance modeling framework. The example in the next chapter il-
lustrates some of the issues in more detail.

119

Chapter 7

Experimental results

In this chapter, we present experimental results that we have obtained
from using the performance modeling framework. We first discuss our
tool prototype and point out additional needs for a full performance mod-
eling tool. Then, we present a case study where the framework has been
used extensively. The goal of the case study is to illustrate the frame-
work’s expressive power and outline possible ways to use the frame-
work’s modeling techniques.

7.1 Tool prototype

Performance engineering of complex software systems cannot be carried
out adequately without the support of suitable tools. In particular, tools
are needed for constructing performance models, for solving them, and
for presenting the results appropriately. Our prototype implementation
for an object-oriented performance modeling and analysis tool (OAT)
contains the following elements:

� A parser that reads PLM input files,
� An expander that generates AQN representations,
� A solver that solves the models with the MOD algorithm,
� An output module that presents the results.

The parser accepts one or more PML input files and creates an initial
tree-like representation of the complete model. In the prototype imple-
mentation, the goal is to concentrate on performance related features of
UML and, consequently, the tool only accepts PML input files. However,
a full implementation of the OAT tool should also accept the XML Meta-

120 7 EXPERIMENTAL RESULTS

model Interchange (XMI) format that has been specified as a means for
exchanging UML models between tools [OMG98b]. Since XMI is not
primarily intended to be readable by humans, this approach requires a
modeling tool for producing XMI files. Such functionality is currently
emerging in commercial modeling tools, but was not available at the time
of starting the OAT prototype development.

The expander converts the initial representation into the AQN repre-
sentation using the transformations described in Section 5.8. The model’s
static structure given by classes, interfaces, etc. is converted into a flat
representation consisting of resource objects with the relevant properties,
attributes, and operations attached to them. The model’s behavioral as-
pects given by collaboration diagrams are combined into one complex
collaboration diagram per workload.

The solver takes the AQN representation produced by the expander
and uses the MOD algorithm for solving the model. During the execution
of the MOD algorithm, the AQN model is decomposed into product-form
queuing networks and, for each network, a choice is made between the
exact MVA algorithm (Algorithm 1) and the Schweizer approximation
(Algorithm 3) depending on the execution cost. Hence, models with
small populations get more accurate treatment while models with large
populations are solved in a sufficiently short time. This adjustment is
compatible with the observation that the Schweizer approximation is
more accurate for large populations [Agr85, Men94].

The output module displays metrics for the solved AQNs. To illustrate
the tool’s output, we solve the network monitor example from Section
5.9. The tool’s report for the basic configuration with a single server
node is shown in Figure 41. The first section of the report summarizes
the utilization of resources. The second section displays the response
times, throughputs and the number of jobs in the system for each work-
load. In addition, this section also indicates how the response time of
each workload is divided between the resources. The last section gives a
detailed report of the expanded AQN representation and the average
times spent in each step. This section may get fairly complex since it
contains all infrastructure-level interactions embedded into the applica-
tion level workload diagrams. However, it also gives the possibility to
verify the correctness of the AQN representation, and it allows additional
metrics of interest to be derived.

An ideal output for the OAT tool would be a set of annotated UML
diagrams where workload specific metrics, such as response times and
throughputs, were embedded in behavioral diagrams and resource spe-

7.1 Tool prototype 121

Utilization Type Device
----------- ---- ------
0 % Delay MyLAN.Latency
53.3116 % Queue MyLAN.Server1.$CDatabase
67.7291 % Queue MyLAN.Server1.$CHandler
8.37806 % Queue MyLAN.Server1.$CReceiver
32.5002 % Queue MyLAN.Server1.Cpu
4.20001 % Delay MyLAN.Server1.Ctxswitch
40.0002 % Queue MyLAN.Server1.Disk

BgLoad

Resp.time: 132.338 Throughput: 0.001 Nbr.in system: 0.132338
Time share: 38.4263 % MyLAN.Server1.$CDatabase
 10.3279 % MyLAN.Server1.Cpu
 51.2458 % MyLAN.Server1.Disk

Jobs

Resp.time: 314.887 Throughput: 0.007 Nbr.in system: 2.20421
Time share: 1.81783 % MyLAN.Server1.$CDatabase
 62.4507 % MyLAN.Server1.$CHandler
 0.347649 % MyLAN.Server1.$CReceiver
 16.7913 % MyLAN.Server1.Cpu
 1.90545 % MyLAN.Server1.Ctxswitch
 16.6871 % MyLAN.Server1.Disk

collaboration BgLoad { // Throughput: 0.001
 property arrivalrate = 0.001; // Residence times
 1: GetActions() {d=0}; // 50.8526
 1.1: Cpu() {d=10}; // 13.6677
 1.2: Disk() {d=50}; // 67.8176
}; //*132.338

collaboration Jobs { // Throughput: 0.007
 property arrivalrate = 0.007; // Residence times
 1: ReceiveJob() {d=0}; // 1.0947
 1.1: Cpu() {d=10}; // 11.9684
 2: Ctxswitch() {d=2}; // 2
 3: AcceptJob() {d=0}; // 196.649
 3.1: Cpu() {d=5}; // 6.96839
 3.2: Ctxswitch() {d=2}; // 2
 3.3: GetActions() {d=0}; // 5.72412
 3.3.1: Cpu() {d=10}; // 11.9684
 3.3.2: Disk() {d=50}; // 52.5454
 3.4: Ctxswitch() {d=2}; // 2
 3.5: DoActions() {d=0}; // 1.34865e-005
 3.5.1: Cpu() {d=20}; // 21.9684
}; //*314.887

Figure 41. Example report from the OAT tool.

cific metrics, such as utilizations, were part of deployment diagrams (see
also [Woo98]). If the output is produced in the XMI format, the OAT
tool could be conveniently integrated with commercial graphical model-

122 7 EXPERIMENTAL RESULTS

7.2 Overview of the case study

The goal of this case study is to illustrate the use of the framework in
practical performance modeling work. On one hand, it provides an exam-
ple on how to model CORBA based applications and, on the other hand,
it indicates how some elements of the CORBA infrastructure can be
specified with the available modeling techniques. It is not our goal to cre-
ate a complete model for the target system or to produce a full perform-
ance analysis for it.

The target system of our case study is a reduced version of the TPC
Web Commerce Benchmark revision D-5.0 (TPC-W) as described in
[TPC99]. We have slightly changed the original design that assumes
HTTP communication between client and server nodes. In our approach,
remote communication is implemented with CORBA, but the functional-
ity of the system and all end user interactions are kept as close as possi-
ble to the original design. This way, we can retain the same primary met-
ric of interest: system throughput in terms of end user interactions per
second with a fixed number of clients. In addition, we show the average
response times for the interactions and the utilizations of the server CPU.

Graphical
modeling

tool

Diagrams in
XMI format

Annotated
diagrams in
XMI format

OAT

Full report in
text format

Figure 42. Tool integration through XMI files.

ing tools through standard XMI files. Figure 42 illustrates this possibility.
The graphical modeling tool would be used for specifying the perform-
ance models and for representing the results, while the OAT tool would
solve the models in the background.

An additional feature in the OAT tool could be support for perform-
ance requirements in UML diagrams. For example, a special property
could be used for indicating an upper bound for the average response
time for an interaction, and the tool could automatically produce a warn-
ing if this requirement is not met by a particular design.

7.3 The application layer 123

To keep the case study sufficiently small, we omit the transaction
processing part of the functionality and, hence, we assume zero service
demand for the actual operations that model the application functionality.
As a consequence, the performance model concentrates on the communi-
cation part of the system and on the activities that take place within the
infrastructure. This way, we can better validate the framework’s ability to
model CORBA based communication and the CORBA infrastructure.
Also, the selected approach gives interesting results on the products that
were used for the case study. It is possible to extend the model with
transaction processing and database management features by using tradi-
tional performance modeling techniques, such as those discussed in
[Smi90] and [Men94].

Our prototype system was implemented with the Java language using
the JBuilder 3.0 development environment and the Visibroker 3.4
CORBA platform from Inprise [Inp99]. The tests were carried out on two
PCs that were connected with a dedicated 10 Mbs Ethernet LAN. Both
PCs were running the Windows NT 4.0 operating system. The server
functionality was assigned to a relatively slow 120 MHz PC. This way,
the 400 MHz client PC was able to produce workloads that saturated the
server. A third PC was connected to the network for gathering metrics on
the other two PCs using the Windows NT performance monitor. This in-
formation proved to be particularly useful for understanding of the be-
havior of the infrastructure.

7.3 The application layer

The functionality of the application is defined in terms of 14 end user in-
teractions that are summarized in Table 2. All interactions have the same
overall structure that consists of three steps. First, a user initiates the in-
teraction by requesting an operation based on the outcome of the previ-
ous interaction. Second, the client application carries out the requested
action by making zero or more invocations to the server. Finally, the out-
come of the interaction is displayed to the user who has now the opportu-
nity to examine the results and to proceed to the next interaction.

The detailed descriptions of the interactions lead to eight application
level classes for the system. The CClient class represents the client side
application and it contains 14 operations for modeling the end user inter-
actions. The CShop class provides a starting point for the client applica-
tion when it starts looking for application objects at the server side. The

124 7 EXPERIMENTAL RESULTS

CProduct class represents products to be sold by the electronic com-
merce system. The CCustomer class represents end users that have cho-
sen to purchase one or more products. The CCart class represents shop-
ping carts that collect one or more product instances to be purchased by
the customers. The COrder class represents orders that have been placed
by customers The CGate class represents an interceptor that monitors
user actions once he has identified himself in order to purchase the con-
tents of a shopping cart. Finally, the CLog class represents a security log
where every relevant operation request is registered. A class diagram
with the above classes is shown in Figure 43. The associations in the dia-
gram indicate the most important relationships between the classes.

7.4 The interface layer

To implement the electronic commerce system with CORBA, an explicit
interface specification is needed. The application layer in the case study
is relatively simple and, consequently, it is possible to use a one-to-one
mapping between application classes and CORBA interfaces. Each class
in Figure 43 is simply transformed into an interface. The resulting IDL
file is listed in Appendix B.

Table 2. End user interactions in the electronic commerce system.

Interaction Share % Description
Admin confirm 0.09 Confirm price change for a product
Admin request 0.10 Ask for a product price change
Best sellers 11.00 Show 50 best selling products
Buy confirm 0.69 Confirm the order made by the user
Buy request 0.75 Ask credit card and shipping information
Customer reg. 0.82 Ask user data to allow order processing
Home 16.00 Display the home page
New products 11.00 Show 50 newest products
Order display 0.25 Display the last order of the user
Order inquiry 0.30 Ask the user’s identity to get his last order
Product detail 21.00 Display the details of a selected product
Search request 12.00 Ask product search criteria from the user
Search results 11.00 Display product search results
Shopping cart 2.00 Display the contents of the shopping cart

7.4 The interface layer 125

To obtain service demands for the operations in the IDL interfaces, we
implemented a simple baseline benchmark with a single client and with-
out any application logic. We used the code generation feature of the
JBuilder tool to create the client and server applications. The server ap-
plication consisted of CORBA object implementations representing each
of the classes at the application layer. These object implementations are
the actual application-level resources in the performance model. For each
operation, we added parameters and return values that were similar to
those proposed by the TPC-W specification. Also, the client application
was instrumented to obtain response times for the operation invocations.
Finally, we placed an adjustable think time between the invocations to
experiment the effect of different think times.

The baseline test was conducted 14 times with think time values that
ranged from 0 to 500 ms. We observed large variations in the baseline re-
sults. For example, the measurements for the SearchProduct operation
ranged from 17.47 ms to 29.89 ms. Since the baseline test did not contain
any application code, no disk activities were required, and there were no
other applications executing in the background, we assumed that the high

1

*

1

1
CClient

Home() {d=0}
NewProducts() {d=0}
BestSellers() {d=0}
ProductDetail() {d=0}
SearchRequest() {d=0}
SearchResults() {d=0}
ShoppingCart() {d=0}
CustomerReg() {d=0}
BuyRequest() {d=0}
BuyConfirm() {d=0}
OrderInquiry() {d=0}
OrderDisplay() {d=0}
AdminRequest() {d=0}
AdminConfirm() {d=0} CShop

SearchProduct() {d=17.47}
NewProducts() {d=17.90}
BestSellers() {d=18.01}
Promote() {d=3.80}
NewCart() {d=3.47}
GetCustomer() {d=3.23}
NewCustomer() {d=3.47}

CProduct

GetDetails() {d=3.02}
SetDetails() {d=3.66}
Delete() {d=2.27}

CCustomer

GetDetails() {d=3.06}
SetDetails() {d=3.29}
GetOrders() {d=2.94}
Delete() {d=2.64}

CCart

AddProduct() {d=4.10}
GetItems() {d=19.61}
Checkout() {d=2.97}
Delete() {d=1.93}

COrder

GetDetails() {d=5.04}
SetDetails() {d=10.31}
Process() {d=2.77}
Delete() {d=2.83}

1
*

*
1..*

1*

0..1

1

*

1*
1 0..*

CGate

GetCustomer() {d=0.61}
NewCustomer() {d=0.90}
SetCustDetails() {d=0.87}
GetCustDetails() {d=1.26}
GetOrders() {d=1.72}
Checkout() {d=1.45}
GetOrderDetails() {d=0.64}
SetOrderDetails() {d=0.87}
Process() {d=1.16}
SetProdDetails() {d=1.27}

CLog

Print() {d=0.41}

1
1

*

Figure 43. Class diagram for the electronic commerce system.

126 7 EXPERIMENTAL RESULTS

variation resulted from variable scheduling delays in the operating sys-
tem, in the Java virtual machine, and in the CORBA implementation.

We decided to use the minimum of the results instead of the mean
value. The idea was to eliminate the scheduling delays as much as possi-
ble, and to have a value that is fairly close to the actual execution time.
While our measurement technique was relatively inaccurate, the alterna-
tive methods, such as instrumenting the operating system, would have
been considerably more difficult to carry out. The obtained baseline re-
sults combine the network latency, the CPU time needed for parameter
handling and other middleware activities at both ends, and the time spent
in the network adapters. The results of the baseline measurements are
shown in Figure 43 in milliseconds.

7.5 The behavior layer

The TPC-W specification defines the behavior of the client application
with a transition probability matrix. It is used for selecting the next inter-
action after completing the previous one. We use the shopping matrix
representing a shopping scenario at an electronic commerce site. Table 2
shows the resulting share percentages for end user interactions.

The think time between interactions is specified in the TPC-W docu-
ment to have negative exponential distribution with the mean of 7 sec-
onds. Since our implementation does not execute any application code,
we executed our tests with the mean of 2 seconds to impose a higher
workload for the server node. For normal TPC-W benchmarks, this value
is used in the overload run for verifying the implementation’s capability
to withstand excessive workloads [TPC99].

Since each end user interaction contains only a few CORBA invoca-
tions, the behavior of the electronic commerce system can be modeled
with one workload diagram. The first nine interactions are illustrated in
Figure 44 and the last five are shown in Figure 45. The execution prob-
ability for each interaction is directly the share indicated by Table 2.

Several issues are worth noting in the workload diagram. First, we
have simplified the diagram by omitting invocations that are irrelevant
for the performance of the system. For example, new carts are created at
most once during a user session and, consequently, calls to the NewCart
operation have a minimal effect on performance. Such invocations can be
included into the diagram without affecting the performance metrics by
marking explicitly their execution probability to zero.

7.5 The behavior layer 127

The second observation concerns interactions that make no requests to
the server node (i.e. CustomerReg, OrderInquiry, and AdminRequest).
These interactions allow the user to enter data before proceeding to some
other interactions that actually involve server requests. The response
times for these interactions are effectively zero, but they have been in-
cluded into the model as they affect the primary metric of interest: the
average number of user interactions per second.

The third observation concerns the usability of the model in its current
state. We can produce a simple solvable model – the software perform-

CClient CShop CProduct CCustomer CCart COrder

[0.16] Home()

Promote()

NewProducts()

{population = 100}
{thinktime = 2000}

[0.17] ProductDetail() GetDetails()

[0.20] SearchRequest()

[0.116] ShoppingCart() AddProduct()

GetItems()

Promote()

Promote()

BestSellers()

Promote()

[0.05] BestSellers()

[0.05] NewProducts()

[0.17] SearchResults() Promote()

SearchProduct()

CLogCGate

Print()

Print()

Print()

Print()

Print()

Print()

[0.03] CustomerReg()

[0.026] BuyRequest()

Print()

GetCustomer()
GetCustomer()

Figure 44. The first nine interactions of the behavior layer.

128 7 EXPERIMENTAL RESULTS

ance model – by specifying an object diagram of eight objects. This
model is illustrated in Figure 46. In this form, the model represents a
system where each object implementation is running on a dedicated ma-
chine. In principle, it could be used for finding potential bottlenecks in
the application logic. However, since there is no application logic in our
reduced system, the obtained utilizations are highly optimistic and cannot
be used for such purposes.

Print()

CClient CShop CProduct CCustomer CCart COrder{population = 100}
{thinktime = 2000}

[0.012] BuyConfirm()

Checkout()

GetDetails()

[0.0075] OrderInquiry()

[0.0066] OrderDisplay()

GetOrders()

GetDetails()

[0.0010] AdminRequest()

[0.0009] AdminConfirm()

CLogCGate

Checkout()

Print()

GetOrderDetails()

Print()

Print()

SetDetails()

GetCustomer()

SetDetails()SetOrderDetails()

Print()

Process()Process()

Print()

GetCustomer()

GetOrders()

Print()

GetDetails()

Print()

SetDetails()

Figure 45. The last five interactions of the behavior layer.

7.6 The network and infrastructure layers 129

7.6 The network and infrastructure layers

The network and infrastructure layers are represented with a single set of
diagrams due to the simplicity of the networking environment. To get
more information for modeling the infrastructure layer, we carried out a
series of experiments with the baseline application. During these experi-
ments, we used the Windows NT performance monitor for obtaining
general-purpose metrics for the server node: the CPU utilization, the
number of threads in each server process, and the number of context
switches per second. The experiments gave us the following information:

� The number of threads at the server node grows linearly with the
number of concurrent clients,

� The number of context switches per time unit grows first linearly
with the number of concurrent clients. When the server node gets
congested and response times increase dramatically, the number of
context switches per time unit drops significantly.

� The utilization of the CPU never exceeded 35% even when the
server node seems to be congested and the response times are ex-
cessively high.

These observations suggest that context switching imposes a consider-
able queuing overhead for the server node (see also [Mic97]). Moreover,
it is clear that the CPU is not the only resource involved. A likely cause
for this phenomenon is the inappropriateness of PC-based hardware for
frequent context switching requiring large amounts of data to be moved
back and forth. Hence, we introduce a MemBus queuing device in each
node for modeling additional queuing that is related to context switching.
Finally, we include a Cpu queuing resource in each node.

ClientImpl :
Client
{delay}

ShopImpl :
CShop
{queue}

ProductImpl :
CProduct
{queue}

CustImpl :
CCustomer

{queue}

CartImpl :
CCart

{queue}

OrderImpl :
COrder
{queue}

LogImpl :
CLog

{queue}

GateImpl :
CGate
{queue}

Figure 46. Trivial configuration for the electronic commerce system.

130 7 EXPERIMENTAL RESULTS

To cope with different CPU speeds, we specify two separate classes,
CFastNode and CSlowNode, for modeling the client and server nodes. In
our simple example, the CFastNode class needs triggering properties for
outgoing invocations and incoming replies, while the CSlowNode class
requires triggering properties for incoming invocations, outgoing replies,
and message passing between objects within the same node. The service
demands that we obtained from the baseline test are normalized into ma-
chine cycles and divided evenly between the four triggering properties.
This way, we get service demand estimates for activities that take place
at both ends of the communication channel, such as the marshaling and
demarshaling of parameters and the use of communication services. For
example, the following service demand expression is obtained for the
Cpu resource in the fast client node for outgoing requests:

dd = d * 0.5 * 120/(120+400)

Property d is the measured service demand from the baseline test, and
property dd is the amount of service demand to be attributed to the Cpu
resource during an outgoing request.

CFastNode
{requestout=CNodeRequestout,

replyin=CNodeReplyin}

Cpu : Queue {ddd=cpu}
MemBus : Queue

CNodeRequestout

Cpu : Queue

1: {dd=d*0.5*120/(120+400)}

CSlowNode
{requestin=CNodeRequestin,

replyout=CNodeReplyout,
msgpeer=CNodeMsgpeer}

Cpu : Queue {ddd=cpu}
MemBus : Queue

CNodeRequestin

1: {dd=Main.prop.population*0.34}

2: {dd=7.55}

3: {dd=d*0.5*400/(120+400)}

MemBus : Queue

CNodeReplyout

Cpu : Queue

1: {dd=d*0.5*400/(120+400)}

CNodeReplyin

Cpu : Queue

1: {dd=d*0.5*120/(120+400)} Cpu : Queue

CNodeMsgpeer

Cpu : Queue

1: {dd=d*0.5}

Figure 47. The infrastructure layer for the electronic commerce system.

7.7 The deployment layer 131

To complete the infrastructure layer, we need service demand esti-
mates for invocation routing at the server node. These estimates are fairly
difficult to come by since we have no direct access to the responsible
system components, i.e. the operating system, the Java virtual machine,
and the CORBA implementation. Therefore, we make some rough ap-
proximations based on our experience with the baseline application. First,
we directly follow the observation indicating that the service demand for
the MemBus resource increases linearly with the number of concurrent
clients that directly corresponds to the number of threads in the server
node. Hence, we use the factor Main.prop.population in the service de-
mand expression for MemBus. Second, we assume that the service de-
mand for the CPU resource is constant for each incoming request.

Finally, to obtain appropriate scaling factors for the service demand
expressions, we carried out a series of experiments with a lightly loaded
server (20 concurrent clients) using the baseline application. We were
able to adjust the expressions so that the difference for the throughput, re-
sponse time and CPU utilization were less than 5% between the com-
puted values and the measurements. Figure 47 illustrates the resulting in-
frastructure layer. The adjusted service demand expressions for the Cpu
and the MemBus resources are in the CNodeRequestin package.

7.7 The deployment layer

The deployment layer for the electronic commerce benchmark is illus-
trated in Figure 48. The system has two nodes. The client node contains a
multi-threaded client application that simulates up to 100 simultaneous
end users accessing the electronic commerce system. The server node
contains five multi-threaded and two single-threaded CORBA object im-

ServerNode : CSlowNodeClientNode :
CFastNode

ClientImpl :
Client
{delay}

ShopImpl :
CShop
{delay}

ProductImpl :
CProduct

{delay}

CustImpl :
CCustomer

{delay}

CartImpl :
CCart
{delay}

OrderImpl :
COrder
{delay}

GateImpl :
CGate
{queue}

LogImpl :
CLog

{queue}

Figure 48. The deployment layer for the electronic commerce system.

132 7 EXPERIMENTAL RESULTS

plementations that are together responsible for the server side functional-
ity. Appendix C contains the complete PML representation of the model
shown in Figures 43 through 48.

7.8 Model validation

To validate the presented performance model, we conducted a series of
measurements with our benchmark application. The application directly
realizes the model described in Figures 43 through 48. To find the maxi-
mal throughput for the application, we let the number of concurrent cli-
ents vary between 10 and 100 with an increment of 10 clients.

The measured throughputs and the predictions from the model are il-
lustrated in Figure 49. The average response times for end user interac-
tions are shown in Figure 50, and the different utilizations for the server
CPU are illustrated in Figure 51. The model is able to predict the
throughput of the system reasonably well – the greatest difference be-
tween the measurement and the prediction is 18%. As for the two other
metrics of interest, the relative error stays mostly under 25%.

While the results are fairly satisfactory, it should be borne in mind that
the interactions in the system are relatively simple and similar to each
other. Most of them are simpy reading or updating the data store. There-
fore, it was a good choice to calibrate the model’s infrastructure layer
with a baseline application that was using similar simple interactions.
However, the predictive power of such a simple baseline test may be sig-

0

5

10

15

20

25

30

35

10 20 30 40 50 60 70 80 90 100

Number of clients

T
h

ro
u

g
h

p
u

t
[t

ra
n

sa
ct

io
n

s/
s]

Figure 49. Throughputs for the electronic commerce system.

Predicted

Measured

7.8 Model validation 133

nificantly inferior if the goal is to model a system that is based on more
complex interactions. For example, if the goal is to use CORBA for sup-
porting distributed technical calculations in a network, similar baseline
tests would probably not be sufficient for achieving the same accuracy of
results.

0

500

1000

1500

2000

2500

3000

10 20 30 40 50 60 70 80 90 100

Number of clients

A
ve

ra
g

e
re

sp
o

n
se

 t
im

e
[m

s]

Figure 50. Average response times for the electronic commerce system.

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

10 20 30 40 50 60 70 80 90 100

Number of clients

C
P

U
 U

ti
liz

at
io

n
 [

%
]

Figure 51. Server CPU utilization for the electronic commerce system.

Predicted

Measured

Predicted

Measured

134 7 EXPERIMENTAL RESULTS

7.9 Discussion

Our case study is fairly limited in scope, but some observations are still
in order. First, the proposed model for the electronic commerce system is
relatively simple but it gives a reasonably good picture of the target sys-
tem. This suggests that performance modeling is a feasible technique for
CORBA based distributed systems in spite of the additional complexities
caused by the middleware. The straightforward structure of the model
further encourages software engineers to exploit performance modeling,
since the models can be created and utilized without the explicit use of
heavy mathematical machinery.

Second, the UML diagrams that we used for presenting the perform-
ance model are relatively easy to read. Performance related additions are
given with simple properties attached to classes, operations, and dia-
grams. Due to the simplicity of the networking environment, it was not
even necessary to use the «connection» stereotype for describing the
structure of the network. This suggests that the expressive power of the
UML is sufficient for performance modeling, and the use of special per-
formance modeling notations is not necessary in normal software engi-
neering.

Third, the usability of the infrastructure layer is worth noting. It pro-
vides a flexible tool for modeling the performance aspects of the mid-
dleware, the operating system, and the hardware in a structured manner
with very little links to the application level. The complexity and accu-
racy of the infrastructure layer may range from a straightforward repre-
sentation of communication delays to a full model for the middleware,
operating system, and hardware. In our case, we used an abstract model
where a hypothetical MemBus resource represented queuing in those sys-
tem components that were beyond our access. The infrastructure layer is
also a good target for model calibration, since changes at this layer do not
distort the application level.

The fourth observation concerns the results for the target system. They
indicate that queuing for software and hardware resources is an essential
factor for the performance of CORBA based distributed systems, espe-
cially with a large number of simultaneous clients. Therefore, a simple
analysis of communication delays is not enough for ensuring the respon-
siveness of an application in large distributed systems, such as those used
in electronic commerce, telecommunications, and other similar domains.

7.10 Summary 135

7.10 Summary

In this chapter, we have discussed the practical aspect of our work. On
one hand, we have presented our tool prototype and, on the other hand,
we have described a case study illustrating the use of the modeling
framework.

Our tool prototype allows the specification of performance models
with PML, and this is sufficient for experimenting with the framework.
However, additional functionality is needed for actual software engi-
neering. In particular, graphical representation is needed both when cre-
ating the performance models and also when presenting the results. The
emerging XMI specification may help to provide this functionality in a
tool-independent way.

In the case study, we have created a performance model for a simple
electronic commerce system. We have also implemented a prototype for
the system and carried out measurements to validate the performance
model. The model was constructed using the methodology proposed in
Chapter 6, and it illustrates many of the modeling techniques presented in
Chapter 5. If we consider the simplicity of the model, the obtained results
were reasonably accurate – the relative error for throughput in the cali-
brated model was under 20% for the considered client populations. How-
ever, the most important result is the observation that our framework is
sufficient for modeling CORBA based distributed systems and, further-
more, the models are relatively easy to create and use.

137

Chapter 8

Conclusions

In this work, we have presented a performance modeling framework for
supporting the development and maintenance of CORBA based distrib-
uted systems. The framework contains five main elements. The first ele-
ment is a UML based notation for describing performance models in a
way that is familiar for software engineers. Performance related informa-
tion is added to UML diagrams with standard UML extension features.
The second element is a set of modeling techniques for constructing per-
formance models for distributed systems based on the CORBA platform.
These techniques allow models of complex distributed systems to be pre-
sented with a set of simple and understandable diagrams. The third ele-
ment is an algorithm for solving the models for a number of relevant per-
formance metrics, such as average response times, throughputs, utiliza-
tions, and queue lengths. The fourth element is a concise modeling meth-
odology that defines how to build the actual models and how to use them
in the context of object-oriented analysis and design methodologies. Its
primary contribution is to offer means for enhancing object-oriented soft-
ware engineering practices towards performance related issues. The fifth
element is an experimental tool that can automate some of the tasks im-
plied by the framework. In addition, we have illustrated the use of the
framework with a case study.

In Section 1.2, we stated four generic requirements for the framework.
The first requirement, automatic solvability, is satisfied due to the map-
ping from the UML based performance models into augmented queuing
networks that can be solved with the method of decomposition. The pro-
posed algorithm uses a number of approximations that may limit its us-
ability. However, experiences with the framework indicate that the re-
sults of the algorithm are sufficiently accurate to be used in software per-
formance engineering.

138 8 CONCLUSIONS

The second requirement, support for normal UML modeling style, is
satisfied for most diagram types since the framework mainly operates
through properties that can be attached to any UML element. However,
to ensure the solvability of the performance models, we impose a number
of limitations for them. For example, there is no support for spawning,
synchronizing, and killing threads. Also, the use of triggering properties
and related collaboration diagrams is a novel feature that slightly changes
the appearance of UML based models for complex systems.

The third requirement, clear distinction between different architectural
aspects of CORBA based distributed systems, is addressed by the layered
structure of the UML representation. Six layers are proposed: the appli-
cation, interface, behavior, infrastructure, network, and deployment lay-
ers. Only weak and non-restrictive links exist between modeling ele-
ments that belong to different layers. In particular, there is a clear dis-
tinction between elements that are part of the application logic and those
belonging to the supporting infrastructure.

The fourth requirement, support for incremental development, is ad-
dressed by the performance modeling methodology that suggests to con-
struct performance models on a layer-by-layer basis. Such models can be
solved at all stages of systems development since some of the layers,
such as the infrastructure and network layers, can be completely or par-
tially omitted.

In Section 2.5, we stated four technical goals that are related to the ar-
chitectural choices of the CORBA platform. The first goal, support for
hidden interactions, is satisfied by triggering properties and related trig-
gering diagrams. In some cases, service demand binding can also be used
to serve this need. The second goal, support for flexible changes in con-
figurations, has been achieved by defining a separate deployment layer
that can be specified independent of any other layer in the model. The
third goal, interface support, is directly implemented by the interface
layer. The last goal, support for heterogeneity, is satisfied by the layered
modeling style. In particular, high-level abstractions can be used at the
application layer so that heterogeneity is only visible at the infrastructure
layer. This way, the model for the application logic can be specified in-
dependent of any particular choice of hardware or system software. Also,
the use of inheritance allows heterogeneous elements to be specified in a
concise way. The example in Chapter 7 illustrates how these technical
goals can be reached in practical modeling work.

While the framework meets the set requirements, a number of limita-
tions and potential problems have also been observed. We briefly review

139

some of the limitations, and point out possible ways of removing them.
These limitations also lead to a number of interesting topics for further
research.

First, the use of the MVA algorithm for solving queuing network
models limits significantly the possible service time distributions, sched-
uling disciplines, and arrival rate distributions in the performance mod-
els. In addition, the obtained solutions do not indicate distributions for
the metrics. These limitations can be removed by using simulation, but
the cost of obtaining the results may become prohibitive for large sys-
tems. To alleviate this problem, special techniques can be used for con-
trolling the length of the simulation run while still meeting the set preci-
sion requirements [Raa95]. Another alternative is to use analytic tech-
niques for obtaining information on the resulting distributions [Raa89b,
Con89]. A possible solution is to combine several techniques, so that
rapid prototyping could be done with MVA based techniques while de-
tailed results could be obtained from simulation and analytic techniques
that yield information on the resulting distributions. It is also possible to
extend the method of decomposition with various approximation tech-
niques that support, for example, the modeling of job priorities and the
use of non-exponential service demand distributions for the FCFS sched-
uling discipline.

The second limitation and an additional item for further work is the
incomplete support for the UML in the current framework. On one hand,
there are limitations on the way some UML diagram types can be used
and, on the other hand, state and activity diagrams have been omitted
from the framework. Additional work is needed to align the framework
with the complete UML notation. It should be borne in mind, however,
that the ongoing UML 2.0 initiative and the emerging new UML profiles
may change the way performance-related elements are presented with
UML. A possible extension is also the support for stating performance
requirements in UML diagrams, so that a modeling tool could automati-
cally detect performance violations in the system design.

An interesting area of further research is the addition of a graphical
end user interface in our framework. On one hand, it could be used for
creating performance models and, on the other hand, it could also help in
visualizing the obtained performance metrics with annotated UML dia-
grams. One way to solve this problem is to provide an interface to an ex-
isting graphical tool through XMI files. However, it might also be useful
to experiment with a dedicated performance-oriented graphical tool in
order to fully exploit the possibilities of UML in performance modeling.

140 8 CONCLUSIONS

Finally, an important area of additional work is the extension of the
framework outside its original scope, namely CORBA-based distributed
systems and the UML. The proposed modeling techniques, perhaps with
some modifications and extensions, can be applied to other types of in-
formation systems, such as those based on the COM platform. Since the
proposed modeling techniques and the methodology are both based on
object-oriented concepts, future extensions of this work could lead to a
generic object-oriented performance modeling framework. Furthermore,
the proposed modeling techniques are relatively close to some non-UML
notations, such as message sequence charts defined by the ITU [ITU99]
(see [Har99] for a discussion). Hence, our performance modeling frame-
work could also be extended towards non-UML modeling techniques.

141

References

[Agr85] Agrawal, S.C., Metamodeling: A Study of Approximations in
Queuing Models, MIT Press, Cambridge, MA, USA, 1985.

[Bar76] Barbour, A.D., Networks of Queues and the Method of
Stages, Advances in Applied Probability 8, No. 3, 1976, 584-
591.

[Bar79] Bard, Y., Some extensions to multiclass queuing network
analysis, Performance of Computer Systems, Proceedings of
the 4th International Symposium on Modelling and Perform-
ance Evaluation of Computer Systems, North Holland, Am-
sterdam, 1979, 51-61.

[Bas75] Baskett, F., Chandy, K.M., Muntz, R.R., Palacios, F.G.,
Open, closed, and mixed networks of queues with different
classes of customers, Journal of the ACM, Vol. 22, No. 2,
April 1975, 248-260.

[BEA99] BEA Systems, BEA WebLogic Enterprise Getting Started,
Part Number 861-001001-003, Sunnyvale, CA, USA, 1999.

[Bey98] Beylot, A.-L., Becker, M., Performance analysis of multipath
ATM switches under correlated and uncorrelated IBP traffic
patterns, In: Körner, U., Nilsson, A. (Eds.), Performance of
Information and Communication Systems, Proceedings of the
Seventh IFIP TC 6/WG 6.3 International Conference of In-
formation and Communication Systems, Chapman & Hall,
Great Britain, 1998, 14-25.

[Boo94] Booch, G., Object-oriented Analysis and Design with Appli-
cations, 2nd edition, The Benjamin/Cummings Publishing
Company, Redwood City, CA, USA, 1994.

142 REFERENCES

[Cha75] Chandy, K.M., Herzog, U., Woo, L., Approximate Analysis
of General Queuing Networks, IBM Journal of Research and
Development, Vol. 19, No. 1, January 1975, 43-49.

[Cha82] Chandy, K.M., Neuse, D.N., Linearizer: A Heuristic Algo-
rithm for Queuing Network Models of Computing Systems,
Journal of the ACM, Vol. 25, No. 2, February 1982, 126-134.

[Con89] Conway, A.E., Georganas, N.D, Queuing Networks – Exact
Computational Algorithms: A Unified Theory Based on De-
composition and Aggregation, The MIT Press, Cambridge,
MA, USA, 1989.

[Cop96] Coplien, J., Schmidt, D. (Eds.), Pattern Languages of Pro-
gram Design, Addison-Wesley, Reading, MA, USA, 1994.

[Cox55] Cox, D.R., A Use of Complex Probabilities in the Theory of
Stochastic Processes, Proceedings of the Cambridge Philo-
sophical Society 51, 1955, 313-319.

[Dau99] Daut, D., Yu, M., Performance Modeling of a Multistage
Buffered ATM Switch with Bursty Traffic, In: Simon, R.,
Znati, T. (Eds.), Proceedings of the Communications Net-
works and Distributed Systems Modeling and Simulation
Conference (CNDS’99), The Society for Computer Simula-
tions International, San Diego, California, 1999, 165-172.

[DEC96] Digital Equipment Corporation, ObjectBroker – Designing
and Building Applications, Maynard, MA, USA, May 1996.

[Den78] Denning, P.J., Buzen, J.P., The Operational Analysis of
Queueing Network Models, Computing Surveys, Vol. 10,
No. 3, 1978, 225-261.

[Dou99] Douglass, B.P., Real-Time UML, Second Edition, Addison-
Wesley, Reading, MA, USA, 1999.

[Eid97] Eide, E., Frei, K., Ford, B., Lepreau, J., Lindstrom, G., Flick:
A Flexible, Optimizing IDL Compiler, In: Proceedings of the
ACM SIGPLAN ’97 Conference on Programming Language
Design and Implementation (PLDI’97), Las Vegas, Nevada,
June 1997, 44-56.

[Els98] El-Sayed, H., Cameron, D., Woodside, M., Automated Per-
formance Modeling from Scenarios and SDL Designs of

143

Telecom Systems, In: Proceedings of the International Sym-
posium of Software Engineering for Parallel and Distributed
Systems (PDSE98), Kyoto, April 1998.

[Eri98] Eriksson, H-E., Penker, M., UML Toolkit, John Wiley &
Sons, New York, 1998.

[Flo89] Flowers, J., Dowdy, L.W., A comparison of calibration tech-
niques for queuing network models, In: Proceedings of the
1989 CMG Conference, Reno, Nevada, December 1989, 644-
655.

[Gam94] Gamma, E., Helm, R., Johnson, R., Vlissides, J., Design Pat-
terns: elements of reusable object-oriented software,
Addison-Wesley, Reading, MA, USA, 1994.

[Gok96] Gokhale, A., Schmidt, D., Measuring the Performance of
Communication Middleware on High-Speed Networks, In:
Proceedings of the SIGCOMM Conference, Computer
Communication Review, Vol. 26, No. 4, October 1996, 306-
317.

[Gok97] Gokhale, A., Schmidt, D., Evaluating the Performance of
Demultiplexing Strategies for Real-time CORBA, Proceed-
ings of GLOBEGOM’97, Phoenix, Arizona, November 1997.

[Gok98a] Gokhale, A., Schmidt, D., Measuring and Optimizing
CORBA Latency and Scalability Over High-speed Networks,
IEEE Transactions on Computers, Vol. 47, No.4, April 1998,
391-413.

[Gok98b] Gokhale, A., Schmidt, D., Principles for Optimizing CORBA
Internet Inter-ORB Protocol Performance, In: Proceedings of
the 31th Hawaii International Conference on System Sciences,
Volume VII, Hawaii, USA, 1998.

[Gra91] Gray, Jim (Ed.), The Benchmark Handbook for Database and
Transaction Processing Systems, Morgan Kaufmann Publish-
ers, San Mateo, CA, USA, 1991.

[Har99] Harel, D., On the Behavior of Complex Object-Oriented
Systems, In: France, R., Rumpe, B. (Eds.), «UML»’99 – The
Unified Modeling Language, Beyond the Standard, LNCS
1723, Springer-Verlag, Berlin, Germany, 1999, 324-329.

144 REFERENCES

[Hav98] Haverkort, B.R., Performance of computer communication
systems: a model-based approach, John Wiley & Sons, New
York, NY, USA, 1998.

[Hei83] Heidelberger, P., Triverdi, K.S., Analytical Queuing Models
for Programs with Internal Concurrency, IEEE Transactions
on Computers, Vol. C-32, No. 1, January 1983, 73-82.

[Hei84] Heidelberger, P., Lavenberg, S., Computer performance
methodology, IEEE Transactions on Computers, Vol. C-33,
No. 12, December 1984, 1195-1220.

[Hel96] Hellemans, P., Steegmans, F., Vanderstraeten, H., Zuidweg,
H., Implementation of Hidden Concurrency in CORBA Cli-
ents, In: Spaniol, O., Linnhoff-Popien, C., Meyer, B., Trends
in Distributed Systems, CORBA and Beyond, LNCS 1161,
Springer-Verlag, Aachen, Germany, October 1996, 30-42.

[Inp99] Inprise Corporation, JBuilder 3.0 Documentation, Scotts
Valley, CA, USA, 1999.

[Ion97] IONA Technologies PLC, Orbix 2.3 Documentation, Dublin,
Ireland, 1997.

[ISO95] ISO/IEC, Open Distributed Processing – Reference Model –
Part 3: Architecture, International Standard IS10746-3, 1995.

[ITU99] International Telecommunication Union, ITU-T Recommen-
dation Z.120, Message Sequence Chart (MSC), 1999.

[Jac82] Jacobson, P.A., Lazowska, E.D., Analyzing Queuing Net-
works with Simultaneous Resource Possession, Communica-
tions of the ACM, Vol. 25, No. 2, February 1982, 142-151.

[Jac92] Jacobson, I., Christerson, M., Jonsson, P., Övergaard, G.,
Object-Oriented Software Engineering: A Use Case Driven
Approach, Addison-Wesley, Harlow, England, 1992.

[Jac98] Jacobson, I., Booch, G., Rumbaugh, J., The Unified Software
Development Process, Addison-Wesley, Reading, MA, USA,
1998.

[Jai91] Jain, R., The Art of Computer Systems Performance Analy-
sis: Techniques for Experimental Design, Measurement,
Simulation, and Modeling, John Wiley & Sons, New York,
NY, USA, 1991.

145

[Kel76] Kelly, F.P., Networks of queues, Advances in Applied Prob-
ability 8, No. 2, 1976, 416-432.

[Käh98a] Kähkipuro, P., A survey of techniques and guidelines for im-
proving the performance of CORBA-based distributed sys-
tems, In: Ilkka Niemelä (Ed.), Proceedings of the HeCSE
Workshop on Emerging Technologies in Distributed Sys-
tems, Research Report A 50, Digital Systems Laboratory,
Helsinki University of Technology, 1998, 23-32.

[Käh98b] Kähkipuro, P., Object-Oriented Middleware for Distributed
Systems, Licentiate Thesis, Report C-1998-43, Department
of Computer Science, University of Helsinki, Finland, 1998.

[Käh99a] Kähkipuro, P., The Method of Decomposition for Analyzing
Queuing Networks with Simultaneous Resource Possessions,
In: Simon, R., Znati, T. (Eds.), Proceedings of the Communi-
cations Networks and Distributed Systems Modeling and
Simulation Conference (CNDS’99), The Society for Com-
puter Simulations International, San Diego, California, 1999.

[Käh99b] Kähkipuro, P., UML Based Performance Modeling Frame-
work for Object-Oriented Distributed Systems, In: France,
R., Rumpe, B. (Eds.), «UML»’99 – The Unified Modeling
Language, Beyond the Standard, LNCS 1723, Springer-Ver-
lag, Berlin, Germany, 1999, 356-371.

[Käh99c] Kähkipuro, P., Reference Guide for the Performance Model-
ing Language, The CORBA-FORTE Project, Department of
Computer Science, University of Helsinki, 1999.

[Lit61] Little, J.D.C., A proof of the queuing formula: L = λW, Op-
erations Research, Vol. 9, 1961, 383-387.

[Lit98] Litoiu, M., Rolia, J., Serazzi, G., Designing Process Replica-
tion and Threading Policies: A Quantitative Approach, In:
Puigjaner, R., Savino, N., Sera, B. (Eds.), 10th International
Conference on Modelling Techniques and Tools for Com-
puter Performance Evaluation (Tools’98), LNCS 1469,
Springer-Verlag, Berlin, Germany, 1998, 15-26.

[Maf97] Maffeis, S., Schmidt, D., Constructing Reliable Distributed
Communication Systems with CORBA, IEEE Communica-
tions Magazine, Vol. 35, No. 2, February 1997, 56-60.

146 REFERENCES

[Mar94] Martinka, J., Friedrich, R., Sienknecht, T., Murky Transpar-
encies: Clarity using Performance Engineering, In: Raymond,
K., and Armstrong, L. (Eds.), Open Distributed Processing –
Experiences with distributed environments, Proceedings of
the third IFIP TC 6/WG 6.1 international conference on open
distributed processing, Chapman & Hall, Great Britain, 1994,
507-510.

[Men94] Menascé, D.A., Almeida, V.A.F., Dowdy, L.W., Capacity
Planning and Performance Modeling, Prentice Hall,
Englewood Cliffs, NJ, USA, 1994.

[Mes94] Meszaros, Gerard, Pattern: Half-object + Protocol (HOPP),
In: Coplien, J., Schmidt, D. (Eds.) Pattern Languages of Pro-
gram Design, Addison-Wesley, Reading, MA, USA, 1994.

[Mic97] Microsoft Corporation, Microsoft Visual C++ Version 5.0
Professional Edition, Redmond, WA, USA, 1997.

[Mic98] Microsoft Corporation, Microsoft Component Services,
Server Operating System – A Technical Overview, Redmond,
WA, USA, 1998.

[MLC98] MLC Systeme, Charles University, CORBA Comparison
Project – Final Project Report, MLC Systeme GmbH, Rat-
tingen, Germany, Department of Software Engineering, Fac-
ulty of Mathematics and Physics, Charles University, Prague,
Czech Republic, 1998.

[Mow97] Mowbray, T., Malveau, R., CORBA Design Patterns, John
Wiley & Sons, Inc., New York, USA, 1997.

[OMG92] Object Management Group, Soley, R.M. (Ed.), Object Man-
agement Architecture Guide, OMG TC Document 92.11.1,
Revision 2.0, John Wiley & Sons, New York, USA, 1992.

[OMG98a] Object Management Group, CORBAservices: Common Ob-
ject Services Specification, OMG TC Document formal/98-
12-09, Framingham, MA, USA, 1998.

[OMG98b] Object Management Group, XML Metadata Interchange
(XMI), OMG TC Document ad/98-10-05, Framingham, MA,
USA, 1998.

147

[OMG98c] Object Management Group, White Paper on Wireless Access
and Terminal Mobility in CORBA, OMG TC Document tele-
com/98-11-09, Framingham, MA, USA, 1999.

[OMG99a] Object Management Group, White Paper on Benchmarking,
Version 1.0, OMG TC Document bench/99-12-01, Framing-
ham, MA, USA, 1999.

[OMG99b] Object Management Group, A Human-Usable Textual Nota-
tion for the UML Profile for EDOC, Request for Proposal,
OMG TC Document ad/99-03-12, Framingham, MA, USA,
1999.

[OMG99c] Object Management Group, Portable Interceptors, Joint Re-
vised Submission, OMG TC Document orbos/99-12-02, Fra-
mingham, MA, USA, 1999.

[OMG99d] Object Management Group, The Common Object Request
Broker: Architecture and Specification, Minor revision 2.3.1,
OMG TC Document formal/99-10-07, Framingham, MA,
USA, 1999.

[OMG99e] Object Management Group, Notification Service, OMG TC
Document telecom/99-07-01, Framingham, MA, USA, 1999.

[OMG99f] Object Management Group, CORBA Messaging, OMG TC
Document orbos/98-05-05, Framingham, MA, USA, 1999.

[OMG99g] Object Management Group, Real-Time CORBA, OMG TC
Document orbos/99-02-12, Framingham, MA, USA, 1999.

[OMG99h] Object Management Group, CORBA Components – Volume
I, OMG TC Document orbos/99-07-01, Framingham, MA,
USA, 1999.

[OMG99i] Object Management Group, UML Profile for Scheduling,
Performance, and Time, Request for Proposal, OMG TC
Document ad/99-03-13, Framingham, MA, USA, 1999.

[OMG99j] Object Management Group, UML 2.0 Request for Informa-
tion, Version 1.0, OMG TC Document ad/99-08-08,
Framingham, MA, USA, 1999.

[Pet99] Petriu, D.C., Wang, X., From UML description of high-level
software architecture to LQN performance models, In: Inter-
national Workshop on Applications of Graph Transformation

148 REFERENCES

with Industrial Relevance, AGTIVE’99, Monastery Rolduc,
Kerkrade, The Netherlands, September 1-3, 1999, to appear
in Lecture Notes in Computer Science, Springer, 2000.

[Poo99] Pooley, R., King, P., The unified modeling language and per-
formance engineering, IEE Proceedings Software, Vol. 146,
No. 1, February 1999, 2-10.

[Raa89a] Raatikainen, K.E.E., Modelling and Analysis Techniques for
Capacity Planning, Ph.D. Thesis, Report A-1989-6, Depart-
ment of Computer Science, University of Helsinki, 1989.

[Raa89b] Raatikainen, K.E.E., Approximating Response Time Distri-
butions, In: ACM SIGMETRICS and Performance 89 Inter-
national Conference on Measurement and Modeling of Com-
puter Systems, Performance evaluation review, Vol. 17, No.
1, 1989, 190-199.

[Raa95] Raatikainen, K.E.E., Simulation-Based Estimation of Pro-
portions, Management Science, Vol. 41, No. 4, July 1995,
1202-1223.

[Ram98] Ramesh, S., Perros, H.G., A Multi-Layer Client-Server
Queueing Network Model with Synchronous and Asynchro-
nous Messages, In: Proceedings of the First International
Workshop on Software and Performance WOSP 98, ACM,
New York, NY, USA, 1998, 107-119.

[Rat97] Rational Software Corporation, Unified Modeling Language
Documentation, version 1.1, Cupertino, CA, USA, 1997.

[Rei80] Reiser, M., Lavenberg, S., Mean-Value Analysis of Closed
Multichain Queuing Networks, Journal of the ACM, Vol. 27,
No. 2, April 1980, 313-322.

[Rev96] Reverbel, F., Persistence in Distributed Object Systems:
ORB/ODBMS Integration, Ph.D. Dissertation, University of
New Mexico, USA, 1996.

[Rol92] Rolia, J.A., Predicting the Performance of Software Systems,
Ph.D. Thesis, Technical Report CSRI-260, Computer Sys-
tems Research Institute, University of Toronto, Canada,
1992.

149

[Rol95] Rolia, J.A., Sevcik, K.C., The Method of Layers, IEEE
Transactions on Software Engineering, Vol. 21, No. 8,
August 1995, 689-699.

[Rum91] Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., Loren-
sen, W., Object-Oriented Modeling and Design, Prentice
Hall, Englewood Cliffs, NJ, USA, 1991.

[Rum99] Rumbaugh, J., Jacobson, I., Booch, G., The Unified Model-
ing Language Reference Manual, Addison-Wesley, Reading,
MA, USA, 1999.

[Sch97] Schmidt, D., Gokhale, A., Harrison, T., Parulkar, G., A High-
Performance End System Architecture for Real-Time
CORBA, IEEE Communications Magazine, Vol. 35, No. 2,
February 1997, 72-77.

[Sch98a] Schmidt, D., Evaluating Architectures for Multi-threaded
CORBA Object Request Brokers, Communications of the
ACM, Vol. 41, No. 10, October 1998, 54-60.

[Sch98b] Schmidt, D., Levine, D., Mungee, S., The design of the TAO
real-time object request broker, Computer Communications,
Vol. 21, No.4, 1998, 294-324.

[Sev77] Sevcik, K., Priority Scheduling Disciplines in Queuing Net-
work Models of Computer Systems, In: Proceedings of IFIP
Congress 77, North-Holland, Amsterdam 1977, 565-570.

[Sev81] Sevcik, K., Mitrani, I., The distribution of queuing network
states at input and output instants, Journal of the ACM, Vol.
28, No. 2, April 1981, 358-371.

[Sho98] Shousha, C., Petriu, D., Jalnapurkar, A., Ngo, K., Applying
Performance Modeling to a Telecommunication System, In:
Proceedings of the First International Workshop on Software
and Performance WOSP 98, ACM, New York, NY, USA,
1998, 1-6.

[Shu77] Shum, A.W., Buzen, J.P., The EFP Technique: A Method for
Obtaining Approximate Solutions to Closed Queuing Net-
works with General Service Times, In: Beilner H., Gelenbe
E. (Eds.), Third International Symposium on Measuring,
modelling and evaluating computer systems, Bonn-Bad Go-
desberg, North Holland, Amsterdam 1977, 201-220.

150 REFERENCES

[Sil90] de Souza e Silva, E., Munz, R.R., A Note on the Computa-
tional Cost of the Linearizer Algorithm for Queuing Net-
works, IEEE Transactions on Computers, Vol. 39, No. 6,
June 1990, 840-842.

[Sla99] Slama, D., Garbis, J., Russell, P., Enterprise CORBA, Pren-
tice Hall, Upper Saddle River, NJ, USA, 1999.

[Smi90] Smith, C.U, Performance Engineering of Software Systems,
Addison-Wesley, Reading, MA, USA, 1990.

[Smi97] Smith, C.U., Williams, L.G., Performance engineering
evaluation of object-oriented systems with SPE.ED, In:
Marie, R., Plateau, B., Calzarossa, M., Rubino, G. (Eds.),
Computer Performance Evaluation – Modeling Techniques
and Tools, LNCS 1245, Springer-Verlag, Berlin, Germany,
1997, 135-154.

[Sou98] D’Souza, D.F., Wills, A.C., Objects, Components, and
Frameworks with UML: the Catalysis Approach, Addison-
Wesley, Reading, MA, 1998.

[Ste98] Steppler, M., Performance Analysis of Communications
Systems Formally Specified in SDL, In: Proceedings of the
First International Workshop on Software and Performance
WOSP 98, ACM, New York, NY, USA, 1998, 49-62.

[Sun99] Sun Microsystems, Java Development Kit Documentation,
JDK 1.2, Palo Alto, CA, USA, 1999.

[TPC99] Transaction Processing Performance Council (TPC), TPC
Benchmark W (Web Commerce), Revision D-5.0, TPC, San
Jose, CA, USA, 1999.

[Utt97] Utton, P., Hill, B., Performance Prediction: An Industry Per-
spective, In: Marie, R., Plateau, B., Calzarossa, M., Rubino,
G. (Eds.), Computer Performance Evaluation – Modeling
Techniques and Tools, LNCS 1245, Springer-Verlag, Berlin,
Germany, 1997, 1-5.

[Wat97] Waters, G., Linington, P., Akehurst, D., Symes, A., Commu-
nications software performance prediction, In: Kouvatsos, D.
(Ed.), 13th UK Workshop on Performance Engineering of
Computer and Telecommunication Systems, Ilkley, West

151

Yorkshire, BCS Performance Engineering Specialist Group,
1997, 38/1-38/9.

[Woo95] Woodside, C.M., Neilson, J.E., Petriu, D.C., Majumdar, S.,
The Stochastic Rendezvous Network Model for Performance
of Synchronous Client-Server-like Distributed Software,
IEEE Transactions of Computers, Vol. 44, No. 1, January
1995, 20-34.

[Woo98] Woodside, M., Hrischuk, C., Selic, B., Bayarov, S., A Wide-
band Approach to Integrating Performance Prediction into a
Software Design Environment, In: Proceedings of the First
International Workshop on Software and Performance
(WOSP’98), ACM, New York, NY, USA, 1998.

[Zie96] Zielinski, K., Uszok, A., Steinder, M., Crossing Technologi-
cal Domains Using the Inter-ORB Request Level Bridge –
Preliminary Performance Study, In: Spaniol, O., Linnhoff-
Popien, C., Meyer, B., Trends in Distributed Systems,
CORBA and Beyond, LNCS 1161, Springer-Verlag, Aachen,
Germany, October 1996, 148-161.

153

Appendix A

Abstract grammar for the PML notation

The following symbols are used in the definitions of the PML grammar:

* The preceding element can appear zero or more times
+ The preceding element must appear at least once
() Parentheses are used for grouping
[] Optional elements are enclosed in square brackets
| Vertical bars separate alternative elements
" " Quotes enclose terminals that must appear exactly as written
... A long list may be abbreviated with ellipsis.

specification ::= package-body

package ::= "package" package-name "{" package-body "}" ";"

package-body ::= (package | class | collaboration | instance |
property)*

package-name ::= identifier

class ::= class-keyword class-name "{" class-body "}" ";"

class-body ::= property* realization* inheritance* attribute*
operation*

class-keyword ::= "class" | "actor" | "node" | "connection" | "interface"

class-name ::= identifier

property ::= "property" tagged-value ("," tagged-value)* ";"

realization ::= "realizes" interface-name ("," interface-name)* ";"

154 A ABSTRACT GRAMMAR FOR THE PML NOTATION

interface-name ::= identifier

inheritance ::= "inherits" class-name ("," class-name)* ";"

attribute ::= attribute-name ["[" multiplicity "]"] ":" class-name
[properties] ";"

attribute-name ::= identifier

multiplicity ::= intconst

properties ::= "{" [tagged-value ("," tagged-value)*] "}"

operation ::= operation-name "(" ")" [properties] ";"

operation-name ::= identifier

collaboration ::= "collaboration" coll-name "{" coll-body "}" ";"

coll-body ::= property* message*

coll-name ::= identifier

message ::= ["[" multiplier "]"] sequence ":" target-name "(" ")"
[properties] ";"

multiplier ::= Floatconst

sequence ::= intconst ("." intconst)*

target-name ::= identifier ("." identifier)*

instance ::= [instance-name] ["[" multiplicity "]"] ":" class-name
["{"instance-body"}"] ";"

instance-body ::= property* (instance-name ";" | instance)*

instance-name ::= identifier

tagged-value ::= tag-name ["=" value]

tag-name ::= identifier

value ::= expression | identifier

expression ::= term (("+" | "-") term)*

term ::= factor (("*" | "/") factor)*

factor ::= "(" expression ")" | floatconst | identifier

intconst ::= digit+

155

floatconst ::= [sign] digit* ["." digit+] [("e" | "E") [sign] digit+]

sign ::= "+" | "-"

identifier ::= letter (letter | digit)*

letter ::= "a" | ... | "z" | "A" | ... | "Z" | "_"

digit ::= "0" | ... | "9"

157

Appendix B

IDL specification for the electronic
commerce system

module Ecom {
 interface Shop;
 interface Product;
 interface Customer;
 interface Cart;
 interface Order;
 interface Log;
 interface Gate;

 // Exceptions for order processing
 exception AlreadyProcessed{};
 exception InvalidOrder{};
 exception NoItemsInCart{};

 // Search result
 struct SearchResult {
 string author; // Author name
 string title; // Product title
 Product item; // Actual product
 };
 typedef sequence<SearchResult> SearchResultList;

 // List of items in a cart/order
 struct Item {
 Product item; // Actual product
 string title; // Product title
 long cost; // Price in cents
 long srp; // List price in cents
 string backing; // Paper or hardback
 long qty; // Quantity
 string comment; // Comment
 };

158 B IDL SPECIFICATION FOR THE ELECTRONIC COMMERCE SYSTEM

 typedef sequence<Item> ItemList;

 // Product details
 struct ProductDetails {
 long productid; // Product id
 string title; // Product title
 string fname; // Author’s first name
 string lname; // Author’s last name
 string pubdate; // Publication date
 string publisher; // Published
 string subject; // Product’s subject
 string desc; // Description
 long cost; // Price in cents
 long srp; // List price in cents
 string avail; // Availability date
 string isbn; // ISBN number
 long pages; // Number of pages
 string backing; // Paper or hardback
 string dimension; // Book dimensions
 };

 // Customer details
 struct CustomerDetails {
 long customerid; // Customer id
 string fname; // First name
 string lname; // Last name
 string street1; // Street
 string street2; // Street
 string city; // City
 string state; // State
 string zip; // Zip code
 string country; // Country
 string phone; // Phone number
 string email; // Email address
 string birthdate; // Birthdate
 string data; // Notes
 };

 // Order details
 struct OrderDetails {
 long orderid; // Order id
 string orderdate; // Date of order
 string shipdate; // Date of shipment
 string status; // Shipment status
 Customer buyer; // Customer
 ItemList items; // Items and quantities
 string shipping; // Shipping method
 long subtotal; // Sum of prices

159

 long tax; // Tax
 long shipcost; // Shipping and handling
 long total; // Total
 string cctype; // Credit card type
 string ccname; // Credit card name
 string ccnumber; // Credit card number
 string ccexpiry; // Credit card expiry
 string ship_street1; // Shipping street
 string ship_street2; // Shipping street
 string ship_city; // Shipping city
 string ship_state; // Shipping state
 string ship_zip; // Shipping zip code
 string ship_country; // Shipping country
 };

 // List of orders
 typedef sequence<Order> OrderList;

 // Manages multiple shops
 interface ShopManager {
 Shop GetShop();
 long Register(in Shop s);
 void Unregister(in long shopkey);
 };

 // Home interface for a shop
 interface Shop {
 void SearchProduct(in string type,
 in string key,
 out SearchResultList srl);
 void NewProducts(in string subject,
 out SearchResultList srl);
 void BestSellers(in string subject,
 out SearchResultList srl);
 void Promote(in Product item,
 out SearchResultList srl);
 Cart NewCart();
 Customer GetCustomer(in string uname,
 in string passwd);
 Customer NewCustomer();
 Log GetLog();
 Gate GetGate();
 };

 // Product
 interface Product {
 ProductDetails GetDetails();
 void SetDetails(in ProductDetails dets);

160 B IDL SPECIFICATION FOR THE ELECTRONIC COMMERCE SYSTEM

 void Delete();
 };

 // Customer
 interface Customer {
 CustomerDetails GetDetails();
 void SetDetails(in CustomerDetails dets);
 void GetOrders(out OrderList ol);
 void Delete();
 };

 // Shopping cart
 interface Cart {
 void AddProduct(in long qty, in Product item);
 void GetItems(out ItemList items);
 Order Checkout()
 raises (NoItemsInCart);
 void Delete();
 };

 // Order
 interface Order {
 OrderDetails GetDetails();
 void SetDetails(in OrderDetails dets)
 raises (AlreadyProcessed);
 void Process()
 raises (AlreadyProcessed,InvalidOrder);
 void Delete()
 raises (AlreadyProcessed);
 };

 // Log
 interface Log {
 void Print(in string line);
 };

 // Gatekeeper for secure actions
 interface Gate {
 // Shop operations
 Customer GetCustomer(in Shop sh, in string uname,
 in string passwd);
 Customer NewCustomer(in Shop sh);
 // Customer operations
 void SetCustomerDetails(in Customer cust,
 in CustomerDetails dets);
 CustomerDetails GetCustomerDetails(in Customer cust);
 void GetOrders(in Customer cust, out OrderList ol);
 // Cart operations

161

 Order Checkout(in Cart crt) raises (NoItemsInCart);
 // Order operations
 OrderDetails GetOrderDetails(in Order ord);
 void SetOrderDetails(in Order ord,
 in OrderDetails dets)
 raises (AlreadyProcessed);
 void Process(in Order ord)
 raises (AlreadyProcessed,InvalidOrder);
 // Product
 void SetProductDetails(in Product prod,
 in ProductDetails dets);
 };
};

163

Appendix C

PML specification for the electronic
commerce system

// Application and interface layers
class CClient {
 property delay;
 Home() {d = 0};
 NewProducts() {d = 0};
 BestSellers() {d = 0};
 ProductDetail() {d = 0};
 SearchRequest() {d = 0};
 SearchResults() {d = 0};
 ShoppingCart() {d = 0};
 CustomerReg() {d = 0};
 BuyRequest() {d = 0};
 BuyConfirm() {d = 0};
 OrderInquiry() {d = 0};
 OrderDisplay() {d = 0};
 AdminRequest() {d = 0};
 AdminConfirm() {d = 0};
};

class CShop {
 property delay;
 SearchProduct() {d = 17.47};
 NewProducts() {d = 17.90};
 BestSellers() {d = 18.01};
 Promote() {d = 3.80};
 NewCart() {d = 3.47};
 GetCustomer() {d = 3.23};
 NewCustomer() {d = 3.47};
};

class CProduct {
 property delay;

164 C PML SPECIFICATION FOR THE ELECTRONIC COMMERCE SYSTEM

 GetDetails() {d = 3.02};
 SetDetails() {d = 3.66};
 Delete() {d = 2.27};
};

class CCustomer {
 property delay;
 GetDetails() {d = 3.06};
 SetDetails() {d = 3.29};
 GetOrders() {d = 2.94};
 Delete() {d = 2.64};
};

class CCart {
 property delay;
 AddProduct() {d = 4.10};
 GetItems() {d = 19.61};
 Checkout() {d = 2.97};
 Delete() {d = 1.93};
};

class COrder {
 property delay;
 GetDetails() {d = 5.04};
 SetDetails() {d = 10.31};
 Process() {d = 2.77};
 Delete() {d = 2.83};
};

class CGate {
 property queue;
 GetCustomer() {d = 0.61};
 NewCustomer() {d = 0.90};
 SetCustDetails() {d = 0.87};
 GetCustDetails() {d = 1.26};
 GetOrders() {d = 1.72};
 Checkout() {d = 1.45};
 GetOrderDetails() {d = 0.64};
 SerOrderDetails() {d = 0.87};
 Process() {d = 1.16};
 SetProdDetails() {d = 1.27};
};

165

class CLog {
 property queue;
 Print() {d = 0.41};
};

// Behavior layer
collaboration Main {
 property population = 120;
 property thinktime = 2000;
 // Home interaction
 [0.1600] 1: CClient.Home();
 1.1: CShop.Promote();
 // New Products interaction
 [0.0500] 2: CClient.NewProducts();
 2.1: CShop.Promote();
 2.2: CShop.NewProducts();
 2.2.1: CLog.Print();
 // Best Sellers interaction
 [0.0500] 3: CClient.BestSellers();
 3.1: CShop.Promote();
 3.2: CShop.BestSellers();
 3.2.1: CLog.Print();
 // Product Detail interaction
 [0.1700] 4: CClient.ProductDetail();
 4.1: CProduct.GetDetails();
 4.1.1: CLog.Print();
 // Search Request interaction
 [0.2000] 5: CClient.SearchRequest();
 5.1: CShop.Promote();
 // Search Results interaction
 [0.1700] 6: CClient.SearchResults();
 6.1: CShop.Promote();
 6.2: CShop.SearchProduct();
 6.2.1: CLog.Print();
 // Shopping Cart interaction
 [0.1160] 7: CClient.ShoppingCart();
 7.1: CCart.AddProduct();
 7.1.1: CLog.Print();
 7.2: CCart.GetItems();
 7.2.1: CLog.Print();
 // Customer Reg interaction
 [0.0300] 8: CClient.CustomerReg();
 // Buy Request interaction
 [0.0260] 9: CClient.BuyRequest();
 9.1: CGate.GetCustomer();
 9.1.1: CShop.GetCustomer();
 9.1.1.1: CLog.Print();
 // Buy Confirm interaction

166 C PML SPECIFICATION FOR THE ELECTRONIC COMMERCE SYSTEM

 [0.0120] 10: CClient.BuyConfirm();
 10.1: CGate.Checkout();
 10.1.1: CCart.Checkout();
 10.1.1.1: CLog.Print();
 10.2: CGate.GetOrderDetails();
 10.2.1: COrder.GetDetails();
 10.2.1.1: CLog.Print();
 10.3: CGate.SetOrderDetails();
 10.3.1: COrder.SetDetails();
 10.3.1.1: CLog.Print();
 10.4: CGate.Process();
 10.4.1: COrder.Process();
 10.4.1.1: CLog.Print();
 // Order Inquiry interaction
 [0.0075] 11: CClient.OrderInquiry();
 // Order Display interaction
 [0.0066] 12: CClient.OrderDisplay();
 12.1: CGate.GetCustomer();
 12.1.1: CShop.GetCustomer();
 12.1.1.1: CLog.Print();
 12.2: CGate.GetOrders();
 12.2.1: CCustomer.GetOrders();
 12.2.1.1: CLog.Print();
 12.3: CGate.GetOrderDetails();
 12.3.1: COrder.GetDetails();
 12.3.1.1: CLog.Print();
 // Admin Request interaction
 [0.0010] 13: CClient.AdminRequest();
 // Admin Confirm interaction
 [0.0009] 14: CClient.AdminConfirm();
 14.1: CGate.SetProdDetails();
 14.1.1: CProduct.SetDetails();
 14.1.1.1: CLog.Print();
};

// Infrastructure layer
class CFastNode {
 property requestout = CNodeRequestout;
 property replyin = CNodeReplyin;
 Cpu : Queue {ddd = cpu};
 MemBus : Queue;
};

class CSlowNode {
 property requestin = CNodeRequestin;
 property replyout = CNodeReplyout;
 property msgpeer = CNodeMsgpeer;
 Cpu : Queue {ddd = cpu};

167

 MemBus : Queue;
};

collaboration CNodeRequestout {
 1: Cpu() {dd = d * 0.5 * 120/(120+400)};
};

collaboration CNodeRequestin {
 // Invocation routing
 1: MemBus() {dd = Main.prop.population * 0.34};
 2: Cpu() {dd = 7.55};
 // Demarshaling
 3: Cpu() {dd = d * 0.5 * 400/(120+400)};
};

collaboration CNodeReplyout {
 1: Cpu() {dd = d * 0.5 * 400/(120+400)};
};

collaboration CNodeReplyin {
 1: Cpu() {dd = d * 0.5 * 120/(120+400)};
};

collaboration CNodeMsgpeer {
 1: Cpu() {dd = d * 0.5};
};

// Deployment layer
ClientNode : CFastNode {
 ClientImpl : CClient;
};

ServerNode : CSlowNode {
 ShopImpl : CShop;
 CartImpl : CCart;
 OrderImpl : COrder;
 ProductImpl : CProduct;
 CustomerImpl : CCustomer;
 GateImpl : CGate;
 LogImpl : CLog;
};

