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Chapter 1

Introduction

It is all too obvious that queueing situations abound. Consider for instance the number
of customers in a barber shop to get a haircut, or the waiting time in queue to have one’s
passport renewed. Such examples provide ample motivation, in the author’s opinion,
for the existence of a mathematical theory called queueing theory. In general, queueing
theory aims to obtain quantitative information about queue length, waiting time, the work
per server, and so on, as a function of the inter-arrival times between customers, the type
and amount of service required, the order in which customers receive service, the number
of servers (such as hairdressers, public servants working), the number of processing steps
per customer (for instance, washing hair, cutting, drying), and so on. Since most of
the required information, such as the inter-arrival time between customers, can only be
formulated in probabilistic terms, queueing theory is a part of applied probability.

Often the amount of work in queue is not a continuous process. For instance, in the
example of the barber shop customers arrive individually. Consequently, the workload
changes abruptly when customers decide to stay and wait, rather than leave. Hence, at
the occurrence of arrival events, the amount of unfinished work changes discontinuously.

In other types of queue the workload changes gradually. An illustrative example
is the amount of water in a bathtub with children playing with the tap and the plug
simultaneously. As long as the children do not pour water over the edge, the water level
in- and decreases gradually. Even so, pueri pueri, pueri puerilia tractant: the water level
is wildly stochastic. Queueing processes of this second type are called stochastic fluid
queues.

The study of stochastic fluid queues occupies the larger part of this thesis. As a
primary application we analyze a stochastic fluid model of the Transmission Control
Protocol (TCP), which is an important protocol used in the operation of the Internet.

In this preparatory chapter we assemble and discuss the material required for the
sequel of this monograph. In Section 1.1 we introduce the formal concepts of stochastic
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2 1 INTRODUCTION

fluid queues, address basic analytic results available for such queues, and provide an
overview of some of the relevant references. Then, in Section 1.2, we describe the main
characteristics of TCP, and summarize in Section 1.3 the most influential TCP models.
Finally, Section 1.4 gives an overview of the results obtained in this thesis.

In the sequel we assume the reader to be familiar with basic probability and queueing
theory. Among others, Feller (1968), Ross (1993, 1996), Shiryaev (1996), or Grim-
mett & Stirzaker (2001), provide the required background on probability theory. Klein-
rock (1975, 1976), and Harrison & Patel (1993), treat the queueing theory we need.
Asmussen (2003) covers both subjects at a somewhat higher level of abstraction. Below
we use, supposedly, well-known results from these sources without explicit reference.

1.1 Stochastic Fluid Queues

For the sake of exposition we consider the content of a water reservoir behind a dam as
a second example of a stochastic fluid queue—less entertaining perhaps than children
in a bath, but economically more interesting, and most probably easier to characterize.
The water level in the reservoir changes dynamically as a function of weather conditions,
the release of water to generate electricity, and so on. To guarantee (within reasonable
limits) a minimal supply of electricity, it is necessary to have a release strategy, which,
in turn, depends on a model that relates the dynamics of the content to the in- and output
process of water. In this section we present one such model and call this the standard fluid
model or standard fluid queue. We concentrate in Sections 1.1.1–1.1.3 on the analysis of
the standard fluid queue with unlimited buffer capacity because of its relative simplicity.
Nevertheless, the assumption of unlimited buffer capacity is often quite unrealistic. For
instance, a water reservoir is occasionally full. Moreover, all our fluid models of TCP
have finite buffers. Therefore we present in Section 1.1.4 the main results for the standard
fluid model with limited buffer capacity.

The survey paper of Kulkarni (1997) is our prime reference for this section.

1.1.1 The Standard Fluid Model

We start by modeling the process that determines the rate at which the content changes.
The state of this background or modulating process represents momentary weather con-
ditions, maintenance, and so on. As, clearly, the state of the background process changes
randomly, we describe it as a stochastic process {W (t)} ≡ {W (t), t ≥ 0} with state
space W . For the sake of tractability we suppose W = {1, . . . , N}, for some finite N .

Next, consider the transitions among the states of {W (t)} and the time it stays in a
certain state. In the sequel we model {W (t)} as a continuous-time Markov chain with
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generator matrix Q. Hence, for all t ≥ 0 and h small,

P{W (t + h) = j |W (t) = i} = Qijh + o(h),

P{W (t + h) = i |W (t) = i} = 1 + Qiih + o(h),
(1.1)

where Qij ≥ 0 if i $= j and

Qii := −
∑

j∈W \{i}

Qij < ∞.

Let us define time-dependent state probabilities πi(t) = P{W (t) = i |W (0)} for
{W (t)}. The evolution of π(t) = (π1(t), . . . ,πN (t)) is given by the system of ordinary
differential equations

dπ(t)

dt
= π(t)Q. (1.2)

Now we model the content process of the reservoir itself. Clearly, the net input
rate or drift function, which is the difference between the input rate and the output rate,
determines the rate of change of the content. (We prefer to use the term ‘drift’ over ‘rate’
to avoid confusion with the term ‘transition rate’ of the background process.) The drift
is a function r : W → R,

r : i (→ ri := r(i). (1.3)

The content process is also stochastic, as it depends on the stochastic process {W (t)}.
We denote the content process by {C(t)} ≡ {C(t), t ≥ 0}. It follows from (1.3) that
{C(t)} satisfies the differential equation

dC(t)

dt
=

{
max{ri, 0}, if C(t) = 0,

ri, if C(t) > 0,
(1.4)

whenW (t) = i. Here, dC/dt denotes the right-hand derivative.
Clearly, (1.2) and (1.4) provide insight in the infinitesimal behavior of {W (t)} and

{C(t)} separately. To obtain information on the transient behavior of {C(t)} we need to
study the transient distributions of the joint process

{W (t), C(t)} ≡ {W (t), C(t), t ≥ 0}.

The study of this bivariate Markov process is the subject of the next two subsections.

1.1.2 Kolmogorov Forward Equations
Here we focus on the transient analysis of {W (t), C(t)}.

On the state spaceS = W × [0,∞) of {W (t), C(t)} we define functions

Fi(y, t) = P {W (t) = i, C(t) ≤ y |W (0), C(0)} , for (i, y) ∈ S , t ≥ 0. (1.5)
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To keep the notation concise, we suppress the dependence of Fi(y, t) on the initial con-
ditions W (0) and C(0). The functions Fi relate to the distributions of the separate pro-
cesses {W (t)} and {C(t)} in a simple manner:

πi(t) = P{W (t) = i} = Fi(∞, t); P{C(t) ≤ y} =
∑

i∈W

Fi(y, t).

To derive the Kolmogorov forward equation for {W (t), C(t)}, we express the func-
tions Fi(y, t + h) in terms of Fj(y, t) for j ∈ W . Specifically, using (1.1) and (1.4), it
follows that when y > 0 and h > 0 small enough that also y − rih > 0 for all i ∈ W ,

Fi(y, t + h) = (1 + Qiih)Fi(y − rih, t) + h
∑

j "=i

QjiFj(y, t) + o(h). (1.6)

Without loss of generality—for details, consult Kella & Stadje (2002)—we can assume
that ∂yFi exists. Therefore the above becomes, after some rearrangements,

Fi(y, t + h) − Fi(y, t)

h
= QiiFi(y, t) −

∂Fi(y, t)

∂y
ri +

∑

j "=i

QjiFj(y, t) +
o(h)

h
. (1.7)

If we further assume that ∂tFi exists, the limit h → 0 yields

∂Fi(y, t)

∂t
=

∑

j∈W

QjiFj(y, t) −
∂Fi(y, t)

∂y
ri. (1.8)

In matrix form this becomes:

∂F(y, t)

∂t
= F(y, t)Q −

∂F(y, t)

∂y
R, y > 0, (1.9)

where F(y, t) = (F1(y, t), . . . , FN (y, t)), and R is the N -dimensional drift matrix with
the drifts ri at its diagonal, i.e.,

R = diag(r1, . . . , rN ). (1.10)

The last step of the derivation concerns the behavior of {W (t), C(t)} at the boundary
y = 0. To this end we define two subsets of W and their respective cardinalities:

W− = {i ∈ W | ri < 0} , N− = |W−|,
W+ = {i ∈ W | ri > 0} , N+ = |W+|.

We assume for ease that W− ∪ W+ = W , which in turn implies that W− ∩ W+ = ∅.
Including the case that ri = 0 for some i is a technical, but not particularly difficult,
point, cf. Mitra (1988). Thus, we may focus on each of the disjoint sets W+ and W−

successively.
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It follows from (1.4) that C(t) only spends an infinitesimally small amount of time
at y = 0 wheneverW (t) ∈ W+, hence,

Fi(0, t) ≡ 0, if i ∈ W+, t > 0. (1.11)

However, for i ∈ W+ the right-hand partial derivative

∂yFi(0+, t) := lim
h↓0

Fi(h, t)

h

is not necessarily identically 0. To see this we reason as follows. As no probability mass
can accumulate at y = 0, the probability flux out of (i, 0) should equal the flux into it. In
other words,

(1 − Qiih)Fi(rih, t + h) = h
∑

j

QjiFj(0, t) + o(h)

where, because of (1.11), it is not necessary to exclude j = i in the summation. This
becomes, again using (1.11),

∂Fi(0+, t)

∂y
rih = h

∑

j

QjiFj(0, t) + o(h).

Thus, for i ∈ W+ we obtain in the limit h ↓ 0

0 = −
∂Fi(0+, t)

∂y
ri +

∑

j

QjiFj(0, t).

When i ∈ W− we get for y = 0 and h sufficiently small (recall ri < 0),

Fi(0, t + h) = (1 + Qiih)Fi(−rih, t) + h
∑

j "=i

QjiFj(0, t) + o(h).

(Now the case j = i should be excluded.) After rearranging, taking limits, and combining
with the results obtained on W+ we find for y = 0:

∂F(0, t)

∂t
= F(0, t)Q −

∂F(0+, t)

∂y
R. (1.12)

The next theorem summarizes the results obtained up to now.

Theorem 1.1. The functions Fi(y, t) defined by (1.5) satisfy the partial differential equa-
tion (1.9) when y > 0, and (1.11–1.12) at y = 0.

Remark 1.2. We can now see that although {W (t)} is a Markov process, it is not prob-
abilistically independent of {C(t)}, for, with (1.11),

0 = P{C(t) = 0,W (t) ∈ W+} $= P{C(t) = 0}P{W (t) ∈ W+},

as for all sufficiently large t > 0, P{C(t) = 0} > 0 and P{W (t) ∈ W+} > 0.
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Remark 1.3. A point of theoretical interest is whether a well-defined set of functions
Fi exists that satisfy the conditions of Theorem 1.1. (The derivation above takes the
existence for granted.) To resolve this issue, we construct {W (t), C(t)} with (1.1) and
(1.4) as a piecewise-deterministic Markov process (PDP) in the sense of Davis (1984,
1993). As a consequence the probability law of the process, and hence Fi(y), is well-
defined. Therefore, we can actually use the properties of the process itself to derive the
Kolmogorov forward equation, which we indeed do in (1.6).

As Kulkarni (1997) remarks, solving the fluid system of Theorem 1.1 is difficult. The
study of the distribution function in steady-state is considerably easier.

1.1.3 The Stationary System
From now on we concentrate on the steady-state limit of the distribution of {W (t), C(t)}.

First, let us assume that the generator Q of the background process is irreducible. As
N < ∞, π(t) → π for t → ∞, independent of initial conditions, and πi > 0 for all
i ∈ W . Moreover, this vector satisfies πQ = 0. It is well-known that, as a consequence,
the Markov chain {W (t)} is ergodic. Concerning the fluid model we assume furthermore
that {W (t), C(t)} is stable in the following sense:

πR1′ ≡
N∑

i=1

πiri < 0, (1.13)

where 1 = (1, . . . , 1) and v′ denotes the transpose of the vector v.
Kulkarni (1997) proves that for a stable fluid queue driven by an ergodic background

process a steady-state limit Fi(y) of the functions Fi(y, t) always exists, i.e.,

Fi(y) := lim
t→∞

Fi(y, t).

We consider the system in steady state, and write W and C for W (t) and C(t), respec-
tively, at an arbitrary moment in time. Thus,

P{W = i, C ≤ y} = Fi(y). (1.14)

With the random variable W we may interpret condition (1.13) as E{r(W )} < 0, i.e.,
the expected drift of the fluid queue is negative.

Clearly, in steady state Fi(y, t) ≡ Fi(y), so that as consequence ∂tFi(y, t) ≡ 0.
Thus, (1.9) reduces to

dF(y)

dy
R = F(y)Q, y > 0. (1.15a)

We can generalize this to hold for all y ≥ 0, rather than just for y > 0, by using the con-
vention that dF(0)/dy = dF(0+)/dy, thereby, in passing, also covering (1.12). Equa-
tions (1.11) reduce to the boundary conditions

Fi(0) ≡ 0, if i ∈ W+. (1.15b)
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Solving (1.15a) is, in a sense, a straightforward exercise in the theory of ordinary
differential equations. Since we excluded drift functions such that ri = 0 for some i, the
drift matrix R is invertible. Hence, formally, the solution of (1.15a) is

F(y) = a eQR−1y, (1.16)

for some vector a = (a1, . . . , an). The boundary conditions (1.15b) determine N+

components of the coefficients vector a. We derive the rest of the conditions presently.
For a considerable number of models that appeared in the literature, the matrixQR−1

is simple, i.e., a nonsingular linear transformation T exists such that T−1QR−1T is
diagonal, in which case the solution for F can be written in the form, see, e.g., Lancaster
& Tismenetsky (1985: Section 9.10),

F(y) =
N∑

i=1

aie
θiyvi, (1.17)

where (θi,vi) is a (left) eigenpair of the equation

θiviR = viQ. (1.18)

Equation (1.17) is known as the spectral representation of F.
When the matrix QR−1 cannot be diagonalized, the algebraic multiplicity of at least

one of the eigenvalues is larger than one. In that case the solution (1.16) is not of the
form (1.17), but instead,

F(y) =
N∑

i=1

aipi(y)eθiyvi, (1.19)

where pi(y) is some polynomial in y (with degree strictly smaller than the algebraic
multiplicity of θi) and the vectors vi, 1 ≤ i ≤ N form a set of independent (generalized)
left eigenvectors of QR−1, cf. Lancaster & Tismenetsky (1985: Section 9.10).

Concerning the structure of the spectrum of the eigenvalue problem (1.18), Kulkarni
states, for irreducible Q and R possibly including zero drifts, that the eigenvalues satisfy
the following properties.

Theorem 1.4. When (1.13) is true, i.e., πR1′ < 0, the eigenvalues of (1.18) can be
ordered as

/ (θ1) ≤ . . . ≤ /
(
θN+

)
< /

(
θN++1

)
= 0 < /

(
θN++2

)
≤ . . . ≤ / (θN ) , (1.20)

where /(θ) denotes the real part of θ. In particular, the eigenvalue θN++1 is simple. It
is immediate from (1.18) and the singularity of Q that θN++1 = 0, and vN++1 = π.
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From the expansion shown in (1.19) it is easily seen that the contributions to Fi(y) of
the eigenvectors vN++2, . . . ,vN grow beyond bound when y → ∞. Since the functions
Fi are bounded between 0 and 1 for all y, we should therefore set aj = 0 whenever
/(θj) > 0. Furthermore, it can be proved that the (algebraic) multiplicity of the eigen-
vector vN++1 = π is one. As a result, the decomposition (1.19) reduces to

F(y) =
∑

i≤N+

aipi(y)eθiyvi + aN++1π.

With the N+ boundary conditions (1.15b) we are one short of the required number to
specify a, and thereby the solution, uniquely. This last condition follows from consider-
ing the limit y → ∞ of Fi(y). Since /(θi) < 0 for i ≤ N+, limy→∞ Fi(y) = aN++1πi,
which implies aN++1 = 1. This completes the number of conditions.

Theorem 1.5. The functions Fi(y) in (1.14) satisfy the system of ordinary differential
equations (1.15a) with:

1. boundary conditions (1.15b);

2. aN++1 = 1, aN++2 = . . . = aN = 0.

1.1.4 Finite Buffer Sizes
We can also carry out the above analysis for a fluid queue in which {C(t)} is bounded by
some finite B > 0. Here we present the main consequences of including this constraint.

First, as the content cannot increase beyond B, (1.4) changes to

dC(t)

dt
=






max{ri, 0}, if C(t) = 0,

ri, if C(t) ∈ (0, B),

min{ri, 0}, if C(t) = B,

(1.21)

whenW (t) = i.
An immediate implication of this differential equation is that, besides Fi(0, t) = 0

for i ∈ W+, also
P{W (t) ∈ W−, C(t) = B} = 0.

Thus,
Fi(B−, t) ≡ πi(t), if i ∈ W−, t > 0. (1.22)

Second, the atoms at y = B satisfy similar dynamic behavior as those at y = 0. Sub-
tracting

∂F(B−, t)

∂t
= F(B−, t)Q −

∂F(B−, t)

∂y
R
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from
dπ(t)

dt
= π(t)Q

yields the desired forward equation at y = B.
To find the steady-state limit of Fi(y, t) we note that nearly all of the analysis of the

unlimited buffer case carries over, except that extra boundary conditions at y = B are
involved. Now the number of boundary conditions mentioned in (1.15b) and (1.22) add
up to N , thus equaling to the number of components (the unknowns) in the coefficients
vector a of the solution. Hence,

Theorem 1.6. For finite B, the steady-state functions Fi(y) satisfy

dF(y)

dy
R = F(y)Q, (1.23a)

with boundary conditions

Fi(0) ≡ 0, if i ∈ W+, Fi(B−) = πi, if i ∈ W−. (1.23b)

This problem is not an initial value problem such as the problem specified in Theo-
rem 1.5. Rather, it is a two-point boundary value problem with conditions at y = 0 and
y = B. Thus, the fluid model with constant Q, R, and finite buffer is considerably more
difficult to solve than the infinite-buffer model.

The stability condition (1.13) is not required when B < ∞. Nevertheless, the sign of
this condition influences the number of eigenvalues with positive (and, hence, negative)
real part. Only when πR1′ < 0 the decomposition of the spectrum is as in (1.20). Rather
than restating Theorem 1.4 to cover also the case πR1′ ≥ 0, we simply assume in the
sequel that πR1′ < 0. (The other cases are not more difficult, cf. Kulkarni’s paper.)

Clearly, the expansions of F(y) as in (1.17) or (1.19) involve all eigenvectors. It can
be proved that all eigenvectors, except π and the eigenvector associated to the eigenvalue
θN+

, have positive and negative components. Thus, the components of a vector i associ-
ated to a positive eigenvalue θi will become large in absolute value when multiplied by
exp (θiB). Hence, matching the boundary conditions at y = B, i.e., (1.23b), which is
in essence a linear algebra problem of the type Ax = 0, involves adding large positive
and negative numbers. This procedure is well-known to be sensitive to round-off errors,
which complicates the numerical evaluation of the system considerably.

1.1.5 State-dependent Drift and Feedback
In the example of the reservoir behind a dam, the type of failure and maintenance typ-
ically depend on the momentary content of the reservoir. More accurate models of the
queueing process should therefore allow the drift function and the transition rates to be-
come functions of {C(t)}. As the ‘standard’ fluid model of Section 1.1.1 cannot capture
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such intricate interaction—R and Q are constant, rather than functions of {C(t)}—it is
necessary to extend this fluid model.

Here we summarize two interesting extensions of the standard fluid model capable of
including the required dependency. A first extension allows only the drift to depend on
{C(t)}. In a second extension the generator of the background process itself becomes
also a function of {C(t)}. We refer to these extensions as state-dependent drift and
feedback, respectively. To avoid any confusion that may arise with respect to the term
‘feedback’, we note that in the context of fluid queues feedback denotes the transfer of
information from the buffer about its content to the modulating process. Thus, fluid itself
is not fed back to the buffer for a second round of service, say. We remark that feedback
fluid queues prove their usefulness in Chapters 2 and 3 as models of the interaction
between one or two TCP sources (i.e., traffic sources that use the Transmission Control
Protocol, cf. Section 1.2) and a bottleneck buffer in the Internet.

State-dependent Drift In a sense the drift in the standard fluid model is already state
dependent. To see this, observe from (1.4) that most of the time during which C(t) = 0,
its derivative dC(t)/dt = 0 rather than r(W (t)). Therefore we may as well define the
left-continuous drift function on [0,∞), or [0, B] when B < ∞,

y (→ r(i, y) := ri(y) =

{
0, if i ∈ W−, y = 0,

ri, elsewhere.
(1.24)

Note that the function ri(y) is not identical to the constant ri as used in Sections 1.1.1–
1.1.4. With this drift function we can replace (1.4) by

dC(t)

dt
= ri(C(t)), ifW (t) = i. (1.25)

When B < ∞ the drift function becomes

r(i, y) := ri(y) =






0, if i ∈ W−, y = 0,

0, if i ∈ W+, y = B,

ri, elsewhere.

Thus, in this case, ri is left- or right-continuous when i ∈ W− or i ∈ W+, respectively.
The above changes do not seem to make much of a difference: the differential equa-

tion for C(t) becomes simpler indeed, but this comes at the expense of a more compli-
cated definition for the drift function. Conceptually, though, we feel this makes consider-
able difference. The differential equation (1.25) for C(t) is more natural than (1.4), and
therefore invites to investigate the behavior of fluid models with more complicated drift
functions than (1.24). This we do now.
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Suppose, as a first extension, that we distinguishK + 1 buffer thresholds

0 = B(0) < B(1) < . . . < B(K−1) < B(K) = B ≤ ∞, (1.26)

and, as a consequence, K buffer regimes, i.e., intervals (B(k−1), B(k)), 1 ≤ k ≤ K. On
each regime we suppose that the drift matrixR(k) = diag(r(k)

1 , . . . , r(k)
N ), where the drift

function ri(y) satisfies:

ri(y) = r(k)
i , if y ∈ (B(k−1), B(k)), (1.27)

and r(k)
i $= 0 for all i, k. In other words, the state-dependent drift function is piecewise

constant.
Assuming thatR(k) is invertible on each regime k, we can interpret the fluid model at

regime k as a model with finite buffer. Then the steady-state solution has a form similar
to (1.16). Finally we should ‘glue together’ the solutions of each separate regime such
that the ‘threshold conditions’, i.e., the boundary conditions of each regime, are satisfied.

In contrast to the standard case, identifying threshold conditions similar to (1.23b) for
the steady-state solution is more elaborate. Now we have to distinguish four scenarios
for the signs of the drifts at two adjacent regimes k − 1 and k, say. These scenarios are
shown in Figure 1.1. As is apparent from the figure, W splits into:

a. ascending: W (k)
a = {i ∈ W | r(k−1)

i , r(k)
i > 0},

b. bifurcating: W (k)
b = {i ∈ W | r(k−1)

i < 0 < r(k)
i },

c. confluence: W (k)
c = {i ∈ W | r(k−1)

i > 0 > r(k)
i },

d. descending: W (k)
d = {i ∈ W | r(k−1)

i , r(k)
i < 0}.

In cases ‘a’ and ‘d’ no complications arise: the content just drifts at another rate
upwards or downwards when it passes the threshold B(k). Therefore, no atom is present
at B(k), as indicated by the open circles in the figure. Case ‘c’ implies that an atom,
shown by the bullet, exists at B(k), comparable to the atoms at 0 when i ∈ W− for the
standard model.

Case ‘b’ is, perhaps, the most interesting, as it is not clear what the fluid process
should do when it enters (i, B(k)). We see at least three ways to deal with this ambiguity.
First, it is possible to simply exclude such cases in the model, i.e., to assume thatW (k)

b =

∅ for all k. Second, the problem does not occur when Qji = 0 for all j ∈
⋃K

k=1 W
(k)

c

and i ∈
⋃K

k=1 W
(k)

b . The third method, which we conjecture to be the resolution of
the ambiguity, is to choose the drift function as a left or right continuous function for
i ∈ W

(k)
b .

To comment on this third option, observe that, formally, the drift function is only
specified by (1.27) within the regimes, but not on the thresholds. To complete the model
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Figure 1.1: Here we show the different configurations of the rates below and above the
threshold at B(k). The direction of the arrows indicate the direction at which the fluid
flows immediately below and above B(k), that is, the sign of r(k−1)

i and r(k−1)
i . A bullet

(open circle) denotes that (no) probability mass is present in steady state in the state(
i, B(k)

)
. The question mark means that it is not clear what will happen with the fluid

process when it enters this state.

it is necessary to define the drift also on the thresholdsB(k). A straightforward solution is
to define the drift function everywhere onS as either a left or right continuous function.
The actual choice will supposedly not have any consequence for the cases ‘a’, ‘c’ and
‘d’. (There are some details to resolve at y = 0 and y = B if B < ∞. These are
easy to provide, cf. (1.24).) However, when the drifts ‘bifurcate’, the choice determines
which way the content drifts after a transition into the bifurcating state. Clearly, these
observations lead us to conjecture that a drift function that is either left or right continuous
is sufficient to tackle the problematic ‘b’ states and, in fact, necessary to complete the
model.

A second extension of the standard fluid queue allows the drift function to be piece-
wise continuous, rather than piecewise constant. The existing literature requires that the
sign of ri(·) does not change on the interval [0,∞) (or [0, B] when B < ∞) as this
appears difficult. Consequently, the set W again splits into two disjoint proper subsets
W+ and W−, respectively.

When the drift function (1.24) is piecewise continuous and has no sign changes, it is
possible to show that (1.9) becomes

∂F(y, t)

∂t
= F(y, t)Q −

∂F(y, t)

∂y
R(y), (1.28)

where the drift matrix is similar to (1.10) except that here the drift is state dependent, that
is, R(y) = diag(r1(y), . . . , rN (y)). When a stationary distribution exists, the above sys-
tem of partial differential equations reduces to the analog of (1.15a) withR(y) replacing
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R:
F(y)Q =

dF(y)

dy
R(y). (1.29)

Whereas the boundary conditions (1.15b) carry over unchanged, it appears difficult
to obtain comparable conditions on the coefficients vector a as used in Theorem 1.5,
mainly because the solution of (1.29) does not have the form (1.16). Therefore, we
require besides (1.15b) that

lim
y→∞

Fi(y) = πi, for i ∈ W+. (1.30)

Feedback Now we consider feedback fluid queues, i.e., queues for which the buffer
content actually changes the generator matrix Q. In a feedback fluid queue the buffer
content behaves as a modulated fluid queue as before, but an infinitesimal generatorQ(y)
whose entries depend on the current buffer content y governs the state of the background
process. Formally, this means that

1. P{W (t + h) = i |W (t) = i, C(t) = y} = 1 + Qii(y)h + o(h),

2. P{W (t + h) = j |W (t) = i, C(t) = y} = Qij(y)h + o(h),

3. P{W makes more than one transition in [t, t + h] |W (t) = j, C(t) = y} = o(h).

Here the function Qij(y), j $= i, is said to be the transition rate at which the source
process jumps from state i to j when C(t) = y, and Qii(y) := −

∑
j "=i Qij(y). In this

sense, the buffer provides feedback to the source about the content level so that the source
may adapt both the drift as well as the transition rates. As an immediate consequence
of introducing feedback, the background process {W (t)} is not a Markov process any
longer. To see this, observe first that the knowledge of C(t) is required to evaluate the
generator Q(C(t)), which, in turn, dictates {W (s), s > t}. Second, as C(t) depends on
{W (s), s ≤ t}, (rather than on momentary values of {W (t)}), through the integration of
the differential equation (1.4), {W (s), s > t} depends on {W (s), s ≤ t} through C(t),
and not just on its present state. However, {W (t), C(t)} is still a Markov process as we
can construct it as a piecewise deterministic Markov process, cf. Chapter 4.

Let us see how the two previous extensions for the fluid queue with state-dependent
drift work out here. First we consider the case in which both the drift and the generator
are piecewise-constant matrices. Then we concentrate on piecewise-continuous drift and
generator matrices.

As in (1.26) we distinguishK + 1 buffer thresholds, andK regimes (B(k−1), B(k)).
Within the regimes the drift matrix R(k) determines the net input rate and the generator
Q(k) governs the source process. At threshold k the source behaves as a Markov chain
with generator Q̃(k). For the joint process {W (t), C(t)} it is again possible to derive dif-
ferential equations and boundary conditions for the transient and stationary distribution
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functions. In particular, the differential equations for the steady-state, cf. (1.15a), become
slightly (but not fundamentally) more difficult in that they involve inhomogeneous, but
constant, terms. Thus, we can still find the solution by standard methods of the theory of
ordinary differential equations. Obtaining the necessary conditions is possible, but a bit
troublesome, cf. Mandjes et al. (2003a). In Chapters 2 and 3 we show how to do this for
one threshold at B, i.e., the caseK = 1.

Finally we consider the extension in which (the entries of) Q and R are (left or right)
continuous functions of the content level. A problem with deriving the forward equations
is that we cannot simply replace Q by Q(y) in (1.28), as we did before when migrating
from (1.9) to (1.28). In Chapter 4 we show that the (differential) operators (in this form)
apply to the density f(y, t) = ∂yF(y, t), rather than the distribution. This gives, instead
of (1.28):

∂f(y, t)

∂t
= f(y, t)Q(y) −

∂

∂y
(f(y, t)R(y)) . (1.31)

It is necessary to impose regularity conditions on R(y) and Q(y), cf. Chapter 4 and
Boxma et al. (2005).

The above reduces to a system of ordinary differential equations for the steady-state
distribution function by setting ∂yfi(y, t) ≡ 0. This results in the system

f(y)Q(y) =
d

dy
(f(y)R(y)) .

Unfortunately, general closed-form solutions are not available for N > 2. Moreover,
when the buffer size is unlimited and N > 2, no simple conditions exist to guarantee the
stability of the system. For instance, in Section 4.7.2 we show that the intuitive condition
π(y)R(y)1 < 0, for all y, where π(y) solves π(y)Q(y) = 0, does not suffice. However,
when B is finite, a stability condition is not needed. Hence, for finite B the analysis is
somewhat simpler.

1.1.6 Literature
We now summarize some of the more influential papers that appeared on stochastic fluid
queues and their applications. As the literature on these topics, and their ramifications, is
vast, we make no pretense about the completeness of the discussion below. We also do
not adhere to a strict ordering of the articles as they appeared over time.

For general introductions to Markov-modulated fluid queues we refer the reader to
Schwartz (1996) and Kulkarni (1997). Schwartz provides also a thorough overview of
the applications of fluid queues to the field of telecommunication such as the Internet and
Asynchronous Transfer Mode; De Prycker (1995) explains the latter technology in detail.
Roberts et al. (1996) also treat some of this material, but on a higher level of abstraction
and with an emphasis on performance evaluation.
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Stationary state Anick et al. (1982) consider as a background process the superpo-
sition of J identical, independent on/off sources that feed into a buffer with unlimited
size. The on (off) times are independent and identically distributed random variables
with exponential distribution with rate λ (µ). The on and off times are also assumed to
be mutually independent. This model, commonly abbreviated as the ‘AMS’ model, has
become one of the standard models in the teletraffic literature. The model discussed by
Kosten (1974) can be seen as a limiting case of the AMS model in which the number of
sources J and the average off period 1/λ increase to infinity but such that Jλ converges
to a constant λ", say. In this limit, fluid sources arrive according to a Poisson process
with rate λ". (If we interpret the AMSmodel as the fluid counterpart of the Engset model,
cf. Cooper & Heyman (1998), then Kosten’s model is the counterpart of the M/M/∞
queue.) Kosten (1984) extends the AMS model to a system with a superposition of inde-
pendent heterogeneous on/off sources.

The superposition of on/off sources is actually an example of a birth-death mod-
ulating process. Van Doorn et al. (1988) study more general birth-death background
processes with finite state space. As a direct consequence of the specific structure of
birth-death processes, Van Doorn et al. (1988) can express the components of the eigen-
vectors as recurrence relations. Mitra (1988) allows the background process to be a
reversible Markov chain, rather than strictly birth-death. Besides this, in his model the
number of active sources may vary as well as the number of active servers that serve the
buffer. Stern & Elwalid (1991) focus on a superposition of independent heterogeneous
reversible background processes.

Sericola & Tuffin (1999) concentrate on a model in which the number of background
states is possibly countably infinite, while the generator is uniform (i.e., all diagonal
entries are bounded), and the buffer is infinite. An important requirement for their (nu-
merically stable) method is that just one state of the background process has negative
drift. The work of Virtamo & Norros (1994) is a special case of this model. Here the idle
and busy periods of an M/M/1 queue modulate the drift function: while busy, fluid enters
the fluid buffer at constant rate, while when idle, the fluid buffer depletes at constant rate.
It also relates to the model of Van Doorn et al. (1988) as the modulating process is birth-
death, but its state space is uncountable. Akar & Sohraby (2003) present a numerically
efficient and stable algorithm to solve the two-point boundary value problem (1.23). We
can also interpret the work of Cohen (1974) as an extension of the AMS model in that
now the on periods may have arbitrary distribution. However, Cohen assumes that the
output rate of the buffer equals the input rate when just one source is on.

Nearly all of the above mentioned fluid models assume an infinite buffer. Tucker
(1988) considers the AMS model with a finite buffer. Mitra (1988) includes an analysis
of both a finite and infinite buffer. Sericola (2001) extends the earlier work by Sericola
& Tuffin (1999) to handle finite buffers also.
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Concerning the proof of Theorem 1.4 Kulkarni refers to Mitra (1988). Interestingly,
Mitra actually only proves the theorem for reversible Markov chains, rather than for
chains with general irreducible generator. Mitra, in turn, mentions the paper of Sonn-
eveld (1988) for a partial result on this problem. Finally, Sonneveld (2004), bringing the
discussion to a nice conclusion, establishes the validity of Theorem 1.4. Moreover, he
proves that the (algebraic) multiplicity of the eigenvector π is 1 and that all eigenvec-
tors, except π and the eigenvector associated to the eigenvalue θN+

, have positive and
negative components.

Transient Behavior In comparison to the stationary system, the analysis of the tran-
sient behavior of the process {W (t), C(t)} received less attention. Ren & Kobayashi
(1995) use double Laplace transforms (with respect to the time and buffer variable) to
analyze the transient behavior of the AMS model. Tanaka et al. (1995) study the model
of Stern & Elwalid (1991) and the case in which the distribution of the on/off periods
of the sources may be phase-type, instead of exponential. They express their result as a
Laplace transform with respect to the time variable. Sericola (1998) presents a numeri-
cally stable method based on recurrence relations to analyze the transient behavior of a
fluid model with infinite buffer and a finite, ergodic background process.

State-dependent Drift Two primary references introduce state-dependent drift. The
early paper of Elwalid & Mitra (1992) studies the case in which the buffer content con-
trols the sending rate, thus the drift matrix, of a (finite) number of on/off sources. The
control is such that when the content exceeds a certain (number of) threshold(s), traffic
with too low priority cannot enter the buffer. Consequently, the drift matrix is piecewise
constant. Elwalid & Mitra (1994) generalize their earlier work by considering higher-
dimensional sources, i.e., sources with more than just two states.

Our discussion leading to (1.28), i.e., when the drift function is piecewise continuous,
is mainly based on Kella & Stadje (2002).

Markov-modulated fluid queues with state-dependent drift relate to extensions of the
classical storage process with state-dependent output. In the classical storage model, the
input is a compound Poisson process, and the release rate (i.e., the rate at which the
buffer depletes) is constant, see Prabhu (1980). Çinlar & Pinsky (1971) and Harrison &
Resnick (1976) consider extensions of this storage process, in which the release rate is a
strictly positive piecewise continuous function of the momentary buffer content.

Feedback Adan et al. (1998) and Scheinhardt (1998) introduced feedback fluid queues.
Mandjes et al. (2003a, 2003b) and Scheinhardt (2001) find the stationary distribution for
a class of feedback fluid queues where this dependence is piecewise constant, i.e., where
the background process has a fixed generator as long as the buffer content is in between
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two thresholds, or remains at one of the thresholds.
Boxma et al. (2005) extend the work of Kella & Stadje (2002) for an on/off source

with piecewise continuous drift and transition rates and allow for unlimited buffer sizes.
As a consequence, the existence of a stationary distribution requires proof, which they
provide under some integrability conditions on the drift and transition functions. They
also give explicit expressions for the stationary distribution when the buffer can, or can-
not, become empty.

In regard of state-dependent storage processes, Bekker et al. (2004) allow not only
the release rate but also the customer inter-arrival times to depend on the buffer content.
Thus, there is feedback of information from the buffer to the source and the server. The
dependence of the customer arrival rate (service rate) on the content process is compara-
ble to the dependence of the generator matrix (drift matrix) in the fluid queueing context.
As a sequel to this work, Bekker (2004) considers a similar model but with limited buffer
size.

1.2 The Transmission Control Protocol

In this section we describe the workings of the Internet’s Transmission Control Protocol
(TCP). This description is intentionally concise; we refer to Kurose & Ross (2003), Peter-
son & Davie (2000), Walrand (1998), or Tanenbaum (1996), for background information
on the organization and operation of the Internet in general and TCP in particular.

Section 1.2.1 summarizes TCP’s responsibilities within the Internet. Part of these
is to regulate the transmission rate of a source. Hence, in Section 1.2.2 we describe the
algorithms used by TCP to control source transmission rates. These algorithms have been
subject to several refinements over the years, with the aim of enhancing TCP’s response
to network congestion and packet loss. This process resulted in several, rather than one,
TCP versions. As TCP Reno is the most popular TCP implementation in the Internet
today, the focus in Section 1.2.2 is on TCP Reno. We summarize some other versions
of TCP in Section 1.2.3. Finally, Section 1.2.4 discusses some functionality of routers to
optimize the interaction with TCP.

1.2.1 TCP’s Responsibilities

The Internet is a packet-switched network that provides a best-effort service to connec-
tions set up between a sender and a receiver. The term ‘best-effort’ means that the
network does not guarantee to deliver a sender’s packets at a receiver. In fact, during pe-
riods of overload, that is, periods during which the packet arrival rate at routers exceeds
the rates of outgoing links, the network may drop packets.
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Since some applications, such as file transfers, need error-free communication, In-
ternet hosts need mechanisms to recover from packet loss and the corruption of the data
carried by the packet. To establish reliable connections, hosts implement a form of error
control. Achieving this is, by itself, not difficult, but complications arise as the probabil-
ity of losing packets depends on the rate at which hosts transmit packets into the network.
Thus, besides error control, senders require congestion control, also called flow control,
to regulate the transmission rate. The Transmission Control Protocol (TCP) is responsi-
ble to achieve both goals at the same time. In other words, TCP should provide error and
congestion control to connections.

The flow-control algorithms of TCP have to meet three criteria. First, the Internet’s
resources consist of link capacity and buffer space, which is located in routers. As these
resources are scarce, it is important to use these resources efficiently. Second, possibly
many users share these resources. Thus, to prevent some users from being blocked to
the network altogether, the resources should be shared fairly. Third, it is well known that
wild oscillations of momentary traffic load in the network adversely affect the utilization.
To avoid large fluctuations in link utilization, TCP should be stable.

Coping with these requirements simultaneously is a complicated task. TCP achieves
this (reasonably well given the circumstances) by using feedback from the network. This
feedback consists of the network dropping packets. More precisely, when routers drop
packets during overload, the network provides information to the sender about the level of
congestion. As such, TCP uses packet loss as an indication of congestion. Based on this
information the TCP sender adapts the rate at which it transmits packets. TCP increases
the transmission rate during periods of low utilization (as then usually no packets are
lost), but it decreases the rate during congestion.

We characterize this oscillatory behavior of TCP by loss cycles or window cycles.
Suppose a cycle starts at a loss epoch. The sender decreases its rate until loss disappears.
Then the sender increases its rate again up to the point the network drops a packet. This
drop starts a new loss cycle, and so on.

We remark that the intelligence to control congestion is distributed: it is implemented
in the hosts by means of TCP rather than in the network itself. This design principle is
fundamentally different from traditional centralized telecommunication networks, such
as the telephone network in which the switches control congestion by blocking, when
necessary, telephony calls.

1.2.2 The Flow Control Algorithms of TCP Reno
In this section we describe the main characteristics of the flow control algorithms of TCP
Reno as described by Stevens (1997) and Allman et al. (1998). Let us stress here that
the operation of the flow algorithms depends crucially on the error control algorithms of
TCP. We therefore start with summarizing the error control algorithm.
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Error Control

Since packets may be dropped by the network, the receiver is supposed to return a small
acknowledgment (ack) to the sender for each received packet1. When the sender does
not receive an ack within some time after having sent a packet, the sender infers that the
packet is lost and retransmits this (supposedly lost) packet. This procedure accomplishes
error-free communication between sender and receiver.

Clearly, a certain amount of time should elapse before the sender can conclude that
a packet is lost. Thus, the expiry of a timer should trigger the decision that packet loss
occurred. For this purpose the sender maintains a retransmission timer and resets this at
each packet transmission. When the retransmission timer expires before an ack arrives,
a timeout occurs, and the sender considers the packet as lost. It is evident that the expiry
time of the timer should at least be as large as the round-trip time. This time comprises:
the time the packet needs to traverse the links from the sender to the receiver, i.e., the
propagation delay; the time the packet spends in queue at routers, i.e., buffering delay;
and the time the ack needs to ‘travel back’ from receiver to sender.

The method by which a TCP receiver informs the sender about which packet arrived
is slightly counter-intuitive. As each TCP packet has a sequence number, the receiver
might have included in the ack the sequence number of the just received packet. In spite
of this, the ack procedure of TCP does not work in this way, but as follows. Suppose the
receiver correctly received the packets 1, 2, . . . , n − 1. When packet n arrives, it sends
an ack with sequence number n. (Actually, TCP implementations send the last correctly
received byte rather than the last correctly received packet. For ease of presentation, we
explain TCP’s algorithms in terms of packets.) Otherwise, when packet n is lost, but a
subsequent packet, n + 1 say, arrives, the receiver sends an ack with sequence number
n − 1, thereby acknowledging packet n − 1 twice. These multiple acks for the same
packet, in this case the packet with sequence number n − 1, are called duplicate acks.

The packet-switched nature of the Internet has a subtle consequence. The order in
which packets arrive at the receiver may differ from the order in which they leave the
sender. When packet n + 1 arrives immediately after packet n − 1, and therefore before
packet n, it is called an out-of-order packet. We remark that the receiver usually caches
out-of-order packets. When the missing packet arrives later, the ack spawned by this
missing packet acknowledges the last packet of the completed set of cached packets.

Another subtlety relates to the generation of acks. According to Braden (1989), a
receiver should increase efficiency by not acknowledging every received packet, but in-
stead, send an ack for every secondly received packet. This mechanism is known as
the delayed ack algorithm. The receiver should bypass the delayed ack algorithm when
out-of-order packets arrive, for reasons explained presently, and, instead, immediately

1Formally speaking, TCP end hosts do not exchange packets but segments. We do not distinguish between
these two different notions.
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acknowledge out-of-order packets.
We explain next the role of this error-control mechanism as part of TCP’s congestion

control algorithms.

Congestion Window and Flightsize

To prevent excessive loss of packets the sender should limit the rate at which it sends
packets into the network. To this aim a TCP sender uses a window to constrain the
flightsize, i.e., the number of packets sent but not yet acknowledged. At startup the
sender transmits a window worth of packets. After each arriving ack, the window slides
forward to allow the transmission of a new packet. Thus, TCP uses a sliding window
algorithm to control its transmission rate.

The window size is subject to two constraints. First, the sender has to adapt its
transmission rate to the continuously varying amount of available capacity along the
path to the receiver. The state variable cwnd, shorthand for congestion window, controls
this dynamic aspect of the window size. Second, the receiver may also limit the window
by rwnd, which is the receiver window. Combining these two constraints, the sender’s
transmission rate should always satisfy:

flightsize ≤ min{cwnd,rwnd}. (1.32)

Flow Control: Slow Start and Congestion Avoidance

To control the evolution of the transmission rate, i.e., cwnd, the sender uses a second
state variable: ssthresh, i.e., slow start threshold. Initially cwnd is set to 1, so as
to avoid sending a burst of packets into the network immediately. The initial value of
ssthresh may be chosen arbitrarily, but it is usually considerably larger than 1. When
the sender sends its first packet, flightsize becomes equal to 1. Since also cwnd =
1, the sender has to wait for the return of an ack, in accordance with (1.32). If no loss
occurs, this ack arrives after one round-trip time. At the receipt of an ack the sender
increases cwnd according to the update rule:

cwnd ←

{
cwnd+ 1 if cwnd < ssthresh,

cwnd+ 1/cwnd, if cwnd > ssthresh.
(1.33)

Since at first cwnd < ssthresh, the sender increases cwnd by one, so that it is
allowed to transmit two packets. Then, after the acknowledgment of each of these two
packets, cwnd equals four. As such, cwnd doubles each round-trip time, and thus the
sending rate increases exponentially in time. This phase of the congestion algorithm is
called Slow Start, as the source sends initially just one packet per round-trip time. On the
other hand, when cwnd > ssthresh, the congestion window increases by an amount
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1/cwnd for every ack. This results in approximately linear increase of cwnd in time as
now cwnd increases by (approximately) one packet every round-trip time. This phase is
called Congestion Avoidance. Finally, when cwnd equals ssthresh, the sender may
use either Slow Start or Congestion Avoidance, as the difference is small.

Error Recovery: Fast Retransmit and Fast Recovery

Observe that while no loss occurs, the source increases its sending rate as specified
by (1.33). Consequently, assuming the receiver windows are so large that they do not
constrain the transmission rates, there will come a point in time that the combined rate of
all TCP connections using a link in the Internet exceeds this link’s capacity. At first the
buffer in front of the congested link begins to fill. However, it will overflow eventually,
resulting in one or more packet drops.

Packets sent after the lost packets, but not discarded at the buffer, provide useful
information to detect packet loss. When these packets arrive at the receiver, the receiver
perceives these as out-of-order packets, and therefore responds by sending duplicate acks.
Now, the sender does not know whether packet loss or a temporary reordering of packets
causes these duplicate acks. Therefore it waits for three subsequent duplicate acks to
conclude that a packet loss occurred. However, data should still arrive at the receiver—
otherwise just one duplicate ack would have arrived. Thus, duplicate acks provide crucial
information about the state of congestion of the network.

After three duplicate acks the sender enters Fast Retransmit. In this phase the sender
retransmits what appears to be the missing packet, without waiting for the retransmission
timer to expire. Furthermore, it updates its state variables according to the rule:

ssthresh ← flightsize/2 (1.34a)
cwnd ← ssthresh+ 3, (1.34b)

and enters the next phase of the error recovery procedure: Fast Recovery.
During Fast Recovery the sender increments cwnd by one for each additional du-

plicate ack it receives. When finally the ack arrives that acknowledges the retransmitted
packet, and consequently the other packets cached at the receiver, the sender deflates the
window, i.e., it sets

cwnd ← ssthresh,

and leaves Fast Recovery. Thus, the update rule (1.34a) for ssthresh effectively halves
the rate when the sender enters Congestion Avoidance for the next loss cycle. Note that
we did not discuss some of the more detailed consequences of (1.34) as pointed out by
Fall & Floyd (1996); these are of less importance here.
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The Ack Clock

We finally discuss a consequence of TCP’s flow control algorithms pointed out by Jacob-
son (1988): the ack clock. Consider a ‘tagged’ connection. Packets of this connection
interleave with packets of other connections at buffers. While passing a bottleneck link
in the path the tagged packets spread out in time due to the service of untagged packets.
After the packets leave the bottleneck, the inter-packet spacing remains approximately
constant, and, so will the ack spacing. Thus, if the ‘tagged’ sender only transmits packets
in response to an ack after the initial burst, the sender’s packet spacing matches approx-
imately the packet service time on the link that carries the highest load in the path. This
phenomenon is called the self-clocking nature of TCP.

1.2.3 Some Other TCP Versions: Tahoe, NewReno and Sack

Above we explained the TCP Reno version. In this section we describe, shortly and with
no objective of being complete, the three other TCP versions that are most relevant for
our purposes: Tahoe, NewReno, and Sack.

The Tahoe version is, loosely speaking, a predecessor of TCP Reno. TCP Tahoe is
nearly the same as Reno, except that a TCP Tahoe sender enters Slow Start after Fast
Retransmit instead of Fast Recovery. Thus, after a loss event a Tahoe sender transmits at
a considerably smaller rate than a Reno sender. Consequently, TCP Tahoe is usually less
efficient than TCP Reno.

The other two versions, NewReno and Sack, intend to repair a weakness of TCP
Reno. It turns out that TCP Reno sometimes cannot recover from multiple losses oc-
curring in one window, cf. Fall & Floyd (1996) and some references therein. Consider,
for instance, a case in which cwnd is small, e.g., five, and the first and last packet are
dropped. Then the duplicate acks for packets 2, 3 and 4 trigger Fast Retransmit. After
the acknowledgment of the retransmitted first packet, the sender leaves Fast Retransmit,
but flightsize is not large enough to spawn three duplicate acks for the lost packet 5.
Consequently, the sender has to wait for a timeout of the retransmission timer. In gen-
eral terms, the cause of the problem is that the sender may leave Fast Recovery before
the acknowledgment of all packets of the window outstanding at the moment of loss
discovery.

A small change of Fast Recovery may reduce the influence of this undesirable effect,
leading to TCP NewReno, cf. Floyd & Henderson (1999). These authors observe that an
ack that acknowledges part of, but not the entire window outstanding at loss detection,
is a signal (excluding the possibility of reordering) that more than one loss occurred in
that particular window. Such acks are denoted as partial acks. The improvement consists
of not leaving Fast Recovery after a partial ack, but instead immediately sending out the
packet that is missing according to the partial ack. The sender will leave Fast Recovery
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and deflate cwnd only after the acknowledgment of all packets of the ‘inflicted’ window.
Thus, a sender sometimes sends out just one packet per round-trip time, but it does not
have to wait as often for timeouts, which, generally, takes much longer.

Another proposal to improve TCP’s behavior during multiple losses is TCP Selective
Acknowledgment (SACK), see, e.g., Mathis et al. (1996). Basically, a TCP Sack receiver
informs the sender about the sequence number of each successfully arriving packet, in-
stead of merely the last received packet of a sequence of consecutive packets. Therefore
a TCP Sack sender knows exactly which packet(s) is (are) missing so that it can just
retransmit these packets, cf. Mathis et al. (1996).

1.2.4 Random Early Detect Buffers
Random Early Detect (RED) is not part of TCP’s flow control algorithms but, instead,
is implemented in routers to work in conjunction with TCP. The aim of implementing
RED is to reduce the influence of some undesirable consequences of TCP’s reaction to
loss.

As an example, consider a bottleneck link used by many connections. Suppose fur-
ther that the buffer in front of the link uses a drop-tail policy. A drop-tail buffer drops
every arriving packet during a loss epoch, i.e., the period that it is full. Because of clus-
tering of packets in buffers elsewhere in the network or due to particular source behavior,
TCP traffic can be rather bursty. Thus, when many packets arrive for the same link in a
short amount of time and the buffer is almost full, the buffer drops a considerable num-
ber of packets within one loss epoch. As a consequence, many connections may suffer
from loss and therefore react in synchrony: they reduce their rate simultaneously after a
loss epoch. As a result, the aggregate rate may become (considerably) smaller than the
link rate after a loss epoch. Therefore, synchronization may adversely affect the utiliza-
tion, especially when the period of underutilization lasts for a considerable number of
round-trip times in succession (due to the linear increase during Congestion Avoidance).

Floyd & Jacobson (1993) propose RED as a, perhaps better, more gradual mechanism
to reduce congestion. A buffer equipped with the RED algorithm drops packets of just
a few, instead of many, TCP connections at the first signs of incipient congestion. Then
the input rate reduces less, ideally just a bit below the link rate, and the period of under-
utilization lasts for a shorter amount of time.

The problem here is, of course, to choose the connections that should reduce their
rates. It is, obviously, unfair to drop packets from the same connections always. To avoid
this it seems best to drop packets at the buffer independent of anything else, such as the
packet’s address, but with some probability p equal for all packets. This randomness es-
tablishes that, generally, not the same senders suffer at every congestion period. In effect,
such a drop strategy ‘breaks the synchronization’ as just a few, instead of many, sources
reduce their rate. Moreover, sources with higher rate have proportionally higher proba-
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bility to lose a packet, which should result in a more uniform sharing of the capacity.
To implement these ideas, a RED buffer with a physical capacity of B packets main-

tains an estimate x ∈ [0, B] of the average queue length. The buffer updates the estimate
x at each packet arrival according to an exponentially weighted moving average with
weight ε ∈ (0, 1): if qi is the queue length observed at the arrival of packet i then

xi = (1 − ε)xi−1 + εqi. (1.35)

Besides the variable x, the RED buffer has two thresholds 0 < xmin < xmax < B.
These thresholds regulate the drop probability function p(x). The buffer drops packet i
with probability p(xi), where p(x) has the form

i.e., p(x) =






0, 0 ≤ x ≤ xmin

x−xmin

xmax−xmin
pm, xmin < x ≤ xmax

1, xmax < x,

(1.36)

cf. Figure 1.2. Thus, p(x) is a non-decreasing function of the average queue length x.
The idea behind this form for p(x) is to achieve that the higher the congestion (indicated
by high values of x) the more packets the buffer drops and the more sources reduce their
rate.
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Figure 1.2: The loss probability for the RED algorithm.

Because of the bursty nature of the arrival stream, x seems a better estimate of the
congestion level than the momentary queue length q. To see this, observe that sometimes
q increases quickly for a (very) short period of time while the utilization of the link as
averaged over a round-trip time is below 1. Thus, to detect congestion in a more reliable
way it may be better to use some low-pass filter, such as (1.35), on the queue length
dynamics. Setting xmax < B allows the buffer to absorb occasional bursts instead of
forcing it to drop many packets.

We remark that tuning the thresholds xmin, xmax and the weight ε in relation toB and
the link capacity L is not particularly straightforward. It seems that an optimal choice for
all network environments does not exist, see, e.g., Misra et al. (2000). Thus, it appears
that RED does not resolve all of the above mentioned problems with drop-tail buffers.
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1.3 Modeling TCP’s Flow Control Mechanisms

Now that we have discussed the flow control algorithms of TCP we turn to the subject of
simulating and modeling TCP’s behavior.

1.3.1 Overview

TCP simulators often contain implementations of (part of) the code of TCP or even the
entire protocol stack. The advantages of such simulators are clear. These simulators
can handle a level of detail that comes closest to TCP as used in the ‘real Internet’.
Moreover, it can help reveal inconsistencies and errors in the implementation of (one
of the flavors of) TCP. Finally, it offers a testing ground for mathematical models; in
fact, we also use simulation for this purpose in Chapters 5 and 6 of this monograph.
The simulation environment of choice for TCP is, without doubt, the network simulator
ns-2. This simulator offers: implementations of the various TCP versions; buffers with
different drop strategies; source models; methods to set up entire networks, and so on.

For all its merits, simulation (with ns-2) also has its drawbacks. Here we mention
two of these; Floyd & Kohler (2002) discuss this issue in more detail. First, the behavior
of ns-2 is deterministic when the user does not introduce ‘randomness’ by, for instance,
using RED buffers, which rely on random number generators to drop packets. Because
of this determinism the results of ns-2 are sometimes obviously wrong (a real experiment
will never produce such results as always some stochasticity is present). Clearly, as-
sessing the results of ns-2 requires an understanding of TCP behavior beyond the purely
phenomenological information that simulation provides. Second, it is impossible to sim-
ulate large networks, e.g., networks consisting of (tens of) thousands of connections and
routers, as the number of details that the simulation has to keep track of simply becomes
too large. In conclusion, it is necessary to have TCP models that, on the one hand, pro-
vide an understanding of the most important aspects of TCP’s behavior, and on the other
hand, leave out less relevant details to achieve scalability.

Which details to keep and which to neglect depends partly on the time scale of in-
terest. Window-level models focus on the time scale at which the transmission rate dy-
namics, i.e., the window dynamics, are of primary interest. Flow-level models, on the
other hand, abstract away from the window dynamics, but concentrate on the time scale
at which TCP sessions start, i.e., ‘switch on’, and stop, i.e., ‘switch off’. In the next two
sections we summarize some of the mathematical work carried out for either time scale.

We remark that, although some authors call the window level the ‘packet level’, we
prefer the more descriptive term ‘window-level’. Second, the division between these two
levels of modeling TCP is not strict. For instance, some authors combine window-level
and flow-level models.
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1.3.2 Window-level Models

We first describe a model of the behavior of a generic TCP source between two loss
epochs. This model is, in a sense, the starting point for the four types of window-level
model we subsequently discuss. The first TCP model relates the throughput of a single
connection to some properties of the underlying Internet path. A second class of models
extends to situations in which two (or more) connections compete for bandwidth. These
models focus on aspects of bandwidth sharing and utilization. The third class of models
clarifies network issues such as bottleneck localization. The fourth class enables us to
analyze transient behavior of the sources and the network.

TCP Source Modeling

Above we motivated the necessity to make some simplifying assumptions about the be-
havior of TCP. We discuss this now.

One assumption, made in nearly all TCP source models, is to neglect Slow Start and
to concentrate on Congestion Avoidance. This simplification is based on the observation
that during a single loss cycle a TCP source usually spends (much) less time in Slow
Start than in Congestion Avoidance. Moreover, TCP Reno does not enter Slow Start
after single losses in one window and TCP NewReno and Sack not necessarily even after
multiple losses in one window. A second simplification consists of omitting the details
of Fast Recovery. Padhye et al. (2000) provide experimental results providing further
support for the validity of these assumptions.

By neglecting Slow Start we may characterize the dynamic behavior of a TCP source
as Additive-Increase/Multiplicative-Decrease (AIMD), cf. Chiu & Jain (1989). Dur-
ing Congestion Avoidance the rate increases linearly in time corresponding to Additive-
Increase. After each congestion signal, the source rate decreases by a factor two, corre-
sponding to Multiplicative-Decrease. In view of this the following remark of Misra et al.
(1999) is of interest: ‘All flavors of TCP . . . are successive refinements . . . to implement
ideal Additive-Increase/Multiplicative-Decrease behavior.’.

A second step in the modeling of TCP abstracts away from the packet-based nature
of the transmission process of a TCP source. Because of self-clocking, packet spacing
roughly matches the service time, so that a fluid source conveniently approximates the
sender’s output process. (However, Fall & Floyd (1996) mention some cases in which
packet bursts do occur, and discuss some approaches to prevent this from happening.)

We note three further assumptions frequently made to simplify the analysis (and ap-
pear reasonable):

1. The receiver window is so large that it never constrains the congestion window;

2. The delayed ack algorithm from TCP is not switched on;
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3. Acks are never dropped on the return path.

The modeling of a TCP source as a fluid source subject to Additive-Increase between
loss epochs yields a straightforward analytic description. Following Lakshman & Mad-
how (1997), suppose the path contains just one bottleneck link. The link capacity is L
and the buffer size is B. Let W (t) denote the source window size at time t, dW/dt the
growth rate of the window with time, dW/da the rate of growth with arriving acks, and
da/dt the rate at which acks arrive at the sender. Then, during Congestion Avoidance the
update rule (1.33) implies that

dW

da
=

1

W
.

Now observe that because of self-clocking

da

dt
=

{
W/T, if q(t) = 0,

L, if q(t) > 0,
(1.37)

where q(t) is the queue length of a bottleneck buffer at time t and T is the round-trip
time.

Many models do not incorporate the buffering delay B/L when it is small compared
with the propagation delay Tp. Evidently, B/L 2 Tp is equivalent to B 2 LTp; this
regime is generally called the large bandwidth-delay limit. In that case q(t) ≡ 0 so that
by (1.37)

dW

dt
=

dW

da

da

dt
=

1

W

W

T
=

1

T
. (1.38)

The window-level models use this relation to describe the behavior of the window during
loss-free periods.

Although modeling the window process between two loss event is relatively simple,
it is a difficult problem to: (1) model the loss process at buffers along the path, and (2)
assign the loss to the various active connections. In fact, several modeling approaches
focus on (and differ about) these two points.

Finally, we mention the influence of the application layer on TCP. If an application
has an infinite amount of traffic to send, the source is always ‘on’, or greedy. Otherwise,
TCP sessions start and stop, for instance after the completion of a file transfer.

Relating Throughput to Path Characteristics: The Root p Law

We now summarize the work of Mathis et al. (1997) who establish a simple expression
for the throughput of a single, greedy, AIMD source that competes with many other
connections for the bandwidth of some bottleneck link in the Internet. The authors make
two basic assumptions to express the throughput as a function of the round-trip time T
and the perceived loss probability p. First, T is assumed to be approximately constant;
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which is valid in the large bandwidth-delay limit. Second, the loss process is assumed to
be periodic and exogenous, i.e., independent of the source rate.

To derive the result, they use the graph of the window dynamics shown in Figure 1.3.
The horizontal axis represents time (with round-trip times as units) and the vertical axis
represents the window size. Loss occurs when the connection reaches a maximum win-
dow Wmax, a constant to be determined shortly. Then the sender reduces its window
by a factor two, in accordance with (1.34). Thus, immediately after loss the window
equals Wmax/2. Now, by (1.38), W increases linearly during Congestion Avoidance
from Wmax/2 to Wmax. Here a new loss occurs and a new loss cycle begins. Note that,
although this figure presents a rather simplistic version of reality, it conveys at least the
main aspects of the window dynamics of a single TCP source interacting with a bottle-
neck link.

To approximate the throughput γ, consider the area of the gray ‘sawtooth’ in the
figure. As it takesWmax/2 round-trip times to increase fromWmax/2 toWmax, this area
equals (Wmax/2)2(1 + 1/2) = 3W 2

max/8. Therefore, on average, the throughput is (in
bytes per second),

γ = P
3W 2

max/8

T Wmax/2
=

3P

4

Wmax

T
, (1.39)

where P is the packet size in bytes.
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Figure 1.3: The window size as a function of the number of round-trip times. It takes
Wmax/2 round-trip times of duration T to complete one loss cycle.

The above result still contains Wmax. To relate this to more desirable parameters,
Mathis et al. (1997) express Wmax in terms of the loss probability of the path. In the
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setting of Figure 1.3, the loss probability p follows from observing that in one cycle one
packet is lost while 3W 2

max/8 packets are sent, so, Wmax =
√

8/3p. Substituting this
in (1.39) yields the celebrated ‘root-p law’:

γ =

√
3

2

P

T
√

p
. (1.40)

Note that this expression for γ is the ‘goodput’, i.e., the number of transmitted bytes per
second minus the number of lost bytes per second.

We close this section with mentioning some extensions of the root-p law in the liter-
ature. In the first place, the constant

√
3/2 depends on specific modeling assumptions.

Ott et al. (1996) do not assume the loss epochs to occur periodically, but geometrically
distributed (with a constant probability per packet), which gives C ≈ 1.31. Second,
Padhye et al. (2000) propose a refinement which differs primarily in that their model
takes timeouts and receiver window limitations into account. Third, the independence
assumption for the loss process need not always be true. Altman et al. (2000a) study
the influence on the root-p law when packet losses are allowed to be correlated. Finally,
observe that (1.40) is not appropriate to estimate the throughput for very small files. The
size of such files is such that the TCP session may not leave Slow Start at all or see
any loss. Cardwell et al. (2000) extend the work of Padhye et al. (2000) to capture also
startup effects of TCP.

Fairness and Utilization

The root-p law (1.40) relates throughput to round-trip times and loss probabilities. It
does not, however, provide insight into how contending connections share a bottleneck
resource. Here we consider a simple network consisting of just two sources and one
bottleneck link, to analyze how different source parameters affect capacity sharing and
utilization. At the end of the section we briefly review fairness, a concept related to the
share of the capacity each source receives, as this is of interest for its influence on the
quality of service users implicitly attribute to the network.

Since now two sources share a link, it is necessary to model which source suffers
from loss during congestion, as it can be either of the two, or both. Lakshman & Mad-
how (1997) consider the case of synchronous loss according to which during congestion
both sources lose one or more packets. Hence, both sources react in synchrony to over-
flow by reducing their rate simultaneously. Altman et al. (2000b) observe that while
the synchronization assumption is approximately valid for small drop-tail buffers and
connections with similar round-trip times, this is not the case when RED buffers are de-
ployed. Rather, a RED buffer uses approximately a proportional loss model, according to
which the buffer chooses probabilistically just one connection to suffer from loss, and the
probability to select a connection is proportional to its momentary transmission rate. We
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now summarize expressions for the throughput for both loss models, i.e., synchronous
and proportional loss, as obtained in the literature for the large bandwidth-delay limit.

First we consider two sources that react in synchrony to loss; the case analyzed by
Lakshman & Madhow (1997). Clearly, during overflow the aggregate of the source rates
exceeds the link capacity L. Nevertheless, the sources react within one round-trip time
to loss implying that the excess cannot be large. Hence, Lakhsman and Madhow sim-
ply suppose that the sum of the rates equals the link capacity during overflow. Thus,
assuming that both sources have the same packet size P , it follows that

W1,max

T1
+

W2,max

T2
=

L

P
,

where Ti andWi,max denote for source i the round-trip time and the window size at which
loss occurs. This is obviously one equation in two unknowns: W1,max and W2,max. A
second relation betweenW1,max andW2,max follows from the synchronization assump-
tion, which implies that the sources reduce their rates at approximately the same moment
and then start increasing the window according to (1.38). Suppose that a loss cycle starts
at t = t1 and stops at t = t2. Then (1.38) gives for source 1:

W1,max −
W1,max

2
=

∫ W1,max

W1,max/2
dW =

∫ t2

t1

dW

dt
dt =

t2 − t1
T1

,

from which W1,max = 2(t2 − t1)/T1. Connection 2 has the same loss cycle so that,
similarly, W2,max = 2(t2 − t1)/T2. Thus we find that W1,max/W2,max = T2/T1.
Combining the above relations gives

W1,max =
T1T 2

2

T 2
1 + T 2

2

L

P
, W2,max =

T 2
1 T2

T 2
1 + T 2

2

L

P
.

Substituting this into (1.39) yields the throughputs,

γ1 =
3

4

T 2
2

T 2
1 + T 2

2

L γ2 =
3

4

T 2
1

T 2
1 + T 2

2

L. (1.41)

An immediate consequence is that γ1/γ2 is inversely proportional to the square of the
ratio of the round-trip times, i.e.,

γ1/γ2 = s−2, (1.42)

with,
s := T1/T2. (1.43)

It is evident from (1.41) that the total utilization

u =
γ1 + γ2

L
=

3

4
. (1.44)
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Observe that this is independent of s.
The proportional loss model is much harder to analyze. However, Altman et al.

(2002b) establish approximations which appear quite accurate. They find

γ1 ≈
1

4

4s + 3

(s + 1)2
L γ2 ≈

s

4

3s + 4

(s + 1)2
L, (1.45)

from which

γ1
γ2

≈
1

s

4s + 3

3s + 4
γ1 + γ2 ≈

3

4

(s + 1)2 + 2s/3

(s + 1)2
L >

3

4
L, (1.46)

since s > 0. Clearly, the ratio of throughputs is no longer proportional to s−2, as in the
synchronous loss model. Rather, Altman et al. (2002b) remark that this is approximately
equal to s−0.85 for s ∈ [0.1, 1]. Moreover, the utilization is higher.

We now turn to the notion of fairness which relates to the share of bandwidth a con-
nection obtains. More or less in line with Altman et al. (2000b) we call ‘fairness’ the
ratio of each connection’s share, i.e., γ1/γ2, and consider the sharing as ‘fair’ when the
ratio equals one. Interestingly, there has been recent discussion about whether receiv-
ing equal shares of the scarce capacity under all network circumstances is actually ‘fair’
from an economical (or game-theoretical) point of view. For further discussion on this
topic the reader might consult for instance Kelly et al. (1998), Kelly (1997, 2000, 2001),
Massoulié & Roberts (1999).

Bottlenecks and Network Utilization

The two analytic ‘fairness models’ provide simple estimates for source throughputs, pro-
viding thereby a framework to interpret simulation results. However, as these models
maintain the state of each source in the network, they do not scale, i.e., they do not eas-
ily extend to multiple sources or networks. Thus, when investigating issues pertaining
specifically to network analysis, e.g., locating bottlenecks in a given network topology
or dimensioning links used by many connections, we are in need of other approaches.

To locate bottlenecks, for instance, we may proceed as follows. First describe the
network topology by a routing matrix, i.e., an incidence matrix of the routers used by
each connection. Then, specify the capacities of the links connecting the routers and the
buffer types (drop-tail, RED, and so on) and sizes. Third, use a relatively simple model
for the source throughput, for instance the root-p law (1.40). Fourth, combine the source
and network model and compute iteratively the load on each link.

In more specific terms this iterative procedure works as follows.

1. Start with an initial estimate for the throughput of each connection.

2. Use these estimates and the routing matrix to compute the load on each link in the
network.
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3. Make some (simplifying) assumptions on the packet arrival process and service
discipline at each buffer. Since we have the load by the previous step we are in the
position to use classical queueing models of the buffers to find the loss probability
and average queue length at each buffer.

4. Attribute the loss at each buffer to the loss probability observed by each connec-
tion.

5. Now that we have the loss probability and round-trip time, including the average
queueing delays, we compute with (1.40) for each connection the new estimates of
the throughputs.

6. Finally, check whether the estimates of the throughputs satisfy some stop criterion.
If not, return to the second step of the procedure with the new estimates for the
throughputs.

It is simple to prove that for a single bottleneck buffer a unique fixed point exists
to which the sequence of estimates for the loss probabilities and throughputs converges.
However, not many results are available for general networks.

We now discuss some notable references which use this (or a related) approach. Alt-
man et al. (2002a) consider the case of large bandwidth-delay products, i.e., negligible
buffer sizes. Hence, they cannot use step 3 of the above procedure. Instead, the sum of
the throughputs carried by a link cannot exceed the capacity. This imposes a number of
inequalities (for each link) on the solution. As TCP connections always increase the rate
up to the point of link overflow (assuming the receiver windows have no influence) nec-
essarily some of these constraints are tight. Gibbens et al. (2000) and Avratchenkov et al.
(2002) include queueing delays and model the queueing process of a drop-tail buffer as
an M/M/1/K queue. This yields simple expressions for the loss probability of each
buffer. Bu & Towsley (2001) use a similar approach to that of Gibbens et al. (2000) but
consider RED buffers instead of drop-tail buffers.

Another class of fixed-point methods uses detailed Markovian models of the window
process of a single source. The aggregate of many such sources defines the load on the
network. Then, by modeling the buffers in the network as M/M/1/K queues, the loss
probabilities and average queue lengths follow immediately from the load. In turn, the
throughput model uses the loss probabilities and queue lengths as input. Thus, a fixed
point method suffices to compute throughput, loss, and average queue length. Casetti
& Meo (2000) consider a superposition of identical but statistically independent TCP
Tahoe sources that send traffic into a single-node or a two-node network. Casetti &
Meo (2001a, 2001b) replace TCP Tahoe by TCP Reno within their earlier framework.
Ajmone Marsan et al. (2000) investigate the influence of synchronization by considering
identical, but completely coupled, sources sharing a bottleneck link.
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Garetto et al. (2001a) associate to each window state anM/M/∞ queue in a closed
queueing network. The number of jobs in each queue represents the number of identical
but independent greedy TCP Tahoe sources in a certain protocol state. By mean-value
analysis, cf. Harrison & Patel (1993: Section 6.4), they compute the average number of
TCP sources in each protocol state (queue), from which the average aggregate throughput
follows. The transition probabilities between the queues depend on the loss and round-
trip times of the connections. Garetto et al. (2002) consider on/off sources by replacing
the closed network with an open network. Alessio et al. (2001) consider mixtures of
on/off Tahoe and New Reno connections. Garetto et al. (2001b) extend this work to
topology aware networks: for instance, differences in routes of the connections (and
hence different loss probabilities and round-trip times) are now taken into account.

The fixed-point approach can handle many connections. Moreover, it yields insight
into the location of bottlenecks and the average throughput and loss, from which file
transfer latencies follow. A disadvantage is its inability to provide information about
transient behavior.

Transient Behavior of the Network

The models leading to (1.38), (1.41) and (1.45) extend to multiple sources and, in fact,
entire networks, by using numerical methods to solve certain systems of differential al-
gebraic equations (DAEs), which are to be derived below. With this approach we can
locate bottlenecks, obtain insight into transient aspects of the network, and so on. On
the other hand, in comparison to the fixed-point methods treated above, solving the large
systems of DAEs is computationally much less efficient.

Brown (2000) makes a first step in the generalization of the work of Lakshman &
Madhow (1997). He still concentrates on a single bottleneck link shared by multiple
sources with, possibly, different round-trip times, but includes the queueing delay in the
round-trip times. As we use this model in Chapters 5 and 6 we discuss it in some more
detail.

Let us first consider the dynamics of the sources. Suppose that Ti is the round-trip
time of source i, 1 ≤ i ≤ J , when the buffer is empty. Then,

Ti(q(t)) := Ti +
q(t)

L
(1.47a)

is the round-trip time of source i when the buffer content is q(t) at time t. Source i
maintains a window variable Wi(t), supposed to be continuous, and sends fluid at rate
Wi(t)/Ti(q(t)) into the buffer. Consequently, between consecutive loss epochs the win-
dow process evolves according to

dWi(t) =
dt

Ti(q(t))
, (1.47b)
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which, as it incorporates the queue length, clearly extends (1.38). The evolution of the
queue length is given by

dq

dt
=






max{r(t), 0}, if q(t) = 0,

r(t), if q(t) ∈ (0, B),

min{r(t), 0}, if q(t) = B,

(1.47c)

where the drift function has the form

r(t) :=
J∑

i=1

PiWi(t)

Ti(q(t))
− L, (1.47d)

and Pi is the packet size of source i. Thus, (1.47a), (1.47b) and (1.47c) form a system
of ordinary differential and algebraic equations that describes the dynamics of the (deter-
ministic) system from loss epoch to loss epoch. However, this system does not specify
the behavior across a loss epoch, i.e., from the start to the end of a congested period.

To compute the window values after loss, Brown (2000) uses the synchronized loss
assumption. Thus, if t1 is the first moment of loss, i.e., q(t1) = B, the window right after
t1 is half of the window just before t1 for each source, i.e., Wi(t1+) = Wi(t1−)/2 for
i = 1, . . . , J . Now Brown integrates the system (1.47) from t1+ to the next loss moment
t2, etcetera.

This approach generalizes simply, at least conceptually, to networks. Then (1.47a)
includes the queueing delays of all buffers along the path, and the sum in (1.47d) runs
over all connections that use a specific link and buffer in the network. Furthermore, when
source i, say, represents a class of ni identical sources, it becomes relatively simple to
include large numbers of sources of the same class.

The assumption of the loss process has decisive influence on the behavior and numer-
ical evaluation of the system. With the synchronous loss assumption all sources in one
class reduce their rate with the same amount at overflow, so that identical connections
remain ‘identical’. Contrary to this, with the proportional loss assumption sources react
individually to loss, so that they cannot aggregate into classes. Thus, in the latter case
the analysis of networks with thousands of active connections or complicated topologies
results in a state space explosion.

Baccelli & Hong (2003b) follow the synchronized loss assumption of Brown (2000)
to analyze large networks. Baccelli & Hong (2003a) attack the problem of handling the
large system of differential equations in quite a different way. They integrate the system
of ODEs from loss period to loss period. But instead of using synchronization to ‘cross
the loss epoch’, these authors simulate a loss process, thereby assigning the loss to some,
or possibly all, sources. In a sense, this approach is a mixture between simulation and
analytic models based on ODEs.
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Misra et al. (2000), following Misra et al. (1999), propose to incorporate the source
reaction to loss directly into the equations that govern the window dynamics, thereby
replacing (1.47b). Instead of (1.47b) they write

dWi(t) =
dt

Ti(q(t))
−

Wi(t)

2
dMi(t). (1.48)

The first term of the right hand side corresponds to the Additive-Increase behavior of
a source, as before. The second term implements Multiplicative-Decrease after a loss
epoch. Here, Mi(t) models the loss arrival process as a point process: dMi(t) = 1 at
the arrival of a loss and 0 elsewhere. Now Misra et al. (2000) take expectations at the
left and right hand side of (1.47) (and of (1.35) as they consider RED buffers) and make
several simplifying assumptions to obtain a (numerically) tractable system of differential
equations. In Section 5.1.1 we discuss this model more thoroughly. Liu et al. (2003)
extend this work to topology-aware networks, i.e., they incorporate the sequence in which
packets traverse the routers as well as the propagation delays of the links between routers.

1.3.3 Flow-level Models
The window-level models we dealt with up to now provide insight into fairness, utiliza-
tion and bottleneck localization. At coarser time scales these aspects are relatively less
relevant, while the finiteness of file size and the arrival rate of files to transfer become
more important.

The concept of flow, see, e.g., Roberts & Massoulié (2000); Ben Fredj et al. (2001),
may be helpful to explain this point. A flow corresponds to an individual document
transfer, e.g., a web page or an mp3 track. From the user’s point of view, flows are elastic
in that they do not have tight constraints about delay or throughput. Instead, the realized
rate averaged over a considerable number of round-trip times is of greater importance as
this determines the latency of the flow, which in turn represents an important aspect of
the quality of service offered by the network. (We assume here that the file size is large
enough; the latency for small files is dominated by TCP’s Slow Start, of course.)

The main objective of flow-level models is to express the response time of a flow of
given size as a function of the arrival process and the size distribution. The results may
then be used to derive provisioning rules and other controls, e.g., flow admission control
as advocated by Roberts &Massoulié (2000), to maintain the service level of the network
above a certain level.

In certain settings processor sharing (PS) queues are appropriate models to obtain
insight into the just mentioned problem. Below we first describe the processor sharing
queue. Then we discuss the TCP scenarios to which PS modeling have been applied.
Finally, we mention some generalizations of PS that made their appearance in TCP mod-
eling.
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Processor Sharing Models for TCP

In the M/G/1-PS queue, see for instance Kleinrock (1976) or Ross (1996), jobs arrive
according to a Poisson process at a server with service capacity L. The job sizes are
independent, identically distributed with arbitrary distribution, but such that the queue
is stable, i.e., the load ρ = λ/(µL) < 1 where 1/µ is the mean job size. Contrary to
a first-in-first-out buffer in which the server works on one job at a time until finished, a
processor sharing server gives an equal share of its service capacity to each job in queue.
In other words, when N jobs are in queue, each job receives a service capacity equal
to L/N . Further, after each arrival or departure, the server immediately reallocates its
capacity over the present jobs, if any.

Closed-form expressions exist for some quantities of the M/G/1-PS queue. We men-
tion two. First, the steady-state probability that the number of jobs in system equals n
at arrival times, hence at arbitrary times (PASTA), is ρn(1 − ρ). Second, the expected
waiting time S, conditional on a job’s initial size x, is

E {S |x} =
x

L(1 − ρ)
. (1.49)

Interestingly, this expression is linear in the job size x. Moreover, it is insensitive to the
job-size distribution (or higher moments), but merely involves E {S} = 1/µ. This is
significant as it shows that first-order characteristics of the network as perceived by users
do not depend on the job-size distribution. We remark that no closed-form expressions
are known for higher moments of the conditional waiting time.

The M/G/1-PS model typically applies to a single bottleneck link shared by arriving
and leaving TCP flows. Note that we abstract away from all details of the window level,
but simply assume that the TCP achieves ‘ideal’ sharing and utilization of the link: the
available bandwidth is always efficiently, instantaneously, and equally divided among the
users. Based on (1.49) we can now obtain insight into transfer times for files of given
size, given the load on the link.

Although PS models of TCP are useful at flow-level, they have also some shortcom-
ings. In the first place we know that round-trip differences among connections change
the share of service each source obtains. As in the PS queue all jobs in queue obtain
the same fraction of the capacity, differences in round-trip times cannot be incorporated.
A second somewhat problematic property of the PS model is that a single job uses all
available capacity when it is the only one in the system. It is unrealistic that a single
source can fill the bottleneck when this bottleneck happens to be a gigabit link in the
core of the network. The maximal throughput of a connection is necessarily limited by
external constraints such as the access network or the receiver window. Third, when a job
leaves a PS queue, the server immediately redistributes its capacity over the remaining
jobs. This is typically not the case in TCP networks as it may take several round-trip
times for sources to become aware of the free capacity left behind by a departing flow.
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Moreover, it is not possible to obtain any insight into the real utilization of the link by the
TCP sources. Finally, Olsén (2003) points out that the PS model is so restrictive that it
does not lend itself easily to investigate the influence of new features when these become
implemented in the flow control algorithms of TCP.

Extensions of Processor Sharing Models

Discriminatory Processor Sharing (DPS) queues can cope with differences in round-trip
time. A DPS queue has N job classes and associates to each job class a weight gi,
1 ≤ i ≤ N . Suppose that Li ≡ Li(t) jobs of class i are in the system at time t.
Then the server assigns a fraction gi/

∑N
j=1 gjLj of its capacity to job i. By making

an appropriate choice for the weights gi the model can account for round-trip time dif-
ferences. Although the analysis of DPS is difficult in general, closed-form expressions
exist for the expected number of jobs in class i, cf. Fayolle et al. (1980). Bu & Towsley
(2001) use DPS to compute the throughput with the (hyper-)exponential service distri-
butions. Roberts & Massoulié (2000) show with DPS that assigning weights to realize
service differentiation, for instance in accordance with a pricing scheme as developed by
Gibbens & Kelly (1999), has just slight influence on long-lived flows.

Another extension of the PS queue is the so-called Generalized Processor Sharing
(GPS) queue, see Cohen (1979). (The term ‘generalized processor sharing’ queue is
not only used for Cohen’s extension to processor sharing. Parekh & Gallagher (1993)
use GPS for another type of queue than we do here.) This queueing model enables
to include external constraints on the window size, which have, as shown by Ben Fredj
et al. (2001), a major influence on the obtained throughput. A GPS server uses a function
r(·) such that when n jobs are in queue, it assigns each job an amount of service r(n)/n
instead of L/n as in the PS queue. The definition of r(n) can take into account the
external constraints. A common choice is r(n) = min{L, nc}, where c is the maximal
throughput of a constrained source. Note that the constraints for all connections are
necessarily identical, which is somewhat artificial from a TCP-modeling point of view.

Vranken et al. (2002) apply a GPSmodel with two priority classes to study quality-of-
service differentiation on the mean sojourn time of high- and low-priority flows. Lassila
et al. (2003) develop a model that combines the GPS queue with a fixed point method. By
the fixed point method they compute the throughput for n sources, i.e., r(n), numerically
for various values of n. This estimate for r(n) is then used in the GPS queue to compute
for instance the distribution of the number of flows present. Interestingly, Lassila et al.
(2003) thus obtain this distribution as an endogenous property whereas Gibbens et al.
(2000) and Avratchenkov et al. (2002) have to presuppose this distribution. When sources
are subject to external constraints, it may be more accurate to model the packet arrivals
as being modulated by an on/off process than as a homogeneous Poisson process. In
this case De Haan et al. (2004) use on/off fluid sources with finite buffer, as analyzed by
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Tucker (1988), in the fixed-point procedure of Lassila et al. (2003).

1.4 Contribution & Overview of This Thesis

In the larger part of this thesis we extend some existing theory on stochastic feedback
fluid queues and apply this to modeling TCP networks. In retrospect we might even say
that the desire to model TCP increasingly accurately and robustly in terms of feedback
fluid queues led, in part, our research. The ordering of the topics of Chapters 2–6 reflects
this.

In Chapter 2 we use the feedback fluid queue discussed in Section 1.1.5 to develop a
window-level model of the interaction between a single TCP source and a drop-tail buffer.
The typical TCP behavior is included as follows. We let the state of the background
process correspond to the source window size and define the drift function as a linear
function of the window size. When the buffer is not full, the window size increases as a
pure birth process (‘Additive-Increase’) with constant transition rate, whereas when the
buffer is full, the window decreases according to a second generator that implements
‘Multiplicative-Decrease’.

The model of Chapter 3 extends the single-source model to two or more heteroge-
neous TCP sources. This fluid model is not a ‘standard’ feedback fluid model in the
sense of Section 1.1.5. In particular, we augment the joint window-buffer process with
indicator variables to implement the synchronous loss model discussed in Section 1.3.2.
Van Foreest et al. (2001) and Van Foreest et al. (2003a) provide the contents of this and
the previous chapter.

In the TCP models of Chapter 2 and 3 the transition rates of the background processes
are constant and inversely proportional to the average round-trip times. As we use only
one generator for the background process while the buffer is not full, we cannot include
queueing delay contributions to the round-trip times. This is an obvious shortcoming of
the model when studying the influence of large buffers on network performance. Ideally,
as the round-trip times are continuous functions of the queueing delays, the generators
of the source processes should also depend continuously on the queueing delay, i.e., the
buffer content. This, however, requires a much more flexible type of feedback than has
been considered previously.

In Chapter 4 we generalize the stochastic feedback fluid queue of Chapters 2–3 such
that the momentary behavior of the background process depends continuously on the
actual buffer level. Loosely speaking the feedback is such that when the buffer level is y,
the background process behaves ‘as a Markov process’ governed by generatorQ(y) with
entries being continuous functions of y. Moreover, the drift function may also depend
continuously on y. We refer to this type of fluid queue as a continuous feedback fluid
queue, cf. Section 1.1.5. We establish an explicit solution when the number N of source
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states is 2, and a numerical method when N > 2. Part of the contents of this chapter is
to appear in Scheinhardt et al. (2005).

As it turns out, the numerical procedures to solve these feedback fluid models for
TCP prove rather unstable, including the TCP model based on continuous feedback fluid
queues. In Chapter 5 we circumvent this problem by discretizing the buffer content
process and approximating the TCP fluid model by a (continuous-time) Markov chain.
With this chain we study the influence of the synchronous and proportional loss model
of TCP and compare the results to simulations with ns-2. Our method proves simple, yet
flexible, and numerically robust. In addition to this, it extends, in principle, to networks
of intermediate size, i.e., a few sources and buffers. The results of this chapter have been
published by Van Foreest et al. (2003b).

Besides its strong points, the Markovian model of Chapter 5 is somewhat un-practical
in use as the computer code to produce the generator matrix has to be implemented by
hand, i.e., by the author. Besides being time consuming, it is difficult to obtain the
generator for intermediately sized networks. A more suitable methodology to specify the
Markov chain is provided by Stochastic Petri Nets (SPNs), cf. Ajmone Marsan et al.
(1995). Once the SPN is implemented, the generator can be obtained automatically,
thereby saving a considerable amount of work.

In Chapter 6, which is based on Van Foreest et al. (2004a), we use SPNs to compare
performance results from our TCP model to results from the literature such as Altman
et al. (2000b) and simulations by ns-2. Moreover, we consider fairness aspects in a net-
work consisting of three sources and two buffers, and relate the results to work of Mas-
soulié & Roberts (1999) and Lee et al. (2001). This chapter concludes our investigations
of TCP.

Up to now we have been concerned with feedback from the buffer process to the
source process, culminating in the continuous fluid queue of Chapter 4. A second type of
feedback is useful in queueing networks. Besides informing the source about the buffer
contents, the buffers can also signal ‘upstream’ servers to in- or decrease the service
rates. The analysis of feedback networks seems exceedingly difficult. Probably one of
the simplest such networks is a tandem of twoM/M/1 queues in which the second buffer
informs the first server about the queue length. In Chapter 7 we consider two variants of a
two-station tandem network with blocking. In both variants the first server ceases to work
when the queue length at the second station hits a ‘blocking threshold’. In addition, in
variant 2 the first server decreases its service rate when the second queue exceeds a ‘slow-
down threshold’, which is smaller than the blocking level. In both variants the arrival
process is Poisson and the service times at both stations are exponentially distributed.
Note, however, that in case of slow-downs, server 1 works at a high rate, a slow rate,
or not at all, depending on whether the second queue is below or above the slow-down
threshold or at the blocking threshold, respectively. For variant 1, i.e., only blocking, we
concentrate on the decay rate of the number of jobs in the first buffer and prove that for
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increasing blocking thresholds the sequence of decay rates decreases monotonically and
at least geometrically fast to max{ρ1, ρ2}, where ρi is the load at server i. The methods
used in the proof also allow us to clarify the asymptotic queue length distribution at
the second station. Then we generalize the analysis to variant 2, i.e., slow-down and
blocking, and establish similar results. The results of this chapter are based on Van
Foreest et al. (2004b).



Chapter 2

A Feedback Fluid Model for a
Single TCP Source

In the previous, introductory, chapter we discussed fluid queues and TCP as separate
topics. In this chapter we combine these by developing a feedback fluid model of a single
TCP source using a bottleneck buffer. The feedback from the buffer to the source is such
that the model captures some of the more obvious aspects of TCP source behavior. When
the buffer is not full it sends positive signals to the source to indicate that the source can
increase the sending rate. During overflow the buffer sends negative signals to reduce
the source rate. The TCP source model we use here is a greedy AIMD fluid source, cf.
Section 1.3.2 and the fluid buffer is of a drop-tail type.

The structure of the chapter is as follows. In Section 2.1 we explain the model. Then,
in Section 2.2, we derive the differential equations governing the source and buffer dy-
namics, and the boundary conditions. This section borrows from the work of Scheinhardt
(2001) andMandjes et al. (2003a), but here we additionally find a closed-form expression
for the stationary distribution. The performance analysis is presented in Section 2.3.

2.1 Model
Let us start with describing the feedback fluid model. At the end of the section we relate
this model to the behavior of a TCP source.

Consider a single source that transmits fluid into a bottleneck buffer served at rate L.
The source state is a stochastic process {W (t)} ≡ {W (t), t ≥ 0} and has state space
W := {1, 2, . . . , N}. The buffer content process, denoted by {C(t)} ≡ {C(t), t ≥ 0},
is also a stochastic process. We require that C(t) ∈ [0, B], where, importantly, B < ∞.
The process {W (t)} controls the source’s output rate: when W (t) = i the source sends

41



42 2 A FEEDBACK FLUID MODEL FOR A SINGLE TCP SOURCE

fluid at rate i times r into the buffer, where r is some positive constant. As a consequence,
the buffer dynamics satisfy the differential equation, compare (1.47c),

dC(t)

dt
=






max{rW (t), 0}, if C(t) = 0,

r W (t) − L, if C(t) ∈ (0, B),

min{rW (t), 0}, if C(t) = B.

(2.1)

Thus, the drift matrix R has the form

R :=





r − L
2r − L

. . .
Nr − L




. (2.2)

To avoid trivialities we suppose that

r < L < Nr; (2.3)

the first inequality ensures that the buffer is not in a permanent state of overload, the
second that occasionally congestion occurs.

Whereas the above equation (2.1) determines the dependence of the buffer content on
the source state, the buffer controls the source by sending positive and negative feedback
signals. While the buffer is not full, i.e., C(t) < B, the buffer sends positive signals
to the source to indicate the successful transfer of data. When the source receives this
feedback it increases its rate, i.e., W (t) increases by one to W (t) + 1 (except when
W (t) = N ). When the buffer becomes congested, i.e., C(t) = B, it sends negative
signals to the source to notify that fluid is discarded. As a response, the source decreases
its rate by half, that is, whenW (t) > 1 the state becomes 5W (t)/26, where 5x6 denotes
the largest integer smaller than or equal to x. If W (t) = 1 the source does not decrease
further.

The time intervals between two consecutive positive or negative signals are assumed
to be independent, exponentially distributed random variables with parameter λ and µ,
respectively. Thus, when C(t) < B, the source state is determined by the positive
signals, leading to a generator Q of the form

Q :=





−λ λ
−λ λ

. . . . . .
−λ λ

0




. (2.4)
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When C(t) = B, the negative signals control the source behavior by the generator Q̃.
As an example we show Q̃ for a source with 5 states:

Q̃ =





0 0 0 0 0
µ −µ 0 0 0
µ 0 −µ 0 0
0 µ 0 −µ 0
0 µ 0 0 −µ




. (2.5)

The general structure of Q̃may be written in terms of Kronecker’s δ, i.e., δij = 1 if i = j
and 0 otherwise:

Q̃ij := µ (−δij + δi,2j + δi,2j+1 + δi1δj1) , 1 ≤ i, j ≤ N. (2.6)

It is perhaps of interest to provide some further illustration of the interaction between
the buffer and the source. To this end, consider first the lower part of Figure 2.1. The
source, with r = 1 and N = 5, increases its transmission rate every time it receives
a positive signal from the buffer. The inter-arrival time between these signals is expo-
nentially distributed with parameter λ. In fact, its behavior is governed by the generator
Q. At the very moment the buffer overflows—suppose this happens in state 4—another
generator Q̃ becomes active. This change in generator is indicated by a switch from the
lower to the upper part of the figure. The source waits in this state for an exponentially
distributed time with parameter µ, and then jumps to state 2. As L is taken to be 1.5 in
this example, the buffer is still in overflow when the source enters state 2, and the source
has to wait for another negative feedback signal. When this is received, the source halves
its state index for a second time, that is, it jumps to state 1. Now the drift is negative, and
the buffer is no longer full. Consequently, the generator switches from Q̃ toQ so that the
buffer can start sending positive signals again.

From the above, the source and buffer behavior are clearly dependent. The source
process influences the buffer content, whereas the buffer process determines the source
rate by sending positive and negative feedback signals. Consequently, the source process
{W (t)} is not a Markov-process. However, the joint process {W (t), C(t), t ≥ 0} is a
(multivariate) Markov process.

We now provide an interpretation of the above model in terms of TCP. First, Q and
Q̃ implement Additive-Increase and Multiplicative-Decrease, respectively. Second, the
highest source stateN can be seen as an external constraint, such as the receiver window
or the speed of the access link, on the source rate. Third, W (t) ≥ 1 so that the source
always has some fluid to send, i.e., it is greedy. Fourth, the time between two consecutive
positive or negative signals models the sum of the transmission, propagation and queue-
ing delays of the packets at other routers in the network, including random delays of the
operating systems at the sender and receiver. In other words, when the buffer is not full
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Figure 2.1: Behavior of a source with N = 5 states, L = 1.5 and r = 1.

we set
λ−1 := T, (2.7)

where T is the average round-trip time when the bottleneck buffer is empty. Considering
the value of µ, observe that the average round-trip time is T + B/L when the buffer is
full (compare (1.47a)); hence, let

µ−1 := T +
B

L
. (2.8)

Finally, r relates directly to the notion of packet size. To see this, notice that when the
window size isW and the packet size is P (in bytes), a TCP source sends PW bytes per
window, cf. (1.47d). Our fluid source sends, when W (t) = i, on average an amount of
ir/λ fluid in between two positive signals, i.e., per round-trip time. Since W (t) equals
the window size, we have that PW = Wr/λ, and therefore r/λ should correspond to
one packet size in bytes. Clearly, in this derivation we use the expected time between two
positive signals, i.e., 1/λ. However, we might as well take the time between two negative
signals. In that case the packet size corresponds to r/µ rather than r/λ. This, perhaps
somewhat unsatisfactory, conclusion is a direct consequence of modeling a packet source
as a fluid source. Rather than trying to compensate for this aspect, we accept it as one of
the model’s idiosyncrasies. Hence, we define the packet size as

P :=

{
r /λ, if C < B,

r / µ, if C = B.
(2.9)

Remark 2.1. Observe that the fluid approximation presumes a separation of time scales,
i.e., the inter-arrival time of packets is small compared with the time between changes in
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the source rate. To see this, suppose that the window size is 10, say. Then, packets arrive
ten times as often as a change in the source rate occurs.

Remark 2.2. As mentioned, Q and Q̃ implement Additive-Increase and Multiplicative-
Decrease, respectively. Clearly, the structure of Q̃ is such that the source makes only one
transition downward per round-trip time. Thus, the source should use a TCP version,
such as TCP NewReno or TCP Sack, that does not frequently resort to timeouts and slow
starts when multiple losses occur in one window, cf. Section 1.2.3.

2.2 Analysis
In this section we analyze the behavior of the process {W (t), C(t)}. More specifically,
in Section 2.2.2 we derive the Kolmogorov forward equations. These equations reduce
to a stationary system of ordinary differential equations subject to several boundary con-
ditions. Finding these two-point boundary conditions is the topic of Section 2.2.3. In
Section 2.2.4 we derive the solution. We start with introducing some notation in Sec-
tion 2.2.1.

Since this model is similar to the standard fluid queue when C(t) < B, the derivation
presented here is rather brief. We refer to Section 1.1 for details left out here.

2.2.1 Notation
The source state W (t) ascends when C(t) < B and W (t) < N , whereas it descends
when C(t) = B and W (t) > 1. To reflect this difference in behavior we split the
system state space S := W × [0, B] into two disjoint subsets T := W × [0, B), and
T̃ := W × {B}.

On T we define functions

Ai(y, t) := P{W (t) = i, C(t) ≤ y}, 0 ≤ y < B, (2.10)

and on T̃

Di(t) := P{W (t) = i, C(t) = B}.

Since the domain of the function A(·, t) is the interval [0, B), we define on the bound-
aries:

Ai(B, t) := lim
y↑B

Ai(y, t),
∂Ai(B, t)

∂y
:= lim

y↑B

∂Ai(y, t)

∂y
.

Clearly, P{W (t) = i} = Ai(B, t) + Di(t). To avoid possible confusion later in the
chapter, we set Ai(y, t) = Di(t) = 0 if i $∈ W and y $∈ [0, B].

Since we explicitly require that r < L < Nr, the source rate alternates between
periods with sending rates higher than L and periods with sending rate lower than L.
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To distinguish between the under- and overload states, we define two subsets of W :
W− := {i ∈ W | i r < L} and W+ := {i ∈ W | i r > L}. For technical reasons we
prefer to choose L/r $∈ W , that is, L is not an integer multiple of r. (Consult, e.g., Mitra
(1988) or Sericola & Tuffin (1999) on how to handle systems for which L/r ∈ W .)
Consequently, W = W+ ∪ W− and W− ∩ W+ = ∅. Furthermore we set N− := |W−|,
N+ := |W+|, and N := |W | = N− + N+.

Finally we need vectors

A(y, t) := (A1(y, t), . . . , AN (y, t)),

D(t) := (D1(t), . . . ,DN (t)),

and the restrictions of these vectors to the regions W− and W+. Hence, dropping the
arguments y and t, let

A− := (A1, . . . , AN
−

),

A+ := (AN
−

+1, . . . , AN ),

and so on.

2.2.2 Kolmogorov Forward Equations
Introduce the shorthand ri := ir − L, fix y ∈ (0, B) and take h so small that also
y − rih ∈ (0, B). Then we find

Ai(y, t + h) = λhAi−1(y, t)+

(1 − λh)Ai(y − rih, t) + o(h), 1 < i < N,

A1(y, t + h) = (1 − λh)A1(y − r1h, t) + o(h)

AN (y, t + h) = λhAN−1(y, t) + AN (y − rNh, t) + o(h).

Expanding the second term on the right hand side of the first equation yields

Ai(y, t + h) = λhAi−1(y, t) + (1 − λh)

[
Ai(y, t) − rih

∂Ai(y, t)

∂y

]
+ o(h).

By collecting terms, dividing by h, and taking the limit h → 0 we find in matrix form
the Kolmogorov forward equations for the (row) vectorA(y, t):

∂A(y, t)

∂t
= A(y, t)Q −

∂A(y, t)

∂y
R, (2.11)

where Q is defined in (2.4) and R in (2.2). For completeness’ sake we remark that we
do not specify the behavior of A(y, t) on the boundary y = 0. The details are easy to
provide, cf. (1.11–1.12).
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The derivation of the differential equations for D is more involved. Observe that,
when i ∈ W+, there is a net probability flux into T̃ from ‘below’, i.e., from T due to
overflows of the buffer, and from ‘above’, i.e., from higher statesD2i andD2i+1 intoDi,
due to multiplicative decrements of the source state. Thus, for sufficiently small h and
i ∈ W+,

Di(t + h) = (1 − µh)Di(t) + µh[D2i(t) + D2i+1(t)]

+ (1 − λh)P{W (t) = i, B − rih < C(t) < B} + o(h)

= Di(t) + µh[D2i(t) + D2i+1(t) − Di(t)]

+ (1 − λh)[Ai(B, t) − Ai(B − rih, t)] + o(h).

(Recall Di(t) ≡ 0, if i $∈ W .) On W− there is a flux from T̃ to T , and the term
Ai(B − rih, t) in the above equation should be replaced by Ai(B + rih, t) since now
ri < 0. Presently, in Section 2.2.3, we require that D−(t) ≡ 0 implying that when
i ∈ W− the fluxes from ‘above’ and ‘below’ should match. Therefore the above relation
should be replaced by, for i ∈ W−,

µh(D2i(t) + D2i+1(t)) = Ai(B, t) − Ai(B + rih, t) + o(h)

= −rih
∂Ai(B, t)

∂y
+ o(h).

Now we follow the same procedure as for A, (collect terms, etc.) to obtain the forward
equations forD:

dD(t)

dt
= D(t)Q̃ +

∂A(B, t)

∂y
R, (2.12)

with Q̃ as in (2.6) and Di(t) = 0 if i $∈ W .
Note thatD(t) does not appear in the derivation forA(y, t) leading to (2.11), whereas

∂yA(B, t) does ‘contribute’ toD(t). The reason is simply that the derivation forA(y, t)
applies to the half open interval [0, B), so that there cannot be a contribution of boundary
terms at C = B. In fact, to clarify further the exchange of probability flux between T

and T̃ at the boundary C = B, we add (2.11) and (2.12) at C = B to obtain
∂A(B, t)

∂t
+

dD(t)

dt
= D(t)Q̃ + A(B, t)Q. (2.13)

Now we see that A and D satisfy a conservation principle similar to the forward equa-
tions of a continuous-time Markov process. As (2.12) has a less familiar form than the
equivalent equation (2.13), we prefer to work with the latter rather than the former.

2.2.3 The Stationary System and Boundary Conditions
In the sequel we are interested in the system in steady state, and write for brevity W
and C for W (t) and C(t) at an arbitrary point in time. The stationary solution of (2.11)
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Figure 2.2: The figure shows the state space and the boundary conditions of A(y) and
D. The line l = {(x, y) |xr = L} splits S into W− × [0, B] and W+ × [0, B]. The
open circles at the points (i, 0) for i ∈ W+ indicate that Ai(0) = 0. Likewise we have
that Di = 0 when i ∈ W− which is shown by the open circles at (i, B). Furthermore the
atoms Ai(0) > 0, when i ∈ W−, andDi > 0, when i ∈ W+ respectively, are depicted by
a bullet.

and (2.13) satisfies ∂tA(y, t) ≡ ∂tD(t) ≡ 0 allowing us to drop the dependence on t in
the sequel. It follows that (2.11) reduces to a set of ordinary linear differential equations

dA(y)

dy
R = A(y)Q, (2.14a)

and (2.13) yields the balance equations

DQ̃ + A(B)Q = 0. (2.14b)

A(y) and D have to satisfy some obvious boundary conditions. In fact, we observe
that the buffer cannot be full (empty) whenW ∈ W− (W ∈ W+), whence

D− = 0 and A+(0) = 0. (2.15)

Figure 2.2 shows an overview of the state spaceS with the boundary conditions and the
source transitions.

We now show that the number of conditions matches the number of unknowns. Con-
cerning the unknowns, observe that A(y) is a solution of the N -dimensional system of
differential equations (2.14a), and, hence, involves N coefficients. Second, the vector of
atoms D has N components. On the other hand, it is evident that (2.15) yields exactly
N conditions. Moreover, Lemma 2.3 below shows that the balance equations (2.14b)
provide N − 1 conditions. Finally, the requirement that

∑
i(Ai(B) + Di) = 1 fixes a

scaling. Thus, the number of conditions is also equal to 2N so that a well-defined system
remains.
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Lemma 2.3. The number of conditions implied by the equation

A(B)Q + DQ̃ = 0, (2.16)

is equal to N − 1.

Proof. In the first place we notice that a solution of the differential equations (2.14a)
cannot be trivial when it also satisfies the condition

∑
i(Ai(B) + Di) = 1. This implies

A(B)Q $= 0 and DQ̃ $= 0.

Second, we write (2.16) as

(A(B),D)

(
Q

Q̃

)

= 0,

i.e., we stack the entriesQ and Q̃ into one matrix. From (2.4) and (2.6) it follows that the
columns of this matrix are linearly independent, except for the left most which is equal
to (minus) the sum of the other columns. Thus the rank of this matrix is N − 1.

2.2.4 Solving the Stationary System
Now we solve the system of differential equations (2.14a) together with the balance
equations (2.14b) such that the boundary conditions (2.15) are satisfied. First we re-
duce (2.14a) to an N -dimensional eigenvalue problem and establish explicit expressions
for the eigenvalues and corresponding left eigenvectors. The second step relates the
eigensystem to the balance equations, includes the boundary conditions, and, finally,
provides the solution to the entire system.

The Eigenvalues and Eigenvectors

The system of ordinary differential equations (2.14a) can be written as

∂A(y)

∂y
= A(y)QR−1,

where the inverse of R exists as, by assumption, L $= ir for any i ∈ W . The eigenval-
ues θi follow immediately from the upper-triangularity of QR−1: they simply form the
diagonal, so that

θi =
λ

L − ir
, 1 ≤ i < N,

and θN = 0. Obviously, N− eigenvalues are positive, and N+ − 1 are negative. These
eigenvalues can be given an interesting interpretation. Recall that the average round-trip
time is 1/λ. If the source is in state i, the increase or decrease of the buffer during one
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round-trip time will be, on average, (ir−L)/λ. Observe that Theorem 1.4 does not hold
here, since (1.20) is not valid with (0, 0, . . . , 1) being the left null vector of Q.

The eigenvalues are distinct so that the general solution forA is of the form

A(y) =
N∑

i=1

ai vie
θi y,

where the row vectors vi are the left eigenvectors of the matrix QR−1 associated with
the eigenvalue θi, i.e., θivi = viQR−1. The solution A(y) can be written succinctly in
matrix form. To this end, let θ := (θ1, . . . , θN ) be the vector of eigenvalues,

Θ(y) := exp (diag(θ) y) , (2.17)

and Φ the matrix of eigenvectors, i.e.,

Φ :=





v1

...
vN



 .

NowA(y) becomes
A(y) = aΘ(y)Φ, (2.18)

where the coefficients vector a contains the N unknowns which were to be found in
Section 2.2.3.

To determine the eigenvectors, we notice that, again because of the upper-triangulari-
ty of QR−1, the j-th component of the eigenvector vi should be zero when j < i,
i.e., φij = 0 if j < i. The other components of φi can be found from a recursion which
follows from the fact that the only non-zero entries ofQR−1, besides the diagonal, appear
one above the diagonal. Hence, for vi and i < j < N ,

φij =
1

j − i

L − ir

r
φi,j−1 =

1

(j − i)!

(
L − ir

r

)j−i

φii, (2.19)

and when i < j = N ,

φiN =
1

(N − i − 1)!

(
L − ir

r

)N−i r

Nr − L
φii.

The numbers φii can be chosen arbitrarily as the coefficients vector a ensures that the
boundary conditions be met. We therefore set φii = 1, 1 ≤ i < N . Furthermore,
θN = 0 so that defining φNN = 1 is allowed. So, the matrix Φ is upper-triangular with
1’s on the diagonal. Note that the eigenvectors are all linearly independent and, thus,
span the eigenspace of our boundary value problem for all y ∈ (0, B).
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FindingA(y) andD

It remains to express a andD in terms of the boundary conditions (2.15) and the balance
equations (2.14b). We start with partitioning Φ according to

Φ =

(
Φ−− Φ−+

Φ+− Φ++

)

.

HereΦ−− is theN−×N− upper left corner ofΦ, Φ+− is theN+×N− lower left corner,
and so on. Clearly, Φ+− ≡ 0, since Φ is upper triangular. Furthermore Φ−− and Φ++

are invertible, as is apparent from the fact that Φii = 1 for 1 ≤ i ≤ N and, again, by
upper triangularity. We partition the diagonal matrix Θ(y) of eigenvalues accordingly:

Θ(y) =

(
Θ−−(y) 0

0 Θ++(y)

)
.

With these partitions we can use the conditionA+(0) = 0 to express a+ in terms of
a−. From (2.18), and noting that Θ(0) is the identity,

0 = [aΘ(0)Φ]+
= a−Φ

−+ + a+Φ
++,

from which
a+ = −a−Φ

−+(Φ++)−1.

Now we can writeA(B) in terms of a−. To this end, introduce the N− × N+ matrix

Ψ =
(
Θ−−(B)

)−1
Φ−+

(
Φ++

)−1
Θ++(B),

so that

A(B) = (a−,a+)Θ(B)Φ

= a−Θ
−−(B)(Φ−− −ΨΦ+−,Φ−+ −ΨΦ++)

= a−Θ
−−(B)(Φ−−,Φ−+ −ΨΦ++),

(2.20)

where the last step follows from the fact that Φ+− ≡ 0. The advantage of introducing the
matrixΨ is that both (Θ−−)−1(B) andΘ++(B) contain (very) small entries. Moreover,
although a− can have very small entries, e.g., 10−20, the entries of the vector a−Θ−−(B)
are in comparison roughly of order 1. The numerical analysis becomes much stabler
when we compute the latter vector instead of a− itself.

With the boundary condition D− = 0 and the above expression for A(B) we solve
for a−Θ−−(B) andD+ with the balance equationA(B)Q + (0,D+)Q̃ = 0. This final
equation is of the form

(a−Θ
−−(B),D+)M = 0 (2.21)
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for some matrix M . The proper expressions for A(B) and D can now be found with
(2.20) and the scaling ∑

i

(Ai(B) + Di) = 1.

2.3 Results
We first define various steady-state performance measures of interest. Then we present
in Section 2.3.2 analytical results for a single source with two states. For systems with
more states the analytical expressions soon become unwieldy. Therefore we use numer-
ical methods to investigate larger models in Section 2.3.3. The validation of the root p
law (1.40) is the topic of Section 2.3.4.

2.3.1 Performance Measures
The source’s instantaneous transmission rate at time t is equal to r W (t). Its average
transmission rate up to time T is therefore

τ(T ) :=
r

T

∫ T

0
W (t)dt.

In the limit this becomes

τ := lim
T→∞

τ(T ) = r
∑

i∈W

i P{W = i} = r E{W}; (2.22)

thus, the expectation is taken with respect to the distribution of {W,C}.
The throughput, often indicated as ‘goodput’, is the data volume arrived at and ac-

knowledged by the destination during the interval [0, T ]. Thus, the throughput is in
general less than τ(T ) due to packet loss. In this fluid model we suppose that all traffic
sent while C(t) < B arrives at the destination, whereas all traffic sent in excess of the
link rate is lost at times when C(t) = B. Thus, the average throughput of the source up
to time T is

γ(T ) := τ(T ) −
∫ T

0
(rW (t) − L) 1{C(t)=B}dt,

where 1A is the indicator function: 1A = 1 if the event A is true, and 1A = 0 otherwise.
In the limit this becomes

γ = lim
T→∞

γ(T ) = τ −
∑

i∈W

(ir − L)Di = τ − E
{
(rW − L)1{C=B}

}

= r
∑

i∈W

iAi(B) + L
∑

i∈W

Di.
(2.23)
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The boundary conditionD− = 0 specified in (2.15) implies that P{C = B} = P{C =
B, rW > L}; thus, we do not subtract negative quantities in this definition.

To facilitate a comparison of systems with different link rate L we define the (unit-
less) utilization of the link as:

u =
γ

L
.

Finally, the stationary distribution of the buffer content is given by

P{C ≤ y} =
∑

i

Ai(y) +
∑

i

Di1{y=B}.

i.e., the long run fraction of time the buffer content is less than or equal to y.

2.3.2 Analytic Results for a Two-state Source
We now concentrate on a background process with only two states.

Assuming r < L < 2r, straightforward calculations yield the probability of finding
the system in state 1:

P{W = 1} = A1(B) =
µ

λ+ µ

[
1 +

µ

λ+ µ

L − r

2r − L

(
1 − e−Bθ1

)]−1

,

with θ1 = λ/(L − r). The fraction of time the buffer is congested is (recall D1 ≡ 0)

D2 =
λ

µ
A1(B)

=
λ

λ+ µ

[
1 +

µ

λ+ µ

L − r

2r − L

(
1 − e−Bθ1

)]−1

.

ForA(y) we obtain:

A(y) = (a1, a2)Θ(y)Φ

= A1(B)

(
eθ1(y−B),

L − r

2r − L

[
eθ1(y−B) − e−θ1B

])
.

An interesting limiting case is B = 0. Then A1(B) = µ/(λ + µ) and D2 =
λ/(λ + µ). Clearly, this is the stationary distribution of a two-state Markov chain with
exponential holding times with parameters λ and µ, respectively. This behavior is to be
expected: from the boundary conditions (2.15) we have that A2(0) = 0 implying that as
soon as the source makes a transition from state 1 to 2, the buffer will be full.

It is seen that A1(B) and D2 decrease monotonically as functions of B, and in the
limit

lim
B→∞

A1(B) =
µ

λ+ µ

[
1 +

µ

λ+ µ
·

L − r

2r − L

]−1

.
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The throughput (2.23) becomes

γ = rA1(B) + 2rA2(B) + LD2

= r [A1(B) + 2(1 − A1(B) − D2)] + LD2

= 2r +

(
(1 − 2r)L

λ

µ
− r

)
A1(B).

2.3.3 Numerical Results for a Source with more than Two States
Before presenting the results we discuss some aspects of the numerical analysis itself.
Replacing the analytic expressions of the entries of M , as implicitly defined in (2.21),
by their numerical values introduces rounding errors. As a consequence,M is no longer
singular; hence it does not have a left null vector. However, the singular values of M
computed by the Singular Value Decomposition algorithm, see, e.g., Golub & van Loan
(1989) or Horn & Johnson (1985), are typically in the order of one, except the last value,
which is equal to 0 up to machine precision. The corresponding left singular vector is
then the natural candidate solution for the left null vector of the analytic M , up to a
scaling factor. The computation of the inverse of Θ−−(B) causes some problems as
well. The entries Θ−−

i (B) can become very large when i is such that |ir − L| is small,
thereby making the numerical inversion unstable. The solution is simply to compute
Θ(−B) in (2.17) and take the upper left block of this matrix.

The left panel of Figure 2.3 shows the probabilities πi = Ai(B) + Di = P{W = i}
andDi for the parameters of Table 2.1. As 12 is the lowest source state with positive net
input rate, 6 is the lowest state the source jumps into after congestion; so, states 1, . . . , 5
simply have no influx from ‘above’. Therefore P{W ≤ 5} = 0. Intuitively we expect
that the traffic source will not enter state 20 often, and in case it does, the content C(t)
can only be smaller than B for a short time due to the high source rate. The fact that π20

is small, and only slightly greater than D20 supports this reasoning.

N L r B λ

20 80/7 1 20 1

Table 2.1: System parameters

The right panel of Figure 2.3 presents P{C > y} = 1−
∑

i Ai(y) for three different
buffer sizes, B = 1, 10, 20; the other parameters are as in Table 2.1. To simplify the
analysis, we scaled y by dividing it by the buffer size B. Clearly, the probability that
the system is empty, i.e., P{C = 0} = 1 − P{C > 0}, decreases as a function of B.
Apparently, the larger the buffer, the longer the buffer stays in a congested state, and the
larger P{C = B} is.
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Figure 2.3: The left panel shows the probabilities πi and Di. Adjacent points of the
graph are connected for clarity. The right panel shows P{C > y} as a function of y/B.

2.3.4 A Root p Law
Now we test the validity of the root p law (1.40) in the setting of our model. The root p
law approximates the ‘exact’ throughput γ (2.23) as

γM =
P

T

√
3

2p
, (2.24)

where p is the packet loss and T the round-trip time. The validity of this result for our
model is not immediately clear for two reasons. First, the root p law assumes that the
loss process is exogenous, i.e., the loss probability p is independent of the state of just
one source. This is typically the case when many sources share a bottleneck link. In our
case, however, p is not independent of the source behavior, but endogenous, i.e., entirely
determined by the source process. Second, in (2.24) the round-trip time is assumed to be
constant, whereas, in general and in our model, it is a random variable.

To apply (2.24), we have to interpret the packet size, the round-trip time and the loss
in the context of the fluid model. In view of (2.9) we estimate the average of P as

E{P} =
r

λ

∑

i

Ai(B) +
r

µ

∑

i

Di.

Reasoning analogously for the round-trip time, we get

E{T} =
1

λ

∑

i

Ai(B) +
1

µ

∑

i

Di.

With regard to the loss probability p, Mathis et al. (1997) actually state that p should
correspond to the number of negative (congestion) signals per acknowledged packet,
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rather than the fraction of packets lost. To see this, note that whereas a TCP NewReno
or Sack source generally reduces the window only once for a specific loss cycle, more
than one packet per window may be actually dropped. So, to obtain an expression for p
we replace the packet losses by negative signals, and use that the average amount of fluid
per packet is r/λ (r/µ) if the buffer produces positive (negative) signals. To proceed, let

M(T ) := fluid sent during [0, T ] while C(t) < B,

M(T ) := fluid sent during [0, T ] while C(t) = B.

Then, reasoning informally, we find for p:

p = lim
T→∞

Number of negative signals in [0, T ]

Number of packets sent in [0, T ]

= lim
T→∞

µ · Total amount of time spent in congestion during [0, T ]
λ
r M(T ) + µ

r M(T )

=
µ
∑

i Di

λ
∑

i iAi(B) + µ
∑

i iDi
,

(2.25)

where we use that

lim
T→∞

M(T )

T
= lim

T→∞

r

T

N∑

i=1

i

∫ T

0
Ai(B, t) dt = r

N∑

i=1

iAi(B),

lim
T→∞

M(T )

T
= r

N∑

i=1

iDi.

To evaluate the approximation γM in the context of fluid, we plot in Figure 2.4 γ and
γM as a function of B. Recall that p is not directly under our control (instead of being
an independent quantity it is determined by system parameters such as B or λ). Hence
we vary the buffer size B and compute first γ and p, and from the latter γM . Clearly, γM

describes the behavior of γ quite well; qualitatively it is off by a multiplicative term. We
see that, as expected, γ does not exceed L. However, γM , being an approximation, is not
necessarily bound by this constraint. We remark that controlling the loss by changing λ
rather than B turns out to give virtually the same results.

2.4 Conclusions
The feedback fluid model of a single TCP source allows us to investigate some of the
intricacies of feedback systems in the presence of stochasticity. We can analyze the
effects on link utilization of several relevant system parameters such as round-trip time,
maximum window size (source peak rates), packet size, and buffer size. As a practical
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Figure 2.4: The throughput γ and its root p approximation γM as functions of the buffer
size B.

case we investigate the extent to which the root p law, which Mathis et al. (1997) derive
under the assumption of deterministic and constant round-trip times, holds when round-
trip times are stochastic and the loss process is endogenous. Our analysis gives further
support for validity of this law even when some of the assumptions of Mathis et al. (1997)
are not met.





Chapter 3

A Feedback Fluid Model for Two
Heterogeneous TCP Sources

In this chapter we develop a feedback fluid model for multiple TCP sources that share
a single bottleneck router. In this model we can control the source parameters, such as
the (stochastic) round-trip time or the maximum window size, of each individual source.
This flexibility enables us to study the influence of these parameters on the throughput of
each source and on the utilization of the system as a whole.

As in all multi-source models, we need to make a choice about how to distribute the
loss of fluid during congestion over the sources. Here we model, in the parlance of the
field, ‘synchronized loss’: all sources have to reduce their rate after a buffer overflow, cf.
Section 1.3.2. Whereas this loss model is not necessary for our approach, we discuss it
as it is the more difficult to analyze as compared to the ‘proportional loss model’. (In this
latter model just one source suffers from loss during congestion while the probability of
losing a packet is proportional to a source’s actual rate.) As a consequence of synchro-
nized loss, the fluid model of this chapter is not a ‘standard’ feedback model in the sense
of Section 1.1. In particular, we need to augment the joint source-buffer process with
indicator variables to track which source(s) decreased their window after a congestion
period. Except for this modification, the analysis is similar to the standard fluid queue
discussed in Section 1.1.

In Section 3.1 we introduce the multi-source model. As the analysis becomes rather
cumbersome for more than two sources we restrict the analysis, and the rest of the chap-
ter, to the two-source case. Then, in Section 3.2, we solve the related two-point boundary
value problem in steady state. We also establish a numerically efficient procedure to com-
pute the coefficients of the solution of the differential equations. The numerical results of
this model are presented in Section 3.3. By computing the throughput for each source we

59
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obtain insight in fairness issues. We find analytic support for TCP’s bias against sources
with: (1) longer round-trip times; (2) smaller maximum congestion windows; (3) smaller
packet sizes.

3.1 Model
In general we have J sources, labeled with index i, that send fluid into one shared buffer.
The behavior of each source individually is similar to the single-source case explained in
Chapter 2. However, and this is crucial in this model, each source has its own specific set
of parameters ri, µi,λi, Ni.

The loss model we use here is ‘synchronous loss’, as explained in Section 1.3.2. As
a direct consequence of differences in round-trip times, sources may receive positive and
negative signals at different rates and at different moments in time. Therefore, after a
period of congestion some sources still have to wait before they can increase their rate,
while others already have started increasing their rate.

To incorporate these differences in source state, we augment the source processes
with indicator variables Ii(t). At times when Ii(t) = 1, source i is in congestion, that is,
it should make a transition downwards as a buffer overflow occurred. When Ii(t) = 0,
all data of source i arrives correctly at the destination and is acknowledged; hence, the
source can increase its rate. Thus, the source i process is given by

{Wi(t), Ii(t)} (3.1)

and has state space Wi × Ii = {1, . . . , ni}× {0, 1}.
Let {W(t), I(t)} := {W1(t), . . . ,WJ (t), I1(t), . . . , IJ (t)} denote the aggregate of

the source processes and its state space beW ×I := ΠJ
i=1Wi× ΠJ

i=1Ii. Then the state
of the entire system can be written as {W(t), I(t), C(t)}. Note that whereas the process
{W(t), C(t)} is not a Markov process, {W(t), I(t), C(t)} is a Markov process.

Let the buffer of size B < ∞ be served at rate L. It is convenient to define the net
drift function

r(n) := n · r − L :=
J∑

i=1

niri − L, (3.2)

where n := (n1, . . . , nJ ) and r := (r1, . . . , rJ ). As in (2.3), r should be such that

r(1, . . . , 1) < 0 < r(N1, . . . , NJ ), (3.3)

so that the system is not trivial. Moreover, analogous to the discussion in Section 2.2.1,
the vector r should satisfy the constraint

r(n) $= 0, for all n ∈ W . (3.4)
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(Mitra (1988) or Sericola & Tuffin (1999) show how to handle systems in which this
assumption is not made.)

The buffer content changes in accordance to, compare (1.47c),

dC(t)

dt
=






max{r(W(t)), 0}, if C(t) = 0,

r(W(t)), if C(t) ∈ (0, B),

min{r(W(t)), 0}, if C(t) = B.

To clarify this model further, and introduce some necessary notation, let us specialize
to two sources sharing the bottleneck buffer, and consider the evolution in time of the
processes {W(t)} = {W1(t),W2(t)}, {I(t)} = {I1(t), I2(t)}, and {C(t)}. We observe
that in the course of time the system is in one of four mutually exclusive ‘modes’, which
do not necessarily occur consecutively in time:

0. I(t) = (0, 0), i.e., neither of the two sources is in a congested state, so both sources
can increase their rate.

1. I(t) = (1, 0), i.e., after congestion occurred, a downward transition of source 2
removes the congestion from the buffer. Now source 2 can start increasing its rate,
while source 1 still has to make a downward transition.

2. I(t) = (0, 1), i.e., after congestion, a transition of source 1 removes the congestion
from the buffer. Source 2 still has to make a transition downward.

3. I(t) = (1, 1), i.e., the buffer is full so that both sources have to wait for a negative
feedback signal before they decrease their rate.

For notational brevity we address the states of I(t) slightly differently, and define these
in accordance with the enumeration immediately above, that is:

I(t) :=






0, if I(t) = (0, 0), i.e., neither source is in congestion,
1, if I(t) = (1, 0), i.e., just source 1 is in congestion,
2, if I(t) = (0, 1), i.e., just source 2 is in congestion,
3, if I(t) = (1, 1), i.e., both sources are in congestion.

In accordance with this notation we split the state spaceW ×I × [0, B] into four subsets

T0 := W × {0}× [0, B)

T1 := W × {1}× [0, B)

T2 := W × {2}× [0, B)

T̃ := W × {3}× B.
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T1

fTT2

T0

Figure 3.1: The transitions between the four subspaces are indicated by the arrows.
Note that there is no direct transition from T̃ to T0. This is a consequence of the flux
conditions, to be discussed in Section 3.2.2.

Figure 3.1 shows how these subsets communicate.
With these subsets we associate the following functions. On T̃ we have

Dij(t) := P{W(t) = (i, j), I(t) = 3, C(t) = B},

and on Tk, for k ∈ {0, 1, 2} and y < B,

Aijk(y, t) := P{W(t) = (i, j), I(t) = k,C(t) ≤ y}.

LetDij(t) = Aijk(y, t) = 0 whenever (i, j) $∈ W or y $∈ [0, B]. Note that from now on,
we use (i, j) instead of (n1, n2) to denote the window states of both sources. The context
will make clear whether i refers to a window state of source 1, i.e., i ∈ {1, . . . , N1}, or
to a source index, i.e., i ∈ {1, 2}.

Equation (3.3) implies that the sets of under- and overload states, i.e.,

W− := {(i, j) ∈ W |rij < 0},
W+ := {(i, j) ∈ W |rij > 0},

where rij = ir1 + jr2 − L, are not empty. By (3.4) we have W = W− ∪ W+, i.e., there
are no (i, j) ∈ W such that rij = 0. As a reminder, N := |W | = |W1||W2| = N1N2,
N− := |W−|, and N+ := N − N−. Finally, we indicate the restriction of a vector x to
the set W− by x−, etcetera.

3.2 Analysis
We start by deriving the Kolmogorov differential equations in Section 3.2.1, and discuss
the boundary conditions in Section 3.2.2. In the subsequent Section 3.2.3 we derive the
solution of the two-point boundary value problem. Finally, in Section 3.2.4 we show that
in principle the analysis of the two-source case extends to the multiple-source case.
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3.2.1 Kolmogorov Forward Equations

The derivation of the forward equations resembles the derivation of the single-source
case of Chapter 2. However, now two sources can change their congestion state, and the
communication between the states is more complicated, as shown by Figure 3.1.

Expanding Aijk(y, t + h) for 0 < y < B, 1 < i < N1, 1 < j < N2, and 0 ≤ k ≤ 2,
yields:

Aij0(y, t + h) = (1 − (λ1 + λ2)h)Aij0(y − rijh, t)

+ h[λ1Ai−1,j,0(y, t) + λ2Ai,j−1,0(y, t)]

+ µ1h[A2i,j,1(y, t) + A2i+1,j,1(y, t)]

+ µ2h[Ai,2j,2(y, t) + Ai,2j+1,2(y, t)] + o(h),

Aij1(y, t + h) = (1 − (µ1 + λ2)h)Aij1(y − rijh, t)

+ λ2hAi,j−1,1(y, t) + o(h),

Aij2(y, t + h) = (1 − (µ2 + λ1)h)Aij2(y − rijh, t)

+ λ1hAi−1,j,1(y, t) + o(h).

As in the single-source case, we do not discuss the details at the boundaries i = 1, and
so on, explicitly. ForD(t) we first consider the case (i, j) ∈ W+,

Dij(t + h) = (1 − (µ1 + µ2)h)Dij(t)

+ µ1h(D2i,j(t) + D2i+1,j(t))

+ µ2h(Di,2j(t) + Di,2j+1(t))

+ (1 − (λ1 + λ2)h)×
2∑

k=0

(Aijk(B, t) − Aijk(B − rijh, t)) + o(h).

When (i, j) ∈ W− the same equation holds, except that Dij(t) ≡ 0 for all t > 0 and the
summation should be replaced by

2∑

k=1

(Aijk(B, t) − Aijk(B + rijh, t)) ,

because now, as shown in Figure 3.1, there is a net outflux from T̃ to T1 and T2, but not
to T0.

In the limit h → 0 we get the following systems of partial differential equations: on
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T0,

∂Aij0(y, t)

∂t
+ rij

∂Aij0(y, t)

∂y
= λ1[Ai−1,j,0(y, t) − Aij0(y, t)]

+ λ2[Ai,j−1,0(y, t) − Aij0(y, t)]

+ µ1[A2i,j,1(y, t) + A2i+1,j,1(y, t)]

+ µ2[Ai,2j,2(y, t) + Ai,2j+1,2(y, t)];

(3.5a)

on T1 and T2,

∂Aij1(y, t)

∂t
+ rij

∂Aij1(y, t)

∂y
= λ2[Ai,j−1,1(y, t) − Aij1(y, t)]

− µ1Aij1(y, t);

∂Aij2

∂t
(y, t) + rij

∂Aij2

∂y
(y, t) = λ1[Ai−1,j,2(y, t) − Aij2(y, t)]

− µ2Aij2(y, t);

(3.5b)

and on T̃ ,

dDij(t)

dt
= µ1[D2i,j(t) + D2i+1,j(t) − Dij(t)]

+ µ2[Di,2j(t) + Di,2j+1(t) − Dij(t)] + rij

2∑

k=0

∂Aijk(B, t)

∂y
.

(3.5c)

The summation in (3.5c) runs from k = 0 to 2 for all (i, j) ∈ W , instead of from k = 1 to
2 on (i, j) ∈ W−. This will be clarified once we derive the boundary conditions in (3.11).

3.2.2 The Stationary System and Boundary Conditions
As in the single-source case our main concern is the performance of the system in sta-
tionarity. Thus, in the sequel we consider the system to be in steady-state and let W, I
and C denoteW(t), I(t) and C(t) at an arbitrary point in time. Hence, we set ∂tAk = 0
and ∂tD = 0, and drop the dependence on t.

We can rewrite the resulting equations conveniently with Kronecker products and
sums1, see, e.g., Lancaster & Tismenetsky (1985: Chapter 12). For this purpose asso-
ciate with the matrix Ak(y), with entries Aijk(y), a vector valued function Ak(y) by
‘stacking’ the rows of the matrix Ak(y) into one long vector, i.e.,

Ak := (A11k, . . . , A1N2k, A21k, . . . , AN1N2k), for k = 1, 2, 3.

1Given two matrices A ∈ Rm×m and B ∈ Rn×n, the Kronecker product is written as A ⊗ B, and
Kronecker sum is A ⊕ B = A ⊗ In + Im ⊗ B, with In(Im) the identity matrix on Rn(Rm).
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Similarly, we obtain a vectorD. We also introduce matricesQi, Q̃i, andRi, respectively,
for i ∈ {1, 2}, in the form of equations (2.4), (2.2) and (2.6), with λi, µi, ri replacing
λ, µ, and r. Finally, we define the rate matrix

R := R1 ⊕ R2 − LIN1
⊗ IN2

,

with Ik the k × k identity matrix, and modified generators

Q̃D
i := −µiINi

,

Q̃O
i := Q̃i − Q̃D

i .

The first matrix Q̃D
i is equal to the diagonal of Q̃i apart from (Q̃D

i )11, which is equal to
−µi, whereas (Q̃i)11 = 0. The matrix Q̃O

i contains the off-diagonal non-zero elements
and has zeros on its diagonal apart from (Q̃O

i )11, which is µi.
Equations (3.5a–3.5b) can now be cast into matrix form:

dA0(y)

dy
R = A0(y)(Q1 ⊕ Q2) + A1(y)(Q̃O

1 ⊗ IN2
)

+ A2(y)(IN1
⊗ Q̃O

2 )

dA1(y)

dy
R = A1(y)(Q̃D

1 ⊕ Q2)

dA2(y)

dy
R = A2(y)(Q1 ⊕ Q̃D

2 ).

(3.6)

We observe that A1 and A2 satisfy homogeneous differential equations similar to the
single-source equation (2.14a). The differential equation forA0 contains two inhomoge-
neous terms related toA1 andA2. For (3.5c) we get,

0 = D(Q̃1 ⊕ Q̃2) +
2∑

k=0

dAk(B)

dy
R. (3.7)

Evaluating (3.6) at y = B, and adding this to (3.7) yields a set of balance equations:

0 = A0(B)(Q1 ⊕ Q2) + A1(B)(Q̃1 ⊕ Q2)

+ A2(B)(Q1 ⊕ Q̃2) + D(Q̃1 ⊕ Q̃2).
(3.8)

The number of unknowns is easily seen to be 4N . Each vector Ak, k = 0, 1, 2,
depends on N coefficients, andD carries an additional N unknowns.

To solve the system of equations (3.6) we have to identify, in total, 4N − 1 boundary
conditions so that the scaling requirement

N1∑

i=1

N2∑

j=1

(Aij0(B) + Aij1(B) + Aij2(B) + Dij) = 1 (3.9)
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fixes the solution uniquely. We now identify these boundary conditions.
Part of the boundary conditions are analogous to the single-source boundary condi-

tions (2.15):

A+
k (0) = 0, for k ∈ {0, 1, 2}
D− = 0.

(3.10)

These conditions put a restriction on the value of the solution at y = 0 and y = B.
Apparently, we have 3N+ + N− of these conditions.

We can identify more conditions by considering the flux of the solutions on the bound-
ary, i.e., conditions on the derivatives of Ak. Clearly, whenW ∈ W+ the outflux of Ti,
i ∈ {0, 1, 2}, should be the influx to T̃ . In fact, regarded in this way, (3.7) restricted to
W+ becomes a flux condition. On W− we distribute the outflux of T̃ over T0,T1 and
T2 according to:

(
dA0(B)

dy
R

)−

= 0,

(
dA1(B)

dy
R

)−

= −
(
D(IN1

⊗ Q̃2)
)−

,

(
dA2,i(B)

dy
R

)−

= −
(
D(Q̃1 ⊗ IN2

)
)−

.

(3.11)

These conditions are natural in view of the current setting, i.e., modeling TCP. To see
this, consider the first condition. A transition from T̃ to T0 requires that both sources
make a downward jump at the same instant. Such events have zero probability. Hence
the probability influx at y = B to T0 should be 0. The second and third conditions
distribute the outflux of T̃ onW− over T1 and T2 in proportion to the downward rate of
the second and first source, respectively.

Lemma 3.1. The number of conditions implied by (3.11) and (3.8) is 3N− + N+ − 1.

Proof. It is evident that the flux conditions (3.11) only apply onW−; they therefore yield
3N− conditions.

Let us now show that (3.8) provides N − 1 conditions on W . The proof is similar
to the proof of Lemma 2.3 for the single-source case. The only missing point is to
show that the left null-spaces of the involved Kronecker sums are one dimensional. This
follows in a straightforward manner from Lancaster & Tismenetsky (1985: Section 12.2)
that the eigenvalues of the Kronecker sum A ⊕ B of any two matrices A ∈ Rm×m

with eigenvalues λ1, . . . ,λm and B ∈ Rn×n with eigenvalues µ1, . . . , µn, are the mn
numbers λi + µj . To apply this property, let us point out that all matrices Q1, Q̃1, and
so on, in (3.8) have rank N − 1. (All eigenvalues not associated with the left null-
spaces are negative, as is apparent from the fact that the generators are either upper or
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lower tridiagonal.) Hence, the sum of any two eigenvalues is negative, except when both
eigenvalues are zero. From this, and the above property of the eigenvalues of Kronecker
sums, Q1 ⊕ Q2 has rank N − 1. The same reasoning applies of course to the other
Kronecker sums.

Finally, as is apparent from the equivalence of (3.7) and (3.8) on the region W−,
precisely N− of conditions of (3.8) are automatically satisfied once the solution for Ai

andD also meets (3.11). Hence, N+ − 1 of the N − 1 conditions of (3.8) remain.

Clearly, we have found 3N+ + N− conditions with (3.10) and 3N− + N+ − 1 con-
ditions in the lemma above. Summarizing our findings in the table below yields

Region W− W+

Value conditions (3.10) N− 3N+

Flux conditions (3.11), (3.8) 3N− N+ − 1

As these conditions sum up to 4N −1, we may conclude that the system is fully specified
up to a scaling factor.

3.2.3 Solving the Stationary System

Our next task is to obtain a general solution of the equations (3.6). WhereasA1 andA2

satisfy homogeneous differential equations, the vector function A0 is the solution of an
inhomogeneous system of linear differential equations. Before establishing the full solu-
tion for A0, we concentrate first on solving (3.6) for A1 and A2 and the homogeneous
equation

dAhom
0 (y)

dy
= Ahom

0 (y)(Q1 ⊕ Q2)R
−1.

The procedure to find the solutions for the homogeneous equations is completely
analogous to the single-source case as presented in Section 2.2.4; we will here only sum-
marize the results and fix some notation. For i ∈ {0, 1, 2} denote by Φi, θi and ai,
respectively, the appropriate matrix of eigenvectors, eigenvalues and vector of coeffi-
cients. Moreover, let Θi(y) := exp(y diag(θi)). Now the solution can be written, for
i ∈ {0, 1, 2}, as

Ahom
i (y) = aiΘi(y)Φi, (3.12)

whereAhom
1 (y) ≡ A1(y) andAhom

2 (y) ≡ A2(y).
Let us work out the particular solution forA0. Clearly, (3.6) is of the general form

dx(t)

dt
= x(t)M + f(t),
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where x = (x1, . . . , xn), f = (f1, . . . , fn) andM an n×n matrix. The solution for this
system is well-known, see, e.g., Lancaster & Tismenetsky (1985: Section 9.10),

x(t) = x0e
Mt +

∫ t

0
f(s)e−Msds eMt.

Applying this toA0 yields the expression

A0(y) = Ahom
0 (y) + g1(y) + g2(y) (3.13)

where

g1(y) =

∫ y

0
A1(s)(Q̃

O
1 ⊗ IN2

)R−1e−(Q1⊕Q2)R
−1sds e(Q1⊕Q2)R

−1y,

g2(y) =

∫ y

0
A2(s)(IN1

⊗ Q̃O
2 )R−1e−(Q1⊕Q2)R

−1sds e(Q1⊕Q2)R
−1y.

The integrals, which should be carried out entry-wise, can be considerably simplified.
Using (3.12) and the property that Φ0 exp(s (Q1 ⊕ Q2)R−1) = Θ0(s)Φ0, we obtain

A0(y) = (a0 + a1M1(y) + a2M2(y))Θ0(y)Φ0,

where the matricesM1(y) andM2(y) are defined as

M1(y) =

∫ y

0
Θ1(s)Φ1(Q̃

O
1 ⊗ IN2

)R−1Φ−1
0 Θ0(−s)ds,

M2(y) =

∫ y

0
Θ2(s)Φ2(IN1

⊗ Q̃O
2 )R−1Φ−1

0 Θ0(−s)ds.

Note that now, contrary to (3.13), the integration is straightforward asΘi(s) are diagonal
matrices. The actual integration, then, yields for the ij-th component ofM1,

(M1(y))ij =
e(θi1−θj0)y − 1

θi1 − θj0
·
(
Φ1(Q̃

O
1 ⊗ IN2

)R−1Φ−1
0

)

ij
, (3.15)

with θi1 (θj0) the i-th (j-th) component of θ1 (θ0). Similar expressions hold for the
entries of M2(y). This form of the matrices M1(y) and M2(y) can be easily evaluated
numerically.

We now summarize the complete solution of (3.6) in matrix form,

(A0(y),A1(y),A2(y)) = (a0,a1,a2)




IN 0 0

M1(y) IN 0
M2(y) 0 IN





×




Θ0(y)Φ0 0

Θ1(y)Φ1

0 Θ2(y)Φ2



 .
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The last step is to express all boundary conditions as a number of linear equations
from which to we can compute a0,a1,a2 and D. Thus, we are to construct an expres-
sion comparable to the single-source equation (2.21). The work to be done at this point
resembles Section 2.2.4 in most respects; we only point out the most important steps.

We start with the boundary conditions (3.10). ConsiderA+
0 (0) = 0, i.e.,

0 = A+
0 (0) = a−

0 Φ
−+
0 + a+

0 Φ
++
0 .

From this we find
a+

0 = −a−
0 Φ

−+
0 (Φ++

0 )−1.

For a1 and a2 similar expressions hold. Clearly, a+
i can be expressed in terms of a

−
i .

At y = B, equations (3.8), (3.6) and (3.11) can be written as

0 = A0(B)(Q1 ⊕ Q2) + A1(B)(Q̃1 ⊕ Q2)

+ A2(B)(Q1 ⊕ Q̃2) + D(Q̃1 ⊕ Q̃2),

0 = (A0(B)(Q1 ⊕ Q2))
− + (A1(B)(Q̃O

1 ⊗ IN2
))−

+ (A2(B)(IN1
⊗ Q̃O

2 ))−,

0 = (A1(B)(QD
1 ⊕ Q2))

− + (D(IN1
⊗ Q̃2))

−,

0 = (A2(B)(Q1 ⊕ Q̃D
2 ))− + −(D(Q̃1 ⊗ IN2

))−.

The condition forD can be easily incorporated, onlyD+ should be found, since by (3.10)
we already have thatD− = 0.

As in Section 2.2.4, we build matrices Ψi, etc. Combining all boundary conditions,
we can write the final equation (after tedious but straightforward calculations) in the form

(a−
0 Θ

−−
0 (B),a−

1 Θ
−−
1 (B),a−

2 Θ
−−
2 (B),D+)K = 0, (3.16)

where the matrixK has size (3N−+N+)×(3N−+N+). This equation has to be solved
numerically, for instance by the Singular Value Decomposition algorithm. Here, as in the
single-source case, solving for a−

i Θ
−−
i (B) is numerically more robust than solving for

a−
i straightaway. The final result requires normalization according to (3.9).

3.2.4 The Multiple-Source Case
The multiple-source case can be handled, in principle, by similar methods as those used
above in the analysis of the two-source case. However, the number of differential equa-
tions and boundary conditions grows exponentially in the number of sources. To see this,
consider the J sources of Section 3.1 with state space W × I . Is is evident that the
cardinality of W × I equals 2J ΠJ

i=1Ni. Due to the increasing number of dimensions,
the (numerical) analysis becomes increasingly difficult. Therefore we have not studied
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the multiple-source case with the fluid model developed here. In Chapters 5 and 6 we
use another, more suitable, approach allowing us to extend the analysis to several sources
(and networks with two buffers).

3.3 Results
In this section we focus on the bias of TCP against connections with larger round-trip
times (1/λ), or smaller window growth rates (r). As mentioned in 1.3.2, this issue has
been brought up in other studies, e.g., Lakshman &Madhow (1997), Floyd (1991), Kelly
(2001). Besides these fairness issues we study whether competition among TCP sources
affects the utilization of the entire system.

The numerical analysis is somewhat hampered by two problems. First the matrix K
implicitly defined in (3.16) is ill-conditioned. Second, since the dimension of the matrix
K is much larger than the one of the single-source case, its left null space is harder to
compute. Consequently, the parameter ranges suitable for numerical analysis are rather
small in comparison to the single-source case. Nevertheless, we can make a number of
interesting observations for small-sized problems.

Before we present the results we generalize the performance measures introduced in
Section 2.3.1.

3.3.1 Performance Measures

Here we define some steady state performance measures for source 1; similar definitions
hold for source 2.

The expected transmission rate for source 1 is, in analogy to (2.22),

τ1 := r1E{W1} = r1

∑

i,j

iπij . (3.17)

As is apparent, we take here the expectation with respect to the stationary distribution
of {W(t), I(t), C(t)}, which is πij := P{W1 = i,W2 = j} = A0ij(B) + A1ij(B) +
A2ij(B) + Dij .

The definition of the throughput γ1 is slightly more involved. During periods of
congestion we have to distribute the excess fluid, i.e., the amount of lost fluid, over the
two sources. Here we propose to do this in proportion to the source’s momentary rate:

γ1 = τ1 − E

{
r(W)

r1W1

r1W1 + r2W2
1{C=B}

}

= τ1 −
∑

i,j

(ir1 + jr2 − L)
ir1

ir1 + jr2
Dij .

(3.18)
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Fig. 3.2 Fig. 3.3, Fig. 3.4 Left Fig. 3.4 Right
N1 4,5,6,7 9 7 4
N2 4,5,6,7 8 2–7 4–8
r1 1 1 1 1
r2 1 1 N1r1/N2 1
T1 0.25–1 2 1 1
T2 1 1 1 1
L 5.87 7.87 5.87 5.87
B 1 4 1 1

Table 3.1: Parameter settings used in Figures 3.2–3.4.

As in Equation (2.23), P{C = B} = P{C = B, r(W) > 0} owing to the boundary
conditionD− = 0 in (3.10). In Chapter 6 we discuss this choice in more detail.

Finally, let u1 = γ1/L so that the total utilization becomes u = u1 + u2.

3.3.2 Fairness and Utilization

To analyze the influence of round-trip time differences on the utilization of each source
we decrease the round-trip time T1 of the first connection while keeping T2 fixed. Fig-
ure 3.2 shows the throughput of each source along the vertical axis and s = T1/T2 is the
variable set out along the horizontal axis. The parameter settings for this and the other
figures are shown in Table 3.1.

From the graphs it is clear that the smaller the round-trip time of the first source, the
more of the available capacity it claims. Moreover, the increase of the throughput of the
first source is made at the expense of the second. Interestingly, this bias becomes more
pronounced when the maximum window sizes, i.e., N1 and N2, increase.

The somewhat peculiar kink in the graph of u for N1 = N2 = 5 and N1 = N2 = 7
is probably due to numerical instabilities. A careful analysis of the numerical data shows
that some components of (the numerical estimate for) πij are slightly negative. Simply
setting these negative components to 0 does not resolve the problem completely. Besides
this, the accuracy of the positive components is, by the same token, also unclear.

Figure 3.3 provides some additional insight in the phenomena observed in the previ-
ous figure. Both sources are nearly equal, only λ1 = 2λ2 and N1 = 9, N2 = 8. It is
clear that πij attains its largest values around the larger (smaller) window sizes of the first
(second) source. An analysis of the graphs of Aij2(B−) and Aij1(B−) (not included)
makes plausible that the first source is mostly responsible for the congestion. It turns
out that Aij2(B−) is significantly larger than Aij1(B−), showing that the second source
spends more time waiting in a congested state than the first one. In summary, the first
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Figure 3.2: The bias against sources with longer round-trip times. The ratio s = T1/T2

is set out along the horizontal axis.
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source learns sooner when congestion disappears, so that it can react quicker and build
up a larger window on average.

1 2 3 4 5 6 7 8
II 1
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Figure 3.3: The stationary probabilities πij = P{W1 = i,W2 = j}.

In the left panel of Figure 3.4 we study the effect of the ‘aggressiveness’ of Source 2
while T1 = T2. We vary N2 from 2 to 7 but such that the peak rate N2r2 remains fixed
and equal toN1r1 = 7 throughout. In other words, we vary r2 and, as is clear from (2.9),
thereby the packet size of source 2. The graph of the utilizations shows that, indeed, for
large values of r2 source 2 claims capacity more aggressively.

In the right panel of Figure 3.4 only N2 changes while the other parameters remain
fixed. As expected there is a bias against the source with the smaller maximum window
size, i.e., source 1.

3.4 Conclusions
In this chapter we extend the feedback fluid model of TCP of the previous chapter to two,
or more, sources to study link utilization and fairness as functions of system parameters.
Based on the graphs of Section 3.3 the model captures quite some characteristic features
of TCP as observed by, for instance, Floyd (1991). In more specific terms, the analy-
sis carried out here provides support for the claim that bias is an intrinsic property of
TCP, or more generally, AIMD congestion control algorithms. We observe bias against
sources with: 1) longer round-trip times; 2) smaller window increment rates; 3) smaller
maximum congestion windows (peak rates).
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Figure 3.4: The left panel shows the bias against non-aggressive sources while N2r2 =
constant. The right panel shows the bias against sources with small maximum window
size.

Although it seems fitting at this point to compare our model to simulation, we do not
provide such comparison for three reasons. First, the model’s intent is to provide fun-
damental insight into the behavior of the source and content process as functions of the
system parameters. We do not expect it to produce accurate numerical output in absolute
terms. Second, the numerical instabilities limit the parameter range quite severely. Third,
the contribution of queueing delay to the round-trip times is incorporated rather coarsely
by choosing the rates λi and µi, i = 1, 2, as in (2.7) and (2.8), respectively. The model
of the next chapter allows us to cope with the dependence of the transition rates on the
queueing delay in a better way.



Chapter 4

Fluid Queues with Continuous
Feedback

The models studied in Chapters 2 and 3 are examples of the feedback queues introduced
in Section 1.1.5. This type of feedback allows the infinitesimal generator to depend as
a piecewise constant function on the buffer content. In this chapter we generalize the
fluid model considerably in that now both the generator and the drift matrix can become
continuous functions of the content.

Although this model is clearly interesting in its own right, we first provide some mo-
tivation in terms of modeling TCP. In the models developed in the previous two chapters
the round-trip time is, by (2.7) and (2.8), a piecewise constant function of the buffer con-
tent. However, the round-trip time should be, by (1.47a), a continuous function of the
buffer content. As the transition rates of the source process depend on round-trip times,
these rates should also become continuous functions of the content process. The model
developed in this chapter allows us to include such effects.

The structure of the chapter is as follows. We give a precise description of our model
in Section 4.1 and mention some technical assumptions. In Section 4.2 we derive the
Kolmogorov forward equations for the joint Markov process {W (t), C(t), t ≥ 0}. We
do this by carefully following the infinitesimal approach, also employed in the derivation
of the standard Markov-modulated fluid models in Section 1.1, but we also pay attention
to the relation with the continuity equation from physics. The details of the derivation
are dealt with in Section 4.3. Section 4.4 relates the partial differential equations of Sec-
tion 4.2 to a system of ordinary differential equations by taking Laplace transforms. In
Section 4.5 we state the differential equations that determine the stationary distribution,
including appropriate boundary conditions. In Section 4.6 we restrict the analysis to a
model in which the source process has only two states. In this case it is possible to
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find the stationary distribution in closed form, which we illustrate with two examples in
Section 4.7. We present in Section 4.8 a numerical approach to find the stationary dis-
tribution when the source process has more than two states. Finally, in Section 4.9 we
model the interaction between a TCP source and the content process as a fluid queue with
continuous feedback.

4.1 Model and Preliminaries
In this section we specify the fluid model. We also state some assumptions on the func-
tions involved and introduce some notation.

4.1.1 Model
Consider a fluid system consisting of a buffer fed by one or more fluid sources. The
buffer content process {C(t)} ≡ {C(t), t ≥ 0} takes values in the set [0, B] with B
finite. The source, or background, process {W (t)} ≡ {W (t), t ≥ 0} has state space
W = {1, . . . , N} for some finite N . When W (t) = i and C(t) = y, the sources
transmit fluid into the buffer such that the instantaneous drift is given by some (known)
function ri(y). We model the source process such that, loosely speaking, whenC(t) = y,
the process {W (t)} behaves instantaneously as a continuous-time Markov chain with
generator Q(y). More precisely,

Definition 4.1. The source process {W (t)} is such that for all y ∈ [0, B], i $= j, and for
all t ≥ 0:

1. P{W (t + h) = i |W (t) = i, C(t) = y} = 1 + Qii(y)h + o(h),

2. P{W (t + h) = j |W (t) = i, C(t) = y} = Qij(y)h + o(h),

3. P{W makes more than one transition in [t, t + h] |W (t) = i, C(t) = y} = o(h).

Here the function Qij(y), j $= i, is said to be the transition rate at which the source
process jumps from state i to j when C(t) = y, and Qii(y) = −

∑
j "=i Qij(y).

Following the discussion on page 13 we note that, whereas {W (t)} and {C(t)}
are not Markov processes, the joint process {W (t), C(t), t ≥ 0} is a Markov pro-
cess. {W (t), C(t)} is characterized by the matrix Q(y) and the drift matrix R(y) =
diag(r1(y), . . . , rN (y)), and is defined on the state spaceS = W × [0, B].

Finally, define functions

Fi(y, t) = P{W (t) = i, C(t) ≤ y}, i ∈ W , y ∈ [0, B], (4.1)

and
Fi(y) = lim

t→∞
Fi(y, t), i ∈ W , y ∈ [0, B].
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Remark 4.2. The model is such that the joint process {W (t), C(t), t ≥ 0} can in princi-
ple be constructed as a piecewise-deterministic Markov process, cf. Davis (1984, 1993),
similar to more traditional fluid queueing processes. For the special case of a two-state
background process, Boxma et al. (2005) present an approach along these lines, i.e.,
they use the (extended) generator of the joint process. In this chapter we instead derive
the Kolmogorov forward equations directly, as is often done in the literature on fluid
queues, see, e.g., Kosten (1974), Anick et al. (1982), Kella & Stadje (2002), Mandjes
et al. (2003a).

4.1.2 Assumptions
In the sequel we need some assumptions on Qij(y) and ri(y), which we collect here for
ease of reference. Let Ck(X) denote the space of k-times continuously differentiable
functions on the set X . We assume the following.

1. Qij(y) ∈ C[0, B].

2. ri(y) ∈ C1(0, B) and finite on [0, B].

3. mini infy∈(0,B) |ri(y)| > 0, i.e., the functions ri are strictly bounded away from 0
on (0, B).

4. ri(y) < 0 < rj(y) for at least one i, one j, and one (and hence all) y ∈ (0, B).

The continuity assumptions in 1 and 2 may be weakened; we refer to Remark 4.5
to see how models with discontinuous Q(y) and/or R(y) can be analyzed. Due to the
assumptions on ri(y) we can unambiguously define two disjoint subsets of W : the set
of up-states W+ = {i ∈ W | ri(y) > 0}, and the set of down-states W− = {i ∈
W | ri(y) < 0}, when y ∈ (0, B). Let N− = |W−| and N+ = |W+|. Clearly, by
Assumption 3 we have that W = W+ ∪ W−. Assumption 4 ensures that both subsets are
non-empty, thereby avoiding trivial models.

Because the boundaries at 0 and B act as impenetrable barriers for the content pro-
cess, we have to assume

5. ri(0) = 0 if i ∈ W− and rj(B) = 0 if j ∈ W+.

6. ri(0) = ri(0+) > 0 if i ∈ W+ and rj(B) = rj(B−) < 0 if j ∈ W−.

Here, and in the sequel, we use shorthands like ri(0+) = limy↓0 ri(y) and ri(B−) =
limy↑B ri(y). Note that by items 5 and 6 we take the point of view as expressed in (1.24–
1.25) and the discussion there.

Our next concern is the irreducibility of the process. Because it seems difficult to
find necessary conditions for the process to be irreducible, we will only give a sufficiency
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condition. Notice that by Assumptions 2 and 3 the integrals
∫ y

x

du

rj(u)
, j ∈ W+ and

∫ x

y

du

−rj(u)
, j ∈ W−

are finite for all x, y ∈ [0, B]. These integrals represent the time it takes for the joint pro-
cess to move from (j, x) to (j, y) without making jumps in between. As a consequence,
and in combination with the other assumptions it is not too difficult to see that a sufficient
(but not necessary) condition for irreducibility is given by

7a. For all i ∈ W− (i ∈ W+) there is some j ∈ W+ (j ∈ W−) such that Qji(B) > 0
(Qji(0) > 0);

b. The matrix Q̃ with entries Q̃ij = 1{i∈W+}Qij(B)+1{i∈W
−
}Qij(0) is irreducible.

Assumption 7a ensures that any downstate (upstate) can be reached from above (below).
Suppose now that we would like to show that it is possible to reach state (j, y) from
(i, x) with i, j ∈ W− and y ∈ (0, B). Clearly, Assumption 7a implies that a state (k,B)
exists with k ∈ W+ from which the process can jump to (j,B) (followed by a drift from
(j,B) to (j, y)), while assumption 7b ensures that it is possible to reach state (k,B)
from (i, 0) (and hence from (i, x)). Similar arguments for the cases where i and/or j are
not in W− establish that assumptions 7a and 7b indeed imply that any state (j, y) can be
reached with positive probability from any starting state. For models that do no satisfy
Assumption 7, we note that the results here remain valid as long as the process under
study is irreducible or has a single absorbing set. In many instances this is not difficult to
verify.

With regard to the functions Fi(y, t) defined in (4.1), we observe that is it possible
to represent these as Fi(y, t) = Ai(y, t) + Di(y, t), where Ai(y, t) is an absolutely
continuous function of y for all t and Di(y, t) is a jump function of y. (Contrary to the
previous two chapters, the symbols ‘Ai’ and ‘Di’ are here mnemonics for ‘absolutely
continuous’ and ‘discrete’, rather than ‘ascending’ and ‘descending’, respectively.) We
write for the atoms of Fi(y, t) at y = 0 and y = B: Di(0, t) = Fi(0, t) and Di(B, t) =
Fi(B, t) − Fi(B−, t). It is clear that when Di(y, 0) does not contain any jumps for
y ∈ [0, B], Di(y, t) will also not contain jumps for y ∈ (0, B) and t ≥ 0. Hence
the densities fi(y, t) = ∂yFi(y, t) in that case exist for y ∈ (0, B). In Section 4.2 we
actually need the stronger assumption

8. Fi(y, t) ∈ C2((0, B) × [0,∞)), i ∈ W ,

because this implies the continuity of ∂t fi(y, t) and ∂y fi(y, t) for t ≥ 0 and ∂y∂t Fi =
∂t∂y Fi. Note that Assumption 8 is not of the same type as the previous ones; in fact it is
unclear what precise conditions onR(y) andQ(y)make sure this is satisfied. We remark
that by using the ‘generator approach’ of Davis (1993), this problematic point is avoided
altogether.
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Remark 4.3. Boxma et al. (2005) establish conditions for the stability of the fluid queue
for a two-state background process and an unlimited buffer size. The stability conditions
are formulated in terms of the convergence of certain integrals involving the density
functions. As these are available in closed-form for a system with a two-state source,
the evaluation is, in principle, possible. In our model, however, the background process
has more than two states, in general. Regrettably, no explicit solutions for the densities
are known for such higher dimensional systems, so that we have been unable to find
sufficiency conditions to guarantee stability. Hence, we restrict the analysis to finite
buffer sizes.

4.2 Kolmogorov Forward Equations

In this section we derive the Kolmogorov forward equations for the process {W (t), C(t)}
by two different methods. The first is, in a sense, the standard method in which the prob-
abilities Fi(y, t + h) are expressed in terms of Fi(y, t) for small h, cf. Section 1.1.2. In
other words, here we fix an event and express its probability in terms of the distribution
functions involved, both at time t and t + h, and finally equate these. The other method,
which we describe in Section 4.2.4, is based on an interpretation of the forward equa-
tion in physical terms resulting in a continuity equation, see e.g., Keilson (1965). The
derivation now depends on fixing a (measurable) subset of the state space, rather than an
event, and considering the in- and outflow of probability mass for this set. We believe
that this method is of independent interest as it has a natural interpretation and it is a
quick method leading us directly to the correct equations.

4.2.1 Derivation of the Forward Equations

First we summarize the derivation of the forward equations for the situation in which Q,
but not necessarily R, is constant as a function of the buffer content, see also Kella &
Stadje (2002). This derivation is completely analogous to that of the standard case in
which R and Q are fixed, cf. Section 1.1.1. Then we focus on the case in which the
entries of which Q(y) are non-constant functions of y. Although at first sight it may
seem obvious that a similar system of forward equations results, this is in fact not the
case. By a more careful analysis we obtain the correct result.

4.2.2 Constant Q

When Q is a constant matrix the usual approach to derive the forward equations, cf.
Section 1.1, is to express Fi(y, t + h) in terms of Fi(y, t) for sufficiently small h and
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y ∈ (0, B), i.e.,

Fi(y, t + h) = (1 + hQii)Fi(y − ri(y)h, t) +
∑

j "=i

hQjiFj(y, t) + o(h). (4.2)

By Assumption 8 we may write Fi(y − ri(y)h, t) = Fi(y, t)− hri(y)∂yFi(y, t) + o(h).
Rearranging terms, dividing by h, and letting h approach zero, yields

∂

∂t
Fi(y, t) − ri(y)

∂

∂y
Fi(y, t) +

∑

j

Fj(y, t)Qji. (4.3)

This is precisely the result obtained by Kella & Stadje (2002). Notice that (4.3) has the
same form as the corresponding result for traditional Markov-modulated fluid queues,
where both R andQ are constant matrices, cf. (1.8), only with a function ri(y) replacing
the constant ri. To complete the analysis we should also provide boundary conditions.
However, as they are not relevant for the sequel, we continue with the case of primary
interest here.

4.2.3 Variable Q

Focusing on the interval (0, B), it may be tempting to assume that in case the coeffi-
cients of Q are non-constant functions of y, the partial differential equation (4.3) can be
adapted simply by replacing Qji by Qji(y), just as (4.3) is found from the equations
for the standard Markov-modulated fluid model by replacing the constants ri by ri(y).
This is not the case, however, since Qji(y) are transition rate functions for the source
process, provided C(t) = y, while the event {W (t) = j, C(t) ≤ y}— the probability of
which is given by Fj(y, t) — does not at all imply that C(t) = y. This problem can be
circumvented by considering densities rather than distribution functions. Thus, we write
dyFj(y, t) ≡ P{W (t) = j, C(t) ∈ dy} = fj(y, t)dy, the last equality being valid if
y ∈ (0, B), and find the following extension of (4.2) for y ∈ (0, B):

Fi(y, t + h) =

∫ y−ri(y)h

0
(1 + hQii(x)) dxFi(x, t)

+ h
∑

j "=i

∫ y

0
Qji(x) dxFj(x, t) + o(h).

(4.4)

Again using Fi(y − ri(y)h, t) = Fi(y, t) − hri(y)∂yFi(y, t) + o(h) and the fact that∫ y
y−ri(y)h hQii(x) dxFi(x, t) = o(h), we find

Fi(y, t+h) = Fi(y, t)−hri(y)
∂

∂y
Fi(y, t)+h

∑

j

∫ y

0
Qji(x) dxFj(x, t)+o(h). (4.5)
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By subtracting Fi(y, t) from both sides, dividing by h and taking the limit h → 0, we
find

∂

∂t
Fi(y, t) = −ri(y)

∂

∂y
Fi(y, t) +

∫ y

0

∑

j

Qji(x) dxFj(x, t). (4.6)

This is the correct generalization of (4.3) at the interior of [0, B]. Notice that we were
somewhat careless in the derivation above; in particular we did not prove assertion (4.4).
We present a precise derivation of (4.5) in Section 4.3, with proper attention to o(h)
details.

We now provide the forward equations at the boundaries y = 0 and y = B. The
equation for y = 0 follows easily by letting y ↓ 0 in (4.6). Taking this limit yields

∂

∂t
Di(0, t) = −fi(0+, t)ri(0+) +

∑

j

Dj(0, t)Qji(0). (4.7)

To obtain the equation at y = B we first write down the forward equations for the process
{W (t)}:

∂

∂t
Fi(B, t) =

∫ B

0

∑

j

Qji(x) dxFj(x, t), (4.8)

which can be obtained by similar methods as those used in Section 4.3 to derive (4.6).
Next, we take the limit y ↑ B in (4.6),

∂

∂t
Fi(B−, t) = −fi(B−, t)ri(B−) +

∫ B−

0

∑

j

Qji(x) dxFj(x, t)

and subtract this from (4.8) to find

∂

∂t
Di(B, t) = fi(B−, t)ri(B−) +

∑

j

Dj(B, t)Qji(B). (4.9)

Finally, with respect to the boundary conditions it is clear, on physical grounds, that for
t > 0 we must have

P{W (t) ∈ W−, C(t) = B} = P{W (t) ∈ W+, C(t) = 0} = 0.

With these boundary conditions, equations (4.6), (4.7) and (4.9) fully specify the stochas-
tic behavior of the process (together with initial conditions).

We prefer to state our main result as a partial differential equation for densities instead
of the integro-differential equation (4.6). Thus, we differentiate with respect to y, using
Assumptions 2 and 8 from Section 4.1.2, while up to now we only needed ri(y) ∈
C(0, B) and Fi(y, t) ∈ C1((0, B) × [0,∞)). The result is straightforward:

∂

∂t
fi(y, t) = −

∂

∂y
(fi(y, t)ri(y)) +

∑

j

fj(y, t)Qji(y). (4.10)
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Note that by differentiating (4.3) with respect to y and replacingQji byQji(y)we obtain
precisely this equation. Thus, although in (4.3) we could not simply replace Qji with
Qji(y), we apparently can in the equations for densities. This may not come as a surprise,
in view of the discussion leading to equation (4.4).

The following theorem summarizes the results in vector form, where the row vec-
tor f(y, t) (respectively D(y, t)) has components fi(y, t) (respectively Di(y, t)), i =
1, . . . , N .

Theorem 4.4. Under the assumptions of Section 4.1.2, the Kolmogorov forward equa-
tions for the joint process {W (t), C(t)} are, in row vector form,

∂

∂t
f(y, t) = −

∂

∂y
(f(y, t)R(y)) + f(y, t)Q(y) (4.11a)

d

dt
D(0, t) = −f(0+, t)R(0+) + D(0, t)Q(0) (4.11b)

d

dt
D(B, t) = f(B−, t)R(B−) + D(B, t)Q(B). (4.11c)

The boundary conditions to be satisfied for t > 0 are

Di(0, t) = Dj(B, t) ≡ 0, if i ∈ W+, j ∈ W−. (4.12)

Remark 4.5. Our analysis extends easily to the case in which Q(y) and R(y) depend
piecewise continuously on the buffer content y by combining the ideas presented here
with those of Mandjes et al. (2003a). Considering thresholds 0 = B0 < B1 < . . . <
BK = B in the buffer as in (1.26), we obtain a system of differential equations as
in (4.11a) for each interval (Bk, Bk+1), while the equations (4.11b) and (4.11c) will be
supplemented with similar equations forD(Bk, t).

4.2.4 Different Interpretation of the Forward Equations
In this section we relate the forward equations for fi(y), i.e., (4.10), to continuity equa-
tions. These are well-known relations in, e.g., the hydrodynamics and diffusion literature,
expressing a conservation law in differential form, see e.g., Feynman (1970: Volume II,
13.1) or, for a probabilistic setting, Keilson (1965: Section II.3).

In the physics context the continuity equation in one dimension is given by

∂

∂t
ρ(x, t) = −

∂

∂x
(ρ(x, t)v(x)), (4.13)

where ρ(x, t) is the density function of some conserved quantity, e.g., mass or electric
charge, and v(x) is the velocity at which this quantity is moving. Note that the partial
derivative with respect to position operates on the product ρv, just as in (4.10). We now
re-derive (4.10) from this point of view.
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The dynamics of any conserved quantity is governed by a conservation law (admit-
tedly, this is tautological). In general such a law states, in words,

‘Rate of Change’ = ‘Influx’− ‘Outflux’+ ‘Source terms’− ‘Sink terms’.

Note that this principle is slightly more general than the equation for the density ρ
of (4.13) as it also incorporates contributions from sources and sinks. Let us interpret
this equation in terms of the probability mass assigned to the interval (a, y] such that
0 < a ≤ y < B. As such, we treat probability mass as the conserved quantity of interest
and discuss each term of this equation separately.

Consider first the left hand side. The rate of change of P {W (t) = i, C(t) ∈ (a, y]}
is given by

d

dt
(Fi(y, t) − Fi(a, t)),

or, in integral form,
d

dt

∫ y

a
fi(x, t)dx =

∫ y

a

∂

∂t
fi(x, t)dx,

where the second equality holds as, by assumption, ∂tfi is continuous in y and t.
Now turn to the right hand side of the conservation law and consider an i ∈ W+, so

that ri(y) > 0 for y ∈ (0, B). Then the rate at which probability mass flows out of the
interval (a, y] at the boundary y, i.e., the probability outflux at y, is fi(y, t)ri(y). The
influx at a is seen to be fi(a, t)ri(a). Thus the net outflux from the interval (a, y] is

fi(y, t)ri(y) − fi(a, t)ri(a).

When i ∈ W− this expression also gives the net outflux, because now the outflux is given
by −fi(a, t)ri(a), while −fi(y, t)ri(y) is the influx. Further, we interpret the first term
in the expression

∫ y

a

∑

j "=i

fj(x, t)Qji(x)dx −
∫ y

a
fi(x, t)|Qii(x)|dx

as a source term of probability mass, and the second as a sink term.
So now, by the ‘conservation of probability mass’, the above combines into

∫ y

a

∂

∂t
fi(x, t)dx = −fi(y, t)ri(y) + fi(a, t)ri(a)

+

∫ y

a

∑

j "=i

fj(x, t)Qji(x)dx −
∫ y

a
fi(x, t)|Qii(x)|dx.

As (a, y] is an arbitrary interval, and ∂tfi, ∂yfi and ∂yri are by assumption continu-
ous we obtain the one-dimensional continuity equation (4.10) by differentiating with re-
spect to y. Similar reasoning at the boundaries 0 andB immediately gives (4.7) and (4.9).
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4.3 Proof of Theorem 4.4
In the previous section we expressed the dynamics of Fi(y, t + h) for h > 0 sufficiently
small and y ∈ (0, B) in terms of the expansion

Fi(y, t+h) =

∫ y−ri(y)h

0
(1+hQii(x)) dxFi(x, t)+h

∑

j "=i

∫ y

0
Qji(x) dxFj(x, t)+o(h).

It is not immediately obvious that this expansion is indeed correct. For instance, the
upper limit of integration y in the second term suggests that we assume that the content
level remains constant during [t, t+h], while this is certainly not the case. Compensating
for this effect is difficult since the knowledge thatW (t) = j,W (t+h) = i, andC(t) = y
is not sufficient to determine C(t + h). To do that, we also need the epoch τ ∈ [t, t + h]
at which the source makes its transition from state j to i, which is random. Similarly,
we notice that the upper limits of both integrals should incorporate some o(h) term.
In the following we prove that when the assumptions of Section 4.1.2 are satisfied the
influence of such subtleties can be absorbed in the term o(h). In fact we prove (4.5),
from which (4.6) then easily follows.

Lemma 4.6. Under the assumptions of Theorem 4.4, the expansion (4.5), i.e.,

Fi(y, t + h) = Fi(y, t) − hri(y)
∂

∂y
Fi(y, t) + h

∑

j

∫ y

0
Qji(x) dxFj(x, t) + o(h)

is valid for any i ∈ W .

Proof. The proof consists of four steps. First we state three differential equations that
bound all possible paths of {C(s), s ∈ [t, t + h]}. Then we define a family of transition
functions that allow us in the third step to express the functions Fi(y, t + h) in terms of
some integrals, each involving the functions Fj(x, t). In the last step we rewrite these
and thereby prove the lemma. In the sequel consider i ∈ W fixed.

1. We introduce three differential equations aiming to relate events at time t + h, e.g.,
{C(t + h) ≤ y}, to events at time t. To that end we define for y ∈ (0, B),

r(y) = min(r1(y), . . . , rN (y)), r(y) = max(r1(y), . . . , rN (y)).

Clearly, r(y) and r(y) are continuous and finite functions on (0, B) by the continuity
and finiteness of the functions ri(y), 1 ≤ i ≤ N , and satisfy r(y) < 0 < r(y). Let a
prime denote differentiation with respect to s. Then the three problems of interest are as
follows,

y′(s) = ri(y(s)), y(t + h) = y,

y′(s) = r(y(s)), y(t + h) = y,

y′(s) = r(y(s)), y(t + h) = y,
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where y ∈ (0, B) is some fixed terminal value. Notice that these terminal value problems
are well defined on s ∈ [t, t + h], provided that h is so small that y(t), y(t) ∈ (0, B) if
y ∈ (0, B). The solutions to these terminal value problems are unique. In the remainder
we will be particularly interested in these solutions evaluated at t, for which we have

y(t) ≤ y(t) ≤ y(t)

2. Let J0, J1 and J2 denote the events that the source process makes respectively 0, 1,
or more than 1 transitions in the interval [t, t + h]. Then we can define the following
transition functions:

Pn(i, y, t + h | j, x, t) = P{W (t + h) = i, C(t + h) ≤ y, Jn |W (t) = j, C(t) = x}.

From our definition of y(t), y(t) and y(t) and Definition 4.1 it can be seen that for h
sufficiently small we actually have

P0(i, y, t + h | j, x, t) =

{
1 + hQii(x) + o(h) if j = i and x ≤ y(t)

0 otherwise

P1(i, y, t + h | j, x, t) =

{
hQji(x) + o(h) if j $= i and x ≤ y(t)

0 if j $= i and x ≥ y(t), or if j = i

P1(i, y, t + h | j, x, t) ≤ hQji(x) + o(h) if j $= i and y(t) ≤ x ≤ y(t), (∗)
P2(i, y, t + h | j, x, t) = o(h).

The inequality in (∗) is intentional: when the process starts in (j, x) with y(t) ≤ x ≤
y(t), it may ‘escape’ from the set (i, y(t)) during [t, t + h].

3. By conditioning on {W (t) = j, C(t) ≤ x} we obtain

Fi(y, t + h) = P{W (t + h) = i, C(t + h) ≤ y} = I0 + I1 + I2, (4.14)

where

In =
∑

j∈W

∫ B

0
Pn(i, y, t + h | j, x, t) dxFj(x, t).

We consider the individual integrals I0, I1, and I2, consecutively.

4. With the expression above for P0(i, y, t + h | j, x, t), the integral I0 becomes

I0 =

∫ y(t)

0
(1 + hQii(x)) dxFi(x, t) + o(h),
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where we used dominated convergence to establish that
∫ y(t)
0 o(h) dxFi(x, t) = o(h).

We rewrite this expression further by: (1) assuming that Fi ∈ C1((0, B) × [0,∞)),
which is implied by, but weaker than, Assumption 8; (2) using the Taylor expansion of
y(t) around t + h,

y(t) = y(t + h) − h
d

dy
y(t + h) + o(h) = y − hri(y) + o(h).

The result becomes

I0 = Fi(y − hri(y) + o(h), t) +

∫ y+(y(t)−y)

0
hQii(x) dxFi(x, t) + o(h)

= Fi(y, t) − hri(y)
∂

∂y
Fi(y, t) +

∫ y

0
hQii(x) dxFi(x, t)

+

∫ y(t)

y
hQii(x) dxFi(x, t) + o(h).

(4.15)

The second integral is o(h), and can therefore be absorbed in the o(h) term.
For the second integral I1 we can derive that

−
∑

j "=i

∫ y

y(t)
hQji(x) dxFj(x, t) + o(h) ≤ I1 −

∑

j "=i

∫ y

0
hQji(x) dxFj(x, t)

≤
∑

j "=i

∫ y(t)

y
hQji(x) dxFj(x, t) + o(h).

Since the left-hand side and right-hand side are both o(h), we find

I1 =
∑

j "=i

∫ y

0
hQji(x) dxFj(x, t) + o(h). (4.16)

Finally, it is clear that I2 = o(h). Combining this with (4.14), (4.15) and (4.16) yields
the desired result.

4.4 Transient Behavior
Assuming for a moment that all assumptions in Section 4.1 are satisfied (including as-
sumption 8) we take Laplace transforms with respect to time so that the partial differential
equations (4.11a) are transformed into ordinary differential equations, and the ordinary
differential equations (4.11b) and (4.11c) are turned into algebraic equations. This is of
interest as there exist efficient numerical procedures to solve such systems of (ordinary)
differential and algebraic equations for fixed s > 0, where s is the Laplace transform
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variable. Moreover, once such solutions are known for various well-chosen values of s,
the transient solution fi(y, t) can be obtained by standard numerical Laplace inversion,
see e.g., Abate et al. (1999).

Thus, let us define for fixed s > 0 the Laplace transforms with respect to time:

f̃i(y) =

∫ ∞

0
e−stfi(y, t) dt,

and analogously D̃i(0) and D̃i(B); note that we suppress the dependence on s in the
transforms. Taking the transform of (4.11) is straightforward, so that we obtain in vector
form,

−f(y, 0) + s f̃(y) = −
d

dy

(
f̃(y)R(y)

)
+ f̃(y)Q(y) (4.17a)

−D(0, 0) + s D̃(0) = −f̃(0+)R(0+) + D̃(0)Q(0) (4.17b)

−D(B, 0) + s D̃(B) = f̃(B−)R(B−) + D̃(B)Q(B). (4.17c)

For fixed s, the solution of this system involves 3N constants, namely the 2N constants
in D̃(0) and D̃(B), andN coefficients corresponding to the fundamental set of solutions
of (4.17a). To check whether this system is well-defined we reason as follows. The
transform of (4.12) yields N+ conditions at y = 0 and N− at y = B. Let I be the
identity, and note that R(y) and sI − Q(y) are invertible for all y (due to assumption
4 and the fact that the eigenvalues of sI − Q have positive real part). Then it is clear
that (4.17b) imposesN+ constraints on the coefficients vector and relates D̃i(0), i ∈ W−,
to the remaining N− degrees of freedom of f̃(y). These N− degrees of freedom are, in
geometric terms, ‘propagated’ by (4.17a) from the level y = 0 to y = B. There the
fact that Di(B) = 0, i ∈ W−, provides the missing conditions so that the N− degrees of
freedom of the coefficients vector are removed.

So far, we have worked with (Laplace transforms of) the density functions fi(y, t),
complemented with the atoms Di(0, t) and Di(B, t). We could also, as Kella & Stadje
(2002), derive equations for the Laplace transforms of the distribution functions, i.e., for
F̃i(y) =

∫∞
0 e−stFi(y, t) dt. It is not difficult to find from (4.6) that for 0 ≤ y < B,

−F(y, 0) + sF̃(y) = −
dF̃(y)

dy
R(y) +

∫ y

0
dxF̃(x)Q(x), (4.18)

while for y = B the first term on the right-hand side vanishes, compare (4.8). The nota-
tion in the integral is similar to that in Section 4.2.3, only generalized to matrix notation,
so that, e.g., the lower limit of the integral yields the term D̃(0)Q(0). By differentiation
and taking some appropriate limits we can obtain the more appealing equations (4.17)
from (4.18). However, for (4.6) and hence (4.18) to hold, we only need to assume the
initial distribution to have no atoms, i.e., Fi(y, 0) ∈ C1[0, B], instead of the more strin-
gent Assumption 8 in Section 4.1.2. Moreover, we can find any initial distribution as a
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weak limit of a sequence of distributions in C1([0, B]), so that (4.18) must in fact hold
for any initial distribution, possibly including atoms. This broader applicability can also
be carried over to (4.17), since initial atoms at the boundaries are explicitly taken into
account, while atoms in the open interval (0, B) can be included by means of Dirac delta
functions. Thus we arrive at the following theorem.

Theorem 4.7. Under assumptions 1–7 in Section 4.1.2, Fi(y, 0) ∈ C1[0, B], and for any
initial distribution, the Laplace transforms f̃i(y), D̃i(0) and D̃i(B) satisfy (4.17).

Let us now specialize to the case with a two-state source, i.e., W = {1, 2}, with

Q(y) =

(
−λ(y) λ(y)
µ(y) −µ(y)

)
.

Considering just the differential equation (4.17a), we find

−f1(y, 0) + sf̃1(y) + (r1(y)f̃1(y))′ = −λ(y)f̃1(y) + µ(y)f̃2(y) (4.19a)

−f2(y, 0) + sf̃2(y) + (r2(y)f̃2(y))′ = λ(y)f̃1(y) − µ(y)f̃2(y). (4.19b)

Now express f̃2 by means of (4.19a) in terms of f̃1 and f̃ ′
1, differentiate this with respect

to y so that f̃ ′
2 can be written in terms of f̃1, f̃ ′

1 and f̃ ′′
1 , and put these relations in (4.19b).

The result is, after some algebra, the following inhomogeneous second order differential
equation for f̃1:

f̃ ′′
1 +

(
s + r′2 + µ

r2
−

µ′

µ
+

s + 2r′1 + λ

r1

)
f̃ ′
1

+

(
s + r′1 + λ

r1

(
s + r′2 + µ

r2
−

µ′

µ

)
+
λ′ + r′′1

r1
−
λµ

r1r2

)
f̃1

=

(
s + r′2 + µ

r2
−

µ′

µ

)
f1(y, 0)

r1
+

f ′
1(y, 0)

r1
+

µf2(y, 0)

r1r2
,

(4.20)

where we suppress the dependence of λ, µ, r1 and r2 on y for conciseness. If we take the
drift functions of the form ri(y) = αiy+βi, and take λ and µ to be independent of y, the
corresponding homogeneous equation can be rewritten as the differential equation for the
hyper-geometric function, see e.g. Lanczos (1997: pp. 349–351). Indeed, precisely this
is done by Kella & Stadje (2002), where the transient behavior of this system is found
explicitly.

4.5 Stationary Behavior
First we will show that a stationary distribution actually exists. The approach we follow
is of interest in its own right, and may be described best as the uniformization of the joint
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process {W (t), C(t)}. It is similar to the approach of Kella & Stadje (2002), where the
background process is uniformized. Although in our context the processes {W (t)} and
{C(t)} are not Markov processes, it turns out that we can still follow the same line of
reasoning.

We start by choosing a constant λ < ∞ such that

λ ≥ sup
(i,y)∈W ×[0,B]

|Qii(y)|,

which is possible by Assumption 1. Then we define for y ∈ [0, B] the following func-
tions:

pij(y) =

{
Qij(y)/λ, if i $= j,

1 + Qii(y)/λ, if i = j.

Although we cannot consider the background process as a discrete-time Markov chain
embedded at (i.e., just before) the points of increase of an independent Poisson process
with intensity λ, we can do so for the joint process {W (t), C(t)}. To derive the transition
kernel of the resulting joint discrete-time process, suppose first that j ∈ W+. Then,

Pi,x(j, (y,B]) =





pij(x), if 0 ≤ y ≤ x,

pij(x) exp
(
−λ

∫ y
x

du
rj(u)

)
, if x ≤ y < B.

Pi,x(j, {B}) = pij(x) exp

(

−λ
∫ B

x

du

rj(u)

)

,

(4.21a)

When j ∈ W− (recall rj < 0 if j ∈ W−),

Pi,x(j, [0, y)) =





pij(x), if x ≤ y < B,

pij(x) exp
(
−λ

∫ y
x

du
rj(u)

)
, if 0 < y ≤ x,

Pi,x(j, {0}) = pij(x) exp

(
−λ

∫ 0

x

du

rj(u)

)
.

(4.21b)

The proof of the following proposition shows that the uniformized process has the
same jump-behavior as the source process specified in Definition 4.1, and may actually
serve to better understand this definition.

Proposition 4.8. The jump behavior of the uniformized process above is in agreement
with Definition 4.1.

Proof. By conditioning on the number of jumps of the uniformizing Poisson process we
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find that

P{W (t + h) = i |W (t) = i, C(t) = x}

=
∑

k

exp(−λh)
(λh)k

k!
×

P{W (t + h) = i |W (t) = i, C(t) = x, k jumps in [t, t + h]}
= (1 − λh + o(h)) (1 + pii(x + ε)λh + o(h))

= 1 + Qii(x + ε)h + o(h)

= 1 + Qii(x)h + o(h),

since |ε| < h sup(i,y)∈W ×[0,B] |ri(y)|, and similarly for j $= i,

P{W (t + h) = j |W (t) = i, C(t) = x}

=
∑

k

exp(−λh)
(λh)k

k!
×

P{W (t + h) = j |W (t) = i, C(t) = x, k jumps in [t, t + h]}
= (1 − λh + o(h)) (0 + pij(x + ε)λh + o(h))

= Qij(x + ε)h + o(h)

= Qij(x)h + o(h).

Finally, the process also satisfies the third part of Definition 4.1, since the number of
jumps by {W (t)} in [t, t + h], is bounded from above by the number of jumps of the
uniformizing Poisson process in [t, t + h], which is o(h).

We next prove the existence of a stationary distribution for the discrete-time process.

Lemma 4.9. The discrete Markov chain governed by the Markov transition kernel P
defined by (4.21a) and (4.21b) is (strong) Feller. Therefore, by Meyn & Tweedie (1993:
Theorem 12.0.1), there exists at least one invariant, i.e., stationary, distribution for this
Markov chain.

Proof. The transition kernel P acts on (measurable) functions on S as an operator de-
fined by

Thi(x) =
∑

j

∫ B

0
Pi,x(j, dy)hj(y).

According to Meyn & Tweedie (1993: Theorem 6.1.1) we have to show that for T to
be strong Feller, it maps all bounded measurable functions h (onS ) to continuous func-
tions. If we interpret the functions hi as the coordinate functions of a bounded function h,
it is clear that it suffices to show that Thi(x) is continuous for any bounded measurable
hi.
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From (4.21),

Thi(x) =
∑

j

∫ B

0
Pi,x(j, dy)hj(y)

=
∑

j∈W
−

pij(x) exp

(
−λ

∫ 0

x

du

rj(u)

)
hj(0)

−
∑

j∈W
−

pij(x)

∫ x

0
exp

(
−λ

∫ y

x

du

rj(u)

)
λ

rj(y)
hj(y)dy

−
∑

j∈W+

pij(x)

∫ B

x
exp

(
−λ

∫ y

x

du

rj(u)

)
λ

rj(y)
hj(y)dy

+
∑

j∈W+

pij(x) exp

(

−λ
∫ B

x

du

rj(u)

)

hj(B).

Due to the continuity of pij , rj and the boundedness of hj this expression is continuous in
x. Finally, regarding the tightness condition of Meyn & Tweedie (1993: Theorem 12.0.1)
we remark that our state spaceS is already compact.

Remark 4.10. This proof does not easily extend to discontinuous generators Q(y) as
then the function pij(y) is not continuous.

Finally, using PASTA, it follows that the stationary distribution of the continuous-
time process {W (t), C(t)} exists and is the same as the stationary distribution of the
discrete-time process. From (4.11) it is now clear that the following theorem holds.

Theorem 4.11. Under Assumptions 1–7 in Section 4.1.2, a stationary distribution for the
process {W (t), C(t)} exists. It satisfies the following system of (ordinary) differential
and algebraic equations,

d

dy
(f(y)R(y)) = f(y)Q(y) (4.22a)

f(0+)R(0+) = D(0)Q(0) (4.22b)
−f(B−)R(B−) = D(B)Q(B), (4.22c)

with boundary conditions

Di(0) = Dj(B) = 0, if i ∈ W+, j ∈ W−, (4.22d)

and normalization condition
∑

j

Fj(B) =
∑

j

Dj(0) +
∑

j

∫ B

0
fj(x)dx +

∑

j

Dj(B) = 1. (4.22e)
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Let us check that the number of equations suffices to make the system complete.
The number of unknowns is 3N : the N coefficients appearing in the general solution
of (4.22a), and 2N constants in the form of Di(0) and Di(B). The required number of
conditions should then also equal 3N . It is evident that (4.22d) and (4.22e) together
contain N + 1 conditions. However, the number of conditions provided by (4.22b)
and (4.22c) is not immediately obvious as the rank of Q(y) is less than N for all y
(and in particular for y = 0 and y = B). In particular, in the presence of (4.22d) we may
replace both Q(0) and Q(B) in the equations (4.22b–4.22c) by the matrix Q̃, defined
in Assumption 7b. Since we assumed this matrix to be irreducible, its rank is N − 1.
So, formally speaking, it might seem that (4.22b) and (4.22c) provide only 2N − 2 con-
ditions, and that one condition is lacking. Interestingly, this sought-after condition lies
hidden in (4.22a), (4.22b) and (4.22c) and is stated in the following lemma.

Lemma 4.12. Any solution of (4.22) satisfies the condition
∑

i

fi(y)ri(y) = 0, y ∈ (0, B).

To see this, note that the row sums of Q(y) equal 0 for all y ∈ [0, B]. Hence, taking this
sum in (4.22a) and then integrating yields that

∑
i fi(y)ri(y) = C for all y ∈ (0, B) and

some constant C. From (4.22b) and (4.22c) it immediately follows that C = 0.
We end this section by mentioning that the statement in Lemma 4.12 also has a prob-

abilistic interpretation, in the form of a level crossing argument which has also been
employed by, e.g., Bekker et al. (2004). The argument is based on the fact that, in sta-
tionarity, the number of times that the buffer level moves up through some level y, must
in the long run balance the number of times it moves down through the same level y. It
is not difficult to see that this reasoning also leads to

∑
i fi(y)ri(y) = 0.

4.6 Explicit Solution for the Stationary Two-State Sys-
tem

The goal of this section is to find a closed-form expression for the solution of (4.22) when
W = {1, 2}. The first step is concerned with finding a fundamental solution that satisfies
Lemma 4.12. In the second step we find the constants involved. For the sake of clarity
we summarize the results of each step in a lemma, and state the final result in a theorem.

Let us start by writing down (4.22a) in full detail for the present case. Here

R(y) = diag(r1(y), r2(y)),

where, without loss of generality, r1(y) < 0 < r2(y), y ∈ (0, B), and

Q(y) =

(
−λ(y) λ(y)
µ(y) −µ(y)

)
.
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Hence, the system of differential equations (4.22a) becomes

f ′
1(y)r1(y) + f1(y)r′1(y) = −λ(y)f1(y) + µ(y)f2(y) (4.23a)

f ′
2(y)r2(y) + f2(y)r′2(y) = λ(y)f1(y) − µ(y)f2(y). (4.23b)

Lemma 4.13. Any positive solution of the system (4.23) that satisfies Lemma 4.12 is
given by

f(y) = ae−g(y)

(
−

1

r1(y)
,

1

r2(y)

)
, (4.24)

where a is a positive constant, and

g(y) =

∫ y

0

(
λ(x)

r1(x)
+

µ(x)

r2(x)

)
dx. (4.25)

Proof. When the meaning is clear we suppress in the proofs the functional dependence
of r1(y), f1(y), etc., on y, i.e., we write r1 = r1(y), f1 = f1(y), etc.

For ease of notation, we prefer to analyze

hi = firi,

which is equivalent to analyzing fi as |ri(y)| ≥ ε for some ε > 0 and for all y ∈ (0, B).
By substitution in (4.23) we obtain the equivalent problem

h′
1 = −

λ

r1
h1 +

µ

r2
h2, (4.26a)

h′
2 =

λ

r1
h1 −

µ

r2
h2. (4.26b)

By Lemma 4.12 we have that h1 = −h2. Therefore (4.26a) becomes

h′
1 = −

(
λ

r1
+

µ

r2

)
h1.

Its solution is seen to be of the form

h1(y) = −ae−g(y), (4.27)

where g(y) is given by (4.25) and a is some constant. Finally, writing f1 = h1/r1 and
f2 = −h1/r2 we find the fundamental solution (4.24), which is positive if a > 0.

Lemma 4.14. The flux relations (4.22b) and (4.22c) together with the boundary condi-
tions (4.22d) and the normalization (4.22e) imply that

a = λ(0)D1(0)

D1(0) =

[

1 + λ(0)

∫ B

0
e−g(x)

(
−1

r1(x)
+

1

r2(x)

)
dx + e−g(B) λ(0)

µ(B)

]−1

D2(B) = e−g(B) λ(0)

µ(B)
D1(0).

(4.28)
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Proof. Combining (4.22b) with the boundary condition D2(0) = 0 yields

(f1(0+)r1(0+), f2(0+)r2(0+)) = (−λ(0)D1(0),λ(0)D1(0)).

With (4.24) this becomes

a(−1, 1) = (−λ(0)D1(0),λ(0)D1(0)),

implying that
a = λ(0)D1(0).

At the boundary y = B we find from (4.22c) and D1(B) = 0 that

−f1(B−)r1(B−) = ae−g(B) = µ(B)D2(B).

Hence,
D2(B) = e−g(B) λ(0)

µ(B)
D1(0).

The last step is to find D1(0). This follows from (4.22e), i.e.,

D1(0) +

∫ B

0
(f1(y) + f2(y))dy + D2(B) = 1.

Theorem 4.15. WhenN = 2 the solution of (4.22a) satisfying (4.22b–4.22e) is given by

f(y) = λ(0)D1(0)e
−g(y)

(
−

1

r1(y)
,

1

r2(y)

)
, (4.29)

where D1(0) and D2(B) are given by (4.28), and g(y) is defined by (4.25). In terms of
the distribution function we have for y ∈ [0, B]

F(y) =
(
D1(0) , D2(B)1{y=B}

)

+ λ(0)D1(0)

∫ y

0
e−g(x)

(
−1

r1(x)
,

1

r2(x)

)
dx.

(4.30)

Remark 4.16. The systems (4.19) and (4.23) have a similar structure. However, the
seemingly innocuous presence of sf̃1(y) and sf̃1(y) complicates the solvability of (4.19).
To see this, note that the reasoning leading to Lemma 4.12 yields for equation (4.19) of
the transient case

sf̃1(y) − f1(y, 0) + (r1(y)f̃1(y))′ + sf̃2(y) − f2(y, 0) + (r2(y)f̃2(y))′ = 0.

Based on this, it is clear that now we cannot conclude (r1(y)f̃1(y))′+(r2(y)f̃2(y))′ = 0,
and thus, we cannot establish Lemma 4.12 for the transient case.
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Remark 4.17. Finding an explicit solution when the source process has more than two
states seems to be exceedingly difficult. To see this, suppose that N = 3. Lemma 4.12
enables us to reduce the number of differential equations in (4.22a) by one, leaving a two
dimensional homogeneous linear system of differential equations with variable coeffi-
cients. For such systems, once one fundamental solution is known, the second (linearly
independent) solution can be found by integration, see e.g. Lanczos (1997: p. 367). How-
ever, there is no standard theory on how to find the first solution.

Actually, for the two-dimensional system (4.23) we used the method indicated by
Lanczos (1997) to compute the second solution, based on the first solution given in (4.24).
This second solution turns out not to satisfy Lemma 4.12, as expected.

Remark 4.18. When λ and µ do not depend on y, say λ(y) ≡ λ and µ(y) ≡ µ as
considered by Kella & Stadje (2002), it is not difficult to see that

λ

∫ y

0
e−g(x) −1

r1(x)
dx − µ

∫ y

0
e−g(x) 1

r2(x)
dx = e−g(y) − 1,

so that by taking y = B in the above, equation (4.28) yields

D1(0) =
µ

λ+ µ

[

e−g(B) +

∫ B

0
e−g(x) µ

r2(x)
dx

]−1

.

After some algebra we can actually write (4.30) in the form

F1(y) =
µ

λ+ µ

e−g(y) + H(y)

e−g(B) + H(B)
,

F2(y) =
λ

λ+ µ

1{y=B}e
−g(B) + H(y)

e−g(B) + H(B)
,

where

H(y) =

∫ y

0
e−g(x) µ

r2(x)
dx.

This coincides with Kella & Stadje (2002: Section 4).

4.7 Examples
To illustrate our results, we present two examples, each of which hasW = {1, 2}. In the
first example, presented in Section 4.7.1, the rate at which the source turns on depends on
the current buffer content. Second, the example of in Section 4.7.2 makes clear that the
solution obtained for B < ∞ can sometimes be extended by taking the limit B → ∞.
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4.7.1 Discouraged Two-State Source
Suppose that the rate at which the source process changes states from state 1 to 2 depends
on the content level: the higher the level, the less willing, or more ‘discouraged’, the
source is to make a transition from state 1 to 2. One simple model for this behavior is to
take

λ(y) = λ0

(
1 −

y

B

)
, (4.31)

with λ0 > 0. We assume µ(y) ≡ µ, and r1(y) ≡ −r2(y) ≡ −r, where µ and r are some
positive constants. By Theorem 4.15

f(y) =
λ0D1(0)

r
e−g(y)

(
1 , 1

)
,

where g(y) can be found from (4.25) to be

g(y) =
1

r

∫ y

0

(
µ − λ0

(
1 −

x

B

))
dx

=
µ − λ0

r
y +

λ0

2rB
y2.

Hence we obtain for F(y), 0 ≤ y ≤ B,

F(y) =
(
D1(0) , D2(B)1{y=B}

)

+
λ0D1(0)

r

∫ y

0
exp

(
−

µ − λ0

r
x −

λ0

2rB
x2

)
dx

(
1 , 1

)
,

where D2(B) = D1(0)e−g(B)λ0/µ and D1(0) follows from normalization. Notice that
F(y) can also be expressed as

F(y) =
(
D1(0) , D2(B)1{y=B}

)

+
λ0D1(0)

r

√
2π σ exp

(
µ2/2σ2

) (
Φµ,σ2(y) − Φµ,σ2(0)

) (
1 , 1

)
,

where Φµ,σ2 is the distribution function of a normal random variable with mean µ =
B(1 − µ/λ0) and variance σ2 = rB/λ0.

4.7.2 Infinite-buffer Systems
In the entire analysis so far we assumed that B < ∞. The reason is that it seems dif-
ficult to find conditions for non-trivial Q(y) and R(y) such that a limiting distribution
for the process {W (t), C(t), t ≥ 0} exists. In fact, let the vector π(y) be the corre-
sponding stationary distribution for Q(y), i.e., the vector that satisfies π(y)Q(y) = 0
and

∑
i πi(y) = 1. Then the following constitutes a plausible stability condition: for all
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y larger than some y0 < ∞, we must have
∑
πi(y)ri(y) < 0. Obviously, this is not a

necessary condition, since we can adapt the matrix functionQ in some stable model such
that above each level y0 there are some (very small) regions of the buffer space where the
condition does not hold, while the adapted model is still stable. However, this proposal
is also not sufficient as we have a counterexample for a simple two-state model. Let us
first compute the solution in case B < ∞, and then consider the limit B → ∞. Note
that this procedure seems reasonable when normalization is possible in this limit.

To define our model, set for W = {1, 2}

λ(y) =
λ0

1 + y
µ(y) =

µ0

1 + y

r1(y) = −1 r2(y) = 1,

where λ0 and µ0 are positive constants. Now (4.25) yields

g(y) =

∫ y

0

(
−λ0

1 + x
+

µ0

1 + x

)
dx = (µ0 − λ0) log(1 + y),

so that (4.29) becomes

f(y) = D1(0)λ0

(
1

1 + y

)µ0−λ0 (
1 , 1

)
.

After some algebra we find

D−1
1 (0) =

µ0 + λ0 − 1

µ0 − λ0 − 1
−
λ0

µ0

µ0 + λ0 + 1

µ0 − λ0 − 1

(
1

1 + B

)µ0−λ0−1

.

Clearly, when µ0 > λ0 + 1, D1(0) has a finite limit when B → ∞. In that case,

F(y) =

(
µ0 − 1

µ0 + λ0 − 1
,

λ0

µ0 + λ0 − 1

)
−

λ0

µ0 + λ0 − 1

(
1

1 + y

)µ0−λ0−1 (
1 , 1

)
.

For this particular model our previously mentioned condition
∑
πi(y)ri(y) < 0 leads

to µ0 > λ0, while we just established that the correct condition must be µ0 > λ0 + 1.
One other aspect worth mentioning for this example is that when λ0 < µ0 < λ0 + 1 the
normalization breaks down due to the fact that the integrals of the densities f1 and f2

become infinite for B → ∞, and not because the value D2(B) does not approach zero
(which in fact it does). Hence, the condition that D2(B) → 0 as B → ∞ is a necessary,
but not a sufficient condition for proper normalization, and hence for the stability of the
infinite-buffer model.

As we have been unable to find any elegant stability conditions for the infinite buffer
model, we do not include any theoretical results for this case, although the limiting proce-
dure described above works well in many cases. As a matter of fact, we can also consider
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the limit B → ∞ for the example of Section 4.7.1. Here we expect that the influence of
the factor 1 − y/B in (4.31) disappears. Indeed this is the case, resulting in the familiar
expression for a fluid model without feedback,

F(y) =

(
µ

λ0 + µ
,
λ0

λ0 + µ

)
−

λ0

λ0 + µ
e

λ0−µ

r y
(
1 , 1

)
.

4.8 Numerical Method
For the case when N > 2, explicit results cannot be expected (see Remark 4.17), and
we wish to resort to numerical methods to obtain the stationary distribution. Because
our problem (4.22) is not an initial boundary value problem, but a two-point boundary
value problem, this is not entirely trivial. We discuss first a simple method to solve such
problems, and then demonstrate its use by solving an extension of Example 4.7.1.

4.8.1 The Method
We start by rewriting the differential equation (4.22a) as g′(y) = g(y)R−1(y)Q(y),
where g(y) = f(y)R(y). With the fundamental matrix G, i.e., the matrix that satisfies

G′(y) = G(y)R−1(y)Q(y), (4.32)

we write the solution as g(y) = aG(y), where a is a row vector to be determined based
on the boundary conditions. In the following we will choose the matrix G(y) such that
G(0) = I , so that in fact g(y) = g(0)G(y). Thus, the first step is to solve (4.32)
numerically with G(0) = I , which can be done by standard methods.

The next step is to use the expression g(B) = g(0)G(B) in the flux equations (4.22b)
and (4.22c). In the present setting these become

D(0)Q(0) = f(0+)R(0+) = g(0+),

D(B)Q(B) = −f(B−)R(B−) = −g(B−) = −g(0)G(B),

so that substituting the first into the second yieldsD(B)Q(B) = −D(0)Q(0)G(B), or

D(0)Q(0) + D(B)Q(B)G−1(B) = 0. (4.33)

To express the boundary conditions (4.22d) efficiently in matrix form we need pro-
jection operators I− and I+. The first operator is the projection on W−, i.e.,

(I−)ij =

{
1 if i = j ∈ W−,

0 else.
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The second operator I+ = I − I− evidently projects onW+. We are now ready to define
the row vectors

D−(0) = D(0)I− D+(0) = D(0)I+

D−(B) = D(B)I− D+(B) = D(B)I+,

so that we can include the boundary conditionsD+(0) = 0 andD−(B) = 0 in (4.33) to
obtain

D−(0)Q(0) + D+(B)Q(B)G−1(B) = 0.

To solveD−(0) andD+(B) from the above equation, we rewrite it by using the property
of projection operators, I− = I2

− and I+ = I2
+. Defining the ancillary vector v =

D−(0) + D+(B), for which we also have

D−(0) = vI− D+(B) = vI+, (4.34)

the problem is to solve v from

v[I−Q(0) + I+Q(B)G−1(B)] = 0.

This can be done, up to normalization, by the Singular Value Decomposition, see for
instance Golub & van Loan (1989). Once v is known it is immediate, by (4.34), to find
D−(0) andD+(B), up to normalization.

The last steps are to integrate the differential equation g′(y) = g(y)R−1(y)Q(y)
with initial condition g(0) = D(0)Q(0), to compute f(y) = g(y)R−1(y) and to nor-
malize according to (4.22e).

Remark 4.19. Formally, the matrix G(B) is invertible as it is a fundamental set of so-
lutions, see e.g. Petrovski (1966) for a proof. However, numerically the state of affairs
may be less agreeable as the problem (4.32) is principally ill-conditioned. Nevertheless,
for relatively small buffer sizes and a small number of source states the above method
can be successful.

4.8.2 Three Discouraged Sources

We use the numerical method above to compare a model with three independent identical
discouraged sources—compare the source model of Example 4.7.1—to a model without
feedback, namely the model of Anick et al. (1982) applied to three sources, with a fi-
nite buffer. The Q-matrices of interest in these models are denoted by Q(y) and QAMS,
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respectively, and are given by

Q(y) =





−3λ(y) 3λ(y) 0 0
µ −2λ(y) − µ 2λ(y) 0
0 2µ −λ(y) − 2µ λ(y)
0 0 3µ −3µ





QAMS = Q(0) =





−3λ0 3λ0 0 0
µ −2λ0 − µ 2λ0 0
0 2µ −λ0 − 2µ λ0

0 0 3µ −3µ



 ,

where λ(y) = λ0(1 − y/B), as in Example 4.7.1. The drift matrices are equal for both
models:

R =





−L 0
r − L

2r − L
0 3r − L



 .

To produce Figure 4.1 we set λ0 = 0.5, µ = 1, r = 1, L = 0.5 and B = 2. We conclude
from the panels of the figure that the atoms at y = B (y = 0) are larger (smaller) in the
setting without feedback, as could be expected.

4.9 A Fluid Model of a TCP Source
The setting of the present chapter allows us to improve the TCP fluid model of Chapter 2
by taking into account the influence of buffering delay on the round-trip times.

Recall that in this model one TCP source with window size W ∈ {1, . . . , N} sends
fluid into a buffer of size B served by a link with constant capacity L. Instead of the
generators defined by (2.4) and (2.6) in which the transition rates λ and µ of (2.7)
and (2.8), respectively, are constant, we now use content-dependent rates in accordance
with (1.47a). Thus, we take

λ−1(y) = T (y) ≡ T +
y

L
,

where T is the mean propagation time and y/L the queueing delay.
Now, when y < B letQ(y) be asQ in (2.4) but replace λ by λ(y), and letQ(B) be as

Q̃ in (2.6) but replace µ by λ(B). Hence, the generator is not continuous, but piecewise
continuous. Furthermore, we take the drift matrix as in (2.2) with the function

r(y) =
P

T (y)
, (4.35)
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Figure 4.1: The distribution functions for the AMS model and the discouraged users
model (D). Note the different scales on the vertical axes.

replacing the constant r. Thus, r(y) corresponds to the (fluid) transmission rate required
to transmit one packet of size P during one round-trip time, so that if the window size at
time t is n, the source rate equals nr(y) = nP/T (y), in accordance with (1.47d).

It remains to ensure that our assumption 3 on the drift functions is met, i.e., the
model parameters P , T , N , L and B should be such that |nr(y) − L| ≥ ε > 0 for all
(n, y) ∈ S . As in Figure 2.2 define the set l =

{
(x, y) ∈ R2 |xr(y) = L

}
. This set

should not intersect the system state space S . Clearly, in Figure 2.2 l is a vertical line
so that it will never have a point in common withS when L/r is not equal to an integer.
Here, because of (4.35), l is still a line, but no longer parallel to the vertical axis. Hence,
when the system parameters have the ‘wrong’ value, l will cut (at least) one of the sets
i × [0, B].

While we now have a fairly complete TCP fluid model, we do not further investigate
the consequences of this model. The first reason is that the models to be introduced in
the next two chapters are even more flexible and easier to handle numerically; we prefer
to compare these models to simulation. Second, the numerical evaluation of this model
is possible for only a rather limited parameter range because of the problems mentioned
in the previous paragraph, i.e., l intersectingS .
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4.10 Conclusions
Fluid queues with continuous feedback have many useful applications, e.g., dams subject
to maintenance or manufacturing networks. On the other hand, the model is still not
as versatile as we desire for the purpose of modeling TCP. For instance, it would be
interesting to extend the TCP model of Section 4.9 such that we can analyse multiple
TCP sources sharing two buffers. Whereas this appears possible in principle, it will be
troublesome to carry out in practice. In the next two chapters we approach the problem
of modeling TCP in another way. We simply discretize the system state space S and
model the behavior of the source(s) and the buffer(s) as a continuous-time Markov chain
with suitable infinitesimal generator.



Chapter 5

A Discretized Fluid Model for
Asymmetric TCP Sources

The goal of this chapter is to develop a stochastic, Markovian model of the interaction
between TCP sources and a bottleneck link to study fairness and utilization. This model
is as flexible as the one developed by Misra et al. (2000) but preserves the stochasticity of
the source-buffer interaction allowing us to derive probability distributions of the source
and buffer processes, rather than merely expectations as in the deterministic model of
Misra et al. (2000). Moreover, our stochastic model does not need some of their mathe-
matical simplifications. With respect to the dependence of the throughput on parameters
as packet size, round trip time, and buffer size the results of our model are consistent with
those of earlier models, e.g., Brown (2000), and therefore not reported here. A drawback
of our model is its lack of scalability to large numbers of sources and routers. There-
fore we restrict the numerical analysis to two sources sharing a fluid drop-tail buffer. In
Chapter 6 we generalize this class of models to networks of intermediate size, that is,
networks consisting of a few connections and routers.

In Section 5.1 we develop the stochastic model of the source-buffer interaction, and
present some of the results, among which a comparison to simulations with ns-2, in
Section 5.2. Section 5.3 concludes.

5.1 Model
In Section 5.1.1 we discuss the TCP fluid model of Misra et al. (2000) in considerable
more detail than in Section 1.3.2, and point out a few weaknesses. By trying to bypass
these we introduce in Section 5.1.2 a Markov chain model of the source-buffer interac-
tion. In Section 5.2.1 we define performance measures for the sources in terms of the

103
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steady-state distribution of the Markov chain.

5.1.1 Discussion of a Deterministic TCP Fluid Model
Here we apply the model of Misra et al. (2000) to a network of J greedy TCP sources
that share a (fluid) drop-tail buffer of size B served by a link with capacity L. Then we
discuss some consequences of the simplifications they introduce to obtain a numerically
tractable model. (Although, strictly speaking, the model of Misra et al. (2000) applies to
a RED buffer, it is simple to reduce this to a drop-tail buffer by setting xmin = xmax = B
in (1.36) and ε = 1 in (1.35).)

Let us recall the dynamics of the source and buffer process as modeled by (1.47a),
(1.47c) and (1.48). Suppose that Ti is the round-trip time of source i, 1 ≤ i ≤ J , when
the buffer is empty. Then,

Ti(q(t)) = Ti +
q(t)

L
(5.1)

is the round-trip time of source i when the buffer content is q(t) at time t. Source i
maintains a window variable Wi(t), supposed to be continuous, and sends fluid at rate
Wi(t)/Ti(q(t)) into the buffer. Let

r(t) =
m∑

i=1

Wi(t)

Ti(q(t))
− L.

Then the evolution of the queue length is given by, cf. (1.21),

dq

dt
=






max{r(t), 0}, if q(t) = 0,

r(t), if q(t) ∈ (0, B),

min{r(t), 0}, if q(t) = B.

(5.2)

Finally, Misra et al. (2000) model the window dynamics as

dWi(t) =
dt

Ti(q(t))
−

Wi(t)

2
dMi(t). (5.3)

The first term of the right hand side corresponds to the Additive-Increase behavior of
a source. The second term implements Multiplicative-Decrease at a loss epoch. Here,
Mi(t) models the loss arrivals as a point process, so that dMi(t) = 1 at the arrival of a
loss and 0 elsewhere.

At this stage Misra et al. (2000) take expectations of the left and right hand sides
of (5.3). To simplify the analysis they assume that

E {Wi(t)dMi(t)} = E {Wi(t)}E {dMi(t)} = E {Wi(t)}λi(t)dt, (5.4)
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where λi(t) is the time-varying rate of the loss process. Then, they argue that

λi(t) = 1{q̄(t−τi(t))>B}
W̄i(t − τi(t))

Ti(q̄(t − τi(t)))
, (5.5)

where X̄ = E {X} for the random variables involved and τi(t) = Ti(q̄(t)) is the feed-
back delay, i.e., the difference in time between the moment loss occurs and the moment
source i takes notice of this loss.

With these approximations the window dynamics specified by (5.3) reduce to the
following differential equation for W̄i:

dW̄i

dt
=

1

Ti(q̄(t))
−

W̄i(t)

2

W̄i(t − τi(t))
Ti(q̄(t − τi(t)))

1{q̄(t − τi(t)) > B}, (5.6)

Misra et al. solve the system of differential-algebraic equations (5.1), (5.2) and (5.6)
numerically and obtain information about the expected transient behavior of, for instance,
the queue.

The above model is very flexible indeed: it allows to study the effects of source
heterogeneity; it extends nicely to large networks; and it includes the influence of the
queue on the round-trip times so that the sub-linearity of the source transmission rate
process is captured, cf. Altman et al. (2000a). Nevertheless we see some fundamental
points in which the model might be improved.

In the first place, by taking expectations, much probabilistic information is lost. Con-
sequently, obtaining expressions for, say, the variance of the throughputs is problematic.
As a further consequence of merely considering averages it is difficult to study the influ-
ence of on/off behavior of sources. Consider, for instance, a file transfer. The probability
that a file ends within t seconds, say, changes as a function of the sending rate of a
source. To model this correctly, it is necessary to keep track of a source’s momentary
transmission rate rather than its average rate.

Second, their approximation (5.4) implies that Wi(t) and dMi(t) are uncorrelated
(not independent as they write). This is strange as in (5.5) λi(t) dt = E{dMi(t)} is a
function of (the expectation of) {Wi(t)}. Another technical point is that in the derivation
of (5.4) Misra et al. approximate E {f(X)} by f(E {X}), where f is some function and
X some random variable. This is not entirely correct, as Misra et al. (2000) also point
out.

The third problem is due to the feedback delay, see (5.6), as the content q̄ may now
exceed the buffer size B. In the case of drop-tail buffers this is clearly impossible. This
point is less problematic when B corresponds to a buffer threshold, which Misra et al.
(2000) consider, instead of the buffer size itself.

The last problem relates to a somewhat technical aspect of the analysis. Misra et al.
(2000) do not mention how to compute the expectations that are taken. (In other words,
the probability space is not provided.)
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Our model does not suffer from these problems. More specifically, concerning the
first point our stochastic model maintains a notion of the momentary window size and
buffer content so that the momentary (fluid) transmission rate is known. About the sec-
ond point, loosely speaking, we first solve the system and then take expectations, whereas
Misra et al. (2000) take expectations first and then solve the system. Reversing this order-
ing is not a mere technicality; we do not have to resort to the same type of simplifications
as made to arrive at (5.6). We circumvent the third objection by implementing feedback
delay in a somewhat different manner, which we explain below. Finally, concerning the
last comment, we also take expectations, but with respect to the stationary distribution of
a Markov chain, so that no problems about the interpretation remain. We remark, once
again, that as a consequence of our approach our model does not scale well to networks
of sizes studied by Misra et al. (2000).

5.1.2 A Stochastic TCP Model
In the stochastic model to be introduced now, we aim to avoid the drawbacks of the deter-
ministic model discussed in Section 5.1.1. The central idea is to discretize the source and
queue processes and model the joint source-buffer process as a continuous-time Markov
chain. The resulting Markov chain shares all of the modeling assumptions and many of
the features of the model of Misra et al. (2000); in fact most of (5.1), (5.2) and (5.3)
carries over. However, we do not take expectations, i.e., we do not arrive at (5.6), but
compute the steady-state probabilities of the Markov chain by means of the infinitesi-
mal generator matrix. As we have this matrix at our disposal, we can study transient
properties as well.

As an aside, we refer to Adan & Resing (2000) who apply a similar discretization
approach to facilitate the study of a two-level traffic shaper, a model analyzed in Kroese
& Scheinhardt (2001) by means of Laplace transforms.

To begin, we modify the (continuous) content process described by (5.2) to a corre-
sponding discrete process {C(t)} ≡ {C(t), t ≥ 0}with state spaceK = {0, 1, . . . ,K}.
The window process {Wi(t)} ≡ {Wi(t), t ≥ 0} of source i is a discrete process with
state space Wi = {1, 2, . . . , Ni}. Here Ni denotes the maximum window of source i.
The joint process {W(t), C(t)} has state space

S =
(
ΠJ

i=1Wi

)
× K .

When C(t) = k, k ∈ K , the corresponding buffer content equals kB/K. Conse-
quently, the round-trip time for source i becomes, compare (5.1):

Ti(k) = Ti +
k

K

B

L
. (5.7)

Given the round-trip time, whenWi(t) = ni the source sends traffic at rate ni Pi/Ti(k).
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We abbreviate this to ni ri(k) where

ri(k) =
Pi

Ti(k)
, (5.8)

cf. (2.9). Clearly, the source peak rate is ri(0)Ni.
Observe that if the buffer content were a continuous variable, the drift at time t would

be, cf. (5.2),

r(k) · n − L ≡
J∑

i=1

ri(k)ni − L, (5.9)

where r(k) = (r1(k), . . . , rJ (k)) and n = (n1, . . . , nJ ).
We model the joint process {W(t), C(t)} as a continuous-time Markov chain and use

the differential behavior of (5.2) and (5.3) to specify the generator Q of the process. To
obtain the transition rates, we introduce the following notation:

ni = (n1, . . . , ni + 1, . . . , nJ )

ni = (n1, . . . , 5ni/26, . . . , nJ ),

where 5x6 is the integer part of x when x > 1. Further, let

β(n, k) =
K

B
(r(k) · n − L) (5.10)

be the transition rate at which in- and decrements of the buffer level process occur. Ob-
serve that this is K/B times the drift (5.9) of the buffer. The constant K appears in the
numerator to ensure that the average time required to drain a full buffer, given thatW(t)
does not change state, is approximately independent of K. (Loosely stated, when K is
large, the average time at one buffer level should be short.) Finally, let the rate at which
the window size in- or decreases be given by

λi(k)) =
1

Ti(k)
. (5.11)

Now, writing x > y to mean that xi > yi for all 1 ≤ i ≤ J , we define the elements
of Q as:

qnk;n,k+1 = β(n, k), if 0 ≤ k < K and n · r(k) > L, (5.12a)
qnk;n,k−1 = −β(n, k), if 0 < k ≤ K and n · r(k) < L, (5.12b)

qnk;nik = λi(k), if 0 ≤ k < K and ni < Ni, (5.12c)

qnK;niK =
niri(K)∑
j njrj(K)

λi(K), if ni > 1, (5.12d)

qnk;ml = 0, elsewhere. (5.12e)
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Figure 5.1: Graphical representation of Q for a model with N = 5 and K = 4. Here
we use the shorthands β− = −β and β+ = β, respectively, where β is as in (5.10).

Equation (5.12a) and (5.12b) are the discrete analogs of (5.2). Equation (5.12c) cor-
responds to the Additive-Increase part of (5.6), and (5.12d) implements Multiplicative-
Decrease with proportional loss. (Recall that in the synchronous loss model, when a loss
event occurs all connections simultaneously reduce their window size by a factor two. In
the proportional model just one source suffers and the probability of losing a packet is
proportional to the source’s window size.) We remark that the condition ni > 1 implies
that a source cannot make any downward transition while in state 1. Note furthermore
that on average the source spends an amount Ti(k) in state i, given C(t) = k. In this
way our model incorporates feedback delay. Figure 5.1 shows a graphical example forQ
in which one source with N = 5 uses a buffer withK = 4.

Note also that the source makes one downward transition ‘per congestion signal’.
Thus, as explained below (2.9), the source models TCP NewReno or TCP Sack.

Clearly, a buffer cannot be full (empty) when the drift is negative (positive). Hence,
to ensure that the sets

{(n, k) ∈ S |n · r(K) < L, k = K} and {(n, k) ∈ S |n · r(0) > L, k = 0} (5.13)

have zero probability in the steady state limit, we modify some entries in Q so that no
transitions into these undesired states exist (in the limit t → ∞, states without influx
have zero probability). This modified generator is used in the sequel of the chapter.

We assume that the parameter values are chosen such that, whereas part of the state
space S of {W(t), C(t)} may be transient, the complement forms a closed (possibly
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proper) subset of S . We further assume that this subset contains more than one point,
and at least one point such thatC = K. Then the distribution of {W(t), C(t)} converges
for t → ∞ to a non-trivial distribution π = π(n, k) satisfying πQ = 0. Let the random
variables {W, C} have distribution π, i.e.,

P{W = n, C = k} = π(n, k).

Whereas the Markov chain with generator Q specified by (5.12) implements pro-
portional loss, the TCP model with synchronous loss is slightly different. To capture
synchronized loss we augment, as in Section 3.1, the process {W(t), C(t)} with indi-
cator variables I(t) and study the process {W(t), I(t), C(t)}. The indicator variable Ii

reflects the ‘congestion state’ of source i. When Ii(t) = 0, source i is allowed to increase
its sending rate, while when Ii(t) = 1, source i is recovering from a packet loss. Once a
source has reduced its sending rate after a loss, its congestion variable changes to 0 again.
To implement synchronized loss, we set Ii(t) = 1 for all source i = 1, . . . , J when C(t)
becomes equal to K. Since, in general, the round-trip times of the sources are different,
the epochs at which Ii changes from state 1 to 0 will be different.

We close this section by comparing the deterministic model of Section 5.1.1 to the
stochastic model of this section. The stochastic model overcomes the drawbacks men-
tioned in Section 5.1.1. As such it can track the source states more accurately: it includes
stochasticity and does not need approximations such as (5.4). However, due to state
space explosion it does not scale to large networks. To study these cases the determinis-
tic model is more suited, although the question remains how well the deterministic model
captures source behavior, as it is not completely clear to what extent the approximations
leading to (5.6) are valid. A second point of criticism of the stochastic model might
relate to the exponentiality of the times between consecutive transmissions. This is not
a fundamental problem, as reducing the variance by implementing a three stage Erlang
distribution, for instance, is, at least in principle, simple for the present model.

5.2 Results
With the above Markovian model we investigate three aspects of TCP. First, we ex-
plore the validity of the synchronized and proportional loss model as introduced in Sec-
tion 1.3.2. We implement both loss models and compare, in Section 5.2.3, the results
to those obtained with ns-2 simulations. The second aspect, which we consider in Sec-
tion 5.2.4, concerns an evaluation of how well the root p law (1.40) performs for the
Markovian model. Third, the fact that the model is stochastic allows us, in Section 5.2.5,
to include the influence of the application layer on TCP such as a source switching on
and off with rates depending on think-time, file size and momentary source transmission
rate, respectively.
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Let us start with defining the relevant performance measures in the next section and
present the network set-up in Section 5.2.2.

5.2.1 Performance Measures
We define three steady state performance measures. The average transmission rate of
source i is analogous to (3.17):

τi = E{r(C) · W} (5.14)

where the expectation is computed with respect to π. The definition of the throughput γi

is based on the assumption that during a loss event a source loses fluid in proportion to
its rate, cf. (3.18). Therefore,

γi = τi − E

{
(r(C) · W − L)

ri(C)Wi

r(C) · W
1{C=K}

}

= τi −
∑

n

(r(K) · n − L)
ri(K)ni

r(K) · n
π(n,K).

(5.15)

Note that as π(n,K) = 0 if n · r(K) < L (by the boundary conditions on π) the states
of the left set of (5.13) do not contribute to the loss.

The above definition is not consistent with the proportional loss model in the follow-
ing sense. According to this loss model just one source observes loss during a congestion
epoch, whereas in the throughput definition (5.15) both sources lose a fraction of their
traffic proportional to their sending rate during congestion. The influence of this incon-
sistency is relatively small as mostly the source that suffers from loss will be the one with
the highest transmission rate, and consequently, with the largest loss fraction. Moreover,
the time spent in congestion is relatively small. Removing this inelegant aspect is an
onerous task in the present setting as the corrections have to be implemented by hand in
an appropriate generator matrix. In Section 6.2.1 we slightly change the involved pro-
cesses and use a more suitable method to obtain the related generator matrix. With this
other approach it is much easier to reduce the influence of this inconsistency.

Finally, we define the utilization for source i as ui = γi

L .

5.2.2 Network Configuration and Parameters
Figure 5.2 shows the network configuration and the parameters used for both the model
and the simulation. Two greedy TCP NewReno sources, S1 and S2, communicate with
destinations D1 and D2 respectively, via router R1. The receiver windows are large
enough to not constrain the windows. We vary the propagation delay d1 of the link
connecting S1 and R in 10 steps from 40 ms to 120 ms so that T1 = 2(d1 + 10) ms. For
source 2 we fix the round-trip time to T2 = 2(120 + 10) = 260 ms.
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Figure 5.2: The network configuration and some parameters.

Concerning the model, the choice of Ni, ri, L, and B requires some coordination.
First, the ratio B/L determines the maximal buffering delay. So, given L, we set B
such that B/L = 100kb/(1Mb/s) = 100ms. Second, the number αi = Niri/L is the
maximal fraction of the link capacity that can be filled by source i. Given αi and L,
the source granularity is controlled by Ni (from which ri = αiL/Ni follows). Finally,
in the simulation each source can congest the link, so that α1,α2 ≥ 1. The values
N1 = N2 = 26, r1 = r2 = 1, L = 25.7, and B = 2.57 satisfy the above constraints.
(We take Ni = 26 as we want rather fine-grained sources. The choice r1 = r2 = 1 fixes
then, more or less, L and B.)

It remains to choose the value of the ‘grid’ parameter K in the model. It is plausible
that forK → ∞, the functions P{W = i, C/K ≤ y} converge to functions in which the
content process has a continuous state space such as in (2.10). Here we takeK such that
the buffer discretization works well, in the sense that the performance measures do not
change much when we increaseK any further. It turns out thatK = 5, a relatively small
number, is already large enough for the parameter ranges we investigate in this chapter.

In the simulation the parameters besides those specified in Figure 5.2 are presented in
Table 5.1. For motivation behind the RED parameters we refer to Altman et al. (2000b).

Observe that in the simulation we use a RED buffer whereas the buffer in the model
is of a drop-tail type. On the face of it, this is inconsistent with the simulated network. As
a motivation for using RED in ns-2 we follow an argument of Altman et al. (2000b). It is
commonly seen in simulations with two sources sharing one drop-tail buffer that some-
times one and sometimes both sources lose packets during a congested period. Thus, at
least in simulations, bursts at the packet level determine which source(s) lose(s) traffic in
case a drop-tail buffer overflows. However, such rapid fluctuations at the packet level are
absent in the context of fluid sources. Thus, a fluid source never perceives a ‘true’ drop-
tail buffer. As such, comparing fluid models to simulations with drop-tail buffers will not
be appropriate. As RED is a queue management technique that can effectively absorb
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these rapid queue-length fluctuations, it is apt to use RED buffers in the simulations even
when the modeled fluid buffer is a drop-tail buffer.

xmin = 22 packets pm = 0.1 P = 576 B
xmax = 27 packets ε = 0.002

Table 5.1: Some parameters used in the simulation with ns-2. The choice for xmin

corresponds to a buffering delay of 100 ms.

We remark here that as a consequence of using RED in the simulations, packets will
be dropped with a probability proportional to the sending rate of a source. Thus, our
proportional loss model seems the more appropriate to compare against the simulations.

5.2.3 Comparison of Proportional and Synchronized Loss
The loss process of a buffer is complex to characterize, especially when multiple sources
share a buffer. Subtle effects at packet level, for instance due to the ack-clock mechanism,
decide whether a (and which) packet is dropped at a buffer. In this section we investigate
the validity of the synchronized and proportional loss model by considering two sources
that share one bottleneck buffer as in Figure 5.2. We implement both loss models in the
framework of Section 5.1.2 and compare the theoretical throughputs to results obtained
from a simulation with two TCP NewReno sources in ns-2.

Figure 5.3 contains two panels presenting the results of the (numerical) investiga-
tions. The left (right) panel shows the results of the proportional (synchronized) loss
model and simulation. In both panels, s = T1/T2 runs along the horizontal axis. Along
the vertical axis we set out the utilizations u1 and u2 obtained by the model. The corre-
sponding simulation results are indicated by ũ1, ũ2.

We see from the left panel (proportional loss) that the model correctly predicts the
trend in the bias toward longer connections. However, it underestimates the influence of
delay on fairness. In the right panel (synchronous loss) we observe the same bias but
the capacity is shared less fairly than in the simulation. Thus, the two loss models are at
either extreme of the (simulated) reality.

One explanation for these observations could be as follows. In the proportional loss
model just one source loses traffic during periods with congestion, whereas in the syn-
chronous model both sources always lose packets. However, in the simulation sometimes
just one suffers from loss, and sometimes both. Hence, the loss process of a RED buffer
is neither strictly proportional nor strictly synchronized, so that the utilization obtained
by simulation should be in between the results of the two models, which is the case.
We therefore infer that a more detailed model of the loss process might yield better re-
semblance to the simulation results. Hence, the claim at the end of Section 5.2.2 is not
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supported by the results.
In the sequel of the chapter we use the synchronized loss model, but, as the above

indicates, we might as well use the proportional loss model. The fairness results obtained
from the model will therefore show stronger bias with respect to differences in round-trip
times than those obtained from simulations with ns-2.

5.2.4 A Root p Law
It is interesting to check the validity of the root p formula (1.40) in the context of this
model, analogous to Section 2.3.4. The form of the root p law for source 1 is according
to Mathis et al. (1997)

γM,1 =
P1

E {T1}

√
3

2p1
. (5.16)

Similar expressions hold for source 2.
Clearly, to compute (5.16) for the model we need expressions for the packet size P1

and the loss probability p1. The first follows from (5.8), hence,

P1 = r1T1(0).

An expression for p1 follows from the observation of Mathis et al. (1997) that p1 should
not be the packet loss rate itself, but rather the number of negative (congestion) signals
per acknowledged packet. Assuming that the loss is small, we take

p1 = lim
t→∞

Number of negative signals sent in [0, t]

Number of transmitted packets in [0, t]
.

Now, the number of negative signals sent during [0, t] is the same as the time the source
spent in congestion during [0, t] divided by the average time in a congested state. Since
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the latter is T1(K), we obtain, cf. (2.25),

p1 = lim
t→∞

Time spent in congestion in [0, t]/T1(K)

Fluid transmitted in [0, t]/P1

=
P1

T1(K)

Fraction of time in congestion
Fluid transmission rate

=
r1T1(0)

T1(K)

P{I1 = 1}
τ1

.

(5.17)

Note that pi, i = 1, 2, is an endogenous variable of the model; as such, it cannot
be directly controlled. To change its value, we vary B instead, and compute pi and the
other performance measures as a function of B/L. Note furthermore that, owing to the
dependence of the drift function on the buffer content, the notion of packet size is here
less cumbersome than (2.9).

We plot the results of a numerical evaluation of the above in Figure 5.4. Clearly, the
‘root-p-throughputs’ γM,i overestimate the model throughputs γi by about a factor 1.5
for source 1 and a factor 2 for source 2, but they capture the trends quite accurately.

5.2.5 On/Off Behavior
So far we have assumed that the sources are greedy. This assumption, however, is ob-
viously never satisfied in reality. Rather, a source usually switches off after the delivery
of a file, and switches on after some time when a new request arrives. In this section we
explore the influence of on/off behavior on fairness.

To implement this type of behavior for source 2 (source 1 is still greedy) we allow
it to switch off by adding an element 0 to W2, representing the off state, and transitions
from any state W2 > 0 directly to state W2 = 0. Suppose then that source 2 sends files
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with exponentially distributed size of average size S. The rate λoff at which source 2
switches off clearly depends on the source’s sending speed. When W2(t) = n2 and
C(t) = k we set λoff = n2r2(k)/S. To see that this is correct for all states with n2 > 0,
assume first thatW2(t) and C(t) do not change before the file has been transferred. Then
the expected on-time λ−1

off equals S divided by the momentary transmission rate n2r2(k)
of source 2. Suppose, now, that the transmission rate of source 2 increases during the
transfer. We may, by the memoryless property of the exponential file size distribution,
just restart the transfer process of the file at the moment the source makes the transition.
The expected file size, then, is again S. Once the transfer is completed, source 2 switches
on again after an exponentially distributed time with rate λon, and starts in Congestion
Avoidance with window size 1.

Figure 5.5 shows the effect of finite file sizes. The variable ũ1 (ũ2) represents the
utilization of source 1 (source 2) given that source 2 is on, whereas ui = γi/L, i = 1, 2
is the unconditional utilization. When λon = 1 sec−1, corresponding to the right panel,
source 2 switches on relatively quickly, i.e., within a few round trip times (T2 = 260
ms). Hence, source 1 does not have much time to benefit from off-periods of source 2.
The reason source 1 is better off is that when source 2 switches off it always restarts
with a window of size 1. Loosely stated, source 2 suffers from the fact that it does not
constantly participate in the competition for bandwidth, and, once it switches on, it starts
from rather unfavorable conditions. When the file size increases, the bias becomes less.
We also see that the overall utilization, u = u1 + u2, decreases in the presence of fierce
competition for bandwidth.

In the left panel, λon = 0.1 sec−1, so that source 2 is off for longer periods. The
utilization u1 (u2) is in this case higher (lower) as compared to the right panel, since
source 2 is less active. However, comparing the left and right panel, we see that the
conditional utilizations are nearly the same. Clearly, the amount of capacity that source
2 can claim while it is on, hardly depends on λon, as is to be expected.

5.3 Summary and Conclusions

We developed a Markovian model of the interaction between AIMD sources and a drop-
tail fluid buffer. The source and buffer behaviors are strictly stochastic. Due to its flexi-
bility the model enables us to obtain qualitative insight in the influence of various source
and network parameters on long-term properties such as source throughput, link utiliza-
tion and fairness. With respect to the dependence of the throughput on parameters as
packet size, round trip time, and buffer size the results of our model are consistent with
those of earlier models, e.g., Brown (2000), and therefore not reported here.

We applied the model to three specific cases. (1) We implemented two popular loss
mechanisms, viz. proportional loss and synchronized loss, and compared each to a simu-
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lation in ns-2. Is is shown that the loss process is somewhere in between the proportional
and synchronized loss model. (2) We show that the root p law also holds in our context,
where the loss process is endogenous instead of exogenous. (3) From the investigation
of the influence of source on/off behavior on fairness we conclude that a source that
switches off often is not denied access to the link, but is capable of claiming its fair share
quite quickly when it switches on, provided file-sizes are not (too) small.

One problematic aspect of the present approach is that we have to implement the
generator ourselves in computer code. Although conceptually simple, carrying out this
task is difficult as it is error-prone. It would be better to specify the source and buffer
behavior in a more human-friendly manner, and let the computer carry out the task of
deriving the generator. One such approach is developed in the next chapter.



Chapter 6

SPN Models for Networks with
Asymmetric TCP Sources

The model developed in Chapter 5 for two TCP sources interacting with a buffer is sim-
ple, yet flexible, and in principle extendable to intermediate networks, that is, a few
sources and buffers. It is formulated in terms of a continuous-time Markov chain and
enables us to study various stochastic aspects of this interaction. However, its use is
somewhat limited in practice as a human being, i.e., the author, has to program the code
that produces the infinitesimal generator of the Markov chain. This process is error-
prone and rather time consuming. Moreover, it becomes increasingly difficult to cor-
rectly implement extensions to multiple sources or multiple buffers. Thus, we cannot
easily apply this method when we are interested in the performance of networks of inter-
mediate size. To make this additional step we need a different methodology to specify the
Markov chain and obtain the generator. One framework we found particularly suitable
to extend the method of Chapter 5 is provided by Stochastic Petri Nets (SPNs), see e.g.,
Ajmone Marsan et al. (1995).

An SPN is a (graphical) formalism to describe systems which exhibit complicated
dynamics. It incorporates a notion of state and a set of rules describing the allowed state
changes, thereby capturing static and dynamic characteristics of complex systems such
as communication systems. The fact that the SPN is a graphical representation of (a
model of) a system contributes to the understanding of (the dynamics of) the system.
Moreover, computer tools such as the Stochastic Petri Net Package (SPNP) of Ciardo
et al. (1989) exist that automatically map an SPN to an underlying Markov chain and
generate the corresponding infinitesimal generator1. Using this generator, SPNP can

1To obtain the performance results in this chapter we made extensive use of the software package SPNP
version 4. We thank Kishor S. Trivedi of Duke University for making this package available.
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compute stationary and transient performance measures formulated as expected reward
functions on the SPN. Clearly, tools as SPNP handle the more cumbersome aspects of
the performance analysis of complicated systems so that the user can concentrate on the
aspects related to modeling and design.

In the current chapter we apply SPNs to study the interaction between multiple TCP
sources and buffers in intermediately-sized networks. This approach allows us to express
various performance measures of interest, such as packet loss probability, the throughput,
file transfer latency, and so on.

With SPNs we can generalize the TCP models of Altman et al. (2000b, 2002b) and
Chapter 5 considerably in that we can handle large buffers and networks with more than
just one router. Especially the last aspect seems difficult to incorporate in the setting of
the work of Altman et al. We refer to Section 5.1.1 for further motivation for our model.

We provide the necessary background about SPNs in Section 6.1. Then, in Sec-
tion 6.2, we specify an SPN of two TCP sources that share a buffer and implement the
synchronous and proportional loss models. In Section 6.3, we extensively compare the
results to theoretical results provided by Altman et al. (2000b, 2002b), Lakshman &
Madhow (1997), and simulation results obtained with ns-2. In Section 6.4 we first present
some further possible extensions of the source model. Then we consider a network con-
sisting of three sources and two buffers. The implementation of the throughput formulas
in this SPN are ‘topology aware’ in that they respect the order in which packets of a TCP
connection traverse the buffers. Hence, effects such as shaping at up-stream buffers are
taken into account. We compare the sharing of link capacity to the minimum-potential-
delay fairness scheme as defined by Massoulié & Roberts (1999) and which, according
to Lee et al. (2001), is the most appropriate for TCP.

6.1 Some Concepts of Stochastic Petri Nets

In this section we introduce the concepts of stochastic Petri nets that are relevant to this
chapter. We refer to Figure 6.1 as an example.

An SPN consists of a set of places and a set of transitions. These two sets are con-
nected via directed arcs as a bipartite graph: places (drawn as circles) connect only to
transitions, whereas transitions (drawn as bars) connect only to places. A directed arc
from a place (transition) to a transition (place) is called an input (output) arc to (from)
a transition. Places can contain tokens indicated as a number of black dots or an inte-
ger in the place. If a place contains at least one token, we say that it is marked. The
distribution of the tokens over the places represents the state of the net and is called the
marking. When all input places, i.e., all places connected to the input arcs of a transition,
are marked the transition is enabled. Once enabled, the transition can fire, thereby re-
moving tokens from its input places and adding tokens to its output places. Thus, a firing
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nearly always changes the marking. These firings are to occur immediately (contrary to
timed transitions to be introduced below) and atomically, i.e., other transitions cannot fire
before the action of the firing transition is completed. Note that during firing the number
of tokens in the Petri net is not necessarily ‘conserved’. it may happen that the transition
removes (adds) more tokens than it adds (removes).

Starting from an initial markingM0, the reachability set M is the set of all different
markingsM reachable by any succession of enabled transitions starting fromM0.

Besides the input and output arcs just mentioned, a Petri net can contain inhibitor
arcs, to be drawn as an arc from a place to a transition with as arrowhead a small circle.
If the place connected to an inhibitor arc is marked, the related transition is disabled.

An important property of input, output, and inhibitor arcs is their multiplicity. A mul-
tiple input (output) arc removes (adds) a number of tokens according to its multiplicity
from (to) a place, provided it is enabled. Note that the transition is only enabled if the
number of tokens at each input place is larger than or equal to the multiplicity of the
corresponding input arc. A multiple inhibitor arc becomes effective as soon as the place
contains a number of tokens at least as large as the inhibitor’s multiplicity. Besides multi-
ple arcs we need variable in- and output arcs. The multiplicity of these arcs may depend
on the actual marking of the net. Thus, the multiplicity of variable arcs is generally not
constant. Variable arcs are shown as directed arcs with a ‘zigzag’: .

Sometimes it is desirable to incorporate probabilistic behavior in the net. One mech-
anism for this is a random switch; the other mechanism, related to time, will be discussed
presently. Such a switch consists of a set of immediate transitions which are all simulta-
neously enabled by the same marking. A set of weights is adjoined to the random switch.
The probability that a certain transition of the random switch fires is proportional to its
weight. Such weights are allowed to depend on the marking at the moment just before
firing.

The arc types we have discussed above permit us to specify various types of condi-
tions to enable or disable transitions. However, sometimes it is rather cumbersome to
specify complicated conditions in the SPN with places and arcs. To avoid such awkward
complications we can use guards. A guard is a marking-dependent enabling function
attached to a transition. If the condition of the guard is satisfied, the transition is enabled;
otherwise the transition is disabled. Thus, with guards quite complex marking dependent
conditions can be imposed on the dynamics of the net. In this chapter we draw a guard
as a box with a dashed boundary containing a (shorthand of a) condition. (This graphical
representation of a guard is not standard in the literature.)

Up to now the transitions discussed above are immediate: if a transition is enabled,
and chosen when it is an element of a random switch, it fires immediately. We can
introduce the concept of time in the Petri net with timed transitions, which are drawn
as open rectangles. Such a transition fires, if enabled, after an exponentially distributed
amount of time. A useful feature is that the transition rates of such transitions are allowed
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to depend on the marking.
Once we have specified the SPN the computation of performance measures is rela-

tively straightforward. Under some mild boundedness conditions, it is possible to au-
tomatically map the SPN to a continuous-time Markov chain {M(t), t ≥ 0} with in-
finitesimal generator Q and initial probability vector representing the initial marking of
the SPN. The size of the chain equals the cardinality |M | of the reachability set M . If
{M(t)} is irreducible, the stationary distribution π = (π0, . . . ,π|M |) exists and does
not depend on the initial marking. The vector π satisfies πQ = 0,

∑
i πi = 1, and can

be computed by Gauss-Seidel iteration, or other, more advanced, numerical procedures,
cf. Stewart (1994).

The performance measures of interest for the stationary limitM of {M(t)} can then
be expressed in terms of a reward rate function r : M → R which associates with every
state m ∈ M a real-valued reward rate r(m). The expected reward in steady-state is
then given as

E{r(M)} =
∑

m∈M

r(m)πm. (6.1)

For more information regarding SPNs consult, e.g., Ajmone Marsan et al. (1995).
For details concerning SPNP, see Ciardo et al. (1994).

6.2 An SPN for Two TCP Sources and One Buffer
In this section we model two TCP sources sharing one buffer with proportional loss as
a stochastic Petri Net. Section 6.2.1 presents the details of this SPN. The resulting TCP
model is similar but not identical to the one of Section 5.1.2; we indicate the differences at
the end the section. In Section 6.2.2 we use the steady state probabilities of the underlying
Markov chain to express some performance measures as reward functions on the SPN.
To obtain insight into the time required to compute these probabilities we discuss some
computational issues in Section 6.2.3. Finally, in Section 6.2.4 we show that it is nearly
trivial to modify the SPN with proportional loss to an SPN that implements synchronized
loss.

6.2.1 The Proportional Loss Model
Here we model the behavior of two TCP sources and a buffer, i.e., processes W(t) =
(W1(t),W2(t)), andC(t), subject to proportional loss with the SPN shown in Figure 6.1.
The SPN contains three ‘subnets’ indicated by dashed boxes around several places and
transitions. The subnets S1 and S2 represent the sources whereas the subnetB represents
the buffer. We describe these subnets first, then we focus on the dynamics of the complete
SPN.
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Figure 6.1: A Petri Net model of two TCP sources sharing a buffer with the loss pro-
portional scheme. We indicate guards with dashed boxes around strings, such as β < 0
appearing immediately below tDecrB.

The Subnets

Subnet S1 contains three places: win1, winF1 and loss1; one immediate transition:
tLoss1; and two timed transitions: tIncr1 and tDecr1. Subnet S2 is, except for the
naming, identical; as such the rest of the discussion applies equally well to source 2. The
state of source 1 is given by the markings of win1, winF1 and loss1, respectively.
Here, the number of tokens in win1, i.e., #win1, denotes the momentary congestion
window of source 1. The marking of winF1 denotes how much further the window
can increase. Initially, #winF1 = N1, so that at all times during the evolution of the
SPN it holds that #win1 + #winF1 = N1. The loss state of source 1 is indicated by
#loss1. When #loss1 = 0 the source is allowed to increase #win1, while when
#loss1 = 1 the source has to reduce #win1 by a factor 2.
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The buffer subnet contains three places: bFill, bFree, and lossB; and two timed
transitions: tDecrB and tIncrB. The marking of the place bFill is the fill level
of the buffer. The place bFree has initially K tokens. Its marking corresponds to
the free space, i.e., the maximum buffer level K minus the fill level #bFill; thus,
#bFill + #bFree = K. Finally, when #lossB = 0 (#lossB = 1) the buffer is
(not) congested.

Observe that, for instance, the processes {W1(t), t ≥ 0} and {#win1, t ≥ 0} are
identical processes. For notational brevity and consistency with previous chapters we
use in the sequel W1(t) instead of #win1 to denote the marking of win1, etcetera.
Moreover, when no confusion arises, we also occasionally drop the dependency on t
of the processes W1(t), etcetera, to save space. Table 6.1 shows the relation between
the stochastic processes and the markings of the other places in the SPN. Here Ii(t)
represents the same indicator process as defined in (3.1).

#win1 = W1(t) #win2 = W2(t) #bFill = C(t)

#winF1 = N1 − W1(t) #winF2 = N2 − W2(t) #bFree = K − C(t)

#loss1 = I1(t) #loss2 = I2(t).

Table 6.1: The correspondence between the stochastic processes {W(t), I(t), C(t)} and
the markings of places in Figure 6.1.

The marking-dependent firing rates and guards associated with all transitions are
summarized in Table 6.2. Here Ti(k) is given by (5.7), whereas the function

β(n, k) =
K

B
(r(k) · n − L) (6.2)

denotes the transition rate at which in- and decrements of the buffer level process occur,
where the marking of the SPN is such that W(t) = n = (n1, n2) and C(t) = k,
cf. (5.10). Finally, recall that λi(k) = T−1

i (k), cf. (5.11).

From Initial State to Congestion (Congestion Avoidance)

The initial marking of the SPN is as shown in Figure 6.1. Sources 1 and 2 are ‘off’ and not
in a loss state; the buffer is empty and in possession of the loss token. In the initial state
only tIncr1 and tIncr2 are enabled and fire at rate 1/T1 and 1/T2, respectively. Each
firing increases W1 or W2 by one, which clearly models the Additive-Increase phase of
TCP. Note that on average source i spends an amount Ti(k) in state ni, given C = k. In
this way the SPN incorporates feedback delay.
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Transition Rate Guard
tIncrB β(n, k) β(n, k) > 0
tDecrB −β(n, k) β(n, k) < 0
tLoss1 ∞ β(n, k) > 0
tLoss2 ∞ β(n, k) > 0
tIncr1 λ1(k) —
tDecr1 λ1(k) —
tIncr2 λ2(k) —
tDecr2 λ2(k) —

Table 6.2: Rate functions and guards for the transitions in Figure 6.1.

As W1 and W2 increase, the scaled net input rate (6.2) increases as well. After
several firings of tIncr1 and tIncr2,W1 andW2 are so large that β(W, 0) becomes
positive. This will set the guard at tIncrB to true, so that tIncrB becomes enabled.
Each firing of tIncrB increments C by one. After K firings of tIncrB, the buffer is
completely filled, i.e., C = K. When this happens, the inhibitor arcs from bFree to
tLoss1 and tLoss2 are now no longer active, so that the random switch consisting of
the immediate transitions tLoss1 and tLoss2 becomes enabled.

Suppose tLoss1 fires first so that source 1 receives the loss token. As such, the
loss token represents the congestion signal that the buffer sends to a source. Clearly, in
this case the inhibitor from loss1 to tIncr1 will prevent further increments of the
window of source 1. Note that, as source 1 receives the loss token, loss2 does not be-
come marked (unlike the synchronous model, to be discussed shortly), and consequently,
tIncr2 can still fire.

It is evident that when source i is inactive, i.e., when Wi = 0, it cannot suffer from
loss. To prevent the loss token from being sent to a quiet source a multiple inhibitor
arc connects winF1 (winF2) to tLoss1 (tLoss2) with multiplicity N1 (N2). The
multiplicity is indicated in Figure 6.1 at the inhibitor arc.

The Proportional Loss Model

The buffer uses a proportional loss model, according to which the buffer chooses only
one connection to suffer from loss during overload. The probability to select a partic-
ular connection is proportional to its momentary transmission rate. We implement this
behavior by means of the random switch consisting of tLoss1 and tLoss2.

The marking-dependent weights of the random switch are chosen such that tLoss1
fires with probability p1 whereas tLoss2 fires with probability p2 = 1 − p1. Table 6.3
shows the values of p1 when r1(K)W1 > L and r2(K)W2 > L, etcetera. The motiva-
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tion behind this loss model is based on the insight that if, for instance, r1(K)W1 > L
and r2(K)W2 ≤ L, connection 1 certainly loses traffic. Thus, in this case connection 1
should surely receive the loss token. Due to the proportional loss model just one loss
token is available, so that connection 2 cannot receive a loss token. Therefore, in this
case, p1 = 1 and p2 = 0. When r1(K)W1 ≤ L and r2(K) ≤ L (but r(K) · W > L)
both sources can be hit by a loss with a probability proportional to their sending rates. In
the (very) rare case that r1(K)W1 ≥ L and r2(K)W2 ≥ L both sources should reduce
their rate. However, as lossB contains just one token, it cannot simultaneously send
both sources a loss token. Therefore, we again take the loss probabilities proportional to
the sending rates. We emphasize that the influence of this inconsistency will be small in
nearly all relevant parameter settings.

r1(K)W1 ≤ L r1(K)W1 > L

r2(K)W2 ≤ L p1 = r1(K)W1

r(K)·W p1 = 1

r2(K)W2 > L p1 = 0 p1 = r1(K)W1

r(K)·W

Table 6.3: Firing probability p1 of tLoss1.

Removing the Congestion (Multiplicative Decrease)

When I1(t) = 1 the timed, variable transition tDecr1 is enabled. Once it fires, it
moves the loss token from loss1 to lossB, and, to reflect the Multiplicative Decrease,
removes half of the tokens from win1 and adds these to winF1. Specifically, the multi-
plicitymwin1 of the variable arc between win1 and tDecr1 is

mwin1 =

{
5(W1 + 1)/26 whenW1 > 1,

0 whenW1 = 1.
(6.3)

(A transition from, e.g., W1 = 5 to W1 = 2 requires to remove 3 tokens from win1.
Compare also the transition (5.12d) in the model of Chapter 5.)

If, with the new marking, still β(W,K) > 0 either tLoss1 or tLoss2 will imme-
diately fire again. After a sufficient number of multiplicative decrements of W1 and W2

the net input rate becomes negative. When this is the case, firings of tDecrB decrement
the buffer content. As a second consequence of β(W, C) < 0 the guards at tLoss1
and tLoss2 prevent the loss token from being passed on to either of the sources. Thus,
the source windows cannot decrease further.

We have not yet discussed two arcs: the inhibitors from loss1 and loss2 to
tLoss1 and tLoss2 respectively. Their role will be clarified in the synchronous loss
model presented in Section 6.2.4. In the proportional model they have no function, but
they do not influence the performance measures in any way either.
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Differences with the Model of Chapter 5

The TCP model as implemented in the SPN is similar but not identical to the TCP model
described in Section 5.1.2. We enumerate the differences now; for clarity we use the
self-describing names ”discretized model” and ”SPN model”.

The first difference relates to the time the sources stay in a congested state. In the dis-
cretized model this time is exponentially distributed. This follows as a state (n1, n2,K)
such that r(K) ·n > L has an outward transition to (5n1/26, n2,K). The rate out of the
state (n1, n2,K) is therefore, according to (5.12d),

qn1,n2,K;,n1/2-,n2,K + qn1,n2,K;n1,,n2/2-,K =
n1r1(K)λ1(K) + n2r2(K)λ2(K)

n1r1(K) + n2r2(K)
.

In the SPN model the time in a congested state is hyper-exponentially distributed. To
see this, observe that once the Markov chain enters a congested state, a random switch
chooses with probability pi, i = 1, 2, which source receives the loss token, and the
holding time of the loss token in place loss1 or loss2 is exponentially distributed
with rate λ1(K) or λ2(K), respectively.

The second difference pertains to the boundary conditions of the (underlying) Markov
chains. In the discretized model we ensure that sets indicated by (5.13) have zero prob-
ability by removing any transition into these sets. (In effect, we implement transitions
qn1,n2,K;,n1/2-,n2,K−1 rather than qn1,n2,K;,n1/2-,n2,K if β(5n1/26, n2,K) < 0 to en-
force the boundary conditions.) In the SPN model we only remove a token from bFill
once tDecr1, or tDecr2, fires. The main reason for this ‘shortcut’ is to keep the Petri
net relatively simple. The influence of this difference is small. (In the preparation of
obtaining the results for Chapter 5 we also studied a model with transitions of the type
qn1,n2,K;,n1/2-,n2,K and compared the results to those presented in Chapter 5. We found
only minor differences in the values of the performance measures.)

6.2.2 Performance Measures
We now express three performance measures as rewards functions of the form (6.1) on
the net: a connection’s expected transmission rate, its throughput and the utilization of
the link.

1. The expected transmission rate for connection i is easy:

τi = E {ri(C)Wi} .

2. The throughput is not as simple to specify in exact terms in the present setting; we
can concentrate on the fluid that enters the buffer, and the fluid that leaves the buffer.
We discuss a proposal related to each possibility and compare these numerically in Sec-
tion 6.3.
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2a. For the first proposal we consider the fluid that enters the buffer. While the buffer
is not full it accepts fluid, but when it is full it drops the excess fluid. We assign this
excess to the connection that receives the loss token. There is only excess traffic when
C = K and β(W, C) > 0. As these conditions imply, and are implied by, the condition
that either I1 = 1 or I2 = 1 (due to the proportional loss assumption), we define

γini = τi − E
{
(r(C) · W − L)1{Ii=1}

}
. (6.4)

This definition assigns all excess fluid e = r(C) · W − L to one source: the source that
receives the loss token. As a consequence we need to verify whether indeed ri(K)Wi >
e when source i receives the loss token, for otherwise we subtract too much in the above.
Now, since, for instance, the condition r1(C)W1 < L is equivalent to r2(C)W2 > e,
this problem does not occur in three of the four possibilities shown in Table 6.3. Only
when both source rates exceed Lwe may subtract too much. As this problematic case has
(very) small probability, we neglect its consequences, as we did before, in Section 6.2.1.

Observe that in (6.4) we use the indicator 1{Ii=1} whereas in (5.15) we use 1{C=K}.
The reason for this difference in now easy to explain. In the current model we have a loss
indicator variable Ii for both loss models, whereas in Section 5.1.2 this indicator is only
a process variable of the model with synchronous loss.

2b. The other possibility is to consider the fluid that leaves the buffer. When the buffer
is empty the departure rate at time t is equal to the arrival rate. When at time t the buffer
contains k > 0 units of fluid the departure rate of source i at time t equals the service
capacity L times the fraction of traffic of source i that arrived at time t − kB/(KL).
Since the Markov process {W(t), I(t), C(t), t ≥ 0} does not maintain the history of
the source states as supplementary variables, the source rates at time t − kB/(KL) are
(principally) unknown. Hence we cannot incorporate the effect of buffering delay on the
throughput. We therefore neglect the influence of the delay and approximate the output
process by the arrival process. To see that this approximation is acceptable we reason
as follows. Observe that the round-trip times of all sources include the buffering delays
along the route. Hence, it always takes less time to refresh the buffer content than it
takes for a source to change its rate. Consequently, while the buffer content is refreshed
the input rates are nearly constant. We conclude that neglecting the delay only shifts the
output process backward in time, but does not substantially change its shape or the ratio
of fluid of the sources. By the above we arrive at

γouti = E

{
ri(C)Wi1{C=0} + L

ri(C)Wi

r(C) · W
1{C>0}

}
. (6.5)

3. We define utilizations as

ui =
γi

L
, i = 1, 2 u =

γ1 + γ2
L

= u1 + u2.
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With respect to the existence of the stationary distribution π, which is needed in the
computation of the expectations above, we remark that the Markov chain associated with
the proportional SPN may be reducible, depending on the choice of parameters. This
has, however, no consequence for the existence of π. Whereas some states may be-
long to transient classes, the other states form one recurrent class implying that a unique
stationary distribution still exists.

6.2.3 Computational Issues
It is of interest to estimate the size |M | of the Markov chain as this gives insight into the
time required to solve for the stationary distribution. We have not been able to find an
accurate but simple expression for |M |, mainly because the number of recurrent states
depends critically on the values of the system parameters and the presence of guards.
Hence, given the sizes of W1, W2, and K , and that the loss token can reside in in three
places (i.e., lossB, tLoss1, and tLoss2), we conclude that

|M | ≤ 3(N1 + 1)(N2 + 1)(K + 1) = O((N1 + 1)(N2 + 1)(K + 1)). (6.6)

This estimate is an upper bound as the guards in the SPN may considerably reduce the
number of transitions, that is, not all markings counted in this formula represent reach-
able states. It is evident from Figure 6.1 that the SPN contains only eight transitions
thereby bounding the number of non-zero entries per row in the generator also by eight.
Consequently, the generator is sparse.

Observe that the model possesses some scaling freedom in the parameters Pi, i =
1, 2, L and B. To remove this freedom assume henceforth that source 2 is the distant
one, i.e., T2 ≥ T1, and set r2(0) = 1. Moreover, assume that the packet sizes are equal,
i.e., P1 = P2, which has as a consequence that, cf. (5.8),

r1(k) =
P2

T1(k)
=

r2(0)T2

T1(k)
=

T2

T1(k)
, (as r2(0) = 1).

Next, suppose that the sending rates are not constrained by the receiver windows. Thus,
each source can congest the link. This is achieved by setting Ni ≥ ;L/ri(K)< =
;LTi(K)/T2<, where ;x< is the smallest integer larger than x. Thus, we see that L
determines the source granularity: a small (large) value of L means that a few (many)
source transitions are needed for buffer overflow. It is intuitively clear that choosing Ni

much larger than ;LTi(K)/T2< hardly affects the value of the performance measures, as
such ‘high’ source states are visited only relatively seldom. From numerical evaluations
we conclude that choosing Ni equal to 1.1;LTi(K)/T2< is large enough in our setting.
Finally, in the (numerical) analysis we wish to specify the buffering delay dB instead of
the buffer size B itself; therefore let B = dBL. As a result the parameters T1, T2, L and
dB now fully characterize the system.
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Clearly, from the computational point of view it is of interest to choose N1, N2 and
K as small as possible without significantly affecting the overall results, i.e., the outcome
of the performance measures. The following provides some insight into how small N1,
etcetera, can be reasonably chosen. As a first step we notice that as source 2 is the distant
source, it follows that

N2 = 1.1;LT2(K)/T2< ≥ 1.1;LT1(K)/T2< = N1.

However, the probability that W2 > N1 is small, given the bias of TCP against long
connections. Therefore, we can safely set N2 = N1. Second, as in Section 5.1.2 it turns
out that K = 5 is already large enough for the parameter ranges we investigate in this
chapter, and setting K to larger values makes practically no difference. We can even set
K = 1 in the large bandwidth-delay product regime. In this regime it takes an AIMD
source much more time to ‘fill the pipe’ than to fill the buffer. Thus, approximately, the
buffer is either empty or congested so that C = 0 or C = 1. We remark once again that
the numerical results to be presented below provide support for all these approximations.

6.2.4 The Synchronous Loss Model
Here we show the changes required to modify the SPN with proportional loss to an SPN
with synchronized loss.

First, to signal both sources about congestion requires two loss tokens to be initially
present at lossB. Second, in the new setting the transitions tLoss1 and tLoss2 will
no longer form a random switch. Instead, each fires with probability 1, if enabled.

Now suppose again that once bFree becomes empty, tLoss1 is the first to fire.
This results in one of the loss tokens to move to loss1. The inhibitor from loss1
to tLoss1 prevents this transition to fire again. Consequently, the immediate transition
tLoss2 fires so that both sources receive a loss token at the same instant. While loss1
(loss2) is marked source 1 (source 2) cannot receive a loss token which becomes avail-
able after a firing of tDecr2 (tDecr1) due to the inhibitor arcs from loss1 (loss2)
to tLoss1 (tLoss2).

As both sources receive a loss token, both sources can take their share of the excess
fluid arriving during congestion. Therefore the throughput as defined in (6.4) should
become

γini = τi − E

{
(r(C) · W − L)

ri(C)Wi

r(C) · W
1{C=K,β(W1,W2,C)>0}

}
. (6.7)

The condition expressed by the indicator function is here more difficult that in (6.4). In
the discussion in Section 6.2.1 on the differences between the ‘discretized model’ and
the ‘SPN’ model, we pointed out that the SPN does not implement boundary conditions
such that P{C = K,β(W1,W2, C) < 0} = 0. Hence, the events {C = K} and
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{β(W1,W2, C) > 0} are not the same (up to null-events). Moreover, in the synchronous
loss model Ii = 1 does not imply β(W1,W2, C) > 0 or C = K.

Definition (6.5) does not need any modification.
Finally, about the size of the state space we remark that the number of possibilities for

the loss tokens is 4 rather than 3. Thus, the bound in (6.6) should be multiplied with 4/3
to obtain an upper bound for the size of the reachability set of the SPN with synchronized
loss.

6.3 A Comparison with Analytic Models and ns-2
In this section we compare the numerical results of the SPN to other analytic work and
simulation with ns-2. We specify the investigated scenarios in Section 6.3.1 and present
the results in Section 6.3.2.

6.3.1 Scenarios
Figure 5.2 shows the network we used for the numerical analysis and ns-2. Two greedy
TCP sources, S1 and S2, communicate with destinations D1 and D2 via a router with
buffer size B = dBL. The receiver windows are assumed large enough to not constrain
the congestion windows. Table 6.4 shows the values of L and dB for the four investigated
scenarios. For each scenario we vary the propagation delay d1 of the link connecting S1

and R1 in 10 steps from 40 ms to 240 ms. The delay between S2 and R1 is here taken
as 250 ms instead of 120 ms, which is the value shown in Figure 5.2. Moreover, the link
rate is 1.5 Mb/s whereas it is 1 Mb/s in the figure. The parameters for the SPN follow
from Section 6.2.3.

Scenario L dB (ms) K

‘25s’ 25.7 16 1
‘80s’ 80.7 16 1
‘25l’ 25.7 160 5
‘80l’ 80.7 160 5

Table 6.4: SPN parameter values. We use mnemonics such as ‘25s’ to denote the sce-
nario in which the link rate is 25.7 and the maximum buffering delay dB is ‘small’. A
buffering delay of 16 ms corresponds to a buffer size of 5 packets in the ns-2 simulation.

In the simulations with ns-2 we use a RED buffer and consider a small and a large
buffer case. (Consult Section 5.2.2 for a discussion on using a RED buffer for the sim-
ulation and a drop-tail buffer for the model.) In the former (latter) the buffer’s total size
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is 20 (200) packets. The RED parameters in (1.35–1.36) are taken as follows. The mini-
mum threshold xmin is 5 (50) packets, the maximum threshold xmax is 10 (55) packets,
the maximum drop probability pm = 0.1 and the weight ε = 0.002. The packet size is,
including IP header, 576 Bytes. We note that the RED parameter values for the small
buffer are also identical to the values chosen by Altman et al. (2000b).

6.3.2 Results
Lakshman &Madhow (1997) derive that for synchronous loss and a small buffer the ratio
of the throughputs γ1/γ2 ≈ s−α, where s = T1/T2 is the ratio of propagation delays
and α = 2, cf. (1.42). Altman et al. (2000b) present a model with proportional loss in
which γ1/γ2 = s−α with α ≈ 0.85, cf. (1.46). As our model allows to analyze both loss
models we investigate what values for α the model will give in either case. Moreover
we analyze the influence of buffering delay. The left and right panel of all figures of this
section show the results for the small and large buffer case, respectively.

In Figure 6.2 we plot the throughput ratio computed by the model with proportional
loss as a function of s for the scenarios of Table 6.4. We compare the differences between
the ‘input ratio’ γ in1 /γin2 obtained by (6.4) and the ‘output ratio’ γout1 /γout2 by (6.5). We
also plot s−α for several values of α, and the analytic estimate (1.46) of Altman et al.
(2002b).

The results for the small buffer case show that for relatively coarse-grained sources
the input and output ratios are different. The input ratio is too high, as compared to
the function s−0.85, whereas the output ratio is too low. By increasing L the two ratios
seem to converge to, approximately, s−0.87, which is close to the result of Altman et al.
(2000b). Note that, as observed in Altman et al. (2002b), (1.46) approximates s−0.85

very well. Clearly, the graphs of the output ratios lie below the graphs of the input ratios,
implying that the output ratios are fairer than the input ratios. We are unable to provide
intuition why this is the case. Observe also that the sharing of the link becomes fairer
when the buffer size increases (α drops to approximately 0.65), which is in accordance
with intuition.

We explain the influence of the choice for L on these two ratios by considering the
overload states. Suppose first that just source 1 is in state 26 when congestion occurs.
When L = 25.7 source 1 needs 13 round-trip times after a loss to fill the link by itself
again, whereas when L = 80.7, and source 1 is in state 81 it needs 41 round-trip times.
Thus, applying this insight to the two source model, the fraction of time spent in conges-
tion, i.e., C = K and β > 0, is smaller when L = 80.7 than when L = 25.7 (using
the scaling of the other parameters as explained in Section 6.2.3). As the computations
of γouti and γini mainly differ when C = K, and the fraction of time in congestion is less
when L = 80.7 as compared to L = 25.7, the difference between γouti and γini is smaller
when L = 80.7.



6.3 A COMPARISON WITH ANALYTIC MODELS AND NS-2 131

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

ajn

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

PSfrag replacements

ss
Th
ro
ug
hp
ut
ra
tio

Th
ro
ug
hp
ut
ra
tio

α = 0.65

α = 0.85

α = 0.85

α = 0.95

25s,γ in

25s,γout
80s,γout
80s,γ in

25l,γ in

25l,γout
80l,γout
80l,γ in

dB = 16 ms dB = 160 ms

Figure 6.2: Ratio of throughputs as a function of s = T1/T2 for the proportional loss
model. The left (right) panel shows the ratio when db = 16 ms (db = 160 ms). The
label ‘25s,γ in’ refers to the input-related throughput (6.4) computed for Scenario 25s,
etcetera; the label ‘ajn’ refers to (1.46).

In Figure 6.3 we plot similar results but now for the synchronous loss model. There
is hardly any difference between the input and output ratios. For small buffers we see
that the ratios according to our model behave like s−2.2 instead of s−2 as obtained by
Lakshman & Madhow (1997). When the buffer size increases, the power decreases to a
value smaller than 2, in line with the results of Lakshman & Madhow (1997).

In Figure 6.4 we compare the utilization (γout1 + γout2 )/L as computed by our model
to a simulation of two NewReno sources and two TCP Sack sources, and theoretical
results of Lakshman & Madhow (1997) and Altman et al. (2002b). In the synchronous
loss model Lakshman & Madhow (1997) estimate the utilization as 3/4 independent of
the ratio s, cf. (1.44). For the proportional model Altman et al. (2002b) provide in their
Equation (23) the approximation

γ1
L

≈
2s2 − 1

2(s2 − 1)

1

s + 1
−

1

4(s2 − 1)
=

1

4

4s + 3

(s + 1)2
. (6.8)

Combining this with (1.46) yields a similar expression for

γ2 ≈
s

4

3s + 4

(s + 1)2
L.

(We restate (1.45)–(1.46) here for ease of comparison.)
We see from the graphs that most models overestimate the utilizations in compari-

son to simulation. Our model, contrary to (1.45), correctly captures the trend that the
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Figure 6.3: Ratio of throughputs for the synchronous loss model as a function of s =
T1/T2. The labeling is as in Figure 6.2.

utilization decreases as a function of s. In the right panel, showing the results for large
buffers, we do not include the results of Altman et al. (2002b) and Lakshman &Madhow
(1997) as these only apply to small buffers. Interestingly, in line with an observation of
Altman et al. (2000b), the utilization for proportional loss is higher than the utilization
for synchronized loss. Finally, we conclude that the theoretical models are too optimistic
about link utilization in all cases. (The results of the TCP NewReno simulation in the
right panel are a bit odd. This behavior did not disappear by slight changes of the pa-
rameters of the RED buffer. We did not investigate large changes as this would introduce
considerable differences between the model and the simulation.)

Figure 6.5 shows the normalized throughput of the first connection γout1 /(γout1 + γout2 )
in comparison to (6.8) and the simulations; the results for the second connection follow
immediately, as γout2 = 1− γout1 /(γout1 + γout2 ). Clearly, the theoretical ratios are in nearly
perfect agreement. Moreover, for the small buffer case the proportional loss models are
‘too fair’, whereas the synchronous models are ‘too unfair’, which is in line with the
findings in Chapter 5.

6.4 Extensions
The extensions presented in this section provide further support for the versatility of
applying SPNs to modeling TCP. We start with two relatively simple extensions of the
model of Section 6.2. The first allows sources to switch on (‘downloading’) and off
(‘thinking’); the second is such that multiple sources can share the bottleneck link. Then
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we specify and analyze a network consisting of three sources and two links. Especially
this last model appears difficult to tackle ‘by hand’.

6.4.1 On/Off Behavior and Multiple Sources
Figure 6.6 specifies a source that can switch on and off. The extension of the source
subnet consists of adding two transitions tOn and tOff that fire at rate λon and λoff .
The probability that the on-time exceeds x is exp(−λonx). We take the file sizes as
exponentially distributed with average size E{file size}. Consequently, if C = k and
W = n, the rate at which the source switches off is given as λoff = r(k)n/E{file size)},
in accordance with the reasoning in Section 5.2.5.

Suppose the source is off. Then, clearly, all its window tokens should be positioned
in winF and the markingW of win should equal 0. The inhibitor from winF to tIncr
with multiplicity N disables tIncr as long as W = 0. Thus, the only possibility to
move a token from winF to win is the transition tOn. As soon as win contains one
token, the inhibitor to tOn disables this transition. The source switches off when tOff
removes all tokens at win via the variable arc from win and adds these tokens to winF.
Observe that as a consequence of (6.3) the multiple arc between win and tDecr never
removes all tokens from win. Hence the decrements due to Multiple Decrease do not
switch off the source. When the source is in a loss state, i.e., loss is marked, it cannot
finish a file transfer. The inhibitor from loss to tOff prevents this. Note that this
implementation of on/off behavior does not come at the cost of extra places. Hence, the
set of markingsM does not increase.

We refer the reader to Section 5.2.5 for an analysis of the influence of on/off behavior
on the sharing and utilization of the link.

PSfrag replacements
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Figure 6.6: An on/off source. (We do not draw the arcs that connect the source subnet to
the buffer subnet.)

Extending the SPN of Section 6.2 to incorporate more than two sources is quite sim-
ple. SPNP, cf. Ciardo et al. (1994), supports arrays of places, transitions, and so on.
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The window sizeWi of source i corresponds then to the value of the i-th element of the
‘window’ array, etcetera. The size of the arrays equals the number of sources, which can
be controlled, clearly, by a single variable. For the synchronous loss model the number
of loss tokens initially present at lossB should, of course, equal the number of sources.
When the number of sources J is larger than 2 it is even possible to put an initial num-
ber of tokens in lossB somewhere in between 1 and J . (We did not investigate such
scenarios.)

6.4.2 Three TCP Sources Sharing Two Buffers
In this section we extend the model to a network consisting of three sources and two
buffers in a configuration as shown in Figure 6.7. We explain the SPN in which the
buffers use a proportional loss scheme, define the performance measures and present
some results.

10 ms 10 ms240 ms
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Figure 6.7: A network of three sources sharing the links between routers R1, R2, and
R3. Router R1 (R2) contains the first (second) shared buffer in front of link L1 (L2).
Router R3 splits the traffic of connections 0 and 2 without further buffering

The Model

The SPN for the network is shown in Figure 6.8. The subnets for sources 1 and 2 and
the buffers B1 and B2 are identical to their counterparts of Section 6.2.1. Source 0, as
shown by the middle, lower subnet in Figure 6.8, is different in that its connection uses
both buffers. We elaborate on this now. To avoid tedious repetition we do not formally
introduce variables such as L1, B1, etcetera, when the meaning is obvious.

The average round-trip time of source 0 is

T0(k) = T0 +
k1

K1

B1

L1
+

k2

K2

B2

L2
,
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Figure 6.8: TCP source 0 uses buffers 1 and 2, whereas source 1 (2) uses buffer 1 (2).
Note that in Figure 6.1 we use rather descriptive names for the transitions. In the present
case we turn to shorter, but less descriptive, names for presentational reasons.
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where we write k = (k1, k2). Thus, the analog of (5.8) becomes

r0(k) =
P0

T0(k)
.

With respect to the loss model we see that source 0 can receive a loss token from
both buffers. As a consequence source 0 can have both loss tokens in possession simul-
taneously. As such it suffers from loss twice within one round-trip time, i.e., within one
window of data, and reduces its rate twice accordingly. This is inconsistent with the
behavior of TCP NewReno or TCP Sack which mostly decrease only once even when
more than one packet of a window of data are lost. We contend that this undesirable
side effect has small influence. First, for this event to happen, congested periods of both
buffers have to overlap. Second, source 0 should receive the loss token of both buffers.
As source 0 is usually sending at a lower rate than source 1 and 2, both conditions will
not often be satisfied simultaneously.

The functions β1 and β2 should also be adapted to the network environment. Clearly,

β1(n,k) =
K1

B1
(r0(k)n0 + r1(k1)n1 − L1) .

To obtain a similar expression for β2 we should account for the fact that the first buffer
shapes the output process of source 0. We approximate the output rate of source 0 at the
first buffer, δ0 say, similarly to (6.5):

δ0(n,k) =

{
r0(k)n0, if k1 = 0,

L1
r0(k)n0

r0(k)n0+r1(k1)n1
, if k1 > 0.

Now we can define β2 as

β2(n,k) =
K2

B2
(δ0(n,k) + r2(k2)n2 − L2) .

Performance Measures

For reasons of consistency with the definition of δ0 above, we use the output-related
definitions of throughput as in (6.5). Thus, omitting the superscript ‘out’,

γ0(n,k) =

{
δ0, if k2 = 0,
δ0

δ0+∆2
L2, if k2 > 0,

γ1(n,k) =

{
∆1, if k1 = 0,

∆1

∆0+∆1
L1, if k1 > 0,

γ2(n,k) =

{
∆2, if k2 = 0,

∆2

δ0+∆2
L2, if k2 > 0,
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where

∆0 ≡ r0(k)n0, ∆1 ≡ r1(k1)n1,

∆2 ≡ r2(k2)n2, δ0 ≡ δ0(n,k).

With this we set
γi = E{γi(W,C)}, i = 0, 1, 2, (6.9)

where C = (C1, C2). Finally, the utilizations for the first and second link become,
respectively,

u1 =
γ0 + γ1

L1
, u2 =

γ0 + γ2
L2

.

Results

Similar to Figure 6.2 we study the influence of the ratio of the round-trip times on fair-
ness. We simultaneously vary the propagation delay d1 of the links connecting sources 1
and 2 to the routers R1 and R2, respectively, from 40 ms to 250 ms in ten steps. The
parameters of the second router are identical to those of the first, i.e., L2 = L1 = 25.7
and dB2

= dB1
= 16 ms, as in Scenario 1 of Table 6.4.

The left panel of Figure 6.9 shows the ratios of the throughputs γ1/γ0 and γ2/γ0
as functions of s = T1/T0 = T2/T0. We see that the throughputs of source 1 and 2
are nearly the same. This is to be expected when the fraction of lost traffic at the first
buffer is small. Indeed, in that case the rate of the ‘thinned connection 0’, i.e., the traffic
of connection 0 minus the loss incurred at the first buffer, is nearly the same as the
transmission rate of source 0. Hence, connection 1 and connection 2 have to compete
with approximately the same connection. The fact that γ2 is just slightly larger than γ1
shows, in accordance with the above, that the rate of the thinned connection 0 is a bit
smaller than its initial rate. The right panel shows the graphs of the scaled throughputs
γ0/L1, γ1/L1, and the utilization u1. As the difference between γ1 and γ2 is small, the
results for the second router are nearly identical, hence, not shown. Clearly, the overall
utilization u1 decreases when the ‘competition between connections 0 and 1 increases’.

When T0 = T1 = T2 we can compare γ1/γ0 to some theoretical fairness results for
networks as derived by Massoulié & Roberts (1999). Lee et al. (2001) claim that, in the
terminology of Massoulié & Roberts (1999), the bandwidth sharing obtained by TCP in
networks results in minimum-potential-delay fairness. When we apply these results to
the network shown in Figure 6.7 we obtain that, theoretically, γ1/γ0 =

√
2. Our model,

on the other hand, gives γ1/γ0 = 13.81/9.21 = 1.5, which is quite near to
√

2.
In the left panel of Figure 6.9 we also plot the function s →

√
2s−0.85 as reference.

Interestingly, this shows considerable agreement to the numerical results. It seems that
the power of s is dictated by the loss model whereas the pre-factor is determined by the
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topology. Further research is needed to see whether, and if so, which conditions, this
phenomenon holds.

6.5 Summary and Recommendations
We use stochastic Petri nets to specify, in a versatile way, Markovian models of TCP
NewReno or Sack (more specifically, AIMD) sources that share one or two buffers. The
first model contains two connections competing for a single bottleneck link and buffer.
The second model describes one connection traversing two consecutive buffers, while
each buffer receives additional side traffic from other TCP connections. We also show
that the first model can be simply extended to more than two sources, and present a
modification of the source model to include on/off behavior.

The methodology is flexible, extendable, and enables to obtain qualitative insight into
the influence of various source and network parameters on transient and long-term prop-
erties such as source throughput, link utilization and fairness. With respect to parameters
as packet size, round-trip time, and buffer size, the results of our model are consistent
with those of Chapter 5 and therefore not reported here.

In the first model (two sources, one buffer) we implement two popular assumptions
about the loss process at the buffer, viz. proportional loss and synchronized loss. We
validate the Markovian models for either loss process by extensively comparing it, on
the one hand, to the theory developed by Altman et al. (2000b), Altman et al. (2002b)
and Lakshman & Madhow (1997), and, on the other hand, to simulation by ns-2. The
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models provide results that are consistent with the theoretical results or improve these in
that better resemblance is found to simulation results obtained by ns-2.

The second model (three sources, two buffers) shows that when the round-trip times
of all connections are equal, the computed ‘fairness’ is approximately minimum-poten-
tial-delay fair as defined by Massoulié & Roberts (1999). It would be interesting to
investigate the type of fairness in case buffer sizes are not small or when the round-trip
times differ. To the best of our knowledge, the approach based on SPNs is one of the
few theoretical approaches that enables such quantitative analysis. Massoulié & Roberts
(1999) consider the influence of round-trip time differences, but their window-control
model is non-adaptive contrary to our source model.

We like to mention that specifying the Markovian models with SPNs, so that the
generator of Markov chain and the performance measures are computed automatically,
has some noteworthy advantages over implementing the generator by hand as is done
in Chapter 5. The implementation of the SPNs is straightforward and less error-prone.
Moreover, the automatically generated Markov chains usually need fewer states, and can
therefore be solved more efficiently. Finally, it is easy to include complex behavior of
the application layer or modify aspects of TCP in the SPN. In summary, we feel that
using SPNs shifts the burden of the work from simple but awkward programming to the
pleasant task of designing a Petri net that behaves according to a set of pre-specified
rules.

As a possible extension, it would be interesting to implement an intermediate level in
the buffer such that when the queue exceeds this level, the buffer starts sending negative
feedback signals to the source. In the context of Kelly (2000); Gibbens & Kelly (1999);
Kelly et al. (1998) we might interpret these negative feedback signals as charging signals.
This functionality might increase system utilization by two effects. The first is that the
source may have reduced its rate before packets are dropped. Consequently, there will
be fewer lost packets. Second, when the level is set quite a bit lower than the size of
the buffer, the control loop becomes shorter, so that a source can adapt more promptly to
over- and under-load of the link. One of the points of interest is to explore the gain in
utilization when such thresholds are used. The overall effect is, however, not clear as the
fraction of time the buffer is empty may also increase when using thresholds.



Chapter 7

A Tandem Queue with Server
Slow-down and Blocking

In the previous chapters we have been concerned with stochastic fluid queues with feed-
back. It is also of interest to study the influence of such feedback on the behavior of
classical queueing networks, i.e., networks that serve discrete jobs, rather than fluid. In
this chapter we consider congestion-dependent feedback of information (not jobs) from
downstream stations to upstream stations. Specifically, we analyze the consequences of
feedback on the queue-length distribution in a two-station tandem queueing network in
which the second station informs the first server to change its service rate depending on
the queue length in the second station.

As this chapter is not concerned with feedback fluid queues, we start with a separate
introduction. At the end of this introduction we present the structure of the rest of the
chapter.

7.1 Introduction
The tandem queue we study here resembles a two-station Jackson tandem queue in which
jobs arrive according to a Poisson process with rate λ at the first station and require at
the first and second station exponentially distributed service times with mean 1/µ1 and
1/µ2, respectively. Thus, the load on the first and second server is ρ1 := λ/µ1 and
ρ2 := λ/µ2, respectively. However, we allow the second station to inform the first
station about the number of jobs in queue. Immediately after the second station contains
n jobs, it signals the first server to stop processing any job in service. We assume that
the feedback signal from the second station to the first is not delayed. When the queue
length in the second station becomes less than n, the first server may resume service

141
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again. Clearly, this reaction of the first station to a signal of the second leads to blocking
at blocking threshold n.

Due to the presence of feedback, the stationary joint distribution πij that the number
of jobs in the first and second station is i and j, respectively, does not have a product-
form, so that finding a closed-form expression for πij is difficult. We therefore concen-
trate on its (asymptotically) dominant structure and consider the decay rate of the number
of jobs in the first buffer. This quantity, also known as the caudal characteristic, cf. Neuts
(1986), gives insight into the probability of the first queue reaching high levels. Clearly,
such events occur now more often because of blocking; on the other hand, the second
buffer is protected from overflow.

It is simple to bound the decay rate by viewing the two queues in tandem as one
black box at which jobs arrive at rate λ. The slower server in the black box evidently
dominates the total number of jobs in the system, wherever these jobs may reside in
the ‘box’. Thus, the decay rate of the number of jobs must be bounded from below by
ρ := max{ρ1, ρ2}. By ‘opening the black box’ we see that, as the second buffer is finite,
necessarily the first queue is large when the system contains many jobs. Hence the decay
rate of the number of jobs in the first station lies somewhere in the interval (ρ, 1], a result
also obtained by Grassman & Drekic (2000). However, in this paper we rigorously show
that the decay rate as a function of the blocking threshold decreases monotonically and
at least geometrically fast to ρ.

As a second topic of interest we estimate the ratio πi,j+1/πij when i = 1, i.e.,
the ratio of the probability that the number of jobs in the second queue is j + 1 to the
probability that this number is j, while the first queue is large. Thus, our approach also
reveals the asymptotic probabilistic structure of the number of jobs in the second station.

By reasoning heuristically we can find a guess for πi,j+1/πi,j when server 1 is the
bottleneck, i.e., µ1 < µ2. First, evidently, the decay rate of the first queue should be
at least ρ1. Moreover, as server 2 works at a higher rate than server 1, presumably the
queue length in the second buffer is, mostly, small. Hence, the presence of blocking
should have only minor effect. In analogy with the Jackson tandem queue we therefore
infer that πi,j+1/πi,j ≈ λ/µ2, i.e., the decay rate of the second queue in the Jackson
tandem network.

Consider now the opposite case: the second server is the bottleneck, i.e., µ1 > µ2.
The decay rate of the first queue has to be at least ρ2. It is therefore likely that the second
buffer is mostly full, leading to the blocking of server 1. However, making an educated
guess in this case about the probability distribution for the queue length at the second
station proves difficult.

As a third topic we study a more complicated type of feedback then just blocking.
Now, when the number of jobs at station 2 is in excess of some threshold m (which
should be smaller than the blocking threshold n to be effective), server 1 slows down,
i.e., it reduces its service rate to µ̃1, where 0 < µ̃1 < µ1. Thus, depending on the queue
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length in station 2, server 1 works at a high rate µ1, a low rate µ̃1, or not at all. In the
sequel we distinguish both types of feedback queue by calling the first the network with
blocking and the second the network with slow-down and blocking. The analysis of such
queueing networks with service slow-downs have interesting applications in the domain
of manufacturing, but also in the design of Ethernet networks with feedback. For the
network with slow-down and blocking we can establish analogous results as obtained
for the network with blocking. The asymptotic distribution of the number in the second
queue turns out to be of particular interest in this case.

Our focus on the asymptotic behavior of πij has two reasons. First, the result-
ing expressions are in closed form, contrary to the numerical methods, to be discussed
presently, available in the literature. Second, given the rapid convergence of the sequence
of networks with blocking when the blocking threshold n increases, the asympotic sys-
tem provides considerable insight into the form of πij even when the blocking threshold
is not (very) large, e.g., n ≥ 10.

Tandem queues with blocking (but without slow-down) received considerable atten-
tion over the years. Konheim & Reiser (1976, 1978) take z-transforms of the balance
equations satisfied by πij and study the properties of the resulting generating function
to establish a stability condition and devise an algorithm to compute πij . The derivation
of the stability condition for this and related models is simplified by Latouche & Neuts
(1980) by using the methods of Quasi-Birth-Death (QBD) processes. Grassman & Dre-
kic (2000) derive, also by using QBDs, a more efficient numerical procedure to compute
πij . They restrict the eigenvalues to a set of (non-overlapping) intervals. After locating
the eigenvalues in the bounding intervals, they derive a recursion to obtain the associated
eigenvectors. Finally, a suitable linear combination of the eigenvectors should solve the
boundary conditions for π0j . Interestingly, by using the bounding intervals derived by
Grassman & Drekic (2000) for the eigenvalues, our approach extends straightforwardly
to a method to compute πij with the same algorithmic complexity as their’s. In a final
remark Grassman & Drekic (2000) mention the idea of slow-down, however, they do
not analyze the consequences in detail. Kroese et al. (2004) also consider a two-station
tandem queue with blocking. However, now the rate of the arrival process is set to zero
when the first station contains n jobs. The second buffer is assumed infinitely large. For
this system the authors compute the decay rate of the number of jobs in the second buffer.
They also consider the limiting regime in which n → ∞. Leskelä (2004) studies a two-
station tandem network with feedback, but now station 2, rather than server 1, provides
feedback to the arrival process to change service as a function of the length of the second
queue. He establishes a stability criterion for the system with unlimited first and second
buffer.

The chapter has the following structure. In Section 7.2 we specify the network with
blocking in detail and interpret it as a QBD process. Next, we show in Section 7.3 that
for fixed blocking level n, the decay rate xn of the number of jobs in the first buffer lies in
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the interval (ρ, 1), where ρ = max{ρ1, ρ2}, a result also derived by Grassman & Drekic
(2000). Then, in Section 7.4, we prove that xn ↓ ρ geometrically fast when n → ∞.
As a consequence, the bottleneck server determines the decay rate, however large the
blocking level. As a second topic in Section 7.4 we study the structure of the distribution
of the number of jobs in the second buffer. In Section 7.5 we consider similar topics for
the tandem queue with threshold and blocking.

7.2 Model and Preliminaries
We now present the model and write it as a QBD process. We then discuss by which
method we obtain the decay rate in Section 7.3.

Jobs arrive according to a Poisson process with rate λ and require exponentially dis-
tributed service with rate µ1 and µ2 at the first and second station, respectively. We
assume throughout this paper that µ1 $= µ2. After service completion at the first station,
jobs move on to the second. Once service is completed there also, jobs leave the network.
LetX(n)

i (t) denote the number of jobs at station i, i = 1, 2, at time t (including the job in
service). When X(n)

2 (t) is equal to the blocking threshold n, the first server blocks, i.e.,
its service rate becomes zero. Right after the departure of the job in service at the second
station, the first server resumes service (if a job is present there, of course). It is clear that
the joint process {X(n)

1 (t),X(n)
2 (t)} ≡ {X(n)

1 (t),X(n)
2 (t), t ≥ 0} is a (continuous-time)

Markov chain. The state space of this process is X (n) = {(i, j) | i = 0, 1, 2, . . . ; j =
0, 1, . . . , n}. We present the state transition diagram of {X (n)

1 (t),X(n)
2 (t)} in Figure 7.1.

Finally, let
ρ1 := λ/µ1, ρ2 := λ/µ2, and ρ := max{ρ1, ρ2}, (7.1)

i.e., ρ is the load at the slowest server.
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Figure 7.1: State space and transition rates of the truncated tandem queue.
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The Markov process {X(n)
1 (t),X(n)

2 (t)} can be interpreted as a continuous-time
QBD process. We identify some common subsets of X (n) associated specifically to
the QBD structure. Level i contains all states (i, j) ∈ X (n) with i constant. Phase j
contains the states (i, j) with j constant. Thus, the levels contain the ‘vertical’ sets of
states in Figure 7.1, whereas the phases contain the ‘horizontal’ sets of states.

To facilitate the presentation we prefer to concentrate on the aperiodic discrete-time
Markov chain {X(n)

1,k ,X(n)
2,k } obtained by uniformizing {X

(n)
1 (t),X(n)

2 (t)} at rate

a := λ+ µ1 + µ2.

This procedure allows us to refer directly to a number of results in the literature which
we otherwise have to reformulate for the continuous-time model. Evidently, by PASTA,
the results we derive for {X(n)

1,k ,X(n)
2,k } apply also to {X

(n)
1 (t),X(n)

2 (t)}.
Writing

p :=
λ

a
, q :=

µ1

a
, r :=

µ2

a

for the transition probabilities associated to λ, µ1 and µ2, the matrix of transition proba-
bilities of the QBD {X(n)

1,k ,X(n)
2,k } is of the form

P (n) =





B(n) A(n)
0

A(n)
2 A(n)

1 A(n)
0

. . . . . . . . .



 . (7.2a)

Here the (n + 1) × (n + 1) matrices in P (n) are given by

B(n) =





q + r
r q

. . . . . .
r q




, (7.2b)

A(n)
0 = p I(n), (7.2c)

A(n)
1 =





r
r 0

. . . . . .
r 0

r q




, (7.2d)
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and

A(n)
2 =





0 q
. . . . . .

0 q
0




, (7.2e)

and I(n) is the (n + 1) × (n + 1) identity matrix.
Provided a certain stability criterion to be addressed in Lemma 7.1 below is satisfied,

an irreducible QBD chain is positive recurrent. Consequently, its stationary probability
vector exists. Let us henceforth consider the system in steady state, and write for brevity
X(n)

i , i = 1, 2, forX(n)
i,k at an arbitrary point in time. Furthermore, let π

(n)
ij = P{X(n)

1 =

i,X(n)
2 = j}, i.e., the steady-state probability that the number of jobs in the first and

second station is i and j respectively.
It can be shown that the stationary probability vector π(n) can be appropriately par-

titioned as
π

(n) =

(
π

(n)
0 ,π(n)

0 R(n),π(n)
0

(
R(n)

)2
, . . . ,

)
, (7.3)

where π
(n)
0

(
R(n)

)i
=

(
π(n)

i0 ,π(n)
i1 , . . . ,π(n)

in

)
and R(n) is the minimal nonnegative so-

lution of the equation

A(n)
0 + R(n)A(n)

1 +
(
R(n)

)2
A(n)

2 = R(n). (7.4)

For our case R(n) has to be computed numerically, for instance with the algorithms
derived by Latouche & Ramaswami (1999).

Rather than computing R(n) directly, Neuts (1986) associates two interesting (prob-
abilistic) quantities to R(n). He starts by observing that when R(n) is irreducible, it
satisfies (

R(n)
)i

= (xn)i
(
u(n)

)′
· v(n) + o

(
(xn)i

)
, as i → ∞, (7.5)

where v(n) = (v(n)
0 , . . . , v(n)

n ) and u(n) are strictly positive left and right eigenvectors of
R(n) associated to its largest eigenvalue xn ∈ (0, 1). (The prime denotes the transpose
of a vector.) The first quantity of interest is

lim
i→∞

π
(n)
0

(
R(n)

)i+1
e

π
(n)
0

(
R(n)

)i
e

= xn, (7.6)

where e is the (column) vector consisting of ones. This says that the ratio of the expected
time spent at a high level i + 1 to that spent at level i is approximately equal to xn. In
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other words, the largest eigenvalue xn of R(n) is the geometric decay rate, which is also
known as the caudal characteristic, cf Neuts (1986), of the QBD process. Second,

lim
i→∞

(π(n)
0

(
R(n)

)i
)j

π
(n)
0

(
R(n)

)i
e

= v(n)
j , (7.7)

which is to say that (in stationary state) the probability that the chain is in phase j condi-
tional on being in level i, is approximately equal to v(n)

j for large i.
In the sequel we are concerned with determining the probabilistic structure of the

number of jobs in the first and second station in steady state for high levels. Specifically,
in Section 7.3 we derive some properties of the largest eigenvalue xn of R(n). We show,
first, that ρ < xn < 1 for any n < ∞ and, second, that the sequence {xn}n converges
to ρ when n → ∞. In Section 7.4 we are concerned with determining the associated left
eigenvector v(n) in the limit i → ∞ and n → ∞; the order of the limits is important.
The results of this section provide insight into the ratio of subsequent components of v(n)

which, in turn, reveals information about π(n)
i,j+1/π

(n)
ij .

It remains to discuss the stability condition of the chain {X (n)
1,k ,X(n)

2,k }, which we
henceforth assume satisfied. The proof of the next lemma involves the matrix A(n)(x),
which is also useful for later purposes,

A(n)(x) = A(n)
0 + xA(n)

1 + x2A(n)
2

=





p + rx qx2

rx p qx2

. . . . . . . . .
rx p + qx




, for x ∈ [0, 1].

(7.8)

Lemma 7.1. The chain {X(n)
1,k ,X(n)

2,k } is positive recurrent if and only if

λ

µ1µ2

µ1
n+1 − µ2

n+1

µ1
n − µ2

n
< 1. (7.9)

This condition is equivalent to:

n > N(ρ1, ρ2) :=
log(1 − ρ1) − log(1 − ρ2)

log ρ2 − log ρ1
. (7.10)

Proof. It is simple to see that the QBD {X (n)
1,k ,X(n)

2,k } is irreducible and that the number
of phases is finite. Moreover, the stochastic matrix A(n)(1) is irreducible. These prop-
erties allow us to apply Latouche & Ramaswami (1999: Theorem 7.2.3). This theorem
states that the QBD is positive recurrent iff αA(n)

0 e < αA(n)
2 e, where α is the station-

ary probability vector of A(n)(1). Clearly, A(n)(1) is the stochastic matrix of a simple
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birth-death process. Hence, the desired solution vector α = (α0, . . . ,αn) is given by
αi = α0βi, 0 ≤ i ≤ n, where β = µ1/µ2 and

α0 =

(
n∑

i=0

βi

)−1

=
1 − β

1 − βn+1
.

The condition αA(n)
0 e < αA(n)

2 e becomes λ < µ1
∑n−1

i=0 αi, which leads to (7.9).
Equation (7.10) follows from (7.9) after some calculations.

7.3 The Geometric Decay Rate
In this section we prove that for fixed blocking threshold n the decay rate xn lies in the
open interval (ρ, 1). To achieve this, we use the following result stated in Latouche &
Ramaswami (1999: Section 9.1)

Theorem 7.2. The decay rate xn is the unique solution in (0, 1) of the equation

x = ξ(n)(x), (7.11)

where ξ(n)(x) is the spectral radius of A(n)(x).

We apply this as follows. Since A(n)(x) is irreducible and nonnegative for x > 0, it
follows from the theorem of Perron-Frobenius that the spectral radius ξ(n)(x) is also the
largest (and simple) eigenvalue of A(n)(x). Suppose now that we can find an (n + 1)-
dimensional row vector v(n) > 0, i.e., each component v(n)

j of v(n) is strictly positive,
and x > 0 such that

v(n)A(n)(x) = v(n)x. (7.12)

Then by the theorem of Perron-Frobenius, x necessarily solves the equation x = ξ(n)(x),
and v(n) is the left Perron-Frobenius vector associated to x. In Section 7.3.1 we use
this formula to efficiently combine ξ(n)(x) and the components of the Perron-Frobenius
eigenvector into one numerical sequence. As these numbers can be written as a recur-
rence relation, we explore the properties of this recurrence in Section 7.3.2. Finally,
in Section 7.3.3, by combining and exploiting these properties in various ways we can
characterize the decay rate xn.

In this section the blocking threshold n is fixed; hence, when no confusion arises, we
mostly suppress the dependence on n here. However, we always write xn for the decay
rate and ξ(n)(x) for the spectral radius.

Remark 7.3. The approach below is entirely analytic. It is, perhaps, somewhat unsat-
isfactory that we do not use probabilistic arguments in the analysis. However, this ap-
proach enables us to explore networks with slow-down and blocking, which seems much
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more complicated to handle probabilistically. In a sense, with the recurrence relations
of Section 7.3.2 we can analyze the structure of the probability distribution above the
slow-down threshold on the same footing as below the slow-down threshold.

7.3.1 A Consequence of the Perron-Frobenius Theorem
Let us interpret (7.12) as a constraint on x and v and work out its implications. Thus,
assuming that (7.12) is true and expanding with (7.8) we find that x > 0 and v > 0
should satisfy

x = p + rx +
rxv1

v0
, (7.13a)

x =
qx2vj−1

vj
+ p +

rxvj+1

vj
, 1 ≤ j < n, (7.13b)

x =
qx2vn−1

vn
+ p + qx. (7.13c)

From the first relation we see that for given x and v0, the value of v1 follows. But then,
the second relation provides v2, . . . , vn. Since we are free to choose the norm of v, we
can set, arbitrarily, v0 ≡ 1. As a consequence, the first and second relation completely
fix v once x is given. The third relation forms a necessary condition on x such that x
and v indeed form an eigenvalue and eigenvector pair of A(x). In other words, whereas
the simultaneous validity of the first and second relation above leaves x free, the third
relation fixes it.

To clarify the structure of (7.13) and the dependence on x somewhat further, we
define the following sequence of functions of x:

χ0(x) := µ1x
2, (7.14a)

χj(x) := arx
vj

vj−1
= µ2x

vj

vj−1
, 1 ≤ j ≤ n, (7.14b)

χn+1(x) := ax − λ−
µ1µ2x3

χn(x)
; (7.14c)

recall that r = µ2/a. We define χ0(x) and χn+1(x) for notational convenience, although
they do not relate immediately to v by (7.14b). Now, multiply the left and right hand sides
of (7.13) by a = λ+ µ1 + µ2 and rearrange, to obtain, respectively,

χ1(x) = ax − λ−
µ1µ2x3

χ0(x)
= (λ+ µ1)x − λ, (7.15a)

χj(x) = ax − λ−
µ1µ2x3

χj−1(x)
, 2 ≤ j ≤ n + 1, (7.15b)

χn+1(x) = µ1x. (7.15c)
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From the above we conclude the following.

Theorem 7.4. Let x ∈ (0, 1) be such that the sequence {χj(x)}0≤j≤n+1 satisfies (7.15)
and each element χj(x) > 0. Then x is the unique solution of ξ(n)(x) = x, i.e., x equals
the geometric decay rate xn of the tandem queue with blocking at threshold n.

Proof. When x satisfies the hypothesis, the validity of (7.12) follows by constructing
v according to (7.14b). Regarding the positivity of v, which we do not require in the
definition (7.14) of χj(x), the conditions x > 0 and χj > 0 imply that vj and vj−1 have
the same sign. Hence, as all χj > 0, it is straightforward to construct v > 0.

Remark 7.5. It is apparent from (7.15) that the desired x can be expressed as a root of a
rational function. However, this insight might not provide the easiest method to charac-
terize the decay rate. With the approach below we can achieve our goals with elementary
methods. Hence, we do not try to bound the decay rate by locating or bounding the
root(s) of rational functions.

Our search for the decay rate xn motivates a study of the structure of the sequence
{χj(x)}0≤j≤n+1.

7.3.2 A Useful Recursion
Clearly, (7.15) shows that the elements of {χj(x)}0≤j≤n+1 satisfy a recurrence relation.
Let

T : η (→ ax − λ−
µ1µ2x3

η
. (7.16)

Then we can write

χj+1(x) = T (χj(x)) , for 0 ≤ j ≤ n. (7.17)

It turns out that T is the key to understanding the structure of {χj}, and thereby to
obtaining the decay rate.

The mapping η → T (η) is a hyperbolic linear fractional transformation, see, e.g.,
Needham (2000). It is infinitely differentiable everywhere except in the origin, and it has
an inverse

T (−1) : η (→
µ1µ2x3

ax − λ− η
.

The equation η = T (η) reveals that T has two fixed points: η+ and η−. These points are
the solutions of the quadratic (in η) equation η2 − (ax − λ)η + µ1µ2x3 = 0 so that

η± =
ax − λ

2
±

1

2

√
(ax − λ)2 − 4µ1µ2x3. (7.18)
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Below we show that only real-valued η± are of importance for our purposes. Hence, it
suffices to take x such that the discriminant

D(x) = (ax − λ)2 − 4µ1µ2x
3 > 0. (7.19)

The behavior of the sequence of iterates . . . , T (−1)(η), T (0)(η) := η, T (1)(η), . . . for
η ∈ (η−, η+) is also of interest. The next lemma formalizes what might be anticipated
from Figure 7.2.

PSfrag replacements

η = η

T (η)

η− η+η T (η) T 2(η)

Figure 7.2: Some properties of the mapping η → T (η). The variable η is set out along
the horizontal axis. The solid line refers to the line η = η.

Lemma 7.6. If x such that D(x) > 0 and η ∈ (η−, η+),

η− = inf
i>1

{
T (−i)(η)

}
< T (−1)(η) < η < T (η) < sup

j>1

{
T (j)(η)

}
= η+,

η+ − T (j)(η) <

(
η−
η

)j

(η+ − η), j > 0,

T (−i)(η) − η− <

(
η

η+

)i

(η − η−), i > 0.

Proof. First, from (7.18),

η+ + η− = ax − λ,
η−η+ = µ1µ2x

3.
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Now, as η ∈ (η−, η+), it follows that

η+ − T (η) = η+ − (ax − λ) +
µ1µ2x3

η

= −η− +
η−η+
η

=
η−
η

(η+ − η),

Clearly, η−/η and η+ − η are positive, which implies η+ > T (η). Moreover, η−/η < 1
so that η+ −T (η) < η+ −η. Therefore, for all η ∈ (η−, η+) we have η− < η < T (η) <
η+. Concerning the convergence rate to η+, note that

η+ − T (2)(η) =
η−

T (η)
(η+ − T (η))

=
η2−

T (η)η
(η+ − η) <

(
η−
η

)2

(η+ − η).

By induction, T (j)(η) → η+ geometrically fast.
By similar computations we obtain

T (−1)(η) − η− =
T (−1)(η)

η+
(η − η−) > 0.

So, T (−1)(η) ∈ (η−, η+) whenever η ∈ (η−, η+). Moreover,

T (−i)(η) − η− < (η/η+)i(η − η−).

7.3.3 Bounding the Geometric Decay Rate
The properties of the mapping T help to further characterize the sequence {χj}0≤j≤n+1.
By appropriately combining the material we assemble here it follows that xn ∈ (ρ, 1).

We start with pointing out an interesting, and perhaps unexpected, relation between
the stability of the QBD chain {X(n)

1,k ,X(n)
2,k } and the sequence {χj}0≤j≤n+1.

Lemma 7.7. The stability condition (7.9) on the Markov chain {X (n)
1,k ,X(n)

2,k } is satisfied
if and only if

µ1 > χ′n+1(1).

Proof. First of all, the differentiability of T implies (by the chain rule) that χn+1(x) has
a derivative. Next, from (7.15) it is immediate that χj(1) = µ1 for all j = 0, . . . , n + 1.
Hence, from (7.15) and writing β = µ1/µ2 as in the proof of Lemma 7.1, we find by
induction

χ′j(1) = (λ+ µ1)
1 − β−j

1 − β−1
− 2µ2

1 − β−j+1

1 − β−1
, 1 ≤ j ≤ n + 1.
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The condition χ′n+1(1) < µ1 is therefore equivalent to

λ
1 − β−(n+1)

1 − β−1
+ µ1β

−1 1 − β−n

1 − β−1
− 2µ2

1 − β−n

1 − β−1
< 0.

After a bit of algebra we see that this condition is precisely (7.9).

Let us now concentrate on the fixed points η+ and η− of T . From their defini-
tion (7.18) it can be seen that they are actually functions of x. To provide further intuition
about these functions, we plot in Figure 7.3 their graphs together with χ2(x) and χ3(x).
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Figure 7.3: Plots of the functions χ2(x), χ3(x), and η±(x). In the left panel λ = 1, µ1 =
4, µ2 = 5, while in the right λ = 1, µ1 = 4, µ2 = 3.

Lemma 7.8. First, the functions x → η±(x) are real valued and positive on [ρ, 1].
Second,

η−(x) < χ0(x) = µ1x
2 < η+(x), if x ∈ (ρ, 1). (7.20)

Third,

χ0(ρ1) = λρ1 = η−(ρ1), (7.21a)
χ0(ρ2) ∈ (η−(ρ2), η+(ρ2)) = (λρ2, µ1ρ2), if ρ = ρ2, (7.21b)

χ0(1) = µ1 =

{
η−(1), if ρ = ρ1,

η+(1), if ρ = ρ2.
(7.21c)
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Proof. For the first claim we focus on the discriminant D(x) = (ax − λ)2 − 4µ1µ2x3

in the definition of η±(x). Clearly, D(x), being a cubic polynomial, can have at most
three real roots: ξ1, ξ2, and ξ3, say. By simple computations we see that D(0) > 0,
D(λ/a) < 0, D(ρ2) > 0, D(ρ1) > 0, D(1) ≥ 0, and limx→∞ D(x) = −∞. It follows
that 0 < ξ1 < λ/a < ξ2 < min{ρ1, ρ2} ≤ max{ρ1, ρ2} < 1 ≤ ξ3. So, on [ρ, 1] the
discriminant D(x) is positive, and η±(x) are real valued. It is now simple to check that
η±(x) > 0 for x ∈ [ρ, 1].

To prove the second claim, rewrite the inequality η−(x) < µ1x2 < η+(x) to

(2µ1x
2 − (ax − λ))2 ≤ (ax − λ)2 − 4µ1µ2x

3.

After some algebra and using the positivity of x we find the above to be equivalent to
λ(1 − x) < µ1 x(1 − x). This is clearly true for all x ∈ (ρ1, 1) and, hence, for all
x ∈ (ρ, 1).

Verifying the third claim is simple.

With the above observations it is straightforward to apply Lemma 7.6 to the functions
χj(x), 0 ≤ j ≤ n + 1. For later purposes we formulate this intermediate result in some-
what greater generality than is necessary for the moment. The generalization consists
of extending {χj(x)}0≤j≤n+1 to a doubly infinite sequence {χj(x)}j∈Z by continuing
in (7.17) the iterative operation of T and T (−1) beyond χn+1 and χ0, respectively. Thus,
define for j ≥ 1,

χj(x) := T (j) (χ0(x)) = T
(
T (j−1) (χ0(x))

)
= T (χj−1(x)) ,

χ−j(x) := T (−j) (χ0(x)) = T (−1)
(
T (−j+1) (χ0(x))

)
= T (−1) (χ−j+1(x)) .

This extension allows us to state the following.

Lemma 7.9. Whenever x ∈ (ρ, 1),

η−(x) < . . . < χ−i(x) < . . .

< χ0(x) < χ1(x) < . . . < χn+1(x) < . . .

< χj(x) < . . . < η+(x),

(7.22)

for i > 0 and j > n+1. Moreover, χ−i(x) → η−(x) and χj(x) → η+(x) geometrically
fast for i, j → ∞.

Proof. As, by Lemma 7.8, x ∈ (ρ, 1) implies that χ0(x) ∈ (η−(x), η+(x)), we can use
χ0(x) as the ‘starting point’ for (the iterates of) T and T (−1) and apply Lemma 7.6.

As a last intermediate result we consider the concavity of the sequence of functions
χj(x), 2 ≤ j ≤ n+1, and η+(x). Proving that η+(x) is concave is not immediate as the
discriminant (7.19) need not be concave on (ρ, 1).
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Lemma 7.10. The functions χj(x), 2 ≤ j ≤ n + 1, and η+(x) are strictly concave on
(ρ, 1). The function η−(x) is strictly convex on (ρ, 1).

Proof. We assert by induction that χ′′j (x) < 0 for all x ∈ (ρ, 1) and j ≥ 2. First,
χ1(x) = (λ+ µ1)x − λ is concave. Now, for j ≥ 2, we have by (7.15),

χ′′j (x)

µ1µ2
=

x

χj−1(x)

(

−6 + 6
xχ′j−1(x)

χj−1(x)
− 2

(
xχ′j−1(x)

χj−1(x)

)2

+
x2χ′′j−1(x)

χj−1(x)

)

.

Let y(x) = xχ′j−1(x)/χj−1(x) and write the first three terms within the brackets as
the parabola −6 + 6y − 2y2. It is simple to see that, as both roots are not real, this
parabola is negative for all y. The fourth term in the expression above cannot be positive
as χj−1(x) > 0 for x ∈ (ρ, 1) and χ′′j−1(x) ≤ 0, by the induction hypothesis. Hence,
χ′′j (x) < 0.

Now, for any x, y ∈ [ρ, 1], and α ∈ (0, 1) take the limit j → ∞ of both sides of

χj(αx + (1 − α)y) > αχj(x) + (1 − α)χj(y),

and conclude that η+(x) is also strictly concave. Finally, since η−(x) = ax−λ−η+(x),
it follows that η−(x) is strictly convex.

By now we have identified all required intermediate results so that we can bound xn

from below.

Theorem 7.11. Suppose the system is stable. Then, the decay rate xn lies in the interval
(ρ, 1), where ρ ≡ max(ρ1, ρ2).

Proof. We prove that the conditions of Theorem 7.4 are satisfied. Regarding the positiv-
ity of the numbers χj(x) for x ∈ (ρ, 1) we have by Lemma 7.9 that χj(x) > η−(x) > 0
for j = 0, . . . , n + 1. It remains to prove that the function χn+1(x) intersects the
line µ1x somewhere in the interval (ρ, 1). First, from (7.21a) χn+1(ρ1) = η−(ρ1) =
λρ1 < µ1ρ1. Also, when ρ = ρ2, χ0(ρ2) ∈ (η−(ρ2), η+(ρ2)), which implies by (7.22)
that χn+1(ρ2) < η+(ρ2) = µ1ρ2. Hence, χn+1(ρ) < µ1ρ. On the other hand,
χn+1(1) = µ1 and χ′n+1(1) < µ1, by Lemma 7.7. Consequently, the concavity of
χn+1(·) implies there exists a unique x ∈ (ρ, 1) such that χn+1(x) = µ1x.

As a direct by-product of the above proof and the uniqueness of the solution of µ1x =
χn+1(x) in (0, 1) we obtain

Corollary 7.12. χn+1(x) < µ1x for all x ∈ (ρ, xn) and χn+1(x) > µ1x for all x ∈
(xn, 1).
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Remark 7.13. This corollary shows that we can find xn numerically by the method
of bisection. Take the first estimate xn,1 of xn as (ρ + 1)/2. Compute χj(xn,1) for
j = 0, . . . , n + 1. If χn+1(xn,1) > µ1xn,1 then xn,1 must be too large by the corollary,
whereas if χn+1(xn,1) < µ1xn,1, the estimate xn,1 must be too small. Based on this re-
sult we can compute the next estimate xn,2, and so on. Clearly, the sequence {xn,m}m≥1

converges to xn.

At this point the computation of x1 is very simple indeed. The equation χ2(x) = µ1x
reduces to

(x − 1)
(
µ2 µ1 x2 − λ a x + λ2

)

χ1(x)
= 0.

Since x1 ∈ (ρ, 1) we conclude that

x1 =
λ a

2µ1 µ2

(

1 +

√
1 −

4µ1 µ2

a2

)

. (7.23)

7.4 Raising the Blocking Threshold
It may seem that the network with blocking resembles the two-station tandem Jackson
network more and more when the blocking threshold n increases. For instance, writing
gn for the left hand side of (7.9), the stability condition limn→∞ gn < 1 is equivalent to
the conditions ρ1 < 1 when µ1 < µ2, and ρ2 < 1 when µ1 > µ2. Thus we arrive at
the condition ρ < 1, which is the stability criterion familiar from the two-station tandem
Jackson network.

However, whereas the stability condition resembles more and more the stability crite-
rion of the Jackson network for n → ∞, the decay rate behaves differently than, perhaps,
expected in the limit n → ∞ for at least certain parameter regimes. In Section 7.4.1
below we prove that the sequence of decay rates xn for increasing blocking threshold
converges (from above) to ρ, rather than ρ1. We also bound the rate of convergence of
the sequence {xn}n to its limit point.

A second topic of interest is to explore the probabilistic structure in the direction
of the phases for some given level i = 1. In other words, we would like to find an
approximation for the probability π(n)

ij = P{X(n)
1 = i,X(n)

2 = j} as a function of j
when i is large. (We again use the superscript n to label the variables of interest, since in
this section the dependence on the blocking threshold n plays a central role. Let us denote
by a superscript ∞ the random variables, etc., related to the Jackson tandem queue, as
then the size of the second buffer is unlimited.) Now for the tandem Jackson network,
being a product-form network, it is well-known that the ratio

P{X(∞)
1 = i,X(∞)

2 = j + 1}
P{X(∞)

1 = i,X(∞)
2 = j}

= ρ2, for all (i, j) ∈ X (∞). (7.24)
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As we shall see in Section 7.4.2, when n is large but finite this ratio need not always be
close to ρ2.

7.4.1 The Limiting Geometric Decay Rate

In this section we study the limiting behavior of the sequence of decay rates {xn} when
the blocking threshold n increases to ∞. This result proves the claim obtained by the
heuristic reasoning of the Introduction.

First, however, we have to settle an issue concerning the stability of the Markov
chains {X(n)

1,k ,X(n)
2,k } when n is allowed to change. It follows from Lemma 7.1 that for

given ρ1 and ρ2, the blocking threshold n should be larger than N := N(ρ1, ρ2). Then
Theorem 7.11 implies that for each n > N the equation ξ(n)(x) = x has a solution xn.
Let us therefore combine these decay rates into the sequence {xn}n>N .

Theorem 7.14. The sequence {xn}n>N decreases monotonically to ρ and its elements
satisfy the bounds

0 < xn − ρ <

{
αn

1 β1 γ1, if ρ = ρ1,

αn
2 β2 γ2, if ρ = ρ2,

(7.25)

where the constants

α1 := max
x∈[ρ1,1]

{
µ1 x

η+(x)

}
, α2 := max

x∈[ρ2,1]

{
η−(x)

χ1(x)

}
,

β1 := max
x∈[ρ1,1]

{µ1 x − η−(x)} , β2 := max
x∈[ρ2,1]

{η+(x) − χ1(x)} ,

γ1 :=

(
λ+ µ1 −

η−(x1) − η−(ρ1)

x1 − ρ1

)−1

, γ2 :=

(
η+(x1) − η+(ρ2)

x1 − ρ2
− µ1

)−1

,

are positive, αi < 1, i = 1, 2, and x1 is given by (7.23).

The maxima involved do not occur at the boundaries of the intervals but in the inte-
riors, as is clear from Figure 7.3 for a concrete case. The form of the solutions obtained
by taking the derivative with respect to x are cumbersome; we chose not to display these
here.

Proof. We first show that {xn} is decreasing, that is, xn $∈ [xm, 1) whenever n > m.
By (7.22) we see that χj+1(x) > χj(x) for all j ≥ 0 and x ∈ (ρ, 1). Combining this
with Corollary 7.12 for x ∈ (xm, 1) and noting that χm+1(xm) = µ1xm we conclude
that for x ∈ [xm, 1)

χn+1(x) > χm+1(x) ≥ µ1x.

As no x ∈ [xm, 1] can solve the equation χn+1(x) = µ1x, it must be that xn < xm.



158 7 A TANDEM QUEUE WITH SERVER SLOW-DOWN AND BLOCKING

With regard to the convergence of {xn} to ρ, we consider first the case ρ = ρ2. Let
δn := xn − ρ2, which is positive for all n > N . From Lemma 7.6,

(
η−(xn)

χ1(xn)

)n

(η+(xn) − χ1(xn)) > η+(xn) − χn+1(xn). (7.26)

As η+(·) is strictly concave on (ρ2, 1) and xn < x1 < 1 (for n > 1) we can bound
η+(xn) by

η+(xn) > η+(ρ2) +
η+(x1) − η+(ρ2)

x1 − ρ2
δn. (7.27)

Therefore, using η+(ρ2) = µ1ρ2 and χn+1(xn) = µ1 xn = µ1(ρ2 + δn), the right hand
side of (7.26) satisfies,

η+(xn) − χn+1(xn) >

(
η+(x1) − η+(ρ2)

x1 − ρ2
− µ1

)
δn,

from which (7.25) follows.
For ρ = ρ1, let δn = xn − ρ1 > 0. Clearly, as η−(·) is convex,

η−(xn) < η−(ρ1) +
η−(x1) − η−(ρ1)

x1 − ρ1
δn (7.28)

Therefore, by Lemma 7.6 and using that χ1(xn) = (λ+µ1)(ρ1 + δn)−λ and η−(ρ1) =
λ ρ1, we obtain

(
χn+1(xn)

η+(xn)

)n

(χn+1(xn) − η−(xn)) > χ1(xn) − η−(xn)

>

(
λ+ µ1 −

η−(x1) − η−(ρ1)

x1 − ρ1

)
δn.

Moreover,
χn+1(xn)

η+(xn)
=

µ1 xn

η+(xn)
≤ max

x∈[ρ1,1]

{
µ1 x

η+(x)

}
,

and, likewise,
χn+1(xn) − η−(xn) ≤ max

x∈[ρ1,1]
{µ1 x − η−(x)} .

The positivity of the constants, except γ1 and γ2, as well as the fact that αi < 1,
follows from Lemma 7.9. For γ2, observe that

η+(x1) − η+(ρ2)

x1 − ρ2
− µ1 =

η+(x1) − η+(ρ2)

x1 − ρ2
−
η+(1) − η+(ρ2)

1 − ρ2
> 0,

since η+ is strictly concave and ρ2 < x1 < 1. Similar reasoning applies to γ1.
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7.4.2 The ‘Rate of Decay’ in the Phase Direction

Up to now we have been concerned with the decay rate xn in the direction of the levels
and found that xn ↓ ρ for n → ∞. It is also of interest to analyze the probabilistic
structure in the direction of the phases. The most convenient notion to consider in the
present setting is

lim
i→∞

π(n)
i,j+1

π(n)
i,j

=
v(n)

j+1

v(n)
j

, (7.29)

see (7.7). This says that the ratio of the probability that the chain is in phase j + 1 to the
probability that the chain is in phase j, while the chain is in some high level i, is approx-
imately equal to v(n)

j+1/v
(n)
j . It follows from (7.14b) that this ratio is also proportional to

the element χj+1(xn) of the sequence {χj(xn)}1≤j≤n.
To gain some insight into the effect of increasing the blocking threshold on the values

of {χj(xn)}1≤j≤n, we plot in Figure 7.4 the graphs of the sequences {χj(x5)}1≤j≤5,
{χj(x10)}1≤j≤10, and {χj(x20)}1≤j≤20 for ρ = ρ2 and ρ = ρ1, respectively. (To obtain
x5, x10 and x20 we follow the procedure specified in Remark 7.13.) These graphs suggest
that most of the elements of {χj(xn)}1≤j≤n are close to η−(xn) or η+(xn)when ρ = ρ1
or ρ = ρ2.

Theorem 7.15. When the chain {X(n)
1,k ,X(n)

2,k } is stable, i.e., n > N ,

(i)

lim
i→∞

π(n)
i,j+1

π(n)
i,j

=
v(n)

j+1

v(n)
j

=
χj+1(xn)

µ2 xn
. (7.30a)

(ii) If, in addition, ρ = ρ1,
∣∣∣∣∣
v(n)

j+1

v(n)
j

−
λ

µ2

∣∣∣∣∣ <
αn−j

1 β1

µ2 ρ1
+
αn

1 β1 γ1
µ2 ρ1

(γ1 + µ1), (7.30b)

or, if ρ = ρ2, ∣∣∣∣∣
v(n)

j+1

v(n)
j

−
µ1

µ2

∣∣∣∣∣ <
αj

2 β2

λ
+
αn

2 β2 γ2
ρ2

1 − ρ2
1 − ρ1

, (7.30c)

where the constants αi,βi, γi, are as defined in Theorem 7.14.

Proof. Statement (i) is immediate from (7.14b) and (7.29).
For (ii) we first prove the result for ρ = ρ2. Observe that by the triangle inequality
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and the inequality µ2 xn > λ,
∣∣∣∣∣
v(n)

j+1

v(n)
j

−
µ1

µ2

∣∣∣∣∣ =

∣∣∣∣
χj+1(xn)

µ2 xn
−
η+(ρ2)

µ2 ρ2

∣∣∣∣

=
|ρ2 χj+1(xn) − xn η+(ρ2)|

µ2 xn ρ2

<
|χj+1(xn) − η+(xn)|

λ
+

|ρ2 η+(xn) − xn η+(ρ2)|
λ ρ2

.

(7.31)

Clearly, by Lemma 7.6

0 < η+(xn) − χj+1(xn) <

(
η−(xn)

χ1(xn)

)j

(η+(xn) − χ1(xn)) .

For the second term, we observe that as η+ is concave, η+(xn) > xn µ1 from which
ρ2 η+(xn) > xn µ1 ρ2 = xn η+(ρ2), and

η+(xn) < η+(ρ2) + δn η
′
+(ρ2) = η+(ρ2) + δn

µ1 + µ2 − 2λ

1 − ρ1
. (7.32)

Hence, after some calculations,

0 < ρ2 η+(xn) − xn η+(ρ2) <
(
ρ2 η

′
+(ρ2) − η+(ρ2)

)
δn = λ

1 − ρ2
1 − ρ1

δn.

The rest follows immediately from Theorem 7.14.
When ρ = ρ1, so that xn > ρ1, consider

∣∣∣∣∣
v(n)

j+1

v(n)
j

−
λ

µ2

∣∣∣∣∣ =

∣∣∣∣
χj+1(xn)

µ2 xn
−
η−(ρ1)

µ2ρ1

∣∣∣∣

<
|χj+1(xn) − η−(xn)|

µ2 ρ1
+

|ρ1 η−(xn) − xn η−(ρ1)|
µ2 ρ21

.

Now we use the estimates

χj+1(xn) − η−(xn) <

(
χn+1(xn)

η+(xn)

)n−j

(χn+1(xn) − η−(xn))

and (7.28) for the final result.

Remark 7.16. Observe that when server 1 is the bottleneck, π(n)
i,j+1/π

(n)
i,j ≈ ρ2, which is

natural in view of the Jackson tandem queue. In the other case, π(n)
i,j+1/π

(n)
i,j ≈ µ1/µ2.

This number is larger than one, which is to be expected as the second buffer is mostly
full in this regime leading to blocking of the first server.
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Figure 7.4: Graphs of the sequence {χj(xn)}1≤j≤n for n = 5, 10, and 20. At the left
ρ = ρ1 (λ = 1, µ1 = 3 and µ2 = 4), whereas at the right ρ = ρ2 (λ = 1, µ1 = 5 and
µ2 = 4). The phase j increases along the x-axis; the value of χj(xn) is set out along the
y-axis. For clarity we connect subsequent terms χj(xn) by lines.
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7.5 The Tandem Queue with Slow-down and Blocking
Consider now a network in which the second server signals the first to slow down, i.e.,
to work at rate µ̃1 < µ1 instead of at rate µ1, when the second station contains m or
more jobs, where, of course,m < n. Figure 7.5 shows the state transition diagram of the
resulting queueing process.
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Figure 7.5: State space and transition rates of the two-station tandem queue with slow-
down and blocking. Note that above phase m server 1 works at rate µ̃1 rather than at
µ1.

In this section we assume the following ordering of parameters:

λ < µ2 < µ̃1 < µ1, or, equivalently, ρ1 < ρ̃1 < ρ2 < 1, (7.33)

where ρ̃1 := λ/µ1. Observe that as a consequence, ρ = ρ2 in this section. Henceforth
we do no longer use ρ, but always ρ2. With this ordering we generalize Theorem 7.11 the
present case and restate Theorems 7.14 and 7.15 in somewhat weaker form. The methods
of proof are similar to those of Sections 7.3 and 7.4. Due to these similarities we only
show the main steps to arrive at the results stated here. (The details may sometimes be
slightly more involved algebraically, but are seldom more complicated conceptually.)

Remark 7.17. It would, of course, be interesting to consider other orderings of the sys-
tem parameters such as, for instance, 0 < µ̃1 < λ < µ2 < µ1. However, Lemma 7.19
below does not immediately carry over to these cases as its proof depends crucially on
the ordering (7.33). We conjecture, based on numerical experiments, that similar results
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can be obtained for all cases. Thus, ‘case checking’, i.e., proving each step of the line of
reasoning below for every possible ordering of parameters (provided the chain is stable),
seems a possible method to obtain stronger results. However, this approach is, admit-
tedly, not elegant, neither might it reveal much of the structure of the problem. It remains
for further research to find the general underlying principle; here we concentrate on the
ordering specified in (7.33).

Since µ̃1 < µ1 we can again uniformize the related continuous-time Markov chain
{X(n,m)

1 (t),X(n,m)
2 (t)} at rate a = λ + µ1 + µ2 to obtain an aperiodic discrete-time

QBD chain {X(n,m)
1,k ,X(n,m)

2,k }. The matrix of transition probabilities P (n,m) has the
same form as P (n) in (7.2), but whereas B(n,m) = B(n) and A(n,m)

0 = A(n)
0 , the other

matrices become, with q̃ = µ̃1/a,

A(n,m)
1 =





r
r 0

. . . . . .
r 0

r q − q̃
. . . . . .

r q − q̃
r q





, (7.34)

and

A(n,m)
2 =





0 q
. . . . . .

0 q
0 q̃

. . . . . .
0 q̃

0





, (7.35)

where at them-th row the changes occur. Finally, let A(n,m)(x) := A(n,m)
0 +xA(n,m)

1 +
x2A(n,m)

2 .
Concerning the stability of the chain we follow the approach of Lemma 7.1 to derive

a necessary and sufficient stability condition. In accordance with our expectations for a
system with the ordering (7.33), this condition reduces to λ < µ2 when n → ∞.

Lemma 7.18. Let β = µ1/µ2 and β̃ = µ̃1/µ2. The two-station tandem network with
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slow-down threshold m and blocking at n ≥ m is positive recurrent if and only if

λ <
µ1 (1 − βm)(1 − β̃) + µ̃1 βm (1 − β)(1 − β̃n−m)

(1 − βm)(1 − β̃) + βm (1 − β)(1 − β̃n−m+1)
. (7.36)

Proof. Following the proof of Lemma 7.1, the normalized solution of αA(n,m)(1) = α

has the form,

αi =

{
α0βi, if i ≤ m − 1,

α0βmβ̃i−m, ifm ≤ i ≤ n,

and

α−1
0 =

1 − βm

1 − β
+ βm 1 − β̃n+1−m

1 − β̃
.

The inequality αA(n,m)
0 e < αA(n,m)

2 e becomes

λ < α0

(

µ1

m−1∑

i=0

βi + µ̃1β
m

n−1∑

i=m

β̃i−m

)

= α0

(

µ1
1 − βm

1 − β
+ µ̃1β

m 1 − β̃n−m

1 − β̃

)

.

The next step is to rewrite the equation

v(n,m)A(n,m)(x) = v(n,m)x, (7.37)

and derive a sequence {χj(x}1≤j≤n in terms of mappings similar to T defined in (7.16).
With this aim, let χj(x) = µ2 x vj/vj−1 as in (7.14b). However, contrary to (7.15) we
now need three, rather than one, mappings to cast (7.37) into a sequence {χj(x)}1≤j≤n:

T : η (→ ax − λ−
µ1µ2x3

η
, (as in (7.16)),

S : η (→ ãx − λ−
µ1µ2x3

η
,

T̃ : η (→ ãx − λ−
µ̃1µ2x3

η
,

(7.38)

where ã = λ+ µ̃1 + µ2. With these mappings, (7.37) implies that

χj(x) :=






µ1x2, if j = 0,

T (χj−1(x)) , if 1 ≤ j ≤ m,

S (χm(x)) , if j = m + 1,

T̃ (χj−1(x)) , ifm + 2 ≤ j ≤ n + 1.
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Loosely speaking, S moves χm(x) across the slow-down threshold at m to the iterate
χm+1(x) on which T̃ can start operating. The condition on x of the last row of the
equation v(n,m)A(n,m)(x) = v(n,m)x is,

χn+1(x) = µ̃1x, (7.39)

rather than χn+1(x) = µ1x as in (7.15c).
Theorem 7.4 carries over immediately. Thus, if we can find x ∈ (0, 1) such that each

element of the sequence {χj(x)}0≤j≤n+1 is positive and χn+1(x) = µ̃1x, then x is the
decay rate we are searching for.

To establish that the elements of {χj(x)}0≤j≤n+1 are positive we would like to apply
Lemma 7.9. Supposing that χ0(x) ∈ (η−(x), η+(x)), it follows that the elements of
{χj(x)}0≤j≤m all lie in the interval (η−(x), η+(x)), hence are positive. However, it
is not immediately obvious that S (χm(x)) lies somewhere in between the fixed points
η̃−(x) and η̃+(x) (regarded as functions of x) of T̃ . Now realize that χ0(x) < χm(x) <
η+(x), and therefore by (7.38), that S (χ0(x)) < S (χm(x)) < S (η+(x)). Below we
prove that η̃−(x) < S (χ0(x)) and S (η+(x)) ≤ η̃+(x) so that S maps any element in
(χ0(x), η+(x)), and in particular χm(x), into the interval (η̃−(x), η̃+(x)). Therefore,
Lemma 7.9, which applies to equally well to T̃ due to the ordering (7.33), ensures that
also the elements of {χj(x)}m+2≤j≤n+1 lie within the interval (η̃−(x), η̃+(x)). Finally,
due to the ordering (7.33) Lemma 7.8 implies that η̃−(x) > 0 for x ∈ [ρ2, 1], thereby
guaranteeing the positivity of all elements of the sequence {χj(x)}0≤j≤n+1 for x ∈
[ρ2, 1].

Lemma 7.19. For all x ∈ (ρ2, 1):

η̃−(x) < S (χ0(x)) and S (η+(x)) ≤ η̃+(x). (7.40)

Proof. Let us start with proving the first inequality. As λ < µ2 < µ̃1 it follows from
Lemma 7.8 that η̃−(x) < µ̃1 x2. Hence, µ1̃ η−(x)/µ̃1 < µ1x2 = χ0(x). Applying S to
both sides and noting that S (µ1 η̃−(x)/µ̃1) = T̃ (η̃−(x)) = η̃−(x) gives the result.

Concerning the second inequality in (7.40) observe that this is equivalent to

η+(x) + (µ̃1 − µ1)x = S(η+(x)) ≤ η̃+(x). (7.41)

Clearly, in case µ̃1 = µ1, the left hand side and the right hand side are equal. Next, if the
derivative with respect to µ̃1 of the left hand side of (7.41) is larger than the derivative of
the right hand side then, as µ̃1 < µ1, the inequality must hold.

Thus, we like to show that when x ∈ (ρ2, 1),

x >
∂η̃+(x)

∂µ̃1
=

x

2
+

1

2

(ãx − λ)x − 2µ2x3

√
(ãx − λ)2 − 4µ̃1µ2x3

.
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Rewrite this to √
(ãx − λ)2 − 4µ̃1µ2x3 > ãx − λ− 2µ2x

2.

This inequality is implied by

(ãx − λ)2 − 4µ̃1µ2x
3 > (ãx − λ)2 − 4µ2x

2(ãx − λ) + 4µ2
2 x4,

which in turn reduces to
λ(x − 1) > µ2x(x − 1).

This is true since x ∈ (ρ2, 1).

As counterpart of Theorems 7.11 and 7.14 we obtain the following.

Theorem 7.20. If ρ1 < ρ̃1 < ρ2 < 1 and the blocking threshold n and slow-down
threshold m ≤ n are such that the chain {X (n,m)

1,k ,X(n,m)
2,k } is stable, the sequence

{xn,m}n decreases monotonically to ρ2 for m fixed.

Proof. The positivity of the elements of {χj(xn,m}1≤j≤n+1 is settled by the discussion
leading to Lemma 7.19.

To prove that there exists a unique x ∈ (ρ2, 1) such that χn+1(x) = µ̃1x, we reason
an in the proof of Theorem 7.11. Observe that: (i) χ0(ρ2) < η+(ρ2) ⇒ χj(ρ2) <
η̃+(ρ2) = µ̃1ρ2 for all j > m; (ii) χn+1(1) = µ̃1; (iii) Condition (7.36) is equivalent to
χ′n+1(1) < µ̃1; (iv) χ′′n+1(x) < 0, i.e., χn+1(x) is strictly concave, for x ∈ (ρ2, 1).

By similar reasoning as in the first part of Theorem 7.14 it can be seen that {xn,m}
decreases monotonically. Finally, pertaining to the convergence to ρ2, the sequence
{xn,m}, being bounded and decreasing, has a unique limit point ζ in R. Suppose that
ζ > ρ2. Then, since, η̃+(ζ) > µ̃1ζ and limj→∞ χj(x) = η̃+(x) for all x ∈ (ρ2, 1), there
exists M > 0 such that for all j > M , χj(ζ) > µ̃1ζ. On the other hand, we derived
above that χj(ρ2) < µ̃1ρ2 for j > m. The continuity of χj(x) implies that there exists
xj−1 ∈ (ρ2, ζ) such that χj(xj−1) = µ̃1 xj−1. This contradicts ζ > ρ2.

It proves difficult to bound the rate of convergence of the sequence of decay rates
{xn,m}, which thereby prevents us from generalizing (7.25) to the present case. As a
result, we also cannot carry over Theorem 7.15. However, we can achieve the following
slightly weaker result in which we appropriately scale the slow-down threshold m as a
function of the blocking threshold n.

Theorem 7.21. Let the slow-down threshold m scale as m(n) = αn for a fixed α ∈
(0, 1) and write π(n,m)(i, j) for π(n,m)

i,j . Then,

lim
n→∞

lim
i→∞

π(n,m)(i, 5yn6)
π(n,m)(i, 5yn6 − 1)

=






η+(ρ2)
µ2ρ2

= µ1

µ2
, if y ∈ (0,α],

η̃+(ρ2)
µ2ρ2

= µ̃1

µ2
, if y ∈ (α, 1),

(7.42)
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where 5x6 denotes the largest integer smaller than or equal to x.

In Theorem 7.15 we could bound this ratio for any fixed phase j, j ≤ n, for n → ∞.
Here we scale the phase j(n) as a function of n. In fact, the proof below makes clear
that we establish the point-wise limit of the functions χj(n)(xn,m)/µ2 xn,m for n → ∞
rather than for j fixed.

Proof. Recall

lim
i→∞

π(n,m)(i, 5yn6)
π(n,m)(i, 5yn6 − 1)

=
v(n,m)(5yn6)

v(n,m)(5yn6 − 1)
=
χ,yn-(xn,m)

µ2 xn,m
,

and concentrate on the right hand side.
First, let y ∈ (0,α]. Clearly, it follows from Theorem 7.20 that xn,m → ρ2 for n →

∞, and therefore, by applying Theorem 7.15, χ,yn-(xn,m) → η+(ρ2). In particular,
χ,αn-(xn,m) → η+(ρ2) so that, by (7.38),

lim
n→∞

S
(
χ,αn-(xn,m)

)
= ãρ2 − λ−

µ1µ2ρ32
η+(ρ2)

= µ̃1 ρ2 = η̃+(ρ2).

Now let y ∈ (α, 1). As S
(
χ,αn-(xn,m)

)
< χ,yn-(xn,m) < η̃+(xn,m), and the left

and right hand side converge to η̃+(ρ2) for n → ∞, the functions χ,yn-(xn,m) have the
same limit.

In terms of the Perron-Frobenius vector v(n,m) of R(n,m) this results means the fol-
lowing, cf. (7.30a),

v(n,m)
j

v(n,m)
j−1

≈

{
µ1/µ2 if j < m(n)

µ̃1/µ2 if j ≥ m(n).

Thus, a ‘kink’ appears in the graph of ratio of the consecutive components of v(n,m).

Remark 7.22. The approach to obtain the geometric decay rate and the ‘decay rate in
the direction of the phases’ generalizes of course to any number of slow-down thresholds
when the adapted rates µ̃1, ˜̃µ1, . . ., form a decreasing sequence bounded below by µ2.
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Samenvatting

Dit proefschrift beschrijft uitbreidingen van de theorie van wachtrijmodellen met terug-
koppeling en gebruikt een aantal van deze modellen voor een prestatie-analyse van het
Transmission Control Protocol, een flow-control protocol dat veel gebruikt wordt in het
Internet.

De wachtrijen waaraan we de meeste aandacht besteden zijn ‘fluid queues’. Hierbij
sturen één of meerdere bronnen met steeds wisselende snelheid vloeistof in een buffer
die zelf met een constante snelheid leegloopt. De standaard fluid queue karakteriseert
het brongedrag als een continue-tijd Markovketen met een daarmee geassocieerde gene-
ratormatrix. De netto instroomsnelheid van vloeistof is een functie van de brontoestand;
deze snelheden vatten we samen in een driftmatrix. Als er sprake is van terugkoppeling
zullen de elementen van de generator- en driftmatrix van de bufferinhoud afhangen het-
welk resulteert in een ‘feedback fluid queue’. In de bekende feedback fluid modellen is
deze afhankelijkheid discreet van aard: de generator- en driftmatrix zijn constant zolang
de inhoud zich tussen twee (vaste) drempels bevindt. Zodra echter de bufferinhoud een
drempel passeert, kunnen zowel de generatormatrix als de driftmatrix veranderen.

In hoofdstuk 2 gebruiken we een feedback fluid queue met een enkele drempel als een
beschrijving van een TCP-bron die verkeer over een link met een eindige buffer stuurt.
Zolang de buffer niet vol is, zendt de buffer signalen naar de TCP-bron om diens zend-
snelheid te verhogen. Echter, als congestie optreedt, ontvangt de bron negatieve terug-
koppeling met het doel de instroomsnelheid te verlagen. Het blijkt dat de bekende wortel-
p wet—een relatie tussen de throughput van een TCP-verbinding, de pakket-verlieskans
en de round-trip-tijd—ook in ons model geldig is.

Daarna, in hoofdstuk 3, onderzoeken we een model met twee of meer TCP-bronnen.
In dit model is het essentieel het gedrag van de bronnen vast te leggen nadat verlies op-
treedt tengevolge van het overlopen van de buffer. Hier implementeren we ‘synchronous
loss’ (alle bronnen halveren hun transmissiesnelheid na congestie), in plaats van ‘pro-
portional loss’ (slechts één van de bronnen halveert na congestie). De keuze voor syn-
chronous loss noodzaakt ons het bronproces uit te breiden met een extra stochastische
variabele. Voor een model met twee bronnen beschouwen we de benutting van de link
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en de fairness, dat wil zeggen, de fractie van de beschikbare capaciteit die ieder van de
bronnen krijgt.

Het modelleren van TCP met een fluid queue met één drempel is niet erg nauwkeurig
als de buffer groot is. De reden is dat de frequentie waarmee terugkoppelsignalen de
bron bereiken een functie is van de round-trip-tijd, en die hangt in werkelijkheid op een
continue wijze van de bufferinhoud af. In een accurater TCP model moeten daarom
de (elementen van de) generator- en driftmatrix continue functies van de bufferinhoud
zijn. Voor een fluid queue met continue terugkoppeling en eindige buffergrootte stellen
we in hoofdstuk 4 de Kolmogorov-vergelijkingen op. Vervolgens bewijzen we dat een
stationaire verdeling bestaat en vinden een gesloten uitdrukking voor deze verdeling voor
modellen waarin de bron twee toestanden heeft.

Hoewel een TCP-model op basis van een fluid queue met continue feedback nauw-
keuriger is, blijkt het numeriek oplossen van een dergelijk model moeilijk. In hoofd-
stuk 5 omzeilen we dit probleem door het buffergedrag te modelleren als een discreet, in
plaats van continu, proces. Hierdoor kunnen we het gehele systeem als een Markovketen
weergeven. Nu vergelijken we de beide modellen ten aanzien van de reactie van de bron-
nen op congestie, t.w., synchronous en proportional loss, met simulaties uitgevoerd met
de netwerk simulator ns-2. Het blijkt dat de resultaten van de gesimuleerde werkelijkheid
tussen die van de beide verliesmodellen in vallen.

Ook dit Markovmodel kent zijn beperkingen in de zin dat de implementatie van
meerdere TCP verbindingen over meerdere links ingewikkeld is. Door het systeem als
een Petrinet te beschrijven, verkrijgen we de generatormatrix met behulp van standaard-
programmatuur. Deze procedure, die we uitvoeren in hoofdstuk 6, vereenvoudigt de
gehele implementatie sterk. De numerieke evaluatie met behulp van dit TCP-model le-
vert een nieuw inzicht in de verdeling van bandbreedte ingeval een TCP-verbinding over
twee links concurreert met zijverkeer bestaande uit twee andere TCP-verbindingen met
verschillende round-trip-tijden.

Tenslotte, in hoofdstuk 7, onderzoeken we een tandem-netwerk van twee exponen-
tiële servers met Poisson-aankomsten. Nu is de terugkoppeling zodanig dat zolang de
bufferinhoud in het tweede station zekere drempelwaarden overstijgt, de eerste server
langzamer gaat werken, of zelfs stopt. Omdat de stationaire verdeling van dit model
geen produktvorm heeft, concentreren we ons op de (asymptotische) structuur van deze
verdeling. We verkrijgen hierin inzicht met behulp van matrix geometrische methoden.



Summary

This dissertation expands the theory of feedback queueing systems and applies a number
of these models to a performance analysis of the Transmission Control Protocol, a flow
control protocol commonly used in the Internet.

In the first six chapters we are concerned with so-called fluid queues. In such queue-
ing models one or more sources send fluid at varying rates into a buffer which depletes
with constant rate. In the standard fluid queue the source(s) behave according to a
continuous-time Markov chain with an associated generator matrix. The input rates of
fluid depend on the source state; we assemble these rates into a drift matrix. In the pres-
ence of feedback, the elements of the generator and drift matrix are allowed to depend on
the buffer content. The feedback fluid queues considered in the literature have discrete
feedback, meaning that, while the content is in between two (fixed) thresholds, the gen-
erator and drift matrix are constant. However, when the content crosses a threshold, both
the generator matrix and the drift matrix can change.

In Chapter 2 we use a feedback fluid queue with a single threshold to model a TCP
connection which uses a single link and finite buffer. While the buffer is not congested,
it sends feedback signals to the source to increase its transmission rate, whereas if the
buffer is full, it informs the source to reduce the rate. We show that the root-p law—a
relation between the source throughput, the packet loss probability, and the round-trip
time—also holds for our model.

Then, in Chapter 3, we extend this single-source model such that it can incorporate
multiple TCP connections. As a consequence, it becomes essential to model the reaction
of the sources to loss occurring at buffer overflow. In the setting of this chapter we
implement ‘synchronous loss’ (all sources reduce their rate after congestion), rather than
‘proportional loss’ (just one of the sources reduces its rate). This implies that we need
to augment each source process with an extra random variable. We investigate, for a
two-source system, the link utilization and fairness, that is, the fraction of link capacity
each source receives.

It turns out that the TCPmodel with merely one threshold is quite inaccurate when the
buffer size is large. One reason is that the frequency at which the buffer sends signals to
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the source depends on the round-trip time, which, in turn, is a continuous function of the
buffer content. Thus, in a more accurate TCP model the generator and drift matrix should
be continuous functions of the buffer content. For such continuous feedback fluid queues
we derive in Chapter 4 the Kolmogorov equations, prove that a stationary distribution
exists, and obtain a closed form expression for this distribution in case the source process
has only two states.

Whereas the TCP model based on continuous feedback fluid queues is more accurate,
the numerical evaluation of this model proves problematic. In Chapter 5 we resolve this
by proposing to model the buffer process as a discrete, rather than as a continuous pro-
cess; this allows us in effect to represent the entire system as a single Markov chain. We
compare the synchronous and proportional loss models to simulations with the network
simulator ns-2. Interestingly, the results of the simulated reality lie within those of the
two loss models.

Still, this approach has its limitations: it is difficult to build by hand a generator matrix
that represents multiple TCP sources which also share multiple links. By considering
such systems as Petri nets, standard software can produce the generator matrix instead,
thereby simplifying the implementation of more complicated networks considerably. The
numerical evaluation carried out in Chapter 6 gives some new insights into the sharing of
bandwidth when a single TCP connection competes on two links with cross traffic from
two other TCP connections with different round-trip times.

Finally, in Chapter 7 we investigate a two-station tandem network in which jobs ar-
rive according to a Poisson process and require exponential service at the stations. Now
the feedback is such that when the queue length at the second station crosses a certain
threshold, the first server reduces its service rate or stops altogether. As the stationary
distribution of this system does not have a product form, we concentrate on its (asymp-
totic) structure. By using matrix analytic methods we obtain considerable insight into
this.
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