2,306 research outputs found

    Complex event types for agent-based simulation

    Get PDF
    This thesis presents a novel formal modelling language, complex event types (CETs), to describe behaviours in agent-based simulations. CETs are able to describe behaviours at any computationally represented level of abstraction. Behaviours can be specified both in terms of the state transition rules of the agent-based model that generate them and in terms of the state transition structures themselves. Based on CETs, novel computational statistical methods are introduced which allow statistical dependencies between behaviours at different levels to be established. Different dependencies formalise different probabilistic causal relations and Complex Systems constructs such as ‘emergence’ and ‘autopoiesis’. Explicit links are also made between the different types of CET inter-dependency and the theoretical assumptions they represent. With the novel computational statistical methods, three categories of model can be validated and discovered: (i) inter-level models, which define probabilistic dependencies between behaviours at different levels; (ii) multi-level models, which define the set of simulations for which an inter-level model holds; (iii) inferred predictive models, which define latent relationships between behaviours at different levels. The CET modelling language and computational statistical methods are then applied to a novel agent-based model of Colonic Cancer to demonstrate their applicability to Complex Systems sciences such as Systems Biology. This proof of principle model provides a framework for further development of a detailed integrative model of the system, which can progressively incorporate biological data from different levels and scales as these become available

    Membrane systems with limited parallelism

    Get PDF
    Membrane computing is an emerging research field that belongs to the more general area of molecular computing, which deals with computational models inspired from bio-molecular processes. Membrane computing aims at defining models, called membrane systems or P systems, which abstract the functioning and structure of the cell. A membrane system consists of a hierarchical arrangement of membranes delimiting regions, which represent various compartments of a cell, and with each region containing bio-chemical elements of various types and having associated evolution rules, which represent bio-chemical processes taking place inside the cell. This work is a continuation of the investigations aiming to bridge membrane computing (where in a compartmental cell-like structure the chemicals to evolve are placed in compartments defined by membranes) and brane calculi (where one considers again a compartmental cell-like structure with the chemicals/proteins placed on the membranes themselves). We use objects both in compartments and on membranes (the latter are called proteins), with the objects from membranes evolving under the control of the proteins. Several possibilities are considered (objects only moved across membranes or also changed during this operation, with the proteins only assisting the move/change or also changing themselves). Somewhat expected, computational universality is obtained for several combinations of such possibilities. We also present a method for solving the NP-complete SAT problem using P systems with proteins on membranes. The SAT problem is solved in O(nm) time, where n is the number of boolean variables and m is the number of clauses for an instance written in conjunctive normal form. Thus, we can say that the solution for each given instance is obtained in linear time. We succeeded in solving SAT by a uniform construction of a deterministic P system which uses rules involving objects in regions, proteins on membranes, and membrane division. Then, we investigate the computational power of P systems with proteins on membranes in some particular cases: when only one protein is placed on a membrane, when the systems have a minimal number of rules, when the computation evolves in accepting or computing mode, etc. This dissertation introduces also another new variant of membrane systems that uses context-free rewriting rules for the evolution of objects placed inside compartments of a cell, and symport rules for communication between membranes. The strings circulate across membranes depending on their membership to regular languages given by means of regular expressions. We prove that these rewriting-symport P systems generate all recursively enumerable languages. We investigate the computational power of these newly introduced P systems for three particular forms of the regular expressions that are used by the symport rules. A characterization of ET0L languages is obtained in this context

    Localist representation can improve efficiency for detection and counting

    Get PDF
    Almost all representations have both distributed and localist aspects, depending upon what properties of the data are being considered. With noisy data, features represented in a localist way can be detected very efficiently, and in binary representations they can be counted more efficiently than those represented in a distributed way. Brains operate in noisy environments, so the localist representation of behaviourally important events is advantageous, and fits what has been found experimentally. Distributed representations require more neurons to perform as efficiently, but they do have greater versatility

    Application of Model-driven engineering to multi-agent systems: a language to model behaviors of reactive agents

    Get PDF
    Many users of multi-agent systems (MAS) are very commonly disinclined to model and simulate using current MAS platforms. More specifically, modeling the dynamics of a system (in particular the agents' behaviors) is very often a challenge to MAS users. This issue is more often observed in the domain of socio-ecological systems (SES), because SES domain experts are rarely programmers. Indeed, the majority of MAS platforms were not conceived taking into consideration domain-experts who are non-programmers. Most current MAS tools are not dedicated to SES, or nor do they possess an easily understandable formalism to represent the behaviors of agents. Moreover, because it is platform-dependent, a model realized in a given MAS platform cannot be properly used on another platform due to incompatibility between MAS platforms. To overcome these limitations, we propose a domain-specific language (DSL) to describe the behaviors of reactive agents, regardless of the MAS platform used for simulation. To achieve this result, we used model-driven engineering (MDE), an approach that provides tools to develop DSLs from a meta-model (abstract syntax), textual editors with syntax highlighting (for the concrete syntax) and code generation capabilities (for source-code generation of a model). As a result, we implemented a language and a textual editor that allow SES domain experts to describe behaviors in three different ways that are close to their natural expression: as equations when they are familiar with these, as a sequence of activities close to natural language or as an activity diagram to represent decisions and a sequence of behaviors using a graphic formalism. To demonstrate interoperability, we also developed code generators targeting two different MAS platforms (Cormas and Netlogo). We tested the code generators by implementing two SES models with the developed DSL. The generated code was targeted to both MAS platforms (Cormas and Netlogo), and successfully simulated in one of them. We conclude that the MDE approach provides adequate tools to develop DSL and code generators to facilitate MAS modeling and simulation by non-programmers. Concerning the DSL developed, although the behavioral aspect of MAS simulation is part of the complexity of modeling in MAS, there are still other essential aspects of model and simulation of MAS that are yet to be explored, such as model initialization and points of view on the model simulated worl

    Action control, forward models and expected rewards : representations in reinforcement learning

    Get PDF
    Publisher Copyright: © 2021, The Author(s).The fundamental cognitive problem for active organisms is to decide what to do next in a changing environment. In this article, we analyze motor and action control in computational models that utilize reinforcement learning (RL) algorithms. In reinforcement learning, action control is governed by an action selection policy that maximizes the expected future reward in light of a predictive world model. In this paper we argue that RL provides a way to explicate the so-called action-oriented views of cognitive systems in representational terms.Peer reviewe

    Learning constructions from bilingual exposure:Computational studies of argument structure acquisition

    Get PDF

    Integration of Action and Language Knowledge: A Roadmap for Developmental Robotics

    Get PDF
    “This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder." “Copyright IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.”This position paper proposes that the study of embodied cognitive agents, such as humanoid robots, can advance our understanding of the cognitive development of complex sensorimotor, linguistic, and social learning skills. This in turn will benefit the design of cognitive robots capable of learning to handle and manipulate objects and tools autonomously, to cooperate and communicate with other robots and humans, and to adapt their abilities to changing internal, environmental, and social conditions. Four key areas of research challenges are discussed, specifically for the issues related to the understanding of: 1) how agents learn and represent compositional actions; 2) how agents learn and represent compositional lexica; 3) the dynamics of social interaction and learning; and 4) how compositional action and language representations are integrated to bootstrap the cognitive system. The review of specific issues and progress in these areas is then translated into a practical roadmap based on a series of milestones. These milestones provide a possible set of cognitive robotics goals and test scenarios, thus acting as a research roadmap for future work on cognitive developmental robotics.Peer reviewe
    corecore