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This thesis is dedicated to all the possibilities which this world has chosen not to actualise.



Abstract

This thesis presents a novel formal modelling language, complex event types (CET s), to describe be-

haviours in agent-based simulations. CET s are able to describe behaviours at any computationally

represented level of abstraction. Behaviours can be specified both in terms of the state transition rules of

the agent-based model that generate them and in terms of the state transition structures themselves.

Based on CET s, novel computational statistical methods are introduced which allow statistical de-

pendencies between behaviours at different levels to be established. Different dependencies formalise

different probabilistic causal relations and Complex Systems constructs such as ‘emergence’ and ‘au-

topoiesis’. Explicit links are also made between the different types of CET inter-dependency and the

theoretical assumptions they represent.

With the novel computational statistical methods, three categories of model can be validated and

discovered: (i) inter-level models, which define probabilistic dependencies between behaviours at dif-

ferent levels; (ii) multi-level models, which define the set of simulations for which an inter-level model

holds; (iii) inferred predictive models, which define latent relationships between behaviours at different

levels.

The CET modelling language and computational statistical methods are then applied to a novel

agent-based model of Colonic Cancer to demonstrate their applicability to Complex Systems sciences

such as Systems Biology. This proof of principle model provides a framework for further development

of a detailed integrative model of the system, which can progressively incorporate biological data from

different levels and scales as these become available.



Acknowledgements

I am grateful to my two supervisors, Christopher Clack and Sylvia Nagl, for giving me the freedom to

define my own scope of research while still nudging me away from intellectually treacherous paths of

inquiry. This work would not have been possible without their continuous guidance and support.

I would also like to thank those in my more extended research community who have enabled me to

find fresh ways of understanding my field of research. In particular, collaboration with David Hardoon

encouraged me to consider Complex Systems modelling and ABMS from a statistical perspective, while

discussions with Alvaro Malaina encouraged me to look more broadly at the epistemological aspects of

ABMS with respect to Complex Systems understanding.

Finally, I would like to thank my parents, extended family and close friends for all their support and

understanding through the pursuit of this research.

My research is funded by an Engineering and Physical Sciences Research Council (EPSRC) Doc-

toral Training Award.



Contents

1 Introduction 15

1.1 Problem Statement and Thesis Motivation . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.3 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.4 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 Modelling and simulating complex living systems 21

2.1 Complex systems, Life and emergence . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1.1 Complexity, self-organisation and emergence . . . . . . . . . . . . . . . . . . . 22

2.1.2 Theories and perspectives on emergence . . . . . . . . . . . . . . . . . . . . . . 25

2.1.3 The design-observed discrepancy . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1.4 The information dynamics of emergence . . . . . . . . . . . . . . . . . . . . . 27

2.1.5 Macro-properties, scope and resolution . . . . . . . . . . . . . . . . . . . . . . 30

2.1.6 Function, meaning and entanglement in Biological systems . . . . . . . . . . . . 31

2.1.7 Summary and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2 Modelling, simulation and hypothesis-testing . . . . . . . . . . . . . . . . . . . . . . . 34

2.2.1 Cellular automata models of dynamic spatial systems . . . . . . . . . . . . . . . 35

2.2.2 Agent-based modelling and simulation . . . . . . . . . . . . . . . . . . . . . . 41

2.2.3 Summary and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.3 Modelling meanings computationally and the importance of formalisation . . . . . . . . 48

2.3.1 Process algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.3.2 Graphical Formalisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.3.3 Rewriting grammar Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.3.4 Summary and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.4 Background analysis and critique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3 Multi-level properties and behaviours in agent-based modelling and simulation 60

3.1 Agent-based models and simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.1.1 Modelling ‘laws’ with agent rules . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.1.2 Communicating X-machine representation of agent-based models and simulations 65

3.2 Multi-level properties in agent-based models and simulations . . . . . . . . . . . . . . . 70



6 Contents

3.2.1 Properties in ABMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.2.2 Observations and descriptions of static multi-level properties in ABMS . . . . . 75

3.3 Multi-level behaviours as complex events . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.3.1 The semantics of events in ABMS . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.3.2 Complex event types as multi-level behaviours . . . . . . . . . . . . . . . . . . 88

3.3.3 Compositionality and subtyping of complex event types . . . . . . . . . . . . . 97

3.4 Emergence and Complexity in terms of Complex Event Types . . . . . . . . . . . . . . 102

3.4.1 Functional equivalence and multi-functionality . . . . . . . . . . . . . . . . . . 103

3.4.2 Top-down ‘causation’, emergent ‘laws’ and autopoiesis . . . . . . . . . . . . . . 104

3.5 Chapter Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4 Inter-level, Multi-level and Predictive modelling with Complex Event Types 107

4.1 Modelling causality and complexity with ABMS . . . . . . . . . . . . . . . . . . . . . 108

4.1.1 Causal modelling and Theories of causality . . . . . . . . . . . . . . . . . . . . 108

4.1.2 Extensions and alternatives to traditional models of causality . . . . . . . . . . . 114

4.2 Specifying and validating inter-level models . . . . . . . . . . . . . . . . . . . . . . . . 116

4.2.1 Correlation analysis to validate inter-level relationships . . . . . . . . . . . . . . 117

4.2.2 Structural equation modelling and Bayesian net causal models . . . . . . . . . . 117

4.2.3 Validating and discovering modules . . . . . . . . . . . . . . . . . . . . . . . . 122

4.3 Learning predictive models from complex event frequencies . . . . . . . . . . . . . . . 125

4.3.1 Statistical Learning Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.3.2 Predicting system behaviour with machine learning methods . . . . . . . . . . . 126

4.3.3 Predictive error as an indicator of relative data importance, noise and data inter-

dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.4 Multi-level modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

4.5 Chapter Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5 An integrative study of tumorigenesis in the colonic crypt 137

5.1 Current understanding of tumorigenesis in the colonic crypt . . . . . . . . . . . . . . . . 138

5.1.1 Evolutionary and ecological views of tumorogenesis . . . . . . . . . . . . . . . 138

5.1.2 Cell division, migration and differentiation in the colonic crypt . . . . . . . . . . 141

5.1.3 The APC gene mutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.1.4 Existing mathematical and computational models . . . . . . . . . . . . . . . . . 147

5.2 The agent-based model and simple event types . . . . . . . . . . . . . . . . . . . . . . . 148

5.2.1 The effect of APC mutation on cell behaviour . . . . . . . . . . . . . . . . . . . 149

5.2.2 Wnt-Notch interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

5.2.3 State durations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

5.2.4 STRs and maximally observed SET s . . . . . . . . . . . . . . . . . . . . . . . 156



Contents 7

5.3 Inter-level modelling: Validating and discovering associations between behaviours at

different levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

5.3.1 CET specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

5.3.2 Simulation parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

5.3.3 Study 1: APC mutation rate and tumorigenesis . . . . . . . . . . . . . . . . . . 164

5.3.4 Study 2: Correlation analysis of CET frequencies at different temporal resolutions 166

5.3.5 Study 3: Granger causality between mutation-driven CET s, clonal interaction

CET s and tumorigenesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

5.3.6 Summary of Inter-level studies . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

5.4 Multi-level modelling: Clonal dynamics and tumorigenesis . . . . . . . . . . . . . . . . 182

5.4.1 Study 4: The independent effects of initial clonal dominance and initial clonal

clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

5.4.2 Study 5: Combined effects of initial clonal dominance and clonal clustering . . . 193

5.4.3 Summary of Multi-level studies and experimental implications . . . . . . . . . . 193

5.5 Statistical inferrence of predictive models from complex event frequencies . . . . . . . . 201

5.5.1 Study 6: Partial Least Squares regression model from complex event frequencies 202

5.5.2 Study 7: How does the degree of error change with time? . . . . . . . . . . . . . 202

5.5.3 Study 8: How much information do we need for a good predictive model? . . . . 205

5.5.4 Discussion: Prediction versus Explanation . . . . . . . . . . . . . . . . . . . . . 212

5.6 Chapter Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

6 Critical evaluation and further work 214

6.1 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

6.2 Further work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

6.2.1 Theoretical extensions to the complex event formalism and integrative modelling 215

6.2.2 Computational challenges of implementation: Detecting computation equivalence 216

6.2.3 Further Applications in Computer Science and Complex Systems modelling . . . 216

7 Thesis summary and conclusions 217

Appendices 219

A X-machine representation of colonic crypt ABM simple event types 220

A.1 CellAgent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

A.1.1 Division . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

A.1.2 Migration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

A.1.3 Mutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

A.1.4 Pathway activation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

A.1.5 Cell transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

A.1.6 Cell cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227



8 Contents

A.1.7 Competition and cell death . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

A.2 GlobalClock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

A.3 RandomGenerator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

A.4 V illus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

B Hypergraph descriptions of Colonic Crypt Case Study complex event types 231

B.1 Mutation-driven CET s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

B.1.1 MD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

B.1.2 MSD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

B.1.3 MAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

B.1.4 MWD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

B.1.5 MWDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

B.1.6 MWDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

B.1.7 MSWD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

B.1.8 MSWDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

B.1.9 MSWDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

B.2 Clonal interaction CET s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

B.2.1 CC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

B.2.2 CCINS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

B.2.3 CCMIG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

B.2.4 CCWIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

B.2.5 CCLOSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

C Colonic crypt case study statistics 235

C.1 Study 2 simulation statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

C.2 Study 3 simulation statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

C.3 Study 4 simulation statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

C.4 Study 5 simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

C.5 Study 6-8 simulation statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

C.6 Example PLS model inferred from overall frequencies of CET s . . . . . . . . . . . . . 249

Bibliography 296



List of Figures

2.1 Algorithmic and Statistical Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 Design and system complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3 Homogeneous CA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.4 Lattice Gas Model / Particle System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.5 Grouped Lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.6 Hybrid Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.7 Unmediated relationship . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.8 Mediated relationship . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.9 Multi-Agent System (MAS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.10 Agent-Group-Role Organisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.11 Multiset Rewriting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.12 P-System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.13 Multiset of L-Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.1 Relating property descriptions, SST s and CET s . . . . . . . . . . . . . . . . . . . . . 61

3.2 Simulation trajectories as members of the population of models that can be generated by

an ABM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.3 Communicating X-machine system configuration. . . . . . . . . . . . . . . . . . . . . . 68

3.4 Compositional and Type hierarchy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.5 X-machine configurations and states . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.6 Observations of subsystem states as SST s . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.7 Events in ABS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.8 Instantiation of component types and state transition functions . . . . . . . . . . . . . . 93

3.9 CET instantiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.1 Schematic representations of the different categories of inter-level model. . . . . . . . . 118

4.2 SEM graph example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.3 Bayesian net example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.4 Example of a hierarchical modular model . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.5 Example of a multi-functional modular model . . . . . . . . . . . . . . . . . . . . . . . 124

4.6 Applying statistical learning to CET frequencies . . . . . . . . . . . . . . . . . . . . . 127



10 List of Figures

4.7 The mechanisms underlying parameter sensitivity . . . . . . . . . . . . . . . . . . . . . 130

4.8 Example of multi-level model where groups are defined by fixed attributes . . . . . . . . 131

4.9 Example of a multi-level model with groups defined by dynamic attributes . . . . . . . . 132

4.10 Example of a hierarchical Bayesian net . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

4.11 Single-level equivalent of hierarchical Bayesian net . . . . . . . . . . . . . . . . . . . . 134

4.12 ABM as generator of a unique set of simulation trajectories and observations . . . . . . 135

5.1 Schematic representation of a crypt villus. . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.2 APC mutation effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.3 High level state chart for agent behaviour. . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.4 Flow chart of high level agent rules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

5.5 Flow chart of cell cycle states. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.6 Migration behaviour flow chart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.7 Flow chart of one-off APC mutation effects. . . . . . . . . . . . . . . . . . . . . . . . . 153

5.8 Flow chart of sustained APC mutation effects. . . . . . . . . . . . . . . . . . . . . . . . 154

5.9 Flow chart of Wnt effects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

5.10 Specificity hierarchies for mutation-driven division CET s . . . . . . . . . . . . . . . . 160

5.11 Specificity hierarchies for mutation-driven division CET s . . . . . . . . . . . . . . . . 160

5.12 Specificity hierarchy for clonal interaction CET s . . . . . . . . . . . . . . . . . . . . . 163

5.13 Graph showing correlations between APC mutation rate and tumorigenesis measures . . 167

5.14 Graph showing correlations between APC mutation rate and specified CET s . . . . . . 169

5.15 Graph showing correlations between specified CET s and the tumorigenesis measures . . 170

5.16 Mechanism by which symmetric division disrupts cell population regulation . . . . . . . 172

5.17 Strongest correlations between CET s over the course of the whole simulation . . . . . . 172

5.18 Scatter graph showing second order Spearman’s rank correlations between APC−CET

and CET − Tumorigenesis correlations . . . . . . . . . . . . . . . . . . . . . . . . . 174

5.19 Scatter graphs showing second order Spearman’s rank correlations between rAPC−CET

and rCET−Tumorigenesis correlations for each tumorigenesis measure . . . . . . . . . . 175

5.20 Graph showing correlations between APC mutation rate and specified CET s at 300ts

intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

5.21 Graphs showing correlations between specified CET s and the four tumorigenesis mea-

sures at 300ts intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

5.22 Strongest correlations between CET s at 300 ts time intervals . . . . . . . . . . . . . . . 178

5.23 Directed Granger-causality associations between Mutation-driven CET s, clonal inter-

action CET s and tumorigenesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

5.24 Schematic representation of Inter-level modelling studies . . . . . . . . . . . . . . . . . 181

5.25 Spatial clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

5.26 Move−Win−Replace colonisation mechanism . . . . . . . . . . . . . . . . . . . . 183

5.27 Tumorigenesis box plots for different initial clonal dominance groups groups . . . . . . 187



List of Figures 11

5.28 Clonal dominance box plot for three Initial CD Groups . . . . . . . . . . . . . . . . . . 187

5.29 Graph showing correlations between CD and each of the four tumorigenesis measures

for the three initial clonal dominance groups . . . . . . . . . . . . . . . . . . . . . . . . 189

5.30 Box plots of tumorigenesis measures for initial clonal clustering groups . . . . . . . . . 190

5.31 Clonal dominance box plot for two initial clonal clustering groups . . . . . . . . . . . . 191

5.32 Graph showing correlations between CD and each of the four tumorigenesis measures

for the two initial clonal clustering groups . . . . . . . . . . . . . . . . . . . . . . . . . 192

5.33 Box plots of tumorigenesis measures for initial clonal clustering/clonal dominance groups 196

5.34 Clonal dominance box plot for the six clonal clustering-clonal dominance groups . . . . 197

5.35 Graph showing correlations between CD and each of the four tumorigenesis measures

for the six initial clonal clustering-clonal dominance groups . . . . . . . . . . . . . . . . 200

5.36 Graph showing mean predictive errors of complex event PLS models . . . . . . . . . . . 203

5.37 Graph showing mean predictive errors of simple event PLS models . . . . . . . . . . . . 204

5.38 Graph showing mean predictive errors of both simple and event PLS models . . . . . . . 204

5.39 Graph showing the mean predictive error of PLS models learned from different data sets

and their randomised counterparts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

5.40 Graph showing mean predictive errors of models learned from different data sets. . . . . 208

5.41 Graph showing differences between the predictive errors of the different models and their

randomized counterparts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212



List of Tables

2.1 System and design complexity measures . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 Definitions of emergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3 Computational modelling formalisms . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.1 Simple Event Calculus predicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.2 Additional predicates in Full event calculus . . . . . . . . . . . . . . . . . . . . . . . . 83

3.3 STEEL predicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.4 Generalised Event Calculus (GEC) predicates . . . . . . . . . . . . . . . . . . . . . . . 86

3.5 Macro-event structure constructor definitions . . . . . . . . . . . . . . . . . . . . . . . 91

3.6 Examples of constraint operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

3.7 Scope definitions for STTP s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.8 Resolution definitions for STTP s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.1 Matrix summarising representations of different integrated models. . . . . . . . . . . . . 136

5.1 Table showing cell state and migration durations (in hours). . . . . . . . . . . . . . . . 156

5.2 Simple event types of colonic crypt ABM . . . . . . . . . . . . . . . . . . . . . . . . . 157

5.3 Mutation-driven CET s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

5.4 CET s for clonal interaction mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . 162

5.5 Table showing parameter settings for the simulation studies. . . . . . . . . . . . . . . . 165

5.6 APC-tumorigenesis correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

5.7 Correlations between tumorigenesis measures . . . . . . . . . . . . . . . . . . . . . . . 166

5.8 Correlations between APC mutation rate and CET occurrence frequencies . . . . . . . 169

5.9 CET -tumorigenesis correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

5.10 Ranks of correlations between APC mutation rate and CET s, and between CET s and

tumorigenesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

5.11 Spearman’s Rank Correlation analysis of APC mutation rate-CET correlation and

CET -tumorigenesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

5.12 Granger Causality between mutation-driven and clonal interaction CET s. . . . . . . . . 179

5.13 Means and SDs for different initial CD groups . . . . . . . . . . . . . . . . . . . . . . . 185

5.14 ANOVA for different initial CD groups . . . . . . . . . . . . . . . . . . . . . . . . . . 186



List of Tables 13

5.15 CD-Tumorigenesis correlations for the High, Medium and Low initial clonal dominance

groups. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

5.16 Z-tests of CD-Tumorigenesis correlations for the High, Medium and Low initial clonal

dominance groups. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

5.17 Means and SDs of tumorigenesis measures for different initial Clonal Clustering groups . 189

5.18 t-Test for differences in tumorigenesis measure for the two clonal clustering groups. . . . 190

5.19 CD-Tumorigenesis correlations for the high and low initial clonal clustering groups. . . . 191

5.20 Z-tests of CD-Tumorigenesis correlations for the Low and High initial clonal clustering

groups. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

5.21 Means and standard deviations for the six initial clonal dominance and clustering groups. 194

5.22 ANOVA for initial CD and clonal clustering groups . . . . . . . . . . . . . . . . . . . . 195

5.23 CD-Tumorigenesis correlations for the six initial clonal clustering-clonal dominance

groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

5.24 Selected Z-values of CD-Tumorigenesis correlations for the six Initial clonal clustering-

clonal dominance groups. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

5.25 Paired samples t-tests for models learned from different data sets and their randomised

counterparts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

5.26 Mean predictive errors of models learned from different observation types . . . . . . . . 209

5.27 Mean predictive errors of models learned from different data sets . . . . . . . . . . . . . 210

5.28 t-tests comparing mean predictive errors of models learned from different data sets . . . 211

A.1 Changes in m, in, out resulting from cell division STR executions . . . . . . . . . . . 222

A.2 Changes in m, in, out resulting from cell migration STR executions . . . . . . . . . . . 223

A.3 Changes in m, in, out resulting from APC mutation STR executions . . . . . . . . . . 224

A.4 Changes in m, in, out resulting from pathway activation STR executions . . . . . . . . 225

A.5 Changes in m, in, out resulting from cell transition STR executions . . . . . . . . . . . 226

A.6 Changes in m, in, out resulting from cell cycle STR executions . . . . . . . . . . . . . 228

A.7 Changes in m, in, out resulting from competition and death STR executions . . . . . . 229

C.1 Correlations between the occurrence frequencies of specified CET s. . . . . . . . . . . . 236

C.2 Ranks of correlations between APC mutation rate and CET s, and between CET s and

tumorigenesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

C.3 APC-CET correlations for 300ts intervals . . . . . . . . . . . . . . . . . . . . . . . . . 239

C.4 Mutation-driven CET correlations for 300ts intervals - MAD and MSD . . . . . . . . 240

C.5 Mutation-driven CET correlations for 300ts intervals - MD . . . . . . . . . . . . . . . 241

C.6 Mutation-driven CET correlations for 300ts intervals - MSWDS and MSWDA . . . 242

C.7 Mutation-driven CET correlations for 300ts intervals - MSWD . . . . . . . . . . . . . 243

C.8 Mutation-driven CET correlations for 300ts intervals - MWDA, MSWD, MWD . . 244

C.9 Clonal interaction CET correlations for 300ts intervals . . . . . . . . . . . . . . . . . . 245



14 List of Tables

C.10 Mutation-driven CET -tumorigenesis correlations for 300ts intervals - MAD, MSD,

MD, MSWDA and MSWDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

C.11 Mutation-driven CET -tumorigenesis correlations for 300ts intervals - MWDS,

MWDA, MSWD, MWD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

C.12 Clonal interaction CET -tumorigenesis correlations for 300ts intervals . . . . . . . . . . 248

C.13 APC-CET correlations for different initial CD groups . . . . . . . . . . . . . . . . . . 250

C.14 CET -MP correlations for different initial CD groups . . . . . . . . . . . . . . . . . . . 251

C.15 CET -MPM correlations for different initial CD groups . . . . . . . . . . . . . . . . . . 252

C.16 CET -MPC correlations for different initial CD groups . . . . . . . . . . . . . . . . . . 253

C.17 CET -MPMC correlations for different initial CD groups . . . . . . . . . . . . . . . . . 253

C.18 Critical values of r for the different initial CD groups . . . . . . . . . . . . . . . . . . . 254

C.19 APC-CET correlations for different initial CC groups . . . . . . . . . . . . . . . . . . 254

C.20 CET -Tumorigenesis measure correlations for different initial CC groups . . . . . . . . 255

C.21 Critical values of r for the different initial CC groups . . . . . . . . . . . . . . . . . . . 256

C.22 APC-CET correlations for different initial CD-CC groups . . . . . . . . . . . . . . . . 257

C.23 CET -MP correlations for different initial CD-CC groups . . . . . . . . . . . . . . . . . 258

C.24 CET -MPM correlations for different initial CD-CC groups . . . . . . . . . . . . . . . . 259

C.25 CET -MPC correlations for different initial CD-CC groups . . . . . . . . . . . . . . . . 260

C.26 CET -MPMC correlations for different initial CD-CC groups . . . . . . . . . . . . . . . 261

C.27 Critical values of r for the different initial CD-CC groups . . . . . . . . . . . . . . . . . 262

C.28 Table showing the results of t-tests comparing the mean predictive errors of the models

learned from the different data sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

C.29 Table showing the results of t-tests comparing the mean predictive errors of the models

learned from the different data sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

C.30 Table showing factor loadings for a model inferred from overall CET occurrence fre-

quencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

C.31 Table showing weights on the components for a model inferred from overall CET oc-

currence frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

C.32 Table showing the cummulative proportions of variance explained by the components

for a model inferred from overall CET occurrence frequencies. . . . . . . . . . . . . . 267



Chapter 1

Introduction

Science has as its goal an understanding of some part of the world that is consistent with what is observed.

This understanding can be formulated in terms of a model.1 In the study of complex dynamic systems,

a simulation is both a dynamic instantiation of an explicitly specified model and a system which is

consistent with the model, which can be ‘observed’ in its own right. The latter means that the simulation

(system) can be consistent with more than one model. This is one of the fundamental tenets on which

this thesis is based. Just as we try to impose different models on the real world and observe phenomena

at different levels of abstraction, a simulation of a particular agent-based model (ABM) can be described

using different models and observed at different levels.

Computational modelling and simulation is a means of validating2 a hypothesis when the implica-

tions of the hypothesis are difficult to establish analytically (these difficulties can be either theoretical

or practical). A model is constructed to represent a set of hypotheses and simulation is used to deter-

mine the consequences or implications of these hypotheses (which can itself be formulated as a set of

hypotheses).3

In the case of agent-based modelling and simulation (ABMS), the hypotheses that tend to be vali-

dated generally fall into one of two categories4:

• Hypotheses about the relationship between overall system behaviour and individual/entity level

behaviours and interactions. The ABM allows behaviour at the individual level to be specified

as agent rules, and simulations serve as dynamic instantiations of the rules’ consequences. If the

overall system behaviour in simulation is consistent with that expected, we can say that the ABM

is capable of generating this behaviour. This validates the hypothesis that the rules governing

individuals’ behaviour can give rise to the system behaviour in the simulation context.

• Hypotheses about the effects of altering specific aspects of the system (e.g. different quantities,

different individual behavioural ranges) on the overall behaviour of the system. Given an ABM,

the aim is to determine whether initialising the system differently or subjecting it to particular

1However, there are several different positions that can be held on the epistemological status of models (e.g. [398], [163]).
2By validation, we mean confirmation that it has been shown that the hypothesis is not false. (This does not imply that it is

correct.)
3This of course assumes both that the model faithfully represents the hypothesis and that the simulation if correct for the model.
4although those working in the field are often interested in both, and the distinction is not clear-cut.
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perturbations gives rise to differences in behaviour. Validating such hypotheses usually involves

running simulations with different parameter settings.

The notion that individuals’ or local behaviours can constrain the system in such a way that the

system as a whole is more likely to evolve in a particular way is central to Complexity Science. Interac-

tions at the individual level give rise to some higher level property, which in turn diminishes the space of

possible evolutionary trajectories5 of each of the individuals and hence the space of possible trajectories

of the system. This is often termed ‘emergence’. However, rather than simply taking a bottom-up-top-

down view, this thesis assumes that systems are integrated, entangled, heterarchical sub-systems, each

of which is an emergent behaviour. More broadly, complementary to the Reductionist framework, which

seeks to reduce phenomena to a set of fundamental laws governing sets of entities, our integrative Sys-

tems approach more broadly seeks to relate laws at different levels to one another both formally and

empirically.

By combining ABMS techniques and statistical analysis methods, we propose a set of novel com-

putational methods for quantitatively analysing the relationships between different specified emergent

behaviours using ABMS. Although we focus mainly on the application of ABMS to the scientific study

of complex systems, the computational methods proposed are general enough to be applied to any prob-

lem involving well-understood component behaviours whose interactions and the implications of these

interactions for the system’s overall behaviour are difficult to analyse. Such problems are encountered

by Systems designers, architects and engineers, as well as by Complexity scientists.

1.1 Problem Statement and Thesis Motivation
Agent-based modelling and simulation (ABMS) has been widely and successfully applied in the study

of complex systems. Applications range from studies of complex systems in the abstract, where mod-

els are simple and highly idealised, to domain-specific studies attempting to answer specific questions,

sometimes quantitatively.

However, agent-based simulations can be criticised for being ‘opaque’ in that it is not always clear

which mechanisms are giving rise to particular system behaviours. For example, in a boids flocking

[346] simulation without visualisation, how do we distinguish between cases where pairs of birds first

adopt the same velocity before the pairs amalgamate into larger and larger groups, and cases where birds

form larger clusters which attract further individuals? In most studies, a variable is used to capture the

overall behaviour(s) of interest, and visualisation of the simulation is used as means of identifying the

underlying mechanisms, which are described using natural language.

To our knowledge, there is no established formal language for describing mechanisms or interac-

tions that are not contained in the agent rules.6 This means we are unable to formally describe higher

5Here, the term ‘evolutionary trajectory’ refers to the set of state changes that the individual undergoes throughout his/her

lifetime.
6Although description frameworks such as game theory and dynamical systems theory provide a means of characterising

specific features of system behaviour, they are specific to these features and are not intended to provide a general language for

describing behaviours.



1.2. Contributions 17

level emergent behaviours. It also means we have no way of distinguishing between alternative mecha-

nisms giving rise to the same higher level emergent behaviour. Furthermore, at the agent level, it is also

not always clear from a simulation which agent rules are more dominant in giving rise to a particular

behaviour. As a consequence, we are unable to precisely formulate and hence computationally validate

integrative hypotheses relating behaviours at different levels.

An important example of this can be seen in the study of biological systems, which often span

multiple scales and abstraction levels. A major challenge for Systems Biology is the integration of ex-

perimental data from these different levels and scales to achieve a comprehensive, unified understanding

of the biological phenomenon. Furthermore, because data can be qualitative as well as quantitative,

applying multi-scale equation-based techniques alone is insufficient.7 For example, understanding of

an organ’s functioning requires knowledge of gene expression, molecular processes, cell-cell signalling,

tissue formation and, importantly, the interactive relationships between these.

1.2 Contributions
The key objective of this thesis is to introduce a set of novel computational methods for specifying,

validating and inferring integrative models in ABMS, which allow us to understand the statistical depen-

dencies between dynamic emergent properties (behaviours) at different levels.

More specifically, the contributions of the thesis are:

• A classification of definitions and measures of emergence, clarifying the respective roles of design

(base level rules) and observation (descriptive level) in defining emergent phenomena;

• A novel modelling language for describing behaviours in ABMS at any detectable level of ab-

straction (as determined by the ABM). The complex event type (CET ) formal modelling lan-

guage describes behaviours in terms of both ‘observed’ state changes and the agent behavioural

rules generating these state changes, thus incorporating both observation and design aspects of

behaviour.

• A novel event calculus, the generalised event calculus (GEC), which defines the semantics of

events in ABMS. This is based on existing event calculi.

• Formalisation of complex systems constructs such as emergence, multi-functionality, autopoiesis

and autonomy for ABMS in terms of CET s;

• Formalisation of the process of inductive learning from multiple simulations. CET s are multi-

level ‘observations’ of behaviours and relationships between the behaviours can be learned through

exposure to multiple exemplar simulations.

• A set of novel computational methods for studying the dependencies between behaviours at dif-

ferent levels. These methods couple ABMS with statistical techniques and permit:
7Multi-scale modelling requires knowledge of the quantitative relationships between variables at each scale, something that is

difficult to obtain for biological systems because experiments usually address only one scale of study and may be qualitative by

their very nature.
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– Validation and parametisation of inter-level models specifying dependencies (e.g. correla-

tive, causal, modular) between behaviours and other properties at different levels;

– Validation and parametisation of multi-level models specifying differences in models be-

tween sets of simulations with different attributes;

– Inference of predictive models using different sets of behavioural observations at different

resolutions;

– Determination of the relative importance of different parameters, properties and behaviours

to predictive accuracy using the predictive errors of learned models;

• Specific application to a Systems Biology model (tumorigenesis in the colonic crypt) to show how

the techniques introduced can be used to integrate experimental data from different levels and

scales;

• A novel ABM of tumorigenesis in the colonic crypt which includes a substantial body of biological

understanding and which can be further extended and analysed.

1.3 Structure of the thesis
The remainder of the thesis is organised as follows:

• Chapter 2 describes the context for our work. In Section 2.1, we introduce major Complex Sys-

tems constructs, such as emergence, complexity and self-organisation and identify the features that

make complex systems challenging to analyse, understand and predict. Section 2.2 reviews exist-

ing computational techniques used to model and simulate complex biological systems. Section 2.3

reviews key existing formal models used to describe the interaction between entities in complex

biological systems. The final section of the chapter gives an analysis of the main problem that

motivates this thesis.

• Chapter 3 introduces our novel extension to ABMS, which formalises the observation and descrip-

tion of properties and behaviours at different levels of abstraction. Section 3.1 and Section 3.2

introduce the fundamental tenets on which our formalisation of multi-level behaviours are based.

In Section 3.2, these are first applied generally to all multi-level properties and more specifically

to static properties. Section 3.3 then introduces the complex event type (CET ) formalism, where

they are applied to dynamic properties or behaviours. Section 3.4 relates categories of complex

event types to emergence, top-down ‘causation’ and multi-functionality.

• Chapter 4 introduces a set of novel methods for studying statistical dependencies between be-

haviours at different levels in ABMS. In Section 4.2, we show how inter-level models (graphical

models representing inter-level dependencies) can be validated, refined and parameterised using

multiple simulation runs. Such models are based on more fundamental theoretical assumptions,

as made explicit in Section 4.1. In Section 4.3, we show how machine learning techniques based

on statistical learning theory can be used to infer predictive models from behaviours at different
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levels. Prediction errors of models learned from different sets of behaviours and/or different reso-

lutions (observations) serve as a means of ascertaining the relative contributions of these different

sets of observation to predicting higher level behaviours. In Section 4.4, we introduce multi-level

models, which specify differences between sets of simulations with particular attributes.

• Chapter 5 demonstrates the real world applicability and scalability of these techniques using a

novel ABM of tumorigenesis in the colonic crypt.

• Chapter 6 evaluates the work and discusses its implications, suggesting further work to develop

and extend it.

• Chapter 7 concludes the thesis and summarises its key contributions.

1.4 Publications
Condensed versions of the work in this thesis can be found in the following publications:

• C. C. Chen, S. B. Nagl, and C. D. Clack. A calculus for multi-level emergent behaviours in

component-based systems and simulations. In Aziz M. A. Alaoui, C. Bertelle, M. Cosaftis, and G.

H. Duchamp, editors, Proceedings of the satellite conference on Emergent Properties in Artificial

and Natural Systems (EPNACS), 2007.

• C. C. Chen, S. B. Nagl, and C. D. Clack. Modulated events in agent-based modeling and simu-

lation. In H. R. Arabnia, editor, Proceedings of the 2007 International Conference on Modeling,

pages 150-156. MSV, CSREA Press, 2007.

• C. C. Chen, S. B. Nagl, and C. D. Clack. Specifying, detecting and analysing emergent behaviours

in multi-level agent-based simulations. In Proceedings of the Summer Simulation Conference,

Agent-directed simulation. SCS, 2007.

• C. C. Chen, Christopher Clack, and Sylvia Nagl. Context sensitivity in individual-based modeling.

BMC Systems Biology, 1(Suppl 1), 2007.

• C. C. Chen. Hierarchy, abstraction levels and emergent behaviours in agent-based simulations of

complex biological systems. In The IET Conference on Synthetic Biology, Systems Biology and

Bioinformatics (BioSysBio 2008). IET, 2008.

• C. C. Chen. A process interpretation of agent-based simulation and its epistemological implica-

tions. In North American Computing and Philosophy Conference. Winner of the 2008 Goldberg

Award for outstanding work in Philosophy and Computing., 2008.

• C. C. Chen, C. D. Clack, and S. B. Nagl. Multi-level behaviours in agent-based simulation: colonic

crypt cell populations. Proceedings of the Seventh International Conference on Complex Systems,

2008.
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• C. C. Chen, S. B. Nagl, and C. D. Clack. Emergence in engineering systems. In Complex Systems

in Knowledge-based environments, Springer, 2009.

• C. C. Chen, S. B. Nagl, and C. D. Clack. A formalism for multi-level emergent behaviours in de-

signed component-based systems and agent-based simulations. Springer Understanding Complex

Systems series. Springer, 2008.

• C. C. Chen, S. B. Nagl, and C. D. Clack. A method for validating and discovering associations

between multi-level emergent behaviours in agent-based simulations. In Proceedings of the second

international symposium on agent and multi-agent systems: technologies and applications, LNAI

4953. Springer, March 2008.

• C. C. Chen, S. B. Nagl, and C. D. Clack. Identifying multi-level emergent behaviours in agent-

based simulations using complex event type specifications. Simulation Journal special issue: Re-

cent Advances in Unified Modeling and Simulation Approaches, 2008. Sage Publishing, 2009.

• C. C. Chen and D. R. Hardoon. Learning from multi-level behaviours in agent-based simulations:

A systems biology application. Journal of Simulation special issue: Agent Based Modelling:

Theory and Applications. Palgrave Macmillon, 2009.

In addition, the following has been submitted for review:

• C. C. Chen. Levels of abstraction and the emergence of causal dependencies in agent-based simu-

lations. Submitted to Causality in the Sciences, Oxford University Press.



Chapter 2

Modelling and simulating complex living

systems

This chapter gives an overview of the background and motivation for our work both in terms of Complex

Systems modelling and in the more specific application domain of Systems Biology. The chapter will be

structured as follows:

• In Section 2.1, we analyse the key theoretical positions on complexity, self-organisation and emer-

gence. We also highlight the more specific challenges posed by biological systems, such as context

dependency, multi-functionality, and hierarchy entanglement.

• Section 2.2 critically reviews existing work on computational simulation of complex biological

systems, focusing particularly on cellular automata (CA) techniques and agent-based modelling

and simulation (ABMS).

• Section 2.3 critically reviews formal computational techniques for describing interactive be-

haviours and processes in individual-based models of complex biological systems. These include

rewriting grammar systems, process algebras, and graph-based formalisms such as state charts,

petri nets and X-machines.

• Section 2.4 concludes the chapter with a summary and critique of the background reviewed.

However, because the concerns of the thesis span a broad set of disciplines, specific topics are

addressed in more detail in the appropriate chapters.

2.1 Complex systems, Life and emergence
The purpose of this section is to examine the key constructs associated with the study of complex systems

and emergence. As well as critically reviewing these constructs, Section 2.1.1 clarifies the theoretical

assumptions underlying their statistical measures. In Section 2.1.5, we focus more specifically on lev-

els of observation in relation to emergent properties, while Section 2.1.6 examines in more depth the

emergence of multi-level functions and ‘meaning’ in biological systems.
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2.1.1 Complexity, self-organisation and emergence

While there is no universally agreed upon definition of what constitutes a complex system, most prac-

titioners working in Complex Systems Science accept that they have the following features (see, for

example [197], [426]):

• They consist of interacting entities, processes or agents.

• The interactions between the entities give rise to higher level structures, patterns or behaviours.

This feature is often termed ‘emergence’.

• It is not easy to predict these higher level behaviours from the behaviour of the entities alone.

(In a stronger version, it is stipulated that it should not be possible to predict these higher level

behaviours from the behaviours of the component entities).

• The interactions between entities are non-trivial so that small differences in local or initial condi-

tions can give rise to large system-wide effects i.e. linear changes at the entity level can give rise

to non-linear effects at the system level.

These features can be described in terms of three key constructs: complexity, self-organisation, and

emergence.

2.1.1.1 Measures of Complexity

Complexity is an important construct in the study of complex systems because such systems are defined

by the fact that there can be discrepancies (as reflected in non-linearity) between the summed complexity

of the entities and the complexity of the system as a whole.

Measures of complexity try to capture the intuition that the more complex an entity is, the more

information is required to describe or reproduce it. Two categories of formulation are particularly im-

portant in computational Complex Systems modelling (see Figure 2.1):

1. Algorithmic complexity [67], [68], [69], which is the length of the minimal Universal Turing

Machine program which can describe/reproduce the entity; and

2. Statistical complexity [36], which is the length of the minimum program able to reproduce the

statistically significant features of an entity. It is calculated by reconstructing a minimal model

containing the collection of all situations which share a similar specific probabilistic future and

measuring the probability distribution of the states. (There are various algorithms for determining

this for different numbers of dimensions e.g. for 1D time series [368] and 2D time series [369]).

Other complexity measures also exist, such as include logical depth, design size and connectivity

(see Table 2.1). However, these can be seen as more specific formulations algorithmic and statistical

complexity.

The main difference between algorithmic complexity and statistical complexity is in the way ran-

domness is treated. Whereas algorithmic complexity defines the information content of an individual

sequence, statistical complexity refers to an ensemble of sequences generated by a particular source. If



2.1. Complex systems, Life and emergence 23

Complexity measure Definition

Alogrithmic Complexity Number of symbols of the shortest program that produces

an object. The value for algorithmic complexity is always

an approximation, since it is not possible to determine

with certainty what the minimal program would be.) E.g.

[67], [239].

Statistical Complexity Number of symbols of the shortest program that produces

the statistically significant features of an object. E.g.

[368], [369].

Connectivity The number of edges that can be removed before the

graph representing the object is split into two separate

graphs. E.g. [392], [131].

System structure and organisation Function of the degree of connectivity between and

within subsets of components. E.g. [392].

Design size The length in symbols of the assembly procedure for an

object. E.g. [201]

Logical depth Computational complexity of the assembly procedure for

an object i.e. the times it takes to compute the assembly

procedure. E.g. [26]

Sophistication The number of control symbols in the program that gen-

erates the object. E.g. [242].

Grammar size The number of production rules in the program required

to produce an object. E.g. [131].

Design structure and organisation Function of the number of modules, the reuse of these

modules and the degree of nesting. E.g. [201].

Table 2.1: System and design complexity measures
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Figure 2.1: Algorithmic complexity is the length of the minimal program that is able to generate the

actual system/object whereas statistical complexity is the length of the minimal program that is able to

generate the statistically significant aspects of the system.

the source of a system’s states is random, even if that system can display a greater number of configura-

tions, the distinction among them is not statistically significant.

Some definitions of emergence (see Section 2.1.2 below) also assume a particular definition of com-

plexity, but these tend to be informal or more abstract and can be recast in terms of either interpretation.

For example, in [41], complexity is defined as the set of detectors required to detect the entity and the

tools that allow the description of the structures to be computed. An algorithmic interpretation of this

would entail that the detectors are able to detect all features of the entity, while a statistical interpretation

would entail that that they would only be able to detect the statistically significant features.

2.1.1.2 Self-organisation and robustness

Self-organisation refers to apparently coordinated behaviours that would be extremely unlikely to arise

amidst the multitude of disorganised configurations. These apparently coordinated behaviours arise with-

out any external top-down control. From an information-theoretic perspective, organisation entails an

increase in statistical complexity [366], [370], [369]. In self-organisation, this arises from the informa-

tion dynamics themselves.

The increase in complexity reflects an increase in the predictive information Ipred(T, T ′) within

the system. If P (xfuture) is a prior probability distribution for the futures and P (xfuture | xpast), the

average predictive information is:

Ipred(T, T ′) =
〈

log2
P (xfuture | xpast)

P (xfuture)

〉
,

where 〈...〉 denotes an average over the joint distribution of the past and future P (xfuture | xpast), T

is the length of the observed data stream in the past, and T ′ is the length of the data stream that will

be observed in the future. This quantifies the information that the past provides about the future and
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captures the reduction in Shannon entropy:

Ipred(T, T ′) = H(T ′)−H(T | T ′),

where H(T ′) is the entropy for the future and H(T | T ′) is the entropy for the future given the past

[370]. An increase in predictive information can be interpreted as an increase in order since it means that

knowing how the system has behaved up to this point gives us a better idea of how it will behave in the

future, with absolute certainty as the upper limit. A similar measure using regression modelling has also

been formulated in terms of Granger causality [169], [122] and [365] (see Section 4.2.3.2).

The robustness of a self-organised system can be defined in terms of its sensitivity to peturba-

tions, where a system is more robust if it exhibits the coordinated behaviour in spite of peturbations. In

information-theoretic terms, the robustness of a system can be measured by the range of peturbations for

which the increase in predictive information (reduction in Shannon entropy) holds.

2.1.2 Theories and perspectives on emergence

In this thesis, we confine ourselves to forms of emergence that can be empirically studied and that are

computable, such as Bedau’s ‘weak’ emergence [25], leaving aside any detailed discussion of the onto-

logical or metaphysical status of emergence. While we acknowledge that there are emergent properties

that can be empirically studied but that are substrate-specific or can not be computationally modelled

[45] (at least by the conventional Turing model of computation [394]), these lie outside the scope of

the thesis. Similarly, we are aware of different metaphysical stances that one can take with respect to

emergent properties but because metaphysics lies outside the realm of scientific investigation, we do not

consider such theories here, working exclusively within an empirical computational framework.

The theories we consider below assume that it is at least theoretically possible to establish either

analytically or using empirical methods whether or not (or to which degree) a property is emergent (even

if this is unfeasible to establish in practice). They are also theories that apply to computable emergent

properties, that is, those that can be reproduced by computational simulation.

In our taxonomy of emergence theories, we characterise the different definitions and measures in

terms of:

• Observer dependence, which can be:

– Design-subjective: Whether or not a property is emergent depends solely on the observer

and his understanding of the design or set of rules underlying the system/phenomenon being

observed. For example, in [350], emergence is deemed to have occurred if (a) the language

of design L1 and the language of observation L2 are distinct, and (b) the causal link between

the elementary interactions programmed in L1 and the behaviours observed in L2 is non-

obvious to the observer. Both L2 and the non-obviousness to the observer can be seen to be

subjective (although the former can be defined independently of the observer1).

1Whether or not language can be separated from mind is a longstanding debate in the Philosophy of Language e.g. [339], [335],

[117].
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– Partial-a priori: The property is described relative to an observation or point of view e.g.

level, scale, scope, resolution, but whether or not that property counts as emergent depends

on its satisfaction of particular criteria; this is determined analytically (by the property’s

definition). For example, the flocking behaviour of boids might be deemed emergent because

it by definition involves more than one boid.

– Partial-empirical: The property is described relative to an observation or point of view, but

whether or not that property counts as emergent depends on its satisfaction of particular

criteria; this is determined empirically e.g. its dynamics viewed at a particular resolution. For

example, the flocking behaviour of boids might be deemed emergent because the behaviour

of a single boid becomes more easy to predict.

• Quantifiability. We distinguish between the following types of emergence measure:

– Categorical: A property is either emergent or not.

– Continuous-unquantifiable: Properties can exhibit different degrees of emergence but there

is no established way to quantify this.

– Continuous-quantifiable: Properties can exhibit different degrees of emergence and there is

an established method for quantifying this.

Table 2.2 gives an overview of the theories considered in terms of the characteristics above.
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2.1.3 The design-observed discrepancy

In the context of agent-based modelling and multi-agent systems design, a defining characteristic of

emergent properties and behaviours is that they arise ‘spontaneously’ without being explicitly specified

in the design. In other words, it is not possible to predict their occurrence simply from looking at the

design program. For example, in [350], Ronald et. al. say that a property is emergent if (i) the system

has been constructed from a design describing the interactions between components in a language L1,

(ii) the observer is fully aware of the design but describes the behaviour of the system using language

L2, (iii) L1 and L2 are distinct and (iv) the causal link between the interactions described in L1 and the

system behaviour described in L2 is non-obvious. This is somewhat controversial since it seems to make

the emergence classification of a property dependent on the observer’s knowledge i.e. whether or not the

observer thinks the causal link between the L1 property and L2 property is non-obvious.

A more objective criterion is given by Darley [111], who defines an emergent property as one ‘for

which the optimal means of prediction is simulation’. In other words, given the design, it can only be

deduced by stepping through the execution of the system, that the property will be present.

We can also describe the discrepancy in terms of design complexity and system complexity (see

Figure 2.2). In traditional design and engineering, the system specified in the design linearly reflects

the complexity of the design, whereas in Complex Systems design, the relationship between design

and system complexity is not always straightforward. This is because functions that are not explicitly

specified in the design can emerge. (Function is discussed in more detail in Section 2.1.6).

2.1.4 The information dynamics of emergence

Information-theoretic interpretations of emergence focus on the dynamics of the system when viewed at

different resolutions [330]. Emergence can be said to occur in a system when lower resolution dynamics

have a greater predictive efficiency than higher resolution dynamics. At this lower resolution, one can

predict the statistically significant features of the system’s future.

Predictive efficiency is defined as:

e =
E

Cµ

where e denotes the predictive efficiency, E the excess entropy and Cµ the statistical complexity.

Excess entropy is defined as a measure of the total apparent memory in a source [103]:

E =
∞∑

L=1

(hµ(L)− hµ),

where the average uncertainty about the Lth symbol hµ(L), provided the (L−1) previous ones are given

is:

hµ(L) = H(L)−H(L− 1), L ≥ 1

for the entropy H(L) of length-L sequences, and

hµ = limh→∞
H(L)

L

is the source (per-symbol) entropy rate.
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Figure 2.2: Design and system complexity. (a) In traditional design and engineering paradigms, the

system complexity can be established analytically from the design complexity i.e. if Cdesign stands for

the design complexity, Csystem stands for the system complexity, and Csystem = f(Cdesign), we can

establish what the function f is from the design. (b) Paradigms that exploit emergent properties and

behaviours are those where the relationship between design complexity and system complexity can not

be established analytically simply from the design (even if empirically, they are discovered to be related

in some way). This is because in the system, the relationships and interactions between the components

tend to be dynamic and constantly changing in ways that are not explicitly defined in the design i.e. we

can not establish what the function f is from the design.
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The excess entropy E can be seen as the mutual information between the source’s past and future

[141], [103] i.e. the amount of information observed in the past which can be used to predict the fu-

ture. The most efficient level of observation is therefore one which optimises (relative to the particular

problem at hand) the trade-off between:

• reducing E, which means loss of predictability and gaining simplicity i.e. reducing Cµ; and

• increasing E and losing simplicity (increasing Cµ).

The information dynamics of a system differ depending on the resolution of observation, with the

dynamics of each resolution having its own E, Cµ and hence e. Emergence can be said to occur in a

system when lower resolution dynamics have a greater e than higher resolution dynamics. While in a

system with random behaviour, Cµ is directly proportional to E (so that e is the same at all resolutions),

this is not the case for a system exhibiting emergent behaviour. In this case, the difference in Cµ between

higher and lower resolution levels of description do not relate linearly to differences in E, and E is

disproportionately low relative to Cµ at low resolutions.

The statistical information-theoretic interpretations of emergence and complexity have three impor-

tant implications:

1. Emergence is a function of both the system being observed and the resolution of observation.

2. For any two resolutions, we can determine the predictive efficiency e of one with respect to the

other (assuming that E and Cµ can be measured).

3. We can distinguish different degrees of emergence and these can (at least in principle) be quantified

using the value e.

2.1.5 Macro-properties, scope and resolution

In Section 2.1.4 we only considered the resolution of observation/description. However, this ignores the

spatial (in the most general sense) aspect of properties (their extension).

In [353], the scope of a system representation is defined as the set of components within the bound-

ary between the associated system and its environment. Ryan distinguishes between (physical) spatial

and temporal dimensions, where the temporal scope is the set of moments of time over which the system

is represented while the spatial scope is the set of location points occupied by the system2.

Resolution is defined as the finest spatial distinction between two alternative system configurations.

Again, we can distinguish between (physial) spatial resolution and temporal resolution, where spatial

resolution defines the size and/or distance between the system’s distinguishable locations and temporal

resolution defines the duration of a moment in time. In terms of Shannon entropy, a higher resolution

can distinguish a greater number of possibilities, n and hence has a greater value for H , where

H = −
n∑

i=1

pilog(pi) = log(n)

2Spatial scope is not explicitly defined by Ryan (2007) but we apply the general definition to physical space to get this definition.
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[370]

Similarly, in [21], the author defines the universe using two axes. One axis defines the range of sizes

of different aggregates, which can be seen as equivalent to scope. The second axis defines the range of

complexity of aggregates of a given size, which can be equated with resolution. In Section 3.2, we use

these two axes to define properties at different levels in ABMS.

In the computational context, we draw a further distinction between resolution and scale. Whereas

scale is only a transformation by multiplication and hence independent of how the system is represented

in terms of its components (the scale’s numerical units are established independently of the compo-

nents), we take resolution to be a more general attribute of the representation (where the units might be

established either independently or with respect to the components). 3

2.1.6 Function, meaning and entanglement in Biological systems

Biological systems are characterised by hierarchy, heterogeneity, polymorphism, context dependency,

evolution, reprogrammability, emergence, non-linearity, and complexity [118], [311], [74], [72]. The

domain of Systems Biology concerns itself with the study of such complex biological systems. It seeks

to integrate different levels of abstraction and determine the relationships between them that allow the

system to function as a whole [264], [286], [299]. Although this Systems approach to Biology is fairly

well established [285], new information-processing metaphors and enhanced computational capabilities

have transformed it. Today’s Systems Biology is characterised by:

1. A desire to describe the states and relationships of some biological phenomena quantitatively [22].

2. An attempt to understand the underlying mechanisms and ‘laws’ of biological phenomena rather

than simply being able to relate sequences of observable phenomena. This also means taking a

holistic rather than reductionist approach. In addition to being concerned with what biological

systems are composed of, the way system components relate and interact with one another is now

a major focus of research [204], [283].

Hierarchy, context dependency, polymorphism and multi-functionality mean that the study of bio-

logical systems can involve categories that cut across the categories of base level properties. This idea is

particularly prevalent in today’s neurosciences and biochemical research programs. Today, neural pro-

cesses are conceptualised in terms of distributed information processing where populations of neurons

form dynamic functional units or modules and each neuron can operate in several modules at the same

and/or different times [253], [188]. Statistical computational techniques have been used to analyse and

identify functional units e.g. [113], [392], [65] from the patterns of neural activity. Distributed neural

processing can also be seen as the inspiration behind artificial neural networks (ANN) [6], [37]. At the

biochemical level, there are several research programs that aim to understand multi-functionality and

context dependency at both the genetic level [129], [396] and protein level [211], [212], [213].

3In our formalisation of levels, scale can be recast in terms of scope and resolution since in a computational system, the

maximum precision of measurement is fixed.



32 Chapter 2. Modelling and simulating complex living systems

A related research area that has recently seen some revival is that of Biosemiotics4, which studies

the production, action and interpretation of signs in the biological realm. It views biological systems as

systems of signs. In [18] Barbieri suggests two fundamental principles that are held by those working in

the field today:

• Semiosis (activities involving signs or communication) is unique to life.

• Semiosis and meaning are natural entities (as opposed to coming from some higher intelligence).

Rather than seeing biological systems as purely physical systems and assuming reductionism or ef-

ficient causation, Biosemiotics is concerned with the study of sign actions to understand the emergence

of biological meaning e.g. [51], [274]. It is the biological significance of codes and sign processes

(which might be realised physical media) that is of interest. These range ‘from genetic code sequences

to intracellular signalling processes to animal display behaviour to human semiotic artifacts such as lan-

guage and abstract symbolic thought.’ Furthermore, instead of seeing ‘meaning’ and ‘codes’ merely as

metaphors, many working in the field see them as being ontologically on a par with physical constructs.

In [51], Bruni proposes a theory of categorical perception (CP) in nature, which can also be seen as a

means of relating properties at different levels in a hierarchy that influence on another and hence have

causal efficacy.

Similarly, in [17], the notion of function is formalised by defining context-dependent functional

equivalence classes [253], [188], [315]. An equivalence relation is a type of relation on a set that provides

a way for elements of that set to be identified with other elements of the set. Those elements considered

equivalent through this identification form an equivalence class (see Definition 1).

Definition 1 Equivalence relation. If x, y and z are elements of a set W , an equivalence relation, * *,

on W is a relation on W that is:

• Reflexive: x is equivalent to x for all x in W .

• Symmetric: if x is equivalent to y, then y is equivalent to x.

• Transitive: if x is equivalent to y and y is equivalent to z, then x is equivalent to z.

In the case of functional equivalence classes, the criterion for equivalence is the outcome of oper-

ations relative to an established goal; this abstracts from how the outcome is achieved. To say that an

entity or property is multi-functional therefore, is to to say that it belongs to more than one functional

equivalence class. In the biological context, we distinguish between senses in which this can be true:

1. The property5 has multiple ‘meanings’, where each ‘meaning’ corresponds to membership in a

different functional equivalence class, and ‘meaning’ is defined in terms of the role the property

plays in a higher level property i.e. the other properties present that constitute its context. We call

this type of multi-functionality semantic multi-functionality;
4The foundations of Biosemiotics can be seen to lie in the work of Jakob von Uexkull [404] and Charles Peirce [317] as well

as the more general discipline of Semiotics, the study of sign processes.
5The term ‘property’ is used throughout this thesis to refer to anything that is detectable. This includes objects, entities,

processes, behaviours, events etc. More precise definitions are given later.
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2. The functional equivalence class that the property belongs to is ‘causally’6 dependent on the

property’s context. In other words, a particular environmental context gives the property certain

‘power’ to play a particular role in a higher level property that it would not ordinarily possess. We

call this type of multi-functionality reactive multi-functionality.

Multi-functionality implies that elements of a system can simultaneously belong to different hierar-

chies and that different hierarchies can themselves play different roles in different functions. This results

in tangled hierarchies or heterarchies [195], [387], [173], [174], [358], where a given element or set of

elements can play multiple roles at multiple levels. For example, a group of neurons in the brain might

play the role of both an input module and an integrating module for a particular cognitive function. A

fundamental tenet in developmental systems theories (DSTs) of biological systems is that the elements

of a system are highly connected and can simultaneously constrain and be constrained by other elements

of the system. Two main categories of DSTs can be distinguished [229]:

1. DST-1, which represents the position of Griffiths [170], Gray and Oyama in [306]. They cite six

tenets of DST:

(a) Joint determination by multiple causes, where every phenotypic trait is produced by the

interaction of many developmental resources;

(b) Context sensitivity and contingency, where the significance of any one cause is contingent

upon the state of the rest of the system;

(c) Extended inheritance, where an organism inherits a wide range of resources that interact to

construct that organism’s life cycle;

(d) Development as construction, where neither traits nor representations of traits are transmitted

to offspring. Instead, traits are reconstructed in development;

(e) Distributed control, where no one type of interactant controls development;

(f) Evolution as construction, where evolution is not a matter of orgainsms or populations being

moulded by their environments, but of organism-environment systems changing over time.

2. DST-2, as adopted by Ford and Lerner [147]. Their focus is on Systems Theory [402], hierarchy

[413], cybernetics and feedback [14], open systems [329], self-regulation and self-organisation

[210] and autopoeiesis [277].

Although the statistical measures of complexity and self-organisation reviewed above allow for de-

pendency relations at different temporal resolutions, the underlying assumption is that entities, properties

or processes are separable from one another. However, if instead (as expressed in the six tenets of DST-

1), systems consist of entities and properties that participate in multiple networks and hierarchies, these

measures need to be extended or generalised. For example, instead of simply considering the reduction

6We discuss controversies around causality in Section 4.1
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in Shannon entropy from additional predictive information in temporal terms, it might be possible to for-

mulate self-organisation more generally in terms of the reduction in Shannon entropy from information

about different processes in different locations7 of the system.

2.1.7 Summary and discussion

The theories and measures of complexity, emergence and self-organisation reviewed above come from

domains with different motivations, hence they differ in the emphasis they put on certain aspects. The

following trends can be identified:

• Theories from engineering and design perspectives tend to emphasise the discrepancy between the

explicitly specified component or agent-level behaviours and the system’s overall behaviour.

• Statistical measures are based on the information dynamics and probabilistic dependencies of

base-level behaviours when observed at different resolutions.

• Theories from biological perspectives tend to emphasise the multiple dependencies that can exist

between behaviours at different levels in different contexts and in relation to different functions.

2.2 Modelling, simulation and hypothesis-testing
In this thesis, we distinguish between two forms of computational modelling:

1. Formal modelling, which allows us to define the way constructs relate to each other in terms of

a formal syntax and/or semantics. The syntactic and semantic rules define the operations and/or

relationships that are permissible between constructs; and

2. Simulation modelling, which allows us to define the way we believe properties, entities and/or

quantities relate to each other in the real world. The dynamic implications of these models can

then be explored in simulation, sometimes called ‘thought experiments’ [120], [91].

In this section we focus mainly on the computational techniques related to the latter of these while

Section 2.3 reviews formal modelling languages. However, the distinction is only made for practical

purposes. Theoretically, simulation models can also be characterised as more specific formal models

defining a narrower range of permissible operations (which represent behaviours and interactions in the

system being modelled).

A simulation model is an abstract representation of a system that captures certain features of the per-

son’s understanding of that system [429].8 We call an informal model containing a person’s knowledge

of a system a conceptual model. This can be made up of various assertions about the system’s properties

and the way it is expected to behave in particular conditions. For a model of a complex system, a domain

specialist often has good knowledge of how components of the system behave and also how the system
7Here, we formulate location generally as referring to any point or region in a multi-dimensional space rather than only in

physical space. For example, a system with colour, two-dimensional extension and time has four dimensions, and any space-time-

colour combination represents a point location.
8The drawing of the system boundary is itself dependent on a person’s understanding, since real complex systems are assumed

to be open.
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as a whole behaves under different conditions. From the conceptual model, a computational representa-

tion can be constructed, which we call the computational model. The simulation model formalises the

conceptual model so that its dynamic implications can be explored through simulation. Formal models

of interactive behaviours and processes, such as those reviewed in Section 2.3 give us a set of building

blocks and constraints with which we can construct this concrete simulation model.

A simulation can be thought of as a system that is generated by the simulation model, given a

particular input. The input can consist of parameters and random values that determine the system’s

initial state or configuration of states (if there is more than one system component or agent). From this

initial configuration, the behaviour of the system is determined by the algorithms of the computational

model.9 Because the execution of a Turing machine is equivalent to that of a formal system [46], it is

possible to enumerate for a computational model a set of computationally unique simulations. As well

as defining the rules for system behaviour, the conceptual and computational models can also determine

a set of permissible initial configurations.

Systems Biology’s non-reductionist approach exemplifies the philosophy behind Complexity Sci-

ence and it has pioneered the application of computational methods to the study of concrete complex

systems. In this section, we review two important computational approaches that tend to be applied in

the simulation modelling of complex biological systems: cellular automata (Section 2.2.1) and ABMS

(Section 2.2.2). While we choose to focus specifically on biologcal systems, the techniques reviewed

have been applied more widely in other Complexity Science domains. 10 Furthermore, the formal tech-

niques we address in Section 2.3 provide the means of specifying different types of simulation models.

2.2.1 Cellular automata models of dynamic spatial systems

Cellular automata (CA) models represent entities or quantities by array elements which discretize space

(which can be conceptualised as location points on a lattice).11 Time also tends to be treated discretely

so that array elements are updated in discrete steps. The state of a CA system at a particular time step

is given by the collective states of all the array elements. A CA model consists of a set of rules that

determine which state each element should evolve to given its current state and/or the state(s) of its

neighbours. This can be expressed as a set of conditions, for example:

For Element E with neighbours {A,B, C, D} and possible states {s1, s2, s3}, and where X : si

means Element X has state si and X : si → sj means that element X undergoes a state change from si

to sj :

1. If (E : s1 and A : s1 and B : s2 and C : s2 and D : s1), then E : s1 → s3.

2. If (E : s3 and A : s1 and B : s2 and C : s2 and D : s1), then E : s3.

9If these are non-deterministic, (pseudo-)random values are generated by an additional random generator component also play

a role in determining the system’s behaviour.
10We are also aware of the application of computational techniques to knowledge discovery or data mining, where hidden

patterns are extracted from experimental data [236], but because we do not address the experimental aspects of Systems Biology

in this thesis, these are not included in this review.
11In much of the literature on cellular automata, array elements are referred to as ‘cells’ but we avoid using this term for this

purpose to avoid confusion with biological cells.
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3. If (E : s3 and A : s2 and B : s1 and C : s1 and D : s1), then E : s3 → s2.

The neighbourhood of an array element is the set of element states it has access to for a specific

rule set and that can contribute to the outcome of rule application. It is possible for array elements to

have different neighbourhoods for different rule sets. A neighbourhood can be:

1. Spatially defined and static: e.g. for a 2-D CA using co-ordinates, the array element at (3,3) always

has neighbourhood (3,2),(3,4),(2,3),(4,3) for every time step. Examples of such neighbourhoods

include the Moore [293] and von Neumann [403] neighbourhoods in traditional homogeneous

CA. Conway’s Game of Life uses the Moore neighbourhood (consisting of all adjacent cells) and

applies rules homogeneously throughout the grid.

2. Spatially defined and dynamic. This includes cases where:

(a) The neighbourhood is defined relative to a mobile entity rather than to an array element.

(b) The neighbourhood changes as a result of array element state. For example, the neighbour-

hood of an array element might expand as time goes on.

(c) The neighbourhood is defined in relative rather than absolute spatial terms. For example, the

neighbourhood of an individual entity in relation to a particular rule set might be the nearest

individual(s) of its own type, with no absolute distance specified.

(d) A combination of the above.

As well as discrete states (e.g. dead, alive) represented by discrete variables, the state set of CA array

elements can also be continuous and represented by continuous variable(s). Similarly, rules governing

state transitions can be parameterized and coupled to numerical equations.

In the context of modeling biological systems, we can identify four broad categories of CA-based

techniques, which have different representational capabilities:

1. Homogeneous Systems (Figure 2.3), in which the whole automaton is treated homogeneously and

is governed by the same rule set.

2. Particle Systems/Lattice Gas Models (Figure 2.4), in which sites represent individual instances of

an entity type which can move around on a discrete spatial grid; the behaviour of each entity type

may be governed by its own set of rules. An array element can represent:

(a) an individual instance of a biological entity type e.g. a cell;

(b) more than one biological entity whose locations within the array element are undefined [171]

(c) a quantity of biological entities or substances;

(d) an abstract quantity, such as a probability distribution.

3. Grouped Lattice Models (Figure 2.5), in which groups of sites are treated homogeneously i.e. their

behaviour is governed by the same rule set. These can be individual-based, with each group of

sites representing an individual instance of a particular entity type.



2.2. Modelling, simulation and hypothesis-testing 37

4. Hybrid Models (Figure 2.6), which combine the above systems with each other or with other

systems and techniques; continuum equations can be integrated, making the state space for a site

continuous rather than discrete. More recent models tend to belong to this category since each of

the techniques above are likely to be insufficient on their own.

Figure 2.3: Homogeneous CA: a and b represent the states of the array elements.

Figure 2.4: Lattice Gas Model / Particle System: a, b, c, d represent entity states; different shades

represent different entity types.

Figure 2.5: Grouped Lattice: a, b, c and d represent states of entities (can be seen as fragments or

locations belonging to group/higher-level entity) making up groups; 1 and 2 each refer to a group.

2.2.1.1 Homogeneous Systems: A discrete approach to modeling spatio-temporal dy-

namics and system evolution

Homogeneous systems include many of the earliest CA and their behaviour has been widely studied

[403, 419, 420, 421, 357, 422]. The distinguishing feature of these systems is that the CA is treated

conceptually as a single system that evolves with time. In modeling and simulating biological systems

they have been applied in two main ways:

1. In Heuristic Models, they are used to produce certain spatio-temporal patterns or dynamics found

in biological phenomena (e.g. four categories of CA behaviour are described in [420] and more
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Figure 2.6: Hybrid Model

formally in[205]). Since biological systems can also be characterised in these terms, the two sys-

tems — the CA model and its biological subject — can be easily compared. Example applications

of this approach include population dynamics models [183, 307] and oscillatory media [223, 139].

2. Coupled-map lattices [221] discretize and simplify established continuous models based on non-

linear evolution equations (often PDEs) that would otherwise be intractably complex to solve

continuously for the whole space. Each site (array element) is coupled to an equation or ‘map’,

which uses the site’s current state and the state of its neighbours to determine the state at the next

time step. Such models require mathematical methods for approximation, such as Eulers method

for discretizing PDEs. Because the array element update rule is based on real numerical values, the

state space is continuous rather than discrete. Example applications of this approach can be found

in [139, 410, 81, 408, 409], where Reaction-Diffusion systems for spatial pattern formation and

evolution are modelled and in [411, 336], where it is used to model Activator-Inhibitor behaviour

in neural networks.

2.2.1.2 Lattice Gas Models/Particle Systems: Mobile Entities

In lattice gas models, each site of the cellular automaton can be seen to represent a location and entities

can move from site to site. Lattice gas CA have been used to represent mobile biological entities at

many different scales, from organisms [139, 42] to cells [231, 55, 56, 114, 115, 116, 1, 4, 44, 3, 2] to

particles [139, 81]. Often, the state transition rules for the lattice sites are probabilistic, making the

results of simulations non-deterministic. Like homogeneous models, lattice gas models are used both

for capturing system spatio-temporal dynamics and to simplify the representation of continua by treating

sites as aggregates of individuals or more abstract entities such as probability distribution functions

[384, 12, 13, 99]. In some models, different types of individuals are specified and different rule sets are

defined for each type so that individuals belonging to these types then behave differently. 12

2.2.1.3 Grouped Lattice Models: Hierarchical Models and Physical-spatial Be-

haviour

There are two main categories of grouped lattice models: individual-based and non-individual-based.

The first of these can be seen as an extension of lattice gas models whereas the second can be seen as ex-

tending homogeneous CA systems. The grouping of sites in a grouped lattice model allows hierarchical

rules to be defined. The state transition of a lattice site can be determined by:
12Such models are essentially agent-based in style, except they do not have internal data representations (memory).
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1. the site’s current state;

2. the group’s current state (which might be the aggregate of the states of all sites in the group).

Neighbourhoods can also be defined at the group as well as the individual level. For example, rules can

be defined in such a way that the behaviour of the two groups also show dependencies on one another.

For example, when group 1 exhibits behaviour A to a high degree, group 2 shows less of behaviour B

[235]. This allows sophisticated multi-level interactions to be specified.

In individual-based grouped lattice models, lattice sites are indexed and those with the same index

are part of the same entity. Links between differently indexed sites represent the surfaces or membranes

of the entities. The grouping of sites and explicit representation of space in CA also mean that sophis-

ticated physical behaviour can be defined for an entity. Whereas in lattice gas models, entities simply

have a location on the grid, grouped lattices allow spatial properties such as shape and size to be mod-

elled easily. (It is theoretically possible to express extension and shape in lattice gas models using state

variables but this is an unwieldy approach and would require a great number of variables and extremely

complicated state transition functions.) This makes physical-spatial behaviours easy to specify, iden-

tify and measure. Biological applications include models of cell development and movement using the

Cellular Potts Model [162, 214, 341, 196, 272, 305, 88, 292] and models of organism morphogenesis

[359, 70].

2.2.1.4 Hybrid Models

In biological systems modeling, hybrid models tend to be used to model entities (which may correspond

either to single lattice sites or to groups of lattice sites) in continuous media. Either (i) a lattice site

has both an entity aspect and a continuous aspect, or (ii) each lattice site has either an entity aspect

or a continuous aspect. The continuous aspect might itself be represented by another CA model that

simplifies continuum evolution (as described in Section 2.2.1.1) so the resulting model exploits both

the entity-interaction-based modeling capabilities of CA and the computational benefits of discretizing

continuous fields.

Examples of hybrid CA models in biological systems modelling include many growth and morpho-

genetic models, such as vascular growth [310], tumour growth [126, 294, 347], and artificial cytoskeleton

morphogenesis [27, 28].

2.2.1.5 Summary

We can characterise a CA model by:

1. Its rules, which can be:

• deterministic or probabilistic. Biological CA models often have both (e.g. [359, 408]).

• local or non-local. Non-local rules are those that are specified in terms of global state vari-

ables. Examples can be found in [337], [115], [222] and [383].

The rules reflect the modeller’s hypotheses about the behaviour of a system’s elements, which

might be biological entities and/or quantities.
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Figure 2.7: Unmediated relationship: Entity b1 has direct access to c1’s state variables Xc1 , Yc1 and Zc1 .

Figure 2.8: Mediated relationship: Entity b1 has mediated access to c1s state variables Xc1 , Yc1 and Zc1 .

There are functions governing the way c’s state variables are represented to b.
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2. Its updating scheme, which can be synchronous, with all array elements being updated at every

time step (although of course this may be executed sequentially) or asynchronous, where only a

subset of the array elements are updated at each time step. 13 More recent CA models (and agent-

based models) of biological systems have tended to have asynchronous updating as it is argued

that this is more faithful to the Biology [220, 119]. The updating scheme can have a profound

influence on the resulting states of each simulation time step.

3. The array element neighbourhood(s), which can be static or dynamic. Dynamic neighbourhoods

model changes in the system structure or topology, such as physical movement or participation in

different biological processes.

4. The state space of its array elements, which can be discrete or continuous. This is linked to the

CA rules.

2.2.2 Agent-based modelling and simulation

Agent-based modelling (ABM) is a general approach for modelling complex systems. The term refers

to a broad range of computational techniques (including CA e.g. in [171], [27, 28], [349], [388] and

term rewriting e.g. [318], [381], [87]; see also Section 2.3) and implementations [267], [300].14 In

ABM, biological entities are represented by agents. Different agent types are used to represent different

types (e.g. species) of biological entities and the model consists of the set of template classes for all the

system’s agent types. As well as agents, other variables and objects might also be specified to represent

global and local environmental state (see Section 2.2.2.1). A specification for an agent type consists of:

1. An internal data representation that keeps track of its current state, usually in the form of state

variables;

2. A way of modifying the data representation based on its own current state and/or the state of its

environment (which can be local, neighbourhood-wide or even system-wide);

3. A set of rules governing its state changing and its actions in its environment. These rules can be

deterministic or non-deterministic and in adaptive agents (see Section 3.1.2.3), the set of rules can

change dynamically for an agent type. Agents can change the state of other agents, objects and

environmental variables either directly or indirectly through some mediating artefact (See Section

2.2.2.2). Changes in the agent’s state might also be determined by its own unique history.

During simulation, agent instances, their environment, and their interactions together represent the

biological system (see Figure 2.9).

13There are several different asynchronous schemes, including: Clock [389, 265], Cyclic [220], Random Independent [182] and

Random Order [182]. Succinct descriptions of these can be found in [97].
14Individual-based CA models can also be more generally classified as agent-based models but with empty internal data repre-

sentations.
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Figure 2.9: Multi-Agent System (MAS): Arrows indicate interactions, which can be ‘actions’ or ‘per-

ceptions’. Perceptions are changes in agent state from access to the states of other elements of the model

(e.g. other agents, environmental variables). Actions are changes to the state of other elements of the

model caused by the agent. Perceptions and actions can also be mediated by some mediating artefact,

which transforms the state variable value or representation (as described below).
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2.2.2.1 Representing Space and Agent Environments

An agent’s environment can be defined as any element in the system that influences or is influenced by

the agent’s behaviour or changes in state. This might be represented computationally by:

• other agents;

• global state variables

• (spatially) local state variables

Environments can be:

1. Passive or active.

(a) Passive environments are unable to change their own state; their state only changes through

the action of agents.

(b) Active environments can initiate changes in their own state (strictly speaking, these are them-

selves agents).

2. Static or dynamic.

(a) Static environments have states that are fixed through time. They can be treated as fixed

parameters for the simulation.

(b) Dynamic environments are those whose states can change through time.

In models of biological systems, agents are usually situated i.e. located in space. Partial differential

equations or CA can then be used to compute dynamic local state variables. A discussion of different

representation mechanisms for agent environments can be found in [238] and examples of hybrid models

using equation-based techniques to represent the agent environment can be found in [86].

2.2.2.2 Structuring interactions in a system

In the domain of Systems Engineering, much focus has been placed on defining organisational structures

that facilitate and control interactions between agents. These can be applied to agent-based models of

biological systems when modelling the hierarchy, organisational grouping and stigmergy (where individ-

uals use environmental cues to communicate indirectly with each other) prevalent in Biology. Here, we

introduce two important techniques that can be used to specify structured interactions between entities:

1. Mediated interactions;

2. Organisational metaphors.

Mediated Interactions. A mediating artefact is an element in the system that governs the interactions

between other elements. It can be an agent, an independent rule set or function that transforms variables,

or a structural element (see below). From the agent metaphor, interactions can be ‘actions’ or ‘percep-

tions’. In ’perceptions’, a distinction is drawn between the global value of a system element’s state and
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an entity’s version of that element’s state (see Figure 2.7 and Figure 2.8). An entity may interpret en-

vironmental conditions through mediating artefacts [303, 348, 60] to give internal representations that,

although driven by the global representation, are not identical to it. For example, entity A may only de-

tect entity B when it has state s1, when entities C,D and E are present, or when environmental variable

x exceeds value i. Similarly, actions can be mediated in that the same action by different agents can have

different effects because additional interactions occur between the agent and the mediating artefact(s)

before the action reaches its object. Mediating artefacts therefore represent an additional layer of inter-

action that sits between different system elements. This feature is likely to have growing importance as

biological entities and substrates are regarded more and more as possessing sophisticated context- and

history-dependent information processing capabilities [343], [299], [338].

Organisational metaphors. There are well-established organisational metaphors with concepts such as

roles, inter-role relationships, groups and societies. Groups define a ‘local’15 environment which only

members can access. In the Agent Society metaphor for example, a set of agents interact together using

specified protocols and share data. Membership of a society is dynamic so that agents can enter and

leave a particular society at different times during simulation. Agents can also participate in more than

one society so that at any given time, they can relate to other system elements in different ways. The

types of interaction relationship and organisational structures used depend on the specific model adopted.

One example is the agent-group-role (AGR) model introduced in [142] and adopted in [47] for modeling

intracellular processes.

In the AGR formalism (see Figure 2.10), agents hold roles. A role has a set of properties and

interaction capabilities that the agent inherits when it takes on the role. A single agent can hold more than

one role but each role instance can only be held by one agent. Sets of roles are related together in groups,

which are instantiated by agents holding these related roles. Agents may also interact differently with

their roles depending on their type and state, giving different expression of role properties by different

agents. For example, a role a could have a rule X associated with it that causes the agent to move in

direction v with probability p where probability p is determined by the absolute value of the agent’s

current speed s.

Using the AGR organisation structure, it is possible to specify interactions between:

1. a role and the whole system;

2. a role and a group;

3. roles in the same group;

4. different groups / roles in different groups;

5. agents and roles;

15‘local’ is defined abstractly as any subset of the whole system that the agent has access to rather than referring exclusively to

spatial proxmity



2.2. Modelling, simulation and hypothesis-testing 45

Figure 2.10: Agent-Group-Role Organisation. Roles and Groups can interact with the whole system

and with each other. There is within-group interaction between Role b and Role c, and between-group

interaction between Role a and Role d. Agent x and Agent y both have two roles. Agent y is also a

member of both Group A and Group B.

Further examples of organisational models using the basic Agent Society metaphor can be found in

[60] and [98]. These models support the specification of dynamic systems with dynamic structures by

allowing changes to agent interactions, mediators and group membership to be controlled.

Environmentally-driven polymorphism. In [287], polymorphic self-* agents (e.g. self-organising,

self-regulating agents) that are capable of multiple roles as directed by the environment are introduced.

These agents evolve an optimum core set of roles for which they are responsible, while still possess-

ing the ability to take on alternate roles as environmental demands change. Stigmergy, where agents rely

solely on environmental cues for indirect communication with other agents, is used to adapt polymorphic

agents. This is termed environmentally-driven polymorphism.

2.2.2.3 Agent behaviour

We can categorise agent-based models according to certain categories of agent behaviour. An agent can

be:

1. Reactive or Pro-Active [218]:

(a) Reactive: At each time step, the behaviour of an agent (the changes in either its own and/or

its environments state) is determined only by the state of its environment, including other

agents (we discuss representation of the environment below) and/or its own relative state to

its environment.

(b) Pro-active: The behaviour of an agent can be determined by its own absolute state as well as

the state of its environment and/or its own state relative to that environment.

2. Adaptive or Non-Adaptive:
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(a) Non-Adaptive: An agent’s behaviour is controlled by a static set of rules and variables.

(b) Adaptive: An agent can undergo transformations that result in a change to its repertoire of

behaviour. This is achieved by making agents’ rule and variable sets dynamic through:

i. Manipulating rule sets at the entity level: An additional rule set is attached to the agent

type governing the evolution of its behavioural rule set. Examples of this include genetic

algorithms, which select the most successful behavioural rules from a set to give differ-

ent rule sets at different times and changes in connection weights in neural networks.

ii. Making agents’ positions within the organisational structure of the system dynamic:

Agents can change roles or group membership. 16

Previously, the majority of biological modeling applications of agent-based modeling have tended to

use non-adaptive reactive agents, largely because the biological epistemic models on which the compu-

tational models are based are adequately represented by such models. The individual-based particle and

grouped-lattice CA models described in Section 2.2.1 can also be classed as systems with non-adaptive

reactive agents. However, as biological data supporting more dynamic, context- and history-dependent

information processing is obtained, it is likely that pro-active and/or adaptive agents will begin to be

more widely used.

2.2.2.4 Applications in Systems Biology

Like CA, agent-based models have been used to explore the emergence of system-level behaviours and

states from entity-entity and entity-environment interactions, particularly those manifesting themselves

spatially. In the past, the rules governing agent behaviour were fairly simple, and models were heuris-

tic rather than precise e.g. ‘swarm’ models exploring population behaviour in [372] and [346]. It is

debatable whether these early models were based on biological models, or if they simply sought to

‘imitate life’. More recently, ABM has been used to try to capture the observed behaviour of real bio-

logical entities. Examples include cells in biofilms [247, 246], tissues [406, 405, 123], tumour growth

[271, 82, 270, 269, 15, 16] and ants in colonies [208, 207]. At the biochemical level, ABM has been used

to integrate spatial and non-spatial interactions at the molecular level in models of metabolic pathways

[308, 251]. Non-mobile spatial models (where entities are situated but stationary) include models of

neurons, as described in [320].

Because of its extensibility, the agent-based framework encourages models to be shared. An agent

in one model (e.g. bacterium in [43] and cell in [137]) can be used in another model. And an entire

agent-based model can be extended and modified for more specific biological systems (e.g., the immune

system in [361] and [349]). The sharing of models also encourages different scales to be explored, e.g.

a sophisticated MAS can become an agent in a higher level model.

More recently, agent-based models have been devised to exploit the organisational features dis-

cussed in Section 2.2.2.2 [232, 318, 47, 98] to model the complex interaction relationships that drive

16Note that the types refer to agent characteristics and not to system characteristics, which are distinct. For example, non-

adaptive agents can still give rise to adaptive system behaviour [42].
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biological processes. For example, an agent-based model using the Agent Society metaphor is used to

model the metabolic pathway for carbohydrate oxidation in a cell. Cell components (e.g. cytoplasm,

inner mitochondrial membrane) are modelled by software agents. Agents play different roles at dif-

ferent points in the pathway (e.g. cytoplasm plays the alcoholic fermentation, lactic fermentation and

glycolysis roles).

2.2.2.5 Summary

Agent-based models are a set of specifications or templates for different agent types. These determine

how agents of a given type will behave when they are in different scenarios. Agents’ behaviours are often

interdependent since an agent can cause changes in other agents’ states and each agent’s environment

might itself consist of other agents.

Since agent-based simulations are computational, they are necessarily closed i.e. all system be-

haviour is generated by the algorithms representing the conceptual model (assuming there is no human

user input). This models the ontologically reductionist view that higher level properties including ‘top-

down’ causation are not able to exist without base level properties. However, this does not preclude

higher level properties (including behaviours) being able to exert effects on the base level properties. Fur-

thermore, in terms of predictive efficiency, it may be more valid to base predictions on functional equiva-

lence classes, which define sets of state- or state-transitions rather than on states or state-transitions alone,

(see also Section 2.1.6 and Section 3.4.1). This can be the case for both functional and non-functional

states. In the case of functional states, previous functional states defined by functional equivalence

classes would be more efficient at predicting future functional states (which other functional equiva-

lence classes are realised). In the case of non-functional states, previous functional states would be more

efficient in general at predicting future states, even if these have no functional significance.

2.2.3 Summary and discussion

CA and ABM techniques can be contrasted with equational modelling techniques such as ordinary and

partial differential equations (ODEs and PDEs respectively) in their treatment of biological entities as

discrete units or individual computational machines. These techniques are also said to be ‘bottom-

up’ or ‘individual-based’ [172], [295] since the simulation model is specified at the entity level. More

sophisticated frameworks based on this approach have been developed, including:

• Hierarchical topologies such as grouped lattices (see Section 2.2.1.3) and the AGR architecture

(see Section 2.2.2.2), which allow hierarchies to be explicitly specified so that higher level entities

are composed of lower level entities;

• Mediating artifects (see Section 2.2.2.2), which provide an architecture for modelling sophisticated

interactions between entities and their environment;

• Environmentally driven polymorphism (see Section 2.2.2.2), which provides a framework for

modelling adaptive behaviours, context sensitivity and multi-functionality.

By providing abstract system architectures, these techniques allow sophistcated ABMs of biological

systems to be easily specified.
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2.3 Modelling meanings computationally and the importance of

formalisation
Scientists require a common language with which they can communicate with each other. However,

natural language can be vague and/or ambiguous. The purpose of formalisation is to overcome this

by providing a ‘vocabulary’ with formal semantics and/or syntactic rules which determine the kinds

of things that can be represented or modelled. In this section, we review formal modelling languages

used in complex systems modelling, which are themselves abstract formal models of complex systems.

This sense of ‘model’ differs somewhat from the one we address in Section 2.2, where we reviewed

computational techniques that are used to model and simulate concrete complex systems.

However, as already pointed out in Section 2.2, this distinction is somewhat artificial since a sim-

ulation model is simply a more specific formal model. For example, a formal algebra might be used

to model the property of concurrency. This formal algebra can then be used to model concurrent sys-

tems with other properties. Since formal languages provide the means by which concrete models can be

specified, the two types of modelling are inextricably linked. Languages with formally defined seman-

tics also allow us to reason about and prove relationships between behaviours e.g. equivalence of two

behaviours. Equational reasoning and verification can then be used to establish that a system satisfies a

certain property.

Formal modelling languages for complex systems consist of a set of syntactic and/or semantic rules

defining the permissible operations on entities (the system components). These operations determine

the set of transformative and interactive relationships that entities can have with one another and hence

the types of states and behaviours that can be described. The languages tend to fall into the following

categories:

1. Process algebras, which formally define interactions between entities and constraints governing

them to be described formally. Models expressed in process algebras can be analysed algebraically,

and certain properties of the models can be proved. Process algebras used in the modelling of

biological systems include:

• π-calculus and extensions;

• Reversible Calculus of Communicating Systems (CCS-R);

• Core Formal Molecular Biology;

• Beta Binders;

• Bioambient Calculus;

• Brane calculus and extensions;

• Performance Evaluation Process Algebra (PEPA).

2. Graphical formalisms and concurrency automata, which use graph representations to describe state

changes within entities and interactions between entities. These include:
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• Petri Nets;

• State charts;

• Sequence charts;

• X-machines.

3. Rewriting grammar systems, which use term rewriting rules to describe interactions and simulate

system evolution. These include:

• L-systems and extensions;

• Multisets;

• P-systems;

• MGS.

Differences between formalisms tend to lie in:

• the emphasis they respectively place on the static and dynamic aspects of the system components;

and/or

• the degree to which their semantics are formalised, and, if they are formalised, the differences

between these semantics, e.g. how restrictive they are (particularly in the case of algebras, the se-

mantics of one algebra are often derived from specialising or restricting the semantics of another).

Table 2.3 summarises the main modelling formalisms in terms of these differences. From the mod-

elling practitioner’s perspective however, the choice of formalism is usually determined by practical

considerations such as expressive intuitiveness and the modeller’s expertise since most formalisms are

able to express any concrete computational model (i.e. they are able to represent a Turing machine).

2.3.1 Process algebras

A process algebra is a mathematical structure satisfying the axioms given for the basic operators. A

process is an element of a process algebra. By using the axioms, we can perform calculations based on

processes. The insight formalised by many process algebras is that state and interaction potential are one

and the same e.g. names are both state variables and communication channels (see below).

The majority of process algebras applied in Systems Biology address molecular interactions but do

so at different levels of abstraction e.g. whole protein, domains. They can also be used to prototype and

test agent-based models (see Section 2.2.2).

2.3.1.1 π-calculus [291], [290]

The main motivation behind the π calculus was to enable the description of concurrent mobile processes.

Processes can interact with each other by sending and receiving messages synchronously on complemen-

tary input and output channels, which are given by names. Names are also the variables (the content of

the messages) so the recipient can use the name for a further communication. This allows the system’s
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configuration to change so that mobile processes can be modelled. In biological systems modelling,

name changes can represent both molecular modifications and interactions between molecules [344].

The following extensions have also been important in improving expressivity for biological systems

modelling:

• Stochastic π-calculus [327]: Rates are assigned to channels so that quantitative models and pre-

dictions can be made.

• π-calculus extended with Enhanced Operational Semantics (EOS) [108], [105]: Rich labels are

given to the system state transitions to represent certain aspects of computation such as causality

or locality.

2.3.1.2 Reversible Calculus of Communicating Systems (CCS-R) [289], [107]

Using CCS, biological entities (e.g. reactants in chemical reactions) can be modelled as processes which

undergo state changes. In particular, the CCS duality between names and co-names can be used to

represent the complementary aspect of many biological scenarios e.g. two binding sites that interact,

enzyme lock and key mechanism. Danos’ extension to CCS (CCS-R) assigns an identifier to each process

and an individual memory stack to keep track of past communications. This allows reversibility to be

built into the syntax.

2.3.1.3 Core Formal Molecular Biology [108], [109]

Core Formal Molecular Biology is a modelling language designed specifically to represent biological

networks at the molecular level. Names are given to multisets of sites and represent proteins. Proteins

can also be composed into complexes. Sites serve as both internal states and interfaces of the protein,

through which the interactions between proteins can occur. They can be free, bound or hidden. Reactions

between proteins are specified by rewriting rules that map multisets of proteins or complexes to other

multisets of proteins or complexes (solutions). Different types of reactions have to satisfy different

constraints e.g. activation should not bind free sites. While the core formal molecular biology can be

treated as a process calculus in its own right, it can also be compiled into a π-calculus representation.

2.3.1.4 Beta Binders [328]

Beta binders have additional primitives which extend the π-calculus. They are used to model processes

encapsulated in boxes with interaction capabilities. π-calculus processes (governed by the standard

π-calculus operators) encapsulated in the boxes evolve independently from one another and from the

external world. Boxes can only interact with each other through sites, provided these are not disjoint.

Hiding, unhiding and adding sites allows the interactions between boxes to be controlled. Rules can

then be specified for joining and splitting boxes, and for modifying the affinity between interaction

sites. This provides a way of modelling the functional dependency of biological components’ interaction

capabilities on their particular shape or folding e.g. [90]; the interactions within the boxes can be seen to

correspond to changes in shape/folding, which then determine the box interaction capabilities and hence

function. No nesting is allowed.
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2.3.1.5 Bioambient Calculus [342]

The bioambient calculus is derived from the ambient calculus introduced by Cardelli and Gordon in [62].

An ambient is a bounded place where computation can happen. Entities can enter and leave ambients,

and ambients can merge. Ambients provide a way of modelling context sensitivity since movement

between different ambients can result in changes to interaction potentials.

Hierarchical relationships can also be specified using a hierarchy of ambients; because there is no

limit to the degree of nesting (unlike for beta binders), multi-level models can be described. As with the

π-calculus, communication is by the passing of names; this can be within the same ambient, between

parent and child ambients (different degrees of nesting), or between sibling ambients (same degree of

nesting).

In the extension in [151], entities within ambients are chained structures whose structures can

change as a result of the different types of interaction/communication described above.

2.3.1.6 Brane Calculus [61]

In the Brane Calculus, membranes are represented as nested multisets of actions. The actions gov-

ern the fusion and fission capabilities of the branes (representing membranes) they sit on (unlike the

(Bio)Ambient calculus, where fission and fusion capabilities sit in the ambients). Fusion and fission

capabilities abstract proteins / protein complexes inserted in a membrane and define the membrane inter-

actions with other membranes. A bitonality constraint is also placed on membrane interactions so that

nested membranes are required to have opposite orientations to preserve the nesting parity. Bitonality

ensures that there is no mixing of multisets so that external multisets can only be brought in if they are

wrapped in another membrane.

An extension to this is the Projective Brane Calculus introduced by Danos in [110]. In this modified

Brane calculus, membrane actions are directed inwards or outwards. This adds more detail to the original

formalism and captures what is known about membrane interactions at the molecular level e.g. the

formation of new membrane patches from Endoplasmic Recticulum (ER) — membranes are flipped

during different stages of the process.

2.3.1.7 PEPA [194], [58]

In [58], PEPA is used to model populations of molecular species so that a process represents a species

rather than individuals (as is the case with the algebras above). This allows pathway models to be

formally analysed.

2.3.2 Graphical Formalisms

Graphical formalisms use nodes and edges to describe states and state transitions respectively.

Petri nets [319]. A Petri net [319] is an automaton whose states are represented by sets of distributed

components called places and whose events are represented by transitions. Arcs only run between places

and transitions so that a transition is required to get from one place (state) to another. Input arcs run from

places to transitions while output arcs run from transitions to places.

The execution of petri nets is governed by tokens which represent the satisfaction of the conditions
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places represent. Places can contain any number of tokens. A distribution pattern of tokens over different

places in the net is called a marking. A transition is enabled (it can fire) when there are tokens in every

input place. The firing event consumes the tokens, performs some processing task, and then places a

specified number of tokens into each of its output places. This happens atomically, i.e. in a single

non-preemptible step.

Petri nets can be used to describe and study systems that are concurrent, asynchronous, distributed,

parallel, non-deterministic, and/or stochastic. In Systems Biology, they have been used to model concur-

rency in biological networks [321]. Properties of the system can then be formally described e.g. which

reactions can occur at the same time, whether a reaction will occur under a given set of conditions.

Several extensions have also been added in the context of modelling biological systems to enhance

the semantics of representation,for example:

• Timed Petri Nets [31]: Places and/or transitions can be assigned deterministic time delays. For

example, a table with minimum and maximum times for each transition to occur based on the time

of arrival of the tokens at its input places can be drawn up.

• Stohastic Petri Nets [167, 393]: Places and/or transitions are assigned delays which are given a

probability distribution.

• Coloured Petri Nets: Tokens have a value so they can be distinguished from one another. this

allows transitions to have more complex firing rules.

• Hybrid Petri Nets [273]: Places can take continuous values rather than integer numbers of tokens.

• Hierarchical Petri Nets: A single place or transition can itself be a net.

State Charts and Sequence Charts. State charts describe a system as a collection of states and state

transitions (events). Unlike conventional state machine modelling however, concurrent states can be

described using the and-state, and complex systems can be specified more succinctly. State charts are

particularly apt for describing systems where several components interact with each other i.e. cause state

changes in each other, making them well-suited for modelling complex biological systems such as the

immune system [219]. Modelling can be at two levels — class level (where generic interaction types can

be described) and instance level (where interactions between instances of these types can be described).

Message sequence charts are used to describe interactions between different components, but mes-

sages are explicitly represented. However, message sequence charts only place restrictions on the or-

dering of events and do not express mandatory events. Live sequence charts [106, 50] extend message

sequence charts by adding the liveness property, which says that an event must occur. In the context of

biological modelling, this means that models can be ‘filled in’ as greater detail and certainty is achieved

through experimentation.

For more rigorous mathematical analysis, the formal semantics of state and sequence charts can be

derived either by transforming them into petri nets [89], [29] or process algebras e.g. [322], [395].



54 Chapter 2. Modelling and simulating complex living systems

Communicating Stream X-machines X-machines were introduced by Eilenberg in [132] and have been

used recently in the modelling of biological systems (e.g. [92], [93]). They differ from finite state

machines in having underlying data sets, and transitions are labelled with functions operating on input

and data set values rather than just inputs. Stream X-machines can represent data structures as a typed

memory tuple so they can model both the data and the dynamics of systems. Transitions between states

are performed through the application of functions to the data held in memory. Functions receive input

symbols, modify memory values, and produce output symbols. A further advantage of the X-machine

formalism over state charts is the fact that it has a clearly defined semantics so that systems can be

mathematically modelled. Communicating X-machines allow distributed systems with communicating

systems to be specified and studied.

2.3.3 Rewriting grammar Systems

Rewriting systems define formal grammars which model the interactions between biological entities.

Metaphorically, we can think of each rewriting system as a distinct language with a set of syntactic

rules and an alphabet. Terms in the alphabet can be used to represent individual entities, and biological

meaning (see Section 2.1.6) can be given to ‘words’, ‘sentences’ and other topological configurations of

these terms. Furthermore, each term can be used to represent a particular type or species of biological

entity, with each occurrence of the term representing an instance of that type. To represent an agent-

based simulation using a rewriting system, the initial conditions are given as a combination of terms

in some topological configuration. More specific rules can be defined within the constraints of the

rewriting grammar system. For example, the rewriting system might only allow adjacent entities to

interact with one another but whether or not they do so depends on other factors, such as their respective

states or types; these other factors are represented by the model-specific rules defined within the rewriting

grammar system.

Given a particular model, terms are simplified by repeatedly replacing subterms with equivalent

subterms (according to the rules) until no further reduction is possible. Each reduction step can be

treated as a simulation step. The rewriting rules represent the interactions that are permissible between

entities. For example, the rewriting rule:

A→ B

applied to symbol:

A

gives symbol:

B.

In biological terms, we might see the example above as corresponding to the case where an entity

or entity state (represented by A) can transform into another entity or entity state (represented by B).

Symbols can either be constants or variables. Constants are symbols that remain fixed through

rewriting. Variables, also called the alphabet, are elements that can be replaced; in the example above,

A and B are variables. Operations are functions that take an expression (an expression is a combination
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of values, variables and operators) or set of symbols as their argument and output another expression

or set of symbols. Different re-writing systems have their own sets of constants, operations and rules

describing how terms can be re-written [157, 160]. For example, six symbols A,A, B, A,C,A can be

treated as follows:

1. as an unordered set, where

Rule : {A,A} → {B}

applied to symbols:

{A,A, B, A,C,A}

gives symbols:

{B,B,B,C}

2. as a string, where

Rule : AA→ B

applied to string:

AABACA

gives string:

BBACA

In the latter case, the operation is not applied to the two ‘A’ symbols which are separated by other

symbols as we are no longer treating the set of symbols A,A, B, A,C,A as an unordered collection.

Instead, a structure (in this case linear) relating the different elements is imposed, which we refer to as

the system’s topological structure or topological organisation (note that an unordered collection also has

a topological structure; all elements are connected to every other element). Different rewriting systems

can be distinguished from one another by the type of structure they support.

2.3.3.1 Multiset Rewriting Systems

In multiset rewriting systems, all elements belonging to the system can be considered connected to each

other. Conceptually, we can see a multiset as a ‘soup’ of elements that can move around and interact

with each other (Figure 2.11). Artificial chemistries use the multiset formalism to specify the substrates,

catalysts and products of chemical reactions (e.g. [203]) and can be applied to biochemical reactions

[125, 378]. Sophisticated models of biological processes can be built out of these reaction specifications.

Good examples can be found in [143], [134] and [135], where pathway models are implemented using

rewriting rules.

Two major extensions to the basic multiset formalism have arisen that add structure to the ‘soup’:

1. Structure imposed on the application of operations: Paun Systems (P-Systems) [314], for example,

are able to provide the system with a membrane structure with the multiset elements nested in

different compartments (Figure 2.12). The elements then react according to compartment-specific
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Figure 2.11: Multiset Rewriting

Figure 2.12: P-System

rules. Important applications of P-Systems include modelling transport through membranes [10,

33, 34] and biochemical pathways with complex dependencies in spatially structured environments

[158, 30, 146]. The membrane structure of P-systems allows operations to be context dependent

and for elements to act on their environment since membranes can be dissolved, created, moved

and divided. A comprehensive account of P-Systems and their latest applications can be found at

http://psystems.disco.unimib.it/.

2. Structure imposed on the elements: For example, in a multiset of L-Systems (see also 2.3.3.2),

elements themselves have a linear or branching structure and these structured elements can move

around and interact with each other (Figure 2.13). Because the resulting structure is apt for rep-

resenting the helical structure of DNA, this formalism has been used to model and simulate splic-

ing systems. (Splicing Systems are based on the view that DNA is a language with generative

power, which is determined by the recombination of DNA sections and various enzymatic activi-

ties) [186, 187].

2.3.3.2 Sequence Rewriting Systems

In sequence rewriting systems, elements are ordered sequentially so that the overall structure is linear

or branching. These structures ’grow’ or evolve according to prescribed developmental rules. A much-

investigated and widely applied sequence rewriting formalism is the Lindenmayer System (L-System)

Figure 2.13: Multiset of L-Systems
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[257]. L-Systems were initially used to provide visual models of plants but recent models focused

more on the developmental processes leading to the final structure [334, 333, 331], particularly gene

expression, information flow and interactions between cells during development [333, 176, 94].

Several extensions have grown out of the original L-System formalism, each of which gives the

system additional expressive capabilities:

1. Table L-System: Developmental rules can change in response to changes in the environment [352,

150, 191].

2. Parametric L-System: Rule parameters can change to give quantitative responses to environmental

changes [178, 179].

3. Environmentally Sensitive L-System: Changes in developmental rules can be localised [332].

4. Open L-System: Two-way interactions between the environment and evolving structure [280].

5. Map-L-Systems: Elements linked in cyclic graphs rather than sequentially to model the develop-

ment and growth of biological structures with boundaries or surfaces [259, 258].

6. Multiscale Tree Graphs (MTG): Elements are organised in a directed graph of directed graphs so

that the whole MTG can be decomposed into modules that are themselves directed graphs with

edges always directed from older elements to younger ones [164].

2.3.3.3 Combinatorial and Dynamic Rewriting Systems

Both multiset and sequence rewriting systems make assumptions about the topology of the system and

hence about which entities can interact with one another in a given step (in the case of multiset systems,

any entity can interact with any other entity, while in sequence rewriting systems, only adjacent entities

can interact). Further topological assumptions can also be built into the systems at different levels as

in the case of P-systems and multisets of L-systems so that different rewriting systems exist at different

abstraction levels; the fewer the constraints, the higher up in the abstraction hierarchy.

However, in Biology, the topology of a system can itself be dynamic and change as the system

evolves [159] (Giavitto et. al. call these systems ‘dynamical systems with a dynamical structure’). For

example, in the initial stages of development, all cells can be treated as existing in a ‘soup’, but later

on, structural constraints may determine which cells are able to interact with one another. Recently, a

domain specific language called MGS (encore un Modele General de Simulation) has been devised to

model such systems [159, 156, 158, 157, 160].

MGS uses the notion of topological collections, which are sets of elements with a specified topolog-

ical organisation (such as sets, multisets, sequences). A collection can have subcollections, and rewriting

consists of replacing one collection or subcollection with another collection. This is called a topological

transformation. Transformations are determined by the state or type of the collection to be replaced

and the state or type of its neighbour(s)17. As well as allowing neighbour-driven transformations, other

17This would be equivalent to dynamic neighbourhoods in CA and ABMS models.
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controls can be placed on the application of transformations, including priority, guards and triggers. For

example, guards and triggers can be used to represent global influences. A thorough guide to the use of

MGS and its applications can be found at: http://www.lami.univ-evry.fr/˜mgs/.

Similarly, in [381] and [382], communicating X-machines are used together with population P-

systems (see Section 2.3.3.1) to model the behaviour of cells in tissues. This combines the benefits of

the two formalisms since the communicating X-machine system is well-suited to modelling internal data

whereas the population P-system models the dynamic configuration of tissue by applying the reconfigu-

ration operators of the communicating X-machine system. We can see the population P-system model as

a higher level model that is driven by the communicating X-machine system. We can also characterise

the P-system model as an observation of the X-machine system at a higher level.18

2.3.4 Summary and discussion

Formal languages give us a means of precisely describing both the static and dynamic aspects of com-

putational models. While process algebras and petri nets are defined with formal semantics, state charts

and rewriting grammar systems are not. However, even without formal semantics, all formal modelling

languages explicitly define a set of syntactic constraints or permissible operations.19 20

Although several formal languages exist for describing designed behaviours and processes at the

entity or agent level and for describing statically structured hierarchical relationships, to our knowledge,

little work has been done on formally relating these to the dynamic higher level behaviours that can

emerge from them.

2.4 Background analysis and critique
Although ABMS has been identified as a promising computational approach for modelling complex

systems, the majority of work has focused on specifying agent level behaviour (for example, defining

hierarchical or mediating architectures governing agent interactions). Formal models of complex systems

have also tended to address the agent interaction level, with little being done to extend these models to

formalise Complexity constructs. 21 A major reason for this is the lack of consensus and confusion

surrounding the constructs themselves, largely due to the fact that they are formulated from the different

perspectives of different disciplines. As identified in Section 2.1.7, these can be broadly classified as:

• The design-system behaviour discrepancy perspective, which tends to be emphasised by engineer-

ing disciplines;

• The observational level perspective, which tends to be emphasised by Statistical Mechanics; and
18The modelling language introduced in this thesis extends this to the whole repertoire of multi-level observations that can

be generated by a given communicating X-machine system (and not only the communication configurations, as modelled by the

population P-system).
19Formal semantics can also be defined subsequently e.g. [19].
20We have excluded more restricted modelling languages and specialised ‘substrate’ models such as nk landscapes [224] from

this review, but these also explicitly define a set of permissible operations.
21Complexity constructs refer to the defining features of Complex Systems as generally accepted by those working in the field,

such as emergence and self-organisation
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• The functional ‘meaning’ perspective, which tends to be emphasised by Biology.

Within each of these perspectives however, the constructs are well-defined and formalised. Building on

existing formal languages used to specify agent behaviour with established semantics, we are therefore

able to define Complexity constructs in ABMS terms. From a practical perspective, the extended formal

models would also provide us with a modelling language with which to specify and computationally

validate integrative complex systems simulation models.



Chapter 3

Multi-level properties and behaviours in

agent-based modelling and simulation

This chapter introduces a novel formal modelling language for representing multi-level states and events

in ABMS. In the application of ABMS to Complex Systems modelling, computational states represent

static properties while events represent dynamic properties or behaviours. In this thesis, we further

define subsystem state types (SST s), which represent static property descriptions and complex event

types (CET s), which represent dynamic property descriptions. If these types are instantiated in an

agent-based simulation, we can say that the properties they describe have been ‘observed’. Figure 3.1

illustrates this.

As well as giving an abstract formulation of SST s and CET s, we also show how they can be

defined in terms of X-machines, which are used to represent agent-based models and simulations. From

a practical perspective, this allows ABMS practitioners to specify and detect specific emergent properties

and behaviours in simulations. Toward the end the chapter, we formalise key Complexity and Emergence

constructs in terms of CET s. (More specific formulations and statistical measures are then given in

Chapter 4.)

The chapter will be structured as follows:

1. Section 3.1 outlines the assumptions, constructs and ontology of our interpretation of ABMS.

These are expressed in terms of the established X-machine modelling language, which is used to

specify and formally describe multi-agent systems and agent-based simulations. Our interpretation

of ABMS is fundamental to both the complex event type (CET ) language we introduce in Section

3.3 and the novel ABMS analysis methods in Chapter 4.

2. In Section 3.2, we apply hierarchy constructs to ABMS to show how they can be used in descrip-

tions of multi-level properties. The notion of ‘levels’ in ABMS is formalised using hypergraphs

(which integrate sets and graphs) based on previous work on defining hierarchies. Again, we

express this in the X-machine modelling language.

3. Section 3.3 introduces CET s, which model (formalise) multi-level behaviours. The CET formal

modelling language is formulated both in the abstract and in X-machine terms. We also define the
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Figure 3.1: Descriptions of static and dynamic properties are respectively formally represented by sub-

system state types (SST s) and complex event types (CET s). These are expressed in ABMS terms

therefore formally represent ‘observations in simulations if the simulation instantiates them.
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semantics for events in ABMS in terms of a novel event calculus, the generalised event calculus

(GEC), whose semantics are based on existing event calculi.

4. Section 3.4 defines Complex Systems constructs in terms of CET s, allowing these to be more

precisely expressed in ABMS terms.

3.1 Agent-based models and simulations
Central to our interpretation of ABMS is the idea that an agent-based model (ABM) acts both as a gen-

erator of simulations and as a means of classifying simulations (more precisely, a set of computationally

unique simulation trajectories; see Section 3.3.3.2 and [73]). Agent-based simulation (ABS) is a means

of sampling from this set. This is illustrated in Figure 3.2. We therefore define an ABM as a function

which takes the following two arguments: (i) Agents = a0, ..., an, a set of agents; and (ii) Config, a

configuration defining the initial conditions (e.g. where each agent is situated, global and local variable

values etc.)1, and returns the simulation:

ABM(Agents, Config) = SimABM .

A simulation SimABM of ABM satisfies the membership function Member(SimABM , ABM) so

that:

Member(SimABM , ABM) = true.

i.e. SimABM belongs to the set of simulations that can be generated by the model ABM . (Environ-

mental objects, shared data spaces, global and local variables etc. are all members of Agents in this

definition.)2

Sub-types of the ABM can also be defined. For example, ABMs are usually parametised, and these

parametised versions of the ABM can be treated as more specific sub-types of the ABM since they

generate a subset of the ABM’s computationally unique simulation trajectories (see Figure3.2). Thus we

can define a parametised ABM as a function which, given the ABM and a particular set of parameters

P , returns a simulation:

ParamABM(ABM, P ) = SimParamABM ,

and where both:

Member(SimParamABM , ParamABM) = true

and

Member(SimParamABM , ABM) = true

1In practice, the configuration is usually determined by some sort of random generator that selects a set of permissible initial

conditions.
2Alternatively, in re-writing grammar terms (see Section 2.3.3), we can see the ABM as defining the rewriting rules, and

each computationally unique simulation as a unique topology of terms generated from applying the rewriting rules to the initial

configuration of terms. These configurations of terms and their sub-configurations can have different biological ‘meanings’.
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Figure 3.2: An agent-based model (ABM) generates a population of computationally unique simulation

trajectories, SimTotal. Different parametisations/initial conditions etc. of the ABM can be regarded as

different models X , Y , Z, each of which generate a population of simulation SimsX , SimsY , SimsZ ∈

SimsTotal. These are subsets of the entire population of simulation trajectories generated by the ABM.
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An ABM is made up of agent types A0, ..., An and constraints C determining how agents are able

to interact in the system. Each agent type Ai can also be seen as a generator and classifier of agents

(instances of a type):

A(c) = a,

where a is an agent instance of the type A, c is the initial state of the agent (including its interactions

with other agents), and

Member(a,A) = true

The agent type A determines the behaviour of an agent given its own state qa and/or the state qe

of its environment or neighbourhood e (which might itself be made up of other agents’ states). Usually,

this is expressed as a set of state transition rules (STRs), which might be expressed explicitly in terms

of conditional state changes or implicitly in terms of constraints on permissible action (several formal

languages exist for specifying agent behaviour, as reviewed in Section 2.3).

3.1.1 Modelling ‘laws’ with agent rules

In complex systems modelling, rules associated with each type of agent are used to explicitly model

‘laws’ believed to govern the behaviour of the species of entity that the agent type represents. ‘Back-

ground knowledge’ [324] and other assumptions (e.g. that two entities can not occupy the same location)

are often also implicitly encoded in these rules. We call this set of rules the state transition rules (STR)

of the agent type. For each agent type Ai, the set STRi associated with the type collectively con-

strains and/or determines the set of actions or state transitions performed by the agent when a particular

condition cn is satisfied.

When an agent a of the type Ai is executed and a condition cn holds, the set STRi maps one sub-

system state (the source state ϕsource) to another subsystem state (the target state ϕtarget). Definitions

for state transition and state transition rule are given respectively in Definition 2 and Definition 3.

Definition 2 State transition. A state transition is a transformation of one subsystem state to another

subsystem state. The state before the transformation is applied is called the source state and is denoted

ϕsource, while the state after the transformation has been applied is called the target state and denoted

ϕtarget. (The definition for subsystem state is given in Definition 19).

Definition 3 State transition rule (STR).

STRAi(cn) = ϕsource → ϕtarget, (3.1)

where cn ∈ CN , and CN denotes the set of conditions that can be distinguished by agents of the type

Ai.

We now show how the constructs defined above can be expressed more concretely in terms of

X-machines, a modelling language already used to specify and describe multi-agent systems and simu-

lations.
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3.1.2 Communicating X-machine representation of agent-based models and sim-

ulations

Communicating stream X-machines [132] and X-machine systems are an established formal modelling

language for specifying multi-agent systems and agent-based models (e.g. [406], [92], [93], [323]).

Although the CET language introduced in this thesis can be expressed in any formal modelling language

for representing agent-based models, we choose to use an X-machine formulation as it maps easily to

the graphical representation of the language.

3.1.2.1 Agents and simulations

An ABS can be represented by a communicating stream X-machine system, which is defined as the

tuple:

Z = ((Ci)i=1,...,n, CR,C0),

where:

• Ci is the i-th communicating X-machine component;

• CR is a relation defining the communication among the components, CR ⊆ C × C and C =

{C1, ..., Cn}. A tuple (Ci, Ck) ∈ CR denotes that the X-machine component Ci can output a

message to a corresponding input stream of the component Ck for any i, k ∈ {1, ..., n}, i 6= k.

This is most commonly represented by a communication matrix (CM ); and

• C0 is the initial configuration.

In ABMS, a communicating X-machine component Ci represents an agent, object or unencapsu-

lated state variable in the simulation, and dimensions such as time and physical space can be represented

by X-machine components with which all agents communicate. 3. A ‘simulation handler’ agent might

also be specified to ensure specific agent update and interaction protocols are adhered to.

A communicating X-machine component Ci is described by the tuple:

Ci = (Σi,Γi, Qi,Mi,Φi, Fi, q0i,m0i, IΦi, OΦi)

where:

• Σi is the input alphabet;

• Γi is the output alphabet;

• Qi is the finite set of states;

• Mi is the (possibly) infinite set called memory;

• Φi = Φiproc ∪ Φicomm,Φiproc ∩ Φicomm = ∅ is a set of partial functions, where:

3There is some dispute in the literature as to what counts as an agent, and several taxonomies exist e.g. [124], [298]
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– Φiproc is a set of processing functions φiproc ∈ Φiproc that affect the contents of the input

Ii and output Oi ports by mapping an input Σi and memory Mi value to an output Γi and

possibly a different memory value, but do not affect the communication matrix CM :

φiproc : Σi ×Mi × Ii ×Oi → Γi ×Mi × Ii ×Oi

; and

– Φicomm is a set communicating functions φicomm ∈ Φicomm, which can be input or output

functions where messages are retrieved or released to CM :

φicomm : Σi ×Mi × Ii ×Oi × CM → Γi ×Mi × Ii ×Oi × CM.

In ABMS, Φi is associated with the agent type (see Section 3.1.2.3 below). Ii and Oi are either

sets of values from Mi or the undefined value λ, i.e. Ii, Oi ⊆Mi ∪ {λ}.

• Fi is the next state partial function, Fi : Qi×φCi → Qi, which, given a state and a function from

the type φCi, determines the next state. (Fi can be represented as a state transition diagram);

• q0i is the initial state; and

• m0i is the initial memory.

• IΦi is the set of function names and components from which Ci can receive input communi-

cations. Inputs can be from a function φicomm in the X-machine’s own set of communicating

functions Φicomm or from the communicating functions of other X-machines φjcomm ∈ Φjcomm;

• OΦi is the set of function names and components to which Ci can send output communications.

Outputs can be to a function φicomm in the X-machine’s own set of communicating functions

Φicomm or from the communicating functions of other X-machines φjcomm ∈ φjcomm.

In ABMS, the set of partial functions Φi associated with an agent type (see Section 3.1.2.3 below on

agent types) is determined by the set of STRs associated with that agent type (see Section 3.1.1 above):

STRA → Φi,

where Ci is an agent of the type A.

Σi×Mi×Ii×Oi×CM define the set of possible values for ϕsource, while Γi×Mi×Ii×Oi×CM

define the set of possible values for ϕtarget define the set of possible values for ϕsource. The type A

defines these sets for all A agents.

3.1.2.2 Agent and simulation state in terms of communicating X-machine configura-

tions

Definition 4 Communicating X-machine component configuration. The local configuration of a com-

municating X-machine can be used to represent the state of an agent, object or variable and is defined

by the four-tuple:

z = (m, q, s, g)

where:
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• m ∈M ;

• q ∈ Q;

• s ∈ Σ∗;

• g ∈ Γ∗; and

• the set of permissible values for m, q, s and g (M , Q, Σ, Γ respectively) is defined by the agent

type.

The actual configuration [100] of the X-machine component is described by the tuple:

((m, cm), q, s, g),

where cm is the communication matrix holding the system’s current communications. This represents

the component’s current interactions with other components in the system, as well as its own state.

The state of the whole system at a given point of the simulation’s execution is then represented by

an X-machine system configuration (Definition 5).

Definition 5 Communicating X-machine system configuration. A configuration of a communicating

X-machine system (representing the state of the whole system or simulation) has the form:

zCXMS = (z1, ..., zn, cm)

where:

• zi = (mi, qi, si, gi), i = 1, ..., n;

– mi is the current value of the memory Mi of Ci;

– qi is the current state of Ci;

– si ∈ Σi∗ is the current input sequence of Ci; and

– gi ∈ Γi∗ is the current output sequence of Ci.

• cm is the current set of communications between components. This is usually formalised as a

communication matrix [228], [227].

Figure 3.3 gives an example of a communicating X-machine system configuration in terms of x-

machine configurations zi and the set of communications cm.

For each parametised ABM ABMparam, there exists a set of n distinct X-machine systems

Z(ABMparam) → {Z0, ..., Zn} that can be generated by ABMparam (n is the number of agents in

the system). By distinct, we mean that for each Zi, the sequence of X-machine system configurations

can be distinguished from every other member of Z(ABMparam) (see also Section 3.3.3.2 for defini-

tions of computational uniqueness and equivalence in terms of complex event types).
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Figure 3.3: Communicating X-machine system configuration consisting of a set of X-machine configu-

rations zA, zB and zC , where zi is the X-machine configuration of X-machine i and a communication

matrix state cm



3.1. Agent-based models and simulations 69

3.1.2.3 Agent types

In our X-machine representation of an ABM (or any multi-agent system design), each X-machine com-

ponent in the communicating X-machine system belongs to a particular type (see also Section 3.1.2.1),

and the ABM is a set of n agent types A0, ..., An (where all the system’s components are treated as

agents, including environmental artifacts, unencapsulated variables, communication protocols).

ABM = (A0, ..., An).

Each agent type Ax specifies X-machine components with the same defined value sets for Σ, Γ, Q,

M , Φ, F , IΦ and OΦ, i.e. if:

Ax = (ΣAx,ΓAx, QAx,MAx,ΦAx, FAx, IΦAx, OΦAx)

and

Ax → Ci, Cj

where:

Ci = (Σi,Γi, Qi,Mi,Φi, Fi, q0i,m0i, IΦi, OΦi)

and

Cj = (Σj ,Γj , Qj ,Mj ,Φj , Fj , q0j ,m0j , IΦj , OΦj),

then

• Σi = Σj ;

• Γi = Γj ;

• Qi = Qj ;

• Mi = Mj ;

• Φi = Φj ;

• Fi = Fj ;

• IΦi = IΦj ; and

• OΦi = OΦj .

An X-machine component Ci in the system can be said to be an instantiation of a given type Ax iff:

1. Σi ⊆ ΣAx;

2. Γi ⊆ ΓAx;

3. Qi ⊆ QAx;

4. Mi ⊆MAx;

5. Φi ⊆ ΦAx;
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6. Fi ⊆ FAx;

7. IΦi ⊆ IΦAx; and

8. OΦi ⊆ OΦAx.

An inheritance hierarchy can also be defined where a component Ci can instantiate more than one type

in the hierarchy. Since it is the dynamic behaviour of agents that is significant, we define the hierarchy

by the function set Φ:

ΦCi ⊆ ΦA0 ⊆ ΦA1,

where A0 is a subtype of A1. However, one or all of the following may also be true for the subtype-

supertype relation:

1. ΣA0 ⊆ ΣA1;

2. ΓA0 ⊆ ΓA1;

3. QA0 ⊆ QA1;

4. MA0 ⊆MA1;

5. FA0 ⊆ FA1;

6. IΦA0 ⊆ IΦA1; and

7. OΦA0 ⊆ OΦA1.

Definition 6 An agent type A0 is a subtype of an agent type A1 iff:

ΦA0 ⊆ ΦA1.

A1 is then the supertype of A0.

3.2 Multi-level properties in agent-based models and simulations
In this thesis, a property is anything that can be detected and measured. Which properties exist at a given

time or place is determined both by the state of the world and by the way this is observed.

In ABMS, the state of the world and the changes it undergoes are represented by computational

states and behaviours, as described below in Section 3.2.1. These can be described more formally in

terms of the X-machine modelling language (as well as in terms of other formal representations of

agent-based simulations or multi-agent systems). To date, the majority of work in ABMS has focused on

specifying agent behaviour to give rise to emergent system properties, while the role of observation has

been largely neglected. Yet observation is a crucial element of complex systems modelling, since it is

through observing the system at different ‘levels’ that (weakly [25]) emergent properties arise. It is also

often the case that such a system can be described in terms of entangled interactions between properties

at different levels.
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Figure 3.4: Two categories of hierarchy. (a) Compositional hierarchy/α-aggregation: P2, P3 and P4

are constituents of P1. We can also say that P1 has a greater scope than its constituents. (b) Type

hierarchy/β-aggregation: P6, P7 and P8 fall in the set defined by P5. We can also say that P5 has a lower

resolution than its members P6, P7 and P8.
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This section gives a formal definition of observation levels in ABMS using different hierarchies.

This allows us to describe any property that is detectable in the simulation 4.

A hierarchy exists when a set of properties satisfy a set of constraints with respect to one another.

Two categories of hierarchy (see Figure 3.4) form the basis of our formalisation of levels in ABMS:

1. Compositional hierarchy, where lower level properties are constituents of higher level properties.

This can be seen to correspond to α-aggregation [216, 215], the AND relationship, or scope

[353].

2. Specificity or type hierarchy where higher level properties are defined at a lower resolution than

lower level properties. This can be seen to correspond to β-aggregation [215] [216], [217], the

OR relationship, or resolution [353];

Definition 7 Scope. The scope of a property is the set of constituents required for the property to exist.

Definition 8 Resolution. The resolution of a property is the set of distinctions that have to be made

for that property to be identified. With the same scope, a higher resolution property requires a greater

number of distinctions than a lower resolution property.

To understand how higher level properties can be constructed from lower level properties, we first

consider in more detail the representation of properties in ABMS in Section 3.2.1. In Section 3.2.1.1

we show how properties are represented by computational states and behaviours in ABS. Section 3.2.1.2

shows how an ABM determines the maximum resolution of property representation (and observation) in

an ABS.

In Section 3.2.2, we show how these two types of observational hierarchy can be used together to

construct descriptions of higher level properties from lower level properties in ABMS. By combining

the two different types of hierarchy, we are also able to define more sophisticated relationships between

properties, such as entanglement and heterarchies [173], [174], [358].

3.2.1 Properties in ABMS

In ABMS, real-world properties are formally and computationally represented. In an ABS, two cate-

gories of property are particularly important:

1. Static properties, which are represented by computational states (see Section 3.2.1.1).

2. Dynamic properties (changes in the static properties) or behaviours, which are represented by

computational behaviours (see Section 3.2.1.1).

In our formalisation of properties, we associate static properties with fluents, as defined in Definition

9 and dynamic properties with events (see Section 3.3).

Definition 9 Fluent. A fluent is a state predicate whose value is determined by the occurrences of

initiating and terminating events that make the fluent become true or false respectively [254].

4Detectability is bounded by a maximum resolution, which is defined by the ABM; the model determines both the detectable
base properties and the types of relationships that can hold between properties (see Section 3.2.1.2).
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3.2.1.1 Computational states and behaviour in simulation

In Section 3.1, we already showed how agent and system states in a simulation can be represented

respectively by X-machine and X-machine system configurations.

We define behaviour in an ABS to be a state transition ϕsource → ϕtarget that arises from the

execution of one or more agent state transition rules, where each execution occurs at a unique location

(see Definition 13) in the simulation space R = {(STR0, L0)× ..., (STRn, Ln)}. In X-machine terms,

this is a change in the X-machine system configuration (see Section 3.1.2.1).

Definition 10 Behaviour. A state transition ϕsource → ϕtarget that arises from the structured execution

of a set of agent state transition rules.

The behaviour of a particular agent over an entire simulation is the sequence of its rule executions

and their resulting state transitions. In X-machine terms, an STR rule execution of rule X is the ap-

plication of the next state function: Fi : Qi × φiX → Qi, and the STR executed is φiX , φiX ∈ Φi.

The sequence of φ functions applied for a given X-machine depends on its configuration when the next

state function Fi is applied. The behaviour of the communicating X-machine system describing the ABS

consists of the structured φ applications. Each application gives rise to a change in the communicating

X-machine system configuration. The new configuration then determines the subsequent structure of φ

applications. We can describe these φ application structures in terms of their relative locations in the

space defined by the ABMS dimensions (see Section 3.2.1.2).

3.2.1.2 Dimensions, detectability and maximum resolution in ABMS

Within a defined space, properties always exist at some location (see Definition 13) or region (see Defi-

nition 14). A space is defined by a set of dimensions (see Definition 11).

An ABM, as well as explicitly modelling a particular theory about the way entities in the world

behave, also includes models of the space in which these theories apply, such as particular models of

time and physical space5. This can be expressed as a set of computationally represented dimensions (see

Definition 11). A simulation of the ABM can then be characterised as a computationally represented

finite, bounded space in which properties are be located (either by a point location or by region). The set

of dimensions modelled and the computational representation used to model each dimension depends on

the ABM’s underlying theory and/or its purpose.

Definition 11 Dimension. A dimension is one of the coordinate axes in the minimum set of axes required

to specify every point within a space.

Definition 12 Location. Either a point location (see Definition 13) or a region (see Definition 14).

Definition 13 Point location. A point in a space that can be described by coordinates.

Definition 14 Region. A space whose boundary can be described by a set of coordinates.

5‘Space’ is meant generally here as anything that can be defined by coordinates. We use the term ‘physical space’ to refer more

specifically to extended physical space.
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We define the maximum spatial resolution of an ABM to be the set of distinguishable locations in

which properties can be represented and detected (see Definition 15).

Definition 15 Maximum Spatial Resolution. For a finite space, if D = {d0, ..., dn} is the set of n

represented dimensions, then the maximum spatial resolution (the set of all representable locations) is

given by the set product of the represented dimensions:

L = d0 × .....× dn,

where each di consists of a set of permissible coordinate values, di = {v0, ...}.

Given that an ABM also defines the set of properties that can be represented, we define its maximum

resolution to be the set of Cartesian products of each property and the set of locations in which that prop-

erty can exist (see Definition 16). In X-machine terms, this is determined by the set of computationally

unique X-machine system configurations (see Definition 17) that the ABM is able to generate.

Each computationally unique X-machine system configuration is described by a set of X-machine

configurations ZCXM = {zC1, ..., zCn} and a set of communications between the X-machines, repre-

sented by a communication matrix CM . The set of computationally unique X-machine system config-

urations that can be generated by the model is determined by the set of permissible values in the X-

machines’ M 6, Q, Σ, and Γ alphabets (the I and O alphabets are subsets of M ), and the set of permissi-

ble communications (both content and topology) in CM . (Locations might be represented in X-machine

values (m, e.g. as stored coordinates within the X-machine components or in an X-machine component

explicitly representing space or an active environment), or by the communication relationships cr that

hold between X-machines in a system configuration (communications may only be permissible between

agents satisfying particular location constraints with respect to one another)).

Definition 16 Maximum Resolution. If the set of representable properties is given by the set P =

{p0, p1, ..., pn}, each property pi has a set of m locations Li = {l0, l1, ..., lm} in which it can occur,

where Li ⊆ L (see Definition 15). The maximum resolution is then given by the set {(p0 × L0), (p1 ×

L1), ...(pn × Ln)}.

Definition 17 Computationally unique X-machine system configuration. Given a set of X-machine

system configurations ZCXM = {zCXMS1, ..., zCXMSm}, an X-machine system configuration zCXMSj

is computationally unique from the other members of the set when it differs from every other member in

either:

1. the configuration of one or more of its component X-machines:

(z1, ..., zn); zi = (mi, qi, si, gi, in, out),

which can be due to differences in:

(a) mi;

6Although M can in theory be infinite, for the purposes of ABMS here, it will be treated as finite.
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(b) qi;

(c) si;

(d) gi;

(e) in;

(f) out or

2. the set of communications between its components, which can be described by a communication

matrix cm; or

3. both.

In Section 3.2.1.1, we defined an X-machine system’s behaviour to be the structured execution of

the ABMS STRs or φAi applications, where φAi ∈ ΦA is the partial function representing a STR

for the agent type A, and ΦA is the entire STR rule set for agent type A. In the finite space that

bounds the simulation, each STR execution or φ application is associated with a location in the space.

Typically, this is given by a temporal coordinate (e.g. time step), a coordinate describing physical-spatial

location, and the X-machine component identifier for the X-machine from which the φ application arises.

The particular structure of STR executions in a simulation determines the structure of states in the

simulation space. In X-machine terms, this is given by the simulation’s sequence of X-machine system

configurations, which is its simulation trajectory.

3.2.2 Observations and descriptions of static multi-level properties in ABMS

In ABMS, static properties (which can be formalised as fluents) are represented by computational states.

So far, we have focused on agent states (X-machine configurations) and simulation states (X-machine

system configurations) (see Section 3.1 and Section 3.2.1.1). We now use state and maximum resolu-

tion (see Definition 16) as the basis for constructing static properties associated with different levels of

observation or description (Section 3.3 addresses dynamic properties).

Hypergraphs are used to formally represent descriptions of properties, where a hypergraph is a

generalisation of a graph in which (hyper-)edges can connect any number of nodes to represent n-ary

relationships. This allows us to succinctly describe different hierarchies (α and β), and multi-way rela-

tionships within a single representation.

In Section 3.2.2.1, we first show how hypergraphs can be used to represent simulation states. Sec-

tion 3.2.2.2 then shows how hypergraphs can be used to represent subsystem state types, which are

multi-level descriptions of simulation states.

3.2.2.1 Hypergraph representation of simulation state

For a particular property description, we can distinguish between its:

1. constituents: the parts making up the property; and

2. its relations: the relationships and constraints that must hold between each of the constituents.
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This can then be described by a hypergraph:

P = ({C}, {R})),

where {C} is a set (possibly a multi-set) containing the property’s constituents and {R} is a set of

relation types between subsets of {C}. This can be applied to computational states representing static

properties.

In terms of the ABM, each computationally unique X-machine system configuration represents a

unique static property of the modelled system (even if this has no corresponding natural language label

in the conceptual model). This is equivalent to a particular fluent fj holding whenever the unique X-

machine system configuration zCXMSj (see Definition 5) is realised:

zCXMSj → fj ,

where

zCXMSj = (z1, ..., zn, cmj),

which equates to:

((mj1, qj1, sj1, gj1), ...., (mjn, qjn, sjn, gjn), cmj)→ fj

The corresponding hypergraph description Hj of zCXMSj captures both the the location of mji,

qji, gji and sji in their different X-machine components i and their location in the simulation:

Hj = (Φj , Rj),

where

Φj = {m1, q1, s1, g1, ...,mn, qn, sn, gn, cmj},

Rj = {(ri)i=1,...,n, rj},

ri = {mi, qi, si, gi},

rj = {m1, q1, s1, g1, ....mn, qn, sn, gn}

3.2.2.2 Multi-level descriptions of simulation states as subsystem state types

As well as being able to describe the X-machine system configuration representing a simulation state,

hypergraphs can also be used to describe partial observations of these simulation states. We shall refer

to these as subsystem state observations (SSOs), which should be distinguished from subsystem states

(see Figure 3.5 and Figure 3.6). Subsystem state types (SST s), which can describe subsystem states

observed at any level, are then defined in terms of hypergraphs of SSOs (see Definition 21).

In X-machine terms, a subsystem is an X-machine system containing a subset of the system’s X-

machines and the communication relations between the members of this subset (see Definition 18). A

subsystem state is then defined as the state of such an X-machine system i.e. its configuration (see

Definition 19).
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Figure 3.5: X-machine and X-machine system configurations at a given point in the simulation i. X-

machine configurations (q, m, s, g) represent the states of agents A, B and C. (Ai, Bi, crAB) represents

a subsystem state at simulation point i, as do (Ai, Ci, crAC), Ai, Bi, Ci and (Ai, Bi, Ci, crABC) (al-

though these are not explicitly labelled in the figure). If the simulation only has the three agents A, B

and C, then (Ai, Bi, Ci, crABC) would also be the simulation state. (NB. communication relations cr

between X-machines can also be empty, indicating that the two X-machines are not interacting at this

point.)
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Figure 3.6: The dashed boundaries indicate that SST s are descriptions or observations of states. SST s

can cut across the X-machine boundaries so that X-machine component configurations are only partially

described e.g. (siA, giA, qiB , qiC) (bolder in the figure). They can also respect the boundaries between

agents and map straight onto the agent and subsystem states (see Figure 3.5).
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Definition 18 Subsystem. Given a communicating X-machine system CXMWHOLE , a subsystem

CXMSUB is any subset of the X-machine components in CXMWHOLE and a relation defining the

communication among components, i.e. if

CXMWHOLE = ((Ci)i=1,...,n, CRWHOLE),

then

CXMSUB = ((Cj)j=1,...,m, CRSUB),

where

CXMWHOLE = ((Cj , Ck), CRSUB + CRSUB∗),

Cj + Ck = Ci,
7

Cj ∩ Ck = ∅,

CRSUB + CRSUB∗ = CRWHOLE .

Definition 19 Subsystem state. Given a communicating X-machine system CXMWHOLE whose state

zWHOLE is HWHOLE , where

HWHOLE = (ΦWHOLE , RWHOLE),

ΦWHOLE = {m1, q1, s1, g1, ...,mn, qn, sn, gn, cmWHOLE},

RWHOLE = {(ri)i=1,...,n, rWHOLE},

ri = {mi, qi, si, gi},

and

rWHOLE = {m1, q1, s1, g1, ....mn, qn, sn, gn},

then the subsystem state X-machine system configuration is described by the hypergraph HSUB , where:

HSUB = (ΦSUB , RSUB),

ΦSUB = {m1, q1, s1, g1, ...,mm, qm, sm, gm, cmSUB},

RSUB = {(rj)j=1,...,m, rSUB},

rj = {mj , qj , sj , gj},

rSUB = {m1, q1, s1, g1, ....mm, qm, sm, gm},

Definition 20 Subsystem state observation (SSO). Given a subsystem state hypergraph HSUB (see

Definition 19), where:

HSUB = (ΦSUB , RSUB),

ΦSUB = {ΦC , cmSUB},
7i.e. Ck is the complement set of Cj
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φC = {m1, q1, s1, g1, ...,mm, qm, sm, gm}

RSUB = {(rj)j=1,...,m, rSUB},

an SSO is represented by a hypergraph Hobs(SUB), where

Hobs(SUB) = (Φobs(SUB), Robs(SUB)),

Φobs(SUB) = {Φobs(C), cmobs(SUB)},

Φobs(C) ⊆ ΦC ,

cmobs(SUB) is a submatrix of cmSUB ,

Robs(SUB) = {(rh)h=1,...,q, robs(SUB)},

and each rh is a relation between a subset of elements drawn from Φobs(SUB).

An SSO is a description or partial observation of a subsystem state (see Definition 20). The SSO

that fully describes the subsystem state has a hypergraph representation that is identical with the hyper-

graph representing the subsystem state (see Definition 19 and Definition 20). In this case, the set of

hypergraph nodes (Φobs(SUB) in Definition 21) is the complete set of nodes in the subsystem state, i.e.

Φobs(sub) = ΦSUB ,

and the set of relations between the hypergraph nodes (Robs(SUB) in Definition 21) is the set of relations

between the hypergraph nodes in the subsystem state, i.e.

Robs(SUB) = RSUB .

Definition 21 A subsystem state type (SST ) is recursively defined as either a subsystem state observa-

tion (SSO) or a hypergraph of SST s:

SST :: SSO |({SST}, {./}).

A particular subsystem state type (sst) is described by the hypergraph:

({sst}, {./}),

where each ./ in {./} is a hyperedge between a (multi-)set of SST s.

For subsystem state descriptions at different levels (SST s), we return to the distinction between α−

(composition) and β− (type) hierarchy, as defined in Section 3.2. This allows us to distinguish between

two categories of relations in the ./ operator in Definition 21 for SST s.
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Compositional hierarchies Given that we can describe static properties in terms of SST s, a composi-

tional hierarchy can be defined in which certain properties are the constituents of higher level properties

(see Definition 22)8.

We use ./c to represent a composition relation, where the notation:

HX = HY ./c HZ

stands for the fact that HY and HZ are both constituents of HX

Definition 22 A static property HP1 = (ΦP1, RP1) is a constituent of another property HP0 =

(ΦP0,ΦP0) iff:

HP1 ./c HP1∗ = HP0

,

ΦP1 + ΦP1∗ = ΦP0,

RP1 + RP1∗+ ./c= RP0,

and ./c is a hyperedge defining location constraints between HP1 and HP1∗.

The ./c operator stands for combinations constraints holding between events in the CET structure

in any of the dimensions represented in the ABMS (see Section 3.2.1.2). These are described by a set of

constraint operators (op) specific to the model’s dimensions, which can be combined using the following

syntax:

./c:: op|(op)|¬op|op ∨ op|op ∧ op

(Illustrative examples of op in relation to CET s are given in Section 3.3.3.) )

Types hierarchies Informally, we define the type of a property to be a description of the property that

classifies it as belonging to a set of properties having a particular set of common attributes or features. It

is therefore possible for a particular property to be multiply classified into different types.

A type hierarchy can be defined whereby certain properties are sub-types of higher level properties.

Definition 23 defines supertype-subtype relations between static properties (SST s) 9.

We use ./t to represent a type relation, where the notation:

HX = HY ./t HZ

stands for the fact that HY and HZ are both subtypes of HX , as defined in Definition 23.

Definition 23 Subtype-supertype. A static property HP1 = (ΦP1, RP1) is a subtype of property HP0 =

(ΦP0, RP0) if:

ΦP1 ⊆ ΦP0,

RP1 ⊆ RP0

HP0 is said to be the supertype of HP1.
8Formally speaking, according to Definition 22, every property is also a constituent of itself.
9Formally speaking, according to Definition 23, every property is also a constituent of itself.
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Tangled hierarchies Although compositional and type hierarchies are a useful classification of the dif-

ferent relations between properties, the distinguishing feature of complex systems is that there exist

properties which themselves need to be described in terms of other partially observed properties. In

biological systems for example, functional units can be defined which do not respect the material con-

stituents (cells, molecules etc.) of which they are composed. This requires us to define heterarchies or

tangled hierarchies in which the relations Robs(SUB) in an SST are both ./c and ./t.

3.3 Multi-level behaviours as complex events
In Section 3.2.2, we formalised the description of multi-level static properties in ABMS using hyper-

graphs of fluents. This section will address dynamic properties by introducing the complex event type

(CET ) formal modelling language, which is used to describe multi-level behaviours in ABMS. Con-

densed accounts of this work can be found in [77], [74] and [78].

3.3.1 The semantics of events in ABMS

Before introducing CET s, we first define the semantics of complex events, which are based on existing

event calculi. In [244], Kowalski and Sergot introduce a calculus of events (EC) for representing and

reasoning about event occurrences, the properties that events initiate and terminate, and the maximal

validity intervals (MVIs) for which these properties consistently hold. Although EC is logically more

powerful than the Situation Calculus (SC) [278], it has been shown that the two calculi logically imply

one another [245]. SC focuses on discrete sequences of situations describing possible world history;

this maps easily onto state-based formalisms such as X-machines, which also treat system executions as

sequences of states or ‘situations’.10

Various extensions exist to EC, but two are particularly important for defining complex events.

Firstly, Cervesato and Montanari introduce macro-events [66], which are conglomerations of events built

from four additional constructors. Secondly, in [71], the calculus is also extended to incorporate joint

spatial and temporal locations of event occurrences and structured event conglomerations. We generalise

this further to include locations in any number of dimensions (see Definition 11 and Definition 13 for

our definitions of dimension and location). We then show how this relates to states and behaviours in

ABMS.

Table 3.1 shows the predicates of the Simple Event Calculus11 (as given in [371]) and their mean-

ings. The axioms of the calculus are given in Axioms 1. In the calculus, properties are represented in

terms of fluents, where a fluent is a function defined as {true, false}, and indicates the validity of ob-

jects’ properties (see Definition 9). We can give an ABMS state-based interpretation by making a fluent

represent a state; the function associated with a fluent returns true when the state holds and false when

it does not. To enhance expressivity and facilitate the representation of compound events, the Full Event

10However, the default persistence mechanism of EC makes it more efficient for deducing whether or not a property holds at a

particular time point or interval, thus providing a more efficient solution to the frame problem [296]. Furthermore, because EC is

about changes in states, representing and reasoning about dynamic and temporally extended properties is far more intuitive.
11The term Simple Event here is simply the name that Shanahan gives to the calculus and should not be confused with the

Simple Event terminology we later use in our calculus of events in ABMS.
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Calculus [371] includes additional predicates and axioms, as given respectively in Table 3.2 and Axioms

2. We use this calculus as the basis of our complex event calculus semantics.

Formula Meaning

Initiates(e, f, t) Fluent f starts to hold after event e at time t.

Terminates(e, f, t) Fluent f ceases to hold after event e at time t.

InitiallyP (f) Initially f holds from time 0.

t1 < t2 Time point t1 is before time point t2.

Happens(e, t) Event e occurs at time t.

HoldsAt(f, t) Fluent f holds at time t.

Clipped(t1, f, t2) Fluent f is terminated between times t1 and t2.

Table 3.1: Table showing predicates of the Simple Event Calculus (from [371])

Axioms 1

HoldsAt(f, t)← InitiallyP (f) ∧ ¬Clipped(0, f, t) (3.2)

HoldsAt(f, t2)← Initiates(e, f, t1) ∧ t1 < t2 ∧ ¬Clipped(t1, f, t2) (3.3)

Clipped(t1, f, t2)↔ ∃e, t[Happens(e, t) ∧ t1 < t < t2 ∧ Terminates(e, f, t)] (3.4)

Formula Meaning

InitiallyN (f) Fluent f does not hold from time 0

Happens(e, t1, t2) Event e starts at time t1 and ends at time t2

Declipped(t1, f, t2) Fluent f is initiated between times t1 and t2

Table 3.2: Table showing additional predicates which, together with the Simple event calculus predicates

in Table 3.1, make up the Full Event Calculus. The Happens predicate differs from that defined for the

Simple event calculus in having a start time t1 and end time t2 rather than just an occurrence time point

t.

Axioms 2

HoldsAt(f, t)← InitiallyP (f) ∧ ¬Clipped(0, f, t) (3.5)

HoldsAt(f, t3)← Happens(e, t1, t2) ∧ Initiates(e, f, t1) ∧ t2 < t3 ∧ ¬Clipped(t1, f, t3) (3.6)

Clipped(t1, f, t4)↔ ∃e, t2, t3[Happens(a, t2, t3)∧t1 < t3∧t2 < t4∧[Terminates(e, f, t2)∨Releases(e, f, t2)]]

(3.7)

¬HoldsAt(f, t)← InitiallyN (f) ∧ ¬Declipped(0, f, t) (3.8)
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¬HoldsAt(f, t3)← Happens(e, t1, t2) ∧ Terminates(e, f, t1) ∧ t2 < t3 ∧ ¬Declipped(t1, f, t3)

(3.9)

Declipped(t1, f, t4)↔ ∃e, t2, t3[Happens(e, t2, t3)∧t1 < t3∧t2 < t4∧[Initiates(e, f, t2∨Releases(e, f, t2)]]

(3.10)

Happens(e, t1, t2)→ t1 ≤ t2 (3.11)

The semantics of our complex events are based on a generalisation of the spatio-temporal extended

event language (STEEL) proposed in [71] (see Table 3.3 for STEEL predicates). Table 3.4 shows the

predicates of our generalised event calculus (GEC), which generalises STEEL so that events can be

located in a space with any number of dimensions. In addition, we separate the roles played by t and l.

l denotes a location l = 〈x0, ..., xn〉) in the space defined by the n dimensions (see Definition 11)

of the model, which can also include the representation of time. But this is treated independently of t,

which represents the execution order of the events according to the axioms defined in Axioms 2. So, for

example, for a simulation of a model where both two-dimensional physical space and time are explicitly

represented, if e1 and e2 are two distinct events that occur at time step 1 at physical location (2, 3), there

are still two possible executions:

Happens(e1, 〈t1, (1, (2, 3))〉)Happens(e2, 〈t2, (1, (2, 3))〉)

and

Happens(e2, 〈t1, (1, (2, 3))〉)Happens(e1, 〈t2, (1, (2, 3))〉),

where t1 < t2 and

Happens(e, 〈t, l〉) ≡def Happens(e, 〈t1, l〉 , 〈t2, l〉)

More specific calculi can be represented by giving l a particular structure and a set of axioms.

For example, in an ABS of moving entities, space, time and agent identity are the dimensions required

to locate events. This can be defined by the tuple l = (t, s, a), where t holds the current time step,

s = (x, y, z) is holds the location in three-dimensional physical space, and a holds the agent identifier.

In a model where entities can not occupy the same spatial location at the same time, we can further

stipulate that:

¬∃txsxaxtysyay[(tx, sx, ax) ∧ (ty, sy, ay)(∧tx = ty) ∧ (sx = sy) ∧ (ax 6= ay)]

(Examples of formal models of spatio-temporal relations can be found in [185] and [140].)

For an X-machine system representation of a simulation SIM , the fluent fSIM in InitiallyP (fSIMinit)

can be used to represent the entire initial X-machine system configuration z0SIM of SIM (see Defini-

tion 5). However, z0SIM also entails a set of other fluents corresponding to different subsystem state

observations OBSz0SIM = {obs(z0SIM)} consistent with fSIMinit.
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More generally, a communicating X-machine system configuration zX is associated with a unique

set of fluents, and a change in a communicating X-machine system configuration implies a change in the

fluent set:

(zX → zY )→ (FlX → FlY ),

where

FlX = {f0, ..., fn};FlY = {g0, ..., gm},

fi = obsi(zX), gj = obsj(zY ), where

obs(zCXMS) = obs(z1, ..., zn, cm), and

• obs(zi) = (obs(mi), obs(qi), obs(si), obs(gi)), i = 1, ..., n;

– mi is the current value of the memory Mi of Ci;

– qi is the current state of Ci;

– si ∈ Σi∗ is the current input sequence of Ci; and

– gi ∈ Γi∗ is the current output sequence of Ci.

• cm is the current set of communications between components. This is usually formalised as a

communication matrix [228].

• obs(σi) ⊆ σ ∈ Σ; Σ = ΣA1 ∪ ... ∪ ΣAn;

• obs(mi) ⊆ mi ∪ ∅;

• obs(qi) ⊆ qi ∪ ∅;

• obs(si) ⊆ si ∪ ∅;

• obs(gi) ⊆ gi ∪ ∅;

• obs(cm) ⊆ cm ∪ ∅,

and

∃f((f ∈ FlX) ∧ ¬(f ∈ FlY )),

As the simulation executes and the X-machine system configurations change, different sets of flu-

ents hold. The application of a state transition rule STR is an event that initiates or terminates at least

one fluent in the set:

Happens(STR, 〈t1, l〉 , 〈t2, l〉)→ Initiates(STR, f, 〈t, l〉)|Terminates(STR, f, 〈t, l〉)
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3.3.2 Complex event types as multi-level behaviours

In Section 3.2.1.1, we defined behaviour in an ABS to be a state transition that arises from the execution

one or more STRs, where each STR execution occurs at a unique location (see Definition 13) in the

simulation space R = {(STR0, L0) × ..., (STRn, Ln)}. In this section, we introduce a calculus for

describing behaviours at different levels. There are four distinct senses in which we can say a behaviour

exists at a particular level:

1. The structure of the state transitions i.e. where they occur in the simulation space.

2. The STR execution structure. For example, a single STR execution can give rise to the same

changes in state as those that result from a particular structure of STR executions.

3. The observation or description of the state transitions.

4. The observation or description of the STR executions.

Complex event types (CET s) incorporate these four aspects of level and allow them to be distinctly

represented.

The distinction between simple and complex events addresses STR execution. When the state

transition results from the execution of a single STR, we call the change in state a simple event (see

Definition 24). When it results from a structure of STR executions, we call it a complex event. This

allows us to describe behaviours in terms of both their state transition structures and their STR execution

structures.

To relate this to the event calculus introduced in Section 3.3.1, we need to introduce macro-events,

which are structured conglomerations of events. Each macro-event is defined by a macro-event structure

(MES) [66]. Table 3.5 shows the MES constructors and their semantics in first order logic, as defined in

[71].

Simple events can be defined as macro-events where an STR execution (‘decision’) is followed

(possibly after a delay) by the event representing the state transition (‘action’) (see Definition 24 and

Figure 3.7). The state transition event can itself be a macro-event made up of state changes (changes in

fluent values) in several locations over the course of the conglomerated event’s duration.

Definition 24 Simple event. A simple event se is a state transition ϕsource → ϕtarget that results from

the execution of a single state transition rule (STR) by an agent or component:

se = estr;Dd mtrans,

where the event estr is the execution of a state transition rule by an agent or component of the system

and mtrans is the resulting state transition:

estr = Happens(mtrans, 〈initT, l〉 , 〈endT, l〉),

mtrans is a macro-event consisting of a set of sub-events {esub} in a macro-structure (defined using the

constructors in Table 3.5). Each sub-event esubi can be represented in terms of the EC predicates, e.g.:

Initiates(esubi, fi, 〈ti, li〉), T erminates(esubi, fi, 〈ti, li〉), Releases(esubi, fi, 〈ti, li〉).
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In X-machine terms, a simple event is the application of the next state function Fi to Qi × φi by

one of the system’s X-machines:

Fi : Qi × φi → Qi

(i is the index for the X-machine component/agent.), which results in a transition in a subsystem

state.This can be described in hypergraph terms as a change in a set of related fluents. If Hpre =

(Xpre, Epre) is the hypergraph representing the subsystem state before the STR application and

Hpost = (Xpost, Epost) is the hypergraph representing the subsystem state after STR application, a

third hypergraph Hse can be defined representing the simple event:

Hse = (Xpre + Xpost + STR,Epre + Epost + Estr),

where

Xpre = {xpre1, ..., xpren}, Xpost = {xpost1, ..., xpostn},

Estr = e1, ..., estrn,

and

ei = {xprei, STR, xposti}.

The set of hyperedges Estr represents the grouping of the two states represented by Hpre and Hpost

into a single set defined by the STR.

A complex event is a macro-event made up of simple events and can be represented by a hyper-

graph:

Hce = (SEce, Rce),

where the nodes SEce = se1, ..., sen are its n simple event constituents and Rce is a hyperedge relating

the simple events in the simulation space. Figure 3.7 summarises the relationship between complex

events, simple events, STRs and subsystem state transitions.

Concurrent synchronised execution of two or more STRs are represented by complex events where

the STR executions are related by the ||MES constructor, but each execution corresponds to a separate

simple event.

3.3.2.1 Simple event types: Observing state transitions at different levels

State transitions resulting from the execution of a single STR can be partially observed and described

using SST s representing partial observations of the source and target states (respectively ϕ and ϕ′) as

described in Section 3.2.2.2. We define state transition types (STTPs) as mappings from one SST to

another SST . Example 1

Example 1 The STTP grow and jump = {var1, var2} → {var1′, var2′} can be observed as:

• grow and jump = {var1, var2} → {var1′, var2′};

• grow = var1→ var1′; or
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Figure 3.7: A simulation is made up of two primitive categories of event: STR executions and subsys-

tem state transitions. In X-machine terms, an STR execution is the application of the next state function

F while subsystem state transitions are changes in X-machine system configurations (where the config-

urations represent the subsystem states). The macro-event made up of a STR and the subsystem state

transition it gives rise to is a simple event. A complex event is a macro-event made up of a set of related

simple events. (See Definition 24)
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• jump = var2→ var2′,

each of which represent a distinct STTP .

Definition 25 State transition type (STTP ). A state transition type is a mapping from one SST to

another SST .

We define a simple event type to be a description of a simple event that consists of:

1. The STR from which it is generated; and

2. An STTP (as defined in Definition 25; see also Figure 3.7).

Definition 26 Simple event type. A simple event type is described by the two-tuple (STR,OBS(∆(ϕ)))

where:

• STR is a state transition rule of the ABM;

• OBS(∆ϕ) represents an STTP generated by the STR.

Two simple events seA and seB are therefore said to be of the same type if:

• the functions applied in seA and seB are the from application of same STR; and

• seA and seB have the same STTP obs(∆(ϕ)).

Maximally observed SET s are those describing the complete set of state transitions brought about

by the STR i.e. where:

obs(∆(ϕ)) == ∆(ϕ).

So if the STTP grow and jump in Example 1 results from the execution of a single STR, stri,

the three STTP s given in the example correspond to the following SET s:

1. (stri, grow and jump) (the maximally observed SET );

2. (stri, grow); and

3. (stri : jump).

Figure 3.8 shows the relationship between component (agent) type and components (agents) and

between STRs and simple events in an executing system. In X-machine terms, this means that they

result from the application of the same function φ in the function set Φ (which stands for the set of state

transition rules for an agent type). Definitions 27 and 28 respectively define SET s and simple events in

X-machine terms.

Definition 27 Simple event type (X-machine formulation). For an X-machine formulation of an ABM

with agent types A1,...,An, a SET is defined as:

SET = (φi, transi),
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Figure 3.8: Components instantiate component types in the real system or simulation while simple events

can be said to instantiate state transition functions.
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where

transi = (obs(σi,mi, ini, outi, cmi)→ (obs(σ′i,m
′
i, in

′
i, out′i, cm

′
i),

and φ is the partial function (which can be a communicating or processing function):

φi : (σi,mi, ini, outi, cmi)→ (gi,m
′
i, in

′
i, out′i, cm

′
i),

and obs(σi,mi, ini, outi, cmi) is a SST consistent with (σi,mi, ini, outi, cmi), i.e.

• obs(σ) ⊆ σ ∪ ∅, σ ∈ Σ; Σ = ΣA1 ∪ ... ∪ ΣAn;

• obs(m) ⊆ m ∪ ∅,m ∈M ; M = MA1 ∪ ... ∪MAn;

• obs(in) ⊆ in ∪ ∅, in ∈ I; I = IA1 ∪ ... ∪ IAn;

• obs(out) ⊆ out ∪ ∅, out ∈ O; O = OA1 ∪ ... ∪OAn;

• obs(g) ⊆ gcup∅, g ∈ Γ; Γ = ΓA1 ∪ ... ∪ ΓAn;

• obs(cm) is a submatrix of cm, ∈ CM .

For a maximally observed SET :

• obs(σ) = σ ∈ Σ; Σ = ΣA1 ∪ ... ∪ ΣAn;

• obs(m) = m ∈M ; M = MA1 ∪ ... ∪MAn;

• obs(in) = in ∈ I; I = IA1 ∪ ... ∪ IAn;

• obs(out) = out ∈ O; O = OA1 ∪ ... ∪OAn;

• obs(g) = g ∈ Γ; Γ = ΓA1 ∪ ... ∪ ΓAn;

• obs(cm) = cm ∈ CM .

Definition 28 Simple event (X-machine formulation).

se = (Fi, SETi)

where

• Fi is the next state function that applies a function φi;

• SETi is a simple event type associated with φ.

Definition 29 Equivalence of simple event types (X-machine formulation). Two simple events seAi

and seBj are said to be of the same type if

φAi == φBj , φAi ∈ ΦA, φBj ∈ ΦB ,

obs(σA) == obs(σBj),

obs(mAi) == obs(mBj),
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obs(gAi) == obs(gBj),

obs(inAi) == obs(inBj),

obs(outAi) == obs(outBj),

and

obs(cmAi) == obs(cmBj),

3.3.2.2 Complex event types

The type of a complex event is determined both by the types of its constituent events and the relations

that hold between them (see Definition 30). This can be represented using a hypergraph, where nodes

stand for CET s and edges stand for the different relationship types (constraints) existing between events.

Since both CET s and relation constraints can be defined at different levels, different hypergraphs can

be drawn for the same complex event (instance). This reflects the fact that the same event can exemplify

more than one type, depending on the level of abstraction. For example, the complex event ce described

by hypergraph:

ce = ({e1, e2, e3}, {./1, ./2})

instantiates both cetA:

cetA = ({cetx, cety1, cety2}, {./1, ./2})

and

cetB = ({cetx, cety}, ./2).

where:

• ./1 is a set of location constraints on {e1, e2, e3};

• ./2 is a set of location constraints on {e1, e2};

• e1 instantiates cetx; and

• e2 and e3 instantiate cety

This is illustrated in Figure 3.9

Definition 30 A complex event type (CET ) is recursively defined as either a simple event type (SET )

or a hypergraph of CET s:

CET :: SET |({CET}, {./}).

A particular complex event type (cet) is described by the hypergraph:

({cet}, {./}),

where each ./ in {./} is a hyperedge between a (multi-)set of CET s.

Definition 31 Computational equivalence of CET s. Two complex event types cet1 and cet2 are said

to be computationally equivalent if they can be represented by exactly the same set of hypergraphs.
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Figure 3.9: The complex event (represented by the arrow with a solid outline) instantiates both cetA

and cetB (represented by arrows with dashed outlines), with cetA as ({cetx, CETy1, cety2}, {./1, ./2})

and cetB as ({cetx, cety}, ./2). The solid line stands for ./1, which is a set of location constraints on

{e1, e2, e3} and the dashed line stands for ./2, which is a set of location constraints on {e1, e2}. e1

instantiates cetx while e2 and e3 instantiate cety . cetA is also a subtype of cetB
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3.3.3 Compositionality and subtyping of complex event types

A hyperedge ./ can stand for any relation types between a (multi-)set of CET s. In a composition

relation, ./ is a location constraint between events, whereas in a type relation, ./ is a common set

membership relation. A mixed α− and β− relation in ./ allows any level of abstraction to be represented.

As for SST s, we use ./c to represent a composition relation, where the notation:

cetc = ceta ./c cetb

stands for the fact that ceta and cetb are both constituents of cetc (see Definition 32).12

./t is used to represent a type relation, where the notation:

cetc = ceta ./t cetb

stands for the fact that ceta and cetb are both subtypes of cetc (see Definition 33).13

Definition 32 Composition relation between CET s. Hcet1 = (Xcet1, Ecet1) is a constituent of

Hcet2 = (Xcet2, Ecet2) iff:

Hcet1 ./c Hcet1∗ = Hcet2,

Xcet1 + Xcet1∗ = Xcet2,

Ecet1 + Ecet1∗+ ./c= Ecet2,

and ./c is a hyperedge defining constraints between Hcet1 and Hcet1∗.

As for SST s, the ./c operator stands for combinations constraints holding between events in the

CET structure in any of the dimensions represented in the ABMS (see Section 3.2.1.2). These are

described by a set of constraint operators (op) specific to the model’s dimensions, which can be combined

using the following syntax:

./c:: op|(op)|¬op|op ∨ op|op ∧ op

Examples of constraint operators (op) are given in Table 3.6 and examples of their application are

given in Example 2, Example 3, Example 4 and Example 5. (These operators are also used to specify

the CET s for the case study in Chapter 5. Full Hypergraph descriptions of these CET s are given in

Appendix B and serve as further examples for the notation.).

Example 2 Temporal constraint examples:

• E1 ≺ [< 4]E2 means that E2 occurs within 4 time units of E1.

• E1(≺ [< 4]) ∨ (≺ [> 8])E2 means that E2 occurs either within 4 time units of E1 or it occurs

more than 8 time units after E1.

Example 3 Spatial constraint examples:

12Formally speaking, according to Definition 32, every CET is also a constituent of itself.
13Formally speaking, according to Definition 33, every CET is also a subtype of itself.
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Dimension Operator Meaning

Temporal ‖ Concurrently

; Immediately follows

≺ Follows. This might be specified in terms

of time units and qualifiers (≤, <,≥, >) as

in Example 2

Spatial ◦(v) Within distance v.

.(x, [y, ..., z]) At location (x, [y, ..., z]).

Agent identity [A1/A2] Token identical (see Example 4).

Table 3.6: Examples of constraint operators (op).

• E1 . (−3, 2)E2 means that the event E2 occurs within a spatial offset of (−3, 2) with respect to

event E1.

• E1 ≺ [< 4] ∧ ◦(3)E2 means that E2 occurs within 4 time units and within a distance of 3 units

from E1.

Example 4 Agent identity constraint example:

• E1[A1/A2]E2 means that E2 occurs in the same agent (with the same ID) as the agent in which

E1 occurs.

Example 5 Combined constraint example:

• E1[(≺), (¬ ◦ (5)), (A1/A2)]E2 means that E2 occurs before E1 at least 5 units in distance away

from E1 in the same agent as the component in which E1 occurs.

For an X-machine formulation of an ABM with agent types A1,...,An, a CET is defined as:

CET = (({φ1, ...φn}, Rφ), ({trans1, ..., transm}, Rtrans),

where

transj = (obs(σj), obs(mj), obs(inj), obs(outj), obs(cmj))→ (obs(gj), obs(m′
j), obs(in

′
j), obs(out′j), obs(cm

′
j)),

and

• φi ∈ Φ; Φ = ΦA1 ∪ ... ∪ ΦAn;
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• Rφ is a set of relations between {φ1, ...φn};

• obs(σ ⊆ σ ∈ Σ; Σ = ΣA1 ∪ ... ∪ ΣAn;

• obs(m) ⊆ m ∈M ; M = MA1 ∪ ... ∪MAn;

• obs(in) ⊆ in ∈ I; I = IA1 ∪ ... ∪ IAn;

• obs(out) ⊆ out ∈ O; O = OA1 ∪ ... ∪OAn;

• obs(cm) ⊆ cm ∈ CM ;

• Rtrans is a set of relations between {trans1, ...transm};

Definition 33 Subtype-supertype relation. Hcet1 = (Xcet1, Ecet1) is a subtype of Hcet2 =

(Xcet2, Ecet2) if:

Xcet1 ⊆ Xcet2,

Ecet1 ⊆ Ecet2

Hcet1 is said to be the supertype of Hcet1.

As with states in ABMS (see Section 3.2.2), the two types of relations can also be mixed.

3.3.3.1 Scope and resolution

A behaviour M is a macro-behaviour with respect to another behaviour m if the following is true of the

complex event type CETM representing behaviour M and the complex event type CETm representing

behaviour m:

ScopeCETM
≥ ScopeCETm (3.12)

where a complex event type CETA has a greater scope than another complex event type CET2 if the

minimum number of constituent SET s linked by a ./c relation for CET1 is greater than that for CET2.

ResolutionCETM
≤ ResolutionCETm

(3.13)

where a complex event type CET1 has a lower resolution than another complex event type CET2 if

CET1 has more subtypes than CET2 i.e. more CET s linked by a ./t relation (see Definition 33 for the

definition of subtype).

(ScopeCETM
, ResolutionCETM

) 6= (ScopeCETm , ResolutionCETm) (3.14)

However, with respect to CET s, it is important to distinguish between:

• the scope and resolution of the CET , which is determined respectively by its constituent SET s

and its degree of specificity (its subtypes), namely:

– The scope of a complex event is the scope of its SET s, which is a function of the STRs that

need to execute and the scope of the resulting state transition observation.
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– The resolution of a complex event type is defined by the set of complex events that can be

classified as being of its type. The greater the number of complex events falling into the

set, the lower the resolution. The important point to note here is that the distinction between

simple and non-simple complex event types (which represent macro-behaviours) lies not

in the scopes and resolutions of their state transitions, but in the STRs from which they

originate.

and

• the scope and resolution of the STTP (see Definition 25), which can be sub-categorised into

scope/resolution for different dimensions represented in the simulation, e.g. space, time, agent, as

summarised in Table 3.7 and Table 3.8.

STTP s allow us to describe state transitions at different scopes and resolutions and hence to define

different levels of observation. For example, flocking behaviour can be described by a STTP in which

the velocity of movement of an agent lies within some range of the velocity of movement of its nearest

neighbour. This allows us to abstract away from absolute locations, velocities, and even agent types.

Subtypes of this abstract flocking behaviour can then be defined which are more restrictive (e.g. flocking

behaviour involving only the boid agent type, flocking behaviour in which velocities of all members of

the flock are exactly identical).

Table 3.7 and Table 3.8 give definitions of scope and resolution in terms of particular ABMS di-

mensions and show how these definitions apply to state transition observations.

Dimension General Definition Definition in terms STTP s

Temporal The duration required for a property

to exist.

The minimum amount of time re-

quired for the STTP .

(Physical)

Spatial

The physical space occupied by the

property.

The minimum length, area, volume

etc. delimited by the state change

locations in physical space for the

STTP .

Agent/System

component

The agents/system components re-

quired for that property to exist.

The minimum number of

agents/system components in

which state transitions need to

occur.

Table 3.7: Scope defined with respect to different ABMS dimensions in state transition types (STTP s).

For STTP s which have subtypes with different scopes, the minimum scope is used.
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Dimension General Definition Definition in terms STTP s

Temporal The degree of precision in time in-

tervals required for the property to

be observed.

The smallest time interval between

between the source subsystem state

type sst and target subsystem state

type sst′ in the STTP .

Spatial The degree of precision in the di-

mensions defining physical space

that is required for the property to

be observed.

The smallest distance (in physi-

cal space) that needs to be distin-

guished between the source subsys-

tem state type sst and target subsys-

tem state type sst′ in the STTP .

Agent/System

component

The degree of agent specificity i.e.

the set of agents that can be substi-

tuted in the same role for the prop-

erty to be observed.

The set of agents that can be substi-

tuted for one another in the STTP

e.g. all agents of type A, all agents

in area R.

Table 3.8: Resolution defined with respect to different ABMS dimensions in state transition types

(STTP s). For STTP s which have subtypes with different resolutions, the minimum resolution is used.
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3.3.3.2 Computational equivalence and uniqueness in terms of CET s

We define a simulation trajectory to be the complete set of descriptions that can be applied to the simu-

lation at any level of abstraction. This equates to the CET hypergraph Hsim = (Xsim, Esim), where

Xsim is the complete (multi-)set of CET s that can be observed in the simulation, and Esim is the com-

plete set of relation types, which can be compositional, subtype-supertype, or mixed (see Definition 32

and Definition 33 above).

Definition 34 . A simulation trajectory is a complex event type, cetsim described by the hypergraph:

Hsim = (Xsim, Esim),

where Xsim is the complete (multi-)set of CET s and Esim is the complete set of relation types present

in the simulation.

An ABM can therefore be characterised as a distributed algorithm or function (see Section 3.1) that

generates a set of computationally unique simulation trajectories (see Definition 37). If two simulation

instances have the same simulation trajectory and are generated by the same parametised ABM, we say

that they are computationally equivalent. More generally, two CET s are computationally equivalent if

they have the same simulation trajectories, as defined in Definition 35.

These definitions have important theoretical implications for application of ABMS in hypotheses-

testing. Due to the finite nature of computation, both the set of computationally unique simulation

trajectories CET s and the set of CET s that can computationally detected is finite. Hence, the set of

(multi-level) hypotheses that we can computationally test is finite. 14

Definition 35 Computational equivalence of complex event types. Two complex event types cet1 and

cet2 with simulation trajectories described repectively by H1 = (X1, E1) and H2 = (X2, E2) are

computationally equivalent iff (i) X1 = X2 and (ii) E1 = E2.

Definition 36 Computational equivalence of simulations. Two simulations sim1 and sim2 are compu-

tationally equivalent iff (i) they are generated by the same model F and (ii) the CET s describing their

simulation trajectories, cet1 and cet2 respectively, are computationally equivalent.

Definition 37 Computational uniqueness. A simulation trajectory is computationally unique for model

F if it is described by a unique hypergraph that is distinct from every other simulation trajectory hyper-

graph generated by F .

3.4 Emergence and Complexity in terms of Complex Event Types
In Section 2.1.7, we identified three distinct aspects to emergence:

• Design-System behaviour discrepancy;

• Observational level (of both properties/behaviours and the ‘laws’ underlying them); and

14A more thorough treatment of this is given in [73].
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• Functional ‘meaning’.

We have already addressed the first two of these in Section 3.3. The ‘design’ of an ABM is its

set of STRs, which define SET s, the constituents of CET s, and observational level is formalised in

the compositional and type relations defined in Section 3.2. In this section, we first address the third

aspect of emergence in terms of functional equivalence, and show how multi-functionality can be for-

malised in CET terms. Fundamental to all Complexity Sciences however, is also the assumption that

emergent behaviours are empirically important and have causal or constraining dependencies on each

other. In Reductionist explanations, these dependencies are always within-level, but the Complex Sys-

tems perspective permits inter-level dependencies since it is the causal and/or constraining dependencies

between different CET s that give rise to compositional and type relations. Inter-level dependencies are

addressed in more detail in Chapter 4. However, in this Section 3.4.2, we will show how two important

categories of emergent phenomena, ‘top-down causation’ and autopeoisis (both specialised versions of

inter-level causation) can be formalised in CET terms.

3.4.1 Functional equivalence and multi-functionality

In Section 3.3.3.2, we defined computational equivalence for CET s (see Definition 35). However, in the

context of biological systems modelling, functional equivalence is also important, where CET s playing

the same role in a biologically significant function (represented by a CET ) are said to be functionally

equivalent. A CET can also be multi-functional (both semantically and reactively; see Section 2.1.6)

and play roles in different biologically significant functions, as defined in Definition 38.

Definition 38 A complex event type is multi-functional if it is a constituent in more than one functionally

significant complex event type.

Example 6 If cetA and cetB represent functionally significant CET s,

cetA = cetx ./c cety,

cetA = cetz ./c cety,

and

cetB = cetx ./c cetz,

then:

• cetx and cetz are functionally equivalent in cetA; and

• cetx is multi-functional and has a role in both cetA and cetB .15

15Multifunctionality and functional equivalence can also apply to agents. If an agent action generates (either on its own or in

conjunction with other agents’ actions) more than one functionally significant CET at the same time, we say that it plays more

than one role and is hence multifunctional.
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3.4.2 Top-down ‘causation’, emergent ‘laws’ and autopoiesis

Causal relationships have always been a subject of contention in both Philosophy and Science, resulting

in several different formalised interpretations of causal relationships. This is addressed in Section 4.1,

where different dependency relations between events and event types are considered. Furthermore, Com-

plexity itself can be seen as a challenge to traditional conceptions of causality [136], [147], [306] [229].

However, given a particular causal dependency relation →, we can define sets of ‘causally’ equivalent

CET s so that if a causal relation exists between cetA and cetB , then all subtypes of cetA are causally

equiavalent with respect to cetB .

Since both cetA and cetB can represent behaviours at any level, cetA → cetB can be used to

describe an inter-level law causally relating behaviours at different levels.16

We say that a law between two CET s is emergent when a causal relationship (which might be de-

terministic or probabilistic — see Chapter 4) holds between the two CET s even though that relationship

is not contained in the ABM STRs. More precisely, an emergent law exists between two complex event

types cetx and cety when a causal relationship→ exists between cetX and cetY and there is no STR

causally linking CETX and CETY i.e.:

cetx → cety;

and

¬∃setXY (setXY = (cetX ./c cetY ))

The requirements that have to be met for this causal relationship differ for different theories of causality.

An emergent law therefore satisfies the information theoretic interpretation of emergence, since if

a complex event cei in an executing system belongs to cetx, it predicts that a complex event belonging

to cety will occur, and the fewer the number of members in cety , the greater the predictive efficiency of

cei. These emergent ‘laws’ can be empirically validated and/or discovered through simulation.

When an emergent law exists between a higher level event and its constituent events, we say there

is a top-down ‘causation’ effect. We call this a top-down constraint because of the participatory nature

of the relationship (which does not map easily to the idea that cause and effect should be distinct) i.e. a

top-down constraint effect exists between two complex event types cetM and cetm when:

• an emergent law cetM → cetm holds; and

• cetm is a lower level complex event type with respect to cetM so that either: cetm ⊂ cetM or

cetM = cetm ./c cetm′

In this thesis, we make no assumptions about the metaphysical status of top-down constraints i.e.

we take an agnostic stance on whether these constraints have real causal power, supervene on lower level

laws, or are epiphenomena. (This has been a long-standing debate in the Philosophy of Science, see, for

example [149], [354], [233].)

16‘Laws’ and causal relations represented by → are addressed in Section 4.1, where they are defined by different dependency

relation between events.
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Autopoiesis [276] is a pervasive term in both Complexity Science and Artificial Life, and is often

charactured by the term ‘self-causation’. In its original definition in [276], it refers to:

‘...a network of processes of production (transformation and destruction) of components

which (i) through their interactions and transformations continuously regenerate and realise

the network of processes (relations) that produced them; and (ii) constitute it as a concrete

unity in space in which they exist by specifying the topological domain of its realisation as

such a network...’

This can be formalised as a set of causal relations linking the instantiation of a given CET with its

instantiation in the future. We can therefore say that in an autopoeitic system or process, the following

law holds:

cetA = cetA → cetA.

In the case of a living system, cetA defines a set of CET s which represent viable event structures. In

each instantiation of the law (which is also self-referentially defined in terms of cetA), the event structure

is likely to be slightly different.

3.5 Chapter Summary and Discussion
In this chapter we have shown how to formally represent the following in ABMS terms:

• Descriptions of static properties at different levels as subsystem state types (SST s).

• Structured event executions in terms of the generalised event calculus (GEC).

• Descriptions of dynamic properties (behaviours) at different levels as complex event types

(CET s).

• The emergence of higher level states, behaviours and ‘laws’ from base level states and rules.

• The emergence of inter-level ‘laws’ from base level states, behaviours and rules. 17

CET s capture two aspects of behaviour in ABMS:

1. The state transition rules associated with a behaviour;

2. The resulting state change observed.

Because SET s are defined by both an STR and a state change observation, we are able to specify

behaviours at different levels in terms of both these aspects. This allows us to validate hypotheses about

the emergence of higher level laws from base level laws (represented by agent STRs).

17Inter-level laws and CET s provide a means by which we can explain how low-level interactions give rise to high-level

organisational phenomena via intermediate phenomena. CET s allow us to describe a high-level phenomenon in terms of the

lower level phenomena which constitute it. These can be intermediate between the high-level phenomenon and the base level agent

interactions that give rise to it. Inter-level laws allow us to describe empirical dependencies between the high level phenomenon

and lower level interactions. More detailed discussion of causal laws and other dependency relations is given in Chapter 4
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Furthermore, because SET s (and hence CET s) are defined by both STRs and state change obser-

vations, we have a single formal framework in which we can integrate the three emergence perspectives

identified in Section 2.1.7:

• The Design-System behaviour discrepency is expressed in the relationship between SET s (de-

fined by STRs as well as observed state transitions) and CET s;

• The observational level perspective is expressed using compositionality and subtyping of CET s;

• The functional ‘meaning’ perspective is expressed by defining CET s in terms of functional role.

While this chapter has focused on the formal definition of CET s and related constructs, this formal

representation of CET s is independent of the way in which they are specified for practical purposes.

Explicit specification of CET s in terms of their constituent CET s and/or SET s would require

us to define the underlying structured STR executions. But often, discovering these structured STR

execution structures is the goal of Complex Systems studies. In their application in complex systems

ABMS therefore, it is usually more desirable to specify CET s implicitly by grouping together events

with common atributes and then perform analyses on them after they have been detected in simulation.

For example, we may wish to determine which CET s (behavioural mechanisms) lead to a state X . By

grouping together all behaviours leading to X , we have implicitly defined a CET for X , cetX , even

though we do not know anything about cetX ’s constituent or subtype CET s. Further subgroups can

also be defined in this way so that behaviours of type cetX can be further subclassified. Analysis of

the frequencies and/or dependencies between CET s (whether specified implicitly or explicitly) both

within and across simulations then allows us to determine the empirical relations between behaviours at

different levels. Chapter 4 introduces a set of computational statistical techniques for this purpose.



Chapter 4

Inter-level, Multi-level and Predictive

modelling with Complex Event Types

CET s (introduced in Chapter 3) provide the building blocks for models relating dynamic properties

(behaviours) at different levels in ABMS. This chapter introduces novel computational methods for val-

idating and discovering such models 1. We also address the theoretical assumptions underlying their

application. (Application to a Systems Biology model is demonstrated in the case study in Chapter 5.)

The chapter will be structured as follows:

• In Section 4.1, we show how different theories of causality and complexity can be computationally

represented in terms of defined relationships between complex events. These different categories

of relationship provide the building blocks for specifying inter-level models relating behaviours at

different levels.

• In Section 4.2, we describe how to specify and validate inter-level models with a set of simulations.

Inter-level models formalise expectations about how a system will behave in terms of observations

at different levels by defining inter-level empirical dependencies. They therefore allow us to ex-

press bridging explanations of how agent-level interactions give rise to higher level organisational

phenomena.

• In Section 4.3, we introduce statistical methods which allow us to infer predictive models from a

set of simulations using CET frequencies as the independent variables. We also discuss how the

resolution at which we measure these frequencies might affect predictive validity. Furthermore,

because these statistical techniques can themselves be treated as models of the learning process,

their application to ABMS provides us with a formalisation of the process of learning from simu-

lations.

• In Section 4.4 we introduce multi-level models, which group simulations according to specified

attributes. Models (and sub-models) can be validated and/or identified with statistical analysis.

1The methods introduced assume that statistical analyses of data are a valid approach to modelling. We recognise however,

that this is not an uncontested position, and there are those who argue that analytical modelling has greater explanatory power (e.g.

[24]).
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Multi-level models formalise expectations of how a system observed at different levels will behave

under different conditions.

4.1 Modelling causality and complexity with ABMS
In the first part of this section, we formally express different causal and non-causal relationships in terms

of relationships between complex events and CET s. These provide the basis for specifying inter-level

models, which describe relations between behaviours at different levels. Because causality is a construct

largely associated with a Reductionist approach to Science, the second part of the section (Section 4.1.2)

proposes other theories of associative relations that fit better within the Complexity paradigm.

4.1.1 Causal modelling and Theories of causality

Causation is still a controversial and hotly debated topic across many disciplines and domains, including

Philosophy, Statistics, Computer Science, and both physical and social sciences [64], [96], [316], [7],

[418]. Although most scientific disciplines take causality for granted, the different theories underlying

the techniques used to establish causal relations are still being disputed. To make explicit the theoretical

foundations on which different techniques are based, we first express the causal relations defined by dif-

ferent theories in ABMS and CET terms. We then explicitly relate these to different statistical measures

and techniques.

First, it is important to draw a distinction between:

• single-case causal relationships or cause-effect tokens, which are those that hold for a single

occasion; and

• generic causal relationships or cause-effect types [418], which hold for a set of occasions.

In ABMS and complex event terms, single-case causal relationships can be represented by a directed

association (modelling causation) between a pair of complex events (the cause and effect) in a particular

simulation. A generic cause-effect causal relationship can be represented by a directed association (mod-

elling causation) between a pair of CET s (with probabilistic theories of causality, statistical analysis is

used to establish the validity and/or strength of the hypothesised relationship). 2

In its earlier formulations, causality as a theoretical construct has tended to be defined in terms of

deterministic relationships between properties or events (e.g. [202]). However, more recently, prob-

abilistic formulations have become more common, and the majority of sciences tend to use statistical

techniques to study probabilistic causal relations. The shift comes from two important motivations.

Firstly, scientists have realised that events and properties often interfere with one another, so knowl-

edge that a particular event has occurred can only give us partial information about what is likely to

follow. Secondly, quantum ‘laws’ imply that the fundamental fabric of reality is stochastic and should

be described probabilistically.
2However, given the computational nature of ABMS, it should be pointed out that the representation of single-case causality

described above can be recast in terms of generic causality, where the set of occasions for which the relationship holds is described

by all computationally represented attributes of a simulation (a detailed discussion of the breakdown in type-token distinction in

computational representations can be found in [73])
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A fundamental issue in defining causal relations is whether they are physical or purely mental i.e.

a feature of an individual’s epistemic state. With probabilistic theories of causality, these two positions

respectively assign a physical or epistemic status to probability [7], [418]. With epistemic probabilistic

causality (also called pseudo-indeterminism [379]), incomplete knowledge of causes results in uncertain

cause-effect relationships. This is the assumption on which the majority of statistical techniques for

establishing causal relations based. Physical probabilistic causality refers to the view that nature has

inherently stochastic properties; this is often associated with quantum mechanics [133], [184], [377].

It is possible to emulate both epistemic and physical probabilistic causality in ABMS (although it

should be emphasised that this is only an emulation since any random element is only pseudo-random

in a computation). To model physical probabilistic causality, differences between simulations are due to

non-deterministic STRs which are driven by an element of simulated randomness. To model epistemic

probabilistic causation, differences between simulations are due to differences in initial conditions which

then entail all the differences that follow throughout the simulation. However, non-determinism in STRs

can also be used to represent lower level fluctuations of which we have incomplete knowledge or do not

wish to model in detail. This is the approach we take in our studies in Chapter 5, where non-deterministic

STRs are used to represent biological behaviours that have already emerged from lower level biological

processes and physical laws. (We therefore make no assumptions as to whether or not the underlying

physical laws are non-deterministic).

4.1.1.1 Causality as counterfactuals

In the account of causality proposed in [256], e depends causally on c if and only if:

1. if c were to occur then e would occur (or its chance of occurring would be significantly raised);

and

2. if c were not to occur then e would not occur (or its chance of occurring would be significantly

lowered).

The causal relation is then taken to be the transitive closure of Causal Dependence: c causes e if e

causally depends on c or if e depends causally on some d and c causes d.

Lewis gives the semantics of the subjunctive conditionals (called counterfactual conditionals if the

antecedent is false) in terms of possible worlds:

‘If c were to occur then e would occur’ is true if and only if (i) there are no possible

worlds in which c is true or (ii) e holds at all the possible worlds in which c holds that are

closest to our own.’

Problems with this account tend to stem from the reliance on possible worlds and what counts as

‘close’ since it is difficult to see how we can objectively establish how close a possible world is to our

own. Another issue is that Lewis’ original formulation does not itself address temporal asymmetry and

allows backward causation.3

3Instead, Lewis invokes de facto temporal asymmetry as a feature of the actual world.
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Definition 39 and Definition 40 give formulations of the counterfactual account of causality in

terms of complex events and CET s respectively 4. CET s provide us with a means of defining precisely

what we mean by ‘close’. Computationally unique simulation trajectories (see Section 3.3.3.25) that are

subtypes of the same CET (cetz in Definition 39 and Definition 40) can be classed as those representing

‘worlds closest to our own’.

Definition 39 Single-case counterfactual causality in terms of complex events. A complex event ce1 is

a cause of complex event ce2 iff:

1. ce1 and ce2 are constituents in a complex event ce3 of type cetz;

2. ce1 is of type cetx;

3. ce2 if of type cety; and

4. cetz = cetx ≺ cety .

(a ≺ b stands for a chronologically precedes b i.e. if a occurs at ti and b occurs at tj , then a ≺ b if and

only if ti < tj). A probabilistic formulation can also be given, where a complex event ce1 is a cause of

complex event ce2 iff:

1. ce1 and ce2 are constituents in a complex event ce3 of type cetz;

2. ce1 is of type cetx;

3. ce2 if of type cety;

4. cetz = cetx ≺ cety

5. cet′z = cetx ≺ ¬cety
6; and

6. p(cetz‖cetx) > p(cet′z‖cetx).

(a‖b stands for a occurs synchronously with b i.e. if a occurs at ti and b occurs at tj , then a‖b if and

only if ti = tj).

Definition 40 Generic counterfactual causality in terms of complex event types A complex event type

cex is a cause of complex event type cey iff:

1. cetx and cety are constituents in a third complex event type cetz; and

2. cetz = cetx ≺ cety .

A probabilistic formulation can also be given, where a complex event ce1 is a cause of complex

event ce2 iff:

4Although Lewis’s theory is intended as an account of single-case cause-effect relationships, we extend it to include generic

cause-effect relationships.
5A detailed account of computational equivalence and computational uniqueness is given in [73].
6cet′z stands for the complement of cetz
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1. cetx and cety are constituents in a third complex event type cetz; and

2. cetz = cetx ≺ cety .

3. cet′z = cetx ≺ ¬cety; and

4. p(cetz‖cetx) > p(cet′z‖cetx).

4.1.1.2 Probabilistic theories of causality and Causal Modelling

Probabilistic theories of causality are those which define a causal relation by the probabilistic associ-

ations between two variables (which can be events, event types or states). Although several accounts

exist, they generally include the following key principles:

1. The Principle of the Common Cause (PCC), which states that if two variables in a population

are associated with one another or a probabilistic dependency exists between them, and neither

is a cause of the other, they must share a common cause [345] (Definition 41).7 (In terms of

statistical analysis, probabilistic dependence can accommodate non-linear associations as well as

linear correlations.)

2. Causal Dependence condition: A cause will either increase the probability of its direct effect,

or, if it is preventative, make the effect less likely, as long as the effect’s other direct causes are

controlled for:

A ⇀↽ B|C1, ..., Ck

for direct causes

A,C1, ..., CkofB.

3. Causal Markov Condition, which is implied by PCC and states that every effect variable, condi-

tional on its direct causes, is independent of all variables that are not its effects (Definition 42,

[379]).

4. The cause precedes its effects [166], [165]8.

Definition 41 Principle of the Common Cause: If two variables are probabilistically dependent then

one causes the other or they are effects of common causes which screen off the dependence. If X and Y

are variables in a population, X and Y are probabilistically dependent if and only if:

p(X, Y ) > p(X)p(Y ).

Definition 42 Causal Markov Condition: Each variable is probabilistically independent of its non-

effects, conditional on its direct causes.

7In the context of more recent Scientific paradigms however, this principle is far from uncontroversial. For example, laws of

similar transitions [11] and laws of coexistence [130] both violate it. It also does not take into account the fact that statistical

associations can arise by chance.
8The model of time used might itself by based on causal relations so ‘precedes’ need not be given a real time interpretation but

can simply mean the effect follows the cause in execution order.
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CMC implies that empirical regularities of conditional independence relations observed in a popu-

lation are due to causal structure and not coincidence [379]. This is known as the faithfulness condition

[379] or stability condition [316] (Definition 43). This reflects the belief that the universe is fundamen-

tally deterministic and that any indeterminism is due to lack of knowledge i.e. epistemic probabilistic

causality or pseudo-indeterminism.

Definition 43 Faithfulness Condition (aka. Stablity Condition): Probabilistic independencies are a

stable result of causal structure and not due to happenstance or specific parameter values.

The conditions given in Definition 41, Definition 42 and, Definition 43 are used as the basis for

defining and modelling causally sufficient dependency structures (see Section 4.2.2).

Instead of treating causality as all-or-nothing, some theories assume instead that causes can differ in

their strength or power to give rise to their effects. Probabilistic dependencies are then used as a means

of defining this strength. Examples of this view can be found in [165], [84], [52], [138], [199].

Definition 44 gives a formulation of probabilistic causality in terms of complex event types. The

third complex event type cetz defines the set of background conditions and context under which the

causal relation holds.

Definition 44 Probabilistic causality in terms of complex event types A complex event type cetx is a

cause of complex event type cety iff:

1. p(cetx) < 1 and p(cety) < 1 (neither CET always occurs);

2. p(cetx, cety) > p(cetx)p(cety) (cetx and cety are statistically dependent);

3. ¬∃cetz(p(cetx, cety|cetz) = p(cetx|cetz)p(cety|cetz)) (formalises PCC by ruling out common

cause cetz of cetx and cety .);

4. ¬(p(cetx|cety) = p(cetx)) (formalises CMC);

5. cetx is not a subtype of cety;

6. cetx is not a constituent of cety;

7. cetx ≺ cety;

4.1.1.3 Mechanistic accounts of causality

Mechanistic accounts of causality frame causal relations in terms of the underlying physical processes

that link cause and effect [354], [127], [417]. Such accounts are able to accommodate cases where causal

relationships are not accompanied by the raising of probabilities, since it is the processes underlying the

relationship between two events rather than the probabilistic properties of the relationship that make

it a causal one. The mechanistic approach can also be seen as motivated by the need to explain the

probabilistic dependencies themselves [354], [355].

A canonical formulation of the mechanistic perspective can be given as follows:
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There is an unbroken causal process running from event c to event e if and only if, for

any finite sequence of n(n ≥ 0) times 〈t1, t2, ..., tn〉 between the time c occurs and the time

e occurs, there is a sequence of events 〈x1, x2, ..., xn〉 occurring at these times respectively

such that 〈c, x1, x2, ..., xn, e〉 constitutes a chain of probabilistic dependencies.

A finite sequence of events 〈a, b, c, ...〉 is a unbroken causal processes if and only if there

is an unbroken causal process running from a to b, an unbroken causal process running from

b to c, and so on.

An actual event c is a cause of an event e if and only if there is a chain of unbroken

causal processes running from c to e.

In ABMS, the only ‘real’ mechanisms behind all behaviours come from the execution of STRs. We

therefore formulate the mechanistic account (as given in the canonical formulation above) in terms of

simple event sequences, as given in Definition 45 (single-case). Although proponents of the mechanistic

perspective focus on single-case rather than generic cause-effect relationships, we extend this to also

include a formulation for generic relationships in Definition 46:

Definition 45 Single-case mechanistic causality in terms of complex events. If complex event cei maps

subsystem state Hi = (Xi, Ei) to subsystem state H ′
i = (X ′

i, E
′
i) and its execution terminates at ti, and

complex event cej maps subsystem state Hj = (Xj , Ej) to subsystem state H ′
j = (X ′

j , E
′
j) and its

execution begins at tj , then cei is a cause of complex event cej iff:

1. ti < tj; and

2. there is a sequence of simple events 〈se1, se2, ..., sen〉 between ce1 and ce2 such that for each

simple event in the sequence, the STR application is caused by the subsystem state H ′
SUBi−1

resulting from the previous simple event sei−1.

This is the case when either:

• a subsystem state observation of the post-transition subsystem state H ′
SUBi−1 is an input to the

agent that triggers it to apply the STR generating sei; or

• a subgraph of H ′
SUBi−1 is the state HSUBi,

where a simple event se is an STR execution given a particular subsystem state observation by an agent:

se = STR(OBS(HSUBx))→ (HSUBy → H ′
SUBy)

(→ stands for material implication.)

Definition 46 Generic mechanistic causality in terms of complex events types. If complex event type

cetA maps subsystem state HA = (XA, EA) to subsystem state H ′
A = (X ′

A, E′
A), and complex event

type cetB maps subsystem state subsystem state HB = (XB , EB) to subsystem state H ′
B = (X ′

B , E′
B),

then cetA is a cause of cetB iff:

1. cetA ≺ cetB; and
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2. there is a sequence of simple event types 〈set1, set2, ..., setn〉 between cetA and cetB , where each

seti is generated by an STR whose application is caused by the subsystem state resulting from

the previous simple event type seti−1.

This is the case when either:

• a subsystem state observation of the post-transition SST of seti−1 H ′
SUBi−1 is an input to the

agent that triggers it to apply a STR, which generates a simple event of type seti; or

• a subgraph of H ′
SUBi−1 is the state HSUBi.

4.1.2 Extensions and alternatives to traditional models of causality

In traditionally defined cause-effect relationships, effects are separated from their causes. This assump-

tion forms the basis of Reductionist views of Science. However, the Complex Systems paradigm assumes

that elements of a system are highly interconnected so that a given system element can both constrain

and be constrained by other system elements (see Section 2.1). Furthermore, rather than reducing or ex-

plaining a phenomenon with a single set of causes, the Systems approach assumes that the set of factors

(other phenomena) used to explain a phenomenon can differ depending on the observational, descriptive

and/or explanatory level(s) (i.e. no one level is favoured over another; see Chapter 3 for the definition of

level). For this reason, the requirement that causes and effects must not be compositionally related can

be violated, and ‘self-causation’ is possible through top-down effects:

“It is possible that what actually happened was the contextual emergence of complexity...the

higher levels in the hierarchy of complexity have autonomous causal powers that are func-

tionally independent of lower level processes...the challenge to physics is to develop a real-

istic description of causality in truly complex hierarchical structures, where top-down cau-

sation and memory effects allow autonomous higher levels of order to emerge...” [136]

In [17], Auletta et al. distinguish between dynamic and non-dynamic causes:

• Non-dynamic causes are either material causes (from below), which are the base level properties

that ‘support’ higher level properties, or formal causes (from above), which are restrictions of the

space of possibilities i.e. the environment or context in a which a property exists.

• Dynamic causes are either efficient causes that exist at the same ontological level as their effects

or circular causes, which are those present in non-linear, self-increasing phenomena.

Top-down causes are causes that do not act at the same ontological level but which have causal

effectiveness via dynamic causes at the lower level to produce certain effects. They can therefore be

considered as a ‘combination of formal causes from above, material causes from below, and operations

embedded in circular causes (circuits) at the middle ontological level’.9

9In ABMS and CET terms, agent STR executions model material causes, while emergent dependencies between high level

CET s and lower level CET s model top-down causes. However, STRs can be deemed more fundamental than CET s in that the

dynamics of CET occurrences can never alter the STRs themselves (only their execution dynamics).
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4.1.2.1 Mediation and modulation

A mediator is a factor that enables some phenomenon or event but does not have to be the only possible

enabler necessary or sufficient for the phenomenon [209]. If the mediator is both necessary and sufficient,

then it can be seen as the sole cause of the event. However, in complex systems, it is usually the case that

a phenomenon can arise from different causal pathways (has more than one possible mediator) and/or

more than one type of event is required (joint causality).

Also, in complex systems, events and other factors interact with each other. Modulation occurs

when some factor impinges on an event’s ‘natural’ trajectory while it is executing. This factor is known

as the modulator and might be a particular state or another event. Modulation effects can be from lower

to higher levels of temporal abstraction (as in the case of cell development and environmental signals

[407], [5] or priming in a memory experiment [360]), higher to lower levels (e.g. chemical [95] and

behavioural [351] modulation of neuronal responses), the same level of abstraction, or a combination.10

Modulation and mediation are defined respectively in terms of CET s in Definition 47 and Definition 48.

Definition 47 Modulation in terms of complex event types. A complex event type cet1 is a modulator

of complex event type cet2 iff:

1. cet1 is not a constituent of cet2;

2. cet2 is not a constituent of cet1; and

3. p(cet2|cet1)! = p(cet2).

Definition 48 Mediation in terms of complex event types. A complex event type cet1 is a mediator of

complex event type cet2 iff:

1. cet1 is not a constituent of cet2;

2. cet2 is not a constituent of cet1;

3. cet3 = cet1 ≺ cet2;

4. cet1 ./c cet4 = cet5 and cet5 → cet2 (permits joint causality);

5. cet1 ./s cet6 = cet7 and cet7 → cet2 (permits other mediators of cet2)

4.1.2.2 Autonomy and modularity

An autonomous system is one which is organisationally closed [401] so that its behaviour is not fully

determined by external influences (see Definition 49). A fully autonomous system is therefore one whose

behaviour is not influenced at all by external references and only dependent on its own past behaviour

(see Definition 50). By definition, most elements of complex systems are not fully autonomous since

they interact with other system elements.

A module is defined as an autonomous system which mediates, modulates or exerts causal influence

on another autonomous system. A functional module is one that plays a role in a particular function (see
10A discussion of modulation in relation to ABMS can be found in [76].
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Definition 51). Both autonomy and modularity can be given continuous formulations in statistical terms

rather than being all-or-nothing (an example of this is given in Section 4.2.3.2).

Definition 49 A complex event type cetA has autonomy iff:

∀cetAi(∃cetAj(cetAj , B → cetAi)),

where:

cetA = cetA1; ....; cetAn

and

j ≤ i

(B stands for an external influence and can be empty;→ stands for material implication.)

Definition 50 A complex event type cetA is fully autonomous iff:

∀cetAi(∃cetAj(cetAj → cetAi)),

where:

cetA = cetA1; ....; cetAn

and

j ≤ i

(→ stands for material implication.)

Definition 51 A complex event type cetA is a functional module iff:

• cetA is autonomous;

• cetB is autonomous;

• cetC has functional significance;

• cetC = cetAi ./c cetBj .

4.2 Specifying and validating inter-level models
Statistical associations and dependencies between CET s can be used to represent empirical relationships

between behaviours at different levels. For this reason, we call models describing such relationships

inter-level models.

Building on the CET formulations of causal and non-causal associative relationships in Section

4.1, we introduce four main categories of inter-level model (see also Figure 4.1):

1. Associative, which define a set of linear correlations and/or non-linear relationships between a set

of CET s and/or SST s (these are both the model’s variables).

2. Causal, which define a set of directed causal relationships between a set of CET s and/or SST s.
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3. Functional Modular, which define associative relations between sets of CET s and/or SST s,

which can be treated as functional units.

4. Mediation-Modulation, which define mediation and modulation functions for different CET s

and/or SST s in relation to each other (see Section 4.1.2.1 for definitions of mediation and modu-

lation effects). 11

The first of these (Associative) is the most general, and can be seen as being pre-requisite for the

other relations. The second (Causal) is associated with most traditional scientific disciplines, while

the latter two categories (Functional and Mediation-Modulation) are associated more strongly with a

Complex Systems perspective.12

In this section, we show how statistical analysis of CET occurrence frequencies and other simula-

tion data can be used to validate these different categories of inter-level model and quantify the strengths

of the hypothesised relationships.

4.2.1 Correlation analysis to validate inter-level relationships

Correlation analysis provides a means of identifying candidates for causal relations and can therefore

be used as a first step in causal modelling. As outlined in [77], [79], and [80] by determining the

correlations between CET occurrence frequencies, we can validate hypotheses about the associations

existing between behaviours at different levels.

When the correlations between complex event types satisfy further conditions, they can be deemed

‘causal’ (theories of causality are reviewed in 4.1, and different theories stipulate different conditions).

Such relationships can be established for a particular simulation trajectory or across multiple simulation

trajectories.

4.2.2 Structural equation modelling and Bayesian net causal models

A causal model can be represented by a directed acyclic graph (DAG). A DAG is said to represent causal

relationships when Definitions 41 (Principle of Common Cause), 43 (Faithfulness condition), 42 (Causal

Markov Condition) and 52 (Causal Sufficiency Condition) all hold. The joint probability distribution

over the defined variable set is assumed stable or faithful to the underlying causal structure as specified

in the directed acyclic graph (DAG) encoding all cause-effect relationships. Causal Sufficiency is said to

hold when the variable set includes all relevant common causes.

Definition 52 Causal Sufficiency: If a variable set includes all relevant common causes, it is said to be

causally sufficient.

11For the remainder of this section, we focus on the former three inter-level model categories since these have established

statistical methods associated with them. However, statistical methods to evaluate (but not define) mediation and modulation (also

sometimes called ‘moderation’) have been used in Experimental Psychology, e.g. [209], [20], [268].
12These model categories should not be seen as mutually exclusive however and can be combined e.g. a set of complex event

types forming a functional unit can be hypothesised to cause another set of complex event types, which might correlate with a third

set, forming another functional unit. Furthermore, inter-level models implicitly specify CET s.
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Figure 4.1: Schematic representations of the different categories of inter-level model. The nodes in each

of the graphs represent CET s and/or states. (a) Model with linear correlation and/or non-linear proba-

bilistic dependencies represented by double-headed arrows. (b) Model with directed causal relationships

represented by single-headed arrows from cause to effect. (c) Modular model, where each module rep-

resented by the groups (represented by the dashed set demarcations) plays some functional role in the

model and nodes can be shared between modules. (d) Mediator-Modulator model, where nodes can

mediate (represented by the solid arrows) or modulate (represented by the dashed arrows) each other.
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Structural equation models (SEM) and Bayesian networks are both graphical formalisms for rep-

resenting probabilistic dependencies satisfying causal relations. However, the assumptions they make

about the variables are different.

4.2.2.1 SEM Inter-level Causal Models

In SEM, each measured variable Mi is assumed to be a function of two unrelated latent variables: (i) the

variable Lj representing the cause or effect concept j; and (ii) the measurement error term ei representing

unspecified causes ((pseudo)-indeterminism due to lack of knowledge). The general equation relating

these variables is given by the equation [7]:

Mi = λijLj + ei, (4.1)

where λij is a path coefficient linking common cause j to measure variable i.

A pair of L variables in the graph is linked by the equation:

Lj = ΣbjkLk + uk, (4.2)

where bjk is a path coefficient, uk is the disturbance term, and k ranges over all parents of Lj .

In ABMS-CET terms, an inter-level causal SEM model consists of:

• A set of n variable(s) LP = {L1, ..., Ln} representing a set of n phenomena (possibly at different

levels) we are concerned with;

• A set of m variable(s) MQ = {M1, ...,Mm} representing the set of m observed phenomena

(possibly at different levels). Observed phenomena are specified by CET s (behaviours) and SST s

(static properties) so that MQ is a set of CET frequencies and/or SST measures, each quantifying

a particular behaviour or static property (see Chapter 3);

• A set of error terms eQ representing the unspecified causes contributing to MQ (unspecified CET s

and/or SST s);

• A set of disturbance terms uP representing the unspecified causes contributing to LP (unspecified

CET s and/or SST s);

• A set of relations between members of LP , MQ and eP satisfying equation 4.1; and

• A set of relations between members of LP and uQ satisfying equation 4.2.

(Figure 4.2 shows an example of an SEM model graph.)

Parameter estimation is usually based on the maximum likelihood criterion, which tries to maximise

the probability of getting the observed values given the structure of the model. An SEM model is then

validated by testing the significance of the discrepancy function derived from the differences between

the covariance matrix predicted by the model and the covariance matrix from the sample data [38].



120 Chapter 4. Inter-level, Multi-level and Predictive modelling with Complex Event Types

Figure 4.2: Example of a Structural Equation Model. LA and LB are variables respectively representing

phenomena A and B. MX , MY and MZ are variables respectively representing observed phenomena

X , Y and Z. eX , eY and eZ are the error terms representing the factors excluded from the model

which contribute respectively to MX , MY and MZ . uA and uB are the disturbance terms representing

the factors excluded from the model which contribute respectively to LA and LB . The γ terms are the

parameter estimates for each dependency relationship.
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4.2.2.2 Bayesian net Inter-level Causal Models

A Bayesian net is a DAG whose nodes are variables representing the phenomena of interest. Uncon-

nected nodes represent variables which are conditionally independent from each other. Although most

computational Bayesian net models contain only discrete variables, the formalism also extends to con-

tinuous variables e.g. [255]. Figure 4.3 shows an example.

Figure 4.3: Example of a Bayesian net. Associated with each of the variables Xi is a set of condi-

tional probability distributions based on the different configurations (values/states) of its parents. For

example X4 would have associated with it different probability distributions for each X1, X2 state/value

combination (or, in the case of continuous variables, a set of equations determining the probability distri-

butions). Nodes without parents e.g. X1 and X2 have unconditional probability distributions associated

with them.

In ABMS-CET terms, an inter-level causal Bayesian net model consists of a set of n variable(s)

XP = {X1, ..., Xn} representing a set of n phenomena (possibly at different levels). As for SEM

models, phenomena are specified by CET s (behaviours) and SST s (static properties). XP is therefore a

set of CET frequencies and/or SST measures, each quantifying a particular behaviour or static property.

Each variable Xi has associated with it a set of probability distributions conditional on its parents or, if

it has no parents, its unconditional probability distribution.

A Bayesian net model is validated against the actual data obtained in simulation by evaluating

the hypothesised dependenceies ((P (Y |X) 6= P (Y ))) and independencies (P (Y |X) = P (Y )) in the
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structure.

4.2.3 Validating and discovering modules

Substantial progress has been made on formalising modularity and defining measures of modularity for

dynamic functional modules (e.g. for neural processing in both real neuron networks [392], [54] and in

artificial neural networks [192]; biological networks [376]; cell biology [181]; development [414]; and

evolution [363], [112]). Measures are based on the fundamental premise that within-module statistical

association (indicating functional connectivity) is greater than between-module association for a partic-

ular function. Where they differ is in their measure of association; for example, a pair of variables can

be characterised as having a stronger association by one measure than by another. They can also differ

in terms of being symmetric (e.g. correlation, mutual information [392]) or asymmetric (e.g. Granger

Causality [365]). This can result in different modular models.

A modular model can be represented by a clustered graph, where clusters of connected variable

nodes represent the modules and the clusters group together variable nodes whose associations exceed

a particular threshold or strength. Hierarchies of clusters can also be defined, where each level in the

hierarchy requires associations exceeding a different minimum threshold (this is illustrated in Figure

4.4).

In our ABMS framwork of CET s, a modular model therefore consists of:

1. A set of n variable(s) XP = {X1, ..., Xn} representing a set of n phenomena (possibly at different

levels);

2. A measure of association e.g. correlation, regression;

3. A set of m hypothesised module-threshold pairs (YQ, TQ) = (Y1, TY 1), ..., (Ym, TY m), where

TY i is the specified threshold for module Yi indicating the minimum strength of association be-

tween variables of Yi (if two modules have the same T value, they are said to exist at the same

modular level);

4. A set of variable-module mappings XYPQ assigning each variable Xi to one or more modules Yj ;

In order to validate a modular model, we need to validate the hypothesis that XYPQ holds for a set

of simulation trajectories. We can also discover modular models by specifying only 1-3 above, so that

the variable-module mappings are estimated using clustering techniques.

4.2.3.1 Multi-functionality, shared variables and overlapping modules

It is possible for variable nodes and/or (sub-)clusters to participate in more than one cluster in relation

to different functions. Each of the functions might have a different modular model associated with

it (including different module thresholds) so that it is also possible for variable nodes and/or clusters

to exist in more than one functional modular level, as illustrated in Figure 4.5. This is the statistical

equivalent of the definition of multi-functionality in terms of CET s given in Section 3.4.1.
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Figure 4.4: Example of a hierarchical modular model. The thickness of the edges indicates

the minimum strength of association between variables required for modularity at a particular

level. The modules with the strongest within-module association threshold are: (X1, X2, X3),

(X4, X5, X6), (X7, X8, X9, X10, X11, X12) and (X13, X14). At the next level are the modules

(X1, X2, X3, X4, X5, X6) and (X7, X8, X9, X10, X11, X12, X13, X14). The most inclusive module

(X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X12, X13, X14) has the weakest association thresh-

old.
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Figure 4.5: A multi-functional modular model. The model includes two functions: F1 represented by

the solid graph edges and F2 represented by dashed graph edges. the Modules for the two functions

can share variables and clusters. Again, the thickness of the edges indicates the minimum strength of

association between variables required for modularity at a particular level. F1 has only one threshold

level, while F2 has two.

The modules with the strongest within-module association threshold for F1 are: (X1, X2, X3, X6)

and (X7, X8, X9, X10, X11, X12) and for F2: (X4, X5, X6) and (X12, X13, X14). At this level there-

fore, the variables X6 and X12 are multi-functional. F2s more weakly associated module consists of

(X4, X5, X6, X10, X12, X13, X14). X10 is therefore participating in both two different functions and in

two different functional modular levels.
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4.2.3.2 Granger Causality, Emergence and Autonomy

Granger causality is a measure of association that has been used to establish modularity as it quantifies

autonomy and inter-dependency. Granger causality13 [168] relies on time series data for two sets of

observation types (which might represent events or other phenomena). With Granger causality [169], X

‘causes’ Y if knowing X helps predict the future of Y . The conditions that need to hold for X and Y

are:

1. X occurs before Y ; and

2. X contains information useful in forecasting Y that is not found in the past of Y or any other

group of appropriate variables W .

This can be formalised statistically in terms of linear regresssion modelling, as described in [169],

[122] and [365]. Given that we are trying to predict the value of Yt+i, we first determine how good a

prediction can be achieved with only the past terms Yt and Wt. We then determine whether or not a

prediction from Xt together with Yt and Wt is any better. If it is, then X ‘Granger-causes’ Y .

For example, given two variables X and Y , the bivariate linear autoregressive model of the variables

is given as:

X(t + i) =
n∑

j=1

A11jX(t) +
n∑

j=1

A12jY (t + i) + EX(t + i) (4.3)

Y (t + i) =
n∑

j=1

A21jX(t) +
n∑

j=1

A22jY (t + i) + EY (t + i), (4.4)

where n is the number of time points, A is a matrix containing the contributions of each observation

at each time step to the predicted values of Xt+i and Yt+i, and EX and EY are prediction errors for each

time series. If the variance of EY is reduced by the inclusion of X , then X Granger-causes Y . Non-linear

extensions of this also exist e.g. [385].

In [365] and [364], G-autonomy is introduced as a measure of autonomy based on the notion of self-

determination [35] and organisational closure [401]. Given the bivariate model described by Equation

4.3 and 4.4 above, X is G-autonomous with respect to Y if the variance of EX(t + i) is reduced by the

inclusion of X terms in Equation 4.3. G-autonomy therefore measures the degree of closure, which is

formalised as the extent to which (i) a variable is dependent on its own history, and (ii) these dependencies

are not accounted for by external factors. This can be seen as a probabilistic formulation of the general

definition of autonomy given in Definition 49. An information theoretic formulation has also been given

in [32], where mutual information rather than prediction error is used to determine information flow and

closure.

4.3 Learning predictive models from complex event frequencies
The methods introduced in Section 4.2 were confirmatory, with statistical analyses being used to validate

a specified model. In contrast, this section focuses on inductive inference, where models are constructed

13Granger causality is not widely accepted as ‘real’ causality so we did not include it in the causal models in Section 4.1.
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from the data themselves. A key challenge in applying machine learning techniques to ABMS is in

describing and measuring observations computationally, particularly when these observations are at dif-

ferent levels. CET s give us a means of doing this and hence can provide us with a useful data set.

ABMS and machine learning methods both have important roles to play in understanding complex

systems. Whie ABMS is typically used to determine the systemic consequences of base level rules,

machine learning methods can be used to make inferences about the relationships that exist between

system properties. There has also been significant progress in developing multi-agent systems (MAS)

with adaptive learning agents (e.g. [85], [415]) and/or MAS where the system as a whole is adaptive and

‘learns’. However, little work has been done on learning from agent-based simulations.

We begin the section by briefly introducing statistical learning theory and machine learning meth-

ods based on this theory. We then describe how machine learning can be applied to CET occurrence

frequencies in agent-based simulations to infer models which predict behaviours at one level from be-

haviours at another (or indeed, at the same level). The application of these methods is demonstrated in

Section 5.5.

4.3.1 Statistical Learning Theory

In general, the process of inductive inference can be seen to consist of the following steps [48]:

1. Observe a phenomenon;

2. Construct a model of that phenomenon;

3. Make predictions using this model.

Statistical Learning Theory models (formalises) the phenomenon of learning from data. It is as-

sumed that the data are generated by an underlying process, algorithm or function P that is not given

explicitly to the learner [400], [250], [48]. The set of data that are used to train the learner are assumed

to be generated identically and independently by P .14 Learning is modelled by the learner choosing

a function from a function space in response to the training set. Statistical machine learning methods

automate this process.

4.3.2 Predicting system behaviour with machine learning methods

CET s and SST s allow us to formally describe observations at any computationally represented level

in an ABMS. By specifying CET s and SST s, we are defining a set of observable properties whose

occurrence in simulation can be quantified. Given a set of CET s and/or SST s, a subset can be defined

which represents the phenomena we wish to understand (e.g. an emergent system-level behaviour), and

a second subset can be defined, which represents the set of observations from which the model of the

phenomena is to be constructed (e.g. lower level behaviours). From here on, we call the former subset

the output phenomena and the latter the input observations.

The general method for inferring predictive models from simulations is outlined in Figure 4.6. First

of all, we need to define the model from which simulations are to be generated. This consists of the

14This model of learning does not take into account observer biases or prior assumptions.
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ABM and optionally, a set of defined parameters or parameter ranges. We also need to specify the set

of input observations and output phenomena in terms of CET s, SST s, and/or state variables (in Figure

4.6, the input observations are CET s but they could also include SST measures or state variables, as

could the output phenomena). For each simulation generated from the model, the input observations and

output phenomena are measured and used to infer a predictive model with minimum error as defined by

a particular statistical measure e.g. least square (Section 5.5 in Chapter 5 contains a worked example).

The inferred model is then validated using a second set of simulations generated from the defined model.

Figure 4.6: An ABM (and fixed parameter settings) generate a set of computationally unique simulations,

which are CET s representing distinct simulation trajectories. Explicitly specified CET s representing

behaviours at different levels can be detected in the simulations. Differences in the CET frequencies

between simulations are due to differences in their initial conditions, randomness and/or different pa-

rameter settings. CET frequencies are used as the input observations for learning a model to predict

system level behaviour. The measures representing system-level behaviour (which can also be CET

frequencies) are the dependent variables.

The output phenomenon might be described discretely e.g. behaviour x occurs, or continuously, by

one or more continuous variables. In the case of the former, we can treat the learned model as a classifier,

while in the case of the latter, the learned model predicts the value(s) of the variables. The performance

of the models can then be expressed respectively in terms of the probability (or frequency) of correct

classification or the mean predictive error (MPE) (deviation fom the value that actually obtains). If the
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MPE of a learned model is significantly lower than a model learned from random data, we can say the

learned model is predictively valid.

4.3.3 Predictive error as an indicator of relative data importance, noise and data

interdependence

Given that complex systems require integrative rather than reductive explanations, a major challenge is

in distinguishing between input observations that are relevant and those that are irrelvant or noisy in

explaining and/or predicting a particular phenomenon. The MPEs of learned models provide us with a

measure of the quality of the data used in learning (with respect to the particular phenomenon).

There are two reasons why one data set DS1 might perform better than another DS2:

1. The individuals or cases in DS1 are more similar to the indivdiuals or cases used to test the learned

model than are the individuals in DS2, e.g. the data used in learning are from a set of simulations

that are more similar to the simulations used to test the model.

2. The types of input observations in DS1 are more important or less noisy for predicting the output

phenomenon than are the types of observations made in DS2 i.e. the independent variables of

DS1 are better predictors of the phenomenon than are the independent variables of DS2 (this

assumes that the independent variables of DS1 and DS2 are not the same).

Here, we focus on the latter of these (see also Section 5.5, where we establish the relative importance

of different sets of CET s for predicting a system-level phenomenon (tumorigenesis)); the former is

addressed in Section 4.4.

In the complex systems framework, we can give a number of different interepretations of the out-

come of predictive error comparisons. If DS1 and DS2 are two data sets containing input observa-

tions from the same set of simulations but with different observation types, the fact that MPEDS1 <

MPEDS2 (MPEN denotes the predictive error of the model learned from data set N ) for phenomenon

X can be given several different interpretations, for example, that the types of input observations of

DS1 are better indicators of (i) the causes of X , which is itself subject to a number of different inter-

pretations (see Section 4.1); (ii) lower level processes or states underlying X (see Chapter 3); or (iii) X

itself. (Further statistical analyses using the methods introduced in Section 4.2 would establish which

of these interpretations are consistent with the dependencies between the input observations and output

phenomena.)

As well as allowing us to determine the relative importance of different types of observations in pre-

dicting a phenomenon, by combining data sets, we can also determine how different types of observation

interact with each other. Given that MPEDS1 < MPEDS2:

• If MPEDS1+DS2 ≈MPEDS1 + MPEDS2, then the input observation types in DS1 and DS2

indicate factors that are largely independent from each other but the factors indicated in DS1 have

a stronger relationship with phenomenon X (however this is interpreted; see interpretations i-iii

above);
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• If MPEDS1+DS2 < MPEDS1 + MPEDS2, then the input observation types in DS1 and DS2

indicate factors that can interfere with each other i.e. are ‘noisy’ with respect to each other;

• If MPEDS1+DS2 > MPEDS1 + MPEDS2, then combining input observation types in DS1

and DS2 gives us additional information not contained in either DS1 or DS2 alone.

(For statistical validity, if we are trying to establish the relative importance of particular observation

types (e.g. different sets of CET s) for predicting a phenomenon, we would need to obtain for each

observation type, the mean of the MPEs of a set of models learned from data sets of that observation

type (particular set of CET s); this is demonstrated in Section 5.5).

4.4 Multi-level modelling
Just as complex event types can have different degrees of specificity, both the explicitly represented

inter-level models of the dependency relationships holding between them described in Section 4.2 and

the learned models described in Section 4.3 can also differ in specificity. More specific models hold for

a narrower set of conditions or experimental frames [429]:

“An experimental frame characterises a limited set of circumstances under which a sys-

tem (real-world or model) is to be observed or experimented with”, [429]

For example, a general inter-level model might be established that describes a particular set of

simulations, but a different model might better describe a subset of this set of simulations. Similarly, the

performance of learned models depends on the similarity of the simulations used in training to the set of

simulations on which the learned model is tested. The more diverse the set of training simulations used,

the more general the learned model is likely to be.

The term ‘multi-level modelling’ is widely used to refer specifically to a generalisation of linear

modelling (e.g. SEM) in which regression coefficients are themselves given a model whose parameters

are also estimated from the data [155], [154]. However, here we use the term more generally to refer to

a model which includes:

• A set of models M (e.g. inter-level models or learned models) describing or predicting a set of

phenomena (represented by a set of data);

• A model of the performance of each model in M for cases (simulations) with particular attributes.

We use the term linear multi-level modelling’ to refer more specifically to the technique in which linear

regression coefficients are modelled.

The attributes of a simulation can be its parameter settings, initial conditions, behaviours, or any

other detectable properties. For a given population of simulations, attributes and combinations of at-

tributes define subsets for which one model in M might perform better than another. Fixing parameters

and/or explicitly specifying initial conditions are one means of specifying sub-models of the ABM,

which each generate a sub-population of simulations15 (see Figure 4.8, Figure 4.7 and also Figure 3.2 in
15Sub-population is meant in relation to the entire population of computationally unique simulations that can be generated by

the ABM.
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Chapter 3). However, it is also possible to use the one or more of the dynamically emergent properties

and behaviours as attributes to group simulations into different sub-populations (see Figure 4.9). The

multi-level model would then define the different inter-level and/or learned model which hold for each

of the different sub-populations.

Figure 4.7: (a) Degree to which a complex event of type A is observed for simulations with different

parameter values x and y. In this case, the majority of simulations with parameter value x exhibit A while

the majority of simulations with parameter value y do not. (b) Frequencies of simulations exhibiting

different degrees of a particular behaviour (defined by another complex event type B) for parameter

values x and parameter y. If (i) the simulations with parameter value y that (atypically) exhibit A also

exhibit B, and (ii) simulations with parameter value y that do not exhibit A do not exhibit B (or do so to

a much lower degree), we can say there is an association between A and B and that parameter sensitivity

is a manifestation of this i.e. the parameter value makes it more or less likely that B and hence A will be

exhibited.

Linear multi-level models are multi-level models where it is assumed that the relationships between

variables are described by linear functions but that the relationship strengths, as represented by the

regression coefficients, can differ for different subsets of the data. Applied to Bayesian net models, this

can be formulated as a hierarchical Bayesian net [175], where each of the variable nodes can itself be

a Bayesian net. This allows us to model situations where the prior probability of a variable X is itself

dependent on the interdependencies between another set of variables {A,B,C}, which can be modelled

by a Bayesian network. In this case X groups together the variables A, B and C so that their joint effects

can be subsumed under a single variable (see Figure 4.10). It should also be pointed out that all multi-

level models can be translated into equivalent single level representations with the groups represented as

variables and the usual dependency relations. Figure 4.11 shows the equivalent standard Bayesian net

representation of the hierarchical Bayesian net in Figure 4.10.

4.5 Chapter Summary and Discussion
In this chapter, we have introduced novel computational techniques for specifying, validating and learn-

ing statistical dependencies between CET s representing behaviours at different levels.

Three categories of model were introduced:
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Figure 4.8: Example of a multi-level model where the groups (‘levels’) are determined by sub-models

of the ABM. The sub-models of the ABM (e.g. with different fixed parameters and/or initial conditions)

X and Y each generate a set of (possibly overlapping) of computationally unique simulation trajectories

SimsX and SimsY , which are sub-populations of the entire set of computationally unique simulation

trajectories that can be generated by the ABM. Each of these sub-populations is better described by

and/or fits better to a different inter-level or learned model i.e. there is a statistically significant difference

between the behaviours that tend to be observed for the two sets of simulation trajectories.
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Figure 4.9: Example of a multi-level model where the groups (‘levels’) are defined by types of properties

(state configurations, variable values) or behaviours (CET s) that are instantiated in simulation. In this

example, simulation trajectories of the ABM are grouped according to whether or not the behaviour

CETA occurs. Each of the groups is then better described by and/or fits better to a different inter-level

or learned model i.e. there is a statistically significant difference between the behaviours that tend to be

observed for the two sets of simulation trajectories.
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Figure 4.10: Example of a hierarchical Bayesian net. As in a standard Bayesian net, each of the variable

nodes has associated with it a set of probability distributions which are either unconditional or conditional

on its parents’ state configurations. (See Figure 4.3)
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Figure 4.11: Single level equivalent of hierarchical Bayesian net in Figure 4.10.

1. Inter-level models (Section 4.2), which explicitly define statistical dependencies between CET s;

2. Inferred predictive models (Section 4.3), which identify latent dependencies between CET s to

give a predictive model;

3. Multi-level models (Section 4.4), which define different models (either inter-level or inferred pre-

dictive) for each of these for different groups simulations, where the groups are defined by a set of

attributes, which can be controlled or dynamic;

We also made explicit the theoretical assumptions underlying the interpretation of the different sta-

tistical dependencies (Section 4.1). By framing the inferrence of predictive models in statistical learning

terms (Section 4.3), we have also introduced a formal model of the process of inductive learning from

‘observing’ agent-based simulations.

Here, it is important to point out that models belonging to the different categories defined in this

chapter themselves implicitly specify CET s by defining sets of observations (as illustrated in Figure

4.12). This allows different models belonging to different categories to be integrated within a single

common framework, as summarised in Table 4.1
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Figure 4.12: An ABM is a function that generates a set of unique simulation trajectories (described by

CET s), which each define a set of unique observations. Static observations (properties) are described

by subsystem state types, while dynamic observations (behaviours) are described by CET s (including

inter-level models). Multi-level models define subsets of the entire population of simulation trajectories,

which can be grouped according to some attribute and/or exhibit similar behaviours.
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Chapter 5

An integrative study of tumorigenesis in the

colonic crypt

A major problem in Systems Biology is the integration of different models and experimental data from

different levels. As a proposed solution to this problem, this chapter presents a proof of concept case

study which applies the methods introduced in Chapter 4 and the CET modelling language introduced

in Chapter 3.

Cancer is now being recognised as a Systems disease [200], where mechanisms operating at differ-

ent levels and scales jointly give rise to a system that no longer operates within a desirable range. Yet

most existing models focus on a single level or aspect of the disease. We show how, by applying the

novel integrative and predictive modelling methods introduced in Chapter 4, we are able to achieve an

integrated, multi-level understanding of existing theories and models. The ABM of tumorigenesis in the

colon presented in this chapter is novel and differs from most previous models in combining biological

knowledge from multiple sources rather than focusing on a single aspect of colonic cancer as previous

models have tended to do.

Our investigation relates particularly to the impact of a specific gene mutation affecting the pro-

tein adenomatous polyposis coli (APC) on the system. Although it has already been shown that APC

mutations are associated with crypt tumorogenesis, there are several possible explanations for this, cor-

responding to different underlying mechanisms. With the statistical simulation methods introduced in

Chapter 4 and CET modelling language introduced in Chapter 3, we are able to specify and validate

inter-level and multi-level models of tumorigenesis to empirically determine the relationships between

different mechanisms.

The chapter will be structured as follows:

• Section 5.1 outlines our current understanding of tumorigenesis in the colonic crypt and more

specifically the theories of tumorigenesis on which our ABM is based. It also reviews existing

mathematical and computational models of the colonic crypt.

• Section 5.2 describes our novel agent-based model of tumorigenesis in terms of the behavioural

rules and state variables, relating these to the biological properties they represent.
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• Section 5.3 contains three studies. Study 1 determines the association between APC mutation

rate and a set of aggregated state variables representing tumorigenesis. Study 2 validates an inter-

level model of linear correlations between CET s and a set of aggregated state variables used to

indicate tumorigenesis. Associations at different times and different temporal resolutions are also

considered. Study 3 demonstrates application of the Granger Causality measure to establish the

direction of association between mutation driven and clonal interaction CET s and tumorigenesis.

• Section 5.4 validates multi-level models of simulations grouped by initial clonal dominance and

initial clonal clustering. Study 4 considers the effects of initial clonal dominance and initial clonal

clustering independently while Study 5 addresses the combined effects of the two factors.

• Section 5.5 studies the predictive validity and efficiency of models learned from different sets of

complex event types and time resolutions.

• Section 5.6 concludes the chapter with a discussion of both the general methodological implica-

tions for Systems Biology and more specific biological implications of the studies for understand-

ing tumorigenesis.

5.1 Current understanding of tumorigenesis in the colonic crypt
Tumorigenesis in the colonic crypt is a process which involves the abnormal proliferation of cells.

‘Abonormalities’ are described and studied at several different levels including the cell population level,

the clonal level, the biochemical pathway level, and the gene level. Furthermore, properties and be-

haviours in each of these levels interact with those in others. Spatial aspects are also very important

since both biochemical signals and direct cell-cell interactions are affected by locality.

This section considers tumorigenesis in the colonic crypt from an ecological and evolutionary per-

spective. In Section 5.1.1, we summarise the main effects of tissue architecture and gene level factors

from this perspective. Section 5.1.2 outlines the processes of cell division, migration and differentiation

in the colonic crypt since tumorigenesis involves disruption to these processes. Section 5.1.3 describes

the main effects of the APC mutation, which is found to be strongly associated with tumorigenesis via

disruption to different signalling pathways. The studies in Section 5.3, Section 5.4 and Section 5.5 in-

vestigate both these cellular level and evolutionary-ecological factors at the clonal level. Section 5.1.4

briefly reviews existing computational and mathematical models that relate closely to our approach.

5.1.1 Evolutionary and ecological views of tumorogenesis

Cancer can be characterised as a disease of clonal evolution [302], [189], where the fitness of individual

cells is determined by its interactions with other cells and other factors in its micro-environment or

ecology [189], [284] (clonal fitness is a function of the collective fitnesses of the cells of the same

clone). The constantly changing set of interactions between cells and their environment make Cancer a

Systems disease and hence a challenge to study.

Different cancer-promoting mutations can occur at various stages; at each stage, cancer cells face

selective pressures that drive their evolution. These selective pressures are determined both by the com-
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position of the cell population and the resources available. These resources can vary depending on the

location of the cell; for example, cells near the centre of a growing tumour may be more likely to face

shortages of oxygen and nutrients than those near the periphery.

The process of tumorigenesis can therefore be analysed in terms of shifts in the fitness landscape,

with the fitnesses of individual cells altering in different environmental contexts (which are themselves

dynamic); this exemplifies the context-dependent nature of biological systems as discussed in Chapter 2.

Each cell plays a role in determining the fitnesses of other cells, but also has its own fitness determined by

its local ecology (which includes other cells), which in turn can cause changes in its behaviour which alter

the fitnesses of other cells. This reciprocal relationship between each cell and its ecology exemplifies the

entanglement so often found in Biology (see Chapter 2).

Several theories exist about the factors affecting cell behaviour in tumorigenesis, which can affect

the local ecologies and hence evolutionary trajectories of cells and clones. These factors can operate at

the gene, cellular, tissue, organ and whole body level. It has also been shown that environmental insults

can select against the checkpoints (which guard against mutation) they trigger, since cells without these

checkpoints can replicate more quickly [49].

5.1.1.1 Cell populations and tissue architecture

The number of cell generations is limited by senscence and cellular differentiation, both of which mean

that a finite number of divisions occur before a lineage ends. In cellular differentiation, a lineage ends in

fully differentiated, non-dividing cells whereas senescence simply refers to the cell reaching the limit of

its replicative potential. The body faces two challenges in regulating cell populations:

1. Enforcing cellular senescence without creating organismal senescence;

2. Maintaining an optimal ratio of replicating cells so that there is a continuous source of new cells

but a minimum risk of tumorigenesis.

Tissue architecture refers to the spatial organisation of cells, which determines the tissue’s dynamic

interaction topology and developmental structure (see also Section 5.1.1.2). It is believed that archi-

tectures subdividing cell populations play a key role in helping to limit clonal expansion [57], [148],

[288]. Although mutations make certain cells potential candidates for developing into tumour cells, it is

the micro-environment that regulates carcinogenesis [407], [5]. In the absence of external stimuli, pre-

disposed cells remain dormant. For example, it has been shown that abnormal stromal fibroblasts can

promote tumoirgenesis in genetically abnormal but non-tumorigenic prostate cells (and fail to alter the

behaviour of genetically normal cells), and tissue architecture can represss the malignant phenotype of

undifferentiated embryonal carcinomal cells [230]. Reciprocally, tumour cells have been shown to exert

selective pressures on stromal fibroblasts, selecting for fibroblasts with mutations that cause the loss of

tumour suppresors [193].

5.1.1.2 Organisational factors

The following hypotheses concern the organisation of cells in the colonic crypt in tumorigenesis:
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• Top-down morphogenesis hypothesis: Tumour initiation occurs in the intercryptal region on the

luminal surface. The mutant clone then invades adjacent crypts by expanding laterally and down-

wards [374]. Further mechanisms can be distinguished:

– The precursors of the dysplastic cells reside on the luminal surface [374];

– The initial mutant originates at the bottom of the crypt and migrates upwards prior to clonal

expansion [374]; or

– Tumour initiation occurs in the migrating cell population [252].

• Bottom-up morphogenesis hypothesis: Tumour initiation occurs near the base of the crypt from

where the mutant clone takes over the whole gland [326].

(Figure 5.1 shows a schematic representation of a villus in the crypt.)

Figure 5.1: Schematic representation of a crypt villus, which is approximately twenty cells in height and

fifteen cells in diameter.

5.1.1.3 Gene level factors

Genes play a major role in determining cell behaviour and inter-cell interactions via the proteins they

code for, which act as both within-cell and between-cell signals. Mutated genes mean differences in the

set of proteins that are coded for, which can in turn lead to different cell behaviours and hence fitnesses.

Not all mutations imply differences in fitness however; depending on the cell’s local environment, a

mutation can be neutral, beneficial or determimental to the cell’s survival.
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Although spontaneous mutation occurs in cells, the mutation rate (approximately 1.4 × 10−10 per

base pair per cell generation [261]) is too low to explain the large number of mutations found in many

tumours based on the number of divisions during an average life span. An alternative explanation is

therefore required. The following hypotheses have been proposed to explain tumorigenesis despite these

relatively low spontaneous mutation rates:

• Mutator phenotype hypothesis [261], [340]: Tumorigenesis results from the acquisition of excep-

tional mutability. The intrinsic genetic instability of cancer cells drives tumorigenesis by produc-

ing a pool of mutations, some of which confer a selective advantage, allowing cells to proliferate

under adverse conditions.

• Natural selection hypothesis: The normal mutation rate, in combination with clonal evolution and

natural selection, suffice to obtain a tumour [391] ,[177].

• Pre-tumour progression: Natural niche succession enhances pre-tumour progression by provid-

ing a passive mechanism (no selection or phenotypic change) for the accumulation of multiple

alterations, including those crucial for tumorigenesis [234].

(More recently however, explanations of phenotype purely in terms of genotype have been shown

to be too simplistic, since gene expression is inextricably coupled to environmental factors. Thus, the

phenotype is the manifestation of an epigentic ‘code’ of gene-environment interactions [190], [275],

[380], [279]. Similarly, selection hypotheses addressing only the genetic level are now deemed to be

incomplete. While we do not address this directly in this thesis, our ABM permits biological data on

epigenetic influences to be integrated.)

5.1.2 Cell division, migration and differentiation in the colonic crypt

In colonic cancer, the regulation of cell populations is disrupted so that at the population level, the

balance between cell senescence and regeneration (as described in Section 5.1.1.1) is disrupted.

The colon is made up of villi, which are finger-like structures each made up of ˜300 cells - 15 cells

in diameter, 20 cells from the closed bottom (colonic crypt) to the villus tip [325]. In a colonic crypt,

cells divide, differentiate and migrate up the crypt. Stem cells reside at the bottom of the crypt and

typically divide asymmetrically to give one transit cell and one stem cell.

Stem cells are pluripotent i.e. they can give rise to all the differentiated cell types [83], [424]. The

differentiated cells are of four distinctive types:

1. Columnar epithelial cells (also called absorptive cells, enterocytes)

2. Secretory cells:

(a) Goblet cells

(b) Enteroendocrine cells

(c) Paneth cells
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As each stem cell produces a large number of transit and differentiated cells, slight changes in the number

of stem cells have important implications for the maintenance of the integrity of the crypt.

Higher up in the crypt, cells continue to divide but are destined, with all their progeny, to move out of

the crypt and eventually to be discarded. The divisions of these cells, in transit from the stem-cell region

of the villi, amplify the number of progeny that results from each division of a stem cell - these cells

are called transit or transit-amplifying cells. All the progeny of transit-amplifying cells will differentiate

and die, but their intrinsic potency is the same as that of stem cells i.e. if they were put back in the crypt

they could function as stem cells [325]. Transit cells have the ability to divide a limited number of times

(usually around 3 times) after which they undergo terminal differentiation. Fully differentiated cells are

removed from the luminal surface by programmed cell death (apoptosis).

Cells take two to seven days to make the journey from the site of their final division cycle to the

point of their exfoliation form the villus tip [425], [53]. Stem cells have cycle times ranging from 10 to

14 hours (consisting of G1, S, DNA repair, G2, and M phases) after which they enter a resting phase

(G0) of one one or two days before they divide again [53].

To summarise, in a normal crypt, the death and renewal of cells is believed to occur as follows:

1. Near the bottom of the crypt, stem cells divide asymmetrically giving one stem cell and one transit

cell.

2. Transit cells have the ability to divide rapidly a limited number of times after which they undergo

terminal differentiation.

3. Fully differentiated cells are removed from the luminal surface by programmed cell death (apop-

tosis).

The maintenance of the gut epithelium depends on a combination of cell proliferation balanced by

cell death, coupled with differentiation and active cell migration, while adhering to neighbouring cells

and the basement membrane. Changes that cause an imbalance between these processes can contribute

to the initiation of tumours in this tissue; the most commonly considered mechanism is increased prolif-

eration if cells fail to differentiate and do not become post-mitotic. The inability of cells to shed could

also contribute to tumour formation since cells that cannot migrate might remain in compartments where

they receive inappropriate cues [225], [226].

There is growing evidence that tumours are both initiated and maintained by cells that share bio-

logical properties that are similar to normal adult stem cells; this is known as the cancer stem cell (CSC)

hypothesis [386]. Like normal adult stem cells, CSCs can divide indefinitely, resulting in both more

CSCs (if division is symmetric) and in more differentiated cells (if division is asymmetric). What distin-

guishes cancerous tissue from normal tissue is the loss of homeostatic mechanisms that maintain normal

cell numbers.

In colorectal caricinogenesis, the following are observed:

1. Genetic alterations: accumulation of genetic alterations in proliferative cells (stem or transit cells).
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2. Abnormal crypt dynamics: loss of coordination between the process of cell proliferation at the

bottom of the crypt and differentiation and death at the top of the crypt leads to a net increase in

the number of cells in the crypt.

3. Crypt deformation and fission: the excessive cell number inflicts biomechanical stress on the wall

of the crypt, which might cause it to fold and eventually induce crypt fission.

4. Polyp formation: Successive series of crypt fission usually lead to the formation of a benign polyp.

5. Tumour progression: further genetic alterations are required for progression to malignancy and

invasiveness.

6. Metastasis: some colorectal cancers acquire the ability to spread to other parts of the body, often

the liver.

In this case study, our focus in the APC gene mutation, which results in loss of APC function. This

loss of function has impacts on behaviour at all levels, from biochemical signalling to the cell population

dynamics, often resulting in tumorigenesis.

5.1.3 The APC gene mutation

APC is a multifunctional protein that participates in several cellular processes, including cell adhesion

and migration, signal transduction, cytoskeletal organisation and chromosome segregation [144]. Dis-

ruption of these processes caused by mutations in the gene(s) coding for APC are believed to be strongly

associated with the incidence of colonic cancer. More specifically, the following have been observed:

• Direct correlation between the lack of APC and decreased cell migration in tissue and cultured

cells [356].

• When APC is depleted, the spindle checkpoint is compromised such that cells progress through

mitosis despite incomplete chromosome alignment or attachment [128]. This leads to the mea-

surable accumulation of tetraploid and aneuploid cells, a well-established mechanism for tumour

initiation [373], [152]. One mechanism by which this occurs is through cMyc activation (see

Section 5.1.3.2 below).

• Loss of APC initially leads to an increase in apoptosis, followed by a decrease [356].

• APC is a crucial component of the Wnt signalling pathway, which controls cellular differenti-

ation. When APC is absent, there are changes in cellular differentiation that render cells more

proliferative and less differentiated.

• Loss of APC can result in cMyc being overactive [260] (see Section 5.1.3.2 below).

Figure 5.2 summarises the effects of APC mutation.
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Figure 5.2: Overview of APC mutation effects. Solid arrows indicate activation, increase or facilitation.

Dashed arrows indicate inhibition or decrease. With apoptosis, loss of APC function initially increases

apoptosis, but this is followed by a decrease. The Wnt pathway interacts with notch so that when both

are activated (Wnt+, Notch+), there is increased cell division and reduced cell differentiation; when Wnt

is active but Notch is inhibited (Wnt+, Notch-), cells become committed to a secretory fate.
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5.1.3.1 Cell behaviour

In terms of cell behaviour, early genetic events such as the inactivation of the APC gene (see Section

5.1.3) can disrupt normal crypt dynamics by altering the behaviour of individual cells. The following

cellular level behvaioural changes have been observed [266], [412]:

1. insensitivity to differentiation signals;

2. increased cell division rate;

3. stem-cell overproduction e.g. as a consequence of an increase in probability to symmetric division;

4. evasion of cell death.

5.1.3.2 Signalling pathway controls

A tissue can pattern itself autonomously by means of a pair of diffusible signals - a short-range (weakly

diffusible) activator and a long-range (more freely diffusible) inhibitor - both of which are secreted at the

same time by the same cells and regulate their own production [282]. The positive feedback that is due

to the activator can give rise to self-sustaining foci of signal production, with a regular spacing between

them.

Within the epithelium, cells signal to each other through the Wnt, Notch, Eph/ephrin pathways:

mutations that affect these pathways cause marked changes in the distribution of cell types along the

crypt-villus axis. It has been hypothesised that through hedgehog and BMP, each crypt or intervillus

pocket delivers a long-range signal that inhibits crypt formation in its neighbourhood, while interaction

between Wnt and Notch pathways provide short range activation [101].

In our ABM, we model only the Wnt-Notch pathways since it is these that are most affected by

APC mutations. The main effects modelled are summarised as follows:

Wnt signalling maintains proliferation Activation of the Wnt pathway is the key factor that maintains

the crypt cell population in a proliferative state. When the pathway is overactivated, crypts enlarge; when

the pathway is blocked, they disappear. At the individual cell level, Wnt has three main effects:

1. Keeps the cell dividing;

2. Prevents cell differentiating, except Paneth cells;

3. Confers the potential (but not obligation) to differentiate as a secretory cell type once the cell

escapes from the influence of Wnt.

In the crypt, Wnt is strongly activated in the stem-cell region and essential for maintaining the stem cell

character. Furthermore, cells in close proximity can activate Wnt in one another; cells in which the Wnt

pathway is hyperactive make the pathway hyperactive in their neighbours too. In our ABM, both these

mechanisms for Wnt activation are treated as spatial Wnt activation, which is distinguished from Wnt

activation due to APC mutation effects (see distinction between the simple event types SACTWNT

and APCACTWNT in Figure 5.9 and Figure 5.8).
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Wnt and Notch maintain stem cells The combined effect of the Wnt and Notch pathways has been

shown to maintain stem cells. When Notch signalling is blocked, secretory cells are overproduced.

However, this does not occur at the expense of differentiated columnar cells. Instead, the whole cell

population of the adult intestinal crypt is converted to a secretory character and stops proliferating [397].

Overactivation of the Wnt signalling pathway is not sufficient to overcome this proliferation failure,

which suggests that all the proliferating cells, including the stem cells, depend on Notch and Wnt signals

in combination to keep them in a proliferating state; neither Wnt pathway activation nor Notch pathway

activation is sufficient by itself.

Wnt signalling evokes Notch signalling The Wnt and Notch pathways interact with one another in two

major ways:

• Wnt signalling is able to switch Notch activity on, whereas the converse does not apply. This is

supported by the the fact that a Wnt pathway mutation is sufficient to make a gut cell proliferate

indefinitely as a stem cell while a Notch pathway mutation is not.

• Notch pathway components mediate lateral inhibition within the Wnt-activated population (Wnt+),

so that some cells express Delta and escape Notch activation (Notch-) while others fail to express

Delta and have Notch activation (Notch+) imposed on them.

– The (Wnt+, Notch-) cells become committed to a secretory fate and eventually stop dividing.

– The (Wnt+, Notch+) cells continue to divide without differentiating, generating daughters

like themselves that again interact through Notch and diversify.

The size of the group of Wnt-activated (Wnt+) cells is limited as a result of short-range and long-

range spatial signals. Some cells therefore have to move out, losing Wnt activation. These cells

differentiate into absorptive cells if Notch was still activated in them at the time of their exit, and

as secretory cells if not.

Cells that become secretory are those that escape Notch activation. These cells are also the ones that

express Delta proteins, enabling them to activate Notch in their neighbours. Therefore cells that become

committed to a secretory fate express Notch ligands and inhibit their neighbours from differentiating in

the same way. Commitment to a secretory fate precedes withdrawal from the cell cycle, so cells keep on

dividing after fate commitment.

Effects of cMyc overactivation The following effects have been observed when cMyc is overactivated

(due to APC mutation):

1. Increases migration time at greater rate [248] i.e. the slowing down of cell migration occurs at a

greater rate;

2. Disrupts the spindle checkpoint so that the likelihood of a cell being polyploid is increased [356],

[390];

3. Increases cell fitness, with greater effect lower down in crypt [121].
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5.1.4 Existing mathematical and computational models

Existing mathematical and computational models of the colonic crypt and colon cancer tend to focus on

specific aspects of cell dynamics. These have been broadly categorised as:

• Spatial models, which describe the location of each cell. These include 2-D grid models [263],

[262], [312] which characterise the crypt as a rigid 2D grid and often rely on other simplifying

assumptions, and 2D lattice-free models, e.g. [281], [375], [406], [405] where cells move in a

continuous, lattice-free fashion, driven by repulsive and attractive forces.

• Compartmental models, which decompose the system into distinct compartments and do not rep-

resent the spatial location of cells. Instead, a system of ordinary differential equations (ODEs) or

partial differential equations (PDEs) is used to describe behaviour. These can be used to account

for phenomena that are not dependent on spatial factors, such as interactions between different cell

types e.g. [313] (discrete crypt dynamics) [40] (continuous crypt dynamics).

• Non-spatial stochastic models, which focus less on cell migration and differentiation than the

spatial models, but are instead used to explore the effects of specific factors such as APC hits

[240] and genetic instability [301], [241], or to model specific aspects of colonic crypt dynamics

such as niche succession [427].

More recently, it has been recognised that to achieve a Systems understanding of Colon cancer,

we need to have an integrated multi-scale model [399]. This would have to incorporate (sub-)models at

different levels and scales:

• At the subcellular level, deterministic, continuum models are used to describe biochemical net-

works involving Wnt signalling and cell cycle control.

• Spatially dependent gene expression patterns and environmental conditions define the behaviour

of the components of a cellular automaton model - in particular how they proliferate, migrate and

die.

• At the tissue level, the crypts behaviour is determined by the integration of all the individual cell

events with microscale biomechanics and dynamics.

Coupling these models together in a single validly constructed multi-scale model is a major challenge

and has not yet, to our knowledge been achieved due to the lack of data informing mathematical scaling

relationships. The ABMS techniques introduced in this thesis overcome this by using a component-based

compositional approach rather than defining mathematical scale relationships.

Our ABM can be classified as both spatial and multiscale since both subcellular and spatially de-

pendent factors govern cell behaviour, and the positions of cells are explicitly represented. Our goal is

to determine whether or not behaviours specified at the individual cell level are sufficient to generate the

patterns of behaviour observed at higher levels. It is also stochastic in terms of:

• variable cell cycle times;
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• mortality;

• insertion of newborn cells;

• differentiation probability for transit cells;

• mutation;

• probabilities of symmetric (giving two stem cells) and asymmetric (giving one stem cell and one

transit cell) division.

Stochasticity can be seen as a means of black-boxing processes about which we lack data i.e. pseudo-

indeterminism (see Section 4.1.1 and [379]).

The ABM makes a number of simplifying assumptions. However, the agent-based nature of the

model means that each of the assumptions can easily be modified. For example, CellAgents in our

model move on a grid in a step-wise fashion, but this can easily be altered so that they move in a lattice-

free fashion as in the models developed in [281]. Novel biological findings can also be built into the

model. The goal for this thesis however, is to show how simulations, together with the specified CET s

can extend our understanding of the ABM itself.

5.2 The agent-based model and simple event types
Our ABM of tumorigenesis in the colonic crypt consists of only one agent type, CellAgent, which

models the behaviour of cells in the colonic crypt. Behaviour of a CellAgent is dependent on several

factors:

1. The number of mutated APC alleles;

2. The type of cell it is i.e. stem, transit columnar, transit secretory, differentiated columnar, difffer-

entiated secretory;

3. Current stage in the cell cycle;

4. The Notch activation of its neighhbouring cells;

5. Its cMyc, Wnt and Notch activation.

6. The presence of Wnt activation in the environment, which is dependent on its position in the crypt.

In our model, all CellAgents are initialised as stem cells. They then undergo state changes rep-

resenting a particular developmental pathway, which eventually results in them becoming differentiated

into either columnar epithelial or secretory cells (unless they die before reaching this state). Figure 5.3

illustrates this with a state chart diagram. Figure 5.4 gives an overview of CellAgent STRs. More

detailed views of cell cycle and migration behaviour are shown respectively in Figure 5.5 and Figure 5.6,

which represent the biological processes described in Section 5.1.2.
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Figure 5.3: High level state chart showing states and transitions.

5.2.1 The effect of APC mutation on cell behaviour

In Section 5.1.3 and 5.1.3, we outlined the main consequences of mutation in the APC gene. Those we

include in our ABM can be summarised as follows:

1. Symmetric division (applies to stem cells): When either one or two APC mutations are present,

the stem cell always divides symmetrically [297].

2. Fitness increases, with a greater effect lower down in the crypt (due to greater levels of survivin)

[39]; the effect is also greater when both alleles are mutated.

3. . Migration time increases i.e. cells move more slowly so they are more likely to accumulate in

the crypt [252], [9]; the effect is greater when both alleles are mutated.

4. cMyc is activated (if not already)

5. If cMyc is activated, migration time increases at a greater rate [248] (this is modelled by making

it equivalent to the rate when both APC alleles are mutated).

6. If Wnt is activated, polyp formation is stimulated (this is modelled by allowing the cell to accumu-

late i.e. it does not have to compete with other cell(s) occupying a location) [145], [304], [356],

[8].

7. APC mutation increases the probability of Wnt activation. This is based on the observation that

APC mutated cells behave as if the Wnt-signalling pathway is constantly stimulated [161], [206].
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Figure 5.4: Flow chart showing high level agent rules. * indicates expansion into another activity dia-

gram. Dashed arrows after a decision box indicate false; solid lines indicate true. The resulting SET s

are shown in brackets.
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Figure 5.5: Flow chart of cell cycle states. * indicates expansion into another activity diagram. Dashed

arrows after a decision box indicate false; solid lines indicate true. Decision boxes with dashed outlines

are ones where the decision outcome is partly non-deterministic. In the case of the Repair DNA? box,

different thresholds must be exceeded depending on the number of APC mutations (1 or 2) for DNA to

be repaired but whether or not this value is exceeded is randomly determined. The resulting SET s are

shown in brackets.
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Figure 5.6: Flow chart of cell migration behaviour. * indicates expansion into another diagram. Dashed

arrows after a decision box indicate false; solid lines indicate true. No arrowhead means that the path

can only be executed once. Decision boxes with dashed outlines are ones where the decision outcome is

partly non-deterministic e.g. for the Win? box, the cell’s probability of winning in competition depends

on its relative fitness compared to its competitor, but whether or not it actually wins is determined by a

randomly generated value; the probability becomes a threshold, and if the value exceeds the threshold,

the cell wins. The resulting SET s are shown in brackets.
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Figure 5.7 and Figure 5.8 summarise the CellAgent STRs representing these APC mutation ef-

fects. (For purposes of readability, we illustrate the agent behavioural rules using flow charts, with the

associated SET s shown in brackets. The X-machine representation of the SET s is given in Appendix

A.)

Figure 5.7: Flow chart showing the immediate one-off effects of APC mutation. Dashed arrows after a

decision box indicate false; solid lines indicate true. The resulting SET s are shown in brackets.

5.2.2 Wnt-Notch interaction

As well as being activated by the interaction between APC mutation and cMyc (see Figure 5.8), Wnt

activation is also determined by the cell’s position in the crypt (how close it is to the base). The interaction

between Wnt and Notch pathways determine whether or not a cell becomes a secretory cell. If both Wnt

and Notch are active, a stem cell becomes a transit secretory cell, which eventually differentiates into a

secretory cell and no longer migrates.

5.2.3 State durations

In our ABM, cells reside in different states for different durations, reflecting the corresponding durations

in current biological understanding, as outlined in Section 5.1.2. Table 5.1 shows the durations of the

cell cycle stages (cell states) and migration migration.
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Figure 5.8: Flow chart showing the ongoing effects of APC mutation(s) on cell behaviour. Dashed

arrows after a decision box indicate false; solid lines indicate true. The resulting SET s are shown in

brackets.
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Figure 5.9: Flow chart showing the effects of Wnt signalling. Dashed arrows after a decision box indicate

false; solid lines indicate true. Decision boxes with dashed outlines are ones where the decision outcome

is partly non-deterministic. In the case of the Activate notch? box, the the probability of notch being

activated is proportional to the degree of Wnt activation at the location. In the case of ‘Become transit

secretory?’, the probability is 0.5. The resulting SET s are shown in brackets.



156 Chapter 5. An integrative study of tumorigenesis in the colonic crypt

State Duration range

in normal cell

Duration range in cell

with 1 APC mutation

Duration range in cell

with 2 APC mutations

G0 24–48 24–36 12–24

S 8 8 8

Repair DNA 1–5 (DNA always

repaired)

1–3 (in some cases,

DNA is not repaired)

0 (DNA never repaired)

G1 1–5 1–5 1–5

G2&M 1 1 1

Migration 48–168 bot-

tom to top (cell

moves every

x/cryptHeight

hours

72–168 from bottom to

top

96–168 from bottom to

top

Table 5.1: Table showing cell state and migration durations (in hours).

5.2.4 STRs and maximally observed SET s

Although SET s are defined by both the STR from which they are generated and the state transitions

observed, in Table 5.2 we only list the maximally observed SET s associated with biologically significant

STRs1. The CellAgent memory values before and after STR execution are given in Appendix A.

1Strictly speaking there are other STRs that govern the system’s execution e.g. updating locations, generating random values,

but these are treated as being outside the biological model.
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SET Biological Significance

Cell division

AD Asymmetric cell division.

SD Symmetric cell division.

IN A daughter cell is inserted at a particular location in the crypt.

INSACC A new daughter cell is inserted at a particular location without competing.

Migration

MG Cell migrates upwards in the crypt.

MGACC Cell is inserted in an already occupied location without competing after

migrating to that location.

Mutation

MAPC1 One allele of APC is mutated.

MAPC2 Second allele of APC is mutated (this can only occur after one allele is

already mutated).

AACC Cell can now survive in unfavourable conditions i.e. does not have to com-

pete for resources.

Pathway activation

SACTWNT Wnt signalling activated by spatial signals.

SDACTWNT Wnt signalling deactivated by spatial signals.

APCACTWNT Wnt signalling activated due to APC mutation.

ACTN Notch activated.

DEACTN Notch deactivated.

ACTMY C Myc activated.

Cell transitions

BTC Becomes a transit columnar cell and will continue to migrate before differ-

entiating into a columnar epithelial cell.

BTS Becomes a transit secretory cell and will continue to migrate before differ-

entiating into a secretory cell.

DC Differentiates into a columnar cell.

DS Differentiates into a secretory cell.

AP Natural death of mature differentiated cell.

Cell cycle states

EG1 Enters G1 of the cell cycle.

ES Enters S phase of the cell cycle.

EG2M Enters G2 and undergoes mitosis.

EG0 Enters G0 (resting) phase of cell cycle.

RDNA DNA repaired

C Competition between a pair of cells.

RD Random cell death.

Table 5.2: Table showing simple event types associated different state transition rules and their biological

significance (the biological behaviour represented).
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5.3 Inter-level modelling: Validating and discovering associations

between behaviours at different levels
In Section 4.2, we introduced inter-level models, which are models of associative relationships between

behaviours at different levels which can be formalised in terms of statistical dependencies between

CET s. Statistical analyses of agent-based simulations are used to validate and/or discover such de-

pendencies. In this section, we first specify a set of CET s and then analyse a set of simulations to

determine both correlative and Granger statistical dependencies between them.

5.3.1 CET specifications

In relation to our ABM, we can distinguish between two categories of mechanisms believed to contribute

to tumorigenesis:

1. Mechanisms directly associated with the APC mutation which arise as a result of the altered be-

haviour of individual mutated cells. The agent rules associated with such altered behaviours are

given above in Section 5.2.4 and their corresponding simple event types are shown in Table 5.2.

Below, in Section 5.3.1.1 we define further complex event types representing higher level mecha-

nisms belonging to this category.

2. Clonal interaction mechanisms (see also Section 5.1.1), which are by definition higher level char-

acterisations of cell agent behaviour. Complex event types representing such mechanisms are

defined in Section 5.3.1.2.

5.3.1.1 Complex event types for the mechanisms underlying APC mutation driven

tumour development

In the model, there are several pathways via which the APC mutation can positively reinforce itself so

that the proportion of APC-mutated cells increases. These include:

1. Increased rate of symmetric division, resulting in more stem cells with greater proliferative po-

tential. This is represented by the increased frequency of the MSD complex event type in Table

5.3;

2. Increase in fitness, which means more cells with the mutation are retained in the population. This

is represented by the complex event type MCW in Table 5.3;

3. Increased Wnt activation (direct effect of mutation). This is represented by the complex event type

MWD in Table 5.3;

4. More cells remaining in the region of high Wnt activation near the base of the crypt due to the

lower migration rate. This is represented by the complex event type MSWD in Table 5.3;

Figure 5.10 and Figure 5.11 show the specificity hierarchy of these CET s. In Figure, 5.10, the hi-

erarchy is shown in terms of a directed graph indicating supertype-subtype relations. Set representations

of these relations are then shown in Figure 5.11. The full hypergraph formalisations of these relations

are given in Appendix B
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Figure 5.10: Specificity hierarchies for mutation-driven division (MD) complex event types. Different

hierarchies can be defined. In the left figure, the hierarchy in (a), the mutation-driven division is classified

first as asymmetric (MAD) or symmetric (MSD). Each of these could have resulted from one of two

pathways, one from the direct effects of APC mutation on the Wnt pathway (MWDA and MWDS)

and the other from spatial Wnt activation (MSWDA and MSWDS). Alternatively, we can classify by

pathway first, and then by the type of division, as in (b). These can be represented together in terms of

set membership, as shown in Figure 5.11

Figure 5.11: Specificity hierarchies for mutation-driven division (MD) complex event types represented

in terms of set membership.
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5.3.1.2 Complex event types for clonal interaction dynamics

Clonal interaction CET s represent the different competition-related events within clones (CC) and serve

as indicators of a clone’s success. However, the ABM also models reduced dependency of mutated cells

on environmental nutrients with an increased probability of non-competitive division or migration i.e. a

cell can divide or migrate into an already occupied location without competing with the cell occupying

the location. This is modelled by an increased probability of the SET s, INSACC and MGACC. The

CET specifications for CC and its subtypes are shown in Table 5.4. Figure 5.12 shows the specifcity

hierarchy for these clonal interaction CET s. The full hypergraph formalisations of these relations are

given in Appendix B. It is important to note that CC is both a supertype and a participant of its subtypes.

For example, the hypergraph description of CCLOSE is as follows:

{XCCLOSE , ECCLOSE}

XCCLOSE = C,¬INS,¬MG, CC2

ECC = (C ./C−¬INS
c ¬INS), (C ./C−¬MG

c ¬MG), (CC ./CC−¬IN
c MG), (CC ./CC−¬MG

c MG),

where:

• ./C−¬IN
c = ||[sameClone, differentCell]

• ./CC−¬IN
c = ||

• ./C−¬MG
c = ||[sameClone, differentCell]

• ./CC−¬MG
c = ||

5.3.2 Simulation parameters

The simulation paramaters that can be controlled are:

1. APC mutation rate: the probability that a cell will acquire an APC mutation.

2. Migration rates for normal and mutated cells.

3. Cell cycle state times for normal and mutated cells: these determine the length of time a cell spends

in each stage of the cell cycle. Some of the times are given as ranges so that at each transition to a

new stage, the time the cell will spend in the new stage is randomly determined.

4. Probability of asymmetric division for normal and mutated cells.

5. Number of divisions before differentiation: the number of times a cell divides after becoming a

rtansit cell before becoming differentiated (and unable to divide further).

6. Random death rate: the probability that a cell will die at each time step.

7. Initial number of clones: the number of different clones at the beginning of the simulation.

2The notation ¬cetX stands for the CET , cet′X describing the complement set of cetX .
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Figure 5.12: Specificity hierarchy for clonal competition (CC) complex event types. Clonal competi-

tion (CC) occurs when there is a compete (C) event between two cells belonging to the same clone.

CCWIN occurs when the cell that initiates the C event wins in competition and then successfully in-

serts or moves to the location currently occupied by its competitor. If the competition event is followed

by insertion IN (for newly generated cells), the CET is CCINS; if it is followed by migration MG,

the CET is CCMIG. CCLOSE occurs when the cell that initiates the C event loses in competition

and therefore does not insert or move.

8. Initial number of cells: the number of cells at the beginning of the simulation. Which clone each

of the cells belongs to is randomly determined.

9. Villus height and villus diameter: the maximum capacity of a normal villus (when there is no

mutation) in terms of number of cells.

10. Wnt activation decrease interval: the interval by which Wnt signal strength decreases moving

up the crypt. This also determines the level from which cells are free from the effects of Wnt

signalling.

11. APC1-activated Wnt: the probablity of the Wnt pathway being activated if the cell has a single

APC mutation.

12. APC2-activated Wnt: the probablity of the Wnt pathway being activated if the cell has two APC

mutations.

13. Probability of repairing the first APC mutation.

14. Probability of repairing the second APC mutation: this is independent of the probablity of repair-

ing the first APC mutation, so if a cell has two mutations, the probability that both will be repaired

is the product of the two probablities.

15. Fitness distribution for clonal fitness: the distribution of the fitnesses of each clone relative to each

other e.g. a normal distribution would mean most clones have similar fitnesses.
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In our studies, only the APC mutation rate parameter is systematically varied. The other parameters

are set to fixed values or ranges as shown in Table 5.5. For ranges, the value selected is determined

randomly within that range.

The fact that the fitness distribution for clones is uniform means that no clone has any intrinsic

competitive advantage over any other clone.

5.3.3 Study 1: APC mutation rate and tumorigenesis

In the studies that follow, tumorigenesis is our highest level behaviour. One of the challenges in applying

ABMS to Systems Biology models is in characterising biological phenomena computationally. Consis-

tent with our view of Cancer as an ongoing, dynamic process, our studies treat tumorigenesis as a matter

of degree rather than associating it with a particular all-or-nothing end state. Furthermore, tumorigenesis

is composed of four different measures reflecting the different observations of those studying the disease

(see Section 5.1 above):

1. The mean population of cells in a time interval ti to tj . This is the mean of cell populations taken

at each time step of the time interval:

Mean(Popti, Popti+1, ..., Poptj−1, Poptj).

2. The mean population change in a time interval ti to tj . This is calculated by taking the mean of

population differences between time steps:

Mean([Popti+1 − Popti], ..., [Poptj − Poptj−1]).

A large positive value indicates a rapidly growing population, while a low value indicates a stable

population.

3. The mean proportion of mutated cells in a time interval ti to tj . This is the mean of the proportion

of mutated cells taken at each time step of the time interval:

Mean(PopMutatedti, P ropMutatedti+1, ..., P ropMutatedtj−1, P ropMutatedj).

4. The mean change in proportion of mutated cells in a time interval ti to tj . This is calculated by

taking the mean of mutated proportion differences between time steps:

Mean([PropMutatedti+1 − PropMutatedti], ..., [PropMutatedtj − PropMutatedtj−1]).

A large positive value indicates rapid growth in the proportion of mutated cells, while a low value

indicates the fact that the proportion is remaining constant.

Correlation analysis of 100 simulations with randomly determined APC mutation rates between

0.000 and 0.010 showed a strong correlation between the APC mutation rate and all four measures

of tumorigenesis (see Figure 5.13 and Table 5.6). This confirms our hypothesis that tumorigenesis is

associated with APC mutation and shows that the behaviours modelled by the ABM are able to generate

this relationship.
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Parameter Value/Range

Migration Rate

Normal cells 48-168 hours (time steps)

Cells with one APC mutation 72-168 hours (time steps)

Cells with two APC mutations 96-168 hours (time steps)

Wnt activation decrease interval 0.1

Cell cycle state times

G0 for normal cells 24− 48

G0 for cells with one APC mutation 24− 36

G0 for cells with two APC mutations 12− 24

S 8

DNA repair for normal and one APC mutation cells 1− 5

DNA repair for cells with two APC mutations 1− 5

G1 1− 5

G2 and Mitosis 1

Probability of asymmetric division for normal cells 0.5

Number of divisions before differentiation 2− 4

Random death rate 0

Initial number of clones 5

Initial number of cells 15

Villus height (in number of cells) 20

Villus diameter (in number of cells) 15

Wnt activation decrease interval 0.1

APC1-activated Wnt 0.25

APC2-activated Wnt 0.75

Probability of repairing the first APC mutation 0.75

Probability of repairing the second APC mutation 0.5

Fitness distribution for clonal fitness 1 for all clones

Table 5.5: Table showing parameter settings for the simulation studies.
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x y r (5dp) Sig. (at 0.01 level)

APC mutation rate Mean population 0.97956 (5dp) yes

APC mutation rate Mean population change 0.95169 (5dp) yes

APC mutation rate Mean mutated population 0.98598 (5dp) yes

APC mutation rate Mean change in mutated population 0.97862 (5dp) yes

Table 5.6: Correlations between APC mutation rate and the tumorigenesis measures. The correlation

measure used is the Pearson product moment correlation coefficient. The critical value for significance

is 0.195 for a two-tailed test at significance level 0.05 with 98 degrees of freedom (since N=100).

x y r (5dp) Sig. (at 0.01 level)

Mean population Mean population Change 0.97599 yes

Mean population Mean proportion mutated 0.96327 yes

Mean population Mean change in proportion mutated 0.97729 yes

Mean population change Mean proportion mutated 0.94047 yes

Mean population change Mean change in proportion mutated 0.97216 yes

Mean proportion mutated Mean change in proportion mutated 0.96840 yes

Table 5.7: Correlations between the tumorigenesis measures. The correlation measure used is the Pear-

son product moment correlation coefficient. The critical value for significance is 0.195 for a two-tailed

test at significance level 0.05 with 98 degrees of freedom (since N=100).

However, from Figure 5.13, we can also see that for higher APC mutation rates, there is more

variation, as indicated by the fanning of points from the line of best fit. There also appears to be some

levelling off in the two graphs for proportion of mutated cells. This indicates that the effect of APC

mutation rate on the proportion of mutated cells is no longer linear after a certain point and may even

reach a limit after which it no longer exerts an effect. These differences suggest that a different model

might be a better fit for high APC mutation rates so for greater parameter ranges, a multi-level model

might be more appropriate (see Section 5.4 for a multi-level study).

The correlation coefficients in Table 5.7 show that the tumorigenesis measures also correlate with

each other. This reflects the fact that mutated cells have a higher rate of cell division, so the greater the

proportion of mutated cells, the more rapid the growth in both proportion of mutated cells and overall

population.

5.3.4 Study 2: Correlation analysis of CET frequencies at different temporal

resolutions

The objective of this study was to establish correlations between the defined CET s and the tumorigenesis

measures. In the study, we first analysed the cummulative occurrence frequencies of the specified CET

through entire simulation runs (2400 time steps) across the same 100 simulations used in the previous

study. Further correlation analyses were then carried out for the CET occurrence frequencies at 300

time step time intervals to determine whether correlations change through time.
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Figure 5.13: Graph showing correlations between APC mutation rate and the four different tumori-

genesis measures: (i) mean population throughout simulation; (ii) mean proportion of mutated cells

throughout the simulation; (iii) mean change in population throughout the simulation; (iv) mean change

in proportion mutated throughout the simulation.
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5.3.4.1 Correlation analyses for overall CET frequencies

Figure 5.14 and Table 5.8 show the correlations between APC mutation rate and the specified CET s.

These indicate that strong linear associations exist between APC mutation rate and all CET s. The

correlation values also reflect the type hierarchy of the CET s (see Section 5.3.1); correlations tend to

be higher with supertype CET s compared with their subtypes, e.g. a higher correlation exists between

APC mutation rate and MD occurrence than between mutation rate and MWD or MSWD. Also, the

correlation between APC mutation rate and MSWDA is significantly lower (0.68764) compared with

the others at that level (MSWDS, MWDA, MWDS).

Figure 5.15 and Table 5.9 show the correlations between the specified CET s and the different

tumorigenesis measures, which again indicate strong linear associations. Again, the correlations between

MSWDA and the four tumorigenesis measures are especially low, suggesting that MSWDA is less

dominant as a pathway from APC mutation rate to tumorigenesis. Also of significance is the fact that

the correlation between clonal interaction CET s and the tumorigenesis measures tends to be higher than

those between mutation-driven CET s and the tumorigenesis measures. (It should be emphasised here

however, that correlation relationships are undirected, and this result does not indicate that the effect of

clonal interaction CET s is greater than that of of mutation-driven CET s. In fact, in Section 5.3.5, we

show that the higher correlation is due largely to the fact that tumorigenesis increases the occurrence

frequencies of clonal interaction CET s.)

The correlations in Table 5.9 also indicate that amongst the mutation driven CET s, the asymmetric

division CET s tend to have weaker positive associations with the four tumorigenesis measures than do

their symmetric division counterparts e.g. MAD vs. MSD, MSWA vs. MSWDS. Unlike symmetric

division, which results in two stem cells, asymmetric division gives one transit cell and one stem cell.

Since transit cells have a limited number of divisions, they can be seen as countering the pathway to

tumorigenesis. The weaker positive correlations reflect this. APC mutation rate is also more weakly

correlated with the asymmetric division CET s, since the probablity of mutated cells dividing asymmet-

rically is lower. The fact that the associations are still positive reflect the greater rate of division. These

results are consistent with the CSC hypothesis (see Section 5.1.2) and also suggest a specific mechanism

by which the homeostatic mechanisms maintaining normal cell numbers are disrupted. The relative

dominance of symmetric division amplifies the occurrence of stem-cell-like proliferative behaviour; as

more stem cells are generated from symmetric division, which results in further increases in symmetric

divisions and hence more stem cells (see Figure 5.16).

Figure 5.17 shows the strongest correlations (r ≥ 0.9) between the specified CET s. In general,

the clonal interaction CET s tend to be better connected (have more associations with other CET s) than

the mutation-driven CET s, and of the mutation-driven CET s, those involving symmetric division tend

to be better connected than their asymmetric counterparts. It should be emphasised however, that Figure

5.17 only shows correlations where r ≥ 0.9 (which is very high). The full set of correlations is given

in Appendix C.1, and these show that every specified CET is significantly correlated with every other

CET .
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Figure 5.14: Graph showing correlations between APC mutation rate and the specified CET s.

x y r (5dp.) Sig. (at 0.01 level)

APC Mutation Rate MD 0.95960 yes

MSD 0.94403 yes

MAD 0.84840 yes

MSWD 0.91147 yes

MWD 0.92300 yes

MSWDA 0.68764 yes

MSWDS 0.89585 yes

MWDA 0.81147 yes

MWDS 0.87556 yes

CC 0.94985 yes

CCWIN 0.92253 yes

CCINS 0.90596 yes

CCMIG 0.91901 yes

CCLOSE 0.95723 yes

Table 5.8: Correlations between APC mutation rate and the occurrence frequencies of the specified

CET s. The critical value for significance is 0.195 for a two-tailed test at significance level 0.05 with 98

degrees of freedom (since N=100).
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Figure 5.15: Graph showing correlations between the specified CET s and the four tumorigenesis mea-

sures: mean population (MP ), mean population change (MPC), mean proportion mutated (MPM ),

and mean change in proportion mutated (MPMC). The black bars highlight the asymmetric division

MD CET s, with the remaining MD CET s in grey. Clonal interaction CET s are white.
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Figure 5.16: Mechanism by which symmetric division disrupts cell population regulation. In normal

cells, the balance between symmetric and asymmetric division maintains the number of cells at a par-

ticular level. When symmetric division becomes relatively more dominant, this balance is disrupted and

cell numbers rapidly increase. Overall, symmetric division results in more stem cells, which in turn

increase the incidence of symmetric division, thus reinforcing proliferation.

Figure 5.17: Strongest correlations between CET s over the course of the whole simulation (r ≥ 0.9).

Note that CET s without interconnecting arrows may still be positively associated with r > 0.9.
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CET rAPC−CET (5dp.) rCET−Tum (5dp.) rAPC−CET Rank rCET−Tum Rank

MD 0.95960 0.92420 1 3

MAD 0.84840 0.81792 12 12

MSD 0.94402 0.90888 4 5

MSWDA 0.68764 0.64425 14 14

MSWDS 0.89585 0.85819 10 10

MSWD 0.91147 0.86924 8 9

MWDA 0.81147 0.79463 13 13

MWDS 0.87555 0.84739 11 11

MWD 0.92300 0.896727 5 8

CC 0.94985 0.93782 3 2

CCINS 0.90596 0.89991 9 7

CCMIG 0.91901 0.90301 7 6

CCLOSE 0.95723 0.94677 2 1

CCWIN 0.92253 0.90902 6 4

Table 5.10: Ranks of correlations between APC mutation rate and CET s, and between CET s and

tumorigenesis. For the rCET−Tum correlation measure, we used the mean of the correlations between

the CET and the four tumorigenesis measures (which are also correlated; see Appendix C.1 for the r

values for each tumorigenesis measure).

The correlations observed in this study are consistent with the hypothesis that the strong positive

association between APC mutation rate and the tumorigenesis measures is mediated by the CET s spec-

ified, although asymmetric division CET s tend to show weaker linear associations compared to their

symmetric division counterparts with both the mutation rate and tumorigenesis.

5.3.4.2 Analysis of second order associations

Table 5.11 shows the results for a Spearman’s rank analysis of the correlation between APC mutation

rate-CET correlation and CET -tumorigenesis correlation. The CET -tumorigenesis correlation mea-

sure used here is the mean of the four correlations between CET occurrence frequencies and each of the

four tumorigenesis measures (see Table 5.10).

The second order Spearman’s rank correlations are plotted in Figure 5.18. These reveal a significant

second order association (p < 0.005) between the strength of correlation between APC mutation rate and

CET s and between the CET s and tumorigenesis. This implies that the association strength between

APC mutation rate and a specified CET is correlated with the association strength between the CET

and tumorigenesis. This is true both for the combined mean tumorigenesis measure and for the four

tumorigenesis measures individually, as shown in Table 5.11. (Appendix C.1 shows the rankings for

each of the individual tumorigenesis measures).
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Statistic rCET−MP

(5dp.)

rCET−MPC

(5dp.)

rCET−MPM

(5dp.)

rCET−MPMC

(5dp.)

rCET−Tum (5dp.)

Correlation 0.85934 0.95604 0.982418 0.951648 0.94286

t (Critical value =

2.179 for 2-tailed

test)

5.82093 11.29458 18.22846 10.731507 9.80246

D-square (expected

D-square=455)

64 20 8 22 26

z -3.09840 -3.44707 -3.54216 -3.431217 -3.39952

p 0.002 0.0006 0.0004 0.0006 0.0006

Table 5.11: Spearman’s Rank Correlation analysis of APC mutation rate-CET correlation and CET -

Tum. MP = Mean Population, MPC = Mean Population Change, MPM = Mean Proportion Mutated,

MPMC = Mean change in Proportion Mutated. The combined CET -Tum measure is the mean of the

four other correlations (rCET−MP , rCET−MPC , rCET−MPM , rCET−MPMC).

Figure 5.18: Scatter graph showing second order Spearman’s rank correlations between rAPC−CET and

rCET−Tumorigenesis.



5.3. Inter-level modelling: Validating and discovering associations between behaviours at different levels175

Figure 5.19: Scatter graph showing second order Spearman’s rank correlations between rAPC−CET

and rCET−Tumorigenesis correlations for each tumorigenesis measure. Top-left:rMP−Tumorigenesis;

Top-right:rMPC−Tumorigenesis; Bottom-left:rMPM−Tumorigenesis; rMPMC−Tumorigenesis.

5.3.4.3 Correlation analyses for CET frequencies at regular time intervals

The correlation analyses for CET occurrence frequencies at 300 time step time intervals are summarised

in Figure 5.20, Figure 5.21 and Figure 5.22.

Figure 5.20 and Figure 5.21 indicate that although the correlations between APC and the CET s,

and between the CET s and the tumorigenesis measures vary through time (as indicated by the non-

uniform bars against each CET ), the variation tends not to be great, suggesting that associations tend

to persist through time. The main exception to this however, is in the clonal interaction CET s, where

the correlation in the first 300 time steps is very weakly negative, both with APC mutation and with the

tumorigenesis mesures. This is due to the fact that at the beginning of the simulation, cell numbers are

low and the cells present are unlikely to be engaging in competition with each other because they have

yet to divide or move. A weak negative association is also observed between APC mutation and clonal

interaction CET s, as can be seen in Figure 5.20.

The graphs in Figure 5.22 show the strongest correlations (r ≥ 0.9) between the specified CET s for

time intervals 601-900, 901-1200, 1201-1500, 1501-1800 and 1801-2100 respectively (for time intervals

0-300 and 301-600, none of the correlations exceeded 0.9), revealing differences in correlations for

different time intervals.

(For full study results, see Appendix C.1.)
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Figure 5.20: Graph showing correlations between APC mutation rate and the specified CET s at 300

time step time intervals.
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Figure 5.21: Graphs showing correlations between specified CET s and the four tumorigenesis measures

at 300ts intervals. Top: CET −MP , Second-top: CET −MPC, Third-top: CET −MPM , Bottom:

CET −MPMC
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Figure 5.22: Graphs showing correlations between specified CET s and the four tumorigenesis measures

at 300ts intervals (r ≥ 0.9). Top-left: time step 601 to time step 900, Top-right: time step 901 to time

step 1200, Second row-left: time step 1201 to time step 1500 , Second-row-right: time step 1501 to

time step 1800, Bottom-left: time step 1801 to time step 2100. Note that CET s without interconnecting

arrows may still be positively associated with r > 0.9. (The time intervals between time step 0 and time

step 600 were ommitted because the CET occurrence frequencies were too low for analysis)
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X Y F (3dp) Sig (3dp)

Mutation-driven CET s Tumorigenesis 24.534 yes (0.016)

Tumorigenesis Mutation-driven CET s 0.241 no (0.657)

Clonal interaction CET s Tumorigenesis 3.702 no (0.150)

Tumorigenesis Clonal interaction CET s 91.445 yes (0.002)

Mutation-driven CET s Clonal interaction CET s 2.634 no (0.203)

Clonal interaction CET s Mutation-driven CET s 0.055 no (0.829)

Table 5.12: Granger Causality between mutation-driven and clonal interaction CET s.

5.3.5 Study 3: Granger causality between mutation-driven CET s, clonal inter-

action CET s and tumorigenesis

In the previous study we analysed correlation relationships between CET s. Although the correlation

coefficient serves as an indicator of linear association, it says nothing about the direction of association.

Granger-causality is a measure of directed association between variables. In this study, the variables of

interest are CET occurrence frequencies and the tumorigenesis measures. We determine the Granger-

causality relationships between mutation-driven CET s, clonal interaction CET s and tumorigenesis.

The results in Table 5.12 and shown in the digram in Figure 5.23 indicate that mutation-driven CET s

Granger-cause tumorigenesis but clonal interaction CET s are Granger-caused by tumorigenesis. They

also indicate that mutation-driven and clonal interaction CET s are not related to each other by Granger-

causality in either direction. This shows that the higher correlation between clonal-interaction CET s

and tumorigenesis in Section 5.3.4 is due more to the effect of tumorigenesis on the occurrence of

clonal-interaction CET s than the effect of clonal interaction CET s on tumorigenesis.

The Granger Causality measure was applied to CET occurrence frequencies and tumorigenesis

measures at 300 time step time intervals. The three sets of variables were:

• Mutation-driven CET s: Normalised mean of mutation-driven CET occurrence frequencies

across 100 simulations;

• Clonal interaction CET s: Normalised mean of clonal interaction CET occurrence frequencies

across 100 simulations;

• Tumorigenesis: Normalised mean of the four tumorigenesis measures across 100 simulations.

5.3.6 Summary of Inter-level studies

The main findings of inter-level studies in this section can be summarised as follows (see also Figure

5.24):

• In Study 1, we showed that the four tumorigenesis measures have a strong linear correlation with

APC mutation rate.

• First and second order correlation analyses in Study 2 suggest that the linear correlation between

APC and tumorigenesis revealed in Study 1 is mediated by the specified CET s. Further cor-
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Figure 5.23: Directed Granger-causality associations between Mutation-driven CET s, clonal interaction

CET s and tumorigenesis. Mutation-driven CET s are predictive of the tumorigenesis measures and the

tumorigenesis measures are predictive of the clonal interaction CET s.

relation analyses of CET frequencies at different time points suggest that association strengths

change through time.

• Time-series Granger-causality analysis in Study 3 revealed a directed dependency relationship

between mutation-driven CET s, clonal interaction CET s and tumorigenesis (see Figure 5.23).

This set of studies demonstrate how statistical analyses of CET frequencies can give us a deeper

understanding of the ABM mechanisms and behaviours underlying a higher level relationship, such as

APC mutation rate and tumorigenesis.
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Figure 5.24: Schematic representation of Inter-level modelling studies
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5.4 Multi-level modelling: Clonal dynamics and tumorigenesis
Clonal conversion is the process wherby a mutated stem cell clonally expands to fill the entire crypt. In

simulations of our ABM, this is represented by clonal dominance, with the process being complete when

clonal dominance is equal or close to 1. Clonal stabilisation time is the time taken for the progeny of a

mutated stem cell to colonise the crypt [59]; in terms of our simulations, this is when clonal dominance

is equal to or close to 1. Experimentally, this is followed by inducing a mutation in a stem cell and

tracking clonal expansion of the progeny. In the human colon, clonal stabilisation time is observed to be

28 days whereas in the mouse small bowel, it is 12 weeks, a difference that is attributed to the number of

stem cells (the lower number of cells in the mouse small bowel means a lower probablity of dominance)

[416], [309]. However, these studies may involve selection due to mutagens and irradiation so the results

may not reflect the rates in operating crypts. Modelling studies based on methylation patterns and which

make assumptions about the number of stem cells present have estimated the average time for complete

dominance in humans to be approximately 220 days with a 95% interquartile range of 2 to 1900 days

[427].

As discussed in Section 5.1.1, the fitnesses and behaviour of cells are dependent on their ecology.

At the clonal level, there also exist certain spatial factors that protect a clone from becoming extinct or

that support the domination of a particular clone. One example is clone clustering, where cells from

the same clone protect each other. Clone clustering might result from the initial spatial configuration of

cells, but it can also result from increased cell division rate as a result of APC mutation. In addition,

APC mutation can modulate (amplify) an initial clone clustering effect.

Clonal dominance is a measure of how great a proportion of the total population is occupied by the

clone with the maximum number of cell members, as calaculated by the equation:

max(nC)
n

,

where nC = {nc0, ..nCm} is the set of clonal populations (the number of cells belonging to each clone)

and n is the total number of cells.

In [75], a preliminary study of clonal interaction dynamics suggested that the initial spatial config-

uration of cells is important in determining clonal dominance. In this study, the APC mutation rate was

set to 0 so the only phenomenon being invetigated was clonal dynamics. The studies showed that if cells

belonging to the same clone are located near each other in a cluster at the beginning of the simulation,

the clone tends to dominate. Even though individual cells do not have any additional advantage in com-

petition, at the clonal level, the following two mechanisms were identified through analysing complex

event frequencies, as contributors to clonal dominance:

• Same-clone replacement: If a cell belonging to a clonal cluster loses in competition with a cell

belonging to another clone, there is a high probability that this cell from the foreign clone will soon

be replaced by another cell from the cluster. Hence, at the clonal level, recovery from loss is likely

to be rapid. In other words, spatial clustering protects a clone from being ousted in competition

events (see Figure 5.25).
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• Colonisation by move − win − replace (see Figure 5.26): When a cell moves to a location

currently unoccupied or occupied by a cell belonging to another clone, its previous location is

likely to become occupied by a cell belonging to the same clone. This means that the movement

of cells belonging to the cluster are likely to extend the territory of the cluster, making it larger and

even more likely to dominate.

Figure 5.25: Spatial clustering helps to protect a clone from being ousted in competition events since

any given loss is likely to be rectified by another member of the clone winning in the near future.

Figure 5.26: Move −Win − Replace mechanism for colonisation: When a cell belonging to a clonal

cluster moves to a new location, its old location tends to become quickly occupied by a cell of the same

clone so the size of the clonla cluster increases.

In our studies, only 45% of simulations resulted in complete clonal conversion. For this reason, we

introduce mean clonal dominance (MCD) as a measure of the degree to which clonal conversion was

achieved and the rate (a high MCD measure would indicate rapid conversion) in addition to the four

tumorigenesis measures. We also use correlations between MCD and each of the four tumorigenesis
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measures to represent the following:

• rCD−MP : The degree to which population growth is associated with a single dominant clone;

• rCD−MPM : The degree to which the growth in the proportion of mutated cells is associated with

a single dominant clone;

• rCD−MPC : The degree to which the rate of population growth is associated with a single dominant

clone;

• : rCDM PMC : The degree to which the rate of growth in proportion of mutated cells is associated

with a single dominant clone.

The key question we wish to address in the studies in this section is whether initial clonal dominance

and clonal clustering conditions considered independently modulate tumorigenesis and its underlying

mechanisms. In Section 5.4.1, we determine the independent effects of these two factors while in Section

5.4.2, we establish the interaction effects between the two factors.

5.4.1 Study 4: The independent effects of initial clonal dominance and initial

clonal clustering

In this study, we use two grouping factors (‘levels’ in multi-level modelling terminology) to classify

the same set of 100 simulations analysed in Section 5.3. For initial clonal dominance (CD), we define

three groups: the ‘low’ initial clonal dominance (LCD) group has an initial clonal dominance of 0.26667

(5dp.); the ‘medium’ initial clonal dominance (MCD) has initial clonal dominance 0.33333 (5dp.); the

‘high’ initial clonal dominance (MCD) has clonal dominance 0.40000 (5dp.). For initial clonal cluster-

ing (CC), we define two groups: the ‘low’ initial clonal clustering (LCC) group with cumulative CC

occurrence frequencies less than 1000 before time step 300, and the ‘high’ initial clonal clustering group

(HCC) groups with cumulative CC occurrence frequencies greater than or equal to 1000 up to time step

300.

5.4.1.1 Initial clonal dominance

Table 5.13 shows the means and standard deviations for the three CD groups and Table 5.14 shows the

analysis of variance comparing the means of the three groups.

The ANOVA in Table 5.14 shows that there is no significant difference in overall clonal dominance

between the three different groups; in other words, initial domination in numbers is not sufficient to

ensure later domination. Even though mutated cells have a competitive advantage (i.e. they tend to

be selected for in a competition event), they do not necessarily colonise the population. Instead, other

factors may have to be present.

On the other hand, the ANOVA shows that there are differences between the groups in the tumori-

genesis measures, suggesting that initial clonal dominance can promote certain behavioural pathways

associated with tumorigenesis. We would expect this to occur mainly when cells are spatially organised

such that cells of the same clone form clusters. An indicator of clustering is the degree of within-clone

competition, as represented by the complex event type CC. We would therefore expect initial clonal



5.4. Multi-level modelling: Clonal dynamics and tumorigenesis 185

Group Tumorigenesis

measure

N Mean Standard De-

viation

Low initial CD MP 31 139.76915 20.37164

MPM 0.25581 0.14070

MPC 0.06144 0.01352

MPMC 0.02439 0.01514

MCD 0.70374 0.11999

Medium initial CD MP 42 130.53059 19.93751

MPM 0.19836 0.13682

MPC 0.05637 0.01413

MPMC 0.01858 0.01627

MCD 0.68937 0.11335

High initial CD MP 27 136.69073 20.56339

MPM 0.23866 0.14081

MPC 0.06028 0.01426

MPC 0.02313 0.01642

MCD 0.70345 0.11462

Table 5.13: Means and standard deviations of the tumorigenesis measures and overall clonal dominance

(mean across all time points) for the High, Medium and Low initial clonal dominance groups. (MP =

Mean Population; MPM = Mean Proportion Mutated; MPC = Mean Population Change; MPMC = Mean

Proportion Mutated Change; MCD = Mean clonal dominance over entire simulation run.)
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Figure 5.27: Box plot showing the medians and quartiles of mean population size for the different initial

clonal dominance groups. Top left: Mean Population, Top right: Mean Proportion Mutated; Bottom left:

Mean population change; Bottom right: Mean proportion mutated change.

Figure 5.28: Box plot showing the medians and quartiles of overall clonal dominance for the three initial

clonal dominance groups.
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Tumorigenesis

Measure (TM)

LCD rCD−TM MCD rCD−TM HCD rCD−TM

MP 0.00651 0.62307 0.30064

MPM 0.00203 0.32646 0.3444

MPC -0.00234 0.33135 0.24509

MPMC 0.00842 0.31607 0.28434

Table 5.15: CD-Tumorigenesis correlations for the High, Medium and Low initial clonal dominance

groups (across all time points).

r ZLCD−MCD p ZLCD−HCD p ZMCD−HCD p

rCD−MP -1.33 0.1835 -1.09 0.2757 0.10 0.9203

rCD−MPM -1.36 0.1738 -1.28 0.2005 -0.08 0.9362

rCD−MPC -1.40 0.1615 -0.91 0.3628 0.36 0.7188

rCD−MPMC -1.29 0.1971 -1.02 0.3077 0.20 0.8415

Table 5.16: Z-tests of CD-Tumorigenesis correlations for the Low (LCD), Medium (MCD) and High

(HCD) initial clonal dominance groups (across all time points). (MP = Mean Population; MPM = Mean

Proportion Mutated; MPC = Mean Population Change; MPMC = Mean Proportion Mutated Change;

MCD = Mean clonal dominance over entire simulation run.)

dominance to modulate tumorigenesis only when initial clonal clustering and within-clone competition

are high. This would implies differences in the inter-level model, since in such cases, clonal interaction

events (CC) events would be more dominant in tumorigenesis. We test this hypothesis in Section 5.4.2.

The Z and p (two-tailed, significance level 0.05) values in Table 5.16 reveal no significant difference

in the rCD−Tumorigenesis measures between the groups. However, Figure 5.29 and the fact that the

ZLCD−MCD and ZLCD−HCD values are far closer to significance than the ZMCD−HCD values suggest

that the LCD group has lower values for each of the rCD−Tumorigenesis measures. This would imply

that when initial clonal dominance is low, tumorigenesis tends to be associated less with a single clone

(Table 5.16 shows the r values for CD-Tumorigenesis measure correlation).

5.4.1.2 Initial clonal clustering

The values in Table 5.18 and Table 5.19 indicate that there is no significant difference between high

and low initial clonal clustering groups, suggesting that clonal clustering on its own does not have a

significant effect.

The Z and p (two-tailed, significance level 0.05) values in Table 5.20 reveal a significant difference

in the rCD−MPM measure between the two different initial clonal clustering groups but not for rCD−MP

and rCD−MPC measures; The Z value rCD−MPMC is close to significance (it would be significant is

one-tailed), suggesting that initial clonal clustering facilitates the domination of a mutated clone if it is

already dominant in terms of numbers. Figure 5.32 shows the different rCD−Tumorigenesis values for

the different groups. (Table 5.20 shows the r values for CD-Tumorigenesis measure correlation).
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Figure 5.29: Graph showing correlations between CD and each of the four tumorigenesis measures

for the three initial clonal dominance groups: Low (LCD) represented by white bars; medium (MCD)

represented by grey bars; high (HCD) represented by black bars.

Group Tumorigenesis

measure

N Mean Standard De-

viation

Low initial Clonal clustering MP 48 140.02923 20.50380

MPM 0.26422 0.13816

MPC 0.06311 0.01473

MPMC 0.01035 0.01692

MCD 0.70490 0.11231

High initial clonal clustering MP 52 133.60904 20.32797

MPM 0.21507 0.14041

MPC 0.05766 0.01343

MPMC 0.02014 0.01551

MCD 0.70211 0.11779

Table 5.17: Means and SDs of tumorigenesis measures for different initial Clonal Clustering groups

(mean across all time points). (MP = Mean Population; MPM = Mean Proportion Mutated; MPC = Mean

Population Change; MPMC = Mean Proportion Mutated Change; MCD = Mean clonal dominance over

entire simulation run.)
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Tumorigenesis measure t Standard error of difference p Sig. (5dp)

MP 1.571 4.08577 0.119 no

MPM 1.762 0.02789 0.081 no

MPC 1.934 0.00282 0.056 no

MPMC 1.921 0.00324 0.058 no

Overall CD 0.121 0.02306 0.904 no

Table 5.18: t-Test for differences in tumorigenesis measure for the two clonal clustering groups. (MP

= Mean Population; MPM = Mean Proportion Mutated; MPC = Mean Population Change; MPMC =

Mean Proportion Mutated Change; MCD = Mean clonal dominance over entire simulation run.) df=98;

significance is two-tailed at 95% significance level; equal variances not assumed.

Figure 5.30: Box plots of median and quartiles of tumorigenesis measures for the two clonal clustering

groups. Top left: Mean Population; Top right: Mean Proportion Mutated; Bottom left: Mean Population

Change; Bottom right: Mean Proportion Mutated Change.
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Figure 5.31: Box plot showing the medians and quartiles of overall clonal dominance for the two initial

clonal clustering groups.

Tumorigenesis

Measure (TM)

LCC rCD−TM HCC rCD−TM

MP 0.06782 0.38533

MPM 0.02377 0.44017

MPC 0.09697 0.35692

MPMC 0.06029 0.40965

Table 5.19: CD-Tumorigenesis correlations for the high (HCC) and low (LCC) initial clonal clustering

groups. (MP = Mean Population; MPM = Mean Proportion Mutated; MPC = Mean Population Change;

MPMC = Mean Proportion Mutated Change; MCD = Mean clonal dominance over entire simulation

run.)

r ZLCC−HCC p

rCD−MP -1.64 0.1010

rCD−MPM -2.17 0.0300

rCD−MPC -1.34 0.1802

rCD−MPMC -1.82 0.0688

Table 5.20: Z-tests of CD-Tumorigenesis correlations for the Low (LCC) and high (HCC) initial clonal

clustering groups (across all time points).
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Figure 5.32: Graph showing correlations between CD and each of the four tumorigenesis measures for

the two initial clonal clustering groups: Low (LCC) represented by white bars; high (HCC) represented

by black bars.
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5.4.2 Study 5: Combined effects of initial clonal dominance and clonal clustering

An ANOVA (see Table 5.22 for results) shows a significant difference between the six groups, with

the means in Table 5.21 again suggesting that initial clonal clustering is more important than initial

clonal dominance in determining the degree of tumorigenesis. However, the ANOVA does not show a

significant difference between the groups for overall clonal dominance (i.e. over the entire course of the

simulation), so although the results suggest that initial clonal dominance and initial clonal clustering are

both important in determining the degree of tumorigenesis, it has not been shown that they are important

in determining clonal dominance. On the other hand, the F-value for clonal dominance in this study

where we consider both initial clonal dominance and initial clonal clustering (F = 2.44, p = 0.067)

is higher and closer to significance than in the previous study, where we only considered groupings by

initial clonal dominance (F = 0.792, p = 0.456).

The graph in Figure 5.35 suggest differences between some of the groups in the clonal dominance-

tumorigenesis correlations. The correlations are lowest for the LCC-LCD group and highest for the

HCC-HCD group. The LCC-MCD, LCC-HCD and HCC-LCD have similar correlations however. Sig-

nificantly, the fact that the HCC-LCD group has a similar correlation to LCC-MCD and LCC-HCD sug-

gests that initial clonal clustering can compensate for low dominance in terms of numbers. On the other

hand, the differences between the HCC-LCD and HCC-MCD groups, and between the HCC-MCD and

HCC-HCD groups suggest that given high initial clonal clustering, the initial clonal dominance in terms

of numbers can affect the association between overall clonal dominance and tumorigenesis. However,

the Z and p values in Table 5.24 reveal no statistically significant difference between groups.

5.4.3 Summary of Multi-level studies and experimental implications

To summarise the findings of the multi-level modelling studies:

• Study 4 reveals no significant difference in tumorigenesis between simulations grouped by initial

clonal dominance but some significant differences in the different initial clonal clustering groups.

These differences suggested that the initial spatial arrangement of cells (as indicated by initial

clonal clustering) modulates tumorigenesis in terms of proportion of mutated cells. Furthermore,

both low initial clonal dominance and low initial clonal clustering groups have lower correlations

between clonal dominance and tumorigenesis, suggesting that tumorigenesis in these groups is not

associated with a single clone as in the other groups. However, these differences were not shown

to be statistically significant.

• Study 5 shows a significant difference in tumorigenesis between simulations grouped by both

initial clonal dominance and initial clonal clustering, suggesting a significant interaction effect

between initial clonal dominance and initial clonal clustering. There are trends in the differences

between some of the groups in the clonal dominance-tumorigenesis correlations, although these

were not shown to be statistically significant. The correlations are lowest for the LCC-LCD group

and highest for the HCC-HCD group. The differences in correlations between the other groups

suggest that initial clonal clustering can compensate for low dominance in terms of numbers,
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Group Tumorigenesis mea-

sure

N Mean Standard Deviation

LCC-LCD MP 20 140.59873 19.82068

MPM 0.26019 0.13986

MPC 0.06180 0.01318

MPMC 0.02441 0.01446

MCD 0.70828 0.11755

LCC-MCD MP 22 126.69396 19.11286

MPM 0.16883 0.12883

MPC 0.05392 0.01356

MPMC 0.01618 0.01611

MCD 0.67642 0.11807

LCC-HCD MP 10 134.84281 20.80210

MPM 0.22655 0.14765

MPC 0.05761 0.01243

MPMC 0.02030 0.01542

MCD 0.74630 0.11426

HCC-LCD MP 11 138.26083 22.24183

MPM 0.24786 0.14872

MPC 0.06078 0.01475

MPMC 0.02437 0.01705

MCD 0.69548 0.12970

HCC-MCD MP 20 134.75088 20.45057

MPM 0.23083 0.14117

MPC 0.05907 0.01475

MPMC 0.02122 0.01644

MCD 0.70362 0.10913

HCC-HCD MP 17 147.38332 18.29406

MPM 0.31409 0.11984

MPC 0.06937 0.01353

MPMC 0.03372 0.01564

MCD 0.71250 0.11077

Table 5.21: Means and standard deviations of the tumorigenesis measures and overall clonal dominance

(mean across all time points) for the six groups. LCC-LCD: simulations with low initial clonal clustering

and low clonal dominance. LCC-MCD: simulations with low initial clonal clustering and medium clonal

dominance. LCC-HCD: simulations with low initial clonal clustering and high clonal dominance. HCC-

LCD: simulations with high initial clonal clustering and low initial clonal dominance. HCC-MCD:

simulations with high initial clonal clustering and medium clonal dominance. HCC-HCD: simulations

with high initial clonal clustering and high clonal dominance. (CD = Clonal Dominance; MP = Mean

Population; MPM = Mean Proportion Mutated; MPC = Mean Population Change; MPMC = Mean

Proportion Mutated Change; MCD = Mean clonal dominance over entire simulation run.)
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Figure 5.33: Box plots of median and quartiles of tumorigenesis measures for the six simulation groups.

Top left: Mean Population; Top right: Mean Proportion Mutated; Bottom left: Mean Population Change;

Bottom right: Mean Proportion Mutated Change. LCC-LCD refers to simulations with low initial clonal

clustering and low clonal dominance. LCC-MCD refers to simulations with low initial clonal clustering

and medium clonal dominance. LCC-HCD refers to simulations with low initial clonal clustering and

high clonal dominance. HCC-LCD refers to simulations with high initial clonal clustering and low

initial clonal dominance. HCC-MCD refers to simulations with high initial clonal clustering and medium

clonal dominance. HCC-HCD refers to simulations with high initial clonal clustering and high clonal

dominance.
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Figure 5.34: Box plot showing the medians and quartiles of overall clonal dominance for the six clonal

clustering-clonal dominance groups. LCC-LCD refers to simulations with low initial clonal cluster-

ing and low clonal dominance. LCC-MCD refers to simulations with low initial clonal clustering and

medium clonal dominance. LCC-HCD refers to simulations with low initial clonal clustering and high

clonal dominance. HCC-LCD refers to simulations with high initial clonal clustering and low initial

clonal dominance. HCC-MCD refers to simulations with high initial clonal clustering and medium

clonal dominance. HCC-HCD refers to simulations with high initial clonal clustering and high clonal

dominance.
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Figure 5.35: Graph showing correlations between CD and each of the four tumorigenesis measures for

the six initial clonal clustering-clonal dominance groups: First white bar—Low initial clonal clustering,

Low initial clonal dominance (LCC, LCD); second white bar—High initial clonal clustering, Low initial

clonal dominance (HCC, LCD); first grey bar—Low initial clonal clustering, Medium initial clonal dom-

inance (LCC, MCD); second grey bar—High initial clonal clustering, Medium initial clonal dominance

(HCC, MCD); first black bar—Low initial clonal clustering, High initial clonal dominance (LCC, HCD);

second black bar—High initial clonal clustering, High initial clonal dominance (HCC, HCD).
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although with high initial clonal clustering, the initial clonal dominance in terms of numbers de-

termines the association between overall clonal dominance and tumorigenesis.

These findings could be used as the starting point for ‘wet’ experimental studies. As well as con-

sidering the clonal conversion and stabilisation in terms of cell population numbers, the effect of spatial

configuration of rapidly expanding clones should also be taken into account. Studies tracking the ances-

try of cells would allow us to determine experimentally the proliferation rate and distribution of clones.

Results from such experiments could then be used to calibrate the model in terms of the simulation

parameters and initial configuration, making it even more biologically pertinent.

5.5 Statistical inferrence of predictive models from complex event

frequencies
The studies in Section 5.3 and Section 5.4 show that inter-level relationships can differ between sim-

ulations and even change dynamically through the course of the simulation. This reflects the fact that

further inter-dependencies exist that we have not explicitly modelled. Furthermore, the complex event

types and aggregated state variables specified to measure behaviours at different levels are only a very

small subset of all those that could be specified for the ABM [73], and dependencies could exist between

these unspecified (and hence unobserved) factors that account for the differences in behaviour between

simulations.

Therefore, although applying confirmatory techniques to explicitly defined models is effective for

validating simple inter-level models with a small number of specified complex event types and/or inter-

dependencies, it quickly becomes unfeasible when we have a large number of inter-dependencies (a large

inter-level model) and/or a large number of different conditions under which the inter-dependencies differ

(a large multi-level model).

This section focuses on using partial least squares (PLS) regression to infer predictive models from

simulations of our colonic crypt ABM. Models are constructed by inferring dependency relationships

between complex event types and/or other defined features from multiple simulation runs. Because

statistical learning offers an alternative to confirmatory or exploratory analysis of explicitly defined re-

lationships (Section 5.3 and Section 5.4), it is important to address the relationship between the two

approaches. Specifically, we seek to address the following fundamental questions:

• How should the factor loadings from PLS be interpreted and related to explicitly defined inter-level

models?

• How does the predictive error of learned models relate to inter-level associations?

• How should we treat data which increases predictive error but which form an important part of our

inter-level model of how the system operates?

In 5.5.1, we examine the factor loadings and weights of a predictive model learned from partial

least squares (PLS) regression and relate these to our understanding of the inter-dependencies between

the complex events.
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In 5.5.2, we determine whether the predictive error rate differs for models learned from data at

different time points. We relate our findings to those in Section 5.3.4, where we showed that the interde-

pendencies between behaviours differ across time.

In 5.5.3, we compare the predictive errors of models learned from different sets of complex event

types to determine the effects of including different data. For example, do simple event frequencies in

addition to complex event frequencies significantly enhance our ability to predict the degree of tumori-

genesis?

5.5.1 Study 6: Partial Least Squares regression model from complex event fre-

quencies

Partial Least Squares (PLS) [153] is a method for constructing a predictive model when the relationships

between variables are complex or ill-understood; for example, some may be collinear, some may be

non-linearly related. Rather than trying to understand the underlying relationships between variables

however, the main purpose of PLS is to construct a model that is able to predict a set of outcomes

(responses), given a set of input variables (factors). In our studies, we use PLS to construct models

which are able to predict the degree with which a system level behaviour (tumorigenesis) occurs, given

occurrences of lower level behaviours (CET occurrence frequencies).

PLS works by projecting to a latent structure. Latent variables (the underlying factors that account

for most of the variation) X and Y are extracted from the factors F (in this case the CET frequencies)

and the responses R (in this case the higher level behaviour) respectively. X is then used to predict Y ,

and then the predicted Y are used to construct predictions for R.

A PLS model consists of n orthoganol components with an n× n matrix of weights of each of the

CET s on each of these components, where n is the number of input variables. Section C.6 in Appendix

C shows an example of a learned model, which was inferred from overall occurrence frequencies for

the fourteen specified mutation-driven and clonal interaction CET s i.e. the model was learned from

fourteen input variables. The learned model consists of fourteen orthoganol components and a 14 × 14

matrix of weights of each of the CET s on each of these components.

The weights of CET s on components give us an indication of their associations with each other.

As with correlation relationships, these can provide a first step to establishing dependencies between

CET s, but further analyses and interpretation are required to establish the nature of the dependencies.

For example, we can explain the heavy loading of a component mutation-driven CET s by the fact that

they belong to the same CET supertype (those involving mutation) or by causal dependencies between

the CET s. On their own therefore, PLS models do not provide explanations of phenomena.

5.5.2 Study 7: How does the degree of error change with time?

In this study, we determine whether learning from event frequencies in different time intervals results

in models with different rates of error. The first two sets of models were inferred using the frequencies

of the complex event types specifed in Section 5.3.1 while the second two sets were inferred using the

frequencies of simple event types, as defined in Section 5.2.4. For each set, 100 different models were
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learned from 80-simulation subsets of the 100 simulations with the remaining 20 simulations used as the

test sample to test the predictive validity of the learned models. The predictive error for each model is the

mean of the discrepencies between the values (for the tumorigenesis measures) predicted by the inferred

model given the event frequencies of the test sample, and the actual values observed in the test sample.

For each 80-simulation subset, we inferred two models from the (correct) data (one from complex event

data and the ther from simple event data) and two from randomized data, and calculated their respective

predictive errors. The means of these predictive errors across models was then calculated for each 300

time step interval for the four model sets.

Figure 5.36 and Figure 5.37 show that for both complex and simple event PLS models, the error

rate decreases with time so that models learned from later stages of simulation are better predictors of

tumorigenesis. However, even at the first time interval 0 to 300, both complex and simple event models

perform better than their counterparts learned from randomized data. Figure 5.38 shows that the models

learned from simple event frequencies are on average better predictors than those from complex event

frequences. This difference is more pronounced early on in the simulation (time step 0 to time step 300)

than later on.

Figure 5.36: Graph showing mean error rates of learned PLS models learned from complex event fre-

quencies from different time intervals compared with models learned from randomized sample of com-

plex event frequencies.
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Figure 5.37: Graph showing mean error rates of learned PLS models learned from simple event fre-

quencies from different time intervals compared with models learned from randomized simple event

frequencies.

Figure 5.38: Graph comparing mean error rates of learned PLS models learned from simple event fre-

quencies from different time intervals.
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5.5.3 Study 8: How much information do we need for a good predictive model?

In this study, we focus on the differences in predictive errors of models learned from different data sets,

extending the previous study (Section 5.5.2), where models learned from different time intervals and

event sets were compared. Applying the same method as in the previous study, we learn 100 models for

each of the data sets and also 100 models from randomized data.

Models were inferrred from the following data sets:

1. APC mutation rate and initial clonal dominance

2. Clonal interaction CETs overall

3. Mutation-driven CETs overall

4. CETs overall

5. CETs all ts: the event frequencies of the fourteen CETs defined in Section 5.3.1 extracted at nine

300-time step intervals from time step 0 to time step 2100, giving 103 IVs in total.

6. SETs all ts: the event frequencies of the twenty-seven SETs extracted at nine 300-time step inter-

vals from time step 0 to time step 2100, giving 199 IVs in total.

7. Both CETs and SETs: the event frequencies of the nine CETs and twenty-seven SETs extracted

at 300-time step intervals, giving 302 IVs in total.

Figure 5.39 shows that for all data sets, the PLS models learned from real data had lower predictive

error rates than those learned from randomized data sets, and the results of t-tests between real and

random data models (see Table 5.25) confirm that in all cases, the difference is significant. However,

Figure 5.40 shows that the mean predictive errors differ for the model sets learned from different data.

5.5.3.1 Comparison of Predictive Errors for models learned from different data sets

Table 5.26 and Table 5.27 show the mean predictive errors for the different model sets and the sizes

of their data sets in terms of number of independent variables. The results of t-tests shown in Table

5.28 show that the mean predictive errors of the models learned from different data sets are significantly

different from each other. Figure 5.40 plots the mean predictive errors of models learned using the

different data sets and Figure 5.41 plots the differences between models learned from real data and

models learned from randomized data for the different data sets. (For means, standard deviations and

confidence limits for the t-test, see Table C.28 and Table C.28 in Appendix C.)

The following observations can be made:

• The data set for the clonal interaction CET s performs better than that for mutation-driven CET s

(t = 9.365), suggesting that amongst the specified CET s, those representing clonal interactions

are more dominant than those representing mutation-driven behaviours in determining the degree

of tumorigenesis.
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Figure 5.39: Graph showing the mean predictive errors of PLS models learned from different data sets.

For each data set, a model was also learned from randomized data in the set. In all cases, the model

learned from the randomized data set performed significantly worse i.e. the predictive rate was signifi-

cantly lower.
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• The data set with both Mutation-driven CET s and Clonal interaction CET s (t = 10.217 and

t = 3.343 respectively) performs better than either alone, suggesting that the specified mutation-

driven CET s still have significant effects on the degree of tumorigenesis.

• The data set for SET s performs better than that for CET s (t = 21.093). This is consistent with

the idea that the SET set contains higher resolution information.

• For CET s, the data set with greater temporal resolution (CETs 300ts vs. CETs overall) performs

better (t = 17.255), suggesting that the higher temporal resolution gives us additional information;

• The data set with both SET s and CET s performs better than either the SET set or the CET set

on its own (t = 21.093 and t = 39.695 respectively), suggesting that the higher level behaviours

specified in the CET s give us additional information that is not contained in the SET s alone.

• The mean predictive error for models learned from APC mutation and initial clonal dominance are

relatively low. In terms of data efficiency, these models perform best, since only two independent

variables are used.

Figure 5.40: Graph showing mean predictive errors of models learned from different data sets.

As discussed in Section 4.3.3, different interpretations can be given to MPE differences. Validation

of one or more explicit inter-level models describing the interdependency relations between the obser-

vation types (e.g. causal, modular; see Section 4.2) would be required to determine the plausibility of

different interpretations. By establishing the significance of the building blocks of such explicit inter-

level models, PLS analysis gives an indication as to whether such explicit models are worth pursuing
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Models compared t df Sig. (0.005,

2-tailed)

APC and CD - Mutation-driven CET s Overall -11.326 99 yes (0.000)

APC and CD - Clonal interaction CET s overall -6.135 99 yes (0.000)

APC and CD - CET s Overall -7.752 99 yes (0.000)

APC and CD - CET s 300ts -3.908 99 yes (0.000)

APC and CD - SET s 300 ts -17.172 99 yes (0.000)

APC and CD - CET s and SET s 300 ts -30.613 99 yes (0.000)

Clonal interaction CET s Overall - Mutation-driven CET s

overall

-9.365 99 yes (0.000)

Clonal Interaction CET s Overall - CET s Overall -3.343 99 yes (0.000)

Clonal Interaction CET s Overall - CET s 300ts -11.911 99 yes (0.000)

Clonal Interaction SET s Overall - CET s 300ts -17.877 99 yes (0.000)

Clonal Interaction SET s Overall - CET s and SET s 300ts -30.548 99 yes (0.000)

Mutation-driven CET s Overall - CET s Overall -10.217 99 yes (0.000)

Mutation-driven CET s Overall - CET s 300ts -11.758 99 yes (0.000)

Mutation-driven CET s Overall - SET s 300ts -14.041 99 yes (0.000)

Mutation-driven CET s Overall - CET s and SET s 300ts -15.597 99 yes (0.000)

CET s overall - CET s 300ts -17.255 99 yes (0.000)

CET s overall - SET s 300ts -25.728 99 yes (0.000)

CET s overall - CET s and SET s 300ts -58.443 99 yes (0.000)

CET s 300ts - SET s 300ts 14.952 99 yes (0.000)

CET s 300ts - CET s and SET s 300ts 39.695 99 yes (0.000)

SET s 300ts - CET s and SET s 300ts 21.093 99 yes (0.000)

Table 5.28: Table showing the results of t-tests comparing the mean predictive errors of the models

learned from the different data sets.
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Figure 5.41: Graph showing differences between the predictive errors of the different models and their

randomized counterparts.

at all. It is also possible to further analyse the error rates of different component combinations of the

learned model so as to determine their combinatorial contributions (rather than only their independent

contributions).

5.5.4 Discussion: Prediction versus Explanation

Prediction, explanation and description are all important aspects of Science. In traditional Reductionist

Science, prediction and explanation usually go together, and a reductive explanation is deemed to be valid

if it is able to predict the phenomenon. In the Complex Systems framework however, explanations can be

far richer than they need to be for accurate predictions to be made, and models integrating multiple levels

can include more information than is needed to predict system behaviour. For example, in the case of

this model, we can predict high level behaviours (e.g. tumorigenesis) from relatively little information

(e.g. APC alone). In such cases, predictions can be made with simple linear relationships between a

system property (in this case APC mutation rate) and higher level property or behaviour (in this case

tumorigenesis).

However, in the case of emergent behaviour, these explanations are the only explanations that are

valid since purely reductionist explanations do not address the different levels of system behaviour and

their inter-relations. These richer explanations are also likely to be predictively superior for systems

whose states transition non-linearly. Emergence implies that even where the relationship between a

property and higher level property or behaviour is linear, this is due to a set of underlying mechanisms
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or, in the ABMS terms, it is the set of actions and interactions between agents in simulation that have

generated the linear relationship.

Although statistical learning techniques allow us to infer predictive models, they are not always

appropriate for explaining why systems behave in a particular way. On the other hand, explicit modelling

and validation allows us to ‘experiment’ with different theories, but these may not be the most efficient

explanations in terms of the information required. Which modelling technique(s) should be adopted

depends very much on the purpose and objectives of modelling.

5.6 Chapter Summary and Discussion
This chapter has demonstrated with a Systems Biology case study the application of inter-level, multi-

level and predictive modelling with CET s and agent-based simulations. The occurrence frequencies

of CET s across simulations were analysed using different statistical modelling techniques. The ABM-

CET models defined provide the foundations for specifying a detailed biological model which inte-

grates biological data from multiple levels. Since models can be extended at both the STR level and at

the CET level, experimental observations and data can be progressively incorporated as they become

available, allowing us to validate further hypotheses about the complex interactions between levels.

In our studies, we varied a single parameter, APC mutation rate, which meant that from a biolog-

ical perspective, the studies were confirmatory rather than exploratory. An alternative approach would

be to vary several parameters simultaneously to explore the biological significance of their combined

consequences.

In contrast to the goal of the mathematical multi-scale modelling approach proposed in [399], which

is to integrate equation-based models describing behaviours at different scales, the objective of our mod-

elling approach is to discover and/or validate the higher level behaviours (CET s) that can be generated

from lower level behaviours (STR level) and, furthermore, to discover and validate the statistical de-

pendencies between behaviours at different levels (i.e. between CET s). For example in our model,

clonal- and population-level behaviour is generated by the ABM rather than being specified as part of it.

This greatly expands the repertoire of hypotheses that can be computationally expressed and validated.

Importantly, the modelling techniques demonstrated in this chapter show how it is possible to integrate

biological data at different scales and abstraction levels even when mathematical scale relationships are

not precisely defined.



Chapter 6

Critical evaluation and further work

The CET modelling language introduced in Chapter 3 and the statistical techniques introduced in Chap-

ter 4 together provide a set of theoretically grounded computational methods for specifying, validating

and discovering integrative models in ABMS. Such integrative models formally describe associations

and dependencies between behaviours (and other properties) at different levels. Thus, the thesis has

met its key objective of introducing a set of novel computational methods for studying the statistical

dependencies between dynamic emergent properties (behaviours) at different levels.

In addition, we have demonstrated the application of these methods using a novel model of tumori-

genesis in the colonic crypt, a complex biological system. Rather than simply testing hypotheses about

the ABM’s ability to generate a particular global behaviour, we were also able to determine whether

and to what degree the ABM was able to generate different inter-level dependencies, and how these

dependencies altered under different conditions (where the different conditions were defined by ‘level’

attributes in multi-level modelling).

In this chapter we first evaluate the capabilities and limitations of the methods proposed (Section

6.1), and then suggest extensions to address the limitations (Section 6.2).

6.1 Evaluation
In their current formulation, SST s and CET s are given in terms of discrete sets. However, for some

applications, properties (both static and dynamic) may not be defined in terms of discrete sets. Instead,

more sophisticated membership functions might be required such as fuzzy sets with continuous mem-

bership functions [428], [243], [237] or probabilistic rough sets [430]. Similarly, for some applications,

the statistical techniques on which inter-level, multi-level and latent models depend would need to be

generalised to address non-linear dependencies.

The ABM of tumorigenesis in the colonic crypt presented in Chapter 5 demonstrated how CET s

and the novel integrative modelling techniques introduced in Chapter 4 can be used to gain a deeper

understanding of the ABM. However, the ABM could be extended and modified to incorporate both

previous models (as briefly reviewed in Section 5.1.4), established network and pathway models for cell

migration, and new experimental findings. One of the main challenges is in translating experimental data

into a form that can be used for modelling purposes, but this is outside the scope of this thesis. Also,
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incorporating detailed lower level models such as networks and pathways is computationally intensive

and, if CET s spanning levels are specified, work would need to be done to ensure scalability.

While computational scalability is outside the scope of this thesis, it has great importance for ap-

plicability to large-scale modelling projects. Optimisation techniques need to be developed for CET

searches in simulation data and/or detection during simulation when the number of CET s is large, have

high resolutions, or have large scopes. (The case study only used a small number of CET s with small

scopes which did not span large time scales or large numbers of agents.)

Further work to address these limitations and improve computational scalability is outlined in Sec-

tion 6.2 below.

6.2 Further work
The work in this thesis can be extended in several ways for it to be applicable to an even wider range of

modelling problems (as described in Section 6.2.1). For large-scale application, optimisation techniques

would also be required (see Section 6.2.2).

The techniques proposed in this thesis also permit classical Complex Systems and Artificial Life

models to be analysed in a novel way to address fundamental questions in Complexity Science. In

particular, the hierarchical information dynamics of life-like behaviour can be studied systematically

using ABMS and CET s (see Section 6.2.3).

6.2.1 Theoretical extensions to the complex event formalism and integrative

modelling

As defined in this thesis, CET s are defined in terms of crisp sets so that an event either does or does not

instantiate the CET . However, in some applications, it is possible and desirable to define multi-value,

fuzzy or even continuous membership functions FCET . FCET would include a set of defining attributes

(e.g. spatio-temporal relations between constituent events) whose combined degree of satisfaction deter-

mines the membership degree Lmembership.

FCET (event) = Lmembership,

For continuous membership functions, Lmembership can be continuous, while for fuzzy membership

functions, Lmembership is discrete (although it can be multi-valued i.e. n-ary rather than binary). Related

to this would be the extension of computational equivalence (defined in Section 3.3.3.2) to a measure of

similarity between CET s.

The inter-level and predictive modelling techniques introduced in Chapter 4 could also be further

extended to detect non-linear as well as linear dependencies. This would require the application of non-

linear statistical analysis methods, such as non-linear regression [23]. Statistical methods for evaluating

mediation and modulation effects should also be further investigated. In relation to statistical learning, it

would also be worth carrying out more extensive studies to compare the mean predictive errors (MPEs)

of predictive models learned using different statistical learning techniques and from different data sets.

Differences in the MPEs would reflect both differences in the learning algorithms and/or differences
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in the data themselves, since the performance of different statistical learning techniques is data- and

problem-dependent [423].

6.2.2 Computational challenges of implementation: Detecting computation

equivalence

In this thesis, we have not addressed directly the implementation issues associated with detecting CET

occurrences. For the simulations in Chapter 5, we used a combination of dynamic detection of specified

CET s and post-simulation data processing. In both these cases, the time complexity [180] of detecting

or searching for CET occurrences in a simulation is a function of the cost of detecting computational

equivalence. The application of logic-based optimisation techniques [198] and parallel searches would

significantly reduce time complexity.

6.2.3 Further Applications in Computer Science and Complex Systems mod-

elling

From the point of view of computation, agent-based systems (modelled by ABMS) are distributed al-

gorithms which process information (compute). CET s and inter-level multi-functional modular models

provide a means of expressing higher interacting levels of computation above the agent level. By apply-

ing the techniques introduced in this thesis, we can empirically establish the reliability of higher level

computations emerging from lower level computations in terms of statistical probabilities. This would

permit a new computational model in which different levels of computation could simultaneously solve

a computational problem. This would require the problems themselves to be reformulated in such a way

so as to allow processing at multiple levels, and solutions would also need to be translated back into

terms defined by the problem.

Several of the classical models in Artificial Life were formulated to address fundamental questions

about Complexity and Life in terms of the critical conditions that are required for particular information

dynamics (which are then associated with specific life-like behaviours and/or complex systems properties

e.g. reproduction, stigmergy). These were usually ABMs (e.g. Reynold’s Boids [346]) or CA (e.g.

Conway’s Game of Life, Schelling’s segregation model [362]). These models should be revisited to

identify statistical regularities between event structures (CET s) at different levels and/or spatio-temporal

scales. An example of this is given in [79], which analyses associations between CET s in Conway’s

Game of Life. A link should also be made to existing work on the information dynamics of time series

and CA models exhibiting emergent behaviour [104], [367], [103], [368], [370], [369].
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Thesis summary and conclusions

The key objective of this thesis was to introduce a set of novel computational methods for specifying,

validating and inferring integrative models of behaviours at different levels. In meeting this objective,

Chapter 3 introduced Complex Event Types (CET s), a modelling language to formally represent be-

haviours at different levels in ABMS, while Chapter 4 and Chapter 5 showed how to use CET s as the

building blocks to model statistical dependency relations between behaviours at different levels. This

chapter summarises the key contributions.

The CET formal modelling language is based on existing event calculi and previous work on

formalising observational hierarchies. In addition, a clear distinction is made between state transition

rule (STR) execution and observed state changes, which are formally represented by state transition

types (STTP s). This distinction means that CET s incorporate both the design and observation aspects

of emergence defined in existing Engineering and Statistical Mechanics theories.

Using CET s as building blocks, three non-mutually exclusive categories of statistical dependency

model were introduced:

1. inter-level models, which explicitly define dependency relations between CET s;

2. multi-level models, which explicitly define differences in the dependency relations between CET s

for sets of simulations with different attributes;

3. predictive models, which are able to predict CET s at one level from CET s at another through

discovering latent dependencies.

For each of these categories, we also clarified the theoretical assumptions underlying the statistical de-

pendencies to provide a solid basis for interpretation. The computational validation and inference tech-

niques introduced for these models allow us to computationally specify, validate and infer integrative

models using ABMS. This was demonstrated in Chapter 5 using a novel ABM of tumorigenesis in the

colonic crypt.

Our key contributions therefore fall into the following categories:

1. The development of ABMS theory with respect to Complex Systems modelling and Complexity

Science;



218 Chapter 7. Thesis summary and conclusions

2. Novel computational techniques for the application of ABMS to the integrative study of complex

systems; and

3. A novel framework for integrating models in Systems Biology.

Key contributions
In the development of ABMS theory in relation to Complex Systems modelling and Complexity Science,

we have shown how to:

• Formally describe static properties (with SST s) and behaviours (with CET s) at any level in

ABMS;

• Formally express Complexity constructs such as emergence, multi-functionality and autonomy in

ABMS-CET terms;

• Apply statistical measures of Complex Systems interdependence relations, such as emergence,

autonomy and modularity, and more traditional causal relations to ABMS;1

• Formally describe event execution structures in ABMS. The novel generalised event calculus

(GEC) provides the underlying semantics for complex events.

• Formally model observation and learning from simulations. Complex event types formally de-

scribe observations within a simulation, while the statistical learning techniques model the process

of learning from observations.

Subsystem state types (SST s), complex event types (CET s), and established methods for statistical

analysis together provide us with a set of novel computational techniques, which allow us to:

• Specify and validate inter-level models, which define relationships between properties and be-

haviours at different levels;

• Specify and validate multi-level models, which define different models for groups of simulatiosn

with different attributes;

• Infer predictive models;

• Determine whether observations at different levels are significantly inter-dependent and their rel-

ative contributions (both positive and negative) to predictive accuracy (using the predictive errors

of learned models);

The novel methods introduced in this thesis also make significant contributions to the Systems Biol-

ogy domain. A key problem in Systems Biology is the integration of information and data from multiple

sources and levels. This has led to a situation where multiple models are developed for the same subject

but are kept disparate. For example, several models exist of tumorigenesis in the colonic crypt, ranging
1Previously, these measures were mainly applied to experimental data or, if applied to computational models, to models with a

limited number of dimensions such as time series or cellular automata.
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from purely qualitative models and experimental observations to equation-based models and cellular au-

tomata. The ABMS-CET methods introduced in this thesis provide an integrated framework in which

we can specify and validate these models and the relationships between them. As more experimental

data become available, models can be extended in two ways:

1. By introducing additional state transition rules (STRs) at the agent level (e.g. in the case of

tumorigenesis, newly discovered signalling molecules affecting cell migration could be incorpo-

rated); and

2. By specifying further CET s, inter-level models and multi-level models to represent higher level

phenomena (e.g. rate of tumorigenesis) and biological functions.

Experimental observations may also force us to revise and modify a model in terms of parameters, STRs

and CET s. Therefore, from a Systems Biology perspective, we have provided a means for building

highly detailed models of biological phenomena which are able to progressively integrate experimental

findings from any number of different sources and levels.

Concluding remark
The CET modelling language introduced in this thesis makes both practical and theoretical contributions

to Complex Systems modelling with ABMS. From a practical perspective, we can use CET s as building

blocks for inter-level, multi-level and predictive models (which can themselves be sub-models of each

other). From a formal perspective however, these models themselves define CET s. This integrated

framework allows us to describe simulation trajectories using multiple models and observations.

To return to the language metaphor, CET s allow us to read (and re-read) agent-based simulations

as systems with multiple meanings. In the end, it is up to the human modeller to create and extract these

meanings. As well as developing a set of novel computational techniques, this thesis has more broadly

addressed the assumptions and implications of these techniques for our understanding of Complex Sys-

tems.



Appendix A

X-machine representation of colonic crypt

ABM simple event types

The colonic crypt model consists of the following types of communicating X-machine component (agent

types):

1. CellAgent (CA), which models cells in the colonic crypt;

2. GlobalClock (GC), which models time;

3. RandomGenerator (RG), which models the random aspects of behaviour;

4. V illus (V L), which models a crypt villus.

The communication relations between cells are determined by their position in the crypt villus. We

use a communication matrix, as described in [228], to hold the communications between cell agents.

Locations in a crypt villus are discrete and represented by two coordinates (d, h), d representing the

villus diameter (max. 15), and h representing the villus height (max. 20). Communication channels (via

input and output ports) exist between cells within a Moore neighbourhood1 of each other, and d wraps

around so that locations (15, 1) and (0, 1) are adjacent.

This appendix gives the X-machine φ specifications to implement the STR functions. Given an

(optional) input and the current memory values of a CA, a particular φ function is applied, as determined

by the ABM’s STRs (see flow diagrams in Section 5.2). In CET terms, each φ application associated

with a STR is a SET 2.

A.1 CellAgent

The memory of CellAgent contains both information representing the cell’s state and information relat-

ing to behaviour (e.g. duration of current state, migration rate). In our model, this consists of a 17-tuple

(17 variables):

(id, clid, loc, fit, tpe, stg, apc1, apc2, wnt, ntch, cmyc, acc, stgd, mgd, stgc,mgc, nd),
1The Moore neighborhood comprises the eight cells surrounding a central cell on a two-dimensional square lattice
2Throughout the course of simulation, some state changes (φ applications) are not associated with STRs of the ABM (which

in turn is built on the biological conceptual model) but occur simply as part of the simulation’s execution e.g. updating of clocks.
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where

• id = Z: the cell’s unique identifier;

• clid = Z: the clone identifier.

• lc = COORD × COORD,COORD ⊆ Z: the cell’s location;

• fit = R[0, 1]: the cell’s fitness;

• tpe = {Stem, ColumnarTransit, SecretoryTransit, Columnar, Secretory}: the cell type;

• stg = {G0, G1, RepairingDNA,S, G2andM,Differentiated}: the cell cycle stage;

• apc1 = {Mutated, NotMutated}: allele 1 of the APC gene;

• apc2 = {Mutated, NotMutated}: allele 2 of the APC gene;

• wnt = {Activated,NotActivated}: Wnt pathway;

• ntch = {Activated,NotActivated}: Notch;

• cmyc = {Activated,NotActivated}: cMyc.

• acc = {True, False}: accumulate (insertion and/or migration to occupied location permitted).

• stgd = Z: the duration of the current cell cycle stage;

• mgd = Z: the time taken for the cell to advance to next location;

• stgc = Z: the cell cycle stage clock;

• mgc = Z: the migration clock.

• nd = Z: the number of divisions.

So the complete set of possible mCA values, mCA ∈MCA is:

id× loc×fit× tpe×stg×apc1×apc2×wnt×ntch× cmyc×acc×sted×mgd×stec×mgc×nd

A.1.1 Division

Table A.1 shows the changes in m, in and out values from cell division STRs.

A.1.2 Migration

Table A.2 shows the changes in m, in and out values from cell migration STRs.

A.1.3 Mutation

Table A.3 shows the changes in m, in and out values from APC mutation STRs.

A.1.4 Pathway activation

Table A.4 shows the changes in m, in and out values from pathway activation STRs.
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A.1.5 Cell transitions

Table A.5 shows the changes in m, in and out values from cell transition STRs.

A.1.6 Cell cycle

Table A.6 shows the changes in m, in and out values from cell cycle STRs.

A.1.7 Competition and cell death

Table A.7 shows the changes in m, in and out values from competition and death STRs.

A.2 GlobalClock

The memory of GlobalClock consists of a single integer, ts = Z representing the number of simu-

lated hours which have passed. GlobalClock is incremented by 1 when all CellAgent instances have

executed once (the order of execution is random).

A.3 RandomGenerator

The memory of RandomGenerator contains information about the value ranges (min,max) or set of

values {vals} that variables can take:

• MigrationDurationRangeNormal = (Z,Z);

• MigrationDurationRangeMutated = (Z,Z);

• G0DurationRangeNormal = (Z,Z);

• G0DurationRangeMutated = (Z,Z);

• G1DurationRangeNormal = (Z,Z);

• G1DurationRangeMutated = (Z,Z);

• RepairDNADurationRangeNormal = (Z,Z);

• RepairDNADurationRangeMutated = (Z,Z);

• G2AndMDurationRangeNormal = (Z,Z);

• G2AndMDurationRangeMutated = (Z,Z);

A.4 V illus

The memory of V illus consists of the all the locations of the villus and their occupation status. This

consists of the 300-tuple (since the size of a villus is 15× 20:

(loc1, loc2, ..., loc300),

where each locn is of type LOC, which is the two-tuple:

(pos, occ),

where
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• pos = COORD × COORD,COORD ⊆ Z: the identifier for the position;

• occ = Z: the number of cells in the location.



Appendix B

Hypergraph descriptions of Colonic Crypt

Case Study complex event types

This appendix contains the hypergraph descriptions of the CET s in the case study presented in Chapter

5. The descriptions define both compositional relationships at the SET level and subtype-supertype

relations. X stands for the hypergraph nodes while E stands for the hypergraph edges. ./CET1−CET2
c

stands for a composition relation between two CET1 and CET2, while {CET1, CET2} stands for a

type relation (CET1 ./t CET2).

B.1 Mutation-driven CET s

B.1.1 MD

{XMD, EMD}

XMD = MAD,MSD,MWD, MSWD

EMD = {MAD,MSD}, {MWD,MSWD}

B.1.2 MSD

{XMSD, EMSD}

XMSD = MAPC1, SD,MWDS,MSWDS

EMSD = {MWDS, MSWDS}, (MAPC1 ./MAPC1−SD
c SD)

where

• ./MAPC1−SD
c =≺ [sameCell]

B.1.3 MAD

{XMAD, EMAD}

XMAD = MAPC1, AD, MWDA,MSWDA

EMAD = {MWDA,MSWDA}, (MAPC1 ./MAPC1−AD
c AD),

where
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• ./MAPC1−AD
c =≺ [sameCell]

B.1.4 MWD

{XMWD, EMWD}

XMWD = MWDS, MWDA

EMWD = {MWDS, MWDA},

B.1.5 MWDA

{XMWDA, EMWDA}

XMWDA = MAPC1, APCACTWNT, AD

EMWDA = ((MAPC1 ./MAPC1−APCACTWNT
c APCACTWNT ) ./APCACTWNT−AD AD),

where:

• ./MAPC1−APCACTWNT
c APCACTWNT ) = ||[sameCell, cellType = stem]

• ./APCACTWNT−AD
c =≺ [sameCell]

B.1.6 MWDS

{XMWDS , EMWDS}

XMWDS = MAPC1, APCACTWNT, SD

EMWDS = ((MAPC1 ./MAPC1−APCACTWNT
c APCACTWNT ) ./APCACTWNT−SD

c SD),

where:

• ./MAPC1−APCACTWNT
c APCACTWNT ) = ||[sameCell, cellType = stem]

• ./APCACTWNT−SD
c =≺ [sameCell]

B.1.7 MSWD

{XMSWD, EMSWD}

XMSWD = MSWDS, MSWDA

EMSWD = {MSWDS, MSWDA}

B.1.8 MSWDA

{XMSWDA, EMSWDA}

XMSWDA = MAPC1, SACTWNT, AD

EMSWDA = (MAPC1 ./MAPC1−SACTWNT
c SACTWNT ./SACTWNT−AD AD),

where:

• ./MAPC1−SACTWNT
c =≺ [sameCell]

• ./SACTWNT−AD
c =≺ [sameCell, cellType = stem, apcMutationPresent]
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B.1.9 MSWDS

{XMSWDS , EMSWDS}

XMSWDS = MAPC1, SACTWNT, SD

EMSWDS = (MAPC1 ./MAPC1−SACTWNT
c SACTWNT ./SACTWNT−SD

c SD),

where:

• ./MAPC1−SACTWNT
c =≺ [sameCell]

• ./SACTWNT−SD
c =≺ [sameCell, cellType = stem, apcMutationPresent]

B.2 Clonal interaction CET s

B.2.1 CC

{XCC , ECC}

XCC = C,CCWIN,CCLOSE

ECC = (C ./C
c ), {CCWIN,CCLOSE}

where:

• ./CC
c = [sameClone, differentCell]

B.2.2 CCINS

{XCCINS , ECCINS}

XCCINS = C, IN,CC

ECC = (C ./C−IN
c IN), (CC ./CC−IN

c IN),

where:

• ./C−IN
c = ||[sameClone, differentCell]

• ./CC−IN
c = ||

B.2.3 CCMIG

{XCCMIG, ECCMIG}

XCCMIG = C,MGG,CC

ECC = (C ./C−MG
c MG), (CC ./CC−MG

c MG),

where:

• ./C−MG
c = ||[sameClone, differentCell]

• ./CC−MG
c = ||



234 Appendix B. Hypergraph descriptions of Colonic Crypt Case Study complex event types

B.2.4 CCWIN

{XCCWIN , ECCWIN}

XCCWIN = CCINS, CCMIG

ECCWIN = {CCINS, CCMIG}

B.2.5 CCLOSE

{XCCLOSE , ECCLOSE}

XCCLOSE = C,¬IN,¬MG, CC

1

ECC = (C ./C−¬IN
c ¬IN), (C ./C−¬MG

c ¬MG), (CC ./CC−¬IN
c MG), (CC ./CC−¬MG

c MG),

where:

• ./C−¬IN
c = ||[sameClone, differentCell]

• ./CC−¬IN
c = ||

• ./C−¬MG
c = ||[sameClone, differentCell]

• ./CC−¬MG
c = ||

1The notation ¬cetX stands for the CET , cet′X describing the complement set of cetX .



Appendix C

Colonic crypt case study statistics

This appendix contains the statistics for the analyses described in Chapter 5.

C.1 Study 2 simulation statistics
• Table C.1 shows the correlations between the occurrence frequencies of specified CET s over the

course of the whole simulation.

• Table C.2 shows the ranks of the correlations between APC mutation rate and CET s, and between

CET s and tumorigenesis.
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C.2 Study 3 simulation statistics
• Table C.3 shows the correlations between APC mutation rate and the specified CET s at 300 time

step intervals.

• Table C.4 to Table C.9 show the correlations between the specified CET s at 300 time step inter-

vals.

• Table C.10 to Table C.12 show the correlations between the specified CET s and the four tumori-

genesis measures at 300 time step intervals.
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C.3 Study 4 simulation statistics
• Table C.13 shows the correlations between APC mutation rate the specified CET s for the different

initial clonal dominance groups.

• Table C.14 to Table C.17 show the correlations between the specified CET s and the four tumori-

genesis measures for the different initial clonal dominance groups.

• Table C.18 shows the critical values for the correlation coefficients for the different initial clonal

dominance groups.

• Table C.19 shows the correlations between APC mutation rate the specified CET s for the different

initial clonal clustering groups.

• Table C.20 shows the correlations between the specified CET s and the four tumorigenesis mea-

sures for the different initial clonal clustering groups.

• Table C.21 shows the critical values for the correlation coefficients for the different initial clonal

clustering groups.

• Table C.27 shows the critical values for the correlation coefficients for the different initial clonal

clustering-clonal dominance groups.

C.4 Study 5 simulation results
• Table C.22 shows the correlations between APC mutation rate the specified CET s for the six

different initial clonal dominance-clonal clustering groups.

• Table C.23 to Table C.26 show the correlations between the specified CET s and the four tumori-

genesis measures for the six different initial clonal dominance-clonal clustering groups.

C.5 Study 6-8 simulation statistics
• Table C.28 and Table C.29 shows the results of t-tests comparing the mean predictive errors of the

models learned from the different data sets.

C.6 Example PLS model inferred from overall frequencies of

CET s
The tables below show the weights, loadings and proportion of variance explained for a model inferred

using the overall frequencies of all fourteen complex event types (CET s) across 80 simulations of the

colonic crypt agent-based model.

• Table C.31 shows the model’s weights, which indicate the correlation between the CET frequen-

cies and the Y-scores for each of the orthogonal components.
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CET LCD

rAPC−CET

MCD

rAPC−CET

HCD

rAPC−CET

MAD 0.783 0.908 0.839

MSD 0.925 0.962 0.929

MD 0.938 0.972 0.956

MSWDA 0.634 0.729 0.722

MSWDS 0.880 0.940 0.845

MSWD 0.884 0.931 0.900

MWDA 0.749 0.895 0.749

MWDS 0.870 0.904 0.814

MWD 0.880 0.948 0.878

CC 0.947 0.957 0.936

CCINS 0.901 0.910 0.890

CCMIG 0.904 0.927 0.908

CCLOSE 0.963 0.962 0.939

CCWIN 0.908 0.932 0.911

Table C.13: Correlations between APC mutation rate and the specified complex event types for different

initial clonal dominance groups. The critical t value for the low initial clonal dominance (LICD) group

is 0.355 for a two-tailed test at significance level 0.05 with 29 degrees of freedom (since N=31). The

critical t value for the medium initial clonal dominance (MICD) group is 0.393 for a two-tailed test at

significance level 0.05 with 40 degrees of freedom (since N=42). The critical t value for the high initial

clonal dominance (HICD) group is 0.331 for a two-tailed test at significance level 0.05 with 25 degrees

of freedom (since N=27).
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CET r LCD r MCD r HCD

MAD 0.728 0.881 0.848

MSD 0.906 0.949 0.867

MD 0.906 0.954 0.912

MSWDA 0.553 0.708 0.735

MSWDS 0.869 0.923 0.773

MSWD 0.852 0.912 0.842

MWDA 0.723 0.868 0.753

MWDS 0.845 0.897 0.777

MWD 0.869 0.933 0.853

CC 0.955 0.967 0.965

CCINS 0.915 0.925 0.931

CCMIG 0.914 0.935 0.940

CCLOSE 0.967 0.973 0.964

CCWIN 0.919 0.941 0.946

Table C.14: Correlations between the specified complex event types the Mean Population (MP) tumori-

genesis measure. The critical t value for the low initial clonal dominance (LICD) group is 0.355 for a

two-tailed test at significance level 0.05 with 29 degrees of freedom (since N=31). The critical t value

for the medium initial clonal dominance (MICD) group is 0.355 for a two-tailed test at significance level

0.05 with 40 degrees of freedom (since N=42). The critical t value for the high initial clonal dominance

(HICD) group is 0.331 for a two-tailed test at significance level 0.05 with 25 degrees of freedom (since

N=27).
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CET r LCD r MCD r HCD

MAD 0.747 0.890 0.851

MSD 0.903 0.946 0.901

MD 0.910 0.955 0.939

MSWDA 0.593 0.721 0.706

MSWDS 0.860 0.936 0.808

MSWD 0.857 0.926 0.865

MWDA 0.723 0.873 0.775

MWDS 0.847 0.879 0.802

MWD 0.860 0.923 0.879

CC 0.938 0.934 0.933

CCINS 0.893 0.894 0.894

CCMIG 0.885 0.891 0.891

CCLOSE 0.960 0.949 0.945

CCWIN 0.891 0.900 0.900

Table C.15: Correlations between the specified complex event types and the Mean Proportion Mutated

(MPM) tumorigenesis measure. The critical t value for the low initial clonal dominance (LICD) group

is 0.355 for a two-tailed test at significance level 0.05 with 29 degrees of freedom (since N=31). The

critical t value for the medium initial clonal dominance (MICD) group is 0.355 for a two-tailed test at

significance level 0.05 with 40 degrees of freedom (since N=42). The critical t value for the high initial

clonal dominance (HICD) group is 0.331 for a two-tailed test at significance level 0.05 with 25 degrees

of freedom (since N=27).
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CET r LCD r MCD r HCD

MAD 0.695 0.860 0.820

MSD 0.865 0.920 0.810

MD 0.866 0.927 0.860

MSWDA 0.531 0.641 0.696

MSWDS 0.838 0.883 0.714

MSWD 0.821 0.862 0.782

MWDA 0.689 0.881 0.738

MWDS 0.798 0.880 0.734

MWD 0.838 0.926 0.815

CC 0.899 0.928 0.885

CCINS 0.864 0.880 0.833

CCMIG 0.850 0.893 0.865

CCLOSE 0.918 0.937 0.887

CCWIN 0.858 0.899 0.865

Table C.16: Correlations between the specified complex event types and the Mean Population Change

(MPC) tumorigenesis measure.

CET r LCD r MCD r HCD

MAD 0.758 0.874 0.839

MSD 0.904 0.926 0.879

MD 0.914 0.936 0.918

MSWDA 0.587 0.666 0.739

MSWDS 0.867 0.903 0.774

MSWD 0.860 0.885 0.844

MWDA 0.745 0.885 0.739

MWDS 0.842 0.873 0.797

MWD 0.867 0.923 0.862

CC 0.936 0.945 0.923

CCINS 0.895 0.912 0.891

CCMIG 0.892 0.906 0.904

CCLOSE 0.952 0.953 0.919

CCWIN 0.897 0.917 0.909

Table C.17: Correlations between the specified complex event types and the Mean Proportion Mutated

Change (MPMC) tumorigenesis measure.
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LCD MCD HCD

n 31 42 27

df 29 40 25

Critical r

value

0.355 0.304 0.381

Table C.18: Critical values of r for the different initial Clonal Dominance (CD) groups. The values are

for a two-tailed test at significance level 0.05.

CET rAPC−CET for

LCC

rAPC−CET for

HCC

MAD 0.85930 0.82940

MSD 0.93487 0.94984

MD 0.96067 0.95541

MSWDA 0.70296 0.65567

MSWDS 0.90053 0.89527

MSWD 0.90086 0.92069

MWDA 0.82601 0.76300

MWDS 0.86084 0.89202

MWD 0.93577 0.89473

CC 0.96853 0.96251

CCINS 0.94049 0.91475

CCMIG 0.93262 0.92803

CCLOSE 0.97741 0.97153

CCWIN 0.94279 0.92981

CD 0.05606 0.41167

MP 0.97927 0.98072

MPM 0.98747 0.98488

MPC 0.94491 0.95574

MPMC 0.97445 0.98205

Table C.19: Correlations between APC mutation rate and the specified complex event types for different

initial clonal clustering groups.
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LCC HCC

n 48 52

df 46 50

Critical r

value

0.285 0.273

Table C.21: Critical values of r for the different initial Clonal Clustering (CC) groups. The values are

for a two-tailed test at significance level 0.05.

• Table C.30 shows the loadings of the CET frequencies on each of the orthogonal components,

which represents the direction of the component in the space defined by the CET frequencies.

• Table C.32 shows the cummulative proportions of variance explained by the components for both

the CET frequencies (input variables) and each of the tumorigenesis measures (outputs).
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LCC-

LCD

LCC-

MCD

LCC-

HCD

HCC-

LCD

HCC-

MCD

HCC-

HCD

n 20 22 10 11 20 17

df 18 20 8 9 18 15

Critical r

value

0.423 0.404 0.576 0.553 0.423 0.456

Table C.27: Critical values of r for the different initial Clonal Dominance-Initial Clonal Clustering

groups. The values are for a two-tailed test at significance level 0.05.
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