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CHAPTER 1

Introduction

Over half of the world’s population is able to hold a conversation in more than one
language (European Commission, 2012; Ansaldo, Marcotte, Scherer, & Raboyeau,
2008; Tucker, 2002). This majority, however, is not homogeneous: individuals arrive
at their knowledge of a second language (L2) in many different ways. In fact, there
is so much variability among L2 learners that it is hardly possible to describe an
“average” learner. Their age, mother tongue, exposure to additional languages, aptitude,
foreign language in question, amount and temporal patterns of first and second language
exposure define countless specific populations, such as simultaneous English–French
bilinguals in Quebec or heritage speakers of Turkish in the Netherlands. Moreover,
speakers within each population may vary in a lot of the input-related details. Despite
this diversity, an important goal is to understand general mechanisms of L2 acquisition
applicable to all learners.

In this thesis, I focus on a particular mechanism – statistical learning. This is a type
of inductive, bottom-up, input-driven learning: humans are able to acquire a language
by noticing regularities in the linguistic input. The statistical learning account has
mostly been developed on the material of child language acquisition, while in second
language acquisition (SLA) the relevant theory is not so well-established yet (but see
Onnis, 2011). One possible reason is the mentioned variability in L2 learners: isolated
studies with particular groups of learners do not provide enough material for the broad
picture to emerge. Another reason is that learning in SLA context, as Rebuschat (2013)
argues, is often associated with explicit instruction, while statistical learning usually
applies to implicit pattern-finding.

The methodology employed in my studies – cognitive computational modeling
– allows me to eliminate the unwanted sources of between-learner variation, and to
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focus on the phenomenon of interest: statistical L2 learning from input data. Another
advantage of this method is the explicit control it provides over the input data that the
simulated learner is exposed to.

The accounts of statistical learning are situated within a broader paradigm of a
usage-based approach to language, which I adopt here. In this theory, language use
obtains the central role: it advances an individual’s linguistic competence, and guides
the emergence of linguistic representations in the mind. Speaking about representations,
it is common in usage-based theories to study constructions – units that comprise a
form and a meaning. Constructions are positioned on a continuum from fully specific
(e.g., a lexeme) to fully abstract (e.g., a syntactic pattern). In the present thesis, I work
with a particular type of abstract constructions present in nearly every utterance. These
constructions deal with sentential representations of a verb and its arguments, and are
referred to as argument structure constructions, or verb argument constructions. By
simulating the process of learning of such constructions in L1 and L2, I investigate how
the learning outcomes are affected by various factors often discussed in the literature:
variables reflecting distributional and semantic properties of the input, the amount of
input and the moment of L2 onset, as well as the quantity of cross-linguistic influence
(CLI).

Before I proceed with the description of the key notions, a short terminological
note is necessary. First, by “bilingual learners/speakers” I mean any individuals able
to use more than one language, without assuming their native-like proficiency in
both languages. Second, the terms “bilingual learning” and “L2 learning” are used
interchangeably, referring to any setup which involves the acquisition of more than one
language.

1.1 Usage-based linguistics, statistical learning, and
SLA

Statistical, or frequency-based, accounts of language learning are usually positioned
within the general framework of cognitive, or usage-based linguistics. Language ac-
quisition in this framework is directly grounded in speakers’ individual experiences
with language, and this view has yielded comprehensive theories of first language
acquisition (Bybee, 2003; Tomasello, 2003). However, there is no such encompassing
account explaining how two or more languages are learned. One reason for this is the
variability of bilingual learners: there are at least two distinct groups – early bilinguals
and late second language learners. The intra-group variability can be very high, and
there is no clear boundary between the two groups (Unsworth & Blom, 2010). This
makes it difficult to provide a universal usage-based description that would fit all. At
the same time, the usage-based account has been applied both to early bilingualism
and second language acquisition (SLA): there has been a great number of theoretical
developments in this framework (Paradis & Grüter, 2014; Tyler, 2012; N. C. Ellis &
Cadierno, 2009; N. C. Ellis & Larsen-Freeman, 2009; Bybee, 2008; N. C. Ellis, 2006a),
as well as empirical studies with various populations of bilinguals (Paradis, Nicoladis,
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Crago, & Genesee, 2011; Blom, 2010) and L2 learners of different proficiency, span-
ning from absolute beginners (Denhovska, Serratrice, & Payne, 2016; Saturno, 2015;
N. C. Ellis & Sagarra, 2010) to highly proficient learners (Siyanova-Chanturia, Conklin,
& Van Heuven, 2011; Durrant & Schmitt, 2010; Forsberg & Fant, 2010).

One direction towards developing a universal usage-based model is a claim that
there is no fundamental difference between first and second language learning. This
idea is not new (e.g., Ervin-Tripp, 1974), and it has been promoted within the Unified
Competition Model (MacWhinney, 2015, 2012, 2008). As Ortega (2015) puts it:

... the usage-based perspectives adhere to the working hypothesis of a
fundamental continuity between early and late language learning: Lan-
guage learning is qualitatively, fundamentally the same complex dynamical
adaptive systems phenomenon regardless of starting age. The differential
success observed for varying starting ages – and for different contexts or
diverse types of learners – can be accounted for, at least in principle, by
different initial conditions ... and by differential experience of language ...
(p. 370).

This view finds support in recent psycholinguistic and neurolinguistic literature:
multiple languages use the common neural resource (e.g., Abutalebi & Green, 2007),
linguistic knowledge is shared between languages (e.g., Hartsuiker, Beerts, Loncke,
Desmet, & Bernolet, 2016), and various types of CLI1 are observed in language
use (Rothman, 2011; Pavlenko & Jarvis, 2002). Besides, the single-system view is
compatible with recent theories in applied linguistics and sociolinguistics, which
suggest that multilingual learners should rather be seen as “users” (in line with the
usage-based approach) possessing a set of linguistic tools that can be mixed in actual
language use (Blommaert & Backus, 2013; Hall, Cheng, & Carlson, 2006; Cook, 2002).
This contrasts with theories which describe each language (L1, L2, etc.) as a system of
rules that needs to be acquired, and see each particular usage as either correct or wrong.

The usage-based framework brings together several basic ideas: that language has
a fundamentally social function; that language is not a set of rules, but rather a network
of units; that grammar emerges from use, etc. (Beckner et al., 2009). This last point
is important here, because it sets out the background for the statistical account of
language learning. This account became influential after it was found that both babies
and adults rely on distributional information in the input to segment words in speech
(Saffran, Aslin, & Newport, 1996; Saffran, Newport, & Aslin, 1996). More specifically,
learners were able to observe the frequency of co-occurrence of different syllables
– so-called transitional probabilities – and intuitively make use of this information
to make decisions about the locations of word boundaries in an unknown language.
Subsequently, similar use of language statistics has been shown in other linguistic tasks:
sound discrimination (Maye, Werker, & Gerken, 2002), grammar learning (Gomez
& Gerken, 1999), etc. At the moment, it is widely agreed that the effects of language
statistics, also known as frequency effects, are “ubiquitous” in acquisition (Ambridge,

1 Cross-linguistic influence, or cross-linguistic transfer, or interference, although the latter term is usually
used in negative sense only, unlike the other two.
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Kidd, Rowland, & Theakston, 2015): learners are sensitive to the distribution of
various linguistic units across multiple domains, such as phonology, lexis, morphology,
syntax (N. C. Ellis & O’Donnell, 2012; Rebuschat & Williams, 2012; Saffran, 2003).
Language statistics enables learners to find patterns in the input, often unintentionally,
and discover the input structure.

If there is no fundamental difference between L1 and L2 learning, frequency effects
must also be manifested in SLA. Indeed, it has been argued that statistical learning
plays an important role in L2 learning as well. In particular, Onnis (2011) proposed
four principles that guide L2 learning: integrate probabilistic information sources, seek
invariant structure, reuse learning mechanisms for different tasks, and learn to predict
(p. 204). The studies in this thesis are largely compatible with these principles. To
simulate statistical learning, I employ the method of probabilistic (Bayesian) cognitive
modeling. In language acquisition studies, this method has mostly been employed for
developing experience-based computational models (Poibeau, Villavicencio, Korhonen,
& Alishahi, 2013). In this capacity, probabilistic modeling is very close to statistical
learning: both of them describe the process of rational inference from data (Perfors &
Navarro, 2011), limiting the domain of investigation to a particular bottom-up type of
learning.

Statistical learning is often discussed in relation to another notion – implicit learning
(Hamrick & Rebuschat, 2011; Perruchet & Pacton, 2006). The latter is usually defined
in terms of being unconscious, incidental, as opposed to conscious explicit learning of
which the learner is aware. Both terms – statistical and implicit – refer to observation-
based, experience-based type of learning. However, the exact link between statistical
and implicit learning has been a point of debate. While some claim the two terms
address the same phenomenon from slightly different perspectives (Perruchet & Pacton,
2006), others draw the distinction by emphasizing that statistical learning can result in
acquiring both conscious (explicit) and unconscious (implicit) knowledge (Hamrick
& Rebuschat, 2011). Studies in this thesis deal with bottom-up statistical learning,
while characterizing the simulated learning process as implicit or explicit is difficult:
measures of (un)awareness and (un)intentionality can hardly be applied to probabilistic
computational models.

1.2 Cognitive modeling in SLA and bilingualism

Cognitive computational modeling is a well-established method in cognitive science
in general, and in research on language acquisition in particular (Poibeau et al., 2013;
MacWhinney, 2010; Chater & Manning, 2006). Computational models have helped
scholars to demonstrate how input may enable children to acquire their mother tongue:
words (Fazly, Alishahi, & Stevenson, 2010; Frank, Goodman, & Tenenbaum, 2009;
Li, Zhao, & MacWhinney, 2007), morphology (Monner, Vatz, Morini, Hwang, &
DeKeyser, 2013; Albright & Hayes, 2003), sentence-level constructions (Alishahi &
Stevenson, 2008; Chang, 2008), etc. In contrast, there are far fewer models that simulate
the learning of two languages, as I explain below (see also Li, 2013).

Although computational modeling cannot provide scholars with conclusive evi-
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dence in favor of one or another theory, it is particularly helpful when it comes to
studying the contribution of a specific learning mechanism or an input-related variable
in isolation. This is often critical for studies in SLA and bilingualism: populations of
learners are very heterogeneous, and it is difficult to study how individual factors affect
the learning in the long term. Longitudinal studies are usually carried out in natural
environments, for example in a classroom (see an overview by Ortega & Iberri-Shea,
2005). Additionally, there are learner corpus studies: corpora may cover long periods
of time (e.g., Meunier & Littre, 2013). However, these types of research provide little
to no control over many potentially interfering variables. In theory, this problem can
be solved by ensuring that each variable is balanced in the population sample, but in
reality this can hardly be done, given the number of variables.

Imagine a research group studying how the age of second language onset influences
language proficiency in immigrant learners. DeKeyser (2013) recommends to narrow
down the immigrant population by controlling such variables as subjects’ first language,
their age, length of residence in immigration, amount of communication in second
language. Following these recommendations, our imaginary research group would have
to find middle-aged participants speaking the same mother tongue who have been living
in immigration for at least 10 years and communicating mostly in second language
during this period. However, even if the researchers succeed to obtain a large enough
sample of participants, it may potentially still be very diverse. A number of variables,
in fact, remain uncontrolled, such as participants’ knowledge of other languages, the
amount of time they spend talking to native speakers, the amount of formal language
training they have received, their language aptitude, etc.

In order to find out how each variable influences language learning, they should
be studied in isolation. Manipulating one variable at a time is the key idea behind
experimental research. Experimental SLA studies presuppose control over input and
instruction. This can be achieved through exposing learners to a language they have
no experience with (Dimroth, Rast, Starren, & Watorek, 2013), or to a (semi)artificial
language (see an overview by Hulstijn, 1997). However, it is often problematic to keep
variables under control in the long term, because participants normally perceive and
produce immense amounts of natural language every day, and this may affect the target
language learning through cross-linguistic influence.

Considering these methodological difficulties, the study of bilingualism and SLA
can benefit from the use of computational models (Li, 2013). One of the main advan-
tages of computational models is that each variable can be manipulated and studied in
isolation. An ideal computational model, then, should give a researcher an opportunity
to manipulate each learning factor relevant within the adopted theoretical framework.
Within the usage-based approach, a number of factors are believed to potentially
influence the learning:

1. Learner variables: mother tongue, history of language learning and use, biological
age, moment of onset, learning aptitude, motivation, learning goals, etc.

2. Learning variables: learning setting, type of instruction (if any), type of linguistic
input, amount of exposure, etc.
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This list is far from complete and can be extended, and an ideal computational model
would have to account for all of these variables. In this thesis, I focus on statistical
learning and investigate several input-related variables, such as amount of exposure,
moment of onset, etc.

There have been multiple overviews of existing computational models of SLA and
bilingualism (Li, 2013; Murre, 2005; Thomas & van Heuven, 2005). In one of them, Li
(2013) notes that there have been few models of bilingual acquisition, in contrast to
models of processing, which account for linguistic representations in mature bilingual
speakers. At the same time, it is often difficult to draw a clear line between the modeling
of language processing and that of language acquisition. Some models are designed for
studying language processing, but they are learning to process the language, and thus
can potentially be used to study some phenomena of language acquisition. This also
follows the reasoning in the usage-based account: on the one hand, language processing
always leaves diachronic traces in acquisition, and on the other hand, acquired linguistic
knowledge is the long-term outcome of language processing.

Early attempts to model SLA included simple connectionist models employed
to simulate cross-linguistic influence in various domains (Broeder & Plunkett, 1994;
Gasser, 1990). These were followed by the development of connectionist models
of bilingual language comprehension (Dijkstra & Van Heuven, 1998; French, 1998;
Thomas, 1998). The model of Li and Farkas (2002), who investigated bilingual pro-
cessing using self-organizing networks, gave rise to the most fruitful line of studies in
this area, which employed similar type of models for investigating bilingual lexical
development (Shook & Marian, 2013; Zhao & Li, 2010; Li, 2009), cross-linguistic
priming (Zhao & Li, 2013), lexical recovery in bilingual aphasia (Kiran, Grasemann,
Sandberg, & Miikkulainen, 2013), bilingual object naming (Fang, Zinszer, Malt, &
Li, 2016). The topological representations provided by these models have provided
extremely useful insights about the bilingual lexicon. Various aspects of lexical learning
were simulated in other recent models (Cuppini, Magosso, & Ursino, 2013; Monner
et al., 2013; Yang, Shu, McCandliss, & Zevin, 2013). At the same time, bilingual
learning beyond the word level has not been simulated computationally (although see
Rappoport & Sheinman, 2005). This is one gap that the present thesis tries to fill in.

1.3 Cross-linguistic approaches to argument structure
constructions

My studies focus on the acquisition of abstract constructions. I adopt the construction
grammar view, which suggests that constructions are pairings of form and meaning
(Goldberg, 1995; Langacker, 1987). More specifically, the focus of the studies is
on argument structure constructions (Goldberg, 2006, 1995) – a particular type of
constructions present in nearly every utterance we produce. To give an example, the
sentence My mom called me yesterday contains the verb predicate called and two
participants of the event, or arguments: my mom (AGENT) and me (PATIENT). At the
same time, yesterday is a non-obligatory component of the verb’s argument structure.
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Although there is no comprehensive account of bilingual argument structure learn-
ing, there are a number of studies in this area. For example, it has been shown that
constructions emerge in second language learners (Gries & Wulff, 2005), and that
second language construction learning is guided by the same input properties as in the
first language (N. C. Ellis, O’Donnell, & Römer, 2014a). A more difficult question is
to what extent the constructions are shared in bilingual linguistic knowledge. Some
studies argue in favor of shared constructional representations (Higby et al., 2016;
Bernolet, Hartsuiker, & Pickering, 2013; Salamoura & Williams, 2007; Santesteban
& Costa, 2006), in line with the usage-based theory of common learning mechanisms
and common neural resources. At the same time, there is an alternative view: based on
cross-linguistic typological data, Wasserscheidt (2014) argues that “constructions do
not cross languages” (p. 305).

In the studies presented in this thesis, I assume that the learner builds up a unified
set of constructions (constructicon) and uses the knowledge of both first and second
language in making decisions during language production and comprehension. At the
same time, there are no assumptions about whether actual constructions are language-
specific or “blended” – that is, based on the evidence from both first and second
languages.

1.4 Overview of the studies

This thesis consists of four main chapters: chapter 2 presents the data sets used in
my studies – a multilingual corpus of verb usages annotated with argument structure
information, while the three studies in chapters 3–5 employ computational model-
ing for investigating various phenomena in bilingual learning of argument structure
constructions.

Although there is a clear overarching theme in the four main chapters, each of them
constitutes a standalone study based on a journal article, which can in principle be read
separately. For this reason, there is a certain amount of overlap between the studies, in
particular when it comes to the methodological sections: three out of the four studies
employ the same computational model, although it undergoes certain changes from
one study to another.

Computational cognitive modeling is the methodological core of this thesis. More
specifically, I use a learning model that acquires linguistic argument structure construc-
tions from input. The model was first presented in the study of Alishahi and Stevenson
(2008), and employs a mechanism of unsupervised Bayesian clustering. I choose this
particular model thanks to its roots in cognitive science (J. R. Anderson, 1991), as
well as its cognitive plausibility in many respects and its successful applications in
the study of monolingual learning (Barak, Fazly, & Stevenson, 2013a, 2013b, 2012;
Alishahi & Stevenson, 2010, 2008, etc.). In the studies presented here, I adapt the
model to bilingual learning scenarios (chapters 3–5), implement new linguistic tasks
for testing the model (chapters 3–5), and propose an enhanced learning mechanism
better compatible with languages characterized by free word order.

Because the learning process is virtually input-driven, it is important to provide
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the model with naturalistic linguistic input. Chapter 2 presents two subcorpora used
as input data to the model: a smaller manually annotated corpus and a larger corpus
automatically extracted from existing linguistic resources.

The study in chapter 3 does not focus on bilingual learning alone: instead, both
monolingual and bilingual simulations of constructions learning are presented. The
variables of interest are distributional and semantic input properties: they have been
shown to affect construction learning, yet their exact contributions are not known. I
investigate the model’s performance on a verb selection task, and how this performance
can be predicted depending on the values of the three target factors.

In chapter 4, I look into the effects of two basic input-related properties – amount
of input and time of onset – on the learning of argument structure constructions. These
two properties have been often discussed in the literature, yet their effects are difficult
to disentangle in human learners: the amount of input is often confounded with the
time of second language onset. In this study, five linguistic tasks are employed to
approximate language development of the simulated learners, and I attempt to explain
this development by the two properties mentioned above.

Finally, chapter 5 focuses on the phenomenon often believed to be central to bilin-
gual learning – cross-linguistic influence. I propose that the amount of cross-linguistic
influence in a computational model can be quantified, and the model’s performance
in linguistic tasks can be explained in terms of this amount. As a case study, I present
computational simulations of two experiments on case marking comprehension, carried
out with human participants.

The concluding chapter 6 includes a general summary, a discussion of broad
theoretical and methodological implications of my work, and outlines a few directions
for future research.



CHAPTER 2

A multilingual corpus of verb usages annotated with
argument structure information1

2.1 Introduction
A number of cognitive computational models of language learning (Beekhuizen, 2015;
Freudenthal, Pine, Jones, & Gobet, 2015; Alishahi & Stevenson, 2008; Chang, 2008,
etc.), as well as practical NLP applications, such as semantic role labeling (SRL:
Palmer, Gildea, & Xue, 2010) or relation extraction (Nastase, Nakov, Seaghdha, &
Szpakowicz, 2013), deal with sentential representations based on the syntactic and
semantic relations between the predicate and its arguments – predicate argument struc-
ture. These applications require annotated resources for model training and evaluation.
Despite the variety of existing resources and the recent developments in this domain
(Lopez de Lacalle, Laparra, Aldabe, & Rigau, 2016; Fellbaum & Baker, 2013; Baker,
2012; Palmer, 2009, etc.), there is still a lack of multilingual resources that combine
both syntactic and semantic argument structure information. In this chapter, we present
a multilingual corpus of verb usages annotated with such information.

2.1.1 Predicate argument structure
Argument structure is a term describing the realization of a predicate (usually a verb)
and its arguments. To give an example, the verb give often describes a transfer of
physical possession:

(1) He gave a toy to his friend yesterday.

1 This chapter is based on the article of the same name submitted for publication in a journal.
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The event described in (1) includes three arguments:
1. he – the giving person, or AGENT;
2. toy – the given object, or THEME;
3. friend – the receiving person, or BENEFICIARY.

Note that the word yesterday is an optional part of the sentence, it is not crucial
for interpreting the predicate meaning. Such optional elements are not referred to as
arguments, but as adjuncts.

In constructionist linguistic theories, multiple features have been proposed to
affect the acquisition of verb argument structure. In our corpus, each verb usage is
represented as an assembly of multiple features belonging to one of the three groups:
lexical, semantic, and syntactic. Lexical features include the predicate head (give),
its lexical arguments (boy, toy, mom), and prepositions (to). Syntactic features are
represented by the word ordering pattern (e.g., ARG1 VERB ARG2 PREP ARG3). Finally,
semantic features describe the semantics of the head predicate (or event), of the lexical
arguments, as well as the participant semantic roles such as AGENT or THEME. Note,
however, that all the semantic features obtain distributed representations, including
semantic roles: e.g., AGENT in the sentence above is described as {ACTING, ANIMATE,
CONCRETE, GIVING, VOLITIONAL}.

2.1.2 Related work

Resources which are most commonly used for obtaining the information about predi-
cate argument structure in English are PropBank (Palmer, Gildea, & Kingsbury, 2005),
FrameNet (Ruppenhofer, Ellsworth, Petruck, Johnson, & Scheffczyk, 2006), and Verb-
Net (Kipper Schuler, 2006), which we present in more detail in section 2.3.1. These
resources have been used for developing automatic SRL methods (see overviews
by Màrquez, Carreras, Litkowski, & Stevenson, 2008; Carreras & Màrquez, 2005;
Litkowski, 2004). Such methods are often integrated with syntactic parsing within the
same system, and the overall F1-score for such systems reaches 75–85%, depending
on the domain (Surdeanu, Johansson, Meyers, Màrquez, & Nivre, 2008).

The situation is more complex with multilingual resources and methods. The
mentioned resources have their respective equivalents in other languages (Bai & Xue,
2016; Subirats, 2013; Duran & Aluísio, 2012; Zaghouani, Diab, Mansouri, Pradhan, &
Palmer, 2010; Burchardt et al., 2006; Palmer, Ryu, Choi, Yoon, & Jeon, 2006; You &
Liu, 2005, etc.). But given the variety of resources, compatibility is one of the problems.
The development of mappings and alignments is intended to improve the compatibility
across languages and resource types (e.g., Lopez de Lacalle et al., 2016; Wu & Palmer,
2015; Palmer, 2009; Shi & Mihalcea, 2005), however more work needs to be done
in this respect. Multilingual SRL and syntactic parsing systems (Hajič et al., 2009)
address this problem, and their performance is comparable to the monolingual systems.
However, multilingual systems and resources often contain ambiguous PropBank-style
semantic labels, while fine-grained FrameNet-style labels may be more useful.

To summarize, multilingual resources that provide both syntactic and fine-grained
semantic relations between predicates and their arguments have been rare, while the
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existing automatic systems for creating such resources may generate substantial amount
of noise.

In what follows, we describe two subcorpora of verb usages consisting of the
features described above. The first corpus has been annotated manually – it is rather
free of noise, but small due to the tedious nature of the annotation. The second corpus
has been compiled by automatically extracting verb usages from existing English
and German linguistic resources, which contain the necessary syntactic and semantic
annotations. This subcorpus is larger, but noisier than the small corpus. We proceed
with the explanation on how each corpus was obtained, followed by the description of
the resulting data sets.

2.2 Multilingual manually annotated corpus

2.2.1 Resources
English, German, Russian, and French sentences representing first language (L1)
input were obtained from CHILDES (MacWhinney, 2000) – a database with various
transcripts of conversations between young children and adults. Additionally, we used
the Flensburg English Classroom Corpus (Jäkel, 2010) to obtain English sentences
representing second language (L2) input. This corpus contains classroom transcripts of
lessons of English as a foreign language in German schools.

For English, the data of three children from the Manchester corpus (Theakston,
Lieven, Pine, & Rowland, 2001) were used: Anne, Aran, and Dominic. For German,
we used the data of Caroline (von Stutterheim, 2004), Kerstin (M. Miller, 1979),
and Leo (Behrens, 2006). For Russian, the data from the only two children available
in CHILDES were used: Varja (Protassova, 2004) and Tanya (Bar-Shalom & Sny-
der, 1996). Finally, for French, the data from the Paris corpus were used: Léonard,
Madeleine, and Julie (Morgenstern & Parisse, 2012; Morgenstern, Parisse, Sekali,
Bourdoux, & Caet, 2004).

2.2.2 Choosing sentences for the annotation
From each corpus, all the child-directed speech was extracted (or learner-directed
speech, in the case of L2). For each resulting data set, we compiled a word frequency
list to estimate which verbs occurred more frequently. Based on the overall frequency
of occurrence, we selected several frequent verbs for the annotation. Verbs whose forms
are predominantly used in phrasal verbs (e.g., go on, come on) were not considered, as
well as verbs such as think and want, whose arguments tend to be sentential clauses (2)
or verb phrases (3):

(2) I think it’s getting dark.

(3) I want to come to the picnic.

The verbs selected for the annotation are given in Table 2.1. Note that for Russian
we select more verb types than for other languages, because for some of these verbs
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we could only select fewer than 100 usages for annotation. Also, Russian verbs are
characterized by either perfective or imperfective aspect: delat “to do” and sdelat “to
have done” are considered different verb types in Russian.

For each selected verb, we sampled an equal number of its usages from each
participating subcorpus (e.g., Anne, Dominic, and Aran, for L1 English). The sampled
usages were merged into a single set and shuffled. For some Russian verbs, the total
number of usages was rather low, in which case the sizes of the subcorpus samples
were not balanced.

From the final sample for each verb, we only selected the usages in which the target
verb was the head predicate. We eliminated the sentences in which the target verb:

• had no explicit arguments (4), or
• was accompanied with an auxiliary verb, as long as omitting the auxiliary from

the utterance would make the sentence ungrammatical or change its meaning
(5–6), or

• appeared in a relative clause, which affected the number or the ordering of the
verb arguments (7).

(4) Oh look!

(5) What was it made of?

(6) Can I look now?

(7) Just like that one we’ve been playing with.

In German, the sentences with prefixed/particle verbs (e.g., zumachen “to close,
shut down”) were considered to represent the target verb (in this case, machen “to
make”), as long as the meaning of the prefixed/particle verb was compositional and the
prefix/particle was actually separated (8).

(8) Mach
make.IMP

es
it

wieder
again

zu!
shut

‘Close it again!’

Following these guidelines, approximately 100 random verb usages for each lan-
guage were selected for the annotation.

2.2.3 Annotation guidelines
Each verb usage is annotated with the following features: sentence pragmatic func-
tion, head predicate, lexical arguments, predicate semantics, argument semantic roles,
syntactic pattern, and case-marking. Details on each feature are given next.

Sentence pragmatic function refers to the speaker’s communicative goal: state-
ment, question, or request.

Head predicate is the lemma of target verb (e.g., give for gave or gives).
Lexical arguments denote the lemmas of the verb arguments, except for the

pronouns, which retained their actual form in the annotations (9). This is because
there are substantial differences between the subject and the object forms of the same
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Table 2.1: The verbs selected for annotation, with their average frequencies across the
analyzed corpora.

Language Verb Frequency

L1 English put 962
look 677
play 361
make 282
take 248
give 172

L2 English come 81
go 79
read 61
show 58
look 48
put 29

German kommen “to come” 569
gucken “to look” 599
gehen “to go” 325
machen “to make” 282
geben “to give” 158

Russian delat/sdelat “to do” 420/52
hotet/zahotet “to want” 237/4
smotret/posmotret “to look” 105/120
govorit/skazat “to say” 49/73
sidet/sest “to sit” 63/20
idti/poyti “to go” 44/51
videt/uvidet “to see” 104/3

French faire “to do” 1024
vouloir “to want” 517
regarder “to look” 464
dire “to say” 359
voir “to see” 290
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pronoun (I vs. me, on “he” vs. ego “him”, etc.). Since all these forms are exceptionally
frequent in a language, it is sometimes argued that speakers store both forms of each
pronoun in their lexicon, without one form being derived from the other one (Diessel,
2007; Hudson, 1995). Similarly, frequent French question words qu’est-ce que and
qu’est-ce qui are considered to be a single lexeme (10).

(9) Show me your pencil case.
Arguments: me, case.

(10) Qu’est_que
what

tu
2SG

dis?
say

‘What are you saying?
Arguments: qu’est_que, tu.

Predicate semantics is annotated as a set of semantic primitives describing the
verb: ACTION (look at her hair), STATE (that looks interesting), etc. An example is
given in (11) below, while the full list of features is provided in Appendix A.

(11) You play with the trains.
Predicate semantics: {ACTION, PHYSICAL, MANIPULATE, PLAYFUL}

Argument lexical semantics is represented as a set, similar to the predicate seman-
tics. It is obtained differently for nouns and for other parts of speech. For nouns, the
semantic features are extracted automatically from WordNet, a large lexical database
described in more detail in section 2.3.1 below. We use a method designed by Alishahi
and Fazly (2010): for each argument (with its particular sense), its hypernyms are
recursively extracted from WordNet up to the root. On each level of hyperonymy,
multiple elements are provided – we select the first element and add this element to the
lexical semantic representation (see Figure 2.1).2 For parts of speech other than nouns
(e.g., adjectives, pronouns) the semantic representation is compiled manually using the
relevant features from those already present in the noun representations, and/or similar
ones (12–13).

(12) I: {REFERENCE, SELF, PERSON, ORGANISM, LIVING THING, WHOLE, OB-
JECT, PHYSICAL ENTITY, ENTITY}

(13) big: {SIZE, ATTRIBUTE, PROPERTY}

Argument semantic roles are encoded as a set of semantic proto-roles each. Tra-
ditionally, roles are denoted as single labels, such as AGENT or THEME, however in our
data sets the roles receive more event-specific semantic annotations (14). Importantly
for the simulated task of construction learning, it has been shown that semantic roles,
such as AGENT or THEME can be acquired from proto-roles (Alishahi & Stevenson,
2010).
2 We do not claim that the resulting primitives are the actual semantic units humans employ in language

processing. Instead, the reasoning is that humans are able to estimate the degree of semantic relatedness
of different words, and the corpus must contain semantic representations that would enable a computa-
tional model to compute the degree of such semantic relatedness. In this sense the described approach
based on WordNet relations is not only viable, but also rather common in computational linguistics
(e.g., Pedersen, Patwardhan, & Michelizzi, 2004; Budanitsky & Hirst, 2001).
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Figure 2.1: Extracting lexical semantics from WordNet.

(14) Cows make milk.
Arg1 proto-roles: {ANIMATE, CONCRETE, PRODUCING}
Arg2 proto-roles: {BECOME, INANIMATE, PRODUCED, SUBSTANCE}

Syntactic pattern denotes the order of arguments, predicate, and prepositions (15).

(15) You take it to the train.
Syntactic pattern: ARG1 VERB ARG2 to ARG3

Case-marking features are added for nouns and adjectives in Russian and German,
with actual morphological cases being encoded (e.g., ACC). For many words, the case-
marking is ambiguous. To give an example, the noun form yabloko “apple” can function
either as a nominative (16) or as an accusative (17). Because the form is ambiguous, in
both sentences, the case-marking for the target noun is annotated as {ACC, NOM}.

(16) Yabloko
apple.NOM

upalo.
fell.N

‘An apple has fallen!’

(17) Hochu
want.1SG

yabloko.
apple.ACC

‘I want an apple.’

Using these guidelines, all the instances are annotated. The resulting corpus of
argument usages is described in the next section.

2.2.4 Resulting data set
The resulting data sets are comparable in size, although the L2 English data set is
smaller because of the original corpus size. Each verb in the corpus is associated with
its average frequency provided in Table 2.1, to preserve the original distribution of the
annotated verbs in each language. The distribution of the most frequent values of each
feature is shown in Figure 2.2. Note that these distributions reflect the frequencies of
individual values in our annotations, not weighted by the frequencies of the individual
verbs.
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Figure 2.2: Distribution of feature values across languages.
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We can see both similarities and differences across the language samples:
• Most instances in each language contain two arguments, while instances with

only one argument are the least frequent in most languages, except for L1 English.
This is not surprising, considering that the L1 English subset includes two verbs
which often occur with three arguments: take and give.

• Statements are the most frequent pragmatic type in L1 English and German
data, while Russian and French have more questions, and L2 English have more
requests. The disproportionately low number of questions in the English data
may be related to the use of auxiliary verbs do, have, will in most types of
questions: recall that verb usages with auxiliary verbs were excluded. At the
same time, Russian questions generally do not employ auxiliaries, and most
French questions in our data occur with words qu’est-ce que and qu’est-ce qui.

• The most frequent syntactic patterns in all languages in general do not contain
prepositions, with some exceptions in English and French. The verbs tend to
occupy either the second position (as in English or German statements), or the
first position (imperatives and questions). One exception is the pattern A1 A2 V,
which is most frequent in Russian. This reflects the relatively free Russian word
order.

• In terms of predicate semantics, the instances most frequently include verbs of
PHYSICAL ACTION, although not in French: recall that four out of five annotated
French verbs were not the verbs of physical action.

• In terms of argument semantic roles, CONCRETE arguments are the most frequent
ones in each data set, while ANIMATE tend to occupy the second place (or third,
in both English data sets). This reflects the fact that adults tend to talk to children
about concrete, rather than abstract concepts: in particular, most events described
in the instances involve at least one animate participant.

Figure 2.3 shows a full annotated example for each language. The next section de-
scribes the larger bilingual subcorpus compiled automatically from existing resources.

2.3 English–German automatically compiled corpus

2.3.1 Resources
The Penn Treebank (Marcus et al., 1994) is an English constituency-parsed corpus
consisting of three subcorpora: the Wall Street Journal (WSJ), the Brown Corpus, and
the Automatic Terminal Information Service data. We focus on the WSJ part consisting
of one million words, because this is the only part that is semantically annotated in the
Proposition Bank.

The Proposition Bank (PropBank; Palmer et al., 2005) provides an additional
layer of semantic annotation to the WSJ part of the Penn Treebank. More specifically,
the verbs are marked as predicates. The verb arguments are marked with their semantic
role labels: ARG0 stands for agents, causers, or experiencers, ARG1 (patients), etc.,
and ARG2–ARG5 are rather diverse and verb-specific. Adjuncts, or verb modifiers, are
also annotated: they can express location, time, etc. (18). Note that the roles are not
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Figure 2.3: Four annotated examples, one per language. Note that argument semantics
is stored in a separate file, and is not shown in this figure.

necessarily assigned to a particular word: any constituent (phrase) may bear a semantic
role.

(18) [Arg0 The ministers] meet [ArgM-LOC in Australia] [ArgM-T MP next week].

The 2008 CoNLL Shared Task Data (CoNLL-08: Surdeanu, Johansson, Màrquez,
Meyers, & Nivre, 2009) additionally provides syntactic dependency annotations for the
PropBank data.

FrameNet (Ruppenhofer et al., 2006) is a database consisting of semantic frames
– structured representations of events, relations, entities and their participants. For
example, a frame MEET WITH describes an event which consists of PARTY1 meeting
PARTY2 at a prearranged TIME and PLACE, possibly with a specific PURPOSE. The two
parties are the core frame elements (FEs), while the other FEs are non-core. This frame
can be evoked by a lexical unit meet (with).

WordNet (G. A. Miller, 1995) is a rich lexical database, containing nouns, verbs,
adjectives, and adverbs grouped into sets of synonyms (synsets). Importantly, the
synsets are organized into a network based on semantic relations between them, such
as hyponymy and hyperonymy.

VerbNet (Kipper Schuler, 2006) is a verb lexicon, in which verbs are organized into
verb classes. Importantly for this study, verb classes are annotated with their semantic
primitives: e.g., {TRANSFER, CAUSE, HAS-POSSESSION} for the verb give.

SemLink (Palmer, 2009) is a resource mapping existing lexical resources: Prop-
Bank, VerbNet, FrameNet, and OntoNotes. In this study, we only employ the existing
mappings between PropBank and FrameNet. As we mentioned above, PropBank se-
mantic labels ARG2–ARG5 are used inconsistently for different verbs, and we are
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interested in replacing such labels with the respective more specific FrameNet labels
(PURPOSE, PLACE, etc.).

The FrameNet–WordNet mapping (Bryl, Tonelli, Giuliano, & Serafini, 2012)
provides a repository of WordNet synsets for each frame element in a given FrameNet
frame. For example, for the frame element CAUSE in the frame CAUSATION the
repository provides the following distribution of synsets: ABSTRACTION-NOUN6: 76
occurrences, PHYSICAL ENTITY-NOUN1: 43 occurrences, ENTITY-NOUN1: 5 occur-
rences.

The TIGER corpus (Brants et al., 2004) is a German corpus of newspaper text
from Frankfurter Rundschau, containing approximately 900,000 word tokens. Im-
portantly for us, it is annotated with morphological information and with syntactic
constituency structure.

The 2009 CoNLL Shared Task Data (Hajič et al., 2012) provide a version of
TIGER annotated with syntactic dependency annotations.

The SALSA corpus (Burchardt et al., 2006) enriches TIGER with semantic role
annotations. It mostly employs the existing frames and FEs from FrameNet, but some
of the existing frames are adapted to German, and a number of predicate-specific
proto-frames are used.

2.3.2 General approach
The general steps that we took to prepare both the English and the German subcorpus
include the following:

1. Extract all the frame instances from an annotated corpus, containing lexical verb
predicates and frame elements (role-bearing constituents) with their labels.

2. Filter out frames which are unsuitable for reasons explained below.
3. Align branches of the dependency parse trees and constituency parse trees (if

needed).
4. Filter out adjuncts, or non-core frame elements.
5. In each role-bearing constituent of each frame, identify a preposition (if present),

and the lexical head.
6. For all verbs and lexical arguments, extract distributed semantic features from

WordNet and/or VerbNet.
7. Ensure that the role labels used in German and English data are consistent.
8. Expand each role label into a set of semantic primitives.
9. Combine the above-mentioned features in a single data set.

The next two sections explain how each of these steps was performed for the two data
sets.

2.3.3 English data
We use all the sentences from the Wall Street Journal corpus in the Penn Treebank. Each
sentence becomes associated with the respective semantic role annotation extracted
from the PropBank/SemLink, and with its dependency parse available from the CoNLL-
08 data (see Figure 2.4 below). The sentences which are absent from the SemLink data
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Figure 2.4: An English sentence with various types of annotations.

are immediately filtered out, as well as the sentences which contain arguments with no
SemLink mappings between PropBank-style (e.g., ARG0) and FrameNet-style (e.g.,
AGENT) semantic labels.

Following the consolidation of resources, we start building the argument structure
(AS) instances. We iterate over the sentences, considering each frame present in the
data. The frame-evoking predicate can be a single personal verb form (as in the example
in Figure 2.4), but also other forms or POSs (19–21). Only the frames evoked by a
personal verb form are preserved: for each of such forms, a new AS instance is created
and assigned the lexical predicate as one of the features.

(19) So would someone recently divorced or widowed.

(20) International Paper and Weyerhaeuser declined to comment.

(21) By late 1988, they were banning Soviet publications.

Predicates in SemLink have FrameNet frames associated with them (e.g.,
COMMERCE-SELL for the example in Figure 2.4) – the new AS instance is assigned
the respective frame name as a feature.

Next, we focus on the semantic annotations of role-bearing constituents in SemLink,
which refer to particular branches of constituency trees in the Penn Treebank. Note that
we eliminate all the adjuncts, or non-core frame elements (in 1988 in Figure 2.4), by
considering only the numbered arguments; although for the locative verbs follow, go,
lead, live, and sit we also keep the arguments with the semantic roles DIR (direction)
and LOC (location) (22). For each core argument in SemLink, we align its constituency
branch from the Penn Treebank with the respective dependency branch in the CoNLL



A corpus of verb usages 21

data, as shown in Figure 2.4. Sometimes such an alignment fails, in which case we
perform another attempt, using the original PropBank argument annotation instead of
the SemLink annotation. If this fails as well, the created AS instance is dismissed.

(22) The Dalai Lama lives in exile in India.

The dependency parse is used to identify the head of each role-bearing constituent:
the semantic roles in SemLink can be assigned to constituents of any length. For each
constituent, we traverse its dependency tree starting from the root, with the goal of
finding the first proper lexical argument (e.g., a noun or a pronoun) that will carry the
respective semantic role. This step is needed, because the heads of the role-bearing
constituent in a dependency tree are often assigned to an adverb (23) or to a preposition
(24). In these cases, the following nouns – stake in (23) and treatment in 24 – will be
taken as the respective lexical arguments, while the prepositions (about, in this case)
are stored independently. If at any time during traversing the tree the currently top
branch appears to initiate a clause (25), the AS instance is, again, dismissed. At the end
of this step, each lexical argument and preposition are added to the current AS instance
as independent features.

(23) The holding acquired most of its stake.

(24) The Palestinians complain about their treatment.

(25) We want to be a lot more liquid.

At this point, we can also determine the relative order of the verb, its arguments,
and prepositions, and build a representation of the syntactic pattern (26), which is also
added to the AS instance as a feature.

(26) He proposed the movie to his producer.
Syntactic pattern: ARG1 VERB ARG2 to ARG3

During the next step, we create a distributional representation of the semantic
meaning of each verb and each lexical argument. Just as in the smaller multilingual
corpus, we recursively extract from WordNet the hypernyms of each noun (although
this time we always use the most common first sense), and add the first element of
each synset to the distributional semantic representation of the target word meaning.
Since the verb network in WordNet is not as rich as the noun network, we additionally
extract all the available features for each verb from VerbNet (27). Besides, adjectives
and adverbs are not hierarchically structured in WordNet, for which reason we include
all their synonyms into their distributional representations instead. We also manually
compile distributional representations for frequent pronouns. All the other words with
no features are associated with empty semantic representations. The respective semantic
features for the verb and the lexical arguments are added to the AS instance.

(27) sell: {EXCHANGE, TRANSFER︸ ︷︷ ︸
WordNet features

, HAS-POSSESSION, CAUSE︸ ︷︷ ︸
VerbNet features

}

WordNet is also used to expand FrameNet-style semantic role labels into distri-
butional representations, with the help of the existing mapping between FrameNet
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Table 2.2: Expanding the role label for FE EVENT in the frame PARTICIPATION: the
frequency and the probability of occurrence of each synset for this frame–FE pair in the
repository are shown. The two synsets in gray are excluded from the resulting semantic
representation.

Synset Frequency Probability

COUNTRY-NOUN2 147 .9018
DRILL-NOUN1 4 .0245
SUBSIDIARY-COMPANY-NOUN1 4 .0245
BATTLE-NOUN1 2 .0123
POLITICS-NOUN5 2 .0123
VENTURE-NOUN1 2 .0123
COMPLEX-NOUN2 1 .0061
YELLOWCAKE-NOUN1 1 .0061

and WordNet (Bryl et al., 2012). Recall that this resource provides a repository of
synsets for each FE–frame pair. Both frames and FEs are available from SemLink in
our data, and for each pair of these we combine all the synsets in the repository to build
a distributed representation of the FrameNet semantic label. For some FE–frame pairs
the distribution of synsets has a rather long tail, resulting in a very long list of synsets.
To avoid this, for FE–frame pairs occurring at least ten times in the repository, we only
consider the synsets whose frequency of occurrence for the given pair is higher than 2,
and whose probability of occurrence is higher than .01 (see Table 2.2 for an example).
Adding the resulting features to the AS instance concludes its assembly.

2.3.4 German data

A similar procedure is carried out for the German data. We start from considering all
the sentences present in the SALSA corpus, and associate them with the dependency
annotations from the CoNLL-09 data. Just as in English data, this is followed by
filtering out the frames evoked by any lexical item other than a personal verb form,
but also the predicate-specific proto-frames, which are only present in SALSA, but
not in FrameNet (e.g., KENNEN1-SALSA). A new German AS instance is created and
assigned a frame name.

Again, we dismiss all the non-core FEs and then identify a lexical argument
for each core argument by aligning its constituency tree branch from SALSA with
the corresponding dependency tree branch from CoNLL-09. In case of a successful
alignment, the dependency tree is traversed in search for a proper lexical argument. If
the lexical instantiations of all the core arguments are successfully identified, the lexical
features (predicate and arguments) are added to the AS instance, as well as syntactic
pattern. Also, the case-marking is available from the original TIGER annotations,
and we add the case-marking for each argument as an independent feature to the AS
instance.
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For the semantic annotation, one option would be to use the GermaNet – a German
equivalent of WordNet (Kunze, 2000). However, the difference between the two re-
sources would lead to having inconsistent semantic representations across our English
and German data sets, damaging the ecological validity of our computational simula-
tions. Therefore, we translated the verbs and their lexical arguments from English into
German. Since our data sets are organized around verb predicates, the verb meanings
are rather important, and we translate all the verbs manually, making sure that no two
German words obtain the same English translation. The manual translation of all the
lexical arguments, in contrast, is not feasible – instead, we translate them by a simple
look-up in a German–English dictionary.3

Importantly, German words are often translated into English not as single words, but
as phrases (e.g., Wahlverhalten – electoral behavior). This is troublesome, because the
English translations are used afterwards for extracting semantic features from WordNet.
Combining semantic features of multiple words into a single set would create very
complex semantic representations, incomparable with those in the English data. This is
why a single word is required for the semantic feature extraction. Our general approach
to this problem is to make sure that the German word and its English translation belong
to the same part of speech (POS). For this, the English phrase is POS-tagged using
the Stanford tagger (Toutanova, Klein, Manning, & Singer, 2003), while the POS of
the original German word is available from the SALSA annotations. In the phrase
described above, comparing the POS-tags helps us to select the key word: behavior.
However, German compounds are often translated as a combination of two nouns (e.g.,
Produktinnovation – product innovation). In this case, only the last English noun is
taken (innovation). When multiple synonyms are available for translation (e.g., Antwort
– reaction, reply, response), we use the one whose lemma occurs in the WSJ most
frequently. In case the German compound noun is not present in the word list, we try
splitting it into subparts using jWordSplitter,4 and look up the last German noun in the
word list. For each word translated into English, its semantic representation is built
using WordNet, as described in the previous section. This semantic representation is
then mapped back to the original German word. The semantic features are added to the
AS instance.

Since the frames and FEs in SALSA are consistent with FrameNet, we extend the
semantic role labels into distributional sets in the exact same way as for the English
data. The resulting features are added to the AS instance, which concludes the process.

2.3.5 Resulting data set

The resulting data sets are comparable both in type of language (newspaper texts)
and in size (3,624 AS instances in the English subcorpus, and 3,370 in the German
subcorpus). The number of verb types is also comparable: 319 English vs. 301 German
verbs. The distribution of the most frequent values for some of the features are shown
in Figure 2.5.

3 Available from http://www.dict.cc/
4 http://www.danielnaber.de/jwordsplitter/

http://www.dict.cc/
http://www.danielnaber.de/jwordsplitter/
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Just as in the small corpus, instances with two arguments prevail. The most frequent
verbs as well as the most frequent frames reflect the type of language used in the WSJ
and in Frankfurter Rundschau. Note that the WSJ is more focused on business and
financial news, hence the frequent occurrence of verbs such as fall, rise (about the price)
and sell, as well as frames such as CHANGE POSITION ON A SCALE and COMMERCE
BUY in our English subcorpus. In contrast, Frankfurter Rundschau is a general-interest
newspaper, and more common verbs (kommen “to come”, fordern, “to demand”, etc.)
are the most frequent ones, while the most frequent frames include REQUEST, TELLING,
STATEMENT, etc. The more specialized frame CHANGE POSITION ON A SCALE is also
frequent, but is not as prevailing as in the English subcorpus.

The distribution of syntactic patterns differs across the two languages: the neutral
word order A1 V A2 clearly dominates in English, while in German the alternative
word order A1 A2 V is frequent as well. This pattern mostly originates from sentences
with the verb preceded by a clause or an adjunct eliminated from our analysis (28).

(28) Heute
today

weiss
know.3SG

man
one

es
it

besser!
better

‘Today we know it better.’

In terms of predicate semantics, the most frequent verbs in both the English and
the German subcorpus are those of caused motion. Finally, the distribution of argument
semantic primitives is rather uniform in both subcorpora, the top five most frequent
synsets refer to the first WordNet senses of nouns person, object, group, psychological
feature, and relation.

2.4 Conclusion

We have presented two corpora of verb usages annotated with the argument structure
information. The two corpora complement each other: the manually annotated corpus
is based on child-directed speech and is free of noise, but is relatively small, while
the automatically compiled corpus is extracted from newspaper texts and is larger, but
contains certain noise because of the compilation procedure. In particular, word sense
disambiguation has not been performed on verbs and their arguments.

One advantage of the presented corpora is their feature-based structure: the neces-
sary features related to the verb argument structure can be easily extracted and used in
computational modeling. Additionally, features can be combined or dismantled. To give
an example, the syntactic pattern (29a) can be dismantled into multiple features, such
as a more abstract pattern and a preposition (29b) or a number of positional features
(29c).

(29) He gave a toy to his friend yesterday.

a. Syntactic pattern: ARG1 VERB ARG2 TO ARG3

b. Syntactic pattern: ARG1 VERB ARG2 PREP ARG3
Prepositions: to



26 2.4. Conclusion

c. Verb position: 2
Arg1 position: 1
Arg2 position: 3
Arg3 position: 4
Arg1 preposition: N/A
Arg2 preposition: N/A
Arg3 preposition: to

Importantly, each corpus includes data from more than one language, and provides
a rare combination of syntactic and fine-grained semantic features. This makes the
corpora suitable primarily for the development of computational models of multilingual
learning, as well as of automatic systems for cross-lingual semantic (SRL) and syntactic
parsing, which is timely given the recent interest in this latter domain (Akbik et al.,
2015; van der Plas, Apidianaki, & Chen, 2014; Kozhevnikov & Titov, 2013; M. Lewis
& Steedman, 2013, etc.). Other possible applications include various natural language
understanding tasks based on SRL: information extraction (Surdeanu, Harabagiu,
Williams, & Aarseth, 2003), question answering (Shen & Lapata, 2007; Sun et al.,
2005), etc.

Speaking about computational models of multilingual learning, the corpora have
already been used to sample the input data to the model of learning argument structure
constructions from bilingual input (see chapters 3–5). To give a brief example, in
chapter 4 I train and test the model using the automatically compiled corpus, in order
to study how second language (L2) proficiency depends on the amount of linguistic
input, and on the moment of L2 onset. Making use of the existing feature structure in
the corpus, I employ a battery of test tasks: in each of these tasks the value of one of
the features (e.g., verb or syntactic pattern) was masked, and the model has to predict
the most probable value based on the acquired linguistic representations. In chapter 5,
I make use of the four languages (excluding L2 English) from the smaller corpus to
study cross-linguistic influence in argument structure constructions. I train the model
on different pairs of languages (English–German, French–German, French–Russian,
etc.), focusing on the phenomenon of case-marking comprehension in German and
Russian. The results demonstrate that positive and negative cross-linguistic influence
contribute to the model’s performance in a case-marking comprehension task.

The small manually annotated subcorpus is published online, while the larger
automatically compiled corpus can be generated from the existing resources using the
available code.5

5 http://ilk.uvt.nl/~yevgen_m/#data

http://ilk.uvt.nl/~yevgen_m/#data


CHAPTER 3

Modeling verb selection within argument structure
constructions1

3.1 Introduction

Speakers’ language use is conditional on the linguistic means they possess. In a way,
an individual’s language use provides us with a “window to the mind” (Gilquin, 2010):
linguistic representations are studied through language use (see a review by Clahsen,
2007). At the same time, one of the tenets of cognitive linguistics is that linguistic
knowledge is directly grounded in previous usage events (e.g., Kemmer & Barlow,
2000). Such events include both language production and comprehension, thus an
individual’s language use depends to a certain extent on the properties of the input
(s)he has been exposed to. Indeed, it is known that input-related (e.g., distributional)
properties of a linguistic unit affect how this unit is used or processed (e.g., Gor &
Long, 2009; N. C. Ellis, 2002; Hoff & Naigles, 2002). But to determine the importance
of various input-related factors, we need formal models predicting language use from
multiple factors at once.

In this chapter, we study the processing of argument structure constructions through
a verb production task. In the traditional view of argument structure, the term describes
how the arguments of a predicate (typically a verb) are realized: the verb eat involves
two participants, hence two arguments; importantly, the verb is believed to predict
its structure (Haegeman, 1994). In constructionist accounts, in particular Goldberg’s
construction grammar (Goldberg, 2006; Goldberg, Casenhiser, & Sethuraman, 2004;

1 This chapter is derived in part from an article published in Language, Cognition and Neuroscience
30 June 2016 © Taylor & Francis, available online: http://dx.doi.org/10.1080/23273798.2016.1200732

http://dx.doi.org/10.1080/23273798.2016.1200732
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Goldberg, 1995), argument structures obtain properties independent of particular verbs
through the emergence of abstract argument structure constructions, a particular type of
linguistic constructions (or form–meaning pairings) that “provide the means of clausal
expression” (Goldberg, 1995, p. 3): for example, the verb eat often participates in a
transitive construction, which has the form SUBJ VERB OBJ and the meaning X acts on
Y. Such constructions slowly emerge in a learner’s mind as (s)he categorizes individual
verb instances. Although this is a simplistic description, argument structures can be
seen as verb-centered mental categories (Goldberg, Casenhiser, & Sethuraman, 2005,
2004), where a variety of verbs may occupy the central slot in each construction.

The studies mentioned above investigate, among other things, the role of individual
verbs and their properties in formation of argument structure constructions, considering
their abstract nature. Within a given construction, speakers prefer some verbs over
others. In particular, some verbs within a construction are produced more frequently
than others, they come to mind first, and they are learned earlier (e.g., N. C. Ellis &
Ferreira-Junior, 2009; Goldberg et al., 2004; Theakston, Lieven, Pine, & Rowland,
2004; Ninio, 1999b; Naigles & Hoff-Ginsberg, 1998): e.g., the SUBJECT VERB LOCA-
TION construction attracts such verbs as go, come, and get, while sleep and telephone
are rather rare (data from N. C. Ellis & Ferreira-Junior, 2009). Two groups of factors
have been considered to predict verb preference: distributional and semantic factors,
yet there is no conclusive evidence on the exact contribution of each factor. At the same
time, it is important to reveal their exact contributions, in order to better understand the
underlying nature of links between verbs and constructions in speakers’ minds. Un-
derstanding which input properties enable individual verbs to group into constructions
would contribute to our knowledge about the mental grammar, or “constructicon”.

Our goal in this study is to evaluate the role of specific distributional and semantic
factors. As a methodological tool, we use a computational model of construction
learning. Computational models enable us to overcome some of the methodological
limitations imposed by studying human subjects and, as a result, make informed
predictions about the role of some of the proposed factors. Ultimately, our study
endeavors to propose a refined prediction model explaining verb selection in argument
structure constructions. This will help us to understand which factors are responsible
for the emergence of links between verbs and constructions in the minds of language
users.

The chapter is organized as follows. In the next section (3.2.1) we review some
existing studies on the issue, motivate our focus on particular studies (N. C. Ellis et al.,
2014a, 2014b), and expose two methodological issues that we plan to address. We
also introduce distributional and semantic factors considered in the study, and explain
why these factors may be important (3.2.2). This is followed in section 3.3 by the
description of the setup of our study: computational model, input data, test stimuli, and
the exact predictor variables representing the distributional and semantic factors under
consideration. Section 3.4 consists of three studies: the first one is intended to simulate
the original experiments: we demonstrate a reasonable performance of our model in
the target task, and fit a regression explaining this performance as a function of the
predictor variables. The second study addresses two methodological issues: we show
how the regression coefficients change when each of the issues is resolved. In the final
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study (section 3.4.4) we consider alternative combinations of predictor variables that
may better explain the model’s performance in the target task. Section 3.5 summarizes
the chapter, and is followed by a short conclusion 3.6.

3.2 Theoretical overview

3.2.1 Predicting verb selection

N. C. Ellis et al. (2014a, 2014b), henceforth EOR, provided native and non-native
English speakers2 with a set of stimuli, which schematically represented argument
structure constructions with a verb missing: it about the..., s/he across the..., it

as the..., etc. Each stimulus was presented both with an animate (he or she) and with
an inanimate (it) pronoun. Participants had to spend a minute to produce verbs fitting the
slot. Note that EOR’s stimuli have a very weak semantic component: they are, in fact,
form-based patterns, and participants are free in their interpretations of the arguments’
thematic roles. Römer, O’Donnell, and Ellis (2015) motivate such an approach by
the fact that they analyze semantic associations between verbs and constructions,
and therefore it is “important to initially define the forms that will be analyzed in a
semantics-free, bottom-up manner” (p. 45). Although this is a controversial point (and
we return to it in the discussion), in this study we follow their approach.

Importantly, this task is used to investigate the acquired associations between verbs
and constructions, and it is not suitable for studying language production as such. In
production speakers start from the intended meaning, and then encode this meaning
using some of the suitable forms (words, grammatical patterns, etc.). In contrast, EOR’s
participants are cued with a pattern with little semantic information and have to select
a verb (that is, a form and a meaning at the same time) that fits the pattern. In this
capacity, the task is similar to other psycholinguistic tasks often used for studying
human memory, implicit knowledge of words, and mental grammar: the fill-in-the-
blank (cloze) task, the free word association task, and the cued recall task (see Shaoul,
Baayen, & Westbury, 2014, for a review).

Following the task, the cumulative frequency of production of each verb in each
construction was calculated. Statistical analyses revealed that the cumulative produc-
tion frequency could be predicted from three input variables – verb frequency in the
construction, contingency of verb–construction mapping, and prototypicality of verb
meaning – with an independent contribution of each variable. Here we only briefly
define the variables, more information on each of them is given below (section 3.2.2).

• Verb frequency in the construction: how frequently a verb appears within a
specific construction in the linguistic input.

2 Note that in EOR’s setup virtually no distinction is made between first (L1) and second language (L2)
speakers. This is in line with the theories of incidental (statistical) language learning, and with the
proposal in cognitive linguistics that much of the L2 learning relies on the same cognitive mechanisms
used in L1 learning (MacWhinney, 2012; N. C. Ellis & Larsen-Freeman, 2006; Ervin-Tripp, 1974).
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• Contingency of verb–construction mapping: to what extent the use of a spe-
cific construction is indicative of a particular verb, compared to other construc-
tions/verbs.

• Prototypicality of verb meaning: how representative the verb meaning is for the
general semantics of a construction.

Some of these findings are in line with some existing studies in language acquisition,
which look at verb production by children. In particular, the verb frequency effect has
been also found by Naigles and Hoff-Ginsberg (1998), Ninio (1999a), and Theakston
et al. (2004). However, Ninio (1999a) suggests that the effects of frequency and
prototypicality are not independent, and Theakston et al. (2004) find no effect of
prototypicality after the frequency is accounted for.

Additionally, there is a number of studies carried out by Ambridge and colleagues,
who investigate whether distributional and semantic factors help children and L2 learn-
ers to learn restrictions for the verb use in various argument structure constructions
(Ambridge, Bidgood, Twomey, et al., 2015; Ambridge, Pine, Rowland, Freudenthal,
& Chang, 2014; Ambridge & Brandt, 2013; Ambridge, Pine, & Rowland, 2012, etc.).
Although these studies mostly use grammaticality judgments, a production experiment
has been reported as well (Blything, Ambridge, & Lieven, 2014). This line of research
demonstrates the role of both distributional and semantic factors in construction learn-
ing. Their results in terms of the role of distributional factors are consistent with other
studies mentioned above. As for the role of semantics, Ambridge and colleagues in their
studies use a very different interpretation of verb semantics, focusing on fine-grained
discriminative features of the verb meaning, which are based on Pinker’s (2013) verb
classes (we return to this issue in the final discussion). This makes it difficult to compare
their findings in terms of verb semantics to what other studies report.

In short, there is no conclusive evidence about the exact contribution of each specific
factor to explaining the verb use within argument structure constructions. We focus on
the studies of EOR, because they investigate both groups of factors on a large set of
constructional patterns.

Methodological issues

There are two potential methodological issues in EOR’s analyses, which may have
some implications for the ecological validity of their studies. The first issue relates to
how the values of the predictor variables (in particular, frequency and contingency)
are obtained. All input estimates are based on the British National Corpus (BNC).
Although the use of large corpora for approximating language input to learners is
rather common and well justified overall, the method has certain shortcomings when it
comes to accounting for the individual variation between speakers (e.g., Blumenthal-
Dramé, 2012). The variation in individual experiences with a language may lead to the
formation of different linguistic representations in learners (Dąbrowska, 2012; Misyak
& Christiansen, 2012). The variation is even higher among L2 learners, whose learning
trajectories may vary greatly (e.g., Grosjean, 2010). In EOR’s case, verb production data
obtained from multiple individuals are predicted by input-related measures computed
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from a corpus, which is, again, generated by a language community. This way, EOR
demonstrate that their model predicts verb selection on the population level. But
cognition is individual, and for making informed claims about cognitive representations
we need to test the selection model on the input to individual speakers and individuals’
production data. This is a challenging task for studies with human subjects, because it
is nearly impossible to account for the whole learning history of an individual.

Another issue we focus on relates to the use of cumulative frequency of verb
production. Calculating the total number of times each verb has been produced by
all the speakers in a specific construction results in losing the information about the
order of production. Yet, the order of verb listing must also be taken into account.
For example, the verb position in a produced list has been shown to correlate with
the frequency of production of this verb in a category-listing task (Plant, Webster, &
Whitworth, 2011). Similarly, studies on sentence production show that, all things being
equal, the more accessible (prototypical, frequent) word in a word pair tends to be
placed earlier in a sentence than the less accessible one (e.g., Onishi, Murphy, & Bock,
2008; Bock, 1982). These findings suggest it is important to account for the order of
verb production in the experimental task described above. In fact, EOR briefly mention
this issue among the limitations of their study.

One objective of the current study is to simulate EOR’s experiments using the com-
putational model of argument structure construction learning (Alishahi & Stevenson,
2008). The second objective is to test whether the findings of EOR still hold after
addressing the two methodological issues described above; the computational model is
particularly helpful in this respect. First, it provides us with control over the input to
each simulated learner, and eliminates other possible sources of individual variation,
related to learners’ cognitive abilities, propensities, etc. (R. Ellis, 2004). Second, the
model generates the probability of production of each verb, which makes it easy to
account for the order of verb preference (see section 3.3.4 below).

Our final objective relates to the original prediction model, which uses frequency,
contingency and prototypicality to explain verb selection. Based on some theoretical
premises presented in the next section, we propose a refined prediction model in the
current study, and show that it may have a higher explanatory power than EOR’s
original model. We proceed with a critical overview of the three variables used in the
original experiments.

3.2.2 Factors affecting verb selection

Input frequency

Language learners are sensitive to frequencies of occurrence of linguistic units in
the input. Frequency effects have been demonstrated in many domains of language
processing and language use (see overviews by Ambridge, Kidd, et al., 2015; Divjak
& Caldwell-Harris, 2015; Lieven, 2010; Diessel, 2007). Frequencies also relate to
the concept of entrenchment in cognitive linguistics: more frequent words (in this
case, verbs) get entrenched stronger in learners’ minds, which makes them more
accessible (Schmid, in press; Bybee, 2006; Langacker, 1987). Although the existence
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Table 3.1: A verb–construction contingency table.

Target
construction

Other
constructions

Total

Target verb a b a+b
Other verbs c d c+d
Total a+ c b+d a+b+ c+d

of frequency effects is commonly recognized in cognitive linguistics, it is unclear yet
which frequencies count (N. C. Ellis, 2012): of a particular word form (goes), of a
lemma (all occurrences of go, went, etc.), of a form used in a specific function (go as an
imperative), of an abstract meaning alone, etc. The frequency effect may also depend
on the level of granularity of the examined units (Lieven, 2010). The complexity of
the issue is reflected in the number of different kinds of frequencies discussed in the
literature:

• Token vs. type frequency (Bybee & Thompson, 1997): the number of occurrences
(tokens) of a specific lexical unit in a corpus vs. the number of various specific
units (types) in a corpus matching a given abstract pattern.

• Absolute vs. relative frequency (Schmid, 2010; Divjak, 2008): the absolute
measure denotes the independent frequency of a unit (e.g., the verb go has been
produced 25 times in the construction he/she/it VERB across NOUN), while the
relative measure relates the frequency of the target unit to the frequencies of
competitor units, capturing this way paradigmatic relations of the units (e.g., the
verb go takes a 10 percent share of all the verb tokens produced in the construction
he/she/it VERB across NOUN). This difference between the measures has to do
with the notion of contingency (association strength), discussed in more detail in
the next section. It is useful to visualize it using a verb–construction frequency
(or contingency) table (see Table 3.1): the absolute verb frequency is expressed
as a+b, while the relative frequency must relate this value to the frequency of
competing verbs, c+d.

• Marginal vs. joint frequency: unlike the previous pair, this distinction concerns
the syntagmatic relations of two units. A unit’s marginal frequency is its overall
frequency in a corpus (e.g., the verb go occurs in the BNC approximately 86,000
times); also sometimes referred to as “raw frequency”. In Table 3.1, the marginal
frequency of the target verb is denoted as a+b, and the marginal frequency of
the target construction is a+ c. The joint frequency a, on the other hand, denotes
how frequently the target verb occurs in the target construction (e.g., the verb go
in the construction SUBJ VERB across LOC occurs in the BNC approximately
120 times).

This last distinction requires further attention here. EOR in their analysis always
employ the joint verb–construction frequency as one of the predictors. This measure
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has been considered in studies of some linguistic behaviors, such as acceptability
judgments (e.g., Divjak, 2008), as well as in language acquisition (e.g., Theakston
et al., 2004). However, these studies also take into account the marginal verb frequency.
In particular, Ambridge, Kidd, et al. (2015) argue that both types of frequencies affect
child language learning. Talking about production in particular, Blything et al. (2014)
carried out a production experiment with children, and used, among others, measures
called “entrenchment” and “preemption” to predict the probability of verb production.
Both measures were based on the overall frequency of a verb (or verbs) in the BNC,
and their observed effects also support the idea that the marginal verb frequency is
important. This idea is also in line with the theoretical account of units’ entrenchment
in the cognitive system, proposed by Schmid and Küchenhoff (2013), Schmid (2010).
They distinguish between cotext-free and cotextual entrenchment: while cotext-free
entrenchment is related to the marginal item frequency, cotextual entrenchment captures
syntagmatic associations between items, just as the joint frequency of two items does.3

For measuring the syntagmatic association strength, various association measures have
been proposed, which we discuss in the next section.

At this point it is important to note that the verb selection model of EOR does
not take into account the marginal verb frequency, and we believe that including this
variable in the model could improve it. EOR motivate their exclusion of the marginal
verb frequency (“raw”, in their terminology) by the fact that verb selection in their
test correlates better with the joint verb–construction frequency than with the marginal
verb frequency. But assuming the potentially independent effects of the two kinds
of frequencies, the inclusion of the marginal verb frequency into the model may be
justified.

Contingency of mapping

The second factor in EOR’s model is contingency, or the reliability of verb–construction
mapping. Although EOR use a particular measure explained below, contingency is an
umbrella term for multiple measures of the association strength between a particular
verb and a particular construction. The notion of contingency comes from the paradigm
of human contingency learning, focusing on learning associations between stimuli,
which are often described in terms of cues and outcomes. The term is rarely used in
linguistic studies, which prefer talking about association strength, or about “contextual-
ized” frequency measures (Divjak & Caldwell-Harris, 2015). Joint verb–construction
frequency is the simplest example of such a measure, while other measures represent
more sophisticated ways to quantify how well a verb and a construction go together.
Therefore, we argue that the simultaneous use of two contingency measures within the
same model may be redundant.

In various disciplines, the impact of contingency has been shown to be independent
from that of frequency. In particular, some classical models of memory recall implement
the effects of frequency and association strength independently of one another (Gillund

3 We follow the existing literature in assuming that the entrenchment of a unit is a mere product of its
frequency, although the impact of each individual use may, in fact, be strongly modulated by pragmatics
(Schmid, in press).
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& Shiffrin, 1984; J. R. Anderson, 1983). Studies on item- versus association-memory
in word retrieval also indicate that these two types of memories are independent of
each other (e.g., Madan, Glaholt, & Caplan, 2010; Hockley & Cristi, 1996). However,
these studies talk about the marginal item frequency, which, as we have mentioned,
deals with an item in isolation. Therefore, the mentioned studies can hardly be used
as an argument in favor of the independent effects of joint frequency and contingency
within the same model.

The second issue related to contingency has to do with the ongoing discussion in
cognitive linguistics about which contextualized measure has a higher predictive power
(Gries, 2015; Küchenhoff & Schmid, 2015; Gries, 2013; Schmid & Küchenhoff, 2013;
Bybee, 2010; Divjak, 2008; Stefanowitsch & Gries, 2003). Just as in the previous sec-
tion, these measures are commonly presented using a contingency table (see Table 3.1).
Despite a great number of proposed association measures (see overviews by Pecina,
2010; Wiechmann, 2008; Evert, 2005), we can make a simple distinction between three
types, based on how many of the table cells a–d the measure takes into account e.g.,
Divjak and Caldwell-Harris, 2015; Divjak, 2008:

1. Raw joint frequency (cell a) is the most intuitive way to measure how well a
verb and a construction go together: the verb go in the construction SUBJ VERB
across LOC occurs in the BNC approximately 120 times.

2. Conditional probabilities relate the joint frequency to the marginal token fre-
quency of either a construction (Attraction = a

a+c ) or a verb (Reliance = a
a+b ).

Such normalization of the raw joint frequency is useful when, for example, multi-
ple constructions with different frequencies are studied: the same number of 120
occurrences of a particular verb may account for 90 percent of all verb usages in
one construction, but only for 10 percent in another one.

3. Complex associative measures take into account all the four cells a–d. An
example of such a measure is ∆PAttraction, or ∆P(construction→word) = a

a+c −
b

b+d , which is used in the original studies of EOR. Other popular measures
include, e.g., Minimum Sensitivity (Wiechmann, 2008) and the p-value of Fisher–
Yates exact test (Stefanowitsch & Gries, 2003). The use of such measures can
be motivated by the need to capture the competition between the verbs and
the constructions at the same time, in particular to address the problem of
hapax legomena. For example, in a study of as-predicative (Gries, Hampe, &
Schönefeld, 2005) the unrepresentative verb catapult scored highest in Reliance
among many other verbs, only because it never occurred in other constructions
in the corpus. The use of a complex measure solved the problem in their case. At
the same time, other researchers (e.g., Schmid & Küchenhoff, 2013; Blumenthal-
Dramé, 2012; Divjak, 2008) suggest that complex measures may have little
advantage over the conditional probabilities (type 2 above).

To summarize, we think that including both joint frequency and ∆P (or any other
contingency measure) into the model, as in EOR’s studies, may not be well justified.
We suggest that only one such measure should be considered in the analysis, while the
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other is redundant. In the current study we consider one measure of each type specified
above, as well as their combinations, to test which of them predicts verb selection
better.

Semantic prototypicality

Semantic prototypicality is a concept borrowed from studies on category structure;
it is also known under alternative names, such as “family resemblance” (Rosch &
Mervis, 1975), “goodness-of-example” (Mervis, Catlin, & Rosch, 1976), “typicality”,
“goodness of membership” (Onishi et al., 2008), etc. It is common in cognitive science to
estimate the typicality of concepts within a semantic category using so-called category
norms – ranked lists of items based on human production data e.g., Plant et al., 2011;
Kelly, Bock, and Keil, 1986. EOR, however, do not use this approach, as it would
lead to circular reasoning: prototypicality is used to predict the production data, and
thus cannot be computed based on other production data. Instead, for each considered
construction (e.g., he/she/it VERB across NOUN) they build a semantic network of
verbs participating in this construction (go, move, face, put, etc.). This network is
organized according to the similarity of verb meanings, as informed by WordNet (G. A.
Miller, 1995). Using a network for a particular construction, they compute a measure
called betweenness centrality, which indicates the centrality of each verb’s meaning
in this construction. This way, the most general verbs in the construction (in this case,
go and move) tend to obtain higher prototypicality values (see Gries & N. C. Ellis,
2015; Römer et al., 2015, for more detail). In this sense, “semantic generality” would
be a more suitable term, however we follow EOR and other studies mentioned next
in using the word “prototypicality”. An additional advantage of EOR’s method to
compute prototypicality is that the resulting values are independent of the corpus-based
frequency and contingency measures.

Semantic prototypicality has also been studied in language acquisition research:
semantically general verbs have been suggested to be “pathbreaking” in child language
use (e.g., Ninio, 1999a, 1999b). However, semantic generality is often confounded
with input frequency: general verbs tend to be used most frequently (Goldberg et al.,
2004; Ninio, 1999a), and the independent effect of semantic generality is not always
found (Theakston et al., 2004). At the same time, EOR argue that the effect of semantic
prototypicality is independent of frequency: while frequency relates to entrenchment,
prototypicality has to do with the spreading activation in semantic memory (J. R.
Anderson, 1983): if verbs within a construction form an interconnected network, then
more central (general, prototypical) verbs in this network are more likely to be activated,
and thus to be produced. To summarize, there is no conclusive evidence on whether the
semantic prototypicality of a verb is a good predictor of its use.

Summary

This theoretical overview shows that the role of both the distributional (frequency,
contingency) and the semantic factors (prototypicality) requires further research. In
particular, it is unclear yet whether marginal verb frequency plays an independent



36 3.3. Material and methods

(a) Original study

(b) Our initial study: computational simulations replace human speakers.

Figure 3.1: Design of EOR’s study and its simulation; updated components are marked
with a darker color.

role in predicting verb selection; which measures of contextual frequency should be
included into a prediction model, and how many of such measures; finally, the role of
semantic prototypicality is under discussion. We will address these issues in our study,
but first we proceed with its methodological description.

3.3 Material and methods

3.3.1 Study overview

Figures 3.1–3.3 present a schematic overview of the design employed in the original
studies and in the present study, the latter being divided into three main steps. Only
a brief summary for each step is given here, while more detail can be found in the
respective sections below.

There are three main blocks of the original study: (1) experiment, (2) linguistic input,
and (3) prediction model (Figure 3.1(a)). During the experiment, L1 or L2 speakers
are exposed to a set of constructions with the main verb missing, and produce a set
of verbs. Three predictor variables are extracted from the BNC, under the assumption
that this corpus provides an approximation of the linguistic input that participants have
been exposed to in their lifetime. These variables are then used in the prediction model
to explain the frequency of production of verbs within constructions.
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(a) Accounting for individual differences: specific input samples and individuals’ production
lists are used.

(b) Accounting for order of preference: production probability replaces production frequency.

Figure 3.2: Analyses addressing methodological issues; updated components are
marked with a darker color.

The overall design of our first step (Figure 3.1(b)) is almost identical, except we
use computational simulations instead of human speakers, and different data sets. The
goal of this step is to check the validity of our computational model; that is, to see
whether it selects verbs that fit the target constructions, and whether such selection can
be explained by the same input-related features as in EOR’s experiments.

At step two we address the methodological issues described earlier (Figure 3.2).
First, we distinguish between individual input samples instead of generalizing over
the whole population (section 3.4.2 below, also Figure 3.2(a)). Second, in a parallel
analysis we employ the production probability instead of production frequency, to
account for the order of verbs produced by speakers (more detail below, in section
3.4.3, also Figure 3.2(b)).

At the final step three we test various prediction models to select the one that
explains the simulated data sets best, using the two types of design from step two (see
Figure 3.3). The following sections describe the essential components of the study:
computational model, input data, experimental setup, and predictor variables.
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(a) Models accounting for individual differences: alternative sets of predictors are considered, cf.
Figure 3.2(a).

(b) Models accounting for order of preference: alternative sets of predictors are considered, cf.
Figure 3.2(b).

Figure 3.3: Refining the prediction model; updated components are marked with a
darker color.
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3.3.2 Computational model

The model used in the current study is based on a model of human category learning,
which was shown to replicate multiple experimental findings in this area (J. R. Anderson,
1991). Alishahi and Stevenson (2008) employed the same learning algorithm for
simulating early learning of argument structure constructions (which is sometimes seen
as a categorization task: Goldberg et al., 2004). The model of construction learning
demonstrated similarity to human data in terms of U-shaped learning patterns, use
of syntactic bootstrapping (both in production and comprehension), phenomena of
over-generalization and recovery (Alishahi & Stevenson, 2010, 2008).

The model relies on some theories of cognitive linguistics and construction gram-
mar, in particular those of Tomasello (2003), Goldberg (1995); for more details, see
Alishahi and Stevenson (2008). Most importantly, the input is processed iteratively,
so that constructions gradually emerge from categorizing individual instances item
by item (similar to the theory described by Goldberg et al., 2004). At the end of the
learning process, the model uses its knowledge of argument structure constructions in
the elicited verb production task. While the learning model has been used before, the
implementation of the test task for this model is novel. We describe these steps in more
detail.

Input representations

The model is exposed to a number of instances, each of which represents a single verb
usage in a specific construction. Each instance comprises several information cues
characterizing the respective verb usage. Table 3.2 shows such a usage, with the full set
of features listed in the left column.

We make a simplifying assumption that the model can infer the values of all the
provided features from the utterance and the respective perceptual context. This means,
in particular, that the model can recognize the words in the utterance and infer their
meanings and linguistic cases (where appropriate),4 as well as to identify the role of
each participant in the described event.

Each feature Fk is assigned a value within an instance I, so that I is a unique
combination of specific feature values (F I

k ). Following some linguistic theories e.g.,
McRae, Ferretti, and Amyote, 1997; Dowty, 1991, features expressing semantic and
thematic role properties are represented as a set of elements each, and these sets were
semi-automatically obtained from the existing resources (see section 3.3.3 below). Re-
garding the thematic roles, it has been shown that the model used in this study can learn
representations of “traditional” thematic roles (e.g., AGENT, THEME) from distributed
sets of properties (Alishahi & Stevenson, 2010). A distributed representation of the
thematic roles in the current study provides at least two advantages over representing
each role as a single symbol. First, set representations enable the model to estimate

4 Note that we do not assign case-marking to personal pronouns (e.g., me = I-ACC), but use the actual
forms used in the corpus instead. Given the exceptionally high token frequencies of these forms, it
is sometimes argued that forms such as I and me co-exist in the speaker’s lexicon, without me being
derived from I (e.g., Diessel, 2007; Hudson, 1995).
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Table 3.2: An instance for the verb usage We sold the house.

Feature Value

Head predicate sell
Predicate semantics {EXCHANGE, TRANSFER, POSSESSION, CAUSE}
Number of
arguments

2

Argument 1 we
Argument 2 house
Argument 1
semantics

{REFERENCE, PERSON ..., ENTITY}

Argument 2
semantics

{DWELLING, HOUSING ..., BUILDING}

Argument 1 thematic
role

{COMPANY (N1), PERSON (N1) ..., CIVILIZATION
(N1)}

Argument 2 thematic
role

{RELATION (N1), MATTER (N3) ..., OBJECT (N1)}

Argument 1 case N/A
Argument 2 case N/A
Syntactic pattern ARG1 VERB ARG2

how similar lexical meanings or thematic roles are to each other. Second, computing
the semantic prototypicality of a verb is rather straightforward for set representations
of verb meanings (see section 3.3.5). As can be seen in Table 3.2, each verb meaning is
represented as a set of semantic primitives describing this meaning: e.g., {EXCHANGE,
TRANSFER, POSSESSION, CAUSE} for the verb sell. These elements are automatically
extracted from available sources (see section 3.3.3). An argument structure construction
(henceforth ASC) emerges as a generalization over individual instances, where each
feature contributes to forming the generalization. An ASC combines the feature values
from all the participating instances, but it is impossible to recover individual instances
from an ASC (unless it only contains a single instance). An individual instance is
a set F I of feature values F I

k (F I
k ∈ F I), and an ASC S is a set FS of feature values

FS
k (FS

k ∈ FS), but in an ASC each feature value (e ∈ FS
k ) may occur more than once,

depending on the number of participating instances with the value Fk = e.

Learning mechanism

The learning is performed using an unsupervised naive Bayes clustering algorithm. As
we mentioned, the model receives instances one by one, and its task is to group the
incoming instances into ASCs by finding the “best” ASC (Sbest ) for each given instance
I:

Sbest(I) = argmax
S

P(S|I) (3.1)
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In other words, the model considers each ASC it has learned so far, seeking the most
suitable category for the encountered instance. It makes little sense to talk about the
probability of an ASC (prior knowledge) given an instance (new evidence), therefore,
the Bayes rule is used to estimate the conditional probability in equation (3.1):

P(S|I) = P(S)P(I|S)
P(I)

(3.2)

The denominator P(I) is constant for each ASC, and therefore plays no role in making
the choice. The choice of ASC for the new instance is affected by the two factors in the
numerator:

1. The prior probability P(S), which is proportional to the frequency of the ASC
in the previously encountered input (or the number of instances that the ASC
contains so far, |S|):

P(S) =
|S|

N +1
, (3.3)

where N is the total number of instances encountered by that moment. The
learner always has an option to form a new ASC from a given instance. Although
initially such a potential ASC contains no instances, its value |S| is assigned to 1,
to avoid 0s in the multiplicative equation (3.2). The determining role of frequency
is grounded in usage-based linguistics: a frequent ASC is highly entrenched and
is easier to retrieve from memory, so that new instances are more likely to be
added to it.

2. The conditional probability P(I|S), which takes into account how similar an
instance I is to S. The higher the similarity between I and S, the more likely I to
be added to S: this is based on studies pointing to the importance of similarity in
categorization tasks (e.g., Sloutsky, 2003; Hahn & Ramscar, 2001). The model
compares each instance to each ASC by looking at the independent features
listed in Table 3.2, such as the head predicate, argument roles, etc. For example,
all being equal, two usages of the same verb are more likely to be grouped
together than two usages of different verbs, yet this can be compensated by other
features. Technically speaking, the overall similarity is a product of similarities
for individual features:

P(I|S) =
|F I|
∏
k=1

P
(
F I

k

∣∣S) (3.4)

The probability P
(
F I

k

∣∣S) in this equation is estimated differently depending on
the feature type. A smoothed maximum likelihood estimator is used for features
with values represented as a single symbol, such as head predicate, number of
arguments, lexical arguments, cases and syntactic pattern:

P
(
F I

k

∣∣S)= ∣∣{F I
k

∣∣F I
k ∈ FS

k

}∣∣+λ∣∣FS
k

∣∣+λ |Fk|
(3.5)
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where
∣∣{F I

k

∣∣F I
k ∈ FS

k

}∣∣ shows how many times F I
k occurs in FS

k , and the
smoothing parameter λ determines the default probability of F I

k in S when∣∣{F I
k

∣∣F I
k ∈ FS

k

}∣∣ = 0. The lower bound of λ (when a new ASC is created for
each encountered instance) can be computed based on how many values each
feature Fk in the data set can take. More specifically, λmin = ∏k

1
Fk

. For the data
sets in the present study (when they are used jointly), λmin = 10−17. We chose a
moderate value 10−9.

Equation (3.5) cannot be used for features with set values, because there is rarely
a full overlap between any two sets of properties (e.g., semantic properties). In
other words,

∣∣{F I
k

∣∣F I
k ∈ FS

k

}∣∣ is almost always 0. Alishahi and Pyykkönen (2011)
propose the following way to compute the probability for such features, which
we employ in this study:

P
(
F I

k

∣∣S)=
∏

e∈F I
k

P(e|S)× ∏
e∈Fk\F I

k

P(¬e|S)

 1
|Fk|

(3.6)

where Fk denotes the set of all values of this feature in the data, and Fk \F I
k

subtracts from this set all elements occurring in F I
k . The probabilities P(e|S) and

P(¬e|S) can be computed using equation (3.5), replacing F I
k with an individual

element e.

Based on the computed values of the prior and the conditional probability, the model
either places I into an existing ASC or creates a new ASC containing only one instance
I. Note that when the model receives instances from two languages during a simulation,
L1 and L2 instances are not explicitly marked as such. The only relevant information
is implicitly present in the values of such features as head predicate, arguments, and
syntactic pattern (in case it has prepositions). This ensures the model treats all instances
equally, irrespective of their language.

3.3.3 Input data and learning scenarios

Following the original experiments, we simulate L1 English (as in N. C. Ellis et al.,
2014b) and L2 English learning (as in N. C. Ellis et al., 2014a). Although the latter
study was carried out with native speakers of German, Spanish, and Czech, we only
use L1 German due to poor data availability. Manual annotation of argument structures
proved to be rather time-consuming, therefore we used available annotated resources
for English and German to automatically extract the data we needed.

We use the data sets described in chapter 2; here we briefly outline how they were
obtained.

1. The Penn Treebank for English (WSJ part, Marcus et al., 1994) and the TIGER
corpus for German (Brants et al., 2004) were used to obtain syntactically anno-
tated simple sentences.
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2. Argument structures were extracted from these sentences, using the annotations
in English PropBank (Palmer et al., 2005) and the German SALSA corpus
(Burchardt et al., 2006).

3. We further used only the sentences containing FrameNet-style annotations (Rup-
penhofer et al., 2006), either via the PropBank–FrameNet mappings in SemLink
for English (Palmer, 2009), or in the SALSA corpus for German.

4. Word semantic properties were obtained from WordNet (G. A. Miller, 1995) and
VerbNet (Kipper Schuler, 2006).

5. Symbolic thematic roles were semi-automatically replaced by sets of elements
through the WordNet–FrameNet mappings (Bryl et al., 2012).

The resulting German and English data sets contain 3,370 and 3,624 ASC instances,
respectively, which are distributed across 301 (German) and 319 (English) verb types.
The corpora mentioned above were the only large sources of English and German
data for which the annotations of argument structure were available. We acknowledge
that the kind of language in these corpora (mostly newspaper texts) differs from what
L1 and L2 learners are normally exposed to. Moreover, the distributions of verbs and
constructions in the corpora may be genre- or domain-specific and differ from English
and German in general, and the data sets are limited in size: many constructions occur
with only a few verb types (we look at this in more detail below, see section 3.4.1). This
prevents us from making statements about specific English verbs or constructions, yet
the extracted data sets do suit our goal of studying the impact of individual input-related
factors on the production of verbs in constructions.

Input to the computational model is sampled randomly from the distribution of
instances in the presented data sets. This way, the exact input to the model varies
between simulations, to simulate a population of learners with individual linguistic
experiences. In the L1 learning setup, 100 simulated learners receive a cumulative
number N = 6,000 English instances. Clearly, human adult speakers are exposed to
much more input than 6,000 utterances, but given the size of our data sets, this value
is large enough: the model achieved a stable level of ASC knowledge on the target
input data set after receiving 6,000 instances. In the L2 setup, 100 learners are exposed
to N = 12,000 instances: 6,000 L1 German instances, followed by 6,000 instances
of “bilingual” input, in which English and German are mixed in equal proportions.
This way, L2 learners only encounter 1

2 ×6,000 = 3,000 English instances, to simulate
non-native speakers whose L2 proficiency is lower than L1 proficiency.

3.3.4 Test data and elicited production
Learning was followed by the elicited production task. The model was provided with a
number of test items, each of which was intended to elicit the production of verbs in a
single construction. Following the original experiments, we looked at the representation
of verbs within form-based constructions, without the semantic component: just as
EOR’s participants, the model is free in its interpretation of the arguments’ thematic



44 3.3. Material and methods

roles. We further refer to these units as “constructions”, to distinguish them from
the emergent ASC representations in the computational model. We did not limit our
analysis to prepositional constructions with only two arguments (as did EOR), because
this would substantially reduce the amount of the available data in our case. Instead, we
used all the available constructions. In terms of ASC representations used by the model,
each construction was defined as a syntactic pattern, e.g. ARG1 VERB about ARG2
(for a full list of patterns, see Table 3.4 below). To follow the design of the original
experiments, we constructed the test stimuli as follows. Following EOR’s approach,
two stimuli were generated for each construction: the first one had either a pronoun
he or a pronoun she (randomly selected) as the first argument head, and the second
one had a pronoun it as the first argument head. This way, each stimulus occurred once
with an animate (s/he) and once with an inanimate pronoun (it). The other argument
heads were masked, together with the verb. Therefore, during the testing the model was
provided with a number of test ASC instances Itest , which only contained the values of
a few features: number of arguments, syntactic pattern, the first argument (the selected
pronoun) and its semantics (e.g., {REFERENCE, PERSON ..., ENTITY} for he). As a
result, test stimuli were similar to those used in the original experiments (in this case,
he about the...). Given a test instance, the model’s task was to produce a list of
verbs fitting the empty slot. Such elicited production is implemented as a generation of
a set of verbs enumerated with their respective probabilities of production (Vproduced).
There is no upper boundary for the number of verbs produced, but verbs with low
probabilities of production are excluded from the analysis. The probability of each
Vj ∈Vproduced given a test instance Itest is calculated as follows:

P(Vj
∣∣Itest) = ∑

S
P(Vj

∣∣S)P(S|Itest) (3.7)

The right side of equation (3.7) is a sum of the products of two probabilities,
computed for each acquired ASC. P(Vj

∣∣S) is estimated as provided in equation (3.5),
and P(S|Itest) is transformed and computed in exactly the same way as during the
learning (see equations 3.2–3.4). In other words, to select verbs to fill in a test stimulus,
the model first computes how similar the stimulus is to each ASC, and assigns the
similarity weights to ASCs. Next, the model considers each verb associated with
an ASC, and takes into account both the frequency of the verb in this ASC and the
similarity weight of the ASC, to obtain the evidence from this ASC in favor of selecting
particular verbs. Finally, such evidence values from all the existing ASCs add up,
determining the final selection probability of each verb.

Note that our model is not equipped with explicit language control mechanisms,
which human speakers can use for inhibiting activated representations from a non-target
language (Kroll, Bobb, Misra, & Guo, 2008; Green, 1998). Therefore, the model may
produce L1 verbs in the L2 elicited production task, which is taken into account in our
analysis of production data.
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3.3.5 Predictor variables

The predictor variables proposed in the original experiments are the joint verb–construc-
tion frequency F(v,c), the ∆P-contingency ∆PA(v,c), and the prototypicality of verb
meaning Prt(v,c). These measures are used for predicting the selection of verbs within
each construction. Therefore, the measures are obtained based on the input data which
the input to the model is sampled from. Two different methods are used for computing
the values.

Our first goal is to simulate the original experiments of EOR closely following
their analysis, therefore we adopt their approach of calculating the values of F(v,c),
∆PA(v,c), and Prt(v,c) from the whole English data set, without accounting for the
individual variation in the input. The value of joint frequency F(v,c) is extracted from
the input data set directly, together with additional measures such as the marginal verb
frequency F(v), and the marginal construction frequency F(c): these were needed for
computing the value of contingency ∆PA(v,c):

∆PA(v,c) = P(v|c)−P(v|¬c) =
F(v,c)
F(c)

− F(v)−F(v,c)
N−F(c)

, (3.8)

where N denotes the total size of the input data, in this case 3,624 instances. In simple
terms, ∆P-contingency is the probability of a verb given a construction minus the
probability of the verb’s occurrence in all the other constructions. ∆P can take values
as high as 1 (when the verb mostly occurs with the target construction) and as low as
−1 (when the verb is proportionally much more frequent in other constructions).

As for prototypicality, recall that each verb meaning in ASC instances is represented
as a set of elements (e.g., {EXCHANGE, TRANSFER, POSSESSION, CAUSE}), and we
consider a verb v to have a higher prototypicality in a construction c when its meaning
Mv shares more elements with the meanings Mi of all the other verbs i (excluding v)
occurring in c (i ∈ c\ v):

Prt(v,c) =
∑i∈c\v

|Mi∩Mv|
|Mv|

|c\ v|
, (3.9)

where |c\ v| is the number of verb types participating in c, excluding v. We did not
use EOR’s betweenness centrality values, because they were based on a so-called path
similarity between verbs in WordNet, but the hierarchy of verbs in WordNet did not
reflect the true hierarchy of verb meanings in our data sets.5 At the same time, Prt(v,c),
as defined here, operates on the actual sets used in ASC instances, and suits our setup.
The two measures, however, are conceptually similar: more general verbs with fewer
semantic components (give: {POSSESSION, TRANSFER, CAUSE}) tend to score higher

5 As an alternative, we tried to calculate the similarity between verb meanings using the actual sets of
semantic elements used in our data sets, build a resulting network based on these similarity values
for each construction, and then calculate betweenness centrality on this network. Recall, however,
that many constructions in our data sets occurred with only a few verb types: computing betweenness
centrality on such a small network yielded an abundant number of 0s, which was damaging for our
analysis.
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than more specific ones (purchase: {BUY, GET, POSSESSION, TRANSFER, CAUSE,
COST}).

Our second goal is to address the methodological issues, in particular individual
variation, therefore in the respective analysis the values of the three measures are
calculated for each simulated learner individually, based on the actual input sample
it receives. To do this, during each simulation we record the information about the
occurrence of individual verb usages in the actual input: F(v), F(c), and F(v,c). Thus,
the value of joint frequency F(v,c) is directly available from the recorded information,
and the values of contingency ∆PA(v,c) and prototypicality Prt(v,c) are calculated as
given above (equations 3.8–3.9), but based on a particular input sample instead of
the whole data. N in this case is equal to the actual amount of input: 6,000 for L1 or
12,000 for L2 simulations.

The goal of our final study is to identify the best set of variables predicting verb
selection. In particular, when presenting the three types of contingency measures, we
have mentioned that we plan to test one measure of each type. A raw frequency measure
F(v,c) is available directly, and a complex measure ∆PA(v,c) is calculated according
to equation (3.8). Therefore, we only need a measure of the second type, a conditional
probability. We use Attraction(v,c), henceforth A(v,c), which normalizes the joint
verb–construction frequency by the marginal construction frequency:

A(v,c) = P(v|c) = F(v,c)
F(c)

(3.10)

The next section describes our simulations and the obtained results. First, we
simulate the original experiment for L1 (N. C. Ellis et al., 2014b, experiment 2) and for
L2 (N. C. Ellis et al., 2014a), keeping our setup and analysis as close as possible to the
original experiments, to see whether our model produces results similar to those of the
original experiments. Next, we address the two methodological issues by reanalyzing
the data obtained from the same simulated learners, to examine whether the original
results still hold in the new analysis. Finally, we use a number of regression models
which include different combinations of predictions, to determine which factors predict
the production data best.

3.4 Simulations and results

3.4.1 Simulating the original experiments
In this section we employ the elicited production task described in section 3.3.4 above
to obtain a list of produced verbs. Using this list, we look at the verbs produced within
some individual constructions, run correlation tests for individual constructions, and
perform a combined analysis on the whole data set as described next.

Methodological details

Each simulated learner has produced a list of verbs fitting every given construction.
EOR in their experiments limited the number of produced verbs by allocating a minute
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for each stimulus. To adopt a similar approach, we had to filter out verbs whose
probability of production was lower than a certain threshold. The value of .005 was
established empirically, by testing values between .05 and .001. Using this threshold
value, for each verb in a certain construction we calculate the total production frequency
of this verb by all learners, henceforth PF(v,c). If a verb has not been produced by
any learner in a certain construction, the verb–construction pair is excluded from the
analysis, to obtain data similar to EOR’s. For analyzing L2 production data, we exclude
all L1 verbs produced by the model, because these are irrelevant for our analysis.

First we look at the verbs produced within a sample of ten individual constructions:
four most frequent constructions in our data set, and six constructions present in both
EOR’s and our data set.

Next, to compare our model to EOR’s human subjects, we look at whether each
of the three factors – F(v,c), ∆PA(v,c), and Prt(v,c) – correlates with PF(v,c) within
each construction in our data set, using Pearson correlation coefficient.6

Finally, we proceed with a combined regression analysis on the whole data set.
Again, to make the results comparable with EOR’s findings, we first consider only the
six constructions present in both their and our data set. However, this is a rather small
sample, therefore we run an additional regression analysis on our whole data set of 44
constructions. Before fitting the models, we standardize all the variables, to make the
β coefficients directly comparable and to reduce the collinearity of predictors. We run
multiple regression analyzes to predict PF(v,c) by the three factors: F(v,c), ∆PA(v,c),
and Prt(v,c). Note that the values of the mentioned variables in this simulation set are
computed using the first method described in section 3.3.5 – that is, for the whole input
data set, following the original experiments.

L1 simulations

First we look at the verbs produced by the model within ten individual constructions
selected as described above: the produced lists are provided in Table 3.3. We can see
substantial differences between the frequencies of occurrence of individual construc-
tions in the input data. Some of them are rather frequent: e.g., A1 V A2 occurs 2,508
times with 224 verb types, and A1 V occurs 724 times with 119 verb types. In contrast,
most prepositional constructions are infrequent: in particular, the six constructions
from EOR’s data set occur only 1 to 11 times with 1 to 6 verb types. Respectively, the
number of verb types generated by the model per construction also varies between
2.4 and 84.2 in this subset of ten constructions. It is also clear from the table (see
bold font) that the model sometimes produces verbs which are unattested in the target
construction in the input. We discuss this in the interim discussion below.

To see whether the frequencies of verb production correlate with each of the
three target factors, as in EOR’s study, we run a series of correlation tests reported in
6 As in the original study, we add 0.01 to all the predictors as well as to the outcome variable. We

additionally increment ∆PA(v,c) by 1, to avoid having negative values in the data. The last step is
necessary, because we log-transform all the variables as in EOR’s studies. The log-transformation is
justified by the fact that practice (which in our case is reflected in production frequency) is believed to
be a power function of experience (Newell & Rosenbloom, 1981), and therefore a power transformation
can linearize the relationship between PF(v,c) and at least one of the predictors, namely F(v,c).
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Table 3.4. We can see that both the joint frequency F(v,c) and ∆P-contingency are
correlated with the production frequency PF(v,c) for almost all constructions: verbs
which appear more frequently in a construction or which are associated more strongly
with a construction are also produced more frequently by the model. This is not always
the case for the third predictor, prototypicality Prt(v,c): significant correlations of this
variable with production frequency are only observed for 23 out of 44 constructions. In
particular, there is no such correlation for any of the six constructions present in EOR’s
data (marked with an asterisk in Table 3.4). We address this issue below in the interim
discussion. The next step, as we mentioned above, is to provide combined regression
analyses of the data set.

The summary of the three models is provided in Table 3.5(a–b). Overall, the results
are similar to what EOR report: all the three variables contribute to predicting the
verb production frequency. However, the difference is that Prt(v,c) in our experiment
appears to be a less important predictor, which is reflected in the β values (from 0.05
to 0.06 in our study, depending on the set of constructions, vs. 0.29 in the original
study). We have run an additional analysis, in which we kept the verbs that appeared in
a construction in the input, but were not produced in this construction by the model:
PF(v,c) for such verbs was assigned to 0. Besides, we have run mixed-effects models
(e.g., Baayen, 2008), as implemented in R (D. Bates, Mächler, Bolker, & Walker, 2015),
for the same two sets of constructions, with a random intercept and random slopes
for all the three factors over individual constructions. The results appeared to be very
similar to what is reported here, therefore we leave them out for brevity.
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Table 3.4: Summary of correlation tests between PF(v,c) and each of the three factors
for individual constructions in L1 replication data.

F(v,c) ∆PA(v,c) Prt(v,c)
Construction r p r p r p
A1 V .96 <.001 .17 .002 .05 .372
A1 V A2 .94 <.001 .13 .020 .08 .162
A1 V A2 A3 .44 <.001 .22 <.001 .11 .044
A1 V A2 about A3 .18 .001 .18 .001 .21 <.001
A1 V A2 above A3 .21 <.001 .21 <.001 .14 .011
A1 V A2 across A3 .33 <.001 .33 <.001 .22 <.001
A1 V A2 among A3 .19 .001 .19 .001 .03 .622
A1 V A2 as A3 .43 <.001 .42 <.001 .13 .020
A1 V A2 at A3 .43 <.001 .28 <.001 .17 .003
A1 V A2 by A3 .28 <.001 .28 <.001 .13 .023
A1 V A2 for A3 .43 <.001 .43 <.001 .12 .029
A1 V A2 from A3 .36 <.001 .31 <.001 .18 .001
A1 V A2 in A3 .35 <.001 .34 <.001 .21 <.001
A1 V A2 into A3 .30 <.001 .30 <.001 .09 .125
A1 V A2 of A3 .22 <.001 .21 <.001 .12 .034
A1 V A2 on A3 .46 <.001 .33 <.001 .15 .006
A1 V A2 over A3 .42 <.001 .42 <.001 .15 .008
A1 V A2 through A3 .27 <.001 .27 <.001 .20 <.001
A1 V A2 to A3 .61 <.001 .39 <.001 .19 .001
A1 V A2 under A3 .16 .003 .16 .003 .21 <.001
A1 V A2 until A3 .32 <.001 .32 <.001 .14 .011
A1 V A2 with A3 .49 <.001 .46 <.001 .10 .062
A1 V about A2* .27 <.001 .22 <.001 .02 .663
A1 V against A2* .36 <.001 .36 <.001 −.01 .875
A1 V at A2 .31 <.001 .29 <.001 .02 .692
A1 V below A2 .13 .020 .13 .020 .13 .021
A1 V by A2 .29 <.001 .23 <.001 .02 .779
A1 V for A2* .65 <.001 .63 <.001 −.12 .294
A1 V from A2 .13 .022 .13 .022 −.09 .095
A1 V from A2 A3 .56 <.001 .56 <.001 .10 .086
A1 V in A2 .25 <.001 .17 .002 −.04 .468
A1 V into A2* .21 <.001 .17 .002 −.07 .220
A1 V of A2* .35 <.001 .35 <.001 .08 .133
A1 V on A2 .40 <.001 .31 <.001 .12 .037
A1 V on A2 A3 .23 <.001 .23 <.001 .20 <.001
A1 V to A2 .15 .009 .13 .020 .01 .828
A1 V to A2 A3 .23 <.001 .23 <.001 .16 .003
A1 V to A2 about A3 .48 <.001 .48 <.001 .09 .101
A1 V to A2 of A3 .49 <.001 .49 <.001 .09 .094
A1 V up A2 .09 .107 .09 .107 .19 .001
A1 V upon A2 .23 <.001 .23 <.001 .06 .255
A1 V with A2* .36 <.001 .32 <.001 −.06 .285
A1 V with A2 in A3 .26 <.001 .26 <.001 .07 .216
A1 V with A2 on A3 .44 <.001 .44 <.001 .17 .002
* Constructions present in EOR’s data.
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Table 3.5: Summary of the multiple regression models fitted to the L1 replication data.

a. L1 simulations: constructions present in EOR’s data set
PF ∼ F +∆P+Prt

Variable β SE p LMGa V IF

F(v,c) 0.69 0.03 < .001 .59 2.75

∆PA(v,c) 0.25 0.03 < .001 .40 2.74

Prt(v,c) 0.05 0.02 .008 .01 1.02

Multiple R2 = .83, adjusted R2 = .82

b. L1 simulations: all constructions
PF ∼ F +∆P+Prt

Variable β SE p LMG V IF

F(v,c) 0.57 0.01 < .001 .73 1.13

∆PA(v,c) 0.25 0.01 < .001 .25 1.14

Prt(v,c) 0.06 0.01 < .001 .02 1.02

Multiple R2 = .50, adjusted R2 = .50

c. L2 simulations: constructions present in EOR’s data set
PF ∼ F +∆P+Prt

Variable β SE p LMG V IF

F(v,c) 0.70 0.02 < .001 .57 2.73

∆PA(v,c) 0.29 0.02 < .001 .41 2.73

Prt(v,c) 0.05 0.01 .002 .02 1.02

Multiple R2 = .90, adjusted R2 = .90

d. L2 simulations: all constructions
PF ∼ F +∆P+Prt

Variable β SE p LMG V IF

F(v,c) 0.59 0.01 < .001 .75 1.12

∆PA(v,c) 0.24 0.01 < .001 .23 1.14

Prt(v,c) 0.06 0.01 < .001 .02 1.03

Multiple R2 = .51, adjusted R2 = .51
a This measure is used in EOR’s studies: it computes the importance of each predictor relative to the other

predictors by analyzing how the regression coefficients change when various combinations of predictors
are excluded from the model. The measure was proposed by Lindeman, Merenda, and Gold (1980) and
implemented in R by Grömping (2006).
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L2 simulations

For the sake of space we omit the lists of verbs produced in the L2 simulations, as
well as the correlational results per construction. There were some differences between
the actual sets of verbs produced in L1 and L2 simulations, but these would not be
immediately obvious from verb lists or correlation tables. Although comparing L1 to
L2 simulations was not our goal in this study, to further demonstrate that our model
performed as expected on the simulated task, we quantified the differences between the
verbs produced in L1 and L2 simulations, to compare these differences to what Römer,
O’Donnell, and Ellis (2014) report. We adopted an approach similar to theirs and ran
a mixed-effects regression analysis predicting the frequencies of verbs produced in
L2 simulations from those in L1 simulations, with the random slope over individual
constructions. The model fit was reasonable (marginal R2 = .57, conditional R2 = .65)7,
and the β -coefficient reflecting the correlation between the produced verb frequencies
in L1 and L2 simulations was equal to 0.71, which is rather close to the average value
of 0.75 reported by Römer et al. (2014) for native English vs. native German speakers.

Next, we proceed with reporting on the combined regression analysis of the L2
simulation data set. Table 3.5(c–d) summarizes the regression results for the simulated
L2 production data. Overall, the results are similar to those for L1, and to those of
EOR. Note that the values of the three target variables, following EOR’s study, were
computed for English constructions only. For the same reason, although the model
produced some German verbs in the test task, these verbs were excluded from our
analysis. However, the input to the model consisted of both English and German
constructions, many of which are shared by the two languages. Since our model treated
L1 German and L2 English instances in exactly the same way, it could be fairer to
compute the values of F(v,c), ∆PA(v,c), and Prt(v,c) for the whole data set, assuming
that each construction may be associated with both English and German verbs. This is
why we ran an additional analysis, in which all the produced German verbs were kept
during the analysis, and the values of the three variables were computed for the whole
bilingual data set. Again, the results were very similar to the ones reported above.

Interim discussion

To summarize, the model performs as expected on the target task: verbs which appear
in a construction in the input tend to populate the top of the respective list of produced
verbs for this construction. Since there are six constructions present both in this study
and in EOR’s study, we would ideally compare the verbs produced by the model and by
human participants. Yet, in our input data set these constructions occur with only 1 to 6
verb types, and the model tends to produce these verbs first. In contrast, naturalistic
language input to human participants is more varied: each construction occurs with a
greater variety of verb types, and EOR’s participants are not as limited in their verb
choice as the model is. Besides, the distribution in the input per construction differs
across the two studies: human participants are mostly exposed to colloquial language,

7 These coefficients indicate the amount of variance explained by the fixed factors and by the full model,
respectively (Johnson, 2014), and are computed using an existing R implementation (Bartoń, 2016).



54 3.4. Simulations and results

while our input data set is based on business newspaper texts from the Penn Treebank
(WSJ part). This is reflected in verb selection: human participants tend to produce
colloquial verbs (e.g., go, be, dance with ...), while the model often prefers specialized
verbs (join, cooperate, merge with ...), although in both cases verbs produced first tend
to be the most frequent ones in the respective input data set.

Given the low number of verb types in some prepositional constructions, the model
generalizes and produces verbs unattested in these constructions, marked with bold in
Table 3.3. These verbs mostly appear at the bottom of the list for each construction, with
a few exceptions, such as A1 elect A2 A3, A1 disclose A2 to A3, and A1 sell into A2.
Although these usages may not be the most common ones, they are not ungrammatical
either, and could easily appear in a larger language sample: e.g., they elected him
president; he ... discloses it to others; rivals ... sell into that market (examples taken
from the BNC). This suggests that our model is able to find reasonable generalizations
using the input. At the same time, some occasionally produced verbs are ungrammatical,
such as A1 send about A2, A1 listen of A2, etc. This happens because the model’s
exposure to the target construction is limited in terms of participating verb types, and
there may not be enough support for making correct generalizations. Besides, as we
argue below in this section, verb semantic representations in the input data are not
rich enough. This is why the model overgeneralizes and produces such ungrammatical
usages. However, as we mentioned, the ungrammatical usages tend to appear at the
bottom of the list, and do not compromise the model’s performance on the verb
production task. Besides, the difference between the frequencies of verb production
in L1 and L2 simulations is very close to the value reported by Römer et al. (2014),
which further defends the performance of our model on this task. Nevertheless, the fact
that we could not compare the model’s performance to human data in terms of specific
verbs leaves the possibility that the model does not perform exactly like humans in the
target task.

As for the correlations and the combined regression analysis, the frequency of
production of verbs in our simulations can be predicted by joint verb–construction fre-
quency, ∆P-contingency, and to some extent by verb semantic prototypicality. However,
prototypicality does not correlate with the production frequency in all constructions,
and its contribution to predicting production frequency is smaller than in EOR’s studies.
We propose three possible explanations of this result.

The first explanation is that our computational model does not rely on this factor to
the extent human speakers do when generating verbs in constructions. This, indeed,
may be the case, because the predicate semantics is only one out of many features
in our representation of verb usages (recall Table 3.2). In other words, our model
may underestimate the importance of the verb meaning in learning argument structure
constructions. Note, however, that EOR in one of their studies (N. C. Ellis et al.,
2014a) also did not observe significant correlations between the production frequency
and semantic prototypicality for 5 out of 17 constructions in the data obtained from
L1 English as well as L1 German speakers. In our simulations prototypicality was
correlated with the production frequency in 23 out of 44 constructions, and it had an
independent contribution in all the regression models reported above.

The second explanation relates to the type of semantic representations that the
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model operates on. Human speakers are often believed to possess fine-grained semantic
representations of verbs: for example, Pinker (2013) proposes such narrow semantic
rules as “transfer of possession mediated by separation in time and space” (p. 129). In
contrast, semantic representations in our data set are extracted from WordNet and Verb-
Net and are more simplistic than that (e.g., give: {POSSESSION, TRANSFER, CAUSE}).
This is not critical for the simulated learning process, because the discrimination be-
tween different verbs is supported by other features in the data, such as arguments’
thematic proto-roles. However, in our analysis the prototypicality values are computed
based on the verb semantics only, and the impoverished semantic representations may
lead to the lower impact of semantic prototypicality in our study.

Our final explanation relates to how the prototypicality measure operates on a large
and dense (as in EOR’s study) vs. a small and sparse data set (as in our study). EOR
computed semantic prototypicality of a verb in a construction based on a rich semantic
network of all verbs that appear in this construction in the BNC. BNC is a rather
large source, and it is unlikely that EOR’s participants, given a construction, would
produce a verb which is unattested in this construction in the BNC. In contrast, some
constructions in our data set appeared with only a few verb types, in which case the
prototypicality values were computed based on a rather small set of these few verbs.
Yet the model often produced verbs which were unattested in this construction (non-
members), but were semantically similar to other verbs that did appear in the target
construction (members). To give an example, a construction ARG1 VERB ARG2 for
ARG3 appeared in our data set with only five verbs: substitute, elect, hail, criticize, and
remove. In the production task, the model generated these five verbs rather frequently,
but there were other frequent verbs, in particular praise, chastise, and indict. Clearly,
these verbs are allowed in the target construction, partly because they are somewhat
synonymic to the construction members, at least when used in the target context (to
VERB someone for a reason): chastise and indict are similar to criticize, while praise is
similar to hail. In fact, the non-members must have been included into the target set
of verbs, and the semantic prototypicality of all the verbs must have been calculated
on this extended set. Since we had no way to predict beforehand which verbs would
be produced by the model (and thus, should be included into the set), we computed
all prototypicality values on the smaller set of verbs. This was particularly the case
for the six constructions shared between our data set and EOR’s data set: recall that
these constructions appeared in the input with only a few verb types. As a result,
prototypicality values for such constructions might not be very objective, hence the
rather low contribution of this variable to predicting the frequency of verb production.
At the same time, the correlation between prototypicality and production frequency is
also very small for some frequent constructions, such as ARG1 VERB ARG2 and ARG1
VERB (at the top of Table 3.4), which cannot be explained by the account outlined
above. We believe this has to do with the incoherence of semantic networks for such
constructions, and we leave this issue for the final discussion.

The small effect of semantic prototypicality in data simulated by our model should
be addressed in the future; for now it is important to keep in mind that the reported
impact of semantic prototypicality in the current study may be underestimated. Apart
from the described limitation, our model was able to replicate the main effects reported
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in the original studies, both for L1 and L2. In the next section we address the two
methodological issues of the original study discussed earlier (see section 3.2.1 above).

3.4.2 Addressing the methodological issues: Individual variation
In this second analysis we take into account the individual variation in the linguistic
input, while trying to keep the rest of the design as close as possible to the previous
analysis. We use the same set of simulated learners described in the previous section to
predict verb production by the three target variables. The differences from the previous
analysis are described next.

Methodological details

This time we do not calculate the cumulative frequency of production of each verb
in a specific construction, PF(v,c), as we did earlier. Instead, for each verb produced
by each simulated learner we define a binary outcome variable, which is set to 1 if
the probability of production of this verb equals at least .005 (the threshold value
from the previous analysis), and to 0 otherwise. This way, we now do not combine
the data from all learners into a single PF(v,c) value, but instead have data from
individual simulated learners, while keeping the rest of the design very close to what
was reported in the previous section. Besides, we compute the values of the three
target variables – F(v,c), ∆PA(v,c), and Prt(v,c) – for each simulation individually,
based on a specific input sample. To keep up with the previous analysis, we apply
the same data transformations as described before. To account for potential individual
variation between constructions and learners, we use logistic mixed-effects models
with the binary outcome variable described above, with F(v,c), ∆PA(v,c), and Prt(v,c)
as fixed factors, and with constructions and learners as random factors. All the mixed-
effects models for both L1 and L2 simulated data were fit to the two data sets: EOR’s
constructions only, and the whole data set, just as in the previous section. We started
from maximal random effect structure with the random intercept and three random
slopes (for each predictor), however the maximal model only converged for EOR’s
subset of L2 simulated data, therefore we removed some random slopes.

Results

The results are provided in Table 3.6. We did not use the LMG relative importance
measure from the previous analysis, because it could not be applied to mixed-effects
models. In this set of models the β -coefficients for ∆PA(v,c) are generally small (0.02 to
0.08), with the exception of the model fitted to EOR’s constructions in L1 simulations
(∆PA(v,c) = 0.26). However, even in the latter case the respective SE value is rather
high (0.18), suggesting high variation in the data regarding the effect of ∆PA(v,c).
Besides, there is substantial variability among the coefficients for Prt(v,c): between
−0.08 and 0.38. The coefficients are greater in the models fitted to all constructions
(0.38 and 0.37), compared to the models fitted to EOR’s constructions only (0.10 and
−0.08). Note that, surprisingly, in the latter case this coefficient has a negative value,
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Table 3.6: Summary of the mixed-effects models accounting for individual language
experience.

a. L1 simulations: constructions present in EOR’s data set
Prod. ∼ F +∆P+Prt +(1+∆P|learner)+(1+∆P|constr.)

Variable β SEa 95%CIa V IF

F(v,c) 0.58 0.01 [0.56,0.60] 1.03

∆PA(v,c) 0.26 0.18 [−0.09,0.61] 1.00

Prt(v,c) 0.10 0.02 [0.06,0.13] 1.03

b. L1 simulations: all constructions
Prod. ∼ F +∆P+Prt +(1|learner)+(1|constr.)

Variable β SE 95%CI V IF

F(v,c) 0.89 0.00 [0.88,0.90] 1.95

∆PA(v,c) 0.02 0.00 [0.01,0.02] 2.01

Prt(v,c) 0.38 0.01 [0.36,0.39] 1.07

c. L2 simulations: constructions present in EOR’s data set
Prod. ∼ F +∆P+Prt +(1+F +∆P+Prt|learner)+(1+F +∆P+Prt|constr.)

Variable β SE 95%CI V IF

F(v,c) 0.75 0.06 [0.62,0.87] 1.32

∆PA(v,c) 0.08 0.06 [−0.04,0.20] 1.41

Prt(v,c) −0.08 0.09 [−0.26,0.09] 1.09

d. L2 simulations: all constructions
Prod. ∼ F +∆P+Prt +(1|learner)+(1|constr.)

Variable β SE 95%CI V IF

F(v,c) 0.89 0.01 [0.88,0.90] 1.42

∆PA(v,c) 0.05 0.00 [0.04,0.06] 1.50

Prt(v,c) 0.37 0.01 [0.35,0.39] 1.07
a Due to the large sizes of the data sets, the reported SE and CI values for all the models are approximate,

based on the Wald tests (D. Bates, Mächler, Bolker, & Walker, 2015).
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however the respective variation in the data is high again (SE = 0.09). Besides, the
respective model (fitted to EOR’s constructions in L2 simulations) is the only one
which includes random slopes for Prt(v,c) over individual constructions and individual
learners (see Table 3.6(c)), suggesting that some of this variation may come from
accounting for the individual variation in the data.

Interim discussion

The models reported above predict verb production while taking into account differ-
ences in individual linguistic experiences of simulated learners. By comparing this
kind of analysis to the original one, we can investigate whether taking into account
individual variation may potentially lead to different results. Although our goal was to
keep the data and the analysis maximally consistent with the previous setup, there are
still differences in the type of outcome variable used (numeric production frequency
vs. binary outcome) and, as a result, in the type of models fitted to the data (linear vs.
logistic regression). This does not allow us to compare coefficients pairwise across
the two types of analysis, however the general pattern of difference suggests that the
effect of ∆P-contingency may not be as high as predicted earlier, as soon as individual
variation is taken into account.

The results on the individual variation in terms of semantic prototypicality are
somewhat inconclusive. On the one hand, the positive effect of semantic prototypicality
is present in the new models fitted to the full data sets, in both L1 and L2 simulations,
and in the new model fitted to EOR’s constructions in L1 simulations. On the other hand,
there is not enough evidence for such effect in EOR’s constructions obtained from L2
simulations. This must relate to whether the respective prediction model accounts for the
variation between individual learners regarding this factor: we fitted an additional model
to the same data, this time without the random slope for prototypicality over individual
learners, and this model did predict a positive effect of semantic prototypicality. In
other words, our data suggest that semantic prototypicality may play a role for some
learners, but not for others.

3.4.3 Addressing the methodological issues: Order of preference
In the third set of analyses we look into the order of verb production by the same
simulated learners, trying again to keep the rest of the design as close as possible to the
original procedure.

Methodological details

In this set of analyses we record the actual probability of production of each verb by
each simulated learner in each construction and then compute the cumulative proba-
bility, PP(v,c), using it as the outcome variable in regression, instead of cumulative
frequency. Cumulative frequency of a verb only shows how many times it is produced
overall, while cumulative probability preserves the order of verb production by adding
up the actual values of verb production probability for each learner. Unlike in the
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previous section, we are not interested in the variation between learners’ individual
experiences, therefore we use the values of F(v,c), ∆PA(v,c), and Prt(v,c) computed
for the overall data set, to keep this analysis as close as possible to the original one.
Again, we use the threshold value of .005 and apply the same data transformations as
before. To account for the variation between constructions, we use linear mixed-effects
models with PP(v,c) as the outcome variable, with F(v,c), ∆PA(v,c), and Prt(v,c)
as fixed factors, and with the random intercept and three random slopes (for each
predictor) over individual constructions. One random slope has been removed from one
final model to ensure its convergence. The rest of the analysis follows the originally
outlined procedure.

Results

The summaries of the prediction models are provided in Table 3.7. Just as in the previous
set of analyses, we can see that the effect of ∆P-contingency is small (the greatest
β -coefficient is 0.03), and even negative (−0.04) for one of the models. Besides, in
all cases the respective 95%CI includes 0, suggesting that the contributions of ∆P-
contingency are not significant in these models.

In other respects this new set of models is similar to the original analysis. The other
two factors, joint frequency F(v,c) and prototypicality Prt(v,c), have their independent
contributions, although in one case the 95%CI for prototypicality includes 0. The
overall fit of the models to the data is lower than reported in our first analysis: they
explain 34 to 66% of the variance in the data (see R2

c values in the table), and only 28
to 47% of this is explained by the fixed factors (R2

m values): to compare, the overall fit
of the models in the original analysis varies between 50 and 90%. 8

Interim discussion

The models reported above predict the cumulative probability of verb production by
the simulated learners. Unlike the originally reported models (see section 3.4.1), this
type of analysis accounts for the order of verb preference by our simulated L1 and
L2 learners. Most importantly, none of the four models suggest that ∆PA(v,c) is an
independent predictor, when the order of verb production is taken into account. Recall
that both joint frequency and ∆P-contingency are measures of the contextual frequency:
this may explain why we do not observe the independent effects of both measures at
the same time. Indeed, the approximate correlation coefficient between β s for joint
frequency and ∆P-contingency (this coefficient is not included into the tables) appears
to be rather large, between −0.50 and −0.74. In other words, the higher the β for
frequency, the lower the β for ∆P-contingency, and vice versa.

The poorer fits of the models support our idea that there is space for refining
the original prediction model used so far in the analyses: another set of variables
may explain the data better without predicting so much random variation between
constructions. We will investigate this issue in the next section.

8 For a fairer comparison of model fits across the two types of analysis, we also looked at the mixed-
effects models mentioned in section 3.4.1, and their fits were still higher than reported here.
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Table 3.7: Summary of the mixed-effects models accounting for the order of verb
preference.

a. L1 simulations: constructions present in EOR’s data set
PP ∼ F +∆P+Prt +(1+F +∆P+Prt|constr.)

Variable β SEa 95%CIa V IF

F(v,c) 0.56 0.08 [0.41,0.72] 1.74

∆PA(v,c) −0.04 0.09 [−0.21,0.13] 1.70

Prt(v,c) 0.06 0.05 [−0.03,0.15] 1.39

R2
m = .28, R2

c = .34b

b. L1 simulations: all constructions
PP ∼ F +∆P+Prt +(1+F +∆P+Prt|constr.)

Variable β SE 95%CI V IF

F(v,c) 0.84 0.04 [0.77,0.93] 1.86

∆PA(v,c) 0.03 0.02 [−0.01,0.07] 1.96

Prt(v,c) 0.14 0.02 [0.10,0.18] 1.09

R2
m = .47, R2

c = .64

c. L2 simulations: constructions present in EOR’s data set
PP ∼ F +∆P+Prt +(1+F +∆P|constr.)

Variable β SE 95%CI V IF

F(v,c) 0.53 0.08 [0.37,0.68] 1.64

∆PA(v,c) 0.02 0.08 [−0.13,0.18] 1.63

Prt(v,c) 0.14 0.04 [0.06,0.22] 1.02

R2
m = .32, R2

c = .37

d. L2 simulations: all constructions
PP ∼ F +∆P+Prt +(1+F +∆P+Prt|constr.)

Variable β SE 95%CI V IF

F(v,c) 0.85 0.05 [0.75,0.95] 2.20

∆PA(v,c) 0.03 0.02 [−0.01,0.08] 2.25

Prt(v,c) 0.14 0.02 [0.10,0.17] 1.05

R2
m = .47, R2

c = .66
a The reported SE and CI values are estimated via parametric bootstrap with 1,000 resamples (D. Bates,

Mächler, Bolker, & Walker, 2015).
b R2

m and R2
c stand for marginal and conditional R2 coefficients.
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3.4.4 Refining the prediction model

Our next goal is to test whether there is a better set of predictors explaining the pro-
duction data. Based on our theoretical overview, we have three issues to address. First,
theoretical accounts suggest that the marginal verb frequency may play an independent
role in verb selection, therefore we believe that including marginal frequency into
the prediction model would improve its fit to the data. Second, the presence of two
contextual frequency (association) measures in the model may not be well justified,
and eliminating one of them might not necessarily damage the model. Finally, there
are multiple measures of contextual frequency, three of which we plan to test: joint
frequency, ∆P (as in the previous analyses), and Attraction.

Methodological details

We start by fitting a number of mixed-effects models of the type described in the second
analysis (logistic models taking into account individual differences) and in the third
analysis (linear models taking into account order of preference). To ensure that the
models generalize well over different constructions, we use the full set of constructions
for fitting each model, and not EOR’s subset. The structure of fixed factors in the
models is defined as described below.

I II III
Production ∼ joint f req.×∆P × prototyp.(m1a)
Production ∼ joint f req.×attr. × prototyp.(m2a)
Production ∼ attr.×∆P × prototyp.(m3a)
Production ∼ joint f req. × prototyp.(m4a)
Production ∼ attr. × prototyp.(m5a)
Production ∼ ∆P × prototyp.(m6a)
Production ∼ verb f req. × joint f req.×∆P × prototyp.(m1b)
Production ∼ verb f req. × joint f req.×attr. × prototyp.(m2b)
Production ∼ verb f req. × attr.×∆P × prototyp.(m3b)
Production ∼ verb f req. × joint f req. × prototyp.(m4b)
Production ∼ verb f req. × attr. × prototyp.(m5b)
Production ∼ verb f req. × ∆P × prototyp.(m6b)

In all the equations above, component I represents the marginal verb frequency, compo-
nent II comprises contextual frequency measures, and component III is the semantic
prototypicality. We start with the original model tested in the previous sections, m1a.
Models m2a–m3a resemble m1a, but they test alternative pairs of the three contextual
frequency measures. Models m4a–m6a, in contrast, eliminate one of the contextual
frequency measures, keeping only one. Finally, the other six models (m1b–m6b) mirror
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Table 3.8: Model rankings.

L1 data L2 data

Individual
differences

Order of
preference

Individual
differences

Order of
preference

Rank Model ∆AICc Model ∆AICc Model ∆AICc Model ∆AICc

1 m2b 0 m2b* 0 m2b 0 m2b* 0

2 m1b 2,601 m1b 20 m1b 1,893 m1b 21

3 m4b 5,842 m4b 39 m4b 5,236 m4b 41

4 m2a 9,867 m3b* 57 m2a 5,810 m3b* 66

5 m1a 13,892 m5b 131 m1a 8,282 m5b 135

6 m4a 16,539 m6b 614 m4a 11,475 m6b 579

7 m3b* 23,403 m2a* 846 m3b* 19,627 m2a* 749

8 m5b 34,996 m1a 855 m5b 29,330 m1a 760

9 m3a* 36,100 m4a 858 m3a* 30,887 m4a 762

10 m5a 55,234 m3a* 921 m5a 43,980 m3a* 833

11 m6b 64,844 m5a 1,023 m6b 53,950 m5a 932

12 m6a 93,828 m6a 1,496 m6a 72,918 m6a 1,363
* Models which showed multicollinearity problems (V IF > 3 for some predictors).

models m1a–m6a, respectively, but add the marginal frequency measure to their coun-
terparts. Note that the models are multiplicative due to the log-transformation of all the
variables: log(y) = log(a)+ log(b)+ log(c)⇒ y = abc. Studying and interpreting in-
teractions between variables in such models are not straightforward, and for simplicity
we do not include any interaction terms in the prediction models.

We compare the fit of all the 12 models using their corrected Akaike information
criterion (AICc), as implemented in R (Bolker & R Development Core Team, 2016).
This is a common method to compare models in a multimodel inference paradigm
(Burnham & D. R. Anderson, 2002).9

Results: model comparison

The ranked list of the models with their respective AICc values is provided in Table 3.8,
which is also visualized in Figure 3.4.

9 It has been argued (Greven & Kneib, 2010) that using AICc to compare models with different structures
of random factors leads to a bias in favor of a more complex random factor structure. For this reason,
to ensure the model comparison is fair, in linear models we only use random intercepts over individual
constructions. In logistic models (accounting for individual differences) we would ideally use random
intercepts over individual learners and constructions, but some of the models with random intercepts
did not converge, therefore we used simple logistic regression without random effects.
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Figure 3.4: Model rankings visualized. ∆AICc for a model M in each subplot shows
the difference between the AICc of the best model in that subplot and the AICc of
the model M. ∆AICc of the best model in each subplot is 0, and higher AICc values
correspond to worse model fits.

First we have to note that models m2a–m3a and m2b–m3b in some cases yielded
multicollinearity problems. This was caused by the presence of two contextual fre-
quency measures in these models, which sometimes were highly correlated even after
applying the data transformations. The models which show this problem, even if ranked
rather high, may not be very informative in terms of their coefficients.

Furthermore, we notice that the order of the models in the four lists is not identical,
although there are clear similarities. The original model m1a is far from being the best
one in any list. A pairwise comparison of the models demonstrates that m1b–m6b,
which include the marginal verb frequency F(v), always fit the data better than their
respective counterparts without F(v): m1a–m6a. In other words, adding F(v) to any
model improves its fit. If we further look only at the ranks of the “better” models m1b–
m6b, we can see that the models with two contextual frequency measures (m1b–m3b)
generally outperform the models with only one such measure (m4b–m6b). The only
exception from this pattern is the single-measure model m4b, which is ranked third in
each list, always higher than m3b. In all the four lists, the best model is m2b, therefore
we look at this model in more detail in the following section.

Predictive power of each factor

To look at the impact of individual predictors in the refined model, in Table 3.9 we
provide the summary of the model m2b ranked highest in each list. To account for the
random variance, we refit m2b to each data set, this time including random slopes for
each predictor (linear models accounting for order of preference), or random intercepts
(logistic models accounting for individual variation).
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Table 3.9: Summary of the best models of m2b type.

a. L1 simulations: model accounting for individual differences
Prod. ∼ F(v)+F(v,c)+A+Prt +(1|learner)+(1|constr.)

Variable β SEa 95%CIa V IF

F(v) 0.64 0.01 [0.63,0.66] 1.03

F(v,c) 0.65 0.01 [0.64,0.67] 6.48

A(v,c) 0.11 0.00 [0.10,0.11] 6.54

Prt(v,c) 0.33 0.01 [0.31,0.35] 1.07

b. L1 simulations: model accounting for order of preference
PP ∼ F(v)+F(v,c)+A+Prt +(1+F(v)+F(v,c)+A+Prt|constr.)

Variable β SEb 95%CIb V IF

F(v) 0.29 0.04 [0.21,0.37] 1.36

F(v,c) 0.73 0.10 [0.53,0.92] 5.14

A(v,c) 0.07 0.05 [−0.02,0.17] 5.78

Prt(v,c) 0.10 0.02 [0.06,0.14] 1.14

R2
m = .52, R2

c = .72

c. L2 simulations: model accounting for individual differences
Prod. ∼ F(v)+F(v,c)+A+Prt +(1|learner)+(1|constr.)

Variable β SEa 95%CIa V IF

F(v) 0.63 0.01 [0.62,0.66] 1.06

F(v,c) 0.60 0.01 [0.58,0.62] 6.29

A(v,c) 0.16 0.01 [0.15,0.17] 6.31

Prt(v,c) 0.33 0.01 [0.32,0.35] 1.07

d. L2 simulations: model accounting for order of preference
PP ∼ F(v)+F(v,c)+A+Prt +(1+F(v)+F(v,c)+A+Prt|constr.)

Variable β SEb 95%CIb V IF

F(v) 0.30 0.04 [0.22,0.38] 1.45

F(v,c) 0.77 0.11 [0.55,1.00] 6.18

A(v,c) 0.06 0.05 [−0.05,0.16] 6.79

Prt(v,c) 0.08 0.02 [0.05,0.12] 1.13

R2
m = .53, R2

c = .75
a Values are based on the Wald tests.
b Values are estimated via parametric bootstrap with 1,000 resamples.
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Looking at the summary in Table 3.9, we first observe that the four fixed factors in
the linear models explain 52% of the variance for L1 data, and 53% for L2 data (see R2

m
coefficients). This is higher compared to the original prediction models for the same
data sets (47%, see section 3.4.3).

Next, we can see that all the models yield collinearity problems: the variance
inflation factor for A(v,c) and F(v,c) varies between 5.14 and 6.79. This suggests
high collinearity between the two predictors. This is supported by the high correlation
between β s for A(v,c) and F(v,c) in all models, varying between −0.89 and −0.91.
Considering that the random slopes for A(v,c) and F(v,c) could not be included into
the logistic models, the random variation in these models may be underestimated. In
sum, even though A(v,c) and F(v,c) demonstrate their independent effects in the two
logistic models, the respective β -coefficients may not be very informative.

The coefficients for Prt(v,c) in linear models are also rather small, 0.10 and 0.08.
Most importantly, the effect of F(v) is high in all the models.

Interim discussion

The comparison of prediction models supports our proposal that the marginal verb
frequency plays an independent role in predicting verb production in our simulated data.
The parallel use of two contextual frequency measures appears to improve the model fit
overall, contrary to our expectations. Yet, including two contextual frequency measures
leads to collinearity issues: there is often a trade-off between the overall fit of the model
to the data and the informativeness of its β coefficients. The use of a single measure is
supported by our analysis of individual predictors, which suggests that the contextual
frequency can be considered as a single component: joint frequency and Attraction
capture the same type of syntagmatic relation between verbs and constructions. In other
words, it is the combined effect of contextual frequency which is important, but not the
individual effect sizes of joint frequency and Attraction. If one needs to chose a single
contextual frequency measure between joint frequency, Attraction, and ∆P-contingency,
our analysis suggests that joint frequency is the best measure: recall the high ranks of
model m4b.

Considering contextual frequency as a single component, its individual impact
in all the models is the highest, compared to the other predictors. The impact of
prototypicality appears to be rather small in some refined models, but so it is in the
original models as well: again, recall that our computational model may underestimate
the importance of this factor.

3.5 General discussion

In this study we examined whether the selection of verbs within constructions could
be explained by the distributional and semantic properties of these verbs and construc-
tions, to see which factors may be responsible for establishing links between verbs and
constructions in speakers’ minds. We started from adopting the proposal by EOR that
the frequency of production of a verb in a construction can be predicted by the joint
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verb–construction frequency, the contingency of verb–construction mapping, and the
prototypicality of the verb meaning. In what follows, we first briefly recapitulate how
our simulations are similar and dissimilar to the human data. Since semantic prototypi-
cality is the main issue in this respect, we discuss it next. The discussion is continued
with a comparison of the results across three types of analysis provided above. Next
we explain how the prediction model can be improved by avoiding multiple measures
of contextual frequency, and by including marginal frequency instead. Additionally, we
discuss how the use of form-based representations of constructions may have affected
the findings, and address other theoretical challenges. Finally, we briefly talk about the
computational model used in this study, and provide a short conclusion.

3.5.1 Simulations vs. human data
We used a computational model of construction learning to simulate the verb production
experiments from EOR’s studies. The analysis of verbs produced in the computational
simulations demonstrated the model’s reasonable performance on the target task:
given a construction, the model mostly produced verbs that had been attested in this
construction in the input. There were some exceptions, which suggest that the model
was able to perform sensible generalizations over individual verb usages. At the same
time, the type of the input data used in this study made it impossible to directly compare
the verbs produced by the model to those produced by human participants, suggesting
that we cannot claim that the model exactly replicated human linguistic behavior in the
target task.

Our initial correlational and regression analyses showed main effects similar to
those in the original experiments of EOR. In particular, we observed independent
contributions of all the three predictors to explaining the frequency of verb production.
Additionally, a preliminary comparison of the verb lists produced by the model in L1
vs. L2 simulations demonstrated that the degree of difference between the two lists was
similar to that reported by Römer et al. (2014) for native German vs. native English
speakers. However, a qualitative comparison between the simulated L1 and L2 verb
lists is still needed. The main difference between the results obtained in our simulations
and those reported by EOR related to the effect of semantic prototypicality, which
appeared to be lower in our simulated data. We discuss this issue next.

3.5.2 Meaning prototypicality, data sparsity, and semantic coher-
ence

We proposed three possible explanations for the low impact of semantic prototypicality:
(1) the role of verb semantics is underestimated in the learning algorithm used by our
model; (2) verb semantic representations in our data sets are impoverished compared
to those in human speakers; (3) our semantic prototypicality measure performs poorly
on infrequent constructions due to the data sparsity. Regarding the last explanation, we
also found that the correlations between semantic prototypicality and verb production
frequency were also low within some frequent constructions in our data set, for which
dense information on verb use was available: ARG1 VERB and ARG1 VERB ARG2.
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We suggest this has to do with the degree of semantic coherence of a construction.
Following the setup of the original studies, we have used highly abstract constructions
defined by their shallow form, which may not be semantically coherent. In particular,
if we look at the verbs produced within the most frequent construction ARG1 VERB
ARG2, these comprise several semantic groups: verbs of mental state (e.g., want),
verbs of transfer (e.g., buy, sell), verbs of communication (e.g., announce), and many
others. Given this variety, the construction is unlikely to have a single semantic core
surrounded by multiple peripheral verbs. Instead, there are multiple semantic centers,
and a single measure of semantic prototypicality may not capture such organization
well, in particular when some semantic verb classes within a construction are much
richer than others. This might be why we do not observe an effect of prototypicality in
such constructions. In contrast, the effect is larger in constructions whose semantics
is more coherent, because they actually have a single “prototypical” core. To give
an example, the ARG1 VERB ARG2 ARG3 construction in our data (which comprises
ditransitive verb usages, but also allows for adverbial arguments) is represented by
eight verbs: drag, give, hang, lead, place, pull, send, and tell. Most of these are physical
action verbs, the only exception being tell, hence high semantic coherence and a high
effect of semantic prototypicality.

To compare, Theakston et al. (2004) in their study of early verb use did not find
enough support that semantic prototypicality of a verb could predict the age when
this verb first appeared in the child’s speech, and the constructions they used – SVO,
VO, and the intransitive – were highly abstract, and thus unlikely to be semantically
coherent. This may also explain why the prototypicality effect was observed in the
studies of EOR: they only focused on various constructions with locative semantics in
their analyses, which may be more semantically coherent.

The question whether the effect of prototypicality is related to the degree of semantic
coherence of a construction requires further investigation. As a counter-argument to
this claim, Ambridge, Bidgood, Pine, Rowland, and Freudenthal (2015) find the effect
of semantics in the passive, a semantically general construction. Note, however, that the
interpretation of semantics in their study (and in other related studies: e.g., Ambridge
et al., 2014, 2012) differs from semantic prototypicality as defined in this study. The
reasoning behind this study (following EOR) is that more prototypical verbs are
produced more frequently (because of how the activation spreads within a semantic
network). This is why semantic verb features used in our study must capture the
essential properties of the respective events. In contrast to this, the idea in the series of
studies mentioned above is that particular nuances of verb meanings help in acquiring
restrictions on the verb use. Therefore, these studies focus on very specific fine-grained
features of a verb meaning, which do not necessarily provide much information about
the general semantics of the event, but do help in discriminating between different
verbs and verb classes. This account is largely based on Pinker’s (2013) theory, in
which “it’s not what possibly or typically goes on in an event that matters; it’s what the
verb’s semantic representation is choosy about in that event that matters” (p. 127). For
this reason, the effect of semantics in this study and in EOR’s study is not immediately
comparable to the findings of Ambridge and colleagues. Building more comprehensive
verb meaning representations based on both general event features and fine-grained
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discriminatory features could open new prospects in this area: such representations
could be used for training both our computational model and the model of Ambridge
and Blything (2015).

3.5.3 Comparing the results across three types of analysis
We further carried out two additional analyses, to account for the potential between-
learner variation in the linguistic input, and for the order of verb production by each
(simulated) learner. These additional analyses of our simulated data suggest that the type
of analysis may affect the main findings, in particular in terms of the observed effect of
∆P-contingency, which we address below. This is consistent across the two additional
analyses, suggesting that both individual variation and order of learners’ preference is
important, which is in line with studies suggesting that individual differences play a
role in language learning e.g., R. Ellis, 2004, and that speakers do not arrive at the same
mental grammar e.g., Dąbrowska, 2012; Misyak and Christiansen, 2012. To verify the
predictions made by our model in this respect, we would need to compare the results
to human empirical data on individual variation and order of preference, which are
missing yet.

3.5.4 Multiple measures of contextual frequency
Contingency may sometimes fail to demonstrate its independent effect because of the
other variable included into the prediction model: joint verb–construction frequency.
Both variables capture how well a verb and a construction go together (i.e., contextual
frequency). If the hypothesized cognitive effect of the verb–construction association
is loaded on both variables, one of them may show no independent impact. This
issue was addressed by testing a number of alternative prediction models. One of our
questions was whether models with one or with two contextual frequency measures
would predict the data better. Our findings in this respect were somewhat inconclusive.
On the one hand, prediction models which included two such measures were in general
ranked higher than models which included only one measure. On the other hand, the
independent effects of both joint frequency and contingency were not always present
within the same prediction model. In fact, it was the combined impact of the two
measures that was consistent across prediction models, but not the independent effect
of each contextual frequency measure. This is why we suggest that it is a single effect
of the contextual frequency that is cognitively plausible, while each measure (i.e.,
joint verb–construction frequency, Attraction, or ∆P-contingency) provides a particular
quantitative representation of this effect. The correlation between the measures may be
lower or higher in a specific data set, and this is why sometimes, but not always, it is
justified to include two contextual frequency measures into a prediction model.

The relation between association strength and joint verb–construction frequency
may also resemble the relation between the effects of entrenchment and preemption on
learning argument structure restrictions, described by Ambridge, Bidgood, Twomey,
et al. (2015). Both the entrenchment and preemption hypotheses predict that the distri-
bution of verbs over argument structure constructions affects the learning of the related
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usage restrictions, because of the verb’s occurrence in either competing constructions
(preemption hypothesis), or in all constructions (entrenchment hypothesis). In fact,
independent contributions of these two factors within the same prediction model have
been sometimes found (e.g., Blything et al., 2014; Ambridge, 2013). Yet, Ambridge,
Bidgood, Twomey, et al. (2015) suggest that entrenchment and preemption are not
independent mechanisms, but only effects that may or may not be observed, depending
on the exact set of constructions in a study. Similarly, the effects of both association
strength and joint frequency in our study capture the same mechanism of competition
between verbs in the speaker’s mind.

Whenever a single measure of contextual frequency must be considered in the
analysis, our study supports joint verb–construction frequency as the best measure,
although more research is needed in this respect. In particular, a more advanced factor
analysis (e.g., of the type employed by Maki & Buchanan, 2008) may clarify the
relationship between different measures of contextual frequency.

3.5.5 Marginal verb frequency

The results in terms of marginal (overall) verb frequency are more straightforward. We
found a consistent effect of the marginal verb frequency, in line with some data in lan-
guage acquisition research (Blything et al., 2014; Theakston et al., 2004). Besides, this
effect was independent from that of joint verb–construction frequency, in accordance
with the proposed distinction between cotextual and cotext-free entrenchment (Schmid
& Küchenhoff, 2013; Schmid, 2010). Based on this result, the effect of marginal verb
frequency is worth investigating in human production data. In particular, this is theoret-
ically supported by some existing memory research (Madan et al., 2010; Hockley &
Cristi, 1996), where item memory (reflected in our case in marginal verb frequency) is
believed to be independent of associative memory (in our case: contextual frequency
measures).

At the same time, the marginal frequency of a verb may relate to the diversity of
syntactic environments in which this verb is used. Although some frequent verbs may
be used in only a few types of constructions, in general a verb’s frequency is likely to
be higher when the verb is used in a great variety of construction types. In this capacity,
the observed effect of the marginal verb frequency in our study may be similar to what
Naigles and Hoff-Ginsberg (1998) report in their child language study: verbs which
appear in diverse syntactic frames are used more frequently.

Speaking about the effect of marginal verb frequency compared to that of contextual
frequency, our data suggests that contextual frequency has a higher impact on verb
selection than marginal frequency. This is a rather reasonable conclusion: when cued
by a construction, speakers are more likely to produce frequent verbs related to the cue,
rather than verbs which are frequent overall. However, if there are two verbs fitting
the construction equally well, the one which is more frequent overall will be preferred.
This is consistent with the fact that constructions attract only some verbs and reject
other verbs (e.g., Stefanowitsch & Gries, 2003; Goldberg, 1995).
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3.5.6 Alternative construction representations

In this study, constructions were defined solely by their shallow form. This is a common
approach in corpus linguistics, because it is easy to automatically look for syntactic
forms in a corpus. An efficient search for constructional meanings, on the other hand,
would only be possible in a corpus that is semantically annotated, which is most often
not the case. At the same time, constructions are commonly defined as pairings of form
and meaning e.g., Croft, 2001; Goldberg, 1995; Langacker, 1987. Assuming a priori
that a shallow pattern has a meaning does not guarantee that this meaning is unified
and coherent, and that the hypothesized construction is cognitively real. Defining a
construction by explicitly describing both its form and its meaning may be a better
practice.

The described problem is particularly evident in the current study, as well as in
EOR’s studies. Form-based patterns do not predefine the argument roles, and therefore,
could be interpreted by participants in multiple ways. This sometimes resulted in the
production of verbs with different argument structures within the same pattern: e.g.,
come and throw in he/she/it across the ...; or eat and write in he/she/it as the
...; with some usages even looking ungrammatical: he/she/it knows as the ..., he/she/it
climbs of the ..., etc. data from English native speakers in N. C. Ellis et al., 2014b.
Similarly, in our study multiple semantic interpretations were possible, for example,
for ARG1 VERB ARG2 ARG3. Besides, the problem in both studies is reinforced by
the use of both animate (s/he) and inanimate (it) pronouns as the subject of each test
stimulus: it may be argued that the animate pronouns represent an AGENT, while the
inanimate pronoun is more likely to be a FORCE, hence two different constructions.

This leads us to the issue of the level of granularity of constructional patterns. It has
been suggested that observed frequency effects may depend on the level of granularity
of a construction under consideration (Lieven, 2010). The issue has also been touched
on by Theakston et al. (2004), who show that different researchers employ different
constructions in similar studies: for example, Ninio’s (1999) VO and SVO constructions
are combined within the same transitive construction by Goldberg (1998). In other
words, the results may be also conditional on the chosen level of granularity of con-
structions. Together, these issues call for a similar analysis of different constructional
representations. An earlier study with the same computational model (Matusevych,
Alishahi, & Backus, 2015a) suggests that the observed effects of input-related factors
on verb selection depend, indeed, on the type of constructional representations. Yet,
the issue requires further investigation.

3.5.7 Further theoretical challenges

This study additionally touches on some theoretical questions that need to be addressed
in the future. One of them is the relation between naturalistic and experimental verb
production data. In this study, just as in EOR, the production of verbs was elicited
by constructional stimuli. This is different from related studies of verb production by
children (e.g., Theakston et al., 2004; Naigles and Hoff-Ginsberg, 1998; Ninio, 1999a,
1999b), which work with naturalistic samples of child language. It is unclear whether
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such “field” data are directly comparable to the experimental data from elicited produc-
tion experiments: for example, in the natural data some verbs within a construction may
be used more often simply because of the higher referential frequency of the actions,
states, etc. they refer to.

This leads us to the problem of defining the true nature of such phenomena as a
unit’s frequency, semantic prototypicality, and entrenchment. In this study we have
simplistically assumed that a unit’s frequency reflects its entrenchment, and that the fre-
quency is independent of prototypicality, but these relations are not so trivial (Schmid,
in press; Geeraerts, Grondelaers, & Bakema, 1994). To mention only some complica-
tions, when a unit is perceptually salient in speech (e.g., a word which is very unusual
in a given genre or context), it may contribute more to memory consolidation (and
entrenchment) than when it is less salient. Besides, it has been argued that the frequency
(e.g., the referential frequency) does play a role in determining prototypicality (see
an overview in Gilquin, 2006). Highly controlled studies of these phenomena could
clarify the theory, and computational modeling can be helpful in this respect.

3.5.8 Computational model of construction learning
The final issue to address is the computational model employed in this study. On the one
hand, simulation results always depend to a certain extent on the chosen model. To give
an example from this study, semantics in our model is only one out of many features
that guide construction learning, and the role of semantics may be underestimated
compared to human learners. If that is indeed the case, then the differences in the size
of effects reported in this study and in EOR’s study may be attributed to the model’s
inability to replicate the exact linguistic behavior of human speakers.

On the other hand, when the model, as in our case, produced results similar to
some existing experimental findings, this supports the plausibility of the model. The
similarity of our results based on L1 and L2 simulations to those of EOR supports the
assumption that incidental learning takes place in both L1 and L2 learning. Besides, the
fact that the model is able to produce verbs relevant for a given construction, suggests
that the emergent constructional representations in the model may approximate well
what humans learn. Unfortunately, the type of the input data used in the present study
does not allow us to compare the production data to the original study in terms of
specific verbs and constructions, and this issue should be addressed in the future to
better evaluate the potential of this computational model. One fruitful direction may
be to investigate the role of frequency vs. verb semantics in the process of learning
verb–construction associations (as in Ambridge & Blything, 2015), as opposed to
looking at the static knowledge of such associations in simulated speakers.

3.6 Conclusion

In this chapter we presented a computational simulation of the verb production experi-
ments of N. C. Ellis et al. (2014a, 2014b) using a usage-based, probabilistic model of
argument structure construction learning. Our experiments showed that the model’s
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performance in the verb production task could be predicted by the same variables as
the performance of human participants in EOR’s experiments. Our follow-up analyses
addressed some methodological limitations of these experimental studies, and sug-
gested a refined version of the verb production model proposed by EOR. In particular,
the frequency of production of verbs within argument structure constructions in our
simulated data could be predicted by joint verb–construction frequency, contingency of
verb–construction mapping, and prototypicality of verb meaning, although the effect
of prototypicality was lower than in the human data. We then carried out two addi-
tional analyses on the same simulated data sets, to account for individual variation
between speakers and for order of their verb preference. The results suggest that the
type of analysis may affect the main findings. In particular, the effects of both joint
verb–construction frequency and contingency measure within the same prediction
model are not always observed. Finally, we compared a number of prediction models
with different variables. The best prediction model included overall verb frequency in
the input data, semantic prototypicality, and two contextual frequency measures: joint
verb–construction frequency and Attraction. However, the high correlation between
the contextual frequency measures suggests that their effects are combined rather than
independent. We believe this refined prediction model should be tested on experimental
data with human subjects.



CHAPTER 4

The impact of first and second language exposure on
learning second language constructions1

4.1 Introduction

How is the learning of argument structure constructions in a second language (L2)
affected by basic input properties such as the amount of input and the moment of L2
onset? This question touches on an important claim in usage-based theories of learning,
namely that our knowledge of language is directly based on our experience with it, in
particular the linguistic input we are exposed to. The amount of input and the moment
of L2 onset are variables which are widely discussed in the field of second language
acquisition (SLA). Yet, the exact question posed above has not received much attention
either in usage-based linguistics or in SLA, although many closely related issues have
been studied.

The impact of the moment of onset and the amount of exposure has been inves-
tigated in the domain of first language (L1) word learning, resulting in a number of
competing hypotheses (see overviews by Hernandez & Li, 2007; Juhasz, 2005). Most
researchers agree that word learning is affected both by the time of the word onset and
the amount of exposure to that word. These findings might be applicable to the devel-
opment of abstract constructions as well, especially since cognitive linguistics rejects
a strict dichotomy between language domains such as lexis and grammar. However,
some argue that there is a functional distinction between lexical items and abstract

1 This chapter is derived in part from an article published in Bilingualism: Language and Cogni-
tion 16 September 2015 © Cambridge University Press, available online: http://dx.doi.org/10.1017/
S1366728915000607
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http://dx.doi.org/10.1017/S1366728915000607
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constructions (Boas, 2010). Learning abstract constructions is different from word
learning in that it is based on pattern-finding skills such as analogy and categorization
(Abbot-Smith & Tomasello, 2006; Tomasello, 2003). There is also some neurological
evidence that abstract constructions and lexical items are characterized by different
representation in the human brain, and might be subject to different learning mecha-
nisms (Pulvermüller, Cappelle, & Shtyrov, 2013; Pulvermüller & Knoblauch, 2009).
The difference in how words and abstract patterns are stored in memory is also one of
the central points in the declarative/procedural model (e.g., Ullman, 2015; Pinker &
Ullman, 2002). These differences suggest that the findings on word learning are not
immediately generalizable to construction learning, and vice versa.

Interest in L2 construction learning has been growing recently (Ambridge & Brandt,
2013; Tyler, 2012; Gries & Wulff, 2009, 2005, etc.). In particular, it has been investi-
gated how L2 construction learning depends on distributional properties of the linguistic
input, such as the frequency of using verbs in constructions, or the generality of verb
meanings (N. C. Ellis et al., 2014a; Römer et al., 2014; McDonough & Nekrasova-
Becker, 2012; Boyd & Goldberg, 2009; Year & Gordon, 2009), but not on the amount
of input and the moment of onset – factors commonly discussed in SLA literature.

The biggest challenge of studying input-related factors and their impact on language
development is that their effects are often hard to disentangle. Studies on both L1 and
L2 learning have shown that the amount of exposure and the time of onset are often
confounded (Muñoz & Singleton, 2011; Flege, 2008; Ghyselinck, Lewis, & Brysbaert,
2004), and observational and experimental studies cannot easily solve this problem. In
contrast, computational modeling allows researchers to manipulate input properties one
at a time and to examine their individual impact on language development (Monner
et al., 2013; Zhao & Li, 2010; Monaghan & A. W. Ellis, 2002; A. W. Ellis & Lambon
Ralph, 2000).

In this study, we use a computational tool for investigating how the learning of L2
argument structure constructions depends on the moment of L2 onset and the amount
of L2 input. Our goal is not to develop a cognitive model of how humans learn a second
language, but to simulate L2 construction learning from bilingual input in a purely
data-driven fashion and without incorporating any unrelated (e.g., biological or social)
factors. This approach allows us to analyze how the development of L2 constructions
changes as a result of systematic manipulations of the amount of exposure and the
time of onset. Although the use of computational modeling prevents us from making
conclusive claims about human L2 construction learning, our simulations can provide
useful intuitions on this process, which may then be tested with human subjects.

4.1.1 Variable definitions and the problem of confounding
SLA literature often talks about the age of onset, or the age of acquisition. However,
the appropriateness of the term ‘age’ has been questioned. Talking about age has been
suggested to be not informative, because this is not a basic variable, but a macrovariable
that aggregates multiple interrelated factors (e.g., Flege, 2008; Montrul, 2008; Jia &
Aaronson, 2003), which can be grouped into three broader categories (Larson-Hall,
2008; Moyer, 2004; Jia & Aaronson, 2003):
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1. Biological–cognitive factors: state of neurological and cognitive development
(Birdsong, 2005), neuroplasticity (Long, 1990), etc.

2. Socio-psychological factors: motivation, the need to be fluent, self-perception of
fluency, etc. (Moyer, 2004).

3. Experiential factors: amount and distribution of L1 and L2 input, contexts of use,
contacts with L2 native speakers, etc. (Moyer, 2004).

The proposed categorization indicates how important it is to exactly specify which
‘components’ of age are being studied. This can be especially well illustrated by studies
on the age of acquisition in L1 processing. Some of them (e.g., Mermillod, Bonin,
Méot, Ferrand, & Paindavoine, 2012; Izura et al., 2011; A. W. Ellis & Lambon Ralph,
2000) use the term ‘age of acquisition’ interchangeably with ‘order of acquisition’.
This can be confusing, because conventionally ‘order’ only reflects a sequential nature
of the input presentation during the learning, while ‘age’ is associated with biological
changes that accompany maturation. Speaking in terms of the categorization proposed
above, order of acquisition falls into the category of experiential factors, while ‘age’ is
a proxy variable for the three groups. Thus, the relative onset of two languages is better
described by such terms as ‘moment of onset’, or ‘time of onset’, or simply ‘onset’, to
avoid references to biological–cognitive or socio-psychological factors.

Strict variable definitions, however, do not resolve the problem of their confounding.
In the SLA literature, the contributions of the amount of L2 input and the L2 onset
have been debated. In particular, Flege (2008) claims that the confounding of the
variables has resulted in underestimating the predictive power of L2 input, compared
to the L2 onset. Similarly, studies on L1 processing have discussed what affects the
word processing: the amount of exposure to a specific word (i.e., its frequency), or
the moment of its first encounter. Some theories, such as the cumulative frequency
hypothesis (M. B. Lewis, Gerhand, & Ellis, 2001) and the frequency trajectory theory
(Mermillod et al., 2012), attribute a determining role to the frequency, rather than
to the order of acquisition. Other theories, such as the lexical–semantic competition
hypothesis (Brysbaert & Ghyselinck, 2006; Belke, Brysbaert, Meyer, & Ghyselinck,
2005), focus more on the order effect, claiming it can be both frequency-related and
frequency-independent. The problem of confounding is difficult to solve with human
learners, which justifies the use of computational models in the field.

Another reason to use highly controlled computational models is a lack of accurate
measures able to capture, for example, the actual amount of language input that learners
are exposed to. Muñoz and Singleton (2011) describe some of the difficulties involved
in measuring the actual amount of L2 input, both in immersion and in classroom
settings. A systematic investigation of the impact of L2 onset and L2 amount requires
addressing these methodological challenges. Computational modeling has been widely
used to study related issues, as we show in the next section, although no models have
simulated the bilingual learning of abstract constructions.
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4.1.2 Existing computational models

Connectionist simulations have been widely used in studying the order of acquisition
effects in L1 processing (e.g., Mermillod et al., 2012; Lambon Ralph & Ehsan, 2006;
Monaghan & A. W. Ellis, 2002; A. W. Ellis & Lambon Ralph, 2000). In particular,
A. W. Ellis and Lambon Ralph (2000) demonstrated that, as a neural network is exposed
to more words, its plasticity is reduced, limiting its ability to learn new (late) words.
They also showed how order of acquisition might interact with frequency. Although
this type of research investigates variables relevant to our study, it deals with data from
a single language.

As for bilingual learning, Zhao and Li (2010) simulated English–Chinese lexical
acquisition under different onset conditions. In their experiments lexical items were
represented as pairings of phonological and semantic features. The manipulated variable
was the amount of L1 input that their computational model received prior to the moment
of L2 onset. When the onset of the two languages was the same (simulating an early
bilingual), the model’s proficiency in both languages was comparable. However, when
the model received a substantial amount of L1 input prior to the L2 onset (i.e., a late L2
learner), it performed better in L1 than in L2. This outcome supported the hypothesized
relationship between the level of L1 neural entrenchment and the L2 attainment. In
short, Zhao and Li (2010) demonstrated the negative effect of L1 entrenchment on L2
learning in the lexical domain. In another study on bilingual learning, Monner et al.
(2013) used computational modeling to investigate the effect of L1 entrenchment in
a different domain, namely the learning of morphological gender from phonological
features in Spanish and French. Using a similar experimental design, they demonstrated
the negative effect of L1 entrenchment on learning L2 lexical morphology.

These two studies demonstrate the negative effect of L1 entrenchment on L2
learning at the word level. However, there are no comparable studies for language
units beyond the word level, in particular abstract linguistic constructions. In the next
section, we describe the computational model used in this study to simulate bilingual
construction learning.

4.2 Method

4.2.1 The model

The model that we use in the current study is an adaptation of a model of early argument
structure acquisition (Alishahi & Stevenson, 2008). This original model was inspired
by usage-based theories, in particular Construction Grammar (as informed by Goldberg,
1995), and it has successfully replicated several patterns of construction learning by
children. The model employs a domain-specific unsupervised learning mechanism,
inherited from a model of human category learning (J. R. Anderson, 1991). Just as
in human learning, the model processes input iteratively, so that linguistic knowledge
slowly builds based on experience. All this makes the model a good candidate for our
study.
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We simulate one specific task – learning argument structure constructions from
linguistic and conceptual exposure in two languages. According to Goldberg (1995),
this is a special class of abstract constructions (or form–meaning mappings) that
provides the basic means of clausal expression. Goldberg et al. (2004) consider these
constructions as “argument structure generalizations” – high-level associations of form
and meaning, which gradually emerge from categorizing individual instances. These
views on learning are reflected in our computational model.

Next we provide a conceptual description of the model, while its formal description
can be found in Appendix B.

Exposure

The exposure consists of a number of argument structure instances (AS instances)
represented as assemblies of different information cues (or features). Each instance
corresponds to an individual verb usage: an utterance and the respective perceptual
context. A sample verb usage and its corresponding AS instance are presented in
Table 4.1. The features include the head predicate (verb) and its semantic properties
(lexical meaning), the number of arguments that the verb takes, argument heads, their
cases, their semantic and event-based (thematic role) properties, prepositions and
the syntactic pattern (which reflects the word order and the presence or absence of
prepositions at specific slots). Instead of representing lexical meanings or thematic
roles symbolically, we use a set of elements for each of these, following the theories
of McRae et al. (1997), Dowty (1991). Composite representations allow the model to
estimate the similarity between different meanings or thematic roles. Sets of elements
may be rather large, therefore for brevity we only show three elements for each feature
in Table 4.1. Unlike semantic and role properties, some other features, for example
head predicate and prepositions, take language-specific values. When a feature such
as argument case is absent in a language (e.g., English), it is assigned a dummy value
(N/A). Note that the cases are the only morphological features in our setup, other
morphological elements as well as articles are ignored, as they contribute little to
differentiating between argument structure constructions.

Learning process

The learner maintains a set of constructions, which are represented as generalizations
over AS instances. More specifically, each construction is an assembly of feature values
of all instances that the model has decided to add to this construction. The learner
tracks the frequency of each construction (the number of participating instances),
together with the frequencies of all feature values, yet the original instances are not
recoverable. The learner receives one instance at a time and iterates over all the acquired
constructions, to find the one that can best accommodate the new instance. Two factors
determine which construction the new instance is added to:

1. The frequency of each construction in the previously encountered input. This
follows the idea in usage-based linguistics that linguistic units become entrenched
through their use (e.g., MacWhinney, 2012; Schmid, 2007; Langacker, 1987).
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Table 4.1: An example AS instance extracted from a verb usage I ate a tuna sandwich.

Feature Value

Head predicate eat

Predicate properties {consume, take in}

Number of arguments 2

Argument 1 I

Argument 2 sandwich

Semantic properties of argument 1 {SELF, PERSON, . . . , ENTITY}

Semantic properties of argument 2 {SNACK FOOD, DISH, . . . , ENTITY}

Role properties of argument 1 {LIVING THING, ENTITY, . . . , ORGANISM}

Role properties of argument 2 {SOLID, SUBSTANCE, . . . , ENTITY}

Case of argument 1 N/A

Case of argument 2 N/A

Syntactic pattern ARG1 VERB ARG2

Prepositions N/A

A construction which already contains a large number of instances is more
entrenched, or more readily accessible, therefore the learner is more likely to
add the new instance to this construction. Note that this is to a certain extent
similar to processing limitations that arise in connectionist models at later stages
of learning (e.g., A. W. Ellis & Lambon Ralph, 2000). However, the maximal
processing capacity of our model (the number of categories) is not predefined as
is the number of units in connectionist models, and we make no claims regarding
how similar the two approaches are.

2. The similarity between the new AS instance and each construction, which is
measured in terms of each feature independently (see Table 4.1 above). For
example, if a construction and the new instance share the number of arguments,
the syntactic pattern and the argument role properties, it is likely that this instance
belongs to this construction. Vice versa, if a construction and the new instance
have little in common in terms of feature values, the new instance is unlikely to
be added to this construction. This similarity-based learning mechanism comes
from the original model in J. R. Anderson (1991) and reflects the role of similarity
in human categorization (e.g., Sloutsky, 2003; Hahn & Ramscar, 2001).

Upon estimating the two values, the learner adds the new AS instance into one of
the constructions. However, especially at the beginning of the learning process, the best
decision (as informed by the likelihood values) may be to create a new construction
and add the new instance to this new construction (which would be identical to the
instance). This happens when the new instance is very dissimilar to all the constructions
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Figure 4.1: Deciding on a construction for a newly encountered L2 AS instance.

the learner has acquired so far.2

Exactly the same algorithm applies to L1 and L2 learning, as illustrated by Fig-
ure 4.1. Note that constructions may contain instances from only L1 or L2, as well
as from both languages. Although such features as head predicate, arguments, and
prepositions contain implicit information about the language of each AS instance, the
model is not explicitly enforced to distinguish between the two languages. It is the
input data and the probabilistic learning mechanism that determine to what extent L1
and L2 share their ‘storage resource’.

We further illustrate the learning process in Figure 4.2, where an English speaker
learning L2 German encounters an AS instance with the head predicate gewinnen “to
gain”. Note that construction 9 is associated, among other English verbs, with gain, and
the instance headed by gain shares some feature values with the new instance headed by
gewinnen. Thus, among all the existing constructions, construction 9 may be the most
likely candidate for adding the new AS instance. Imagine, however, that the learner,
upon receiving a substantial amount of English input, encounters a German instance
with a syntactic pattern PREP ARG1 VERB ARG2 ARG3 (e.g., Über die Nebenwirkungen
weiß niemand das geringste. “No one knows anything about the side effects.”). This
order of arguments is not typical for English, therefore the learner might not know a
suitable construction to accommodate this AS instance, and is likely to create a new
construction for the novel instance.

2 In practice, it is difficult to estimate whether an instance is ‘very’ dissimilar to a construction. Our
model has a parameter determining the cost of creating a new construction, which increases over time:
the more constructions the model knows, the less likely a new one to be created (for more detail, see
Appendix B.2).
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Construction 9
(frequency = 4)

Feature Value: frequency

Head
predicate

drop: 1
exist: 1
gain: 1

kommen “to come”: 1

Predicate
properties

exist: 3
cause: 2

motion: 2
…

transfer: 1

Number of
arguments one: 4

Argument 1

stocks: 1
dollar: 1
conflict: 1
es “it”: 1

Semantic
properties of
argument 1

entity: 4
abstraction: 4

monetary unit: 1
…

measure: 1

Role
properties of
argument 1

entity: 4
whole: 4

physical entity: 4
…

causal agent: 1

Case of
argument 1 / : 4ɴ ᴀ

Syntactic
pattern 1 : 4ᴀʀɢ ᴠᴇʀʙ

Prepositions / : 4ɴ ᴀ

New instance

Head predicate
gewinnen
“to gain”

Predicate
properties

get, has possession,
transfer, cause,

cost

Number of
arguments one

Argument 1 Dividende
“income”

Semantic
properties of
argument 1

net income,
income, financial
gain, …, entity

Role properties
of argument 1

abstraction, group,
physical entity, …,

whole

Case of
argument 1 Nominative

Syntactic
pattern 1ᴀʀɢ ᴠᴇʀʙ

Prepositions /ɴ ᴀ

+ =

Construction 9 [updated]
(frequency = [5])

Feature Value: frequency

Head
predicate

drop: 1
exist: 1
gain: 1

kommen “to come”: 1
[gewinnen “to gain”: 1]

Predicate
properties

exist: 3
cause: [3]
motion: 2

…
[cost: 1]

Number of
arguments one: [5]

Argument 1

stocks: 1
dollar: 1
conflict: 1
es “it”: 1

[Dividende “income”: 1]

Semantic
properties of
argument 1

entity: [5]
abstraction: 4

monetary unit: 1
…

measure: 1

Role
properties of
argument 1

physical entity: [5]
whole: [5]
entity: 4

…
causal agent: 1

Case of
argument 1

/ : 4ɴ ᴀ
[Nominative: 1]

Syntactic
pattern 1 :ᴀʀɢ ᴠᴇʀʙ [5]

Prepositions / :ɴ ᴀ [5]

Figure 4.2: Updating a construction with a newly encountered AS instance. The fre-
quency of the construction represents the number of AS instances it is based on. The
frequency of each feature value equals to the number of participating AS instances
showing this value for the respective feature. Square brackets denote updated elements.
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Simplifying assumptions

Like all computational models in the field, our model simulates only certain aspects
of learning, and makes a number of simplifying assumptions about the other aspects.
Because we focus on the learning of abstract constructions, we assume that our simu-
lated learner is able to segment the utterance and recognize all the words; it knows the
meaning of most words in the utterance; it can identify the role of each participant in a
given perceptual context; and it is able to infer the information about linguistic cases in
the utterance. For the purpose of this study, we assume that the learning mechanism
has acquired these types of knowledge and abilities by the moment it starts learning
constructions, although we acknowledge that human learners acquire different types of
knowledge in parallel (see, e.g., Lieven & Tomasello, 2008, for child learning).

4.2.2 Testing L2 proficiency

The model’s knowledge of argument structure constructions is tested in terms of the
accuracy of language use, both in production and comprehension. A formal description
of the testing method is provided in Appendix B.3, while here we outline the general
approach to testing and focus on the actual tasks. We use five tasks for evaluating the
model, each of them testing a different aspect (or feature) of the model’s construction
knowledge. We provide the model with a number of test instances in which the values
of some features are masked. Although it is possible to mask the values of multiple
features at once, each of the tasks in this study masks only a single feature. Thus, for
each test instance, the model has to predict the missing value of a particular feature
given the values of the other features. The prediction accuracy in each task is estimated
based on the match between the original (masked) value and the value predicted by the
model.

Such approach relates to the view in usage-based linguistics that linguistic knowl-
edge is reflected in language use. Although the main motivation for the task choice
comes from the model architecture, the tasks we employ map onto some existing
methodologies used either in L2 assessment or in experimental studies with children
and adults (see Table 4.2). Note, however, that our test tasks are conceptually closer to
spontaneous language use rather than to traditional language assessment,3; therefore,
the examples (30–34) below are provided mostly for illustrative purposes, while the
actual testing algorithm can be found in Appendix B.3.

3 For example, in filling in verbs and prepositions we do not restrain the model from using L1 lexemes
that it finds appropriate. In other words, the model has no explicitly implemented control mechanisms,
similar to those that humans can use for inhibiting activated representations from a non-target language
(e.g., Kroll et al., 2008; Green, 1998). At the same time, mixing L1 and L2 lexemes within the same
utterance is not uncommon in bilingual speakers, as the literature on code-switching suggests (e.g.,
Auer, 2014). Although the lack of inhibitory control negatively affects the model’s performance in the
mentioned tasks, making it less comparable to human performance, our findings must not be affected,
because the inhibitory control is consistently absent in all the experimental conditions.
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Table 4.2: Assessment tasks with their descriptions and corresponding features in AS
instances.

Masked AS feature Task name Description

Head predicate Filling in
verbs

“Fill-in-the-blank” test with removed
verb

Prepositions Filling in
prepositions

“Fill-in-the-blank” test with removed
prepositions

Syntactic pattern Word ordering Placing verb and prepositions in their
correct positions

Predicate properties Verb
definition

Verb definition in a sentential context

Arguments’ role
properties

Role compre-
hension

Comprehension of argument roles in a
given sentence–event pair

Filling in verbs

In this task we elicit the production of verbs that the model finds suitable in a given
test instance. This is close to the method used in some experimental studies concerned
with the learning of argument structure constructions, as they tend to examine the
distribution of verbs in specific constructions (e.g., N. C. Ellis et al., 2014a; Gries &
Wulff, 2005):

(30) Fill in a verb: I a sandwich.

Filling in prepositions

The same design is used to elicit the production of prepositions. Filling in blank slots
with missing prepositions is a classic task in L2 assessment (e.g., Oller & Inal, 1971):

(31) Fill in a preposition: John gave an apple Mary.

Word ordering

Given the verb and its arguments, the task is to name a matching syntactic pattern. This
is similar to a common L2 assessment task in which learners are asked to unscramble
the words into a grammatical sentence (e.g., Wesche & Paribakht, 2000):

(32) Arrange the words to form a grammatical sentence: ate, (a) sandwich, I.

Verb definition

The task of deriving lexical meanings from contexts tests learners’ ability to com-
prehend verbs. A similar definition task has been used, for example, for assessing
children’s vocabulary (Cain, 2007). A schematic example for our setup is given in (4):
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Figure 4.3: Schematic representation of the input data preparation.

(33) Describe the lexical meaning of ate in the sentence: I ate a sandwich.

Role comprehension

Studies in which humans have to learn new verbs (e.g., Wonnacott, Newport, & Tanen-
haus, 2008; Akhtar & Tomasello, 1997) often test the acquisition of verb-general
knowledge about the thematic roles of participants in a given event. Similarly, our
model is required to describe the role of each participant in a given sentence–event
pair:

(34) Describe the thematic roles of I and (a) sandwich in the sentence: I ate a
sandwich.

4.2.3 Input and test instances

In preliminary experiments (Matusevych, Alishahi, & Backus, 2013) we tested the
model on small data sets of German and English, in which argument structures were
annotated manually. However, manual annotation of larger data sets would be very time-
consuming. Instead, in the present study we extracted data from available annotated
resources for the same languages. Essentially, the data come from German and English
newspaper texts. Although these texts do not represent the kind of language that L1
and most L2 learners are exposed to, we used these corpora as the only large sources
of English and German that contained all the necessary types of annotations related to
argument structure.
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Figure 4.3 schematically shows the resources we used and the steps we took for
preparing the input data. The syntactically annotated data originate from the TIGER
corpus for German (Brants et al., 2004) and the Penn Treebank for English (Marcus et
al., 1994). The German SALSA corpus (Burchardt et al., 2006) and English PropBank
(Palmer et al., 2005) contained the types of annotations that helped us to extract
argument structure from sentences. Further, for consistency between the languages, we
filtered the resulting sentences and kept only those that were annotated with FrameNet
frames (see Ruppenhofer et al., 2006). While some German data were already annotated
so in SALSA, for English we had to use the mappings between PropBank and FrameNet,
provided in SemLink (Palmer, 2009). Finally, semantic features for individual lexemes
were extracted from (G. A. Miller, 1995) and (Kipper Schuler, 2006). The existing
mappings between WordNet and FrameNet (Bryl et al., 2012) also made it possible
to automatically expand argument thematic roles into sets of elements. The procedure
resulted in German and English data sets containing 3,370 and 3,803 AS instances,
respectively. Note that the two data sets have similar, but not identical sizes. Besides,
they may differ in the amount of noise originating from either the corpus annotations
or from our data extraction procedures. This potentially may result in one of the data
sets being more difficult to learn than the other.

Importantly, a substantial part of both German and English AS instances originated
from embedded clauses. While in English main and embedded clauses have analogous
word order, this is not so for German, where embedded clauses are usually verb-final.
Consider the following English sentence (6) translated into German (7):

(35) The group said (that) it sold the shares.

(36) Die Gruppe sagte, dass sie die Aktien verkauften.

The word order in the English embedded clause in (6) is SVO, while the German
order (7) is SOV. This is a natural difference if one considers each complex sentence as
a whole. However, we represent each AS as an independent language unit, and the un-
naturally large number of SOV sentences would make our data set a non-representative
sample of German (simple) sentences. Ultimately, this would provide our model with
an unrealistic tool to distinguish between English and German syntactic structures.
Therefore, we ‘recovered’ German verb-second word order in embedded clauses by
manually assigning the second position to the verb. Note, however, that the order of
arguments was never changed, so that the data contained both SVO and OVS sentences.

From the resulting data sets, input to the model was sampled randomly, so each
individual simulation represented a learner with a unique history of language exposure.
Thereby, in our experiments we sometimes refer to different simulations as individual
learners. The exact number of German and English AS instances as well as the temporal
pattern of their presentation were determined by the experimental setup, however all
the experiments were run twice – using German as L1 and English as L2, and vice
versa.

Similarly, test instances are randomly sampled from the data. Learners are tested on
different test sets, although every learner is repeatedly offered the same test set at certain
intervals. Furthermore, each learner performs most language tasks on a single test set,
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except for the task of filling in prepositions, for which an additional test set is prepared.
This is because most AS instances in our data (approximately 70% for German and
90% for English) contain no prepositions, and sampling items randomly would result
in having no prepositions in the majority of test instances. Therefore, we sample an
additional test set for each learner, considering only instances with prepositions. Just
as in human language learning, some test items may be identical to input items that
the model has encountered. In other words, sampling the input and the test instances
from the same data resembles better a natural language learning setting than splitting
the data into a train and a test set (a common practice in computational linguistics). It
is unlikely that the model can memorize specific instances and then simply reproduce
them, because construction learning is implemented as a categorization task, without
memorizing actual instances. However, to ensure that the model does not memorize the
exact instances, we run an additional set of simulations, in which none of the learning
data appear as test instances.4 The described data is used in all the experiments that we
report in the next section.

4.3 Experiments and results

This section describes the design and the results of three experiments. The first two
are intended to test whether the general learning principle “the more, the better” holds
for statistical learning of argument structure constructions – that is, whether the larger
amount of L2 input results in higher L2 performance. We measure L2 amount both in
relative (experiment 1) and absolute terms (experiment 2). Experiment 3 is designed
to test how learners’ L2 performance is affected by the time of L2 onset. In all the
experiments, we quantify various amounts of input in terms of the respective number
of AS instances. Furthermore, we adopt the following notations (see Figure 4.4):

1. ET – total language exposure, both L1 and L2. E.g., ET = 12,000 AS instances.

2. TO – the time of onset, expressed as the amount of L1 input prior to the L2 onset.
E.g., TO = 9,000 L1 instances. TO = 0 defines a simultaneous bilingual.

3. EL2 – cumulative L2 exposure in absolute terms. E.g., EL2 = 3,000 L2 instances.

4. R – the ratio of L1 amount to L2 amount at each interval after TO. E.g., R= 20 : 1
means that the learner receives 20 times more L1 input than L2 input.

5. EB – the amount of bilingual input, in which both L1 and L2 instances are present.
E.g., EB = 6,000 indicates that after TO, the learner receives 6,000 instances of
bilingual input, where L1 and L2 are mixed in the proportion determined by R.

4 In all the reported simulations a learning and a test set have been sampled from the same data, therefore
the model might have encountered a substantial part of the test instances in the learning data. Yet, the
additional simulations yielded very similar results. In other words, the main findings reported in this
study are robust and do not depend on the sampling procedure.
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Figure 4.4: Notations used in the experiments.

4.3.1 Amount of L2 input

Experiment 1

In this experiment learners’ exposure to L2 was measured in relation to their L1
exposure. To investigate whether the relative amount of L2 input would affect learners’
L2 performance, we manipulated the ratio R in four groups of simulated learners, while
keeping ET constant. The first group of learners received equal amounts of L1 and L2
input at each learning interval after L2 onset, R = 1 : 1, while for the other groups R was
set to 3 : 1, 10 : 1, or 20 : 1, respectively. Such design simulated a common SLA setting:
adult L2 learners are often exposed to the target language in small quantities, while L1
still dominates in their daily use. Each of the four groups consisted of 30 learners, for
which both TO and EB were set to 6,000 instances – to simulate a population of adult L2
learners. Our choice of the TO value 6,000 was justified in our preliminary simulations,
which had shown that after encountering approximately 6,000 AS instances learners’ L1
performance stabilized (although not completely, and this differed somewhat depending
on the task). This way, ET = TO+EB = 12,000. Similarly, we simulated four more
groups of early bilinguals (TO = 0, ET = EB = 6,000) with different R values (see
Figure 4.5).

After every 500 input instances, learners’ L2 proficiency was tested using the five
tasks described in the previous section. Figure 4.6 shows the average performance
curves for each of the four groups of adult learners.

First, we notice that in most tasks the performance curve flattens far below 100%.
This is partly because all the tasks underestimate learners’ L2 knowledge: while each
test item assumes a single ‘correct’ answer, there may be more than one acceptable an-
swer. When filling in verbs, for example, some empty slots may fit several semantically
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Figure 4.5: The setup of experiment 1. Two rows show the population types, four
columns show the learner groups.

related verbs – synonyms (37) or antonyms (38).

(37) He acquired (bought) 300,000 shares of the stock.

(38) Industrial output fell (rose) 0.1% in September.

The size of the described effect is different for each task, which contributes to the
different learners’ performance across tasks (note that in Figure 4.6 the tasks are plotted
on different scales). Additionally, there are certain differences between the model’s
performance in L2 German and L2 English tasks (compare the plots in Figure 4.6
pairwise). We explain this by possible differences in complexity between the German
and English data sets, which we mentioned in subsection 4.2.3 above.

Despite the differences between the tasks, each individual plot in Figure 4.6 reveals
the same pattern. Higher relative amount of L2 input corresponds to better L2 perfor-
mance at each point in time. To statistically test whether the relative amount of L2
input correlated with the L2 performance at the end of learning, we ran Kendall’s tau
correlation tests5 (see Table 4.3(a)). The results revealed a highly significant correlation
between the amount of L2 input and the performance in each task in late learners, both
for L2 English and L2 German. The results for early bilinguals yielded very similar

5 Alternatively, we could compare the performance in the four groups (e.g., with an ANOVA or the
Kruskall–Wallis test). However, this would require a further pairwise comparison of the groups, making
the presentation of results less straightforward. Correlation tests are better in this respect, and their
use is justified by our TO values being measured on a ratio scale. We use a non-parametric Kendall’s
tau test, to make no assumptions about the distributions of the performance values. Note that for data
with only two groups (experiment 2) this test is equivalent to the Mann–Whitney U test, which is a
non-parametric counterpart of the t-test.
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Figure 4.6: Average learning curves for adult learners with different R values, ET is
kept constant.
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Table 4.3: Results of correlation tests between R and L2 performance at the end of
learning, ET is kept constant.

a. Simulated population of late L2 learners

Task

Filling in
verbs

Filling in
prepositions

Word
ordering

Verb
definition

Role
comprehension

L2 τ p τ p τ p τ p τ p

English .69 <.001 .68 <.001 .51 <.001 .54 <.001 .30 <.001

German .76 <.001 .73 <.001 .67 <.001 .72 <.001 .48 <.001

b. Simulated population of early bilingual learners

Task

Filling in
verbs

Filling in
prepositions

Word
ordering

Verb
definition

Role
comprehension

L2 τ p τ p τ p τ p τ p

English .65 <.001 .65 <.001 .49 <.001 .59 <.001 .22 <.001

German .69 <.001 .71 <.001 .63 <.001 .73 <.001 .33 <.001

patterns, thus we do not provide the plots of their learning curves, however the results
of the correlation tests are shown in Table 4.3(b).

The results in Table 4.3 suggest that receiving more L2 input (in relation to L1
input) by a statistical learner leads to the better knowledge of L2 argument structure
constructions. This may be due to the interaction of L2 input with the ongoing exposure
to L1 input. However, so far we have assumed that learners’ performance achieves
its maximum at the end of learning simulations (upon receiving 6,000 mixed AS
instances). This may be the case for the easier tasks, but the more difficult ones may
take learners more time to achieve the highest possible performance, especially in
case their cumulative EL2 is low because of a high R value (e.g., 20:1). For example,
most learning curves for filling in verbs (see Figure 4.6(a)) do not flatten at step 12.
Thus, it may be the case that learners in each group could potentially achieve the same
performance, irrespective of the R value, if only they had enough time to learn. In this
interpretation the L2 attainment depends not on the relative, but on the absolute amount
of L2 input. To test whether this would be true, we ran another experiment.
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Figure 4.7: The setup of experiment 2.

Table 4.4: Results of correlation tests between R and L2 performance at the end of
learning, EL2 is kept constant.

Task

Filling in
verbs

Filling in
prepositions

Word
ordering

Verb
definition

Role
comprehension

L2 τ p τ p τ p τ p τ p

English −.25 .021* −.03 .779 −.03 .750 −.07 .497 .01 .918

German .15 .156 .12 .268 .01 .918 .08 .442 .18 .099

Experiment 2

The setup of this experiment was similar to that of experiment 1, however this time we
kept the absolute amount of L2 input constant (EL2 = 1,500), while manipulating R.
The latter was set to 1:1 (intensive L2 learning) or 5:1 (extensive L2 learning) – see
Figure 4.7 (note that the length of L2 exposure is different in the two conditions, but the
total L2 area is identical). Since the results of experiment 1 did not differ substantially
for early bilinguals and adult learners, this time we simulated only the latter population
by setting TO to 6,000.

If the relative amount of L2, indeed, determines the level of L2 attainment in a
statistical learner, then we expect the performance to differ in the two groups. However,
if it is only the absolute amount of L2 input that matters, there must be no difference in
proficiency between the two conditions. The learning curves are shown in Figure 4.8.

Each individual plot in Figure 4.8 shows that the learner ultimately achieves the
same or very similar performance in both conditions. In case of intensive learning,
the curve is steep and reaches the highest level fast, while in the extensive condition
learning goes much slower. The final performance is comparable, however: see the
horizontal lines in Figure 4.8. Again, we ran Kendall’s tau correlation tests using the
final performance values. Table 4.4 shows the results of these tests.

The results show no significant correlations between R and learners’ final perfor-
mance for most tasks, the correlation reaching significance only for filling in verbs
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Figure 4.8: Average learning curves for learners with different R values, EL2 is kept
constant.
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Figure 4.9: The setup of experiment 3.

in L2 English: τ =−.25, p = .021. Since the correlation is negative, learners’ perfor-
mance in this task is higher in the extensive condition (R = 5 : 1) than in the intensive
condition (R = 1 : 1). We believe this reflects learners’ ongoing enhancement of L1
verbs. As we mentioned, filling in verbs is the most difficult task of the five, therefore
continuing L1 exposure after TO aids learners in memorizing some contexts in which
L1 verbs are used. As the extensive condition exposes learners to more L1 input than
the intensive condition, they memorize more of these contexts, which helps them in
discriminating between L1 and L2 contexts. As a result, at the end of learning in
the extensive condition the model produces fewer L1 instances than in the intensive
condition, hence the higher performance.

For the other tasks only the absolute amount of L2 input determines the resulting
knowledge of L2 argument structure constructions. This suggests that length of ex-
posure makes no difference, as long as the cumulative amount of L2 input stays the
same.

4.3.2 Time of L2 onset

Experiment 3

This experiment was designed to investigate whether learners’ L2 performance could
be influenced by the time of L2 onset. If constructions and words are learned in a
similar manner, then a negative effect of higher L1 entrenchment is to be expected
(e.g., MacWhinney, 2012). Later L2 onset would lead to higher L1 entrenchment and,
because of the interference this entails, lower L2 proficiency.

We manipulated the prior amount of L1 input by setting TO to 0 (simultaneous
bilinguals), 2,000, 4,000 or 6,000 (late L2 learners). As we mentioned, in our prelimi-
nary simulations the maximum L1 performance was achieved only after approximately
6,000 AS instances, thereby we chose TO values under 6,000 to ensure that the level of
L1 entrenchment is different for each TO. For all the four groups of learners, EB was
set to 6,000, and R was equal for all the groups (1:1), therefore EL2 amounted to 3,000
instances for each learner. The only difference between the groups, then, was the TO
value. The experimental setup is shown in Figure 4.9, while Figure 4.10 illustrates the
average learning curves for each group.
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Figure 4.10: Average learning curves for learners with different TO values.
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Table 4.5: Results of correlation tests between TO and L2 performance at the end of
learning, EL2 is kept constant.

Task

Filling in
verbs

Filling in
prepositions

Word
ordering

Verb
definition

Role
comprehension

L2 τ p τ p τ p τ p τ p

English .00 .961 .15 .034* −.04 .595 .00 .944 .15 .029*

German .14 .049* .05 .440 .00 .959 .12 .086 .07 .277

If we look at each individual plot, we can notice no obvious pattern of difference
between the four groups – in each case the learning curves seem to reach similar
accuracy values. To statistically test whether learners’ resulting performance at the end
of learning correlated with TO, we ran Kendall’s tau correlation tests (see Table 4.5).

The results suggest that the time of L2 onset does not affect the simulated learners’
performance at the end of learning, with some exceptions. We do observe significant
positive correlations between TO and the ultimate L2 performance for two tasks in L2
English (filling in prepositions and role comprehension), and a marginally significant
correlation for filling in verbs in L2 German. Note that the correlations are positive,
meaning that later TO leads to better L2 performance. This suggests a positive impact
of cross-linguistic transfer from L1 to L2. English and German argument structures
have a lot in common, as the two languages are typologically close: they both have
SVO order in main clauses, and both are satellite-framed. Thus, the model may use the
existing L1 knowledge to perform better in L2 tasks. The higher L1 entrenchment at
TO is, therefore, beneficial, and may well give the model a small long-term advantage
in L2 performance.

Most correlations in Table 4.5, however, are not significant. To ensure this is
not caused by the similar degree of L1 entrenchment at TO in some groups (with
TO= 2,000, TO= 4,000, and TO= 6,000), we compared the average L1 performance
at TO in the three mentioned groups. Table 4.6 shows that L1 performance in the three
groups differs in most tasks. The only deviation from this pattern is observed for
role comprehension in L1 English, where the L1 performance of the three groups is
approximately equal. This, in fact, makes our correlation result for role comprehension
in L2 German non-informative, because the difference in ultimate L2 performance is
not to be expected for the three groups with equal degree of L1 entrenchment at TO.

Before drawing any conclusions regarding the effect of the time of onset, we should
additionally look at whether such effect is present at the earlier learning stages as well,
since the presented correlation results are estimated for the learners’ performance at
the end of learning only. In addition, the correlation results do not tell us whether the
time of onset interacts in any way with learners’ cumulative amount of L2 exposure.
To test this, we ran a series of regression models that predicted learners’ performance
at each learning stage.
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Table 4.6: Average L1 performance at TO in different learner groups in experiment 3.

TO

L1 Task 0 2,000 4,000 6,000

English Filling in verbs – 10.20% 12.90% 13.20%

Filling in prepositions – 47.20% 48.30% 49.70%

Word ordering – 96.10% 96.70% 97.20%

Verb definition – 56.70% 58.10% 57.50%

Role comprehension – 82.00% 82.00% 81.80%

German Filling in verbs – 13.30% 17.50% 19.90%

Filling in prepositions – 57.30% 61.60% 62.20%

Word ordering – 94.30% 95.90% 97.40%

Verb definition – 51.40% 53.30% 54.80%

Role comprehension – 84.20% 84.50% 84.90%

4.3.3 L2 performance: contributions of individual factors

Regression models were used to examine the potential effects of TO, EL2, and their
interaction. Conceptually speaking, we checked whether at any learning stage learners’
L2 performance in a certain task could be predicted by TO and EL2. We ran ten linear
mixed-effects models (Baayen, 2008), one for each task in each language, using the
lme4 package for R (D. Bates et al., 2015). To account for possible individual variation
between learners, we introduced a random factor of learner. Each model had the
maximal random effect structure justified by the data sample (Barr, Levy, Scheepers,
& Tily, 2013), slightly varying for different tasks and languages due to convergence
issues.

All the models were run on the learning results reported on for experiment 3.
Recall that in experiment 3 we manipulated TO, but not EL2. Nevertheless, the latter
was present in the learning results of our simulations, because we tested the model’s
performance at different learning stages (that is, after it was exposed to different
amounts of L2). Therefore, each performance score had an EL2 value associated with
it, which we used in the regression. This setup implies that the regression models do
not only provide results in terms of ultimate L2 proficiency (as did the correlation tests
reported in the previous sections), but at each moment of learning. Importantly, L2
performance is not a linear function of EL2 in our experiments (recall the shapes of
the learning curves). In general, learning success is believed to be a power function
of experience (Newell & Rosenbloom, 1981). To account for this relation between
performance and EL2, we log-transformed all the performance values and EL2, but
also TO for consistency.6 To eliminate the problems of multicollinearity and variance

6 Additionally, we fitted the same models to the data with only two variables log-transformed (perfor-



96 4.3. Experiments and results

inflation, and to make the regression coefficients directly comparable, we standardized
all the variables. A summary of the models is given in Table 4.7.

L2 amount

The effect of EL2 is the only main effect observed for all the tasks in both German
and English (see the dark gray cells in Table 4.7. As expected, the effect is always
positive: learners’ L2 proficiency increases as they are being exposed to more L2 input.
This supports the correlation between EL2 and learners’ L2 performance, found in
experiment 1. Note that the standardized regression coefficients (β ) for EL2 have the
largest values, compared to the coefficients of EL2 and TO×EL2 in each regression
model, which means that the effect of EL2 is stronger than that of TO and of the
interaction. The only exception is role comprehension in L2 English, for which the
coefficient of EL2 (0.20) is smaller than that of TO (0.22). Yet, the amount of variance
explained by the fixed effects (R2

m) in the respective regression model is the smallest
(R2

m = .09, or 9%), compared to the respective value in all the other models (e.g.,
R2

m = .67 for verb definition in L2 German). The poor model fit suggests that the β

coefficients in the regression model for role comprehension in L2 English might not be
informative.

L2 onset

The main effect of TO is present only for L2 English and only for two tasks: filling in
prepositions and role comprehension. This is comparable to the results of experiment
3, in which the correlation of TO with learners’ final L2 performance was observed
for the same two tasks in L2 English. Additionally, in experiment 3 the same positive
correlation was observed for a single task in L2 German (filling in verbs), but this was
only marginally significant and is not supported by the regression results. As for the
other two tasks with a main effect of TO, the analysis for role comprehension, as we
mentioned, is not informative due to the poor model fit. This is not the case, however,
for filling in prepositions. The impact of TO is positive: late L2 starters perform better
than early L2 starters. This could be explained by the positive effect of cross-linguistic
transfer. As we mentioned, the model may use the existing L1 knowledge to perform
better in L2 tasks, and the higher level of L1 entrenchment is beneficial, especially
at the early stages of L2 learning. Indeed, although the effect of transfer can be both
positive and negative, the positive effect must prevail here due to the similarity of
English and German argument structure constructions. However, the effect can be
manifested differently in each of the five tasks used, due to their nature. Since the two
languages in our model use shared representations of lexical semantics, participant
roles, and word order, in such tasks as verb definition, role comprehension and word
ordering, one would expect a positive transfer effect. For example, a simulated learner
of L2 English may be able to describe the meaning of a novel English verb to increase,
because it shares many contexts of use with its German translation steigen. This is
different for the other two tasks – filling in verbs and prepositions. Since learners are

mance and EL2), and with original non-transformed variables, and they yielded consistent results.
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Table 4.7: Summary of mixed-effects models predicting learners’ L2 performance.

a. L2 German
Model Predictor β SE 95%CI

Filling in verbs TO 0.06 0.05 [−0.05,0.16]

R2
m = .66† EL2 0.81 0.02 [0.77,0.84]

R2
c = .95 TO × EL2 0.02 0.02 [−0.01,0.06]

Filling in prepositions TO 0.00 0.05 [−0.11,0.10]

R2
m = .58 EL2 0.76 0.02 [0.73,0.79]

R2
c = .89 TO × EL2 0.00 0.02 [−0.04,0.03]

Word ordering TO −0.04 0.05 [−0.13,0.05]

R2
m = .61 EL2 0.78 0.02 [0.73,0.83]

R2
c = .84 TO × EL2 0.05 0.02 [0.00,0.09]

Verb definition TO 0.04 0.05 [−0.05,0.13]

R2
m = .67 EL2 0.81 0.01 [0.79,0.84]

R2
c = .92 TO × EL2 0.04 0.02 [0.01,0.07]

Role comprehension TO 0.05 0.08 [−0.11,0.21]

R2
m = .21 EL2 0.46 0.02 [0.41,0.50]

R2
c = .91 TO × EL2 0.02 0.02 [−0.02,0.06]

b. L2 English
Model Predictor β SE 95% CI

Filling in verbs TO 0.02 0.07 [−0.11,0.15]

R2
m = .50 EL2 0.71 0.02 [0.67,0.74]

R2
c = .95 TO × EL2 −0.01 0.02 [−0.05,0.03]

Filling in prepositions TO 0.12 0.05 [0.01,0.22]

R2
m = .48 EL2 0.68 0.02 [0.64,0.73]

R2
c = .86 TO × EL2 −0.05 0.02 [−0.10,−0.01]

Word ordering TO −0.05 0.06 [−0.16,0.07]

R2
m = .28 EL2 0.53 0.03 [0.47,0.59]

R2
c = .74 TO × EL2 0.01 0.03 [−0.04,0.08]

Verb definition TO −0.02 0.08 [−0.17,0.13]

R2
m = .32 EL2 0.57 0.02 [0.53,0.60]

R2
c = .94 TO × EL2 −0.02 0.02 [−0.05,0.01]

Role comprehension TO 0.22 0.09 [0.04,0.41]

R2
m = .09 EL2 0.20 0.02 [0.16,0.24]

R2
c = .95 TO × EL2 −0.02 0.02 [−0.05,0.02]

† R2
m and R2c stand for marginal and conditional R2 coefficients and indicate

the amount of variance explained by the fixed factors and by the full model,
respectively (Johnson, 2014). The reported SE and confidence interval
values are estimated via parametric bootstrap with 1,000 resamples (D.
Bates, Mächler, Bolker, & Walker, 2015).
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allowed to use their L1 in the two “fill-in-the-blank” tasks, they are likely to produce L1
verbs and prepositions (which are different in German and English), hence the negative
effect of transfer.7 Note, however, that both German and English have a preposition
in, often used in equal or very similar contexts. In our German data set, in is the
most frequent preposition, which promotes its use by L1 German speakers during the
testing in L2 English. Although the learners, in fact, use the German preposition, it may
fit many English test instances that require the use of English in, hence the positive
effect of lexical transfer from German to English. The same effect from English to
German may not be observed, since in our English data set in is only the third most
frequent preposition. Therefore, learners would more likely use the two more frequent
prepositions (to and on) during the testing.

Interaction term

First we note that the interaction effect of EL2 and TO is significant for filling in
prepositions in L2 English, with a negative β coefficient. Considering the positive
effect of TO in this task we just discussed, this negative interaction can be interpreted
as a decrease in the positive TO effect at the later stages of L2 testing. This supports
our explanation of the positive TO effect in terms of positive transfer: higher L1
entrenchment is beneficial at the early stages of L2 learning, however at the later stages
this benefit diminishes, because learners rely more on their acquired L2 knowledge
than on L1 knowledge.

Finally, there is a significant interaction effect in verb definition in L2 German.
The respective β coefficient is positive – that is, the positive effect of higher EL2 on
learners’ performance is stronger for learners with later TO. In other words, in this task
late L2 starters achieve a certain level of performance faster than early L2 starters. This
observation also suggests that transfer has more positive than negative effect in verb
definition in L2 German.

4.4 Discussion

In the present study we investigated how the learning of argument structure construc-
tions in L2 was affected by two variables – the amount of L2 input (both relative and
absolute) and the time of L2 onset. For this purpose, we computationally simulated the
process of statistical construction learning in two languages and ran three experiments
to test the performance of simulated learners under different conditions of exposure.

4.4.1 Amount of L2 input
The first variable, the amount of L2 input, affected learners’ L2 performance as expected
– getting more L2 input resulted in better L2 performance. This is in line with a general
learning rule “the more, the better”, which has been demonstrated to apply to human

7 This is a rather broad understanding of cross-linguistic transfer, as it covers not only subconscious
cross-linguistic influence, but also the use of L1 instead of L2.
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learners for various domains (e.g., Muñoz, 2011; Flege, Yeni-Komshian, & Liu, 1999).
In experiment 1, we captured this type of relation using a relative measure of L2
amount, while controlling for the length of L2 exposure. However, when the cumulative
amount of L2 was kept constant instead (experiment 2), the model’s performance
appeared to be the same for varying relative amounts of L2. Intuitively, this is contrary
to a well-researched spacing effect: spaced, or distributed, practice leads to higher test
performance than massed practice in many domains (Küpper-Tetzel, 2014), including
construction learning (Ambridge, Theakston, Lieven, & Tomasello, 2006). However,
it has been argued (e.g., Cepeda, Pashler, Vul, Wixted, & Rohrer, 2006) that the
learning depends not only on the length of the interstudy interval (the time between two
presentations of an item), but also on that of the retention interval (the time between
its last presentation and the test). Thus, simulations with a systematic control of the
two intervals (with respect to the presentation of individual L2 instances) are needed to
relate our findings to the existing research in this domain.

In the current study we focused only on the quantitative characteristics of L2 input,
but the quality of L2 input may be equally important (Moyer, 2005). Obviously, it
cannot be the mere amount of input that determines learners’ L2 proficiency, as an
identical amount of input may be very different for two different learners, in terms of
relevance for the learner, grammatical complexity, lexical diversity, native-likeness,
discourse style, etc. All these characteristics contribute to learners’ level of engagement
with the target language and affect the learning process. Therefore, an ideal measure of
L2 input should account for much more than its overall amount. Preliminary versions
of such measures have already been proposed, but they need further refinement. For
example, Ågren, Granfeldt, and Thomas (2014) have developed an individual input
profile score, yet they recognize it does not take into account that different input
domains may affect the learning to a different degree.

4.4.2 Time of L2 onset
The second variable that we investigated – the time of L2 onset – appeared not to have
any impact on performance in most L2 tasks. The only exceptions were two tasks in
L2 English – filling in prepositions and role comprehension, where later L2 starters
performed better than early starters. The latter exception, as we showed, could be
due to the poor fit of the respective regression model. As for filling in prepositions,
later L2 starters had a better knowledge of a frequent German preposition in, and they
could transfer this knowledge into L2 to identify the correct contexts of use of the
English preposition in. Overall, unlike in other linguistic domains such as lexis and
morphology (Monner et al., 2013; Zhao & Li, 2010), a pronounced negative effect of
L1 entrenchment (i.e., later L2 onset) on learning L2 argument structure constructions
is absent in our experiments. The difference between the domains relates to a discussion
in literature on L1 processing or, more broadly, on the age/order effect. It has been
shown (Lambon Ralph & Ehsan, 2006) that the negative effect of a later acquisition of
a specific item (e.g., word) in cued production is higher for stimuli with more arbitrary
cue–outcome mappings (e.g., word phonology and meaning), and lower for stimuli
with more consistent mappings (e.g., word phonology and orthography). In case of
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arbitrary mappings, the meaning of a novel word can hardly be predicted from its
phonological form, despite a potentially large number of earlier acquired mappings.
On the contrary, word orthography is often predictable from its phonological form,
due to the consistency of the mapping with earlier acquired words. In the context of
bilingual learning we look at the consistency of mappings across L1 and L2, rather than
across multiple L1 items. In our test tasks each cue (i.e., test AS instance) consisted of
multiple features, and the model, in fact, could predict the outcome (i.e., the value of
the missing feature) based on the mappings between the features in L1: the languages
we used in this study – German and English – were typologically close, and positive
transfer was likely to take place. This could be the reason why the negative effect of
the late onset was not observed.

In the light of the ongoing discussion about the age/order effect in literature, we
can further note that our results do not support the idea proposed by Stewart and A. W.
Ellis (2008) that the age/order effect is a property of any learning system. Instead, our
findings are consistent with the cumulative frequency hypothesis (Zevin & Seidenberg,
2002; M. B. Lewis et al., 2001), which claims that the accessibility of a word is
determined by its cumulative frequency, but not the moment of its first encounter.

Due to the lack of available annotated resources we only used English and German
in the current study. We plan to explore new resources and investigate the bilingual
learning of argument structure constructions in additional language pairs, to determine
the exact contribution of cross-linguistic transfer effects to such learning. The computa-
tional tool used for our study focuses on only a subset of (input-related) factors and
is not meant to represent the whole picture of how humans learn a second language.
Nevertheless, it has provided rather robust and consistent results by allowing for full
control of the variable confounding and of the input quantities, which cannot be easily
done in human subject studies. These advantages make the presented model a promising
tool for future studies.



CHAPTER 5

Quantifying cross-linguistic influence with a computational
model: A study of case-marking comprehension1

5.1 Introduction

5.1.1 Quantifying cross-linguistic influence
The phenomenon of cross-linguistic influence (CLI) is central to our understanding
of bilingual and second language (L2) learning. Languages interact in the bilingual
mind, and studies of CLI intend to describe various types of such interaction.2 One
challenging issue that has long interested scholars is measuring the amount of CLI –
that is, quantifying the extent to which linguistic representations from one language
affect the use of the other language(s). Weinreich (1968) suggested that “no easy way of
measuring or characterizing the total impact of one language on another in the speech
of bilinguals has been, or probably can be, devised” (p. 63). Measuring the amount
of CLI is important to understand to what extent the knowledge of one language is
beneficial (in case of positive CLI) or damaging (in case of negative CLI) for the
acquisition of other languages.

One common method to measure CLI is through the so-called error analysis:
scholars look at the frequency of linguistic errors in a group of learners with a particular
first language (L1) background, and estimate the contribution of negative CLI to the
non-native L2 use (Born, 1985; Grauberg, 1971; see Palmberg, 1976 for a relevant
bibliography). At the same time, CLI is not the only source of non-native language use:

1 This chapter is based on the article of the same name submitted for publication in a journal.
2 We adopt a broad cognitive view on CLI (Jarvis & Pavlenko, 2008), which covers manifestations of

CLI both in L2 acquisition and in bilingual language use.
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other factors such as overgeneralization may play a role, and the non-native use is often
caused by a combination of factors (Jordens, 1977). This is why the exact methodology
for identifying CLI is not straightforward: it has been argued that one needs to show
that the learners within a particular group make similar mistakes, that the mistakes are
different across the L1 groups, and that the mistakes have their linguistic equivalents
in the learners’ L1 (Jarvis, 2000). Given the multitude of interfering variables (e.g.,
proficiency, learning history, aptitude), it is difficult to identify with confidence all cases
of the CLI influence, and to measure the amount of CLI using this method. The same
problem persists in more controlled experimental settings, which employ linguistic
tasks related to language production or comprehension by bilingual learners (Grosjean,
1998). The number of interfering variables can be reduced in research on multilingual
speakers: studying learners’ third language use allows for identifying the instances of
L1 and L2 influence at individual level (e.g., De Angelis & Selinker, 2001), similar to
a within-subject design in experimental studies, but this “individual” approach makes
it difficult to generalize over the group of learners.

Another issue related to the described methodologies is that the resulting CLI
measures are grounded in language use. This may constitute a methodological challenge
whenever such measures are used to predict the learner’s language use, leading to
circular reasoning.

These limitations can be overcome in cognitive computational models of bilingual
language learning and use, which allow researchers to look inside the “black box”
of linguistic representations. While no computational modeling studies focused on
measuring CLI, some of such studies in the field of bilingualism employed quantitative
measures that reflected the amount of CLI in the respective models. In particular, Zhao
and Li (2010) simulated bilingual acquisition of Chinese and English words using a self-
organizing neural network model. The learning process in each simulation yielded a
spatial representation (map) of the bilingual lexicon. To explain how their computational
model arrived at a particular type of map, the authors computed the average Euclidean
distance between lexical translation equivalents in multiple pairs: that is, how far an
English word (e.g., star) is located from its Chinese equivalent (Xing1xing) on the
map. A shorter average distance means that many translation equivalents are located
next to each other, which is the evidence of high CLI: the location of L1 lexemes has
influenced the placement of the corresponding L2 lexemes. Vice versa: a longer average
distance corresponds to smaller amount of CLI, because the location of L1 lexemes has
not played the determining role in the placement of their L2 equivalents.

In a similar type of model, Shook and Marian (2013) studied bilingual speech
comprehension in English and Spanish. They employed an online measure, so-called
language activation score. This measure showed how strongly the lexical representa-
tions from a particular language (e.g., Spanish) were activated on average, when the
model was given a word in either the same or a different language (English). One can
argue that the activation score for the non-target language reflects the amount of CLI.

The described measures and the respective models, however, do not go beyond the
lexeme level, while there are no computational modeling studies of CLI at the level
of abstract constructions. To address this gap in the literature, in this study we use a
computational model of learning argument structure constructions from bilingual input.
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We choose this model, because it has been used for simulating bilingual learning of
argument structure constructions (see chapters 3–4), and it allows for measuring the
amount of CLI in this domain. Our goal in the present study is to demonstrate how
the amount of CLI can be measured in the learning and use of such constructions, and
how a CLI measure can be used to explain the patterns of language use observed in the
model. More specifically, we study the acquisition and interpretation of case-marking
cues in Russian and German transitive sentences: as we show below, this is one of the
aspects discussed in the literature, and the relevant experimental results from human
participants are available.

5.1.2 Interpretation of transitive sentences
In some languages, such as English, French, Hebrew, etc., transitive sentences are
characterized by a fixed subject-verb-object (SVO) word order (39). In other languages,
the word order is more flexible: German transitive sentences can have SVO (40) as well
as OVS word order (41).

(39) The dog chases the bear.3

(40) Der
ART.M.NOM.SG

Hund-∅
dog-M.NOM

jägt
chase:3SG

den
ART.M.ACC.SG

Bär-en.
bear-M.ACC

‘The dog chases the bear.’

(41) Den
ART.M.ACC.SG

Bär-en
bear-M.ACC

jägt
chase:3SG

der
ART.M.NOM.SG

Hund-∅.
dog-M.NOM

‘The dog chases the bear.’

To correctly interpret OVS sentences, speakers rely on other cues than the word order:
morphological case marking (as in 41), but also animacy, noun–verb agreement, etc.
However, learners of a language allowing for OVS sentences may rely on the word
order cue and misinterpret participant roles in such sentences; this happens both in adult
L2 learners (e.g., Isabelli, 2008; Kempe & MacWhinney, 1998; VanPatten, 1996) and in
monolingual children learning various languages (e.g., Smolík, 2015; Kim, O’Grady, &
Cho, 1995; Schaner-Wolles, 1989). Speaking of young monolingual German children,
it has been suggested that they start by acquiring the more prototypical and more
frequent SVO form first (Dittmar, Abbot-Smith, Lieven, & Tomasello, 2008). The
situation with bilingual and L2 learners is more complex, because CLI may be at play.
There are two general views on the role of CLI in the misinterpretation of transitive
sentences.

1. The first view is represented by the First-Noun Principle (e.g., VanPatten, 2012,
1996). According to this principle, learners universally tend to assign the agent
role to the first noun or pronoun in a given sentence, while the effect of CLI is
negligible. Existing studies have argued that the First-Noun Principle can explain
data from L2 learners of various languages: English, French, German, etc. (see
an overview by Lee & Malovrh, 2009).

3 Example from Yoshimura and MacWhinney (2010).
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2. The alternative view explains the misinterpretation of OVS sentences by CLI
from learners’ L1. Under this view, L2 learners adhere to the interpretation
strategy which is standard in their L1: if learners do not encounter OVS sentences
in their L1, they will misinterpret such L2 sentences as SVO. This general view
is compatible with multiple acquisition theories (see an overview by Hanson,
Aroline, & Carlson, 2014), but the two accounts mentioned most frequently in
this respect are the Unified Competition Model (MacWhinney, 2012) and the L1
Transfer Principle (VanPatten, 2015b).

2.1. According to the Competition Model (Morett & MacWhinney, 2013;
Kempe & MacWhinney, 1998; Mimica, Sullivan, & Smith, 1994; Gass,
1987; Kilborn & Cooreman, 1987; McDonald, 1987, etc.), learners of both
L1 and L2 attend to multiple cues in the input, such as word order, case
marking, animacy, etc. Importantly, languages differ in the relative impor-
tance of various cues (e.g., case marking plays little role in English), and L1
speakers learn to attend to some cues more than to others. These attentional
preferences, or cue strengths, are acquired based on the validity of the cues.
Validity can be calculated using a linguistic corpus, as a product of two
other values: cue availability and reliability. The cue is available whenever
it is present as a marker of a particular function: e.g., the nominal case
marking of the subject may help discriminating between this subject and
the object in the sentence. A cue is reliable whenever its presence ensures
the right choice of the function: e.g., the nominal case marking of the
object would make the cue unreliable for this sentence. The acquired cue
strengths are initially transferred to an L2. As a result, when L1 speakers
of a language with fixed SVO word order (e.g., English) start learning an
L2 in which OVS sentences are allowed (e.g., German), they fail to attend
to case marking and misinterpret OVS sentences as SVO.

2.2. The L1 Transfer Principle complements the First-Noun Principle mentioned
above. Given the combination of the two, learners still tend to interpret the
first noun as the agent of a sentence, yet this general strategy is modulated
by their L1 knowledge. As an example, Isabelli (2008) demonstrated that L1
Italian students learning L2 Spanish could interpret Spanish OVS sentences
better than their L1 English peers. This is because OVS sentences are
common in Italian and Spanish, but not in English. Note, however, that
the lexical similarity between Italian and Spanish might be a factor in
this example (VanPatten, 2015a) – we return to this issue in the general
discussion.

To summarize, there is no conclusive evidence about the role of CLI in the interpre-
tation of case-marking cues in transitive sentences. To investigate whether CLI is at play,
we simulate an experimental task employed in the two target studies described below,
and quantify the impact of CLI in the model’s language use with a novel quantitative
measure.
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The rest of the chapter is organized as follows. First, we briefly introduce two studies
on which we focus in our simulations. These studies investigate the interpretation of
transitive sentences with case-marking cues by learners whose L1 does not employ
such cues. This is followed by the presentation of our computational model, where
we also explain how it allows for quantifying CLI. Next, in two sets of simulations
we demonstrate that the model’s linguistic behavior in the target task is similar to that
observed in human learners. The findings are explained in terms of the amount of CLI.
Finally, we make two novel predictions on how the model would perform on the same
task when trained on different language pairs, and test them using our computational
model. Overall, this gives four sets of simulations:

1. Interpretation of German sentences by bilingual learners whose other language
has no case marking (Janssen, Meir, Baker, & Armon-Lotem, 2015).

2. Interpretation of German and Russian sentences by L2 learners whose L1 has no
case marking (Kempe & MacWhinney, 1998).

3. Interpretation of German sentences by Russian–German bilingual learners
(novel).

4. Interpretation of Russian sentences by bilingual learners with various additional
languages (novel).

5.2 Target studies on case-marking comprehension

Studies on the interpretation of case-marking cues in transitive sentences have mainly
focused on adult L2 acquisition (Morett & MacWhinney, 2013; Kempe & MacWhinney,
1998; Mimica et al., 1994; McDonald, 1987, etc.), while similar studies with early
bilinguals have been rare (but see Janssen et al., 2015; O’Shannessy, 2011). We focus
on one study from each population: a study with bilingual and monolingual Russian
children by Janssen et al. (2015), and a study with adult learners of Russian and German
(Kempe & MacWhinney, 1998). In the following sections we explain why we choose
these two studies. First, however, we describe a picture-choice task employed in both
of them.

5.2.1 Picture-choice task
In this task, participants hear a sentence and see two pictures containing alternative
interpretations of the sentence. The participants have to choose the picture which in
their opinion corresponds to the correct interpretation of the sentence. In the two target
studies, the picture-choice task is employed to study the comprehension of competing
cues, in particular case-marking and word order. The target sentences include two
nouns (nominative and accusative/dative) and a verb, and the two pictures depict the
same event, but the participant roles are swapped in one of the pictures. An example
from Janssen et al. (2015):
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Figure 5.1: Accompanying pictures in the study of Janssen, Meir, Baker, and Armon-
Lotem (2015). Reprinted from “On-line comprehension of Russian case cues in mono-
lingual Russian and bilingual Russian-Dutch and Russian-Hebrew children”, 2015,
by B. Janssen, N. Meir, A. Baker, and S. Armon-Lotem. In E. Grillo & K. Jepson
(Eds.), Proceedings of the 39th Annual Boston University Conference on Language
Development, p. 272. Copyright 2015 by B. Janssen. Reprinted with permission.

(42) Petuh-∅
rooster-M.NOM

trogaet
touch:3SG

zmey-u.
snake-F.ACC

‘The rooster touches the snake.’

The sentence (42) is accompanied by two pictures (Figure 5.1), depicting either a
rooster touching a snake, or a snake touching a rooster.

5.2.2 Bilingual and monolingual Russian children
Janssen et al. (2015) work with Russian monolingual children, as well as with Russian–
Dutch and Russian–Hebrew bilingual children. While Russian is characterized by a
free word order and systematic case marking of nouns, the opposite holds for Dutch
and Hebrew: these two languages have much stricter word orders and no morphological
cases on nouns. The case-marking cue is important in Russian: it marks the thematic
roles of the nouns. At the same time, in Dutch and Hebrew the word order is often the
only cue that allows to distinguish between SVO and OVS sentences.

In this study, the picture-choice task is employed to investigate whether this differ-
ence between Russian and Dutch/Hebrew leads to any differences in sentence inter-
pretation by Russian monolingual and Russian–Dutch or Russian–Hebrew bilingual
children. Some of the presented sentences had SVO order, where the word order cue
and the case-marking cue supported and complemented each other (the converging cue
condition), as in (42) above. Other sentences had OVS word order with the conflicting
cues (the conflicting cue condition), such as (43):

(43) Zhiraf-a
giraffe-M.ACC

vidit
see:3SG

petuh-∅.
rooster-M.NOM

‘The rooster sees the giraffe.’

In addition to SVO and OVS sentences with a subject and a direct object, noun-verb-
noun sentences with an indirect dative object were used, such as (44):
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(44) Zmey-e
snake-F.DAT

ulybayetsa
smiles.at:3SG

zhiraf-∅.
giraffe-M.NOM

‘The giraffe smiles at the snake.’

There were 40 stimuli overall: 20 SVO sentences and 20 OVS sentences, the test verbs
included lubit (‘love’), trogat (‘touch’), tselovat (‘kiss’), ulybatsa (‘smile’), vidyet
(‘see’), and zvonit (‘call’).

Both monolingual and bilingual children were expected to perform high in the
comprehension of the SVO sentences, but the bilingual children in the conflicting cue
condition were predicted to demonstrate a lower accuracy rate and longer reaction
time than in the converging cue condition, and than the monolingual children in the
conflicting cue condition. This is because the bilingual children may transfer the
strength of the word order cue from Dutch or Hebrew into Russian, leading to the
misinterpretation of the Russian OVS sentences as SVO. These predictions were met in
terms of both accuracy and reaction time. Interestingly, no differences between the two
bilingual groups were observed, despite the high variation reported for home language
use: 61.1% in the Hebrew group, and 16.7% in the Dutch group.

While the mentioned monolingual and bilingual groups were age-matched, an
additional group of younger Russian learners took part in the experiment, and its
performance was lower than that of the age-matched Russian group.

For us, this study presents an interesting case: first, the authors mention that their
results are compatible with both the First-Noun Principle and the Competition Model.
Second, this is one of the only two studies on the interpretation of case-marking cues
focusing on early bilingual learning. The other one dealt with rare languages for which
it was difficult to obtain the relevant data – Lajamanu Warlpiri and Light Warlpiri
(O’Shannessy, 2011).

5.2.3 Adult L2 learners of Russian and German

Kempe and MacWhinney (1998) worked with native English adult learners of L2
Russian and L2 German, who had been exposed to the target languages in classroom
for 25–26 months. The picture-choice task with transitive sentences was used. Both in
Russian and in German, all the sentences had the verb look for/find as the predicate:
iskat in Russian, and suchen in German. The picture-choice task was slightly different
in this experiment: the alternative pictures did not depict the full event, but only the
two participants instead, and the learners had to decide which participant was the agent,
defined as “who or what did the looking or finding” (Kempe & MacWhinney, 1998, p.
557). The 32 Russian and German test sentences were mutual translations of each other:
12 SVO sentences with case-marking, 12 OVS sentences with case-marking, and 8 SVO
sentences fully neutralized in terms of their case-marking cues: these contained two
nouns whose nominative and accusative cases were marked with the same morpheme,
as in (45).
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(45) Die
ART.F.SG.NOM/ACC

Tochter-∅
daughter-SG.NOM/ACC

sucht
look.for:3SG

die
ART.F.SG.NOM/ACC

Mutter-∅.
mother-SG.NOM/ACC

‘The daughter looks for the mother.’

Using the methodology commonly adopted in Competition Model studies, Kempe
and MacWhinney (1998) compute the availability of a cue as the number of sentences
in which the cue is present divided by the total number of transitive sentences. To
compute the reliability of a cue, they divide the number of sentences in which the
cue correctly indicates the agent by the total number of sentences in which this cue
is present. Based on their calculations, Kempe and MacWhinney (1998) show that
the case-marking cue in Russian has a higher validity than in German, and this is
why Russian L2 learners are more successful in the acquisition of case marking than
German L2 learners: they perform the task faster (in terms of decision latencies) and
more accurately than German L2 learners.

We choose this study because of its similarity to the study of Janssen et al. (2015):
both employ the picture-choice task, and both focus on the comprehension of case
marking in Russian. These similarities will help us to make some informed predictions
about the interpretation of case-marking cues, and test these predictions with our model.
The main difference between the two experiments is the age of the subjects, which we
can also take into account in our computational simulations by manipulating the overall
amount of input the model is exposed to.

5.3 Computational model
The computational model we employ here is a novel version of the model used in earlier
studies on monolingual and bilingual acquisition of argument structure constructions
(Alishahi & Stevenson, 2010, 2008). Compared to the previous studies, here the model
has been adapted to languages with free word order, as explained below. The model
learns argument structure constructions from the input data.

5.3.1 Input to the model

Input representations

The input to the model consists of individual verb usages, which we call argument
structure (AS) instances. Each AS instance comprises multiple independent features:
lexical, semantic, and syntactic. Further, we make two important distinctions: between
distributional features (FD) and symbolic features (FS), and between global (FG) and
local features (FL). Consider an example instance in Table 5.1. Symbolic features carry
values expressed by a single symbol (e.g., head predicate: touch; number of arguments:
2). In contrast, each value of a distributional feature is a set of elements (e.g., head
properties: {ACTION, CAUSAL, MANIPULATE, PHYSICAL}). As for the global vs. local
features, the former relate to the utterance or the described event as a whole (e.g., the
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Table 5.1: An AS instance for the sentence The snake touches the rooster.

Feature Type Value
Head predicate Global, symbolic touch

Head properties Global, distributional {ACTION, CAUSAL,
MANIPULATE, PHYSICAL}

Head position Global, symbolic 2

Number of
arguments

Global, symbolic 2

Arg.1 Local, symbolic snake

Arg.2 Local, symbolic rooster

Arg.1 case Local, distributional NOM

Arg.2 case Local, distributional GEN, ACC

Arg.1 lexical
meaning

Local, distributional {DIAPSIDE, REPTILE, ...,
CAUSAL AGENT}

Arg.2 lexical
meaning

Local, distributional {CHICKEN, DOMESTIC
FOWL, ..., CAUSAL
AGENT}

Arg.1 role properties Local, distributional {ACTING, ANIMATE, ...,
VOLITIONAL}

Arg.2 role properties Local, distributional {ANIMATE, CONCRETE, ...,
TOUCHED}

Arg.1 preposition Local, symbolic N/A

Arg.2 preposition Local, symbolic N/A

Arg.1 position Local, symbolic 1

Arg.2 position Local, symbolic 2

head predicate), while the latter are tied to a particular participant of the event: e.g., an
argument or its lexical meaning.

As we demonstrate in the next section, these two distinctions are important in the
formal model. In particular, introducing the notion of local features helps us to simulate
the learning of free word order languages in a more naturalistic manner. First, however,
we briefly describe how the data sets for the model were obtained.

Data collection

In this study, we use four small data sets of child-directed speech: Russian, German,
English, and French. All sentences are extracted from the respective corpora in the
CHILDES database (MacWhinney, 2000), approximately 500 verb usages in each
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language were manually annotated with the features listed in Table 5.1. The lexical
meanings of noun arguments were automatically extracted from a lexical database
WordNet (G. A. Miller, 1995). The annotation procedure and the resulting corpora are
described in detail in chapter 2.

5.3.2 Learning process

Key components

During the learning, the model receives input instances one by one, and the learning
consists in grouping them into clusters, which potentially correspond to argument
structure constructions. The initial state of the model’s knowledge is a single empty
cluster. While the first instance is always placed into such an empty cluster, for any
subsequent instance I each existing cluster C is considered, including an empty one.
The goal is to find the “best” (most probable) cluster Cbest for the encountered instance
I.

Cbest(I) = argmax
C

P(C|I) (5.1)

The conditional probability in (5.1), P(C|I), cannot be estimated directly; therefore,
the Bayes rule is applied:

P(C|I) = P(C)P(I|C)

P(I)
(5.2)

The denominator in (5.2), which is the probability of the (given) instance, has the same
value for all clusters and does not affect the decision. This is why it can be excluded
from the computation:

P(C|I) ∝ P(C)P(I|C) (5.3)

Equation (5.3) has two components: the prior probability of a cluster, P(C), and the
conditional probability of the instance given the cluster, P(I|C).

The prior is set to be proportional to the number of AS instances previously put
into this cluster, |C|, which is normalized by the total number of instances encountered
so far (N + 1), see equation (5.4). The idea is that frequent categories (clusters) are
more entrenched than non-frequent ones: the learner can access frequent clusters easier,
and is more likely to add the new instance into such clusters.

P(C) =
|C|

N +1
, (5.4)

An empty cluster is also considered for each incoming AS instance, with potentially
one member: the current instance.

The conditional probability in (5.3), P(I|C), accounts for the degree of similarity
between the new instance and each cluster. The main difference of the present model
from its earlier versions relates to how such similarity is computed, which we explain
in the next section.
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Interpreting instances

In the previous versions of the model, the similarity between an instance and a clus-
ter was compared in terms of each feature independently: how similar are the verb
meanings in the instance and the cluster, the first arguments, the second arguments,
etc. This general approach is preserved in this study. However, consider the following
two sentences (46–47) and imagine that the model first encounters an instance based
on sentence (46), places it into an appropriate cluster, and then encounters an instance
based on sentence (47). Without an ability to “swap” the arguments for the purpose of
comparing their similarity, the model would not be able to compare the first argument
giraffe in (46) to the second argument giraffe in (47), and the two instances would most
probably not be grouped together, despite having nearly identical meanings.

(46) Zhiraf-a
giraffe-M.ACC

vidit
see:3SG

petuh-∅.
rooster-M.NOM

‘The rooster sees the giraffe.’

(47) Petuh-∅
rooster-M.NOM

vidit
see:3SG

zhiraf-a.
giraffe-M.ACC

‘The rooster sees the giraffe.’

This is why we need to ensure that the model is able to compute the similarity not only
between the local features of the first argument in a new instance and in each cluster C,
but also between features of arguments with different indexes: first to second, first to
third, etc. Such a mechanism is essential for languages with free word order.

Therefore, multiple possible interpretations i of the instance I are considered in
the model. Each interpretation i carries exactly the same feature values as I, but the
indexes of the local features FL in i may be swapped. In simple terms, whenever
the model encounters an instance extracted from the sentence (46), it considers its
original order of arguments, but also the reversed one (47). This is not to say that
this mechanism simulates what human learners do at the implementational level: it is
unlikely that humans mentally swap the arguments to consider all the alternative word
orders. However, humans must be able to see similarities between sentences such as
(46) and (47), and this is argued to be reflected in the resulting cognitive representations:
think of the notions of alternations and allostructions in construction grammar (Perek,
2015; Cappelle, 2006).

In formal terms, let us denote the value of a particular local feature in the interpre-
tation i as FLi

k, the value of the respective feature in the instance I as FLI
k, and the set

of all permutations for this feature S(FLI
k). Then the set of all possible interpretations

P(I) can be defined as provided in (5.5).

P(I) =
{

i : ∀FLi
k ∈ S

(
FLI

k
)
,∀FGi

k = FGI
k
}

(5.5)

This way, the model considers each possible argument order, and selects the one with
the highest similarity to one of the existing clusters. This maximal similarity value is
considered to be the resulting conditional probability, see equation (5.6).

P(I|C) = max({P(i|C) : i ∈ P(I)}) (5.6)
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The overall similarity value between an interpretation i and a cluster C is taken to be
a product of similarities of individual features, but the individual values for all the
symbolic features FS are weighed by a factor w,4 while the distributional features FD
preserve their original similarity values (equation 5.7). This is necessary, because oth-
erwise the symbolic features related to the sentence form (lexical arguments, argument
positions, etc.) dominate the clustering process, and the model’s decisions are informed
mainly by the form of the instances, but not their meaning.

P(i|C) =
|FDi|
∏
k=1

P
(
FDi

k

∣∣C)
|FSi|

∏
k=1

P
(
FSi

k

∣∣C)
w

(5.7)

Finally, the independent similarities for symbolic and distributional features are com-
puted differently, see (5.8–5.9).

P
(
FSi

k

∣∣C)= ∣∣{FSi
k

∣∣FSi
k ∈ FSC

k

}∣∣+λ∣∣FSC
k

∣∣+λ |FSk|
(5.8)

In equation (5.8), the term
∣∣{FSi

k

∣∣FSi
k ∈ FSC

k

}∣∣ denotes how many times FSi
k (the

value of the feature FSk observed in the interpretation i) occurs in the cluster C, and
the term FSC

k (the total number of occurrences of the target feature in C) serves as the
normalizing factor. The smoothing parameter λ is introduced both in the numerator
and the denominator, but in the latter case it is multiplied by the total number of
different values of the target feature in the data set. This method would not be robust
for calculating the similarity in the distributional features, because their values consist
of sets, and the set equality is very unlikely to hold, so that

∣∣{FSi
k

∣∣FSi
k ∈ FSC

k

}∣∣= 0.
This is why the method given in (5.9) is used:

P
(
FDi

k

∣∣C)=
 ∏

e∈FDi
k

P(e|C)× ∏
e∈FDk\FDi

k

P(¬e|C)

 1
|FDk|

, (5.9)

where P(e|C) and P(¬e|C) are computed in the same way as in (5.8), replacing FSi
k

with the respective element e, see equation (5.10):

P
(
ei

k

∣∣C)= ∣∣{ei
k

∣∣ei
k ∈ FDC

k

}∣∣+λ∣∣FDC
k

∣∣+λ |FDk|
(5.10)

4 The value of this factor is set empirically, together with the value of the smoothing parameter λ (see
appendix B.4). In all the simulations presented here, we use λ = 10−14 and w = 0.2. Altering the
parameter values across different simulations could be seen as an implementation of individual cognitive
differences between human speakers, although we do not explore this option in the present study. Note,
however, that altering parameter values across different languages might not be compatible with the
usage-based framework, because this would mean that each language contains explicit information
about the usefulness of its individual features. Instead, the simulated learner should be able to infer this
information during the learning process.
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5.3.3 Simulated picture-choice task
At any point, the learning process can be paused, and the model is tested on the picture-
choice task. The model receives a set of test stimuli, each of which includes a pair
of alternatives (Table 5.2), and has to choose the correct one in each pair. Note that
each alternative instance comprises all the features used in the input: lexical, syntactic,
and semantic. The alternatives within each pair are identical, and the only difference
is in the assignment of the argument roles. As it can be seen from Table 5.2, the role
properties of the two arguments are swapped, to simulate what in human experiments
is a pair of images with the participant roles reversed.

Given the two alternatives, the model computes their probability given the acquired
knowledge, which can be expressed as the sum of the respective probabilities over all
the acquired clusters:

P(IA) = ∑
C

P(IA|C)P(C) (5.11)

To compute the two probabilities in (5.11), we use the same methods as during the
learning: equation (5.6) for computing the conditional probability P(IA|C), and equation
(5.4) for the cluster’s prior probability P(C). After evaluating the probability of each
alternative, the model selects the more probable one. As we mentioned earlier, CLI
may be a factor affecting the model’s choice. We next propose a measure of CLI.

5.3.4 Measuring the amount of CLI
The model accumulates evidence supporting each alternative from all the acquired
clusters. At the same time, some clusters contribute to the decision substantially more
than others, either because they are similar to the test instance, or because they are
strongly entrenched in the model’s knowledge. Besides, the amount of the non-target
language instances in each acquired cluster differs: some clusters are based on the
instances of a single language (L1 or L2), while others are “blended” – that is, based
on data from both languages (see Figure 5.2). To summarize, there are two components
that determine the amount of CLI given an instance I: the contribution of each cluster to
the model’s choice, and the number of the non-target language instances in the cluster.

If we denote the language of an instance I as L(I), then the amount of CLI can be
defined as follows:

CLI(I) =∑
C

P(I|C)P(C)
|{J|J ∈C,L(J) 6= L(I)}|

|C|
, (5.12)

where the last term denotes the proportion of instances from the non-target language in
the cluster C.

In the picture-choice task, each pair has a correct alternative Icorrect , and an incorrect
alternative Iincorrect . Using equation (5.12), we can compute the amount of CLI inde-
pendently for each alternative. In this particular task the two alternatives are competing,
and the support from L1 for Icorrect can be seen as positive CLI, while the support from
L1 for Iincorrect is negative. This is why the best way to quantify the impact of CLI in
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Table 5.2: A pair of test instances for The rooster touches the snake. For simplicity, an
English translation of the Russian sentence is used.

Feature Alternative 1 Alternative 2

Head predicate touch touch

Head properties {ACTION, CAUSAL,
MANIPULATE, PHYSICAL}

{ACTION, CAUSAL,
MANIPULATE, PHYSICAL}

Head position 2 2

Number of
arguments

2 2

Arg.1 rooster rooster

Arg.2 snake snake

Arg.1 case NOM NOM

Arg.2 case ACC ACC

Arg.1 lexical
meaning

{CHICKEN, DOMESTIC
FOWL, ..., CAUSAL
AGENT}

{CHICKEN, DOMESTIC
FOWL, ..., CAUSAL
AGENT}

Arg.2 lexical
meaning

{DIAPSIDE, REPTILE, ...,
CAUSAL AGENT}

{DIAPSIDE, REPTILE, ...,
CAUSAL AGENT}

Arg.1 role
properties

{ANIMATE, CONCRETE,
TOUCHED}

{ACTING, ANIMATE, ...,
VOLITIONAL}

Arg.2 role
properties

{ACTING, ANIMATE, ...,
VOLITIONAL}

{ANIMATE, CONCRETE,
TOUCHED}

Arg.1 preposition N/A N/A

Arg.2 preposition N/A N/A

Arg.1 position 1 1

Arg.2 position 2 2
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Figure 5.2: A subset of five clusters emerged in a bilingual English–Russian simulated
learner. While each cluster normally consists of multiple features, in this figure only
head predicates are shown for simplicity.

the picture-choice task is to measure the difference in the amount of CLI between the
two alternatives:

∆CLI(I) =CLI(Icorrect)−CLI(Iincorrect) (5.13)

A positive value of ∆CLI(I) would mean that the positive effect of CLI prevails, while
a negative value shows that CLI is damaging for the model’s decision on a particular
pair of instances.

5.4 Simulations and results
This section presents our computational simulations of the two target experiments. This
is followed by two more simulations, which test our novel predictions regarding the
comprehension of case-marking cues in additional language pairs.

5.4.1 Simulation set 1
In this experiment, we study whether our computational model performs similar to
humans in the picture-choice task. Based on Janssen et al.’s (2015) results, we expect
that the model will reach higher accuracy in the converging cue condition than in the
conflicting cue condition. We also interpret the results in terms of CLI.

Simulation details

The 40 Russian stimuli from Janssen et al.’s (2015) experiment were obtained from the
authors and annotated in the same way as our input data set. We had neither Hebrew
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nor Dutch data to simulate the same language pairs as in the original experiments, yet
the results of Janssen et al. were consistent across the two groups of bilinguals, which
suggests that the findings generalize on other bilingual children, as long as they speak
Russian and an SVO language without case marking. Among our data sets, English
and French are such languages; therefore, we simulate English–Russian and French–
Russian bilinguals, in addition to Russian age-matched and younger monolinguals.

Both in monolingual and bilingual simulations the model received a total of 400
AS instances (value established empirically): for monolinguals, these were Russian
instances only, while for bilinguals the input included Russian and English/French
instances in equal proportion. After that, the model in each condition performed the
picture-choice task on the 40 test instances. To obtain the group of younger monolin-
guals, the simulated monolingual learners were additionally tested in the middle of the
learning, after 200 training instances.

Results

Figure 5.3 provides a visual comparison of our results vs. human data from Janssen
et al. (2015). There are four groups in each figure: two groups of Russian monolin-
guals – age-matched and younger; and two groups of bilinguals – Dutch–Russian and
Hebrew–Russian (in the original study), or French–Russian and English–Russian (in
our simulations). Each group is tested in two conditions: on the stimuli with converging
cues and with conflicting cues. The accuracy is measured as the ratio of the right choices
to the total number of replies. We can observe the following similarities between the
two studies:

1. All groups of learners in both studies perform high in the converging condition:
see the gray bar plot in each pair.

2. Both younger and age-matched monolingual Russian learners (human as well as
simulated) perform above chance in the conflicting condition, although not as
high as in the converging condition: see the two pairs of bar plots on the left.

3. All bilingual learners perform either at chance or below chance in the conflicting
condition: see the white bar plots in the two pairs on the right.

To investigate whether these similarities are statistically significant, we fit a logistic
regression model to the data, which predicts the odds of making the right choice from
three variables used by Janssen et al. (2015): group (age-matched Russian monolin-
guals vs. younger monolinguals vs. English bilinguals vs. French bilinguals), stimulus
cue condition (converging vs. conflicting), and stimulus case contrast (nominative–
accusative vs. nominative–dative), with all the interactions between these variables.5

The summary is provided in Table 5.3.
When interpreting the results, it is important to keep in mind three points. First, the

reference level in the table is the Russian monolingual age-matched group, conflicting
cues and nominative–accusative case contrast. Second, to make the results more inter-
pretable, we report them in terms of the probability of selecting the correct alternative
5 We additionally tried fitting mixed-effects models to the data, but these did not converge.
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(a) Original results of Janssen, Meir, Baker, and Armon-Lotem (2015). Reprinted from “On-line
comprehension of Russian case cues in monolingual Russian and bilingual Russian-Dutch and
Russian-Hebrew children”, 2015, by B. Janssen, N. Meir, A. Baker, and S. Armon-Lotem. In
E. Grillo & K. Jepson (Eds.), Proceedings of the 39th Annual Boston University Conference on
Language Development, p. 273. Copyright 2015 by B. Janssen. Reprinted with permission.
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(b) Results of our simulations.

Figure 5.3: Simulating the experiment of Janssen, Meir, Baker, and Armon-Lotem
(2015).
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Table 5.3: Summary of the regression model fitted to the data from our simulation of
Janssen, Meir, Baker, and Armon-Lotem’s (2015) experiment. Intercept corresponds
to the probability of choosing the right alternative by the age-matched Russian mono-
lingual group on the stimuli with conflicting cue type and nominative–accusative case
contrast.

Variable β SE p P(Icorrect)
*

(Intercept) 1.67 0.10 < .001 .84

Group:En −1.12 0.23 < .001 .63

Group:Fr −0.91 0.22 < .001 .68

Group:Ru-yng −0.12 0.29 .349 .82

Type:Conv 1.73 0.22 < .001 .97

Case:DAT −1.12 0.21 < .001 .63

Group:En × Type:Conv −0.33 0.26 .201 .88

Group:Fr × Type:Conv −1.37 0.25 < .001 .75

Group:Ru-yng × Type:Conv 0.25 0.32 .431 .97

Group:En × Case:DAT −1.24 0.27 < .001 .14

Group:Fr × Case:DAT −0.41 0.24 .006 .32

Group:Ru-yng × Case:DAT 0.13 0.31 .399 .64

Type:Conv × Case:DAT −0.86 0.24 < .001 .81

Group:En × Type:Conv ×
Case:DAT

4.10 0.31 < .001 .94

Group:Fr × Type:Conv ×
Case:DAT

3.08 0.29 < .001 .86

Group:Ru-yng × Type:Conv ×
Case:DAT

−0.36 0.35 .299 .79

* This variable shows the resulting probability of selecting the correct alternative in a particular
condition: e.g., the value .88 in the line “Group:En × Type:Conv” means that the English group
selects the correct alternative on a test stimulus with converging cues (and nominative–accusative
contrast, which is the baseline) with the probability of 88%. Each P(Icorrect) value is computed
using an inverse-logit transformation on the value of the respective β -coefficient, and adding it up to
the identically transformed baseline probability: intercept for the main effects, main effects for the
two-way interactions, etc.
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in a pair of instances, P(Icorrect). Finally, only some pairwise comparisons between
various factor levels are reported in the table: to obtain the missing comparisons, we
use lsmeans package for R (Lenth, 2016).

First, there is a significant effect of type, which means that simulated Russian
speakers interpret the nominative–accusative stimuli with conflicting cues less accu-
rately than such stimuli with converging cues: P(Icorrect) = .84 vs. .97. Our post-hoc
pairwise comparisons confirm that this effect is significant in all the other group–case
conditions.

More importantly, we observe a significant effect of group. The age-matched
monolinguals perform significantly more accurately than English–Russian and French–
Russian bilinguals on the nominative–accusative stimuli with conflicting cues:
P(Icorrect) = .84 vs. .63 and .68, respectively. The post-hoc comparisons yield the
same effect for all the other types of stimuli, apart from the ones with converging cues
and nominative–dative case contrast. Together with the main effect of case reported in
the table, this suggests that the Russian monolinguals could not successfully acquire the
nominative–dative cue contrast. This differs from the human subject results reported by
Janssen et al. (2015). However, an analysis of the input data to our model explains this
difference: the dative case occurs only 25 times in our Russian data, and not a single
time in a noun-verb-noun sentence. Given such input, it is unsurprising that the model
could not successfully acquire the nominative–dative cue contrast.

Another discrepancy between our results and the results of the original experiment is
that we find no significant difference between age-matched and younger monolinguals,
both for the reference type of stimuli (P(Icorrect) = .84 vs. .82) and for the other types,
as our post-hoc tests show. This may be due to the ceiling effect: the model might
acquire the case-marking cue contrast right after the onset of the learning.

Despite the mentioned differences, our main finding in terms of the competition of
the two cues, case-marking and word order is compatible with Janssen et al.’s (2015)
results: OVS sentences are interpreted less accurately than SVO sentences, and this
difference is most evident in bilingual learners. Given the competition of cues in our
model, this result supports the explanation provided by the Competition Model. Next,
we will investigate whether the results can be explained in terms of CLI.

Analysis of CLI

We use the ∆CLI measure introduced in section 5.3.4. Our main prediction concerns
the bilinguals’ interpretation of the OVS sentences: we expect the negative effect of
CLI to prevail over its positive effect. This is why we first zoom in on the conflicting
cue condition. The arithmetic mean of ∆CLI is negative in this condition for each
group of bilinguals: −0.06 for the English group, and −0.05 for the French group.
This is different from the converging cue condition, in which the corresponding values
of ∆CLI are positive: 0.04 and 0.03. Although the difference is not large in absolute
terms, the signs of the means are opposite, and the Mann–Whitney U test shows that
the difference is statistically significant: U = 2,079,000, p < .001. The difference
between the two types of stimuli is clearly visible in Figure 5.4: the average accuracy
tends to be higher for those stimuli which yield more positive CLI. All together, this
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Figure 5.4: Average accuracy vs. amount of CLI per stimulus in simulation set 1, with
a fitted linear regression line.

supports our prediction that the negative CLI prevails in OVS sentences, leading to
their misinterpretation.

To test whether ∆CLI adds any explanatory power to the regression model reported
in the previous section (Table 5.3), we updated the model by including various interac-
tions between ∆CLI, group, type, and case. In the resulting model, the β -coefficients
for the predictors and their interactions differed to a certain extent in their absolute
values from those in the original model, but these differences were small and did not
affect the main results – for brevity we do not report the full model. Most importantly,
the amount of CLI had a significant effect on the accuracy of the two bilingual groups
on the sentences with conflicting cues, judging by the respective β -coefficients. Also,
the comparison between the two regression models, with and without ∆CLI, in terms of
the corrected Akaike information criterion (AICc) demonstrated that the model which
takes into account the amount of CLI predicted the data better: ∆AICc = 568. This
suggests that our ∆CLI measure is able to capture the amount of CLI, as well as its
effect on the model’s choice in the target task.

To summarize, the results of our simulation were similar to those reported by
Janssen et al. (2015), although due to the lack of dative nouns in our input data
the model could not successfully acquire the dative–nominative contrast. Taken into
account the type of our computational model, this result supports the competition
of cues as a plausible explanation for the misinterpretation of OVS sentences. Our
analysis of CLI showed that the ∆CLI measure could serve as an additional independent
predictor of the model’s accuracy in the target task.

In the next experiment, we simulate a different population of learners, and further
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Table 5.4: Availability, reliability, and validity of the case-marking cues in transitive
sentences in our data sets.

German Russian

Case Availability Reliability Validity Availability Reliability Validity

(Total) .80 1.00 .80 1.00 1.00 1.00

NOM .77 1.00 .77 .98 1.00 .98

ACC .13 1.00 .13 .55 1.00 .55

investigate the role of CLI in the target task.

5.4.2 Simulation set 2
In our second set of simulations, we proceed with the experiment of Kempe and
MacWhinney (1998). Just as in the previous section, we first test our model by simulat-
ing the picture-choice task in the two populations from the target experiment: adult L2
Russian learners and L2 German learners. Second, we investigate whether the impact
of CLI on the comprehension of case-marking cues in Russian is manifested in these
two populations. Ultimately, this set of simulations will also allow us to make more
informed predictions about case-marking comprehension in other language pairs.

We start, however, with an additional data analysis. Kempe and MacWhinney (1998)
report that the validity of the case-marking cues in Russian is higher than in German,
which makes German case-marking cues more difficult to acquire and comprehend.
Following their method (see section 5.2.3), we calculated the validity of case-marking
and word order cues for all the transitive sentences in our data sets. The overall pattern
(Table 5.4) is in line with what Kempe and MacWhinney report for their language
samples, although the absolute values differ, probably due to the small number of target
sentences in our data set (40 in Russian and 70 in German).

The validity of the case-marking cues, especially the accusative, is lower in German
than in Russian – this is why we expect that our model will interpret Russian OVS
sentences more successfully than German OVS sentences, just as the human participants
in Kempe and MacWhinney’s experiment.

Simulation details

We annotated the original stimuli available from Kempe and MacWhinney’s (1998)
study, using the same approach as for our input data sets. Recall that our data sets
were obtained from child-directed speech, therefore the L1 input to our model in this
experiment may not be as rich as the input that adult speakers are exposed to through
the course of their life. Besides, the type of L2 input that adult learners receive differs
from child-directed speech. Therefore, we use our data sets as an approximation of the
input only, although they are representative in terms of the case marking in Russian
and German transitive sentences.
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Figure 5.5: Results of our simulations of Kempe and MacWhinney’s (1998) experiment.

The model was exposed to 600 English instances, followed by 600 instances of
mixed input, in which English and Russian (or English and German) were contained
in equal proportion. Note that these values are higher than in our previous simulation
set, to better approximate adult L2 learning. After that, the model in each condition
performed the picture-choice task on the 40 test instances.

Results

Figure 5.5 provides a visualization of our results. Each barplot shows how many times
the SVO interpretation was chosen (first-noun-as-subject), normalized by the total
number of (simulated) learners; there are seven groups of stimuli in total, depending
on the case marking of the first and the second noun in the sentence. The first four
groups (NEU-NEU, NOM-NEU, NEU-ACC, and NOM-ACC) represent the SVO pattern,
and the other three the OVS pattern. If we compare this figure to Figure 5 in Kempe and
MacWhinney’s (1998) study (p. 563),6 we can find the following similarities between
the original study and our simulation:

1. In SVO sentences (four pairs of bar plots on the left), both Russian and German
learners predominantly choose the first noun in the sentence as the agent.

2. In OVS sentences (three pairs of bar plots on the right), Russian learners tend
to choose the second noun in the sentence as the agent, while German learners
perform close to chance on this type of stimuli.

6 This figure could not be reproduced here due to copyright issues.
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Table 5.5: Summary of the regression model fitted to the data from our simulation of
Kempe and MacWhinney’s (1998) experiment. Intercept corresponds to the probability
of choosing the right alternative by the German monolingual group on the OVS stimuli.

Variable β SE p P(Icorrect)

(Intercept) −0.19 0.33 .756 .45

Group:Ru 3.04 0.44 < .001 .95

Type:SVO 5.96 1.01 < .001 1.00

Group:Ru × Type:SVO −3.39 0.97 < .001 1.00

At the same time, the comparison of the two figures also reveals some differences
between the two studies. Most importantly, human participants in Kempe and MacWhin-
ney’s (1998) study perform on SVO sentences with fully neutralized case-marking
cues just as on the other SVO sentences, choosing the first noun as the agent in ap-
proximately 90% of cases. In contrast, our model exhibits a less clear preference on
this type of stimuli: the proportion of first-noun choice is approximately 70% in each
language. We believe it may be either due to the relatively small size of the input data
that the model received compared to human speakers, or due to the model’s insufficient
attention to the word order cue in isolation.

Another difference relates to the relative accuracy on particular types of Rus-
sian OVS sentences. For Kempe and MacWhinney’s participants, sentences with the
neutralized–nominative case contrast were the most difficult to interpret among the
three types of Russian OVS sentences. In contrast, our model performed worst on
the accusative–neutralized case contrast. We see this difference as an artifact of the
particular data sets used in our simulations.

To statistically test the difference in accuracy between the two types of stimuli
(OVS vs. SVO sentences) and between the two languages (German vs. Russian), we
fit a logistic mixed-effects model to the data, which predicts the odds of making the
correct choice from the two mentioned variables and their interaction, with random
intercepts over learners and stimuli, and with a random slope of the stimulus type over
learners.7 The model summary is presented in Table 5.5.

The results demonstrate a significant effect of language: Russian learners perform
significantly more accurately than German learners on the OVS stimuli: P(Icorrect)= .95
vs. .55, while there is no difference on SVO stimuli: P(Icorrect) for both languages
is close to 1. There is also a significant effect of sentence type: the performance of
the German group on SVO sentences is significantly higher than on OVS sentences:
P(Icorrect) = 1.00 vs. .45. Our post-hoc analysis shows that the same effect is significant
for Russian learners as well.

Additionally, we compared the performance of Russian and German simulated
learners on each of the seven stimulus types shown in Figure 5.5. A logistic mixed-
effects model was fitted to the data on each stimulus type with a fixed effect of language

7 More complex models with other random slopes did not converge.
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Figure 5.6: Average accuracy vs. amount of CLI per stimulus in simulation set 2, with
a fitted linear regression line.

(German vs. Russian), a random intercept and a random slope of language over individ-
ual learners, and a random intercept over individual stimuli. The results demonstrated
that the difference between Russian and German learners is only statistically significant
in the three OVS types (the three pairs of bar plots on the right in Figure 5.5). These
findings are in line with the results of Kempe and MacWhinney (1998) for the accuracy
of case marking comprehension.

To conclude, the results support our prediction about the interpretation of SVO vs.
OVS sentences. We proceed with the analysis of CLI in this set of simulations.

Analysis of CLI

Just as in the previous experiment, we investigate whether the choices made by our
computational model can be explained in terms of CLI. We fit a regression model
similar to the one described in the previous section, which includes ∆CLI and its
interactions as additional predictors. The results demonstrate the effect of CLI in OVS
sentences: a .1 increase in ∆CLI results in a .04 (German) or .01 (Russian) increase in
the probability of making the correct choice for OVS sentences. This is also visualized
in Figure 5.6: we see that the accuracy tends to be higher for the positive values of
∆CLI. The result shows that the CLI measure is highly predictive of the difference
between subject groups in the target task.

At the same time, if we focus on OVS sentences and compare the ∆CLI values in
Russian vs. German learners, there tends to be no difference: compare the X-coordinate
of the OVS points (circles) in Figure 5.6 across the two colors. The Mann–Whitney U
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test also demonstrates no support for the possible difference: U = 1,310,400, p = .244.
This suggests that it is not the CLI that explains the difference in the interpretation
of OVS sentences by German vs. Russian learners. Instead, this difference must be
explained in terms of Russian-to-Russian or German-to-German influence: the higher
ambiguity in the German case system, compared to the Russian system, leads to the
observed difference in the model’s performance on OVS sentences in Russian vs.
German.

To summarize, in this set of simulations we demonstrated that our model produces
results similar to the human data, when interpreting case-marking cues in Russian
and German SVO and OVS sentences. The main discrepancy between our results
and human subject results was observed in the interpretation of sentences with fully
neutralized case-marking cues. As for the effect of CLI, it was manifested in this set of
simulations just as in the previous one, but the amount of CLI could not explain the
difference between the accuracy of Russian and German learners. Instead, we attribute
this difference to the validity of case-marking cues, suggesting that our computational
model is compatible with the Competition Model framework. In the next section we
demonstrate how novel predictions can be made based on the outcomes of our two sets
of simulations.

5.4.3 Novel simulations

We can now go beyond the replication setup and make predictions about the inter-
pretation of case-marking cues in other bilingual populations. We make two specific
predictions and run two additional sets of simulations to test them, followed by an
analysis of the results in terms of CLI.

1. Janssen et al. (2015) in their study explain that their result, in particular the low
accuracy on the conflicting sentences in bilinguals, may be “due to bilingualism
in itself, ... or to the fact that the other language provided no support for case
cues” (p. 276). At the same time, the presence or absence of case cues in the
other language has been shown to be important: for example, L1 Italian speakers
interpret L2 Spanish OVS sentences better than L1 English speakers (Isabelli,
2008). Similarly, we hypothesize that the knowledge of German with its rich
case marking can be beneficial for the acquisition of Russian cases, and that
German–Russian bilingual children would interpret Russian sentences more
accurately than English–Russian or French–Russian bilinguals.

2. Kempe and MacWhinney (1998) demonstrate that case-marking cues are more
difficult to acquire in German than in Russian, and our simulation set 2 validates
this result applied to our model. It is therefore reasonable to hypothesize that
monolingual German children would perform less accurately on OVS sentences
in the picture-choice task when tested on German, compared to Russian mono-
lingual children tested on Russian (i.e., as in the experiment of Janssen et al. and
our first set of simulations). At the same time, bilingual French–German and
English–German children are expected to perform poorly on OVS sentences,
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Figure 5.7: Accuracy of simulated German–Russian bilinguals against the other groups.

while Russian–German children may benefit from their knowledge of Russian
and achieve higher accuracy compared to the two other groups of bilinguals.

Using our computational model, we run two additional simulations to test these hy-
potheses.

Bilingual German–Russian children

Following the setup described in section 5.4.1, we simulate an additional group within
the same experiment: German–Russian bilinguals. This population of simulated learners
is tested on the same Russian stimuli as the other four groups (Russian age-matched
and younger monolinguals, and English–Russian and French–Russian bilinguals). The
comprehension accuracy for the new group (utmost right plots) against the other groups
is shown in Figure 5.7. It suggests that German–Russian bilingual learners have an
advantage in this task over English–Russian and French–Russian learners. However,
this claim is inconclusive without looking at the accuracy across the types of our stimuli.
Such accuracy is plotted in Figure 5.8. We also statistically test the pairwise differences
between the German–Russian group and the other groups: a logistic regression model
similar to the one in the simulation set 1 (section 5.4.1) is fitted to the data for all the
five groups, and all the pairwise contrasts between the German–Russian group vs. each
of the other groups are analyzed using lsmeans package. The summary of the contrasts
is provided in Table 5.6.

The results in Figure 5.8 and Table 5.6 show that the German–Russian group
performs worse than the monolingual group on both types of nominative–accusative
contrasts: the difference in accuracy in terms of least-square means, ∆LSM, equals 0.83
and 1.28, respectively. The relation is reversed on nominative-verb-dative sentences
(∆LSM =−1.36): recall from the simulation set 1 that there were few datives in the
input data, and the model could not successfully acquire the nominative–dative contrast.
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Figure 5.8: Average accuracy in each simulated group across the four types of stimuli
(case × condition). For simplicity, younger Russian monolinguals are not shown: their
accuracy did not differ significantly from that of the age-matched monolinguals.

Table 5.6: Summary of pairwise linear contrasts for accuracy and CLI using least-square
means (LSM). “Ru” is the age-matched monolingual group, while “Ge”, “En” and
“Fr” denote the respective bilingual groups. The younger monolinguals are omitted for
brevity.

Accuracy CLI

Contrasta Type Case ∆LSM SE pb ∆LSM SE p

Ru − Ge conflicting Acc 0.83 0.12 < .001 0.02 0.00 .001

En − Ge conflicting Acc −0.29 0.11 .074 −0.03 0.00 < .001

Fr − Ge conflicting Acc −0.08 0.11 .999 −0.02 0.00 < .001

Ru − Ge converging Acc 1.28 0.23 < .001 0.00 0.00 1.000

En − Ge converging Acc −0.17 0.16 .962 0.01 0.00 .862

Fr − Ge converging Acc −1.01 0.14 < .001 0.01 0.00 .942

Ru − Ge conflicting Dat 0.10 0.08 .907 −0.02 0.00 < .001

En − Ge conflicting Dat −2.25 0.10 < .001 −0.10 0.00 < .001

Fr − Ge conflicting Dat −1.22 0.08 < .001 −0.06 0.00 < .001

Ru − Ge converging Dat −1.36 0.15 < .001 −0.05 0.00 < .001

En − Ge converging Dat 0.05 0.18 1.000 0.01 0.00 .011

Fr − Ge converging Dat −0.98 0.16 < .001 −0.02 0.00 < .001
a German–Russian bilingual learners are at the second position in each contrast: negative ∆ values are

associated with the higher estimate of the respective coefficient in the German–Russian group.
b The p-values are adjusted for multiple comparisons (so-called multivariate t-probabilities) using the

mvt method (Lenth, 2016).
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Finally, there is no significant difference between the bilingual German–Russian and
the monolingual group for dative-verb-nominative sentences (∆LSM = 0.10).

Speaking of the difference between German–Russian vs. the other two groups
of bilinguals, we can see that the former perform substantially better than the other
two groups on dative-verb-nominative sentences, and than the French–Russian group
(but not English–Russian) on nominative-verb-accusative and nominative-verb-dative
sentences. Because there are no significant differences for the other types of sentences,
our hypothesis about the facilitatory effect of the German knowledge is supported only
partially.

To investigate the contribution of CLI to this result, we can compare the differences
in accuracy to the differences in the amount of CLI across different groups of learners.
A linear mixed-effects model has been fitted to the data, predicting this time the amount
of CLI (∆CLI), and the pairwise contrasts were computed (see Table 5.6 on the right).
We can see that the greatest difference in the amount of CLI is observed for dative-verb-
nominative sentences (∆LSM =−0.10 and−0.06), which is the only type of stimuli on
which the German–Russian group scores higher in accuracy than both other bilingual
groups. This means that the amount of positive CLI for this type of stimuli is higher in
German–Russian group than in French–Russian and English–Russian group, in line
with our prediction.

As for the other types of stimuli, the amount of CLI in German is simply not high
enough to facilitate the interpretation of Russian sentences: this can be demonstrated by
plotting the average amount of CLI across the three groups of bilinguals, see Figure 5.9.
Note that in the conflicting cue condition, the amount of CLI is always higher in the
German group than in the other two groups. However, its absolute value is positive
only for the dative-verb-nominative sentences, but not for accusative-verb-nominative.
This explains why we observe no differences across the bilingual groups for this latter
type of sentences.

To summarize, our simulated data only partially confirms our prediction that the
knowledge of German can facilitate the interpretation of Russian case marking. The
lack of the hypothesized effect can explained by the amount of CLI across different
types of stimuli.

Bilingual and monolingual German children

Until this point, we have simulated the experiment of Janssen et al. (2015) using
Russian sentences. Our final prediction, however, concerns case comprehension in
German. We use the same setup as in simulation set 1, but this time simulating German
monolingual children and three groups of bilinguals: French–German, English–German,
and Russian–German. All the four groups are tested on German instances. Ideally, we
would translate Janssen et al.’s stimuli into German, however many of such translated
sentences would be fully neutralized in terms of their case-marking cues. To give an
example, the sentence Kukla lyubit zhirafa “The doll loves the giraffe” would translate
into German as Die Puppe liebt die Giraffe, where the case of both nouns can be
interpreted as either accusative or nominative. Therefore, in this experiment we used
a subset of Kempe and MacWhinney’s German stimuli, 24 out of 32: the 8 fully
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Figure 5.9: Amount of CLI (∆CLI) per group, averaged over stimuli, in the Russian
picture-choice task.

neutralized stimuli were eliminated.
The performance of the four groups is shown in Figure 5.10, while in Table 5.7 we

also provide a summary of the logistic mixed-effects model fitted to the data. First of all,
the results show that German monolinguals (the utmost left pair of plots) perform well
in the converging cue condition, but close to chance in the conflicting cue condition.
This is in line with the findings of Kempe and MacWhinney (1998) for L2 learners
(which we simulated in experiment 2), and also with the existing data suggesting that
German children are only able to interpret case marking in OVS sentences around the
age of seven (Dittmar et al., 2008). Besides, this result is clearly different from the
accuracy of simulated Russian monolinguals in our simulation set 1, who performed
well in the conflicting cue condition. This supports our prediction about the accuracy
of monolinguals on German vs. Russian OVS sentences.

As for the bilingual groups, both English–German and French–German bilinguals
perform in the conflicting cue condition less accurately than monolinguals. Interestingly,
our simulated Russian–German bilinguals perform significantly better than German
monolinguals in this condition. While this is inconsistent with the view that bilinguals
lag behind monolinguals in their language development (Schmitz, 2006; Hulk, 2004),
bilingual children have been shown to acquire some grammatical features earlier than
monolinguals (Pléh, Jarovinskij, & Balajan, 1987; Meisel, 1986). In our model, this may
only happen if bilinguals benefit from positive CLI. To investigate this, we analyze the
∆CLI values for all the groups, focusing on the conflicting condition. The comparison is
provided in Figure 5.11. Note the obvious difference across the groups in the conflicting
condition, but not in the converging condition. The direction of this difference is as
expected: the effect of CLI is positive in Russian–German bilinguals and negative in
the other two groups.
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Figure 5.10: Accuracy per group in the German picture-choice task.

Table 5.7: Summary of the regression model fitted to the data from our simulation of
the German picture-choice task. Intercept corresponds to the probability of choosing
the right alternative by the German monolingual group in conflicting cue condition.

Variable β SE p P(Icorrect)

(Intercept) 0.23 0.38 .537 .56

Group:En −1.05 0.09 < .001 .31

Group:Fr −1.11 0.09 < .001 .29

Group:Ru 0.40 0.09 < .001 .65

Type:Conv 1.68 0.50 .001 .87

Group:En × Type:Conv 0.93 0.15 < .001 .86

Group:Fr × Type:Conv 1.18 0.15 < .001 .88

Group:Ru × Type:Conv 0.46 0.16 .005 .94
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Figure 5.11: Amount of CLI (∆CLI) per group, averaged over stimuli, in the German
picture-choice task.

To summarize, the results of this simulation set support our prediction: the accuracy
of simulated monolinguals on the sentences with conflicting cues is lower in German
than in Russian. This is in line with Kempe and MacWhinney’s (1998) findings and
with the results of our simulation set 2, corroborating the idea in the Competition Model
that the validity of case cues is important. The results also confirm our hypothesis
about the performance of the bilingual groups on the German OVS sentences: while
the simulated French–German and English–German bilinguals performed poorly on
such sentences, Russian–German bilinguals benefited from positive CLI and achieved
high accuracy.

5.5 Discussion
Our goal in this study was to demonstrate how the amount of CLI can be measured
in a computational model, and how such a measure can be applied for explaining a
particular phenomenon, the comprehension of case-marking cues.

5.5.1 Quantifying the effect of CLI
We introduced a measure of CLI and used it to quantify the CLI effect in the picture-
choice task. This measure helped us to determine the contribution of CLI to the
observed result. As it was demonstrated, the measure can be used both on the level of a
particular group or condition (e.g., average amount of CLI in the interpretation of OVS
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sentences by Russian–German bilinguals), and on the level of a particular test item (cf.
Figure 5.4), in case the goal is to study the differences between individual sentences.

In this study, we only employed a particular linguistic task related to sentence
interpretation, but it is perfectly possible to use this computational model for simulating
other linguistic tasks: filling in verbs or prepositions, verb definition, verb selection,
etc. (recall chapters 3–4). For all these tasks, the same type of measure (CLI or ∆CLI)
can be used to quantify the amount of CLI and shed light on its role CLI in language
comprehension and production.

5.5.2 CLI in case-marking cue comprehension

Speaking about the linguistic phenomenon of interest – case-marking cue comprehen-
sion – it was demonstrated in this study that our probabilistic computational model
performed in the target task similar to human learners: early bilinguals in the ex-
periment of Janssen et al. (2015) and L2 learners in the experiment of Kempe and
MacWhinney (1998). In section 5.1.2 we outlined two general views on the role of CLI
in case-marking cue comprehension by bilingual or L2 learners. Our results suggest
that CLI is an important factor that affects this kind of comprehension. This explicitly
contradicts VanPatten’s (1996) First-Noun Principle: first, an effect of the amount
of CLI was observed in all our simulations; second, the performance of simulated
German–Russian speakers on Russian and German OVS sentences (recall our novel
sets of simulations) was higher compared to bilinguals whose other language had no
case-marking cues (i.e., French or English).

At the same time, recall from section 5.1.2 that there are at least two theories
promoting the role of CLI: the Competition Model and the L1 Transfer Principle. In our
model, various features compete with each other, which makes it compatible with the
Competition Model. This similarity is also supported by the data of our simulation set 2:
while the amount of CLI could not explain the difference in the performance of English–
German vs. English–Russian learners on OVS sentences, our analysis of the cue validity
in the German and Russian input data suggested that the model was sensitive to the
cue validity, at least for the case-marking cues. This being said, our study supports
MacWhinney’s Competition Model as the explanation of the misinterpretation of OVS
sentences. At the same time, the results do not necessarily challenge VanPatten’s L1
Transfer Principle. To our knowledge, the cognitive mechanisms behind this principle
have not been described in detail, and this is why it is challenging to verify of falsify
this principle.

5.5.3 Additional factors

It is important to keep in mind that in the present study we did not consider all the
cues that affect sentence comprehension. In particular, we did not take into account
the pragmatics of the utterance, expressed in the intonational cues: such cues have
been shown to be highly informative for the interpretation of participant roles by
monolingual German children (Grünloh, Lieven, & Tomasello, 2011).
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Another factor that was left out of our simulations is the lexical similarity between
languages. In the study of Isabelli (2008), L1 Italian speakers could interpret L2
Spanish OVS sentences more accurately compared to L1 English speakers, and positive
CLI was suggested to be responsible for this. However, as VanPatten (2015a) noticed,
this may also be due to the better familiarity of L1 Italian speakers with L2 Spanish
personal pronouns used in the experiment. This is why lexical similarity, including the
potential effect of cognates, must be taken into account. In our computational model
this effect could be captured only for the words spelled identically in the two target
languages, such as giraffe–Giraffe in English and German. At the same time, there are
more cognates between English/French and German, compared to Russian – the results
in our simulations (in particular, simulation set 2) may have differed to a certain extent,
had the effect of cognates been taken into account.

5.5.4 CLI in argument structure constructions
The present study also sheds some light on how CLI may occur at the representational
level. Given the learning mechanism implemented in our computational model, as
well as the type of CLI measure used, there are two ways for the CLI measure to
obtain higher values. First, the learner may have the two languages separated in the
existing constructions: that is, some constructions are based on L1 only, and others on
L2 only. In order for the CLI value to be high, in this case the similarity between a test
instance in the target L2 language and some of the existing L1 (non-target language)
constructions must be rather high. This is possible, but improbable. A more likely
alternative explanation is that some constructions are blended, as it was shown in
Figure 5.2. Given a test instance in L2, the model sometimes makes its choice based
on such blended constructions, hence the high CLI value. This supports the view that
constructional representations may be shared across languages (Higby et al., 2016;
Bernolet et al., 2013; Salamoura & Williams, 2007). At the same time, our preliminary
analysis of constructional representations demonstrates that most constructions are
based on a single language – either L1 or L2; and this explains why the amount of
CLI in absolute terms was not high in the present study: looking back at Figures 5.4,
5.6, 5.9, 5.11, we can see that the the contribution of CLI to the learners’ decisions
hardly ever exceeded 30% in our simulations, and in most cases it was under 10%. This
may explain why it is difficult to find such blended constructions using cross-linguistic
comparisons (Wasserscheidt, 2014).





CHAPTER 6

General discussion

This thesis reported on three empirical studies that employed computational modeling
to investigate the process of learning constructions in two languages (chapters 3–5).
Additionally, chapter 2 described the corpora collected during this project and used as
material for the computational simulations. While each individual study itself contains
a theoretical discussion, here I summarize the studies and discuss their broad theoretical
and methodological implications.

6.1 Overview

6.1.1 Summary of findings
In chapter 2, I described two corpora used in the simulations. The smaller multilingual
corpus consists of English, German, Russian, and French data manually annotated with
argument structure information, while the larger English–German corpus is compiled
from the existing linguistic resources. The corpora contribute to the trend towards the
integration of various linguistic resources (e.g., Lopez de Lacalle et al., 2016; Wu &
Palmer, 2015; Palmer, 2009; Shi & Mihalcea, 2005). The combination of both syntactic
and semantic information is an important advantage of the collected corpora. They
were used for training the computational model in my empirical studies, as well as for
generating some of the test data. They can be used for similar purposes in cognitive
computational modeling, but also in natural language processing tasks, such as semantic
role labeling or relation extraction.

The three modeling studies dealt with the effects of several quantitative input
properties on the model’s performance in various linguistic tasks. In chapter 3, I
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focused on the role of such properties in both L1 and L2 learning. This study was
inspired by the research of Nick Ellis and colleagues (N. C. Ellis et al., 2014a, 2014b;
also Römer et al., 2015, 2014), who proposed a formal model predicting speakers’ verb
choice within a given construction from distributional and semantic variables in the
linguistic input that speakers are exposed to: joint verb–construction frequency, strength
of verb–construction mapping, and prototypicality of verb meaning. Computational
modeling enabled me to overcome certain methodological challenges and provide a
refined prediction model: the simulation results suggested that overall verb frequency
was an additional factor affecting speakers’ choice, while joint frequency and strength
of mapping had a combined effect rather than independent. Importantly, this study
demonstrated that L1 and L2 statistical learning could be simulated using the same
approach. My comparison of the model’s performance across the two languages yielded
the differences quantitatively similar to those reported by Römer et al. (2014) for native
vs. non-native human speakers.

In chapter 4, two global properties of the input were examined: the amount of
L2 input and the time of L2 onset. I investigated the impact of these variables on
the success of learning of argument structure constructions in L2, measured by five
different linguistic tasks. The amount of L2 input was shown to predict the model’s
performance in all tasks. Importantly, it was the absolute amount that mattered, while
the way the input was distributed across the overall learning trajectory was unimportant.
The time of onset did not show any effect on the model’s performance, in contrast with
the findings in domains such as lexical or morphological learning, where the negative
effect of the late onset was evident (Monner et al., 2013; Zhao & Li, 2010). I explained
the lack of the negative effect by possible positive cross-linguistic influence between
English and German – typologically close languages used in this set of simulations.

Chapter 5 was concerned with cross-linguistic influence: I proposed a method of
measuring the amount of CLI in the computational model, and applied this method
for studying case-marking comprehension in Russian and German, using French and
English as additional languages. Russian and German use case-marking cues to dis-
criminate between subject-verb-object (SVO) and object-verb-subject (OVS) sentences,
and it is common among late learners of such languages to misinterpret OVS sentences
as SVO. Two broad views on the role of CLI in this error exist. According to the
First-Noun Principle (VanPatten, 1996), CLI has no effect, because speakers always
assign the agentive (subject) role to the first noun or pronoun in a given sentence. An
alternative account explains the error by CLI from learners’ L1. My study defended
the latter view: I demonstrated why CLI mattered in simulated learners by using a
quantitative measure of CLI. As I argued, this result also suggested that the Competition
Model (Morett & MacWhinney, 2013) was a more plausible explanation of the CLI
than the L1 Transfer Principle (VanPatten, 2015b).

6.1.2 The broad picture

Before proceeding with the discussion of the broad implications of this thesis, I provide
an integrative summary of its main original contributions.
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• Implementing a probabilistic computational model of learning argument struc-
ture constructions in two languages (chapters 3–4), also compatible with the
languages with free word order (chapter 5).

• Collecting a multilingual corpus of verb usages annotated with argument struc-
ture information (chapter 2).

• Carrying out three studies that contribute to the development of the statistical
account of learning two languages (chapters 3–5).

• Refining the formal account of verb selection within argument structure construc-
tions, both for L1 and L2 learning (chapter 3).

• Proposing a formal method to quantify cross-linguistic influence computationally
(chapter 5).

• Comparing the predictive power of three measures reflecting the association
strength between verbs and constructions (chapter 3).

• Advancing our understanding of the role of statistics and semantics in construc-
tion learning (chapter 3).

• Studying in isolation the impact of two variables – amount of L2 input and
moment of L2 onset – on L2 learning (chapter 4).

• Demonstrating the role of CLI in the interpretation of subject-verb-object sen-
tences (chapter 5).

I will provide more details on each point in the following sections. For now, it
is important to keep in mind the broad picture. My studies are best situated within
the usage-based approach to language learning, and statistical account of learning.
A constructionist perspective was adopted, in particular that described in Goldberg’s
Construction Grammar, and her approach to argument structure. The modeling approach
belongs to the general framework of probabilistic (Bayesian) modeling in cognitive
science. In linguistic terms, my computational model also has much in common with
the Unified Competition Model (MacWhinney, 2012, 2008): see especially chapter
5. Both this theory and my computational model employ the idea of having multiple
cues (features) in the input, which compete with each other for determining speakers’
linguistic decisions.

6.2 Theoretical implications

6.2.1 Statistical account of bilingual learning and use
The major contribution of this thesis relates to the development of a statistical account
of construction learning and use in situations when the learner is exposed to more than a
single language. This was achieved through the implementation of a probabilistic model
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of learning argument structure constructions. This model rests on several assumptions
and has some basic characteristics.

1. The emergence of abstract constructions in this model is simulated as a process
of generalizing over individual usages, in line with the construction grammar
account outlined, for example, in Goldberg et al. (2004), Goldberg (1995).

2. The processing of incoming usages relies on two factors: entrenchment of the
existing constructions, in line with the respective theories in cognitive linguistics
(Schmid, in press; Langacker, 1987); and similarity between usages and acquired
constructions, following studies that demonstrate the role of similarity in cate-
gorization (Sloutsky, 2003; Hahn & Ramscar, 2001). At the same time, when it
comes to entrenchment, it is important to mention that no forgetting mechanism
is implemented, and the knowledge of the acquired constructions does not decay
with time.

3. Both usages and constructions are represented as assemblies of various features
– lexical, semantic, syntactic, and pragmatic. This is similar to theories such as
the Competition Model (e.g., MacWhinney, 2008; E. Bates & MacWhinney,
1989), in which various features compete for informing the learner’s linguistic
decisions.

4. The model has direct access to the lexical, morphological, and semantic infor-
mation in the input, which represents a situation when the learner has already
acquired words and basic morphology by the moment s/he starts learning abstract
constructions. This is clearly a simplistic assumption, made due to our focus
on the domain of abstract construction learning alone – a common approach in
computational modeling. In reality, human learners learn words and morphology
in parallel with syntax (e.g., Lieven & Tomasello, 2008).

5. L1 and L2 usages are not explicitly labeled as such, although some of the features
(in particular, lexical) do carry language-specific information. This allows the
model to place similar L1 and L2 usages into the same construction, following
the assumption that languages share their storage resource and may form shared
constructional representations (e.g., Abutalebi & Green, 2007).

6. Similarly, when making the decisions about language use, the model equally
considers all constructions, irrespective of whether they are language-specific
or “blended”, and makes the decision probabilistically. In terms of statistical
learning, this means that the evidence in favor of one or another linguistic choice
is collected from all the constructions emerged in the model’s repertoire. This
mechanism is grounded in the experimental findings of Hartsuiker et al. (2016),
Higby et al. (2016), etc., which demonstrate how linguistic representations from
both languages are employed in actual use.

Speaking of learning, the computational model in my studies could form reason-
able argument structure generalizations, relying on the mechanisms of probabilistic
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(Bayesian) learning alone. This supports some of the described assumptions (especially
points 1–3 and 5). In short, the studies in this thesis (chapters 3–5) clearly demonstrate
that the statistical learning mechanism may be sufficient for successful bilingual (or L2)
learning, at least when it comes to the acquisition of argument structure constructions.

Turning to language use, through which the model’s language proficiency was
assessed, the purely statistical approach to language use (points 5–6 above) yielded
reasonable behavior of the model in comprehension tasks, such as word ordering, verb
definition, role comprehension (chapter 4), and case-marking comprehension (chapter
5). For example, in the latter study the model performed similar to human learners. At
the same time, in production tasks, such as filling in verbs or prepositions (chapter 4),
the model produced both L1 and L2 lexemes in the L2 test. This is why in chapter 3 L1
verbs generated by the model in the L2 test were excluded from the analysis. On the
one hand, this suggests that the purely statistical approach is not enough to simulate
language production in bilinguals: mechanisms inhibiting the activated lexemes from
the non-target language (e.g., Kroll et al., 2008; Green, 1998) are needed. On the
other hand, in tasks such as filling in verbs the choice of L1 vs. L2 verbs may rely
on the knowledge of lexically specific collocations or word co-occurrence patterns,
which, again, can be acquired with statistical mechanisms (Webb, Newton, & Chang,
2013). Finally, note that mixing L1 and L2 lexemes is not uncommon in bilingual
speakers: think of the widespread phenomenon of insertional code-switching, when
both languages are used within the same sentence (e.g., Auer, 2014). Code-switching
most frequently occurs in colloquial speech, and language statistics may be successful
in simulating this type of language use in bilinguals. All together, this supports the
single-system view on language acquisition and use (cf. assumptions 5–6 above),
commonly adopted in usage-based linguistics (Ortega, 2015; N. C. Ellis et al., 2014a;
MacWhinney, 2012, 2008; N. C. Ellis, 2006b).

6.2.2 Age/order effect
The study in chapter 4 contributes to the discussion about the age/order effect in
acquisition. While in other domains, such as lexis or morphology, the late onset of a
language has a pronounced negative effect on learning (Monner et al., 2013; Zhao &
Li, 2010), this is not so for English and German argument structure constructions in
my study. On the one hand, this may be an artifact of the high amount of positive CLI
between English and German, as I argue in chapter 4 (and the simulations in chapter
5 support this claim). On the other hand, it is important to keep in mind that the time
of onset in terms of statistical learning is a merely distributional variable: even after
a long period of exposure to the L1 the statistical learner may preserve the ability to
create new representations (what is called plasticity in associative learning). In this
case, L2 constructions do not “parasitize” on the respective L1 constructions, and the
negative onset effect is not observed. Other mechanisms than purely statistical learning
may be responsible for this effect. To give an example of a mechanism which is not
captured in a purely statistical learner, selective attention may negatively affect L2
learning: the learner gets accustomed to relying on certain cues in L1, while these
cues may be less informative in L2. This is known as the transfer of cue strengths
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in the Competition Model (MacWhinney, 1992), and reflected in the phenomena of
overshadowing and blocking in cognitive theories of associative learning (N. C. Ellis,
2006b). One possibility to simulate these phenomena would be to set the weights of
each feature (similar to what I did in chapter 5) at the onset of L2 learning and allow
for their adaptive adjustment depending on the properties of L2 input.

6.2.3 Statistics and semantics in language learning

The input data that the computational model was trained on in my studies contained
various types of features: lexical, syntactic, semantic, and (in chapter 5) pragmatic.
Respectively, the emergent representations were assemblies of various features, too.
This reflects the idea in construction grammar that constructions are form–meaning
pairings. All features equally contributed to the probabilistic learning process (although
this was different in chapter 5, where a weight was assigned to each feature). At
the same time, there is a discussion in the literature whether the role of semantics
in learning is independent of that of so-called language statistics: the distributional
properties of linguistic input. One view is that the effects of semantics are implicitly
captured when one considers the distributional properties of linguistic forms: forms
cannot be dissociated from their meanings, which makes the effects of language
statistics and semantics intertwined or at least highly confounded (Ninio, 1999a);
this may be why the two independent effects are not always observed (Theakston
et al., 2004). According to the other view, both statistics and semantics affect the
learning independently (e.g., Ambridge, Bidgood, Pine, et al., 2015; N. C. Ellis et al.,
2014a). My study in chapter 3 supported this latter view. Note, however, that semantics
in my computational model is learned probabilistically – that is, through language
statistics, just as the other features. This suggests that the effect of semantics can, in
fact, be captured by looking at distributional properties, but these must be properties of
meanings, not forms.

6.2.4 Cross-linguistic influence in constructions

This thesis also has implications for research on cross-linguistic influence. Specifically,
the study in chapter 5 contributed to our understanding of how CLI occurs at the
representational level: it supported the view that CLI is a result of “blending” multiple
languages within some constructions (Higby et al., 2016; Bernolet et al., 2013; Salam-
oura & Williams, 2007), although most constructions in the repertoire acquired by
the model were still language-specific. At the same time, the non-selective access, or
cross-language activation (Kroll, Bobb, & Wodniecka, 2006; Marian & Spivey, 2003),
was one of the assumptions in my computational model, and it is well possible that in
some cases the non-selective access alone might have been responsible for the high
amounts of CLI, without the need to have blended constructions.



General discussion 141

6.3 Methodological implications

6.3.1 Computational modeling
This thesis has an important methodological component: computational modeling has
not been commonly used for studying how two or more languages are acquired. One of
the starting points of this thesis was that we can advance our understanding of bilingual
and L2 learning through the use of computational modeling: the high control over
all the variables provided by a computational model resolves the problem of inherent
variability in human learners. My studies demonstrated that computational modeling,
indeed, could provide useful insights on various aspects of bilingual and L2 learning:
the role of statistics and semantics, age/order effect, and CLI. More specifically, the
computational model I employed in this thesis enabled me to study in isolation the
impact of such variables as the amount of input and the time of L2 onset, which are
confounded in human speakers (chapter 4). It also allowed me to measure the amount
of CLI not by analyzing language use, as it is common in human subject research, but
by looking inside the “black box” of actual linguistic representations, which is nearly
impossible to do with human participants (chapter 5).

Compared to the earlier studies that employed a computational model with the
same learning mechanism (Alishahi & Stevenson, 2010, 2008), in the present thesis I
adapted the model for simulating the learning of two languages. Also, different test
tasks were employed, and the model was trained on novel data sets. Finally, for the
study in chapter 5 the learning mechanism was adapted to accommodate the learning of
languages with relatively free word order, such as Russian. This latter methodological
improvement may serve as a starting point for new cross-linguistic research with this
computational model.

Speaking about the studies in this thesis in relation to human subject research, it
is also essential to keep in mind George Box’s quote that “all models are wrong but
some are useful”. In our case, while the computational model simulates the process
of statistical language learning and use, it must not be seen as a perfect equivalent of
a human speaker. On the contrary: whenever human data yield a pattern which is not
supported in my studies (think of the missing effect of the time of onset in chapter
4 or of the rather low effect of semantics in chapter 3), it means that this particular
model (or, more generally, the statistical learning account alone) cannot account for
this pattern, and additional mechanisms must be at play. Compared to humans, my
model can be metaphorically described as an “idealized” speaker: to name a few of
its features, the model does not suffer from forgetting, it receives little noise in the
input, it processes each and every incoming instance. Many of these issues can be
resolved within the same modeling framework: for example, Alishahi and Stevenson,
2008 showed that the model can successfully learn constructions from the noisy input
as well. At the same time, presenting additional simulations in each study would shift
the focus of my thesis away from SLA and bilingualism.

Comparing the results of computational simulations obtained from many different
models could yield a more comprehensive evaluation of a particular model as the
one employed in this thesis, and also lead to a better understanding of the effective
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mechanisms in bilingual learning. At the same time, it is at least equally important to
compare simulated results to existing human data – the approach I took in this thesis.
The fact that the model in my studies yielded certain patterns similar to human learners
(chapters 3–5), supports some of the theoretical assumptions that the model rests on:
those related to the learning mechanisms, and the existence of blended constructions
(recall the discussion in section 6.2.1). Other assumptions, for example the learner’s
prior knowledge of lexis and morphology, or the lack of explicit mechanisms to sort out
the activated representations from the non-target language, are obvious simplifications
that must be addressed in the future.

6.3.2 Quantitative approach to language
This thesis strongly promotes a quantitative approach to bilingual and L2 learning. This
is, of course, not to diminish the importance of qualitative research in SLA: on the
contrary, I recognize that some phenomena in language learning can be best described
qualitatively. However, the field of SLA emerged as an applied discipline, and one
problem emphasized since long time ago was the lack of quantitative methodologies
(Brown, 1991). A recent special issue of Language Learning on quantitative reasoning
in SLA suggests that the problem persists (Norris, Ross, & Schoonen, 2015). Studies in
my thesis contribute to strengthening the quantitative approach to SLA. First of all, the
method of probabilistic computational modeling relies on the distributional properties
of language and is inherently quantitative. Second, chapter 3 demonstrates how the
use of statistical mixed-effects models can help us to account for individual variation
between speakers, and how model comparison can provide evidence in favor of one or
another theory. These statistical methods can be applied just as successfully in SLA
research with human subjects (e.g., Linck & Cunnings, 2015). Third, studies in this
thesis propose quantitative measures for such phenomena as the amount of input, the
time of language onset (chapter 4), and the amount of CLI (chapter 5).

Speaking about quantitative measures, another contribution of this thesis relates to
the discussion in cognitive linguistics on the existing measures of association strength
between two linguistic units (e.g., Pecina, 2010; Wiechmann, 2008). Chapter 3 contains
the relevant overview: in short, there is no agreement on which measure can predict
human data best. My study suggests that for estimating the association strength between
verbs and constructions, joint verb–construction frequency is better than other measures.
At the same time, it is important to keep in mind that this measure in my study was
used in combination with the overall verb frequency, so that taking into account both
of them may be necessary.

6.3.3 Individual variation
Individual variation sometimes constitutes a major problem for studies in SLA, due to
enormous variability even in a seemingly homogeneous sample of learners (R. Ellis,
2004): there are numerous learner variables (e.g., mother tongue, history of language
learning and use) and learning variables (e.g., learning setting, type of instruction), as
I explain in the introduction. The use of computational modeling helped me to either
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eliminate or keep under control most sources of variation: aptitude, motivation, L1
background, moment of onset, learning setting, amount of input, etc. At the same time,
it has been argued that the emergent linguistic representations depend on the exact
learner’s experiences with the language (e.g., Misyak & Christiansen, 2012). Therefore,
in my studies each simulated learner was exposed to an individual input sample, to
simulate a population of different statistical learners and prevent the situation in which
the emergent constructions are a sheer artifact of a particular input sequence.

This way, a certain type of variation between learners was preserved, and this
variation had to be accounted for in the statistical analysis, for example using mixed-
effects models with a random effect of individual learners. Without this step, one
can only report the effects observed on the level of populations, but not of individual
learners. There is no guarantee that the effects parallel each other on the two levels
(e.g., Verhagen & Mos, 2016). In my study (chapter 3), taking the individual variation
into account did not invalidate the main findings, yet the effect sizes were found to be
different.

6.4 Future work

The studies in this thesis outline a number of general directions for future research. First,
they invite for more research on bilingual and L2 learning of lexis and constructions at
the same time. In particular, this is important for our understanding of the similarities
and differences between the learning of lexis and abstract constructions in bilingual
speakers. At this point, it is unclear why the findings for lexis (e.g., in terms of the
effect of the time of onset) are not always applicable to constructions, and vice versa.
This is especially important for clarifying the common view in construction grammar
on the existence of the syntax–lexicon continuum (e.g., Broccias, 2012; Boas, 2010).
In particular, I did not focus on the development of fixed expressions (“chunks”) in the
computational model, although the emergence of such expressions is perfectly possible:
it occurs when exactly the same instance is repeated in the input over and over again,
yielding a highly entrenched cluster containing only this instance.

Second, in the present thesis I only focused on bottom-up statistical learning.
However, top-down learning (explicit instruction) is an essential component in many
population of L2 learners, especially in classroom settings (e.g., N. C. Ellis, 2015;
DeKeyser, 2008). One important direction for developing a comprehensive compu-
tational account of SLA is to implement a mechanism of providing the model with
explicit “instructions”, for example by forcing several linguistic usages to be placed
into the same construction. Speaking more broadly, no distinction was drawn in my
studies between early and late L2 learners, apart from the difference in the moment
of L2 onset (and, respectively, the amount of prior L1 input, see chapter 4). This was
due to the focus of my thesis: to test how much of L2 learning can be explained by
statistical learning alone (cf. section 1.2). Clearly, the cognitive system of an adult
L2 learner differs from that of a child, and this must have consequences for the exact
mechanisms involved in the learning process. A future ideal model, as I mentioned in
the introduction, will account for such differences.
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Third, the syntactic representations used by my computational model differed
across the studies in this thesis. Most notably, the study in chapter 5 represented each
syntactic pattern as an assembly of several features, such as the positions of the head
verb and its arguments. This may or may not be realistic in terms of human sentence
processing. We do not know yet how exactly speakers decompose utterances into their
smaller constituents in comprehension, and how these are joined to form utterances
in production. Using the most recent data from the areas of language production and
comprehension may help to make the computational model more cognitively plausible
in this respect. At the same time, the learning model itself can inform the mentioned
fields: if simulation results replicate human data on language acquisition, then the
employed feature structure is likely to be cognitively plausible. However, this requires
a direct comparison of the model’s performance on different sets of features.

Fourth, I implicitly assumed that semantic representations are universal across
languages: semantic features in my data sets were extracted from existing lexical
resources such as WordNet, which is a common approach in computational linguistics
and cognitive modeling. While this may be a reasonable approximation on the global
scale of language learning, languages do not always encode meanings in a universal
way (Bowerman & Choi, 2001). Therefore, for examining how a particular L2 linguistic
unit (e.g., a construction) is acquired, it is important to account for potential differences
between the semantic representations of the target unit in L1 vs. L2 (Beekhuizen &
Stevenson, 2015).

Finally, the results reported on in this thesis come from computational simulations
with a single model. I would strongly suggest that the results of the simulations
presented here are compared in the future against similar results generated by other
computational models (Barak, Goldberg, & Stevenson, in press, is an example of such
a study). As for this thesis, it is the first serious exploration of how computational
modeling can be applied to the study of bilingual and second language construction
learning. I hope it lays the groundwork for future research in this field.
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APPENDIX A

Features used for annotation

A.1 Verb semantic features

Feature Associated event

ACTION an action occurs
APPEAR someone or something appears, created or produced
APPROACH someone or something approaches physically
AUDIAL a sound can be heard
CAUSAL a change is caused
COMMUNICATIVE verbal communication occurs
CONSUME an eating or drinking event
CONTINUE the current action is continued
DECORATE something is being decorated
DRESS a piece of clothes is put on or taken off
EXPLAIN something is being explained
HURT something causes physical pain
INTERACTION an interaction between humans/animals
MANIPULATE an object is being manipulated
MENTAL a mental activity occurs
MOVE something is moving or being moved
PERCEPTIVE physical perception occurs
PHYSICAL a physical action or state is described
PICTURE a picture is being taken
PLAYFUL a play occurs
POSSESS an object changes its possessor
POSTURE a physical posture is described
PRODUCE something is created or produced
SEEK something is being looked for
STATE a current state of things is described
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SWITCHING something is switched on or off
TRANSPORT public transport is being used
VISUAL visual perception occurs
WALK someone moves by walking
WILL something is being wanted

A.2 Argument semantic role features

ABSTRACT
ACTING
ACTIVITY
AFFECTED
AFFECTING
ANIMATE
BECOME
BENEFICIARY
BODYPART
CAUSE
CHANGE
CHANGE-LOCATION
COMING
COMPREHENDING
CONCRETE
CONSUMED
CONSUMING
CONSUMPTION
DIRECTION
EMOTIONAL
GIVEN
GIVING
GOAL
INANIMATE

LISTENING
LOCATION
LOOKED
LOOKING
MANIPULATED
MANNER
MESSAGE
MOVE
MOVING
ORIGINATING
PATH
PERCEIVED
PERCEIVING
PERIOD
PLAYING
POSSESSING
PRODUCE
PRODUCED
PRODUCING
PROPERTY
PUT
PUTTING
READ
READING

RECEIVING
SEEING
SEEKING
SEEN
SITTING
SLEEP
SLEEPING
SOUGHT
SOUND
SOURCE
SPEAKING
STAYING
STRANGE
SUBSTANCE
TAKEN
TAKING
TEXTUAL
TICKLE
TOOL
TOPIC
VOLITIONAL
WALKING
WANTED



APPENDIX B

The formal model

B.1 Basic notations
In this appendix, the following notations are used: C – a construction; I – an argument
structure instance, S – the feature set used by the model. The feature set consists of a
number of features Fk:

S = {F1,F2,F3, ...,Fn} (B.1)

Each feature Fk ∈ S is represented by multiple values in a data set, which we denote
using the feature cardinality |Fk|. Some features by definition take single string values,
while other features are defined as sets of elements, e.g.:

Fk = {abandon,about,accept, ...,wrong} (B.2)

An instance I is, in fact, a unique combination of specific values (F I
k ) of all features

Fk ∈ S:
I =

{
F I

1 ,F
I
2 ,F

I
3 , ...,F

I
n
}

(B.3)

Each construction C also has a combination of values (FC
k ) of each Fk ∈ S associated

with it. However, each element e ∈ FC
k may occur in FC

k multiple times. In other words,
FC

k is a multiset, and |ei| denotes the number of occurrences of ei in FC
k .

B.2 Learning
The learner processes instances one by one: N denotes the number of instances encoun-
tered by a certain moment of time. For a given instance I, the model looks for the most
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probable construction Cbest :

Cbest(I) = argmax
C

P(C|I) (B.4)

In (B.4), C ranges over all the constructions learned so far, as well as a potential
new construction. The conditional probability in (B.4) can be estimated using the Bayes
rule:

P(C|I) = P(C)P(I|C)

P(I)
(B.5)

Since the denominator in (B.5) is the same for all constructions, it can be dropped
when comparing the probabilities of constructions:

P(C|I) ∝ P(C)P(I|C) (B.6)

In (B.6), there are two factors that determine which construction the new instance
is added to: prior probability P(C) and conditional probability P(I|C). P(C) is propor-
tional to the frequency of C in the previously encountered input – in other words, the
number of instances that C is based on:

P(C) =
|C|

N +1
, (B.7)

For the potential (new) construction C0 the frequency is initially assigned to 1, to
avoid zero values in the multiplicative formula (6):

P(C0) =
|1|

N +1
, (B.8)

The conditional probability captures the similarity between the encountered instance
I and a construction C. The features are assumed to be independent, and the overall
similarity is a product of the similarities in terms of each feature. Considering (3), this
can be noted as follows:

P(I|C) =
|F I|
∏
k=1

P
(
F I

k

∣∣C) (B.9)

For features which take a single (string) value, such as the head verb, this probability
is computed via a smoothed maximum likelihood estimator:

P
(
F I

k

∣∣C)= ∣∣{F I
k

∣∣F I
k ∈ FC

k

}∣∣+λ∣∣FC
k

∣∣+λ |Fk|
(B.10)

In (B.10),
∣∣{F I

k

∣∣F I
k ∈ FC

k

}∣∣ denotes the number of occurrences of F I
k in the multiset

FC
k , while λ is a smoothing parameter, whose value is set as described below in this

Appendix. Note that for a new construction
∣∣{F I

k

∣∣F I
k ∈ FC

k

}∣∣= |FC
k |= 0.

For features with a set value such as the semantic properties of the verb and
the arguments, the method given in (B.10) is too strict, because any two sets of
properties (e.g., lexical meaning properties) are unlikely to be fully identical, so that
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∣∣{F I
k

∣∣F I
k ∈ FC

k

}∣∣ would always equal zero. Therefore, the conditional probability for
each set feature is calculated as follows (cf. Alishahi & Pyykkönen, 2011):

P
(
F I

k

∣∣C)=
∏

e∈F I
k

P(e|C)× ∏
e∈Fk\F I

k

P(¬e|C)

 1
|Fk|

(B.11)

In (B.11), Fk is the superset of all values of the respective feature in the data
set. Then, Fk \ F I

k denotes all potential elements in Fk which do not occur in F I
k .

The probabilities P(e|C) and P(¬e|C) are computed as given in (B.10), to obtain the
probability of each element e occurring or not occurring, respectively, in C.

B.3 Testing
At certain intervals, the language proficiency (L2 proficiency, in our case) of the model
is tested on a number of test tasks. Each task contains in total T test instances. To
create a test instance Itest , a value of a single feature Fx in I is masked (F I

x ), so that the
resulting Itest is incomplete:

Itest = I \F I
x (B.12)

The model, then, has to predict all the values that could be used in place of F I
x ,

and their probabilities, given Itest . We denote the enumerated set of predicted values as
F predicted

x . The probability of each F j
x ∈ F predicted

x is calculated as follows:

P
(
F j

x
∣∣Itest

)
= ∑

C
P
(
F j

x
∣∣C)P(C|Itest) (B.13)

The right part in (B.13) is the sum over all acquired constructions. P
(

F j
x

∣∣∣C) is
computed as given in (B.10), while P(C|Itest), again, can be transformed using the
Bayes rule:

P(C|Itest) =
P(C)P(Itest |C)

P(Itest)
(B.14)

Dropping the constant denominator in (B.14) yields:

P(C|Itest) ∝ P(C)P(Itest |C) (B.15)

The two probabilities in the right part of (B.15) are computed using equations (B.7)
and (B.9), respectively.

The model’s accuracy in a test task is computed differently for single-value features
and for set-value features. For single-value features, the original value F I

x is looked up
in the enumerated set of predicted values F predicted

x , and the probability of F I
x in this set

is used as the model’s accuracy for a specific instance in the task:



176 B.4. Parameter setting

Accuracy(F I
x ,F

predicted
x ) = P

(
F I

x

∣∣∣F predicted
x

)
(B.16)

The overall accuracy in the task is the average over all the instances:

OverallAccuracy(T ) =
1
T

T

∑
j=1

Accuracy
(

F I
x j,F

predicted
x j

)
(B.17)

For set-value features, the accuracy for a single test instance is estimated by com-
paring the enumerated set F predicted

x to the original set value F I
x . This is done by using

average precision (AP), a standard measure in information retrieval, where a set of
relevant items are expected to appear at the top of a ranked list of results. The average
precision is usually defined via so called precision at a rank k:

Precision
(

k,F I
x ,F

predicted
x

)
=

1
k

k

∑
j=1

1
F predicted

x

(
F I

x j
)
, (B.18)

where 1
F predicted

x
is a characteristic function of the set F predicted

x , the image of 1
F predicted

x
is {0,1}. Given (B.18), the AP (and, respectively, the accuracy) is defined as follows:

AP
(

F I
x ,F

predicted
x

)
=

1
|F I

x |

∣∣∣F predicted
x

∣∣∣
∑
k=1

Precision
(

k,F I
x ,F

predicted
x

)
×1

F predicted
x

(
F I

xk
)

(B.19)
Again, the overall accuracy in the task is the average over all the instances, as given

in (B.17).

B.4 Parameter setting

The model has a smoothing parameter λ mentioned in equation (B.10). It determines
the default probability of F I

k in a construction C when
∣∣{F I

k

∣∣F I
k ∈ FC

k

}∣∣= |FC
k |= 0. The

value of λ is determined empirically: its lower bound depends on the numbers of values
of all features Fk in the data set and can be approximated as ∏k

1
Fk

, which in our case
equals to 10−17. Setting λ to 10−17 would likely result in creating a new construction
for each novel instance. To ensure this is not the case, we set λ to a moderate value
of 10−9. This way, the number of constructions formed by the model at the end of
learning varied from 89 to 210, depending on the experiment, with an average of 158.
A more elaborated explanation of the parameter setting is provided by Alishahi and
Stevenson (2008, Appendix B).

The version of the model described in chapter 5 has an extra parameter w, which
serves as a weight factor for each value of all symbolic features. An important function
of this parameter is that it determines how easily the model can swap arguments to
consider alternative argument orders: recall examples (46–47) in chapter 5.3.2. When
the model encounters a new instance, it can either put it into a new cluster C0 or into an
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existing cluster Cx. Based on the equations in section 5.3.2, the probabilities of these
two options in this version of the model are computed as provided in (B.20–B.21).

P(C0|I) ∝
1

N +1

|FDi|
∏
k=1

1
|FDk|

|FSi|
∏
k=1

1
|FSk|

w

(B.20)

P(Cx|I) ∝
|x|

N +1

|FDi|
∏
k=1

 ∏
e∈FDi

k

P(e|C)× ∏
e∈FDk\FDi

k

P(¬e|C)

 1
|FDk|

×

×

|FSi|
∏
k=1

∣∣{FSi
k

∣∣FSi
k ∈ FSC

k

}∣∣+λ∣∣FSC
k

∣∣+λ |FSk|

w

(B.21)

For the ease of the future computation in this particular estimation of w we assume
that for any i in (B.21) holds FDi

k = FDk, in which case (B.21) can be rewritten as
follows in (B.22):

P(Cx|I) ∝
|x|

N +1

|FDi|
∏
k=1

∣∣{FDi
k

∣∣FDi
k ∈ FDC

k

}∣∣+λ∣∣FDC
k

∣∣+λ |FDk|
×

×

|FSi|
∏
k=1

∣∣{FSi
k

∣∣FSi
k ∈ FSC

k

}∣∣+λ∣∣FSC
k

∣∣+λ |FSk|

w

(B.22)

To ensure that the argument swapping functions in a sensible manner, we need to
define two conditions:

1. The values of all the features (FD and FS), except the “argument position”
features, are the same in the new instance and a cluster Cx. In this case, we would
like the arguments to be swapped, and the new instance to be added to Cx, even
if Cx consists of only one instance, |Cx|= 1. In other words,

P(Cx|I)> P(C0|I). (B.23)

2. The values of some important features, for example “preposition”, differ in the
new instance and a cluster Cx. In this case, we do not want to force the argument
swap. Instead, the new instance should be put into a new cluster, even if Cx is
highly entrenched, let us take |Cx|= 100. In other words,

P(Cx|I)< P(C0|I). (B.24)
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Based on the two conditions, we can compute the extrema of w by solving the two
inequalities (B.23–B.24):

ln

(
λ ∏
|FDi|
k=1 |FDk|
2λ+1

)

ln

(
(3λ+1)3

λ 3 ∏
|FSi|
k=1 |FSk|

) < w <

ln
(

∏
|FDi|
k=1 |FDk|

)
ln

(
(3λ+1)3

λ 3 ∏
|FSi|
k=1 |FSk|

) (B.25)

Substituting the actual values from our data sets into (B.25), and considering that
λ = 10−14 in this set of simulations, we can establish that for any data set containing a
pair of language samples from our manually annotated corpus 0.05 < w < 0.7. Running
simulations with various values of w within this range yields an acceptable value of
0.2, which is used throughout the reported simulations.



Summary

Learning foreign languages is not at all uncommon in today’s global world. For scholars
who carry out experimental or observational studies with bilinguals or second language
learners, obtaining a sample of participants seems to be a relatively easy task. Yet
if one takes a closer look at the issue, (s)he will discover substantial differences
between learners even in a seemingly homogeneous group. Each person has particular
learning experiences, abilities, motivations, etc. – the number of variables is huge.
This variability creates a problem for traditional research on bilingualism and second
language acquisition with human participants. Chapter 1 of my thesis introduces this
and related theoretical issues.

In various fields, such as cognitive science or first language acquisition, the method
of cognitive computational modeling has been successfully used to overcome this prob-
lem. At the same time, computational modeling studies in the fields of bilingualism and
second language acquisition have been scarce. Computational models help researchers
to eliminate unwanted sources of variation and facilitate a focus on the phenomena
of interest. Clearly, computational models are not a replacement for experimental or
observational studies of humans. This is why any novel predictions based on com-
putational simulation alone need to be verified with human participants. However,
models are extremely useful when it comes to studying general cognitive mechanisms
or tendencies common for all learners, irrespective of their personalities.

This thesis demonstrates how the method of cognitive computational modeling can
be used in research on second language acquisition and bilingualism. I use a particular
computational model which simulates the process of learning linguistic constructions
(argument structure constructions, to be more precise) from bilingual input. Chapter
2 provides details on the type of input used in the simulations, and on the steps taken
to prepare the input corpora. Two novel data sets are presented: one of them is based
on a combination of features extracted from existing English and German linguistic
resources, while the other one contains multilingual data (English, French, German,
and Russian) manually annotated during this project.

The learning process simulated in my model does not replicate human learning in
all its complexity. Instead, it instantiates a particular mechanism of statistical learning,
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on which humans are believed to rely in their acquisition of languages. In simple terms,
the mechanism of statistical learning consists in noticing regularities in how different
units (words, syntactic patterns, etc.) co-occur with each other in the input, and in using
these regularities to form linguistic representations in the mind. This is a sketch of how
the computational model in this thesis works. After gaining constructional knowledge
from the input this way, the model is tested on carefully designed linguistic tasks. This
general approach is adopted here to study the role of several variables.

In chapter 3, I study how the distribution of verbs in the input and their semantic
properties affect the choice of verbs in a given linguistic construction. This chapter is
based on earlier experiments carried out with human participants, and the computational
model is used to refine the existing account predicting the verb choice. For example, I
demonstrate which distributional variables may be important, and which may not be.

Chapter 4 focuses on two variables often discussed in the field of second language
acquisition: the amount of second language input and the time of its onset. These
two variables are nearly always confounded in human speakers: the later a person
starts to learn a foreign language, the less input (s)he will have received by a certain
age. Computational modeling allows me to disentangle the effect of the two variables,
and the simulation results predict that the late start is not necessarily associated with
worse performance, when it comes to the knowledge of English and German argument
structure constructions.

The phenomenon of cross-linguistic influence is central to second language learning,
and it is studied in chapter 5. I propose a method of measuring the amount of cross-
linguistic influence in the computational model. This method is then used to study the
comprehension of linguistic cases (e.g., the accusative) in languages with relatively
free word order: Russian and German. This study demonstrates how computational
modeling can be used to test alternative theories explaining a particular type of linguistic
behavior.

The reported studies are carried out within the usage-based framework, which is
widely adopted in cognitive linguistics. Chapter 6 summarizes the studies and describes
their theoretical and methodological implications. Overall, the work contributes to our
understanding of the role that statistical learning plays as a mechanism in bilingual
and second language acquisition, and the extent to which this mechanism accounts for
various forms of linguistic behavior commonly observed in human participants.
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