460 research outputs found

    Hard Real-Time Java:Profiles and Schedulability Analysis

    Get PDF

    Model-Based Schedulability Analysis of Real-Time Systems

    Get PDF

    Abstraction and Verification of Properties of a Real-Time Java

    Get PDF
    International audienceWe present a tool for analysing resource sharing conflicts in multithreaded Java programs. Java programs are translated to timed automata models verified afterwards by the Uppaal model checker. Analysed programs are annotated with timing information indicating the execution duration of a particular statement. Based on the timing information, the analysis of execution paths is performed, which gives an answer whether resource sharing conflicts are possible in a multithreaded Java program. If the analysis succeeds, resource locks may be eliminated from the Java program

    Data-Mining Synthesised Schedulers for Hard Real-Time Systems

    Get PDF
    The analysis of hard real-time systems, traditionally performed using RMA/PCP or simulation, is nowadays also studied as a scheduler synthesis problem, where one automatically constructs a scheduler which can guarantee avoidance of deadlock and deadline-miss system states. Even though this approach has the potential for a finer control of a hard real-time system, using fewer resources and easily adapting to further quality aspects (memory/energy consumption, jitter minimisation, etc.), synthesised schedulers are usually extremely large and difficult to understand. Their big size is a consequence of their inherent precision, since they attempt to describe exactly the frontier among the safe and unsafe system states. It nevertheless hinders their application in practise, since it is extremely difficult to validate them or to use them for better understanding the behaviour of the system. In this paper, we show how one can adapt data-mining techniques to decrease the size of a synthesised scheduler and force its inherent structure to appear, thus giving the system designer a wealth of additional information for understanding and optimising the scheduler and the underlying system. We present, in particular, how it can be used for obtaining hints for a good task distribution to different processing units, for optimising the scheduler itself (sometimes even removing it altogether in a safe manner) and obtaining both per-task and per-system views of the schedulability of the system

    The 3rd AAU Workshop on Robotics:Proceedings

    Get PDF

    Quantitative Verification: Formal Guarantees for Timeliness, Reliability and Performance

    Get PDF
    Computerised systems appear in almost all aspects of our daily lives, often in safety-critical scenarios such as embedded control systems in cars and aircraft or medical devices such as pacemakers and sensors. We are thus increasingly reliant on these systems working correctly, despite often operating in unpredictable or unreliable environments. Designers of such devices need ways to guarantee that they will operate in a reliable and efficient manner. Quantitative verification is a technique for analysing quantitative aspects of a system's design, such as timeliness, reliability or performance. It applies formal methods, based on a rigorous analysis of a mathematical model of the system, to automatically prove certain precisely specified properties, e.g. ``the airbag will always deploy within 20 milliseconds after a crash'' or ``the probability of both sensors failing simultaneously is less than 0.001''. The ability to formally guarantee quantitative properties of this kind is beneficial across a wide range of application domains. For example, in safety-critical systems, it may be essential to establish credible bounds on the probability with which certain failures or combinations of failures can occur. In embedded control systems, it is often important to comply with strict constraints on timing or resources. More generally, being able to derive guarantees on precisely specified levels of performance or efficiency is a valuable tool in the design of, for example, wireless networking protocols, robotic systems or power management algorithms, to name but a few. This report gives a short introduction to quantitative verification, focusing in particular on a widely used technique called model checking, and its generalisation to the analysis of quantitative aspects of a system such as timing, probabilistic behaviour or resource usage. The intended audience is industrial designers and developers of systems such as those highlighted above who could benefit from the application of quantitative verification,but lack expertise in formal verification or modelling

    Safety Critical Java for Robotics Programming

    Get PDF

    Robots and Art:Interactive Art and Robotics Education Program in the Humanities

    Get PDF

    Instrumentation of the da Vinci Robotic Surgical System

    Get PDF
    • …
    corecore