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The 3rd AAU Workshop on Robotics

Research and application development activities in robotics are rapidly growing at Aalborg University
(AAU). This is witnessed by high-impact publications and robotic systems such as Geminoid.DK,
LittleHelper, AAUBot, iSocioBot, to name a few. We anticipate that robotics, and especially robotics
concerned with collaborative interaction between humans and robots to achieve common goals, will
become a central area of research at AAU.

The 3rd AAU Workshop on Robotics was held on October 30, 2014 at Aalborg University, Aalborg,
Denmark. The workshop was very successful with two invited talks and ten oral presentations and
with a large audience from both academy and industry.

This was the third workshop in the series, following the success of the first two occasions:
AAURO0b2012 and AAUR0b2013. It aimed at providing a platform for researchers in robotics,
including professors, PhD and Master students, to exchange their ideas and results. Our goals were to
foster close interaction among researchers from multiple relevant disciplines in the field of robotics,
and consequently, to promote collaboration across departments of all faculties towards making
AAU’s robotics program — Aalborg U Robotics — a successful story in robotics research.

After the workshop, full papers were submitted on the basis of the abstract submissions to the
workshop. Each full paper submission was peer-reviewed by at least two reviewers external to AAU.
Finally six accepted papers are included in the proceedings. The external reviewers include

* Hong Kook Kim, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea

e Zhanyu Ma, Beijing University of Posts and Telecommunications (BUPT), China

*  Trung Dung Ngo, University of Brunei Darussalam, Brunei

*  Yongsheng Ou, Shenzhen Institutes of Advanced Technology, Chinese Academy of
Sciences, Shenzhen, China

* Seren T. Hansen, Danish Ministry of Foreign Affairs, Denmark

* Jose C. Rocha, Universidade Federal do Rio de Janeiro, Brazil

*  Thiusius Rajeeth Savarimuthu, Maersk Mc-
Kinney Mgller Instituttet, University of Southern Denmark, Denmark

* Leon Bodenhagen, M&rsk Mc-Kinney Moller Instituttet, University of Southern Denmark,
Denmark

We warmly thank these reviewers for their precious time in reviewing the papers and serving on the
technical committee. We appreciate the effort and contribution from the keynote speakers, the
authors, our colleagues reviewed the abstract submissions, and our colleagues supported the workshop
in various ways, particularly, Jane Ehrenskjold Tymm-Andersen. Finally AAU U Robotics financed
the event, for which we are grateful.

Zheng-Hua Tan, Shaoping Bai, Thomas Bak, Matthias Rehm and Elizabeth Ann Jochum
Aalborg, Denmark, 2015.
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Learning Direction of Attention for a Social Robot
in Noisy Environments

Nicolai Be&k Thomsen, Zheng-Hua Tan, Bgrge Lindberg and Sgren Holdt Jensen
Department of Electronic Systems, Aalborg University
Aalborg @, Denmark
Email: {nit,zt,bli,shj} @es.aau.dk

Abstract—It is essential for social robots to be able to locate
and direct attention towards communicating persons, however
the operating environments can be challenging. When using
sound source localization (SSL) acoustic noise sources can distract
the robot, which interrupts the desired interaction with people.
Since the noise sources can be of many different kinds, it is
important for the robot to adapt to any environment. In this
paper we present a simple strategy for a robot to adapt to
the environment using feedback from a face detection routine,
thus eventually only directing attention towards humans. Four
experiments with different noise types and different strategies
for using feedback from face detection show the effectiveness of
the proposed strategy.

I. INTRODUCTION

The field of social robots has gained a lot of attention
from both industry and academia in recent years. Social robots
are to interact closely with humans in private homes, nursing
homes etc. In order to interact well with the sorrounding
persons it is fundamental that the robot can localize desired
sources (humans) and ignore undesired sources (radio, tv, door
slamming etc.), and based on this direct attention towards
only humans. It is common for a robot to be equiped with
multiple microphones, a camera and possibly a laser range
finder, but here we consider only the two first. Most methods
are based on using SSL as a first step in the localization
process, since this can potentially span 360° as opposed to
a camera which is limited by field-of-view. In [1] the authors
propose a robot system which is able to localize and track a
sound human speaker and then turn towards it in real-time,
however noise and speech-like noise sources are not consid-
ered. In [2] the term audio proto object is introduced, which
is basically a segmented audio signal and features derived
from this. Based on this, the audio is classified as speech or
non-speech and SSL can be performed to locate the source
and direct attention. The drawback of this is that it requires
offline training to find a classifier and that it cannot adapt
to the environment while operating. Another approached is
proposed in [3], where a hierarchical Gaussian Mixture Model
(h-GMM) is trained offline to classify audio segments as voice,
music, environmental or silence. This is tested offline and
shows good performance, however it requires offline training.
Furthermore, a Generalized Eigenvalue Decomposition version
of MUItiple SIgnal Classification (GEVD-MUSIC) is used in

This work is supported by the Danish Council for Independent Research
- Technology and Production Sciences under grant number: 1335-00162
(iSocioBot)

order to achieve selective listening on a frame-basis, such
that only the direction of speech sources are found. The
selective listening combined with audio classification is tested
using white noise and speech played simultaneously from two
different directions, and it shows good ability estimate the
direction of both sources and to classify noise correctly, but
speech is only classified correctly in 40.6% of the frames. A
decision on when to turn to a speaker is also not considered.
An audio-visual tracking system for a robot torso with the
ability to turn towards a speaker is proposed in [4]. The
system is able to track and turn towards speakers, and also
use face detection as feedback to judge whether a sound
came from a person or a noise source. In [5] the authors
proposed a voice activity detection (VAD) approach, where
a running SSL histogram was computed using only the frames
marked as speech by the VAD. If a bin/direction exceeded a
predefined threshold the robot would direct attention towards
this direction. The method was successful for rejecting types
of interfering/environmental sounds. One weakness of using
these methods for this application is that they will make
errors (false alarms or misdetections) when introduced to
some environmental sounds and persistently turn towards the
direction of the source. Another weakness is when speech is
coming from non-communicating sources, e.g., when a radio or
TV is turned on. In this case, a robot should not turn toward
these since these are merely broadcasting and not trying to
communicate with anyone.

In this work we propose a method which is able to consider
the case where the robot makes a wrong decision and directs
attention to a non-communicative source. This is done by
posing the decision as a Bayesian decision problem where
we use the conditional density of the hypothesis given the
direction from SSL. After having made a decision and turned
toward a person we use face detection to evaluate whether the
decision was good or bad. Based on this we update the density
to incooporate this newly acquired knowledge and the process
starts over.

The outline of the paper is as follows: in Sect. II the proposed
system is described, Sect. III presents some results obtained
from testing the system, and finally in Sect. IV we conclude
on the work and discuss directions for further research.

II. PROPOSED METHOD

Figure 1 shows the overall structure of the proposed
system. When the robot detects an audio segment (e.g., using
VAD) it must decide whether to turn towards the sound source
or not. In this system this is done by extracting observations
from the audio segment and then making a decision based on
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Fig. 1. Block diagram of proposed system.

these. In this system we use the VAD proposed in [6], with
the requirements that a speech segment must be longer than 1s
and maximum 2s in order to react fast enough. If it is decided
not to turn, then no further processing is done and the system
waits for the next audio event. If however it is decided to turn
the robot turns and uses feedback to evaluate if this was a
good decision or not. This information is then used as input
in the next decision process.

A. Observations: Harmonicity and SSL

This section describes the observation to base the decision
on.

1) Harmonicity: When an audio segment is detected by the
front-end VAD, we divide the segment into frames and extract
a feature closely related to harmonicity for each frame. It is
given by

T (t, k)

At) = T, k2T, T2z (t,0) %
where 7, (t, k) is the auto-correlation sequence of the input
signal at time frame ¢ and at lag k£ and is computed using the
method in [7] and 77 and T, marks the interval of sample
delays corresponding the desired frequency interval in which
pitch is supposed to be. The average estimate for the segment
is then obtained by

1 T
X =z > h(t) )
t=1

where T is the total number of frames in the segment. A
frame size of 512 samples and an overlap of 70% is used
based on preliminary testing, which yield a total number of
frames between 101 and 205. This is believed to be enough
for a robust estimate of X. It has previously been used as
feature for Speech Activity Detection [8] where it shows good
discriminative power.

Figure 2(a) and 2(c) show a spectrogram of a short speech
segment without noise and with noise (SNR=20dB) and re-
verberation (Tgp=0.3s), respectively along with the computed
harmonicity in figure 2(b) and 2(d). The reverberant speech
was generated using the toolbox described in [9]. It is in both
cases seen that the feature attains higher value when speech is
present than when it is not, allthough it is more significant in
the case of clean speech.

2) Sound Source Localization: The SSL estimate is like-
wise calculated on each frame using the well-known SRP-
PHAT method [10] given by
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(a) Spectrogram of a speech segment. Note that y-axis is limited to the
frequency range containing pitch.
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(b) Speech feature computed using (1) in frames on same speech
segment as spectrogram.
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(c) Spectrogram of a speech segment. Note that y-axis is limited to the
frequency range containing pitch.
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(d) Speech feature computed using (1) in frames on same speech
segment as spectrogram.

Fig. 2. Computed speech feature and the corresponding spectrogram for a
given speech segment.

where M is the number of microphones, r,¢ and 6 are the
range/distance, elevation and azimuth, respectively, Tié g 18
the relative time-delay between microphone i and j if the
source is located at (r, ¢, ), RSS?,T (7) is the PHAT weighted
cross-correlation and & indicates the frame number within the
entire segment. The total number of frames for SSL in a
detected segment can be between [1-16000/512] = 32 and
[2-16000/512] = 63, assuming a frame size of 512 samples
and no overlap, since we have restricted the segment duration
to be between 1s and 2s.

Since we only use a linear array placed in the horizontal
plane, we cannot estimate the elevation and estimating the
range is associated with high statistical error when the array
aperture is small, so only azimuth is used. This also makes
the computationally cost much lower. We then discretize the
whole space of azimuth ([0°,360°[) into P non-overlapping
bins and compute a histogram of the azimuth estimates from
(3). The overall estimate of the direction of the source is given
by the bin with the highest bin-count. Only a single bin is used,



since we assume that there is only one person speaking in the
short segment (max. 2s) except for noise and that this person
dominates the noise in terms of loudness.

B. Decision

Based on the observations from the previous section and
prior experience, the robot has to make the decision whether
the audio segment was generated by a human trying to get the
attention or a noise source (door slamming, radio/tv playing
etc.), thus we can define two hypothesis, Hy : Noise source
and H; : Human speech. The posterior probability of one of
the hypothesis given some observations can be stated using
Bayes formula [11] as

p(Y|H)p(H)
p(Y)

where Y is the observation. We define our observation as Y =
[X W], where X € [0,1] is the average harmonicity of the
audio segment given by (2) and W € {wy, .. wp} is the global
bin/direction from where the sound is estimated to come from.
Due to the robot rotating, the local estimate from SSL needs
to be mapped into a global bin/direction. Assuming X and W
are conditionally independent given H, we can rewrite (4) as

p(X|H)p(H|W)p(W)
p(X, W)

p(H[Y) = @

p(H|X, W) =

®)

Based on (5) we can now find the posterior probability ratio
of the two hypothesis given by

p(H1 X, W) _ p(X|H1)p(H:|W) =8 1 (6)
= 2
p(Ho|X, W)  p(X|Ho)p(Ho|lW) m,

and make the robot act accordingly. Now the question is
how to choose or find p(X|H) and p(H|W). In this work
we set p(X|Hp) and p(X|H;) to be beta distributions with
some parameters, due to the fact that the support of a beta
distribution matches the range of valid values for harmonicity.
The values have been chosen based on initial experiments.

3.5
sl — p(XIH,)
P(XIH,)
25 ¢
«— x=0.474
o}
15¢F
1t
- ./
0 : . N ——
0 0.2 0.4 0.6 0.8 1
X
Fig. 3. Probability distributions for p(X|Hi) = Beta(2.9,1) and

p(X|Ho) = Beta(1, 3.5), along with the boundary between classifying as
speech or noise source.

C. Updating p(H|W) using Face Detection

We set p(Ho|W) = p(H1|W) = 1/2 initially for all
bins/directions to reflect the fact, that in the beginning the
robot does not know anything about the locations of humans
or noise sources. However, whenever the robot turns towards
a detected sound it can use the images captured by the camera
and perform face detection [12] to gain more information.
Based on this principle we can define two different rules for
updating p(H|W) after every turn/rotation the robot does. It is
assumed that after the robot has turned it attempts to acquire
M consecutive images to ensure robustness and the region of
the image to perform face detection is limited to the center of
the image. In practice, it sometimes fails to run face detection
within the time limit, thus only K < M images with face
detection are available. To clarify notation, we denote the
observed value of W as w.

1) Rule 1: This rule goes as follows

(H\|W) = B - pp(HL|W) if face detected  (7)
peltt B B2 - pp(H1|W) if no face detected
for W =w

where p(Ho|W) = 1 — p(H1|W) and pc(H:|W) and
pp(H1|W) are the current and previous values of p(H;|W),
respectively. p(H|W) is furthermore constrained to be within
[e,1 —€]. A face is said to be detected if a face is detected in
at least one of the M images. This has the advantage of being
simple, however it does not reflect the fact that face detection
is imperfect and results in false-alarms and missed detections.
Furthermore, the environment of the robot might change over
time thus p(H|W) for some values of W might not have been
updated for a long time, i.e. the robot’s knowledge is based
on old information and may therefore be associated with high
uncertainty.

2) Rule 2: In Rule 1 it is implicitly assumed that face
detection is always correct, however this is not the case. A
more natural way of updating p(H;|W) would be to incoor-
porate the (un)certainty connected to the given face detection
estimate. We assume that for each face detected there is a
scalar associated, p € [0, 1], where 0 means no face detected
and 1 means that we are sure a face is detected. The value is
computed by using the number of detections under different
scalings in the face detection algorithm and taking the average
value. Since K images are available, an average value is given
by

1 X
p=§;pi ®)

where p; is the value of p for the ith image. The update rule
can now be defined as

po(Hi|W =w) =ar-p+ (1 —ar) -pp(Hi[W =w) (9)

where oy, € (0,1) is a learning parameter to be determined.
To account for the fact that the environment might change over
time we introduce a forgetting rule as follows
pt+1(H1|W):aF-O.5+(1—ozF)~pt(H1|W) (10)
for W = {wl,wg, ceny wp}



where ap € (0,1) is a forgetting parameter to be determined
and ¢ denotes time measured in seconds. In this way, if nothing
has occured for a long time (i.e. ¢ — o0) then p(H|W) =
p(Ho|W) = 0.5 for all values of W, reflecting the fact that the
robot has not received feedback for a long time and is therefore
very uncertain about each bin, i.e. it is reset. Equation (10) has
a closed-form solution to find p;a¢(H1|W) given by

oI W) =05 (1-(1—0p)™) (1)
+ (1 —ap)? - p(H W)
for W = {wl,wg, ...,wp}

such that this is only updated just in time for computing (6).

III. EXPERIMENTS & RESULTS

To evaluate the proposed method and its ability to detect
and ignore noise sources, a total of four experiments were
carried out. All experiments consist of two human speakers
and a single loudspeaker playing noise placed as depicted in
figure 6 for exps. 1 and 2 and as depicted in figure 9 for exps.
3 and 4. In all experiments the loudspeaker was constantly
playing while the two speakers took turns trying to attract the
attention of the robot, i.e., speaker 1 would talk until the robot
was facing him and then speaker 2 would start talking after a
short pause until the robot was facing him and so on. The noise
types (see Tab.I for details) were chosen such that the frontend
VAD would be triggered and p(X|H;) yield high likelihood,
i.e., resemble speech. Experiment 1 and 2 use Rule I to update
p(H|W) and in experiment 3 and 4 update Rule 2 is used. In
these experiments we set P = 36 resulting in bin widths of
10° and we use a frame size of 512 samples with no overlap
for SSL. For face detection we use M = 5 images to perform
face detection on.

A. Experiments 1 & 2

Table I shows the setting for exps. 1 and 2. Figure 4 shows
the results obtained in experiment 1 where the loudspeaker was
constantly playing music. Figure 4(b) shows in which direction
(angle) the robot was facing at a certain time and figure 4(a)
shows the values of p(H{|W) for values of W corresponding
to bins in [—25°,45°]. The two figures are aligned in time
and should be interpreted in the following way: at time t ~
40s the robot decides to turn towards the noise source located
at 10°, then after having turned it detects no faces in any
of the K < M images and updates p(H;|W) according to
(7) for the value of W corresponding to the bin (5°,15°] in
which the noise source is located. At ¢ ~ 50s the robot detects
sound from speaker 1 and turns towards him, detects at least
one face and increases p(H1|W) for W corresponding to bin
(—5°,—15°). This continues until ¢ ~ 118s where p(H;|W)
for W corresponding to the bin containing the noise source has
been decreased so much, that the robot does not turn towards
it anymore, thus only turning towards the two speakers.

Figure 5 show the same as figure 4 but for an experiment
where the loudspeaker was playing radio (people talking). The
behaviour of the robot is the same, however it ignores the noise
much faster than in experiment 1. The robot does however turn
towards the noise at ¢t ~ 142s, but does not detect any faces
thus decreasing p(H;|W) further.

1.3m.

—90* 90°
Robot
Fig. 6. Tllustration of setup of exps. 1 and 2.
TABLE 1. SETTINGS FOR EXPS. 1 AND 2.
‘ Exp. 1 ‘ Exp. 2

Noise type Music Radio
Avg. SPL.
Noise 47 + 4dB 51 + 4dB
Azimuth
(SP1, Noise, SP2) | (—10°,10°,30°) | (—10°,10°,30°)
(B1, B2) (1.2,0.8) (1.2,0.8)

B. Experiments 3 & 4

In experiment 3 and 4 the loudspeaker was playing radio
and the values for o7, and ar can be seen in II and were based
on initial experiments. Figure 7 show the results obtained for
experiment 3, where a small value of ap is used. At time
t ~ 8s the robot turns towards the noise source and detects no
faces, i.e. p = 0 and decreases p(H;|W') for W corresponding
to the bin containing the noise source. Compared to experi-
ments 1 and 2, the decreas is much more drastic due to using a
different updating rule. At time ¢ ~ 18s the robot turns towards
speaker 1 (figure 7(b)) and detects a face with a high value of p
resulting in a high increase of p(H;|W). The robot only shifts
between directing attention towards the speakers and ignoring
the noice source until £ =~ 98s where it turns towards the noise
source again. This is caused by introducing the forgetting rule
in 10 and it is seen on figure 7(a) that the value of p(H;|W) for
W corresponding to the bin containing the noise source has
been slowly increasing towards 0.5 since ¢ ~ 8s. The robot
further turns towards the noise source at ¢ ~ 163s but again
decreases p(H|W), thus ignoring it. To further investigate the
ability of the proposed method to ignore noise sources, which
have speech-like characteristics, a plot showing the detected
audio segments detected by the VAD along with the global
SSL angle is shown in figure 7(c). Green color means that the
segment is classified as noise source, thus rejected, and blue
color means it is classified as coming from a human. It is clear
that the method is capable of ignoring/rejecting audio events
from the direction of the noise source in 9 cases. To verify
that the rejections are due updating p(H|WW) and not purely
due to p(X|H), the mean value and standard deviation of
harmonicity, X in eq. 2, of all the rejected and accepted speech
segments are calculated to be 0.54(0.065) and 0.64(0.069),
respectively. The mean values for the rejected segments are
above the crossing point (X = 0.474) in figure 3, which means
that they would have been classified as human speech, if no
feedback was used.

Figure 8 shows the results obtained from experiment 4.
The same performance is seen as in experiment 3, however
the forgetting paramter, oy is set to a higher value resulting in
the robot turning towards the noise source much more frequent
compared to experiment 3. Again the detected segments from
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Fig. 4. Figure 4(a) shows p(H1|W) for the bins in [—25°,45°] over time, and figure 4(b) shows the direction of attention of the robot. Music was used as
noise and update rule I was used to update p(H1|W).
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Fig. 5. Figure 5(a) shows p(H1|W) for the bins in [—25°,45°] over time, and figure 5(b) shows the direction of attention of the robot. Radio was used as
noise and update rule 1 was used to update p(H1|W).

. . . o TABLEIL S GS FO S. 3 AND 4.
the VAD is plotted with the corresponding angle, and again it is FITINGS FOREXP NP

seen that the noise source is rejected as speech 5 times, which ‘ Exp. 3 ‘ Exp. 4

is not as effective as the previous experiment, but this is due to Noise type Radio Radio
having a higher value of ar. The mean and standard deviations Avg. SPL.

for harmonicity for rejected speech segments and accepted Noise 51 + 4dB 51+ 4dB
speech segments are 0.52(0.49) and 0.62(0.055), respectively, gzézm,uﬁoise, SPI) | (=20°,10°,30°) | (—20°,10°,30°)
which is again verifies that using feedback from face detection (aL,ar) (0.8,0.00) (0.8,0.05)
can improve classification between speech sources and noise

sources.

IV. CONCLUSION

In this paper we have presented a method for robots to
ignore sound sources which are not of interest to the robot
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Figure 7(a) shows p(H1|W) for the bins in [—25°,45°] over time, figure 7(b) shows the direction of attention of the robot and figure 7(c) shows the

audio events detected by the VAD, where blue means accepted as speech and green means rejected as speech. Radio was used as noise and update rule I was

used to update p(Hq|W).

—90°

Robot

Fig. 9. Illustration of setup of exps. 3 and 4.

in a dialogue/conversation setting. The method uses feedback
from face detection to gain knowledge about the relative
directions of noise sources and uses this information in the
future decision process. Furthermore, two different strategies
for using feedback from face detection have been proposed.
The method has been tested in four experiments which show
the capabilities of the method to locate noise sources and
afterwards ignore them, thus only turning towards the human
speakers. The system is currently limited to scenarios where
the robot is only turning/rotating, so future work should focus
on extending the method to scenarios where the robot can
move around freely. In this scenario the proposed update rule
1 will most likely not work very well, due to not forgetting
or weighting old and new information as equally valid. The
proposed update rule 2 will have the capability to handle

this depending on the setting of the parameter ar. It could
also be interesting to use different values of ar depending
on whether the bin is believed to be occupied by a noise
source or a person, i.e., if it is believed to be occupied by
a person, then it makes sense to update it more aggresively
due to potential movement. However if it is believed to be
occupied by a noise source, this will typically not move, and
thus is could make sense to have a low ar. Another thing
to consider in this scenario is when the noise source is luder
than the human speaker, thus dominating SSL. In this case it
is necessary to hypothesize over multiple SSL-bins, and it may
also be necessary to use a SSL method which is able to account
for multiple simultaneous sound sources. Another interesting
direction to pursue, is updating p(X|H) and p(X|H7) online
by also making use of face detection feedback. At last more
audio features than harmonicity could be incoorporated to
discriminate between speech and non-speech sources more
robustly.
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used to update p(Hq|W).
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Instrumentation of the da Vinci Robotic Surgical System

Karl Damkjer Hansen Simon Jensen

Abstract—This paper details the AAU surgical robot, its
hardware and software setup. The aim of the paper is to
explain how a surgical robot has been rebuild as an open
source platform for research in surgical robotics. As a
result, the robot has full actuation and sensing capabilities
at high sampling rate.

We aim at exploiting the developed surgical robot for
research in semi-autonomous control, and safety mecha-
nisms in the context of robotic surgery.

I. INTRODUCTION

The development of surgical robots for minimally
invasive laparoscopic surgery began in the 1980s, pri-
marily supported by the U.S. Army in e.g. DARPA’s
Trauma Pod program [1]. Today’s leading manufacturer
of surgical robotic systems is Intuitive Surgical Inc. that
is an offspring of these projects. Their robotic system
called da Vinci Surgical System went into use, after
being approved by the Food and Drug Administration
(FDA) around year 2000, and has since then been an
important tool in minimally invasive surgery requiring
high accuracy.

The benefit of minimally invasive surgery is less oper-
ative trauma to patients. This results in shorter recovery
time for patients, with less pain and scarring.

Since the launch of the revolutionary da Vinci Surgical
System, the innovation in surgical robots has been rela-
tively slow, among others, due to patenting by Intuitive
Surgical Inc. These patents expire by 2016, opening
a window of opportunity for competitors to enter the
market [2]. The vast future potential in surgical robotics
has spawned new robots to emerge. Among these robots
is the university-developed Raven open-source surgical
robot [3], and the DLR MiroSurge by the German
research laboratory DLR.

The AAU surgical robot is based on a da Vinci robot
that is retrofitted with hardware and software for devel-
oping an open source surgical robot similar to the Raven.
The purpose of developing this system is to demonstrate
the potential for autonomy in surgical robots. Currently,
surgical robots possess no autonomy - the surgeon does
all decision making and controls the robot manually with
joysticks. We envision a semi-autonomous surgical robot,
where responsibilities are shared among the surgeon
and a computer system, similar to an autopilot in an

Christoffer Sloth Rafael Wisniewski

airplane. To allow the da Vinci robot to be controlled by
a computer, a hardware and software system has been
developed. This is explained in this paper.

The paper starts by giving an overview of the physical
setup of the da Vinci robot, then the developed hardware
system in outlined in Section 1V, and finally the software
is detailed in Section V.

In this paper, we will only shortly describe the da
Vinci surgical system, as this is a commercially available
platform. The additional hardware and software that we
have developed to control the robot, is described in
details.

II. THE DA VINCI SURGICAL SYSTEM

In the late 1990’s, SRI International was working on a
telesurgery system. The central technology in this system
was an “offset remote center maniputlator” [4]. This ma-
nipulator allows robotic laparoscopic surgery by creating
a fulcrum point for instruments where they intersect the
patients abdominal wall. This was accomplished by using
a parallel linkage system. In this way, only few stresses
are applied to the incision point leading to faster recovery
for the patient. See Figure 2.

Concurrently, during his doctoral studies, Akhil Mad-
hani developed the Black Falcon [5], [6], an instrument
for robotic laparoscopic surgery, which uses a system of
wires and pulleys to actuate a four degrees of freedom
end effector. This allows the motors to be located outside
the body of the patient, see Figures 3 and 4. Combined
with the SRI manipulator, this provides a 7-DOF laparo-
scopic manipulator; very suited for robotic telesurgery.

The focus of Madhani and his supervisor Kenneth
J. Salisbury was on providing a haptic interface for
the surgeons performing laparoscopic telesurgery. Con-
sequently, they developed a telesurgery master console
[7]. In this console, the surgeon has two 7-DOF joysticks
that provides an intuitive interface to the manipulator
discussed above. Along with the joysticks, the console
has a 3D vision system and foot pedals for controlling
an endoscope.

The company Intuitive Surgical Inc. acquired the
patents for all these inventions to produce their da Vinci
Surgical System. The original da Vinci system has been
further developed into the da Vinci Si and Xi systems.



Fig. 1. The da Vinci surgery robot as it sits in the laboratory at
Aalborg University. One arm is partially disassembled for easy access
to the actuators and sensors.

III. RoOBOT

The AAU surgical robot is a first generation da Vinci
Surgical System, modified to allow measurement of all
motor currents, velocities, and positions as well as grab-
bing the video from the stereo endoscope. The designed
hardware allows the control of all motors of the robot’s
four arms, each having 7 degrees of freedom. Figure 1
shows a picture of the robot, where it is seen that there
are three arms for equipping surgical instruments and
one arm for the endoscope.

The arms of the robot are configured as shown in
Figure 2, where the grey section of the robot is fixed
during surgery, and the black offset remote center ma-
nipulator can be actuated with three degrees of freedom.
The reason for fixing parts of the robot is to fix the
manipulator with respect to the incisions in the patient’s
body. Each arm of the robot has a total of 12 degrees
of freedom when including the fixed joints of the arm
which are released during configuration.

The final part of the robot is the instrument that comes
in several configurations. A gripper-type instrument for
suturing is shown in Figure 3 and provides the last four
degrees of freedom for the arm.

IV. HARDWARE

In the configuration intended by Intuitive Surgical Inc.,
the surgeon master console is directly coupled to the
da Vinci patient cart. The AAU surgical robot, however,

Fig. 2. Sketch of one robot arm. The black manipulator part provides
a remote fulcrum point via a parallel linkage.
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Fig. 3. Sketch of a needle-driver instrument.

uses only the patient cart by tapping into the connection
to the console. A fair amount of reverse engineering has
resulted in a system that is able to measure the state
of the manipulator arms and control their servos. For
modularity reasons, each arm has a dedicated control
system.

The hardware system interfacing each arm consists
of two embedded computers National Instruments single
board RIO controllers, which has the two main tasks:

o Getting measurements (positions, velocities, motor
currents) from the sensors on the arm and sending
them to a client PC, and

o getting control reference signals from the PC to
drive the motors that controls the motors.

A diagram of the system is shown in Figure 5. Beside
these two tasks, the embedded computers enforce secu-
rity constraints like limiting control values to protect the
motors and stopping the motors when the joints reach
their limits.

A surgical robot is a safety critical system. Therefore,
one of the embedded computers is in charge of handling
the signals from sensors and actuators, while the other
acts as the supervisor; handling error situations and dis-
/enabling the motor drivers.

B =

Fig. 4. Sketch of the tip of the needle-driver instrument.
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Fig. 5. System diagram of the robotic system connected to a client
PC.

The client PC and the robot are connected via a
TCP/IP network. This interface is very convenient, as
it is ever present on most computers. However, this
may introduce timing problems, as the network may
lose packages that must be retransmitted or the network
may simply present a delay. The timing problems can be
reduced by directly connecting the client and the robot
without any other computers on the network. But in
contrast, the system will natively support remote surgery,
where the client PC may be located far away from the
robot.

Each joint is fitted with both encoders and potentiome-
ters, thus providing both precise relative and absolute
measurements of position and velocity. Each single board
RIO has an onboard FPGA, which has been configured
to interface to the sensors.

The control system also hosts a bank of ESCON motor
controllers, one controller per servo in the arm. These
controllers are set and tuned to speed control with inner
current control loop of the servos and they also provide
a measurement of the motor current to the embedded
computers.

V. SOFTWARE

Low level functions are handled in the embedded
computers of the control system. The low level processes
all run in real-time and include the speed and current
control loops and system error checking. All the higher
level functions are handled in the client computer. These
functions are characterized as processes which are not
possible to run in real-time, require significant comput-
ing power, and/or have loose timing constraints. These
functions are path planning, user interaction, and position
control loops.

The software on the client PC is built on the
ROS robotic middleware, which provides visualiza-
tion of the robot, inverse kinematics computations,

image processing, and path planning. The interface
between the embedded computers and the client is
based on TCP/IP connections with a JSON based se-
rialization protocol. This interface is implemented in
C++ in a ROS node called davinci_driver. This
node implements the ros_control C++ interface
hardware_interface: :RobotHW. This allows the
system to use the plug-in controller structure of the
ros_control package and employ e.g. community
contributed general purpose PID controllers, but also
to write custom controllers using the C++ interface
controller_interface::Controller.

The JSON based protocol is a compromise between a
packet size optimization and a protocol that is easy to
implement and debug. The JSON serialization [8] pro-
vides a human readable format which is self-descriptive
but rather compact compared to e.g. XML. The default
message rate from the control system to the client PC is
100 Hz, which is a compromise between being fast and
avoiding bugs that are bandwidth related and difficult to
identify while developing. In comparison, the da Vinci
surgeon console uses an update rate of 1300 Hz [9].
The theoretical limit of the JSON protocol is in the
range of 25000 Hz, as the system is using 100BASE-
T Ethernet capable of transferring 12,500,000 characters
per second and each status update message is around
500 characters long. But as each arm is equipped with
two embedded computers (eight in total), all reporting
updates, the update rate may rather be in the range of
3000 Hz, not including overhead and leaving no margins.

A physics simulation of the robot is being developed
to run in the Gazebo robot simulator. This will allow
development and testing of methods and software with
out having access to the physical robot.

All the software for the system is open-sourced and
available on GitHub [10].

VI. CONTROL

The designed control system must enable the robot
to follow a trajectory given by either a surgeon or a
computer. Therefore, a position controller is designed
for each joint of the robot. It is chosen to implement the
controllers with the cascade structure shown in Figure 6.
The controller Ctrl 1 is a current controller implemented
at the motor driver, and controller Ctrl 2 is a velocity
controller implemented at the motor driver as well.
Controller Ctrl 3 is a position controller implemented
as a Pl-controller in the PC; this controller must ensure
that the setpoint is attained. The position controllers can
either run entirely on the client PC, or they can be run in
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Fig. 6. The cascaded control structure of a single joint. The gray
blocks of the diagram are implemented on hardware, and the black
box is implemented on a PC.

0 10 20 30 40 50
Time [s]

Fig. 7. Roll angle of the robot arm (blue line) and reference for the
roll angle (red line).

the embedded computers if an increased sampling rate
is desired.

It is chosen to use a cascade structure for the con-
trollers to attenuate disturbances, and minimize friction
effects. Implementing the inner loops of the controller in
the motor controller with high sampling rate also implies
that the position controller can have a relatively large
bandwidth. A large bandwidth is crucial when humans
are operating the robot via a joystick. In this scenario
a delay exceeding 40 ms is unacceptable; however, the
designed controller complies with this requirement.

The performance of the controller for the roll angle
of the robot is illustrated in Figure 7, with a sinusoidal
reference signal. This dynamics of the roll angle is the
slowest of the robot, even though two motors are driving
the joint, as this movement involves the largest moment
of inertia.

The current focus with regards to control is on imple-
menting the safety feature detailed in [11] in the control
system. This will ensure that constraints on the robot
configuration are not violated.

VII. CONCLUSION

This paper has presented an overview of software and
hardware designed to rebuild a da Vinci Surgical System
into an open-source platform for research in surgical
robotics. Custom hardware has been designed to control
the motors of the robot, and a high-level software based

interface has been developed in ROS. All software for
the system is open-source and available on GitHub.

We currently aim at exploiting the developed robotic
system for developing semi-autonomous control for
robotic surgery, and to include safety features such as
virtual fixtures. Also we aim at including feedback from
the stereo endoscope in the control.
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Abstract—Training in robotic-assisted minimally invasive
surgery is crucial, but the training with actual surgery robots
is relatively expensive. Therefore, improving the efficiency of this
training is of great interest in robotic surgical education. One
of the current limitations of this training is the limited visual
communication between the instructor and the trainee. As the
trainee’s view is limited to that of the surgery robot’s camera,
even a simple task such as pointing is difficult. We present a
compact system to overlay the video streams of the da Vinci
surgery systems with interactive three-dimensional computer
graphics in real time. Our system makes it possible to easily
deploy new user interfaces for robotic-assisted surgery training.
The system has been positively evaluated by two experienced
instructors in robot-assisted surgery.

I. INTRODUCTION

The motivation for this work is to improve training effi-
ciency for surgeons and medical students who are learning to
use the da Vinci robotic surgery system for minimally invasive
surgery. The training in robotic-assisted surgery is considered
expensive, but it is also crucial for improving the outcome of
operations [1]. A da Vinci system allows a surgeon to perform
surgery inside a patient by controlling robotic arms through
small incisions. A stereoscopic endoscope (camera) is also
inserted to allow the surgeon to see the operating field. The
basic setup of a da Vinci system is illustrated in Figure 1.

By observing training sessions and interviewing the in-
structors at Aalborg University Hospital (AUH), it became
apparent that the limitation of the communication between the
trainer and trainee is a significant problem in the training with

Fig. 1. da Vinci surgery system. Left: surgeon operating the surgeon console.
Center: assisting nurse operating the patient cart. Right: vision cart. Copyright
2015 Intuitive Surgical, Inc. [2]

Fig. 2. Telestration. Left: drawing around a pen on the touch screen. Center:
the drawing as displayed in the surgeon console’s left display. Right: the
drawing in the right display. The drawing gets offset for both eyes, making it
appear at a different depth than the background. For some users this creates
double vision and thus makes precise pointing impossible.

the da Vinci system. The source of this problem is that the
vision of the trainee sitting at the surgeon console is limited to
that of the stereoscopic endoscope, which makes it difficult for
the instructor to visually communicate with the trainee. Even a
simple task such as pointing to a place in the operational field
is currently difficult and anything more advanced is nearly
impossible. If the trainee leans back from the console to gain
vision of the instructor and/or operating room, the surgical
system locks and the trainee loses vision of the surgical field.
Often it is necessary for the trainee to leave the console for
the instructor to take over to, for example, identify anatomy
or demonstrate a skill.

Currently, the da Vinci system offers two methods of visual
communication without disrupting operation of the robot:
drawing on a touch screen (telestration) or showing additional
video signals side-by-side with the endoscopic view (a feature
called TilePro, see Figure 3). However, neither are being used
during training at AUH. The 2D drawings from the telestration
do not translate well to the stereoscopic display in the surgeon
console (see Figure 2) [3], [4]. The drawings are displayed
at a fixed depth in the stereoscopic view, which often results
in double vision and, therefore, greatly limits the situations in
which they are usable. The TilePro feature is not being utilised
during training sessions as it reduces the size and resolution
of the endoscopic view.

In this work, we present a system that uses hardware
keying to overlay the stereoscopic video signal with computer
graphics with minimal latency. The system allows the instruc-
tors to communicate more precisely with the trainee without
interrupting the trainee’s operation of the robot. We describe
how our system improves on previous work in Section II. In
Section Il we describe the video hardware of the da Vinci
systems and our system — including input and output devices.
Evaluation of the system with two experienced instructors



is described in Section IV. The system creates a foundation
for multiple new user interfaces that we propose and discuss
further in Section VI.

II. PREVIOUS WORK

To solve the visual communication limitation, Galsgaard et
al. [5] developed a system that overlays the stereoscopic video
displayed in the surgeon console with 3D computer graphics.
However, the 164 ms latency induced by the system made it
difficult to operate the da Vinci robot and difficult to validate
the benefits of the system. Ali et al. [3] created a similar
system where they overlaid the stereoscopic video to create
and evaluate 3D telestration. Like Galsgaard et al. [S] and
other similar work [6], [7] (we assume add 400 ms delay),
their overlay approach also involves data transfer with a CPU
and multiple format conversions, which presumably introduces
a noticeable delay of the video signal.

The previous works most similar to our system are [8]
and [9]. Hattori et al. [8] employ an OCTANE MXE graphics
workstation that can directly overlay computer graphics on an
analog S-Video signal. It is, however, no longer in production
and only the first generation da Vinci system uses S-Video for
the stereoscopic video signal. Figl et al. [9] use two external
video mixers to overlay graphics with minimal latency — also
on the S-Video signal of the first generation system. Newer
video mixers that support the digital HD video format of the
newer da Vinci systems are available, but they are often bulky
and expensive, making them less ideal for the scenario at
AUH. An exception to this, is the Blackmagic Design ATEM
Television Studio switcher; however, to reduce the delay to less
than one frame (if possible at all) would require a more costly
and bulky solution than the system we describe in Section III.
It would require two switchers, SDI outputs from a computer
and synchronization of the signals. A delay of one frame might
appear very small, but at 60 Hz, it corresponds to more than
16 ms, while a 10 ms delay can already make a statistically
significant difference in user performance [10].

Most other works that augment the video signal of the
da Vinci systems use the TilePro feature to display both the
original (undelayed) and the augmented video signal at the
same time [11], [12], [13]. In this way, they avoid that the
additional latency affects the control of the robot. However,
as can be seen in Figure 3, this significantly reduces the size
and resolution of both video signals. From [11] it appears that
surgeons then tend to switch off the augmented video signal
whenever possible. Thus, the TilePro setup is not ideal in a
training situation.

None of the cited works appear to support the digital HD
video format of the newest generation da Vinci systems, which
require much faster processing because of the higher data rate
(0.3 Gbit/s vs. 1.5 Gbit/s).

III. MATERIALS AND METHODS
A. Video Hardware

Initially, we investigated the video hardware of various
da Vinci systems that were available to us (da Vinci, da Vinci
S HD, and da Vinci Si). We examined the video signals
using a Blackmagic Design DeckLink Duo card and a custom
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Fig. 3. TilePro feature of the da Vinci S HD system seen from the surgeons
perspective. Here the feature is used to display physological information (left)
and ultra sound video (right). Copyright 2015 Intuitive Surgical, Inc. [2]

made format detection application. The pixel format of all the
examined systems is YCbCr 4:2:2, which is a chroma sub-
sampling format commonly used in live TV productions. The
video components of the systems are connected by RG-59
coaxial cables with BNC connectors and are in most cases
directly accessible. The video formats of each generation of
the system are listed in Table L.

1) First generation da Vinci: The first generation da Vinci
system uses S-Video (analog) and SD-SDI (standard definition
serial digital interface). The SD-SDI video signal can be
intercepted directly between the vision cart and the surgeon
console. To overlay graphics on the first generation da Vinci
system, a single DeckLink Duo card is sufficient, as this
PCle card supports internal keying on two SD-SDI signals at
the same time. The stereoscopic video signal consists of two
separate SDI signals: one for each eye. The setup for a first
generation da Vinci system is illustrated in Figure 4.

2)da Vinci S HD and da Vinci Si: The newer da Vinci
S HD and da Vinci Si systems use HD-SDI (high definition
SDI) with a 1080i video format. On those systems, the video
signal can be intercepted between the camera controller(s) and
the synchronizer/CORE unit in the vision cart as illustrated
in Figure 5. Additionally, the da Vinci S HD system has a
redundant HD-SDI output on each camera controller.

For these newer systems, a more advanced video device is
required to allow for keying in HD, for example, one DeckLink
HD Extreme card for each video signal. We acquired two
DeckLink HD Extreme cards (second generation) to support
stereoscopic keying on a da Vinci S HD system. Recently,
Blackmagic Design has released a less costly video card,
DeckLink SDI 4K, that also supports internal HD keying.

TABLE L. VIDEO FORMATS OF THE DA VINCI SURGICAL SYSTEMS.
i INDICATES AN INTERLACED FORMAT.

Video Format ~ Refresh Rate Year
da Vinci PAL / NTSC 50i / 60i 1999
da Vinci S PAL / NTSC 50i / 601 2006
da Vinci S HD 1080 HD 59.94i 2006
da Vinci Si 1080 HD 59.94i 2009
da Vinci Xi (1080 HD) (59.94i) 2014
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Fig. 4. System diagram of the setup used to overlay 3D graphics on the
stereoscopic video of the first generation da Vinci system. Dark grey indicates
da Vinci components.
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Fig. 5. System diagram of the setup used to overlay 3D graphics on the
stereoscopic video of the da Vinci S HD and newer systems. Dark grey
indicates da Vinci components.

B. Computer Graphics

For future applications and to make it possible to overlay
three-dimensional (3D) graphics, we implemented a system in
the free version of the game engine Unity, which we used
to render 3D graphics that are output through the DeckLink
API to the DeckLink card(s). We have created a custom
graphical interface that allows developers to choose input,
output or keying mode for each DeckLink device installed in
the system. Furthermore, we implemented virtual instruments
resembling those used on the da Vinci systems, which can
be seen in Figure 6. Currently, the bottleneck of the system
is the time it takes to transfer the rendered images from the
graphics card to the system RAM, where the DeckLink cards
can access them. A workstation graphics card, i.e. NVIDIA
Quadro or AMD FirePro, could possibly improve the transfer
rate as they have dedicated processing units for exactly that.
We emphasize, however, that this bottleneck only delays the
computer graphics, and it does not affect the stereo video signal
of the endoscope.

C. Input and Output

For the trainer to be able to control the 3D graphics, we
employed Razer Hydra game controllers. They support three

translational degrees of freedom (DOF), three rotational DOFs
and an analog trigger (one DOF); therefore, they are similar to
the 7-DOF controls of the da Vinci systems [14]. Additionally,
we implemented control with the Kinect for Windows v2,
which supports skeleton tracking and hand gestures. To display
the stereoscopic video signal to the trainer, we used a Matrox
MC-100 converter, which converts two HD-SDI signals to 3D
HDMI (see Figure 5). The latter signal is displayed by a 3D
TV with passive stereo. To minimize latency for the 3D TV, it
is important to turn off any processing performed by the TV
(often achieved by switching the TV to game mode)

To compensate for any inaccuracies in the camera optics,
the da Vinci systems have a calibration feature, where the
two video streams are aligned by offsetting the images both
horizontally and vertically. The offsets are introduced after
we intercept the video signal and it is therefore necessary to
adjust the signal for the 3D TV as well. Fortunately, the MC-
100 has an on screen menu where it is possible to offset the
images accordingly. Similarly, the virtual cameras have to be
adjusted to match the offset, but in the opposite direction, for
the computer graphics to be properly aligned.

D. System Setup

The core of our system is a regular desktop computer with
the DeckLink cards installed. It has the following specifica-
tions: Intel Core i3-3240 3.4GHz CPU, Geforce 660 GTX
GPU, 8 GB 1600 MHz RAM, 2xDeckLink HD Extremes
(second generation), Microsoft Windows 8. The complete
setup installed and tested at AUH is depicted in Figure 5.

To make the use of the da Vinci system less dependent on
our system, we attached the redundant outputs of the camera
controllers to loss-of-signal switchers. This has two benefits:
it makes it possible to still use the robot without our system,
and it makes it possible to immediately switch to the original
video streams in case there are any problems with our system
— simply by switching off our system.

IV. RESULTS

The proposed system is able to overlay the video streams of
the da Vinci system with computer graphics. Like other work
it supports the older generation da Vinci systems, and it is also

Fig. 6. Endoscopic video signal overlaid with a virtual instrument (blue) in
real-time. This composition is shown to the left eye. A similar image is shown
to the right eye, but with the real and virtual camera offset to the right.



compatible with the newer generations that utilize HD video
signals. Our system is able to produce high quality computer
graphics and overlay them in stereo at a rate matching the
1080i59.94 format. The overlaying induces less than 1 ms
delay [15] on the original video signal. The computer graphics
(e.g. virtual tools) are slightly delayed (less than 100 ms)
compared to outputting on a regular computer monitor.

We evaluated our system with the help of two experi-
enced robotic surgery instructors. Our system has twice been
connected to the da Vinci S HD system normally used for
training at Aalborg University Hospital. The tests showed
that the system can improve visual communication between
the instructor and a trainee. Especially, the overlaid virtual
instruments were considered very useful by the experienced
surgeon for showing advanced tasks to the trainees, while a
simpler cursor was preferable for the assisting nurse.

Regarding user input devices, the Razer Hydra is useful for
experienced surgeons to demonstrate certain skills to a trainee.
The Kinect sensor has less DOFs, but is sufficient for pointing
or drawing, which is often what is needed for the assisting
surgeon or nurse. It is also possible to use the Kinect sensor
in a sterile environment as it does not require any touching.
However, because of the limited space in the training room
at AUH, it is not convenient to use the Kinect sensor and a
wireless gyroscopic mouse has since proved to be superior.

During the test we noticed that the perceived depth of the
3D graphics (virtual robotic instruments) did not entirely match
the depth of the real environment. Furthermore, we learned
that a clutch (allowing to move the controls without moving
the instruments) is necessary to sufficiently simulate the real
instruments. Since the test, the cameras have been adjusted to
match properly with the endoscope used at AUH and clutching
of the tools has been implemented. They have since been
positively evaluated by several of the instructors at AUH.

The stability and usability of the system has since been
tested for extended periods of time at multiple eight hour
sessions. The only technical problem during the sessions was
the 3D TV turning off, presumably, due to power fluctuations
caused by the cauterization instruments. It did not affect the
overlay system and the 3D TV was simply switched back on.

V. CONCLUSION

We have created a compact system that can be the founda-
tion for multiple new types of user interfaces directly visible
in the surgeon console during training for robotic-assisted
surgery. Our implementation allows overlaying of stereo graph-
ics in 1080 HD at 59.94i with less than 1 ms delay.

The developed software for keying graphics from Unity is
available at homes.create.aau.dk/kibsgaard/.

VI. FUTURE WORK

Our system was developed to support future work and is
currently used by students without requiring knowledge of
the underlying APIs; i.e., the DeckLink API and OpenGL.
Future work could further evaluate the use of overlaying
virtual objects, images, videos, webcams, task lists, etc. during
training with the da Vinci systems.
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Abstract—Many maritime mapping tasks are to-
day carried out by large research ships, which are
very costly to operate. As a way to overcome this,
a number of small surveying vessels have been de-
veloped called AAUSHIP. In order to efficiently map
the an area with such smaller vessels, it is important
that several vessels are able to corporate on the
task at hand. In this paper, the developed formation
control strategy for the AAUSHIP series of vessels
is presented, along with simulation results, which
confirms, that the algorithm works as intended.

I. INTRODUCTION

The background for the formation control sub-
ject of this project originate in a collaboration with
Port of Aalborg, who has a vision to make their
harbour an intelligent harbour. This will, among
other things, include autonomous piloting of cargo
ships bringing cargo to and from Aalborg. For the
cargo ships to enter the harbour it is important
that the seabed is deep enough and the sand has
not build up larger bars or moved the channel
unexpectedly. Currently bathymetry surveys are
performed manually with a small manned survey
boat equipped with a multi beam sonar, scanning
some area of interest, which is a smaller fraction
of the whole Limfjord.

This is done with a period between three
months up to three years, depending on how active
the seabed is. If the level is too shallow, such
that the cargo ships cannot enter, it is the Port
of Aalborg that needs to clear the area and ensure
safe travel for their customers.

The work within this project is carried out
to assist the Port of Aalborg with their survey
task. The development and implementation of the
AAUSHIP project will fit very well into this
environment and be of good aid for the Port of
Aalborg.

The first focus point of the project is to model
and test the prototype of the AAUSHIP and then
extend the fleet with duplicates of the first AAU-
SHIP. The ship needs to follow a trajectory and
thereby sail within a predetermined location of
interest. The second focus point is to implement
formation control of a fleet of AAUSHIP’s and
test this at the location of interest. An area of the
harbour has been given as a use case to test the
results against.
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Previously research on using an autonomous
surface vehicles (ASV) for bathymetry measure-
ment has been reported in Vasilijevic et al. (2015);
Ferreira et al. (2009); Bourgeois et al. (1999), how-
ever, these were all operating independantly. Some
preliminary studies in formation control of surface
and sub-surface vehicles have been reported in
Simetti et al. (2015) where mechanically linked
cooperative sub-surface vessels are considered, in
Ghommem et al. (2007) where a non-linear ap-
proach to formation keeping of a group of surface
vehicles is considered and in Ihle et al. (2005),
where an inter-vessel force is introduced to keep
the formation in place, which has certain parallels
to the potential field approach, which is discussed
in section III. However, this is the first time that
the formation control problem for ASVs is applied
to bathymetry surveying.

II. METHOD

The AAUSHIP is modelled by a 5 degree of
freedom (DOF) model, which differs from a 3
DOF model by including the pitch and roll also.
These are taken into account due to the fact that
the AAUSHIP runs with single beam sonars and
therefore it is important to know the relative pitch
and roll angles.

A. Simulation Model

In order to simulate the ships behaviour in
water, an accurate simulation model has been
developed and verified agains the real ship. The
hydro-dynamic model used to simulate the ships
is given as:

Maiy + Ca(v)vr + D)y +g(n) =7 (1)

where M4 is the added mass matrix from the
system, C4 is the added mass matrix due to
the Coriolis force, D(v) is a combination of the
potential and viscous damping matrices, g(7) is
the restoring forces, which is dependent on the
position of the vessel, 7 is control and propulsion
forces and v is the velocities of the vessel in all
directions and moments.

The rigid body is used to model the physics
of the vessel, as it is assumed that the vessel
is sufficiently stiff to neglect bending dynamics.



Translational motion and rotational motion can be
derived by analysis of this, and by (SNAME,
1950) and (Fossen, 2011, sec. (3.3.1)) written
in component form as: f? = [X,Y,Z]T and
m{ = [K, M, N]T, force through o, and moments
about oy, expressed in {b}, vy, = [u, v, w]" is the
linear velocity of o, relative o,, expressed in {b},
""Z/n = [p,q,7]" is the angular velocity of b rela-
tive to {n} expressed in {b} and r¥ = [z, y,, z4]"
is the vector from o, to CG expressed in {b}

The rigid body forces are written as:
Mpgptr + Crp(vi)vr = TrB (2)

where Mpp is the system inertia matrix, Cgrp is
the coriolis-centriopedal matrix, Tgp is a lumped
force combined of Thyg + Ths+ Twind + Twave-

Combined, this gives the following full vessel
model:

Mprpiy + Crp(vr)vr 3

rigid-body forces

+ Mav, + CA(Z/T)Z/T + D(ZIT)Z/T + 9(777") =T+ TRB

hydrodynamic forces

Since the vessel within this project is of smaller
scale, the C'4 and Crp from 1 and 2 are neglected
(Wondergem, 2005, eq. (2.23)).

III. FORMATION CONTROL

In the following approach a potential field
is generated for each agent including obstacles,
formation span, desired, and actual position. It will
be a combination of virtual leader and potential
field. The principle generates a potential field to
keep the formation and that field is moved around
as a virtual leader. When the virtual leader is
moved around it results in a deflection of the
desired position and causes the affected agents
to get back into position. The positions of the
agents in the field is given individually to the
specific agents relative to the virtual leader. The
approach generates a single resulting vector for
each agent which is used to guide the agent. The
potential field for each agent is generated from
four components:

Fi' =Fu + B + F +F (@)
where:
F,; virtual leader force
Fi¢*  inter-agent forces
Fi°'  agent-agent collision avoidance forces

Fiot  agent-obstacle collision avoidance forces

1) Virtual Leader, F,;: The virtual leader is an
anchor of each formation, the Formation Reference
Point (FRP), and controls the movement of this.
This movement can be given as a full trajectory of
as a set of way points. The local virtual leader’s
contribution to the field is defined as:

Fo = Ku(py —pf — [Py —piol) )
= Kyi(d; — dio) ©)

K, is a tuning parameter. p,; is position of the
virtual leader, p; is position of agent ¢, p;o is
desired position of agent ¢ and the d is a shorter
notation for the distances in between. The virtual
leader component guides the agents directly to
their desired positions relative to the virtual leader.

2) Inter Vehicle Influence, F;;: This is the
contribution of other vehicles to the potential field,
which is expressed as:

Fij = Kij (p? -pi = [P?o — Piol) N
= K;j(di; — dsjo) 8)

Similar to previously the ps are positions, Kj;; is a
tuning parameter and d is a shorter notation for the
distances in between. This component preserves
the formation by affecting the agents to keep their
respective desired distances among themselves.
The weighting on each goal can be adjusted by
K,; and K;;, hence this weighting is a weighting
that causes the agents to either follow the virtual
leader or to preserve their desired formation. In a
swarm of N agents the total field for agent ¢ given
by:

N
Fiot = "Fy;(i, j) for j # i ©)

j=1

3) Collision Avoidance, F.,: The collision
avoidance takes effect when the agents get closer
than a pre defined distance of each other. It gener-
ates an additional field component for the vehicle ¢
which points away from the entering agent causing
the agents to move away from each other. To
ensure the avoidance the component converges
towards infinity in the centre of the 7’th agent. The
F., is expressed as:

. Kear K dij
FY — {(dull Ca) lldiz[1°
ca

for Hdl]” <r

0, otherwise
(10)

where K, is a tuning parameter. r is the safety
radius for collision and d;; is the distance between
the individual agents. The collision avoidance can



be expressed in a total term of the collision avoid-
ance:

N
Flot = > "FY, fori#j (1)
j=1

4) Obstacle Avoidance, F,,: The same prin-
ciple as for collision avoidance can be applied to
obstacle avoidance. Now each obstacle needs to
be handled as an agent, which will make the same
result, but the reference is a little different:

. Koo _ Koa | _dri
FikF — [ldksll r [[drill?
oa .
0, otherwise

for ||dg;|| < r

(12)

where k denotes the counter for obstacles instead
of other agents. K, is also a tuning parameter for
the obstacle avoidance. dj; is the vector between
an agent and the obstacle, which in a total term is
summed up as:

M
Flol =N "Fif fori#k (13)
k=1

Here dj; represents one of the M place vectors
which has the effect of a detected obstacle.

It can be noticed that there is a difference
between F., and F,,. The two forces applies
the same directions of forces, making the agents
repulse from another agent or an obstacle, but
for equal parameters the F., generates a larger
force, meaning that collision is punished harder
than obstacles.

The distance r can be determined dynamically
depending on the velocity of the agent:

r=r""+K,|p"| (14)

Still will ensure that the agents have the possibility
to decelerate from their absolute velocity in the
safety radius such that they can turn away from
each other.

5) Potential field: The forces are summed to-
gether to get F1°, which is an intermediate vector
which gives the magnitude and direction of the
potential field for vehicle ¢ at its current position.

tot

F;° = min{ ||F30t|| S }#
[

15)

The Fl° denotes that it is a middle variable and
not the final value of the potential calculation, thus
not the one used by the controller yet. As the
potential field does not need to expand to infinity
it is reasonable to define a maximum amplitude for

the vector, while still keeping its direction, F}, ..
This will be a limitation of the agents’ speed. As
a start in the simulation phase is F},,, chosen as
a constant, but in the fully implemented system it
can be of benefit to adjust this maximum speed
dynamically, for instance as in equation 16, as an
example from (Paul et al., 2008).

Fmaz == mzn+Kvl||an (16)

where the F),;, is a minimum value for the upper
limit and then with an applied gain of the speed.
The reference trajectory is used by the controller
to calculate the agent’s control input which can be
based on the desired movement in the NED frame
as:

P}, = pi + FI" a7

where their positions are added together with the
potential field, such that the position and the
potential field becomes linked.

IV. THE POTENTIAL FIELD STRATEGY

The potential field is generated for each in-
dividual agent at every update step to make the
formation move and converge to a specified for-
mation and position. The field is generated based
on forces acting in an overlying potential field
structure where one force converges the agent to
a desired position, a force attracting the agent to
obtain the desired formation along the trajectory, a
force repelling the agent from other agents if their
distance is too small and finally a force repelling
the agents from static objects. The latter two can
seem the same, but the repelling force will be
larger for the agent-agent force due to the fact
that two agents could have course directly toward
each other and a more aggressive avoidance can
be needed.

To be able to generate and simulate the poten-
tial field the implementation needs to be generic.
First it was developed with one agent that needs
to converge to a desired position and afterwards
were other agents added as obstacles and some
static objects were added in extend. From these
obstacles it can be seen that a single agent is
able to converge to a position which makes it
possible to expand such that more agents can
converge into formation with reference from either
a virtual leader or from each other. This will
solve the formation coordination task, where the
following task will be the group coordination task.
The group coordination task has the goal to move
the formation around, which here will be done by
making the virtual leader, or an actual leader of
the formation, follow a specified trajectory. This



will make the other agents follow this leader and
keep their formation on the trajectory.
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Fig. 1. Plot of one agent’s trajectory with a desired position
with obstacles to avoid

A plot for a total potential reference field for
a single agent can be seen on figure 1. The red
line made of crosses is the trajectory that one
single agent will follow, if the obstacles to avoid in
the plot are static. In the plot every object, either
another agent or an object, are kept static. So it
shows how the trajectory will be in one single
time step. This will change dynamically in the
next time step if the other agents also move in the
potential field. The agent avoids obstacles on the
way, where it can be seen that it does not get into
the safety radius of the obstacles. In this specific
plot is a safety radius (r) of 20m chosen, such that
the distance from agent p; (red trajectory) to any
obstacle always will be larger than 20m.

The same algorithm is applied where agent ¢
avoids other agents, agent j, j + 1. This can be
seen on figure 2.

Agent ¢ takes a direct course toward the virtual
leader but meets another agent as an obstacle.
Agent ¢ moves on the boarder of agent j with the
defined safety radius and afterwards diverges from
agent j towards the virtual leader. This is all done
by following the lowest gradient at all times.

The gain of Kj; is not to be interpret from
figure 1. Kj;; is the gain to the force that attracts
the agents together by minimizing the distance in
between them. By doing this the agents will get
faster into the desired formation. The gain K,;
does at some point the opposite. This gain adjusts
the weighting of how fixated the agents should
be to converge to the desired position. If this
gain is relatively larger than K;; then the agents
will converge directly to their position around the

Ftotmagn

Meter [m]

Meter [m]

Fig. 2. Agent 7 avoids agent j and converges to the minima
at the virtual leader

virtual leader and not converge to the desired
formation on the way. This implies that the scaling
between K,; and Kj; controls if the formation
should converge to the desired formation on the
way to the desired position, or if agent ¢ should
only have the desired position in focus.

A. Numerical Solution

The grid in which the potential field is gen-
erated are limited with a certain resolution while
simulating the agents movement. This reduces the
directions of where the agents can move, which
will not arise a problem on the same level when
implemented in reality. In the simulation environ-
ment it reduces the resolution such that a single
field in the grid contains one value of magnitude
of the potential field, which makes the basis of a
certain gradient to the field. The agents are follow-
ing the implementation of the steepest decent. This
generates a gradient towards the steepest decent,
which the agent tracks. The analogy can be seen
as a bowl, or sphere in this case, where a ball will
converge towards the lowest point in the direction
of the minimum gradient.

The method of applying the grid with mag-
nitude of the potential field rises a problem with
resolution, and therefore also a problem that makes
the ’corners’ of the grid around the agent to have
the steepest decent. This is seen as if the agent is
placed in the middle of a 3-by-3 matrix, and have
eight placements around it. The placements around
the agent will then be checked. The magnitude of
the vector from the agent and outgoing will there-
fore be biggest in the corners since the distance to
those are greater than the distances to the sides,
up and down. This problem has been expanded



with a solution such that a certain radius in the
potential field around an agent will be checked.
The value at the radius around the agent can be
checked, and due to the newly equal distance to
every point, these will be weighted equally with
respect to their value. This makes in principle the
possibility to make the agent go in all directions
which will be closer to the reality. When testing
the two methods against each other it is clear
that the first proposed with the grid structure did
not have the same mobility thus not preferable in
simulations though it is simpler. The first made the
agents move only in the diagonals of their local
placement, where the latter makes the agents able
to move in a number of directions specified in the
algorithm.

B. Local Minima Problem

A problem that can become crucial arises when
two agents or two objects are within the radius of
each other. This will result in a local minima in
the potential field between those objects. This will
create a local minima in between these agents or
objects. If an agent converges toward this minima
they cannot get out again. The problem can be seen
on figure 3. The gains here are chosen exactly the
same as in figure 1.

Ftotmagn

Meter [m]

Meter [m]

Fig. 3. An agent gets stuck due to a local minima between two
other agents. The agent cannot get out of this minima unless
the other two agents makes the space for the agent to pass
through

The scenario on figure 3 has the following
steps. The agent ¢ moves in the direction of the
steepest decent. Then it gets to the border of
another agent where it cannot go through thus
starts to go around this agent. The problem arises
when agent ¢ reaches another agent on the way
where it now has reached a local minima. Now the
steepest gradient will point at the position where

the agent already is thus making it think it has
reached the end point. Solutions to this problem
can be formulated in different ways.

One solution could be to cluster the two objects
together and instead of making their potential
field individually, then combine those together and
make an ellipsoid or even a circle formed obstacle
of those objects. This will ensure that the local
minima disappears thus not making an agent get
stuck between those objects.

Another solution is to make an exception han-
dler that can tell if agent ¢ has reached the desired
position. If it has not reached its end point, and
the position is constant on the same placement, it
perturbs the desired position of the agent until the
direction of the steepest decent changes more than
a predefined value. This will mean that the agent
is out of the local minima and can continue on the
trajectory. The solution of clustering the objects,
that are too close, can be seen on figure 4.

Ftotmagn

Northing [m]

0
Easting [m]

Fig. 4. An agent that before was stuck now does not get into
a local minima close to the agents, as it now sees the two other
agents as one larger agent.

Here the first solution is applied where the two
agents, that were too close to each other, have
been clustered into one, seen from the i’th agent.
Now the local minima between the agents have
been neglected and the 7’th agent can generate
its trajectory around the agents and continue to
the endpoint of the potential field. The algorithm
checks if the distances between the agents are
lower than two times the radius r. If this is the
case it means that the ¢’th agent cannot generate
a trajectory in between these agents, which can
lead to a local minima. Therefore is the agents that
are too close combined into one by generating the
middle point between their positions and generat-
ing a new radius. This makes a larger circle where



the two agents are in the subset. This circle will be
larger depending on the wanted safety radius thus
rises the need to recheck the potential field again
after have generated a new combined agent. If the
radius of the new agent places it close to one of
the single agents, these also might need to cluster.
Thus the algorithm needs to run until no distances
between agents are less than two times the radius.

Data: clustering of agents
1 initialization;
2 if ||pi, pj|| < 2 -7 then

3 Pj,new < mid point between p; and p;
4 Tnew < calc new r for pj new

5 delete p; and p;with p; e

6 end

Algorithm 1: This pseudo code describes
how agents that are too close to each other
are getting clustered and seen as one. The
algorithm can also be applied for obstacles
in the potential field.

The algorithm generating this combined agent
can be seen in pseudo code in algorithm 1. The
algorithm works by first checking every distance
between the agents to see if it is lower than 2-7. If
the distance is lower, a new coordinate set needs
to be calculated. The coordinates for the p; new 1S
generated to the middle value of the two points

Pi +P;
Pjnew = Z2 1 (18)

and afterwards the new radius for p; ne. can be
found from

Tnew = w +r (19)

In the end this results in that the every agent
needs a magnitude and a direction of which they
should move. This will be given depending on the
total environment where the agents are manoeu-
vring, and will be assigned by the gradient vector.
When applying this formation strategy a collision
free movement is guaranteed which is one of the
more critical criteria to be fulfilled.

V. RESULTS

The potential field control system consists of
multiple elements as seen with the flow which is
illustrated on the block diagram on figure 5. The
first block is the potential field generator. This
is the potential field calculation to compute the
magnitude of the global potential field. This infor-
mation is passed to a trajectory generator, which
generates the reference trajectory. This reference

Waypoint |Pvi| Potential Frt Trajectory |Pd; Ship Ti
Database Calculation Generation Controller

A A

Marine Di
Craft

Fig. 5. Block diagram showing the iteration process of using
the potential fields for computation of the input vector

trajectory is where the ¢’th agent needs to move.
This is passed to the controller of the vessel, which
then computes the input to the actuators on the
vessels, which in this case is done via a linear
controller, which has been developed based on a
linearized version of the vessel around its nominal
operating point. The position of the vessels are
then fed back, both to the potential field calcula-
tion, the trajectory generation and the controller.
The potential field needs to be calculated from the
vessels relative position, the trajectory generation
needs the position for the intermediate reference
position and the controller will need it for i.e. error
calculations.

Part of this flow can be computed by the
7’th ship themselves, but the overlying trajectory
generation needs to be handled by the virtual
leader, or one leader in the formation.

The Guidance Navigation and Control (GNC)
works by an array of mission specific waypoints
given, usually computed from a desired area used
to create a lawnmower pattern or similar area
coverage algorihm. This trajectory becomes the
area of interest, and is the one overlying trajectory
that the virtual leader has to follow. The other ships
will need to maintain their individual positions
at all time steps respective to the virtual leader.
Dependent of how the position is formed, the ships
needs to go into formation before or during the
trajectory tracking phase.

For the inner loop, a heading based LOS
method can still be used, but this should be cal-
culated for every ship, with each their reference
position p; .

The algorithm 2 on the next page describes
how the potential field strategy can be simulated,
were each iteration of the while loop is a time
step, which means that the control will continue
until the formation has reached the way point
acceptance radius of the track. This is to ensure
that the formation anchor do not move forward
if the ships are not properly in formation. This
is analogous with the group coordination task as
defined by (Thorvaldsen, 2011).

A simulation of the algorithm with the dynam-
ics of the AAUSHIP can be seen on figure 6. The
red crosses are waypoints that have been targeted
as the next waypoint to reach. The line connecting



Data: track as global mission trajectory as
way points
1 initialization;
2 while m <= length of track do
3 for every i-th boat do
4 if formation is ok then
5 if p,; is inside the way point
acceptance radius of the track
then
m<—m+1;
Puvi < LOS( pyi , track(m)
);
end
end
10 ( Pd,i » Ftot,i ) <~ pathgen( Di s pOZ
1 Pr,i —pi+ Ftot,i;
12 1q,; < heading from p; to pg;
13 u; < controller( g );
14 send input u to ship;
15 X; < sense ship states;
16 p; < position of x;;
17 end
18 end

Algorithm 2: This pseudo code describes
how the potential field is used for each boat to
calculate the reference for the inner controller
for every boat at every time step. Every
iteration in the while loop is a time step.
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Fig. 6. Four agents are placed relative to the middle point
of the formation, the virtual leader. This leader moves at the
trajectory with the waypoints, but only changes to the next
waypoint if the agents are in formation. The blue circles with
the red plus signs are the waypoints of the virtual leader. The
other paths are computed from this and the FRP.

those waypoints are the virtual leader movement,
which changes position from waypoint to waypoint
to generate the straight line segments for the
formation to follow. Every of the four agents have
a relative position placement to the virtual leader,
the agents positions are p;; and given as pj;,+offset

and the position of the virtual leader is given as
py;. The ships are shown as yellow ships and the
ships in formation is connected with a red line.

The formation have started at position
[-250,—150] and has the first waypoint in
[—208, —120]. When the agents are close to reach
the waypoint at [—208,—120], they ensure that
every agent are in formation by waiting for the
last to catch up, if needed. Then all of them are
in formation with respect to the virtual leader and
this changes waypoint such that the agents needs
to go toward the next waypoint. This waypoint
shifting continues until no more waypoints are
available.

It can be seen that there is a little divergence of
the ships to the line segments which is mainly due
to the dynamics of the AAUSHIP. Their respective
line segments are not shown on the figure, while
this would make the figure confusing. Though
the agents will follow a line segment from their
position in the formation to the new position in
the formation. This is due to the movement of the
virtual leader where this only moves in straight
lines, thus the following agents pursue to do the
same. The trajectory the ships follow is plotted
beneath the third vessel from the left from where
it can be seen that this vessel is placed on top
of the virtual leader, and almost makes this vessel
serve as the leader of the formation. Due to the
formation setup the following ships will follow the
same trajectory as the leader but only in this case
shifted in the easting position.

Running the same setup as used in figure 7 on
the following page, but with the addition of a few
objects in the way of the paths it can be seen how
the ships tries to evade the obstacles. The obstacles
potential field is drawn as black circles. It shall be
noted the plotted boundary is not a hard boundary,
but only shows the radius whereby the potential
field of the obstacles can affect other objects. On
figure 7 on the next page there are placed two
obstacles near each other on the first north going
leg of the path. Here it is seen that two ships tries
to gently diverge from the paths following near
the boundary to the object, while it is seen that
there is a ship going “through” the two objects
influence zone. As describe previous, this is due
to that the penalty for going around the entire set
of obstacles is larger than crossing in between the
objects. Because the two objects are offset a bit
and about the same distance from the path it is
clearly seen that the ship follows the minimum
potential field through the set.
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Fig. 7. Same setups as in figure 6 on the preceding page, but
with obstacles positioned on the pathways.

VI. DISCUSSION

The model and simulation has proved to work
when implemented on the AAUSHIP which re-
sults in a vessel that can track a predetermined
trajectory. This makes the basis for the further
work of expanding the fleet of AAUSHIPS and
implement the investigated control strategies on
the fleet, ultimately ending up with a successful
digital mapping of the seabed in the Limfjord in
Denmark.

In this work the obstacles was regarded as
point masses. An obvious extension of this work
would be to expand the method to allow for
polyhedral obstacles and then add the potential
field of influence to this. This will immediately
allow for better modelling of e.g. piers and other
larger structures.
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Abstract—We describe the design of an undergraduate course
in art and robotics that aims to integrate basic concepts of
computer science, robotics and art installation for undergraduate
students within the problem-based learning model. Our
methodology aims to bridge the gap that separates humanities
from computer science and engineering education to prepare
students to address real world problems in robotics, including
human-robotic interaction and HCI. Given the proliferation of
interactive, systems-based art works and the continued interest in
human-centered factors in robotics research (such as aesthetics,
culture and perception), we believe this is an important area for
education and research.
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L INTRODUCTION

The problem-based learning (PBL) model at Aalborg
University (AAU) provides a unique framework for
developing a transdisciplinary course that prepares students to
combine critical thinking and problem-solving skills with
hands-on experiments and practice. The Art and Technology
(ArT) undergraduate program at AAU is unique in that it
offers a cross-disciplinary background in both new media art
and pertinent technical subjects such as electronics,
programming and rapid prototyping. Unlike traditional fine
arts programs, ArT provides students with the competencies
required to deeply engage with the latest technologies and to
translate creative theories and approaches into practical
results.

We were motivated to develop a course that exemplifies the
educational vision of ArT and to provide a clear progression
and integration of previous ArT courses. Multimedia
Programming-Autonomous Art (MMP-AA) integrates art and
technology by focusing specifically on the theoretical and
practical aspects of robotic art. The course places equal
emphasis on both aesthetic and technical concerns so that
students may develop competencies in the creation of
aesthetically engaging autonomous art works.

While there do exist some undergraduate programs that
combine art and computer science education [1], many of
these curriculums are centered on electronic and/or digital
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media arts and do not directly incorporate robotics. Robotics
education remains out of reach for many students not enrolled
in traditional computer science or engineering programs.
Therefore, a second aim of MMP-AA was to generate interest
and enthusiasm for robotics research among humanities
students. The semester theme of “Narratives and Interaction”
provided the context for the course and we encouraged
students to incorportate this theme in their projects, for
example by combining robotic art with storytelling and
interactivity. Students were asked to develop original research
projects that combined mobile robotics with the creation of an
original artifact, performance or installation.

We incorporated several modes of evaluation into the course,
including student entrance and exit surveys, video recording,
and project documentation. Here, we present the data
including course development and curriculum, analysis of
content and student projects, evaluation, and plans for future
research.

II.  THE ART AND TECHNOLOGY CONTEXT

A.  Transdisciplinarity

One of the pedagogical challenges at ArT is to select subjects
that apply to a wide range of media and at the same time have
direct applications within those media. In other words,
students should not only be familiar with the languages and
research methods across disciplines but should also be able to
integrate diverse fields of knowledge to solve real world
problems. The boundaries that have traditionally separated
humanities research from computational research are
increasingly blurred, and students should be prepared for this
new landscape. Transdisciplinary thinking requires one to
make abstractions on top of domain-specific knowledge. A
significant obstacle to transdisciplinary teaching is to choose
both the most effective abstractions and the clearest language
to communicate such concepts. This is the challenge we
address in MMP-AA.

B.  Multiple Languages

The ArT curriculum involves a unique mix of theory and
practice, and students take courses across a wide range of
subjects including art history, sculpture, dynamic art,
interactive systems programming, play and event, and



entrepreneurship. While the program offers a wide range of
courses across topics, few courses formally combine aesthetic
theory and practice with programming and technology. The
languages of art and programming do not readily translate
across disciplines, and it is usually left to the students to
combine these two fields in their individual projects. The
course theme of “Languages of Motion” was an effort to bring
computational motion and aesthetic motion into closer
alignment. Furthermore, many of the technologies taught in
ArT involve software programs for screen-based media. By
focusing on robotic art, we hoped to expand the students’
awareness to include physics-based scenarios, encouraging
students to experiment with new approaches to automated
motion such as choreography.

C. Demographics

Thirteen students enrolled in MMP-AA. There were five male
students and eight female students, ranging in age from 22-29
years old. All of the students were third year (fifth semester)
ArT bachelor students, and had varying levels of programming
experience outside of the ArT curriculum. Most students had
basic programming skills including C++, HTML/CSS, and
Java. Prior to MMP-AA, students had completed courses in
basic electronics, materials (including structure and
composition), and digital representations (including laser
cutting and 3D printing). One student had some prior
experience working with Lego Mindstorms, but beyond that
none of the students had previous experience working with
robots. Most of the students had seen some robotic art works,
but their familiarity with historical and contemporary robotic
art and robotics research was limited.

III. PEDADOGICAL APPROACH

This section outlines our pedagogical approach, including the
teaching formats, curriculum and learning objectives.

A. Co-Teaching

Our teaching is based on a collaborative model where
teaching, assignments and evaluations are developed and
implemented collaboratively at the faculty level. Our
appointments are at the Faculty of Humanities and the Faculty
of Engineering and Science respectively, which further
strengthens the transdisciplinary foundation of the course and
demonstrates to the students ways to foster fruitful
collaboration between humanities, computer science and
engineering. We also decided that both professors should be
present at all lessons in order to facilitate communication
across disciplines.

B.  Lecture/Workshop Format

We deliberately structured the course to balance the time
between lectures and hands-on workshops as well as aesthetic
and technical considerations. The course consisted of eight
lessons in total with each lesson lasting two hours. Lessons
typically followed the structure of a lecture on a specific topic
followed immediately by a hands-on learning exercise or
discussion. Wherever possible, individual lessons incorporated
both technical and aesthetic topics.

C. Curriculum

The overall curriculum aimed to teach students how to design,
program and execute a computer-controlled work of art based
on computational models and theories in robotic art. The
lesson topics were

*  Origin and development of robotic art

*  Robot communications

* Languages of motion I (periodic motion and random
walks)

* Languages of motion II (kinesics, flocking, emergent
behavior)

*  Markov chains and “Acting for Robots"

*  Workshop on designing and constructing robot
bodies and mechanisms with a visiting robot artist

The remaining two lessons were in-class presentations of the
midterms and final projects, where the students were asked to
present their functioning prototypes and answer questions
about their projects.

Students were provided with robots to experiment with (the
mobile Arduino robot and Sphero mobile robot), but were also
given the opportunity to develop their own design or robotic
prototypes. As the course is an upper-level undergraduate
course, a prerequisite for enrollment is imperative and object-
oriented programming (e.g., C++ or Java).

D. Project-Based Assignments

Following the AAU PBL model, we used project-based
assignments to encourage students to engage in open-ended,
play-based experimentation and inquiry. We deliberately
refrained from placing too many constraints on the midterm
and final projects, but rather encouraged students to be guided
by their own curiosity given the constraints of the relatively
simple robotic platforms. Our hope was that this would result
in works that were relevant to the students’ experience, skill
level and general artistic interest.

A necessary component for developing interactive, robotic art
works is to investigate, anticipate or understand human
response and reactions to the exhibited art works [2]. These
topics are relevant to the study of robot design and HRI
research [3]. In their projects, students were expected to apply
theoretical foundations from art and performance and to
explore the aesthetic potential of motions. From this we can
learn how to approach concepts such as autonomy and
interactivity on an experiential and aesthetic level.

There were two assignments in the course: 1) a midterm
sketch/study and one-page written summary outlining the
research project and 2) the completion of a group-based
mini-project incorporating computer-controlled robotics. The
mini-project was presented in class, and the functioning
prototype was accompanied by a written report and oral
presentation summarizing the project, method, approach and
conclusions.



Students were allowed to form their own project groups and
we made no effort to balance the groups in terms of skill sets,
e.g., programming. Rather, we preferred the students form
groups based on shared interest in a topic or specific robotic
platform. We speculate that this approach worked well
because of multiple factors: all students had basic
programming skills, the incorporation of group-based class
exercises, and students were from the same study program
(ArT). If the student population was more diverse, it may have
been necessary to structure the group formation more.
However, the group-based class exercises may have the
additional benefit of getting students acquainted with one
another.

IV. IMPLEMENTATION

In this section, we present a detailed description of how
certain aspects of the course were implemented. We discuss
the selected teaching platforms, programming languages, and
algorithms and describe the robot artist workshop and student
projects.

A. Theme: Languages of Motion

The underlying theme of MMP-AA was “Languages of
Motion.” Our goal was to introduce elementary algorithms of
motion and how those motions, individually or combined into
choreography, can create an aesthetic response in the viewer.
One goal of robotic or interactive systems-based art is to
evoke emotional responses through planned motions executed
by otherwise inanimate objects. Other media such as computer
animation and sound have their own specific languages of
motion, and we believe there are general principles within
languages that can be applied directly to robotics. For
example, random paths are useful for exploration and for
masking artificial movements and periodic functions can be
composed to synthesize complex, structured patterns.
Understanding the link between the languages of motion and
aesthetic and cognitive responses may open up new ways of
thinking about design and interactivity for robotics research

[4].
B.  Platforms

As the intention of the course was to focus on robot
communications and languages of motion, we wanted to use
ready-made mobile robots that supported open, standard
protocols. We ruled out use of drones and other 3D-navigable
robots early on as we felt these would present too many
technical challenges as well as safety issues for an
introductory course. The robot platforms chosen were the
Orbotix Sphero 2.0 [5] (Figure 1) and Arduino Robot [6]
(Figure 2). The Sphero is a Bluetooth-controlled, hermetically-
sealed ball that can be commanded to move and turn relative
to an initial reference frame. It also has a controllable colored
light and can stream numerous sensor data back to the client
including its position, accelerometer, gyro and IMU readings.
The Arduino Robot is essentially a programmable two-
wheeled cart. It also provides buttons and a dial for user input
and a display screen and speaker for feedback. A major

advantage of the Arduino Robot over the Sphero is that
additional sensors, such as a video camera, can be easily
attached to the robot. The Sphero, on the other hand, can be
used on a wider variety of terrains, including water, and may
be easier to use as an actuator.

Figure 1. The Orbotix Sphero 2.0 remote-controlled mobile
robot. Shown are its outer appearance (left) and inner
workings (right) [7].

Ilustration of the
programmable two-wheeled cart robot.

Figure 2. Arduino Robot [8]: a

C. Programming

It was important to use the same programming language for
both robot platforms to maximize the possibility of code reuse.
We selected C++ as the Arduino platform and much of the
robotics community use it. For the Sphero, we used the
AlloSystem multimedia toolkit [9] and custom-made
Bluetooth client and Sphero packet generating and parsing
classes. We considered using the Robot Operating System
(ROS) [10] but at the moment only Linux/Ubuntu is officially
supported and most of our students use either Windows or
OS X.

The algorithms we selected were meant to teach the students
about elementary types of motions and how to combine those
motions. For the elementary motions, we chose circular
motion, random walks, and flocking [11] as the basis for
periodic, random, and force-based motions, respectively. To
combine motions two main principles were introduced: motion



superposition, i.e. weighted vector summation of elementary
motions, and time-based sequencing. Sequencing, in turn, was
divided into two main approaches: linear and random. Linear
sequencing consisted of a series of control commands
separated by delta times while random sequencing was
implemented via Markov chains with fixed delta times
between state transitions.

In-class assignments were conducted using the Sphero and
generally followed a progression from simple to more
complex tasks. For example, in one lesson, the first task was
to change the color of the Sphero's light. This progressed to
moving the Sphero in a line and then stopping, and then onto
circular and random motions. The last exercise was to
simultaneously control the motion and color of the Sphero
according to some pattern.

D. Workshop with Guest Artist

One special feature of the course was a one-day workshop
taught by a visiting robot artist. The artist also gave a
corresponding lecture on his own art works and design
methodology. In the workshop, students constructed simple
mechanisms (gears, belts, and pulleys) with flexible and cheap
materials such as cardboard boxes, straws and rubber bands. In
the second part of the workshop students were taught how to
combine the mechanisms with Arduino controllers.
Unfortunately, we did not allow enough time for the students
to implement more advanced mechanisms, but each student
succeeded at designing and constructing a functioning
prototype. After working with rigid bodies with limited
degrees of freedom and movement primitives (i.e., the Sphero
and Arduino robots), the students enjoyed the chance to work
with flexible materials and to design their own robots.
Unfortunately, the workshop came too late in the semester for
students to incorporate this knowledge into their projects. In
hindsight, we believe the students would have benefited from
the workshop earlier in the semester before they commenced
work on their final projects. This would have introduced the
possibility of building their own robots or combining the
Arduino or Sphero with custom-built robots or parts.

E. Project Descriptions

Thirteen students worked in five groups. The projects reflected
a wide range of topics, some more scientific and others more
artistic in their approach and methodology.

1. Color/Gesture Mapping. This project aimed to map
color changes to the Sphero based on human-robot
interaction, using the robot’s orientation and altered
motion trajectories (human input) to control the color
of the Sphero.

2. Sphero  Dancers. This  project  abstracted
choreographic structures from human dancers to
generate motion trajectories for three Sphero
“dancers” to create dramatic tension and evoke an
emotional response in the viewers.

3. FlirtyBot. Using an Arduino Robot, this project built
a social robot with a distinct personality, using simple
interactions such as dialogue, sound, and simple
movement patterns in response to input from the
human user.

4. Mind-controlled Sphero. This project combined the
Sphero platform with the Emotiv EPOC biopotential
neuron headset [12] to simulate telekinesis. The
custom software (authored by the students) enabled
users to control the motion of the Sphero in real time
using only facial expressions.

5. “Kiwi” Interactive  Narrative. This robotic
performance combined preprogrammed and tele-
operated Spheros with live shadow puppetry, a
musical score and narration based on the Kiwi bird, a
flightless bird from New Zealand. The students
developed a storyboard and applied principles of
narratives and interaction to generate an original
performance (Figure 3).
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Figure 3. Storyboard of the “Kiwi” Interactive Narrative
student project (© Daniel K. Kittow and Martin L. Nielsen).
This was a live performance that combined preprogrammed
and tele-operated Spheros with live shadow puppetry, a
musical score, and narration based on the flightless bird from
New Zealand.

V. ANALYSIS AND REFLECTIONS

This section presents analysis and reflections of the course
based on our observations and experiences in the classroom,
evaluation of student projects, and student feedback.

A. Entrance and Exit Surveys

At the beginning of the course, students were asked to
complete an entrance survey that included questions about
prior programming experience and experience with robots and



robotic art, as well as their expectations for the course. All
thirteen students completed the intake survey. On the last day
students were asked to complete an exit survey, which
included questions on the course content, format, projects and
challenges they faced. Eight students completed the exit
survey.

Based on the entrance surveys, many students were excited
about the possibility of moving from screen-based media to
physical systems (“reaching beyond the screen”), and some
thought that working with robots would deepen their
understanding and knowledge of programming. Nearly all of
the students expressed enthusiasm about the “hands-on” nature
of the course, and were eager to apply their skills to more
advanced, interactive art works that involved human-robot
interaction.

The exit surveys show that students’ initial expectations were
largely met, and the students generally agreed that the course
struck a good balance between theory and practice. The
students appreciated the flexibility to develop their own
projects as well as the opportunity to apply theory to practice
in the in-class workshops and assignments. Students
responded positively to the challenge of working in the
physical world, including discovering the limits and
challenges of working in physics-based scenarios.

Working with physical systems challenged the students in new
and unexpected ways:

“Robots sometimes react to the physical world in
unpredictable  ways. They might also be
preprogrammed with a behavior that clashes with
something we want to make them do.”

“A lot of the stuff we have been programming have
had screen-based outputs. It was nice and quite
interesting to be able to move into the physical world,
and discover the limits thereof. Suddenly we had to
deal with a whole new set of issues and problems
along the way.”
“Considering  physics, robots can be
unreliable.”

quite

Many of the groups made an effort to apply theories of
narrative and interaction to their projects:

“In conclusion of the design process, many lessons
have been learnt, both practical and aesthetic in
creating robotic based art. The group has discovered
the power of motion in narrative storytelling and how
robots can seem more lifelike and organic with focus
on movement rather than on form. [...] This
movement can be implemented like an actor in a
theatrical performance.”

B.  Platforms

Out of the five student projects, four projects involved use of
the Sphero and only one project used the Arduino Robot. One
explanation for this preference may be because the Sphero was
used as the primary teaching platform, but also possibly due to
its simplistic, yet open-ended nature.

One of the problems we encountered with the Sphero is that it
is difficult to get it to move accurately along a predefined
trajectory over time. This stems partially from its lack of
ability to report its absolute position and orientation. Our
solution was to run a calibration program before each
performance and align the Spheros through visual inspection.
Other factors such as slipping, changes in momentum, or
dropped control packets can also introduce errors in the
motion trajectory and cannot be prevented through calibration.
A workaround to these problems, which we did not test, may
be to use some form of feedback control.

C. Algorithms

Overall, the students responded well to the algorithms that
were taught. Most notably, several students expressed a deep
interest in the theory of Markov chains and requested a more
in-depth study of them.

The application of the presented algorithms to the project
work varied. We found that students tended to pick one
algorithm and explore its possibilities rather than combining
multiple algorithms. For example, one project exclusively
used circular motions, another used primarily random walks,
and a third utilized a Markov chain consisting of move/turn
commands. A possible explanation for this, supported by the
project reports, is that the students encountered unexpected
technical challenges along way and simply did not have time
to progress beyond the basic algorithms. None of the projects
made use of flocking which could be due either to the small
number of project groups or the demand of the algorithm for
more advanced control of multiple robots.

D. Co-teaching

Students were generally enthusiastic about the co-teaching
model, and suggested that it was helpful to have both
professors on-hand to answer questions and to maintain the
balance between artistic and technical discourses. Personally,
we feel that our distinct areas of expertise were
complementary and that our mutual interest and engagement
in the topic of autonomous art was a good model for the
students.

VI. FUTURE WORK

Overall the students and professors were satisfied with the
course, and many students expressed interest in continuing
work on their projects. Given their interest and the strong
artistic and technical merit of the projects, we plan to develop
a second course that builds on this framework. Our objective
is to develop the skills and competencies the students acquired
in MMP-AA by expanding on the knowledge and practice of
robotic art.



In the next course, we will introduce basic feedback control
using video or other sensor data to address some of the
problems with obtaining precise trajectories. We plan to
introduce new algorithms that can be used to generate motion
such as gradient fields, cellular automata, and chaotic or other
non-linear equations. We are also interested in conducting a
hands-on workshop in 3D-printed bodies and mechanisms that
will build on the students' previous coursework in rapid
prototyping. Overall, we hope that students will be able to
refine their previous projects and at the same time experiment
with designing their own robots and news forms of expressive
motion.
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Abstract—This paper introduces Safety Critical Java (SCJ)
and argues its readiness for robotics programming. We give an
overview of the work done at Aalborg University and elsewhere on
SCJ1, some of its implementations in the form of the JOP, FijiVM
and HVM and some of the tools, especially WCA, TetaSARTS
tool suite and SymRT, allowing programmers to analyze their
SCJ applications for correct time behaviour.

Since its inception in 1995, Java has become one of the
most popular programming languages. With its write once -
run anywhere approach, it was rapidly propelled into main-
stream computing. The robotics community quickly started to
appreciate the language, and today Java is very popular in
robotics programming with several academic and commercial
frameworks [48], [50], and a very active community [21].

It is well known that Java, in its standard edition, is
unsuited for hard real-time applications, mainly due to insuf-
ficient thread semantics and the use of unpredictable garbage
collection algorithms in the implementation of the Java Virtual
Machine (JVM). Clearly some areas of robotics have hard
real-time requirements. Here ad-hoc approaches or approaches
based on external code, often written in C running on real-
time operating systems such as RT_PREEMPT and accessed
via the Java Native Interface (JNI), have prevailed. Although
impressive systems, such as the programming of Humanoid
Robots [57], have been implemented this way, it requires
the programmer to juggle two programming languages and
run-time environments with very different and sometimes
conflicting semantics.

To accommodate hard real-time applications in Java, much
research has been devoted to developing appropriate program-
ming models in Java facilitating real-time systems develop-
ment. The first such approach was conducted under the very
first Java Community Process (JSR001) and led to the Real-
Time Specification for Java (RTSJ) [13]. RTSJ introduces high
resolution clocks, the notion of NoHeapRealTimeThread and
scoped memory, allowing application developers to program
threads that have no interaction with the heap to avoid prob-
lems with the garbage collector during real-time execution. As
reported in [58] RTSJ has been used in the M2V2 humanoid
robot [46] and there are several examples of RTSJ being used
for industrial robotics [60], [49].

However, RTSJ is rather resource demanding and the
original implementation from SUN required a high end Sparc
processor running a Solaris 10 operating system, though newer

INow at Carnegie Mellon University, Silicon Valley, USA.

versions from Oracle, as well as commercial versions of
RTSJ from other vendors, have reduced the resource demands
considerably [1], [3]. RTSJ is fairly dynamic in nature, leaving
checks of consistent use of scoped memory and real-time
properties to run-time analysis. Thus RTSJ is not suitable for
static verification of hard real-time properties, and in many
cases it is not suitable for small embedded systems. Therefore
Java has so far been absent in the area of robotics on small
embedded platforms used for hard real-time systems requiring
certification of time properties.

In recent years the Java community, through JSR 302,
has made tremendous progress, and an important step has
been taken with the upcoming Safety Critical Java (SCJ)
standard [36] making Java a viable choice for development
of embedded hard real-time systems. The SCJ standard is an
extended subset of RTSJ; it similarly contains high-resolution
clocks and timers, the idea of NoHeapRealTimeThread and (a
simplified version of) the scoped memory model to remove the
need for a garbage collector. In addition, SCJ has a sufficiently
tight thread semantics and a programming model based on
tasks grouped in missions, contributing to facilitating the task
of verifying real-time properties. A mission encapsulates a
specific functionality or phase in the lifetime of the real-time
system as a set of schedulable entities. For instance, a flight-
control system may be composed of take-off, cruising, and
landing, each of which can be assigned a dedicated mission.
A schedulable entity handles a specific functionality and has
release parameters describing the release pattern and temporal
scope in terms of release time, deadline, etc. The release
pattern is either periodic or aperiodic following a classic
control system structure [15].

There are now a number of JVM implementations support-
ing the SCJ programming model including FijiVM [43], The
Hardware-near Virtual Machine (HVM) [59], [32], [38] and
the Java Optimized Processor (JOP) [51]. FijiVM has suffi-
ciently low memory demands and is applicable for embedded
systems. It does, however, require a POSIX-like OS. HVM is
a lean JVM implementation directed towards use in resource-
constrained embedded devices with as low as 256 KB ROM
and 20 KB RAM. It features both iterative interpretation, Java-
to-C compilation, and a hybrid of the two [32]. The HVM
is self-contained and does not rely on an OS. It runs on
popular robotics platforms such as Atmel AVR ATmega2560
microcontroller, Arduino and Lego EV3. The JOP is a JVM
implemented in hardware using an FPGA. Both JOP and the
HVM support the notion of Hardware Objects [33], an object-



oriented abstraction of low-level hardware devices, such as I/O
registers and interrupts, which can be handled directly from
Java space.

Rigorous verification is essential for safety critical em-
bedded hard real-time systems needing to comply with tight
timing constraints, especially for systems needing to comply
with standards such as DO-178C, ISO-26262, IEC-61508 and
EN-50128 (applying to systems operating in safety-critical
domains such as avionics and automotive). Of special inter-
est is the verification of the system being schedulable i.e.
verifying that all real-time tasks, under the conditions of
the employed scheduling policy, finish before their respective
deadlines in all circumstances. Response time analysis [15]
is a traditional approach for concluding on schedulability;
the response times of the real-time tasks are calculated using
Worst Case Execution Time (WCET) and blocking times, and
the system is schedulable if the response times are less than
the task deadlines. Traditionally WCET analysis has been
done by measurement, which provides an unsafe estimation
approach. In recent years, a number of tools for timing analyses
of systems written in Java have emerged; WCA [54] for
WCET analysis on JOP, TetaJ [27] for WCET analysis on
HVM, SARTS [12] for schedulability analysis on JOP, and
TETASARTS [41] for schedulability and other time analyses
on JOP and HVM. All the mentioned tools follow a strategy of
translating SCJ programs into networks of Timed Automata,
and timing analysis is then formulated in terms of an ap-
propriate logic, e.g. Timed Computation Tree Logic (TCTL),
and subjected to model checking using UPPAAL [5]. The
SARTS and TETASARTS tools take the interactions between
tasks into account during schedulability analysis, therefore
systems deemed unschedulable using traditional response time
analysis may be deemed schedulable using model checking
as demonstrated in [12]. TETASARTS allows the programmer
to write the program in a platform independent way, using
the SCJ profile, and then analyse whether it can be scheduled
on the particular platform. Hence, this enables a write once -
run wherever possible development approach. The tool also
facilitates energy savings on processors, such as JOP and
Atmel’s AVR, since TETASARTS allows the clock frequency
of the target hardware to be set prior to the analysis. By
adjusting this parameter, the lowest clock frequency, at which
the system is still schedulable, can be found as demonstrated
in [37].

Both JOP and HVM have been used in prototypical control
systems such as the Minepump control system [27], the
Real-Time Sorting Machine (RTSM) [12] and many student
projects. The JOP has been used in industrial applications
such as the Kippfahrleitung system for the Austrian Railways
controlling up to 15 independent actuators [52].

In our opinion Safety Critical Java is now ready for more
widespread use in robotics. It is supported by several academic
and commercial implementations, and a number a tools can
assist in the development of applications ensuring that they
operate in time predictable manners.

The rest of this paper is organized as follows. In section I
we describe the SCJ programming model. In section II we give
an overview of three execution platforms for SCJ programs. In
section III we describe a number of tools which can be used

for analyzing timing properties of SCJ applications. Finally in
section IV we draw conclusions and elaborate on future work.

I. THE SCJ REAL-TIME PROGRAMMING MODEL

Safety critical applications have different complexity levels.
To cater for this the SCJ programming model is based on
tasks grouped in missions, where a mission encapsulates a
specific functionality or phase in the lifetime of the real-time
system as a set of schedulable entities. The SCJ specification
lets developers tailor the capabilities of the platform to the
needs of the application through three compliance levels. The
first level, Level 0, provides a simple, frame-based cyclic
executive model which is single threaded with a single mission.
Level 1 extends this model with multi-threading via periodic
and aperiodic event handlers, multiple missions, and a fixed-
priority preemptive scheduler (FPS). Level 2 lifts restrictions
on threads and supports nested missions. The development of
SCJ applications at Level 0 is well described in [44]. In the
remainder of this section we will focus on Level 1.

A. Missions

A mission encapsulates a specific functionality or phase
in the lifetime of the real-time system as a set of schedulable
entities. For instance, a flight-control system may be composed
of take-off, cruising, and landing each of which can be
assigned a dedicated mission. A schedulable entity handles
a specific functionality and has release parameters describing
the release pattern and temporal scope e.g. release time and
deadline. The release pattern is either periodic or aperiodic.

Re-initialise current mission

Termination Teardown

Fig. 1: Overview of the mission concept [38].

Select next mission

Initialisation

Current mission

The mission concept is depicted in Figure 1 and contains
five phases;

Setup where the mission objects are allocated. This is done
during start-up of the system and is not considered time-
critical.

Initialisation where all object allocations related to the mis-
sion or to the entire applications are performed.

Execution during which all application logic is executed and
schedulable entities are set for execution according to a
pre-emptive priority scheduler. This phase is time-critical.

Cleanup is entered if the mission terminates and is used for
completing the execution of all schedulable entities as
well as performing cleanup-related functionality. After
this phase, the same mission may be restarted, a new is
selected, or the Teardown phase is entered.

Teardown is the final phase in the lifetime of the application
and comprises deallocation of objects and release of locks
etc. This phase is not time-critical.



A mission sequencer is used for governing the order of the
mission objects and can be customised to the application.

B. Memory Model

SCJ introduces a memory model based on the concept of
scoped memory from the RTSJ, which circumvents the use of
a garbage collected heap to ease verification of SCJ systems.
The SCJ memory model is shown in Figure 2 and introduces
three levels of memories;

Immortal Memory

Mission Memory

Private
) Private Memory
Private Memory
Memory
Private
PEH 2 Memory
PEH 1 PEH 3

Fig. 2: The memory model in SCJ [38].

Private memory which is associated with each real-time
event handler, which can be periodic (PEH) or aperiodic
(APEH). The private memory exists for the entire duration
of the handler. Upon task finish, the memory area is reset.

Mission memory is associated with every mission of the
system and as such manages the memories of all real-time
handlers part of the mission as well as objects that are
shared among the handlers. When the mission completes
execution, the mission memory is reset.

Immortal memory is the memory area that exists for the
lifetime of the system.

Dynamic class loading is outside the scope of the SCJ
specification. Hence, it is not necessary to reason about classes
potentially being loaded over a network which would com-
plicate timing analysis significantly. Furthermore, finalizers
will not be executed and we make the assumption that Java
Bytecode verification of class files has been done prior to the
time-critical phase. The Predictable Java profile [10], being an
alternative Java profile for hard real-time systems development,
does allow the use of finalizers and [11] has demonstrated that
timing analysis is possible. This may be important for systems
written in a mix of Java and C++.

C. An SCJ Application

In this subsection we describe a hard real-time system
implemented in SCJ based on a reduced version of the classical
text-book control system example of a mine pump [16].
The purpose of the mine pump is to monitor a number of
environmental properties in a mine to safely remove excess
water using a water pump. It consists of two environmental
properties being monitored: the water level in the mine and the
methane level. When the water level rises to a predetermined
level, the water pump is started, and when the water level drops
to another predetermined level, the water pump is stopped.

The water pump must not run if the methane levels exceed
safe levels. These functionalities have temporal requirements
stating the reaction times of the system required for safe
operation such as timely stopping the water pump whenever a
critical level of methane is reached.

Listing 1 shows the periodic event handler adhering to the
SCIJ profile.

| PeriodicMethaneDetection
2 methaneDetection =
3 new PeriodicMethaneDetection(
4 new PriorityParameters(METHANE_DETECTION_PRIORITY
)
new PeriodicParameters|(
new RelativeTime(0, 0),
new RelativeTime(PERIODIC_GAS_PERIOD, 0)),
new StorageParameters(

© < o

9 SCOPED_MEMORY_BACKING_STORE_SIZE,
10 NATIVE_STACK_SIZE,

1 JAVA_STACK_SIZE),

12 methaneSensor,

13 waterpumpActuator);

14
15methaneDetection.register();

Listing 1: An SCJ handler for methane level [8].

An SCIJ periodic event handler has a number of param-
eters: since the SCJ profile level 1 uses an FPS scheduler,
evidently a priority must be specified. Furthermore, a release
parameter specifies the start time, the relative initial time
for the first release of the handler, and a further relative
time gives the period. An instance of StorageParameters
expresses memory-related constraints for the handler. The
objects methaneSensor and waterpumpActuator are
interfaces to a sensor and an actuator. The sensor observes
the current methane level and the actuator starts and stops the
water pump. When a handler instance has been created, it is
set for being scheduled when the register () method is
invoked.

1 public void handleEvent() {
2 waterpumpActuator.emergencyStop(
3 methaneSensor.isCriticalMethaneLevelReached()

40
s}

Listing 2: Detecting the methane level [8].

Listing 2 shows the event handling method of the periodic
event handler PeriodicMethaneDetection.

The actual prototype consists of two parts: the physical
plant and the control software. Lego is used to construct
the physical plant together with Lego NXT sensors and ac-
tuators connected to a JOP board or a board with an AVR
ATmega2560. The control software comprises two periodic
and two sporadic real-time tasks written in Java. The periodic
tasks are responsible for monitoring the methane and water
levels. The sporadic tasks are released whenever either the
low or the high level has been reached. More details can be
found in [8].



II. REAL-TIME EXECUTION PLATFORMS

The SCJ programming model provides a structuring frame-
work for applications with hard-real-time requirements. Next
such applications need an execution platform. For applications
written in C this is usually a hardware processor. However,
Java applications are typically translated into Java Bytecodes
which are then either interpreted or further translated into
native code before execution, also called ahead-of-time (AOT)
execution or during, also called just-in-time (JIT) execution.
This approach entails a time predictable implementation of
each Java Bytecode. In this section we will describe the
Java Optimized Processor (JOP) [51], the FijiVM ahead-of-
time compiler for Java Bytecode programs [43] and The
Hardware near Virtual Machine (HVM) [59], [32]. There are
commercial implementations of the JVM supporting the SCJ
programming model. These include the FijiVM, JamaicaVM
[1] and PicoPERC [42].

A. Java Optimized Processor

The simplest way to ensure a time predictable execution of
each Jave Bytecode is to implement the JVM in hardware. This
is the approach taken by the JOP [51]. The JOP is implemented
on an FPGA (Altera Cyclone EP1C6Q240 or EP1C12Q240).
The JOP has its own micro code instruction set with most
Java Bytecodes having a one-to-one mapping. However, some
Java Bytecodes are more complex and are implemented as a
sequences of JOP micro codes, some are even implemented in
Java. However, the end result is that for each Java Bytecode
its execution can be bound and its WCET be determined.

Important for WCET analysis of programs executing on
the JOP is that the JOP does not feature data caches, but it
features a method cash and its use must be taken into account
for tight bounds of WCET.

The JOP is usually hosted on a board which comes in
two configurations; The Baseio, which provides a complete
Java Processor system with Internet connection for JOP with
network connection via a CS8900 Ethernet controller with RJ
45 connector. Java sources for CS8900 driver and a simple
TCP/IP stack are available for JOP. The Simpexp, which is a
cheap 10 extension to get started with JOP, contains a linear
3.3V regulator and serial connector. The JOP can interface to
sensors and motors of the LEGO Mindstorms series and thus
the JOP can substitute the LEGO RCX.

B. FijivM

FijiVM is an ahead-of-time compiler for Java Bytecode
programs [43]. FijiVM has sufficiently low memory demands
and is applicable for embedded systems. The FijiVM parses
Bytecodes in the Java 1.6 or earlier format and generates ANSI
C code. The generated C code is then automatically passed to a
C compiler, typically GCC, for the target platform. The FijiVM
compiler does extensive high-level optimizations prior to gen-
erating C, as the C compiler cannot perform some high-level
optimizations as effectively on C code generated from Java as
a Java-optimized compiler could. Such optimizations include
control flow optimizations, such as Intra-procedural and whole-
program type propagation; Devirtualization, turning virtual
calls into direct calls and Virtualization, turning interface calls
into virtual calls; exception optimizations; Null pointer check

elimination; Array bounds check removal; locking and memory
optimizations; Inlining; Copy propagation; Constant folding
and Tail duplication.

The FijiVM generates a stand-alone executable which,
however, is dependent on libraries that are standard on POSIX-
like OSs, such as Linux (libc, libpthread, and libm). The
FijiVM has support for embedded processors such as ARM
and ERC32 or more powerful processors such as PowerPC
and x86/x86_64.

C. The Hardware near Virtual Machine

The HVM [59], [32] is a lean JVM implementation in-
tended for use in resource-constrained embedded devices with
as low as 256 KB ROM and 20 KB RAM. It features both
iterative interpretation, Java-to-C compilation (AOT), and a
hybrid of the two.

The HVM employs JVM specialisation; a JVM is produced
specifically for hosting the Java Bytecode program of a given
application. This is done using the ICECAP-TOOLS Eclipse-
plugin, which analyzes the Java Bytecode program and pro-
duces an executable for the target platform. The analyzes and
transformations can be extended, and it incorporates a number
of static analyzes for improving performance of the JVM and
for reducing its size. This includes receiver-type analysis for
potentially devirtualising method calls and intelligent class
linking which computes a conservative set of classes and
methods that are used in the application. Only this set will be
embedded in the final HVM executable. It also conservatively
estimates the set of Java Bytecodes that will actually be used.
Those that are not, are omitted from the final executable.

The HVM is self-contained and does not rely on the
presence of an OS or a C standard library. The overall structure
of an SCJ application running on top of the HVM using the
accompanying SCJ implementation (HVM-SCJ [59]) as well
as the ICECAP-TOOLS SDK is shown in Figure 3. Porting
the HVM to new target platforms (including SCJ support)
is a matter of implementing the HW Interface and the VM
Interface.

The HVM implements SCJ level O, 1 and 2 [62]. It has
support for multicore! and Hardware Objects [33], an object-
oriented abstraction of low-level hardware devices such as
interrupts and I/O registers which can be handled from Java
space. A related feature is native variables, which allow for
access to certain variables in the JVM from Java space.

The HVM has been ported to Atmel AVR ATmega2560
microcontroller, Arduino and Lego EV3.

III. TIMING ANALYSIS TOOLS

Rigorous verification is essential for safety critical em-
bedded hard real-time systems needing to comply with tight
timing constraints. Of special interest, is the verification of the
system being schedulable, i.e. verifying that all real-time tasks
under the conditions of the employed scheduling policy, finish
before their respective deadlines in all circumstances. The
Worst and Best Case Execution Time (WCET and BCET) often
play an integral role in this relation — especially the former,

Thttps://github.com/zs673/Multiprocessor-icecap-SCJ-RTE



SCJ Application

Icecap SDK HVM-SCJ
VM Interface
—
HW Interface HVM
1
_______ Y

______________________________

Fig. 3: Constituents of an SCJ application on HVM [38].

which has applications in traditional methods for verification
of schedulability such as response time analysis [15].

For systems written in C or rather a suitable subset of
C, there are many such analysis tools, both academic and
commercial [4], [34], [20], [45], [17], [23], [29], [47], [26].
These tools vary in the platforms they support, in the way
they analyze programs and which restrictions they place on
the analyzed programs, but as stated in [61] “To avoid having
to solve the halting problem, all programs under analysis must
be known to terminate. Loops need bounded iteration counts
and recursion needs bounded depth”. The amount of required
annotations is reduced by analysis, such as automatic loop-
bound and array-call recognition.

Analyzing timing properties for Java programs is challeng-
ing primarily due to the fact that Java is usually translated to
Java Bytecode, which is then interpreted by a JVM or further
translated into native code, sometimes via a compilation to C.
This level of indirection complicates formal analysis as both
program and JVM have to be taken into account for a given
hardware platform; some of this complexity can, however, be
reduced by a hardware implementation of the JVM such as
JOP.

Recently a number of analysis tools have been de-
veloped including WCA [54], SARTS [12], Teta] [27],
TETASARTS [41] and SymRT [40]. In this section we give
an overview of three tools; WCA, TETASARTS and SymRT.

A. WCA

WCET Analyzer (WCA) [55], [30] is a static code analysis
tool for conducting WCET analysis of Java Bytecode executed
on the JOP. As described earlier the JOP is a hardware imple-
mentation of the JVM which facilitates known execution times
of each Java Bytecode. The relative simplicity and predictabil-
ity of the JOP architecture and, in particular, the use of a
method cache instead of more general cache disciplines, makes
it relatively easy to perform precise WCET analysis. WCA
employs two distinct strategies for WCET analysis; one is
the Implicit Path Enumeration Technique (IPET) [35] and the
other models the real-time application using timed automata
in the verification tool UPPAAL [5]. The rationale behind
supporting two different strategies is that the two represent
a trade off between estimation time and precision. In WCA,
the IPET strategy yields WCET estimates relatively fast, while
the model-based strategy results in more precise estimates at
the cost of a relatively long verification time. The precise

WCET estimate is a consequence of the model representing the
detailed behaviour of the system, especially the cache model.
Common to both WCET estimation strategies is the Control-
Flow Graph (CFG) of the application which is constructed by
consulting the Java class files using the Byte Code Engineering
Library. For the IPET strategy, WCA transforms the CFG
into an integer linear programming problem which is solved
using the linear programming solver lp_solve [7] resulting in
a WCET estimate. In the modelbased strategy, the CFG is
directly transformed into timed automata models for UPPAAL.
Currently, WCET estimates using the model-based strategy are
computed by making an initial guess of WCET, which can be
based on the estimate derived using IPET. Afterwards, UPPAAL
verifies whether the timed automata are verifiable within
the guessed time and, afterwards, the estimate is gradually
refined using a binary search tactic. For unbounded loops,
WCA introduces comment-based annotations of source code
which make explicit the iteration count of the particular loop.
Alternatively, WCA provides the option of using data-flow
analysis for extracting these. Obviously not all bounds can be
extracted as part of static code analysis and in such cases the
programmer needs to insert annotations. Furthermore, WCA
performs receiver type analysis to increase the precision of
the WCETs in case of dynamic method dispatch. Besides
printing the resulting WCET estimate to standard output, WCA
conveniently generates a detailed HTML report containing a
visual representation of the CFG and timings of individual
methods including their cache misses.

B. TETASARTS

TETASARTS started as an amalgamation of the
SARTS [12] and Tetal [27] tools and is today an open-
source collection of timing analysis tools which operate on
a timing model amenable to model checking using UPPAAL.
Figure 4 shows the major components of the toolchain and

their interactions.

JVM Src L
VM Timing Model
__— (BCET and WCET)
VM Executable (AVR/'
ARM/...)

"

TetaSARTSym

Analysis Result

TetaSARTSanalyser

»!

/CRT
SC) Application

Fig. 4: Overview of the TETASARTS toolchain [38].

JVM Timing Model
(Network of Timed
Automata)

Reasoning about the timeliness of the system or any other
real-time aspect, requires both the real-time application as
well as the underlying execution environment to be modeled.
Generating an appropriate model of the latter is the purpose
of the TETASARTSJVM2 tool.

TETASARTSjym generates a timing model as a Network
of Timed Automata (NTA), the modeling formalism of the
UPPAAL model checker. A Timed Automaton (TA) is a finite
state machine extended with real-valued clocks. An NTA is
the parallel composition of a number of TAs sharing clocks
and actions (for details of the semantics, see [6]).

2TETASARTSjvMm, HVM7p, and generated models are available on the
project website: http://people.cs.aau.dk/~luckow/hvmtp/



TETASART Sy builds a TA that captures the control-flow
for each of the supported Java Bytecodes. The tool processes
the JVM executable such that compiler optimisations, transfor-
mations etc. are accounted for when reconstructing the control-
flow. TETASARTS;ym conducts loop identification analysis
and expects loop bounds to either be provided interactively
at construction time or as comment-style annotations in the
source code of the JVM. The tool allows specifying code re-
gions constituting Java Bytecode implementations. The regions
are created by embracing the Java Bytecode implementations
with macros: BEGIN_JBC(X) and END_JBC(X) mark the
beginning and end, respectively, of Java Bytecode X. The
macros generate instrumentation code in the binary, which is
used by TETASARTS;ym for reconstructing the control-flow.
Listing 3 shows the implementation of the i2l Java Bytecode
and the region specification.

2#if defined (INSTRUMENT) etch!
3  BEGIN_JBC(I2L_OP);
4 #endif

5 int32 1lsb = #(——sp);

asm_inst = asm_Idd
and_34

| case I2L_OPCODE: { Cﬁddsa
fé

fetch!

asm_inst = asm_and

6 if(lsb < 0) {
brge_35
7 *sp++ = —1;
8} else {
— . fetch! fetch

9 xsp++ = 0x0; asm_inst = asm_brge asm_inst = asm_brge
10 } movw_91 movw_36
11 *sp++ = lsb;

fetch! fetch!
12 method_code++; asm_inst=asm_movw  asm_inst = asm_mowvw
B #if defined (INSTRUMENT) cubi 02 cubi_37
14 END_JBC(I2L_OP);

. fetch! fetch!
15 #endif asm_inst = asm_subi asm_inst = asm_subi
16 } sbci_93 sbei_38

Listing 3: i21 [38].

Figure 5 shows an excerpt of the corresponding TA gen-
erated by TETASARTS;yMm. As an example, note how the
location labelled brge_35 branches to movw_91 and movw_36.
This captures the if-statement in line 6 of Listing 3. Each
transition simulates the timing behavior of executing the in-
struction assigned to the UPPAAL variable asm_inst. In general,
this explicit modeling of system behavior does not scale to
large systems due to the inherent problem of state space
explosion. However, it is important to note that in our case, the
behavior of each Java Bytecode in isolation is sufficiently small
to allow model checking to be feasible. The Java Bytecode
implementations we are analyzing, range from just a few lines
of C code in the simplest case, to a few hundred lines of C code
producing ~200 and ~9000 machine instructions, respectively.

We denote the composition of the generated TAs, which
yield the NTA, as the JVM NTA. The timing behavior depends
on the hardware used; in this example the AVR ATmega2560
microcontroller whose behavior is captured by the TAs shown
in Figure 6 collectively referred to as the HW NTA. In addition
TETASARTS; vy supports the ARM7 and ARM9 models from
METAMOC [23] and can be extended to support different
hardware by providing TAs modeling the hardware. The fetch
channel is used for hand-shake synchronisation between the
JVM NTA and the pipeline fetch stage in Figure 6a; asm_inst
communicates the instruction to be simulated in the HW NTA.
Similarly, the execute channel establishes the communication
between the fetch stage TA and the execute stage TA in
Figure 6b. In both TAs, x is a clock variable simulating the

Fig. 5: TA excerpt of i2] [38].

x |
n
ol|x

fetched O

execute!
move(THIS,NEXT)
fetch
x<=1 idle

(@) execute?

‘  set wait(), x=0 ‘
execute

X<=worst_wait
x>=best_wait M.

clear(THIS), x=0 </

fetch?
x=0, ' idle
instrtype[THIS] = asm_inst initialise() init_cache(asm_rjmp)

(a) Pipeline fetch stage. (b) Pipeline execute stage.

Fig. 6: Hardware TA models from METAMOC [23].

instruction processing time in the respective pipeline stage. In
the execute stage TA, worst_wait and best_wait are set accord-
ing to the worst and best case clock cycle execution times of
the simulated instruction. Note the call init_cache(asm_rjmp);
it initializes the pipeline with the temporal behavior of the rjmp
instruction. This is necessary to ensure a safe timing model,
since the pipeline will be filled with this instruction prior to
executing the first instruction of any of the Java Bytecodes.

Synthesizing the JVM NTA and the HW NTA yields a
complete JVM Timing Model (see Figure 4) that simulates the
timing behavior of the JVM. The JVM Timing Model can
subsequently be used directly by further synthesising it with a
model of an SCJ application on which various timing related
analyses can be applied such as schedulability analysis and
WCRT analysis using the TETASARTS snaLyser tool (see [37],
[41], [39] for more details).

The JVM Timing Model can also be used for representing
the timing behavior of the JVM more abstractly using the
TETASARTSts tool (see Figure 4). For all Java Bytecode TAs,
the tool determines the WCET and BCET using the sup- and
inf-query extensions of the UPPAAL model checker. Sup- and
inf-queries perform a state space exploration, and outputs the
maximum and minimum values, respectively, of the specified
clock-variables.

TETASARTS takes the interactions between tasks into
account during schedulability analysis, thus systems deemed
unschedulable using traditional response time analysis may be
deemed schedulable using model checking as demonstrated
in [12]. TETASARTS also allows the clock frequency of the
target hardware to be set prior to the analysis, thus making it
possible to determine the lowest clock frequency at which the
system is still schedulable as demonstrated in [37].

C. SymRT

SymRT [40] is a tool based on a combination of symbolic
execution [31], [19] and real-time model checking that gener-
ates a precise control-flow model from the symbolic execution
trees obtained with a symbolic execution of the program. Each
tree characterizes the set of feasible execution paths (up to
some bound) of the analyzed task and yields a precise timing
model.

Symbolic execution is used for generating a safe and tight
timing model of the analyzed system capturing the feasible
execution paths. This timing model is combined with execution
environment models capturing the timing behavior of the
target host platform including the JVM and complex hardware



features such as caching. The complete timing model is a NTA
and directly facilitates safe estimates of Worst (and Best) Case
Execution Time to be determined using the UPPAAL model
checker. Furthermore, the integration of these techniques into
the TETASARTS tool facilitates reasoning about additional
timing properties such as the schedulability of periodically
and sporadically released Java real-time tasks (under specific
scheduling policies), Worst Case Response Time, and more.

The program model is built modularly. The timing behavior
of the execution environment is obtained from environment
models capturing the timing behavior of the JVM and hardware
of the target platform. This technique generates the complete
timing model, based on a configuration, as an NTA amenable
for model checking using the UPPAAL [5] model checker.
The NTA model can be used for estimating WCET and
BCET. Furthermore, it generalizes to verification of properties
expressible in Timed Computation Tree Logic (TCTL). In
contrast to previous tools [27], [41], which provide limited
feedback, SymRT can also generate witness traces that expose
the reported behaviour, useful for debugging and program
understanding.

Both symbolic execution and model checking have issues
with scalability due to the large number of paths respectively
states to explore. SymRT addresses this by using a “per task”
symbolic execution, leveraging the SCJ programming model,
that groups code into missions consisting of relatively short
tasks. Furthermore, when using timing models of the target
execution environment, the generated TA of the program is at
basic block level, which significantly reduces the state space
size.

Clearly there are systems for which analysis is intractable.
This is for instance the case when attempting to do a full
schedulability analysis for the Real-Time Sorting Machine
(RTSM) [12] on HVM on the AVR processor. This application
consists of 1 kloc. However, it is not the number of lines
of code that limits the analysis, but its complexity, especially
the number of branch points in each task and the number of
tasks in the application, as the size of the UPPAAL model
grows exponentially with the number of components in the
NTA. However, since schedulability is viewed as a reachability
problem, it may be possible to translate it into the subset of the
UPPAAL modeling language supported by the opaal+LTSmin
system [24]. In [22] opaal+LTSmin demonstrates a speedup of
40 on a 48 core machine compared to UPPAAL. Future work
will investigate this direction.

D. Comparison of tools

This section summarizes a comparison of the WCET (and
BCET) estimates obtained from WCA, TETASARTS and
SYMRT, reported in more details in [40].The comparison
uses as examples the Java implementations (obtained from
the JOP distribution®) of a subset of the algorithms from
the Milardalen WCET benchmark suite [28]: Bubble Sort,
Quick Sort, Insertion Sort and Binary Search. For the sorting
algorithms, the array is initialized with symbolic values. For
Binary Search, the search key is symbolic. Note that there
was no need to provide loop bound annotations in any of

the examples nor did they reach the default search depth
(corresponding to 100 branches) during analysis.

For the analysis two configurations of the execution envi-
ronment was used; (1) JOP and (2) HVM* [59] running on the
AVR ATmega2560. The same configuration of the execution
environment is used across the tools e.g. WCA and SYMRT
have been configured with read and write wait cycles set to
1 and 2 (and cache configuration is the same).The analysis
also compared measured BCET and WCET obtained by using
inputs yielding the best and worst case behavior (e.g. for
Bubble Sort a sorted and unsorted list were used). Furthermore,
the JOP simulator was used to to read the cycle count before
the first instruction is executed of the target method and
after the return instruction. The measurements for HVM+AVR
have been obtained in a similar way by using the debugging
facilities of Atmel Studio 6. For this set of experiments, a
laptop with an Intel Core i7-2620M CPU @ 2.70GHz with
8 GB of RAM was used. The peak memory consumption for
symbolic execution is 500-700 MB for all examples. UPPAAL
peaks at 50-200 MB during model checking. Table I shows
the results for the comparison on JOP.

First note that all estimates are safe i.e. (BCET ;s <
BCET,, and WCET .+ > WCET,) and that the precision
of SYMRT is better (and in one case equally as good) as the
other tools. The major contributor to the pessimistic results
of TETASARTS and WCA are that they over-approximate
the iterations of nested loops with interdependencies. The
analysis time using SYMRT is however longer, which is due
to symbolic execution. Also note that for e.g. Quick Sort, it
is relatively difficult to exercise and measure the path yielding
the worst case behavior since it depends on the pivot element
selection.

Table II shows the comparison when using the HVM and
an AVR ATmega2560.

Again all estimates produced by SYMRT are safe and more
precise than TETASARTS. For this first set of experiments
(including the results obtained for JOP), the analysis time
is largely attributed symbolic execution. In all cases, model
checking using UPPAAL takes less than a second.

We compare the schedulability analysis of SYMRT with
TETASARTS using the Minepump control system [15], [27],
the Real-Time Sorting Machine (RTSM) [12] and a variant
of MDS5SCJ [41]. For this set of experiments we used an
application server with an Intel Xeon X5670 @ 2.93GHz CPU
and 32 GB of RAM. The results are shown in Table III. We
also conducted the analysis on a version of the Lift real-time
system from Jembench [53] with 18 tasks. TETASARTS has
not been able to construct the models for this. The 7D subscript
denotes that a Timing Scheme with fixed execution times for
all the Java Bytecodes has been used instead of modeling their
behavior as an NTA.

In all cases, the systems have been deemed schedulable,
and the results show that the analysis times and memory
consumptions are lower when using SYMRT. We also tried e.g.
RTSM with HVM+AVR, but the complexity of the resulting
models regardless of the tool used, is too big, which can

3 Available for download at http://www.jopdesign.com/

4Available for download at http://icelab.dk/



SYMRT (JPF-SYMBC-RT)| TETASARTS WCA Measured
System BCET WCET An. Time |WCET An. Time | WCET An. Time |BCET,, WCET,,

[cycles] [cycles] [seconds] [cycles]  [seconds] | [cycles]  [seconds] [cycles] [cycles]
Binary Search| 136 818 1 927 1 818 1 138 722
Bubble Sort 653 1,253 51 1,770 2 1,553 1 653 1,253
Quick Sort 1,425 2,638 510 18,749 5,375 20,275 1 1,425 1,895
Insertion Sort | 774 2,586 21 4,600 1 4,296 1 774 2,586

TABLE I: Comparison of SYMRT, TETASARTS, and WCA [40].

SYMRT (JPF-SYMBC-RT) TETASARTS Measured
System BCET WCET An.Time | WCET An. Time | BCET WCET
[cycles] [cycles] [seconds] [cycles] [seconds] [cycles] [cycles]
Binary Search | 3,991 65,046 2 70,153 2 4,140 23,262
Bubble Sort 19,514 93,380 50 287,526 31 19,754 37,388
Quick Sort 42,651 151,784 589 133,134 228 43,251 50,437
Insertion Sort | 20,351 182,099 21 244,680 4 22,625 70,028

TABLE II: Comparison of SYMRT and TETASARTS for systems running on the HVM and AVR [40].

Svstem Exec. En Analysis time Memory

4 Xee. BV SYMRT TETASARTS  SYMRT TETASARTS
Minepump HVM+AVR 14h 12m 15h 25m 16274 MB 17933 MB
Minepump HVM+AVR~Tp < 1s 2s 8 MB 11 MB
Minepump JOP <1s 1s 5 MB 11 MB
RTSM HVM+AVRTp <1s Im 2s 7 MB 17 MB
RTSM Jop < 1s Ss 6 MB 15 MB
MD5SC]  HVM+AVR~Tp < 1s 8s 7 MB 17 MB
MDS5SCJ  JOP < 1s Im 23s 5 MB 47 MB
Lift HVM+AVRrp  33m 6s — 5897 MB
Lift JOP 15m 43s 6037 MB

TABLE III: Comparison of TETASARTS and SYMRT [40].

be attributed the JVM NTA, which largely dominates the
complexity. In this case, UPPAAL runs out of memory.

IV. CONCLUSION

In this paper we have presented the Safety Critical Java
programming model, some of its implementations in the form
of the JOP, FijiVM and HVM and some of the tools, es-
pecially WCA, TetaSARTS tool suite and SymRT, allowing
programmers to analyze their SCJ applications for correct time
behaviour. Furthermore, we have argued the suitability of SCJ
for use in robotics applications with hard-real-time constraints.

Small, but realistic SCJ applications, such as the Minepump
control system, the Real-Time Sorting Machine (RTSM) and a
variant of MDS5SCJ, as well as a number of applications from
the Milardalen WCET Benchmarks, have been implemented
and analyzed using the above mentioned tools. A number of
student projects have used either the JOP or the HVM on either
Arduino or Lego EV3 to learn about robotics programming
using robots build in Lego Mindstorm. The JOP has been used
in industrial applications such as the Kippfahrleitung system
for the Austrian Railways controlling up to 15 independent
motors [52]. Although not written SCJ, larger systems with
real-time constraints have been developed in Java. [2] presents

the first use of Real-time Java in avionics in the context of
control software for a ScanEagle Unmanned Aerial Vehicle,
and [56] presents the Use of PERC Pico in the AIDA Avionics
Platform. Our own work include the performance analysis of
different components of a NASA tactical layer solution for
planes, T-TSAFE, currently focusing on the conflict detection
and conflict resolution algorithms.

Clearly SCIJ is not the solution for all robotics applications.
The programming model of tasks and missions, and especially
the scoped memory model, is rather restrictive. All the men-
tioned JVM implementations have real-time garbage collection
implementations available, and it would thus be possible to
dispense with the scoped memory model. To the best of our
knowledge, at present, none of these garbage collectors have
been analyzed for time predictability and thus cannot be used
in systems needing to comply with standards such as DO-
178C, 1SO-26262, IEC-61508 and EN-50128. However, we
expect this to be just a matter of time and hard work.

Many robotics systems will have components that are not
time critical. Currently SCJ does not cater well for such mixed
criticality systems. RTSJ caters for such mixed criticality
systems, however, at the expense of analyzability. We envi-
sion that recent developments in compositional schedulability
analysis [14] could be integrated with the SCJ programming
model, basically allowing different missions to have different
scheduling policies and using the SCJ Level 2 notion of
nested missions to implement hierarchies of components with
different criticality levels. This would allow components with
no real-time requirements to execute in their own missions as
long as there is time budget for the time critical components
to execute their tasks. The HVM facilitates a tight integration
with (legacy) code in C, i.e. handlers in Java can directly be
called from handlers in C and visa versa, clearly at the expense
of more complex analysis, however, some some systems it is
not possible to port all parts of the code to Java. We envision
that the techniques of I/O automatas [25] used in the ECDAR
tool, analysis of C code using METAMOC [23] and the notion
of schedulability abstraction [9] could be combined to provide



a framework for analysis of such mixed applications.

Many advanced robotic systems are programmed using
rule-based systems. Another, direction for future work, would
be to cater for such robotics systems by implementing a time
predictable rule match algorithm in SCJ, e.g. implementing
a variant of the rete-algorithm [18] used in some advanced
robotics applications.
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