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Abstract:

This report describes the implementa-
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systems. SARTS translates hard real-
time systems, implemented in Java, to
an abstract time preserving model for
the modeling tool Uppaal.
The system being analyzed must be
implemented in SCJ2, a safety criti-
cal profile for Java developed in this
project, based on SCJ. The target hard-
ware is the time predictable Java pro-
cessor JOP, developed specifically for
hard real-time systems.
Several experiments have been con-
ducted to illustrate the accuracy of
SARTS compared to existing tools and
techniques. It is shown that a model-
based approach can result in a more ac-
curate analysis, than possible with tra-
ditional approaches.
SARTS has successfully been used to
verify the schedulability of a real-time
sorting machine consisting of two peri-
odic and two sporadic tasks. Future im-
provements and research directions for
SARTS are presented.
This document, source code, and other
relevant material can be found on the
enclosed CD. The content of the CD
and any updates can also be found at
http://sarts.boegholm.dk/.
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Chapter 1

Introduction

Embedded systems are in widespread use in everyday devices and critical
systems. Most embedded systems have real-time requirements, i.e. they
must respond to events timely, to guarantee a certain degree of quality.
Real-time systems are divided into soft and hard systems, where missed
deadlines in soft systems is undesirable, it must not happen in hard systems.
When hard real-time systems are used as traction control in cars or as a part
of a nuclear power plant, missed deadlines can cause loss of lives. Missed
deadlines can also cause a significant financial loss, e.g. in banking systems.

The dependability of embedded systems is therefore often very impor-
tant, and it is desirable to verify that certain properties hold, e.g. that the
traction control always reacts within a given time.

The traditional approach to verifying that no deadline misses occur, is
to use the Worst Case Execution Time (WCET) of the tasks, in different
analyses, such as utilization test. The nature of these analyses is to assume
everything can go wrong, and make sure the system has enough computa-
tional power to cope with this situation. This approach often results in a
very pessimistic analysis, since the worst case assumed might never occur.
Due to this pessimistic nature, a new approach is desirable.

Several modeling tools exist, where the general idea is to model the
system, and verify that certain properties hold. Some tools also allow the
developer to check whether deadlines are missed, based on a scheduling
strategy and a WCET for each task; other tools must then be used to
estimate this WCET. A tight correspondence between the model used in
these tools and the actual implementation is required, in order to rely on
the guarantees given.

This project focuses on improving the schedulability analysis of real-time
systems. The approach developed in this project, is to translate an existing
implementation of a real-time system to a model for a model checker, and
using the model checker to verify that deadline misses never occur.
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CHAPTER 1. INTRODUCTION

The purpose of this thesis is to:

Develop a model-based schedulability analysis to achieve a more
accurate result than possible with traditional approaches.

This schedulability analysis must consider blocking, interference, context
switch etc. This improves the accuracy of the analysis, while ensuring a
tight correspondence between the model and the actual implementation.

This project targets Java as the language for developing hard real-time
systems. Some of the arguments for using Java is the high level of abstrac-
tion. Another advantage of Java, is its popularity; a lot of new programmers
learn Java as their first, and sometimes only, programming language. Thus
it is desirable to minimize the transition from developing standard applica-
tions to developing real-time systems.

Processors executing Java bytecode have been developed [2, 31]. Im-
plementing the Java Virtual Machine (JVM) directly in hardware, should
increase the performance of Java [30], making it comparable to executing C
programs. However, the most important feature is predictability of execu-
tion time. These processors focus on a predictable WCET, rather than a
fast average execution time.

The contribution of this project is a tool called Schedulability Analyzer
for Real-Time Systems (SARTS). SARTS performs a fully automatic trans-
lation of real-time Java applications into Uppaal models, on which schedu-
lability analysis is performed. This analysis targets the time predictable
Java Optimized Processor (JOP). Some problems exist with such an analy-
sis, but we believe these can be solved with further research.

The remainder of this report, is structured as follows:
Part I provides an introduction to real-time systems, including schedula-

bility analysis theory. A proposal for a hard real-time Java profile, SCJ2, is
presented and implemented for JOP. Finally a case study, implemented in
SCJ2, has been introduced. This case study is used as an example through-
out this report.

Part II describes the implementation of SARTS. Initially relevant tech-
nologies are presented. The design of SARTS is described followed by the
actual implementation. Finally optimizations to this implementation are
presented.

Part III describes the results and future directions of SARTS. Several
experiments have been conducted, illustrating the accuracy and scalability
of SARTS. Further improvements, which have not been implemented, are
also discussed. Finally this project is concluded upon, followed by future
research areas.

3



Part I

Real-Time Systems
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Chapter 2

Real-Time Systems

A real-time system is a system which must respond timely to events. “The
correctness depends not only on the logical result of the computations, but
also on the time at which those results are produced.” [41]. This means
that predictability in execution time is more important than performance in
execution time, when developing real-time systems.

This chapter provides general terminology regarding real-time systems
and a brief introduction to real-time concepts, which are used in the rest
of this report. This is to give the reader a short introduction to real-time
systems, and to ensure a common notion of terminology. For more details
regarding real-time systems in general, and a more thorough explanation of
the different concepts introduced in this chapter, refer to [7]. Furthermore
a development process is proposed for real-time systems.

A real-time system contains a set of tasks, which have some sort of timing
constraints. To describe these tasks the notation in Table 2.1 is used.

Notation Description
B Worst-case blocking time of the task
C Worst-case execution time (WCET) of the task
D Deadline of the task
I The interference time of the task
J Release jitter of the task
N Number of tasks in the system
O Offset of the task
P Priority assigned to the task
R Worst-case response time of the task
T Minimum time between task releases (period)
U The utilization of each task (equal to C/T)
a - z The name of a task

Table 2.1: Standard notation of real-time concepts [7, p. 467]

6



CHAPTER 2. REAL-TIME SYSTEMS

The focus in this project is on hard real-time systems, where deadline
misses may result in a critical failure, and must be avoided; hard real-time
systems are used to monitor nuclear power-plants, airplanes, and other crit-
ical applications. Critical failures may result in loss of lives, financial loss,
or cause environmental damage. Real-time systems may also be soft, firm
or a mixture of the three [7], however, these are not discussed further. The
remainder of this report focuses on hard real-time systems and real-time
system refers to hard real-time system, unless otherwise noted.

2.1 Types of Tasks

In order to specify timing constraints in real-time systems, different types of
tasks are introduced. In general a task can be either periodic or aperiodic.
Each tasks may have a static priority, P , or it can be assigned dynamically
at runtime, depending on the scheduling strategy. This is discussed further
in Chapter 3.

A periodic task is released with a fixed interval, known as its period, T .
It has a deadline, D, which must be less than or equal to the period, D ≤ T .
A periodic task might have an offset, O, which represents an offset for when
the periodic task should be released after the initialization of the system.

An aperiodic task is not released with a fixed interval, but can be released
at any time. This is not suitable in a hard real-time system, because it
is not possible to guarantee that the system is schedulable, e.g. if it is
released more often than its WCET. A specialization, called a sporadic task,
is introduced, which includes a minimum inter-arrival time, denoted by T .
It deviates from the period of a periodic task, by not necessarily being
released with a T interval, it only guarantees that it will not happen more
often. Aperiodic and sporadic tasks are released by events, either software
or hardware generated events. Aperiodic tasks are not discussed further,
and only sporadic tasks are used in the remainder of this report. Sporadic
tasks also have a deadline similar to periodic tasks. A sporadic task has no
offset.

The WCET, C, of a task must be calculated based on the actual imple-
mentation of the task and the executing hardware. The WCET must always
be less than or equal to the deadline, C ≤ D.

In general D, T , and O must be independent of the actual implementa-
tion, and specified in the requirements for each task. P is dependent on
the scheduling strategy. The remainder of the notations in Table 2.1 are
dependent on the actual implementation of the system, and the underlying
hardware.

7



2.2. EXECUTION TIME

2.2 Execution Time

By definition deadlines must not be missed. To guarantee this property, pre-
dictability of execution is necessary. In order to achieve this, the underlying
hardware must be predictable. JOP is a Java processor targeting real-time
systems, with focus on predictable execution. Standard processors focus on
optimizing the average case, where the worst case is more important in a
real-time environment. JOP is described further in Chapter 5.

As mentioned, the average execution time is not the main factor when
optimizing an application. Since the system is allocated enough execution
time to execute its worst case execution path under all circumstances, any-
thing using less time than that, makes the processor idle for the rest of the
allocated time. This makes it important to minimize the WCET.

As an example, consider the choice of sorting algorithm. Many systems
use quicksort as sorting algorithm because of its good average execution
time, which is O(n log n); at worst case quicksort runs in O(n2) [11]. This
makes quicksort a bad choice in a real-time system because of the bad worst
case. An algorithm such as heapsort is a more suitable choice with a WCET
of O(n log n) [11].

When calculating the WCET of a task, the execution time of each byte-
code must be known. If it is a linear task, it is trivial to calculate the WCET
if the execution time of each bytecode is known, i.e. the WCET of each byte-
code is added. However, it is no longer trivial when branches, loops, method
invocation etc. are introduced, i.e. determining the maximum amount of
iterations in a loop is non trivial. A simple loop is shown in Listing 2.1,
where the loop bound is ten, provided that i is not altered inside the loop.
The WCET of such a loop is simply the loop body multiplied by ten.

1 for (int i = 0; i < 10; i++)
2 ...

Listing 2.1: A simple for loop

However, the loop bound of the for loop shown in Listing 2.2 may change
at runtime, depending on the size of the array.

1 for (int i = 0; i < array.length; i++)
2 ...

Listing 2.2: A non trivial for loop

To compensate for this, most WCET analyzing tools force the program-
mer to annotate loop bounds [14, 17, 33]. This is also the approach in this
project, because automatic loop bound annotation is still a research topic
e.g. [17] where Java Modeling Language (JML) is used to specify application
independent annotations used to derive provably correct loop bounds.

However, knowing the WCET of each task is not enough to guaran-
tee that deadlines are not missed, for this, a schedulability analysis must
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be performed. Given a set of periodic and sporadic tasks, their WCET,
and a scheduling strategy, a schedulability analysis can determine whether
it is possible to schedule these tasks, such that deadline misses never oc-
cur. If the worst case execution path is schedulable, then all other paths
are schedulable as well, since they by definition have a shorter execution
time. Blocking and interference complicates the schedulability analysis even
further. Schedulability analysis is described in further details in Chapter 3.

2.3 Development Process

In [6], we proposed a development process, with the purpose to aid the
development of hard real-time systems. The process is depicted Figure 2.1.

Specification and 
requirements

Model of 
specification

Implementation Model of 
implementation

Verification

Schedulability 
analysis

Check for 
correspondence

Analysis

Verification

Schedulability 
analysis

Step 2Step 1

Step 3 Step 5

Step 4

Figure 2.1: Real-time development process

The idea is to specify the system requirements and the real-time con-
straints in step 1, these are then modeled in step 2. This initial model is a
cost effective way to indicate whether it is possible to develop a real-time
application corresponding to the requirements. The system is then imple-
mented in the desired target language in step 3. Step 4 is used to perform
analysis on the implementation, e.g. WCET analysis. The actual imple-
mentation is then translated to the input language of a modeling tool, on
which verification is performed, using the analysis performed in step 4. This
allows a schedulability analysis, to ensure no deadline misses. Several tools
exist to aid the developer in each of these steps, but none support the entire
development process. The tools also have different limitations, and target
different languages. For a more thorough description of the development
process and different tools supporting the different steps, see [6].
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2.4 Summary

In this chapter basic concepts of real-time systems have been introduced,
and a proposal for a development process for real-time systems has been
presented. The terminology presented in this chapter is used throughout
the report.

Some of the problems with WCET analysis have been pointed out.
WCET analysis is needed to perform a schedulability analysis. The next
chapter describes schedulability analysis in general.
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Chapter 3

Schedulability

To ensure that a real-time system meets its deadlines, the system must be
schedulable, ensured through schedulability analysis. A system is said to
be schedulable if it can be guaranteed never to miss a deadline. Scheduling
is the act of choosing which task to allow execution and when to preempt
it. A schedulability analysis is performed to verify that the system can
be scheduled by a given scheduling strategy. Different scheduling strategies
include [7]: Fixed-Priority Scheduling (FPS), Earliest Deadline First (EDF),
and Value-Based Scheduling (VBS). FPS assigns a fixed priority to each
task. EDF is a dynamic scheduling strategy, where the highest priority is
assigned to the task with the closest absolute deadline. VBS is a more
advanced scheduling approach where a value is assigned to each task, which
can also cope if the system is overloaded.

As mentioned, SCJ2 uses a fixed-priority preemptive scheduler, with
deadline monotonic priority ordering. This section focuses on traditional
approaches to analyzing a system running under such a scheduler. Some
restrictions are put on the system under analysis. The deadline of a task
must be less than or equal to its period. Sporadic tasks are supported, but
must be supplied with a minimum inter-arrival time, and will be treated
as periodic tasks with period equal to their minimum inter-arrival time. A
WCET for each task must be supplied, WCET is described in Section 2.2.
The initial formulae described, assume that context switches are instant,
furthermore the scheduler execution time is ignored. How to incorporate
the scheduler and context switches in the analysis is discussed in Section
3.4.

The formulae are based on the assumption that the critical instant is the
worst possible situation. The critical instant is the point in time where all
tasks are released at the same time. Considering the critical instant is safe
because introducing an offset can only prevent a critical instant.

This section describes traditional approaches to schedulability analysis,
and gives an introduction to model-based schedulability analysis.
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3.1 Utilization Test

Analyzing the utilization of the processor for a given set of tasks can give
an indication of schedulability. The utilization test of a system is performed
by using the formula:

N∑
i=1

(
Ci

Ti

)
≤ U(N) (3.1)

where

Ci is the worst-case execution time of task i

Ti is the period of task i

and

U(N) = N(2
1
N − 1)

is the utilization bound for N tasks

Note that the utilization is only dependent on the number of tasks and is
a lower bound on guaranteed processor utilization available, assuming tasks
are independent and non-blocking [7, 22]; if this condition holds, the system
is schedulable. Even though these assumptions are not always true, this
solution is often used because of its simplicity [7].

This is a sufficient but not necessary test. Meaning that if a system
passes the test, it is guaranteed to be schedulable, but it can still be schedu-
lable even if the test fails.

A small example of a system failing the utilization test, even though
it is schedulable is shown in Table 3.1. The system consists of two peri-
odic threads, and their combined utilization is 1, and the threshold for the
utilization test for two tasks is 0.828. The priorities in Table 3.1 has been as-
signed using rate monotonic priority assignment; higher priority value means
a higher priority.

Process Period, T WCET, C Priority, P Utilization, U

a 20 10 1 0.50
b 10 5 2 0.50

Table 3.1: Utilization example

However, the actual behavior of the execution of these tasks is depicted
in Figure 3.1, and it can be seen that no deadlines will be missed, the
systems is therefore schedulable. Note that this is still assuming that tasks
are independent and non-blocking.
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Time
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Process completion time – deadline met

Deadline missed

Executing

Preempted

Figure 3.1: Time-line for utilization example

3.2 Response Time Analysis

A response time analysis gives a sufficient and necessary test for schedula-
bility. It incorporates the maximum interference a task can experience in
one period. For a general task the response time is calculated as:

Ri = Ci + Ii (3.2)

where

Ri is the worst-case response time of task i

Ci is the worst-case execution time of task i

Ii is the maximum interference of task i by higher priority tasks

The interference is dependent on the number of times the task is interfered
and the execution time of the task interfering it. The maximum interference
a task, i, can experience from a higher priority task, j, is given by the
formula:

Maximum Interference =
⌈

Ri

Tj

⌉
Cj (3.3)

This calculates the maximum times i can be interrupted by j, and multiplies
this with the WCET of j. By summing the interference of all higher priority
tasks, the response time can be calculated as:

Ri = Ci +
∑

j∈hp(i)

⌈
Ri

Tj

⌉
Cj (3.4)
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where

hp(i) is the set of tasks with higher priority than i

If the response time for all tasks is less than its deadline, the system is
schedulable.

As an example a response time analysis can be performed on the example
in Table 3.1. First, the response time for each task is calculated:

Ra = 10 +
⌈

Ra

10

⌉
5 = 10 + 10 = 20

Rb = 5

Then the response time is compared to the deadline, which in this case is
equal to the period.

Ra <= Ta = 20
Rb <= TB = 10

It can be seen that the response times are lower than or equal to the dead-
lines, and the system is therefore schedulable.

This test is as mentioned sufficient and necessary, meaning the system
is schedulable if and only if the test succeeds. This test gives a better result
that the utilization test, but still assumes tasks to be independent and non-
blocking.

3.3 Blocking

Allowing tasks to block, possibly preventing higher priority tasks from exe-
cuting, is needed in almost all meaningful applications [7]. Blocking is used
to synchronize tasks and allow tasks to pass data between each other.

A small example of a system which is schedulable according to the uti-
lization test is shown in Table 3.2. However, since the utilization test does
not consider blocking, this is not sufficient. A time-line example of the
system executing is depicted in Figure 3.2.

Process Period, T WCET, C Priority, P Utilization, U

a 20 10 1 0.50
b 5 1 2 0.20

Table 3.2: Blocking system example

The lower priority task a contains a blocking region which is longer than
the period of the higher priority task b, which therefore misses its deadline.
This is a small example showing the problem with blocking tasks.
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Figure 3.2: Time-line for a blocking system

The scheduler implementation used in this project implements blocking
regions by disabling interrupts, this is essentially an immediate ceiling pri-
ority protocol, with the ceiling for all locks set to maximum (higher than
the highest priority task.) This simplifies the analysis, since the maximum
blocking time becomes the largest execution time for all blocking regions in
all lower priority threads. Given by the formula:

Bi = max
j∈lp(i)

Kj (3.5)

where

lp(i) is the set of tasks with lower priority than i

Kj is the execution time of the longest blocking region in task j

Incorporating this into the response time analysis, gives the formula:

Ri = Ci + max
j∈lp(i)

Kj +
∑

j∈hp(i)

⌈
Ri

Tj

⌉
Cj (3.6)

This is a sufficient and necessary analysis which incorporates interference
from higher priority tasks and blocking from lower priority tasks. There are
still two problems with this analysis: The scheduler and context switch are
not incorporated, and it might be very pessimistic since it assumes maximum
interference and blocking. The next section discusses the incorporation of
the scheduler and context switches.
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3.4 Incorporating Context Switches

The mentioned analyses have ignored the execution time required by the
scheduler, and have assumed the context switches to be instant. Noted in
If these times are a certain order of magnitude lower than the periods of
the tasks, it can be said to be fair to ignore these as long as some slack is
available in the processor utilization. However, if these values are significant
they need to be considered in the analysis. The boundaries for a certain
order of magnitude and some slack, is not discussed in the literature.

Generally three blocks need to be considered. Firstly, the execution
time the scheduler needs, to choose which task to schedule. Second, the
time it takes to perform a context switch to the chosen task. Finally, the
time it takes to perform a context switch away from the executing task.
Incorporating these into the analysis gives the formula:

Ri = CS1 +Cs +Ci + max
j∈lp(i)

Kj +
∑

j∈hp(i)

⌈
Ri

Tj

⌉
(CS1 +CS2 +Cs +Cj) (3.7)

where

CS1 is the execution time required for a context switch to a task

CS2 is the execution time required for a context switch away from a task
Cs is the execution time of the scheduler

This formula includes the initial context switch to task i. Each interference
from higher priority task includes two context switches: one to the higher
priority task j, and one back to the current task i. The incorporation of
context switch and the execution time of the scheduler of a task is depicted
in Figure 3.3.

Clock handler

Context switch Context switch

Task execution

A B C D E A’

Figure 3.3: Overheads when executing tasks [7, p. 643]

• A - C is the initial context switch to the task, including the scheduler,
represented by CS1 + Cs in the formula.
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• C - D is the execution of the actual task. The task may be interrupted
by higher priority threads between C and D. D is the completion of
the task, this must happen before the deadline for the task.

• E is the completion of the context switch away from the task, repre-
sented by CS2 in the formula.

• A’ is the next release of the task

This analysis incorporates much of the jitter and overheads of execution
into the schedulability analysis, but the pessimistic nature is still a problem.
The worst case assumed is very conservative, and only considers local exe-
cution. By analyzing the application in a different manner, the worst case
might be lowered based on the communication between tasks, e.g. sporadic
tasks may have dependencies which prohibit them from being fired under
certain conditions.

3.5 Model-Based Schedulability Analysis

Existing tools for WCET analysis of Java code, like Volta [14] and WCET
Analyzer (WCA) [33], only calculate the WCET for a single task. The
schedulability analysis is then performed based on the WCET for all tasks
in the system. However, this might lead to a pessimistic result, because the
entire system is not analyzed as a whole, and dependability between tasks is
not detected. As described in Section 3.1, a utilization test can only be used
if tasks are independent and non blocking. These aspects are not considered
when using WCA or Volta, and a utilization test might consider a system
to be schedulable even though it in practice is not, as depicted in Figure
3.2. Other aspects like context switches and the scheduler cost must also be
included in the schedulability analysis if they are significant.

This section describes the approach to model-based schedulability anal-
ysis developed in this project.

The idea behind model-based schedulability analysis is to create a model
on which analysis can be performed. The model must be a translation of
the implemented system, in order to guarantee a tight correspondence.

This model must represent the control flow of the system, and must be
decorated with information like WCET and blocking. The properties for
each tasks must also be a part of the model, i.e. deadline, period etc. This
model should then be used to verify that the implementation will never miss
its specified deadlines.

The hypothesis is that this type of analysis can draw knowledge of the
execution paths and connection between different tasks, to make a less pes-
simistic worst case. The model could reflect that two sporadic tasks would
never be released at the same time, avoiding the critical instant. It might
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also be possible to derive that the worst case execution path never occurs
while a sporadic task is released, thus lowering the actual worst case response
time.

The following examples illustrate how a model-based approach might
result in a more accurate schedulability analysis compared to using the tra-
ditional approaches.

Example 1. Listing 3.1 contains a small example of a branching, which
may result in a pessimistic schedulability analysis.

1 if(condition) // 100

2 fire(a) // 50

3 else

4 complexMethod () // 500

Listing 3.1: Pessimistic WCET

The traditional way to compute the WCET for this small example would
use the following equation:

wcet = 100 + max(50, 500)
= 600

Where the numbers indicates the amount of clock cycles used to compute
the result. This is the correct WCET for this small code in an isolated
environment, however when traditional schedulability analysis is performed
it is assumed that the sporadic task invoked by fire(1) is released as often
as possible, i.e. at its minimum inter-arrival time. However, when the
sporadic thread is invoked, the code in Listing 3.1 only uses 150 clock cycles,
thus reducing the Worst Case Response Time (WCRT). This can be detected
using model-based scheduling analysis, because the system as a whole is
analyzed.

Example 2. A small system consisting of one periodic thread and two
sporadic threads is shown in Table 3.3. This system is not schedulable
according to the utilization test, and not even by creating the more accurate
time-line test for the execution of the system, because the utilization is
higher than 1.

Process Period, T WCET, C Priority, P Utilization, U

a (periodic) 20 10 1 0.50
b (sporadic) 20 10 2 0.50
c (sporadic) 20 10 3 0.50

Table 3.3: Dependency of sporadic tasks example
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However, if the periodic thread invokes the sporadic threads based on
the code shown in Listing 3.2. Following the control flow, it can be derived
that process b and c are mutually exclusive, i.e. only one can be fired each
period. The control flow is a part of the model, and process b and c are
therefore never released at the same time in a model-based schedulability
analysis. When it is known that b and c cannot be fired at the same time, it
can be shown that the system actually is schedulable, when context switches
and blocking is not included.

1 if(condition)
2 fire(b)
3 else

4 fire(c)

Listing 3.2: Dependent sporadic threads

Example 3. Listing 3.3 contains a small example of two if branches, which
are dependent on each other. If condition1 is true then condition2 is also
true, and vice versa. This kind of dependability might be analyzed through
static analysis, such as predicate abstraction. Including this analysis in the
model of the system, might result in a more tight WCET of the task.

1 if(condition1){ //100

2 simpleMethod1 () //90

3 condition2 = true //10

4 } else {
5 complexMethod1 () //990

6 condition2 = false //10

7 }
8

9 if(condition2) //100

10 complexMethod2 () //1200

11 else

12 simpleMethod2 () //100

Listing 3.3: Dependent control flow

The naive WCET calculation for the code in Listing 3.3 is:

wcet = 100 + max(90 + 10, 990 + 10) + 100 + max(1200, 100)
= 100 + 1000 + 100 + 1200
= 2400

However, if it the dependability in the control flow is analyzed, the WCET
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calculation can be refined to:

wcet = max(100 + 90 + 10 + 100 + 1200, 100 + 990 + 10 + 100 + 100)
= max(1500, 1300)
= 1500

Resulting in a less pessimistic, but still accurate WCET, as it is still an
upper bound for the actual execution time.

3.6 Summary

Different approaches to schedulability analysis have been described, with
different granularity of accuracy. Several approaches ignore the scheduler
cost, because it is assumed to be insignificant. However, this is believed, by
the authors, to be a wrong approach to hard real-time systems.

Model-based schedulability analysis allows more information about the
executing system to be included in the analysis. Including context switches,
blocking, scheduler cost, and control flow.

A well defined development environment and a predictable underlying
hardware is desirable when performing schedulability analysis. The next
two chapters describe a Java profile for hard real-time systems and a time
predictable Java processor.
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Chapter 4

Hard Real-Time Java Profile

This chapter describes the implementation, of the profile used in this project.
The implementation is a further development of Safety Critical Java (SCJ),
introduced in [34]. SCJ is a suggestion for an implementation of a safety crit-
ical profile for Java, which is in line with the JSR-302 specification request
[27]. It is intended to fulfill the highest criteria of the DO-178B standard
[28], used in airborne systems and equipment certification. The profile is
not a subset of Real-Time Specification for Java (RTSJ) [9] like Ravenscar-
Java [20]. RTSJ and Ravenscar-Java have been described in [6] and are not
discussed further.

The implementation in this project is a reflection of the hands-on expe-
rience gained in [6], but it still corresponds to the initial ideas introduced in
[34]. The profile introduced in this report is referred to as SCJ2, which is a
further development of the JOP implementation of SCJ. JOP is described
in Chapter 5, for further information see [32].

The overall idea is a simple, but sufficient, profile targeted hard real-
time systems. The profile has no direct notion of priority and WCET of
each thread, this is handled by tools supporting the profile. Such tools have
been developed [14, 33] and are described in this report. Using tools to
aid the development process relieves a burden from the developer, which
should focus on the development of the application instead of tedious tasks
that could be performed by a tool. Memory management is not a part of
the profile, but it is assumed to be analyzed by external tools, the memory
model is described further in Section 4.3.

The implementation of SCJ2 is described in the following sections, and
it is pointed out when it differs from the original profile.

4.1 Execution of an SCJ2 Application

The singleton class RealtimeSystem, in Listing 4.1, represents the runtime
system.
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1 public class RealtimeSystem {
2 private RealtimeSystem ()
3

4 public static void start()
5 public static void stop()
6 public static void fire(int event)
7 public static RelativeTime currentTime ()
8 public static RelativeTime currentTime(
9 RelativeTime destination)

10 }

Listing 4.1: The Representation of the Real-Time System

A running application, implemented in SCJ2, can be in one of three
states. These different states are depicted in Figure 4.1.

Initialization

Mission

Shutdown

Start

Stop

Figure 4.1: Application states [34]

• Initialization: This phase is used to instantiate all threads, and the
memory used in the immortal memory. This phase has no timing
constraints, and is done in the main method. When everything has
been initialized, RealtimeSystem.start() is invoked, and the mission
phase is started.

• Mission: This is where the application is run, where deadlines must
not be missed. It will stay here until RealtimeSystem.stop() is in-
voked.

• Shutdown: Before entering this phase, it is ensured that all threads
are not in a critical state, before the application is shut down.
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4.2 Schedulable Entities

In order to keep the simplicity in SCJ2 only two types of threads are possible;
periodic and sporadic threads. The class structure is depicted in Figure 4.2.
The two types of threads have two methods in common:

#run() : boolean
#cleanup() : boolean

RealtimeThread

PeriodicThread SporadicThread

MyPeriodicThread MySporadicThread

Figure 4.2: Class structure [34]

• run() This method is abstract, and is implemented with thread logic.
The Boolean return value indicates whether the thread is ready to be
shut down, i.e. it is not in a critical state.

• cleanup() This method is called instead of the run() method during
shutdown, when all threads have returned true from their run method.

4.2.1 Release Parameters

The constructors of periodic and sporadic threads must be supplied with
PeriodicParameters and SporadicParameters respectively. This is to en-
capsulate the required arguments in one simple class, which increases the
readability of the code. When inheriting from periodic or sporadic thread,
the release parameters are easily distinguishable from application parame-
ters. In SCJ, each parameter is specified directly in the constructor, instead
of aggregating these in a single object. Aggregation is also used in RTSJ
and Ravenscar-Java. The PeriodicParameters class encapsulates release
parameters for a periodic thread, the definition is shown in Listing 4.2.
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1 public class PeriodicParameters {
2 public PeriodicParameters(RelativeTime period ,
3 RelativeTime deadline ,
4 RelativeTime offset)
5 public PeriodicParameters(RelativeTime period ,
6 RelativeTime deadline)
7 public PeriodicParameters(RelativeTime period)
8

9 public final RelativeTime getPeriod ()
10 public final RelativeTime getDeadline ()
11 public final RelativeTime getOffset ()
12 }

Listing 4.2: PeriodicParameters

The period represents the release period of the periodic thread and the
deadline represents the deadline from when the thread has been released. It
should be noted that the JOP implementation of the profile does not support
periods larger than about 35 minutes, because JOP uses a 32 bit integer to
represent microseconds, and Java only supports signed integers. This is a
limitation in the specific implementation for JOP and not the profile as such.

The offset defines how long time should pass before the initial release of
this periodic thread, after entering the mission phase. The default value for
the deadline is equal to the period and for the offset is zero.

The SporadicParameters class encapsulates release parameters for a
sporadic thread, the definition is shown in Listing 4.3.

1 public class SporadicParameters {
2 public SporadicParameters(int event ,
3 RelativeTime minInterarrival ,
4 RelativeTime deadline)
5 public SporadicParameters(int event ,
6 RelativeTime minInterarrival)
7

8 public final int getEvent ()
9 public final RelativeTime getMinInterarrival ()

10 public final RelativeTime getDeadline ()
11 }

Listing 4.3: SporadicParameters

The minimum inter-arrival time of the sporadic thread is specified to-
gether with a deadline. The event to invoke the specific sporadic thread
must always be specified, and must be unique, because each sporadic thread
is bound to an event in a one-to-one relation. A sporadic task must be
released using the static method RealtimeSystem.fire(int event), from
Listing 4.1. The corresponding sporadic thread is then scheduled. The orig-
inal SCJ profile uses strings as events instead of integers, however due to
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problems with analyzing strings, integers have been chosen instead. The
programmer is advised to define constant integers to represent the different
sporadic events. This gives a similar level of explicitness as using strings.
The default value for deadline is equal to the minimum inter-arrival time.

4.2.2 Representation of Time

In the original proposal of SCJ, only relative time is available [34], thus
limited to applications where absolute time is not important. The class
RelativeTime is used to represent time, similar to RTSJ, however in SCJ
the class has been made immutable. The idea is to prevent changing the
periods, deadlines etc. of the running threads.

SCJ2 does also only use relative time, however it has not been made im-
mutable. Time is important in real-time systems, and we believe it is desir-
able to modify time objects during runtime instead of creating new objects.
Methods to compare, add, and subtract two instances of a RelativeTime
object have been implemented. In order to prevent the developer from
changing periods, deadlines etc. of threads at runtime, static analysis could
be used to ensure RelativeTime objects used in the release parameters are
not modified in the mission phase. Another solution could be to make an
immutable version of RelativeTime, used in the release parameters. The
definition of RelativeTime is shown in Listing 4.4.

1 public class RelativeTime {
2 public RelativeTime(RelativeTime time)
3

4 public final void set(RelativeTime time)
5 public final int compareTo(RelativeTime time)
6 public final boolean equals(RelativeTime time)
7 public final RelativeTime add(RelativeTime time)
8 public final RelativeTime add(RelativeTime time ,
9 RelativeTime destination)

10 public final RelativeTime subtract(RelativeTime time)
11 public final RelativeTime subtract(RelativeTime time ,
12 RelativeTime destination)

Listing 4.4: RelativeTime

RTSJ uses a long to represent milliseconds and an integer to represent
nanoseconds internally, and allows the programmer to set these directly.
The internal representation in SCJ2 is a long to represent nanoseconds, this
reduces the size of a RelativeTime object, and reduces the computation of
compare, add and subtract methods.

Java does not support unsigned value types, and a long nanoseconds is
therefore able to represent almost 300 years. An SCJ2 application can still
run indefinitely, as long as it does not measure any time interval longer than
300 years, which should be enough as long as the developer is aware of this.
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However, the internal representation is not revealed to the developer,
and he must always use RelativeTime objects in order to manage time in
SCJ2. The methods to add and subtract time return a newly allocated
RelativeTime object with the new value. The methods are overloaded with
a destination argument, where an already existing instance of RelativeTime
can be supplied to avoid the allocation of a new object.

All the methods and constructors only allow RelativeTime objects, so in
order to actually instantiate a RelativeTime object, some container classes
have been implemented, shown in Listing 4.5.

1 public class RelativeTimeSeconds extends RelativeTime{
2 public RelativeTimeSeconds(int seconds)
3 }
4 public class RelativeTimeMilli extends RelativeTime{
5 public RelativeTimeMilli(int milliseconds)
6 }
7 public class RelativeTimeMicro extends RelativeTime{
8 public RelativeTimeMicro(int microseconds)
9 }

10 public class RelativeTimeNano extends RelativeTime {
11 public RelativeTimeNano(long nanoseconds)
12 }

Listing 4.5: Inheritance of RelativeTime

These container classes have been added to improve the explicitness of
the code, to reduce the confusion of whether the time is specified in e.g.
nanoseconds or microseconds. It also enables the developer to represent
e.g. milliseconds directly instead of multiplying by 1.000.000 to convert to
nanoseconds. This gives some overhead in computation cost and memory
usage, however it increases the readability of the code, and follows the object
oriented paradigm, which is one of the strengths of Java.

The original proposal of SCJ contains a method int currentTimeMicros()
to get the amount of microseconds since the system was started. This seems
like a very JOP specific method, because JOP uses an integer to represent
microseconds internally. The problem with this approach is it wraps around
each 35 minutes, and it is then the programmers’ task to compensate for
this. This is undesirable as it may lead to errors. In SCJ2 this method
is replaced by RelativeTime currentTime() which is consistent with the
representation of time, this is also overloaded to take a destination object to
prevent creation of a new object. This method is modified to return the time
in long, to avoid the early wrap around. Even though the profile supports
nanoseconds, the actual JOP implementation only supports microseconds,
this is only a limitation in the implementation and not the profile.
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4.3 Memory Model

The original proposal of SCJ uses a memory model similar to Ravenscar-
Java, with immortal memory, which is initialized in the initialization phase,
and then a scoped memory area for each executing thread. The size of the
scoped memory area must be defined as a parameter to the thread, however
it is intended to be analyzed by external tools. The use of immortal memory
and scoped memory is to avoid garbage collection, since no real-time garbage
collector has been available.

However, a real-time garbage collector has been developed for JOP [29].
Using a garbage collector results in an easier, and more powerful, compu-
tational model for the developer, because it allows objects to be shared
between tasks. The use of garbage collector also increases the similarity to
standard Java, and should therefore increase the productivity of the devel-
oper. The garbage collector acts as an additional thread, which must be
accounted for in the schedulability analysis.

However, as discussed in Section 5.3, the garbage collector implemented
for JOP is not ready for industrial use. The current implementation of
SCJ2 does therefore not support a memory model, i.e. no objects should
be created during the mission phase. Doing so might result in memory
depletion.

4.4 Restrictions

Some restrictions are imposed on the language, in order to simplify analysis.
Recursion is not allowed, because it can result in unpredictable behavior.
However, it could be possible to introduce some restrictions on recursions,
but this is omitted due to simplicity. Handling or preventing recursion is
considered future work.

Dynamic class loading has been disabled, in order to allow a static anal-
ysis of possible methods which can be invoked at runtime. Furthermore
the standard Java libraries are disallowed, because these libraries are not
optimized for real-time systems, and might have an unpredictable WCET.
These restrictions are currently not enforced by the profile.

4.5 Performance Optimized Version of SCJ2

The notion of RelativeTime to represent time, is believed by the authors
to be a clean object oriented design, however this is at the cost of execution
time and memory consumption. An additional version of SCJ2 has been
implemented, where RelativeTime is omitted, and it is replaced with an
integer representing time in microseconds. This reduces the granularity of
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time. Similar the RelativeTime currentTime() method is replaced with
int currentTimeMicros().

This means that the largest intervals which can be represented are about
35 minutes. Furthermore it is now the developer’s responsibility to correctly
add and subtract time while preventing wrap around.

Both versions of SCJ2 is included on the enclosed CD.

4.6 Summary

SCJ2 is a further development of SCJ, with the introduction of periodic and
sporadic parameters, another representation of time, and a new memory
model.

The use of a class to represent time instead of an integer, as JOP does in-
ternally, results in some overhead, but prevents wrap around, and conforms
to the object oriented world. However, a version with integers to repre-
sent time has also been developed, to support a more performance oriented
approach.

Even though the garbage collector is not ready for use, it is still desirable.
With the use of a garbage collector and object oriented encapsulation of e.g.
relative time, the use of the profile is more similar to standard Java than e.g.
Ravenscar-Java and the original SCJ. This should increase the productivity
and reduce the step from developing standard Java applications to real-time
Java systems. However, an important note is that optimized programming is
still important to reduce production cost of the underlying hardware, since
optimized applications require less computational power.

The profile is kept simple with only a small amount of classes, to support
hard real-time development. The profile is supposed to be accompanied by
tools, e.g. to guarantee that deadlines are not missed. SARTS is a proposal
for a schedulability analysis tool targeting SCJ2.

SCJ2 is implemented on the time predictable Java processor JOP, de-
scribed in the next chapter.
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Java Optimized Processor

When developing hard real-time applications the underlying hardware is
very important, due to timing constraints. This chapter describes the Java
Optimized Processor (JOP) which is used as underlying hardware in this
project. Further information about JOP can be found in [30, 31, 32].

5.1 Overview

JOP is a Java processor executing Java bytecode as native instruction set.
The processor is implemented on an FPGA. Since the JVM is a CISC, some
bytecode instructions are too complex to implement directly in hardware.
JOP implements each bytecode in an instruction set called microcode, mak-
ing JOP a RISC architecture. Each bytecode is translated into one or more
microcodes. Implementing the processor on a FPGA makes the distinction
between hardware and software somewhat blurry. It enables the developer
to implement some bytecode instructions in hardware and some in software.
E.g. the instruction, new, which allocates a new object on the heap is im-
plemented in software to ease memory management.

JOP is developed for hard real-time applications with strict time con-
straints, and has been used in industrial applications.

5.2 Predictability

JOP is developed to be a real-time processor. This is reflected in its time
predictability features i.e. the execution time of each bytecode instruction is
known. This includes an analysis of each instruction on the microcode level,
so by making a bytecode level analysis of a Java application the WCET
can be calculated. To improve the predictability, features used in main-
stream processors which improve the average case execution time, have been
removed in favor of features to improve the WCET. The features removed
include branch-prediction and data caches. Since caches are important to
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improve the performance of a processor, two types of predictable caches are
implemented: Stack cache and method cache.

Stack Cache. The stack cache is implemented as a two-level stack cache.
The first level contains the top two elements of the operand stack in two
on-chip registers directly accessible by the ALU. The second level contains
the rest of the operand stack, the context of the caller, including the return
address, and the method local variables, in an on-chip stack accessible in
one clock cycle concurrently with ALU operations. This cache is a part of
the thread context and needs to be saved and restored on context switches.
This can be incorporated into a WCET analysis since the maximum stack
size can be analyzed from the call graph and the size of the operand stack of
a given method is statically known at each instruction, as a consequence of
restrictions on the Java class file format [33]. The call graph can be statically
analyzed since recursion and dynamic class loading are disallowed in SCJ2,
as described in Section 4.4.

Method Cache. The method cache contains the entire method body of
the currently executing method. This ensures that a bytecode fetch will
never result in a cache miss, since no jumps can be made outside a method
body. All cache misses are grouped together at method invoke and return.
The size of each method is known, and the execution time needed to fill the
cache can be analyzed and added to that of a method invoke and return.
The method cache comes in several forms: single method cache, two-block
cache, and variable block cache.

The version of JOP used in this project is configured with a variable
block cache. The variable block cache is split into several blocks of a given
size. A single method can span several blocks, but a block can only contain
bytecode from a single method. The cache is implemented as a circular
buffer, where a method spanning beyond the end of the buffer continues
from the beginning. If a method is not present in the buffer it is added
after the most recently added method, possibly replacing other methods.
Using a variable block cache makes the choice of number of blocks and block
size a major design decision, since it can greatly affect the performance of
the application running. By default JOP is configured with a 4KB cache
divided into 16 blocks. This configuration is used in this project, and in all
experiments executed.

A problem with the method cache arises when interrupts are allowed.
When an interrupt is generated, the scheduler is invoked. This involves
loading the scheduler logic into the method cache. The scheduler might de-
cide to switch to a different thread, which involves loading different methods
into the method cache. This means that if a method can be interrupted, the
method cache can be flushed, complicating the analysis.
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These two types of caches are implemented to improve the performance while
maintaining a time-predictable processor. This time predictability enables
the WCET for each method to be analyzed. By running this analysis on the
run method for each thread in the system, the WCET for each thread can
be found. General theory about schedulability analysis is discussed further
in Chapter 3.

5.3 Memory Model

Standard Java supports a garbage collector, which collects objects which
are no longer referenced. This approach is not readily available in hard
real-time systems. The problem is that the garbage collector interrupts the
system and can prevent it from executing, causing deadline misses. Even a
real-time garbage collector is not trivial to incorporate into the application.
The amount of memory which is allocated must be analyzed to ensure that
the garbage collector can be allocated enough execution time to collect it
all. JOP supports two memory models: Scoped memory areas and garbage
collection.

Scoped Memory. The scoped memory model uses a shared immortal
memory area, and a scoped memory area for each thread. Objects allocated
in the immortal memory area will live throughout the lifetime of the ap-
plication, and are shared between threads. Each thread has an associated
area, in which it can create objects. The area is cleared whenever a thread
enters or exits the area. References from the immortal memory into a scoped
memory are not allowed, and references from one scope into another are not
allowed.

Garbage Collection. The real-time garbage collector is implemented as
a regular thread and collects objects which are no longer referenced, includ-
ing references from the immortal memory. Since the garbage collector is
a regular thread it needs to be incorporated into the schedulability anal-
ysis. This approach has one globally shared heap, and an immortal area.
References from the immortal area into the heap are allowed, meaning that
objects can easily be passed from one thread to another.

One of the advantages of the garbage collector, compared to scope mem-
ory, can be seen when developing a producer/consumer application. One
thread acts as a producer and places objects in a list, another thread acts as
consumer removing objects from the list. The list must reside in immortal
memory to make it accessible from both threads. Using scoped memory it
is not possible to add objects to the list, since this would make a reference
from the immortal area into the scope; using scoped memory, only value
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types can be shared across threads. This makes the garbage collector a bet-
ter solution when trying to make it easier for the developer.

Even though the garbage collector has been implemented, it is not ready
for industrial applications since the analysis of it has not been completely
implemented yet. There are also some problems with the current implemen-
tation of scoped areas in JOP and SCJ2. Due to these problems this project
abstracts away form memory management, since it is a research project
in itself. All implementations and experiments executed in this project do
not allocate new objects during the mission phase to avoid memory related
problems.

5.4 Measurement

Even though JOP is said to be time predictable, it is important to do tests
and measurements, to ensure the values found are actually correct. It is
possible to measure the actual number of clock cycles used by JOP. This
can be used in controlled experiments to measure the actual time used to
execute a given piece of code.

The code shown in Listing 5.1 is used to determine the actual amount
of clock cycles used. The clock cycle counter is read before and after the
execution of the code, and the difference is printed to the output stream.
The variable, to, represents the amount of clock cycles used to read the
counter.

1 int ts , te , to;
2 ts = Native.rdMem(Const.IO_CNT);
3 te = Native.rdMem(Const.IO_CNT);
4 to = te-ts;
5 ts = Native.rdMem(Const.IO_CNT);
6

7 measuredMethod ();
8

9 te = Native.rdMem(Const.IO_CNT);
10 System.out.println(te-ts -to);

Listing 5.1: JOP measurement

This code prints out the number of clock cycles used by JOP to exe-
cute the method measuredMethod(). It is important to note that the time
measured is not necessarily the worst case, but the execution time used
in the concrete execution. By controlling the variables in the system, the
worst case branch of execution can often be forced, and the WCET can be
measured.

To simplify the code examples using measurement the syntax in Listing
5.2 is used. This simplification is only done on the code presented, not the
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code executed.

1 timeBegin ();
2

3 measureMethod ();
4

5 timeEnd ();

Listing 5.2: Simplified measurement

Using this functionality it is possible to conduct several experiments,
testing the actual execution time. Some anomalies have been found in the
actual execution time compared to the specified execution time. For instance
the instruction iinc is specified as using 8 clock cycles, but measuring it on
JOP shows it as taking 4 clock cycles. This is because the JOPizer, which
translates class-files into JOP-files, translates iinc into two iload, one iadd,
and one istore, which add up to 4 clock cycles. When deploying JOP in
an industrial setting, all such anomalies have to be found, and specified to
ensure the analysis is not optimistic.

5.5 Summary

Even though JOP is said to be time predictable, there are still some problems
which need to be accounted for. The method cache is not as predictable
as first assumed, and this needs to be included into the analysis. There
are several problems with the memory models available on JOP, and non of
these are used in this project to focus on the problem at hand. Despite these
problems, JOP provides a time-predictable platform for real-time systems
and is suitable for the analysis developed in this project.

The next chapter describes a case study of a real-time system, developed
for JOP using the SCJ2 profile.
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Case Study

This chapter presents a case study of a real-time system implemented in
SCJ2. It was originally designed and implemented in [6], where it is de-
scribed in further details.

The system is a sorting machine called Real-Time Sorting Machine (RTSM).
The machine is built in LEGO, using motors and sensors monitored by JOP.

The overall idea of RTSM is to sort candy available in two different
colors, white and blue. The candy is suitable for sorting because the shape
fits into the LEGO context, not being too big or small, and it is available
in white and blue, which are two rather distinguishable colors. The candy
is from now on referred to as objects.

The design of RTSM is depicted in Figure 6.1.

Sensor 1

Feeder

Motor 1 Motor 2

Figure 6.1: Design of RTSM

The objects are placed in the Feeder which places one at a time on the
conveyor belt with some space between. This ensures a constant flow of
objects to be sorted, and prevents two objects from being right beside each
other.

The conveyor moves the objects to the right, as the arrows indicate.
When the object leaves the Feeder it passes by Sensor 1, which determines
whether it is a white or a blue object. Sensor 1 on the figure is actually two
sensors placed on each side of the conveyor belt, and then encapsulated in a
small cube. The cube is built to prevent external light from interfering with
the sensors. The use of two sensors has two purposes. Firstly, the sensors
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emit light to each other, keeping a constant high amount of light, easing
the detection of objects breaking this light, and therefore spot when objects
pass by the sensor. Secondly, the object might not always be in the middle
of the conveyor belt, making the light it reflects either higher or lower than
expected, this is compensated for, by using the average of the two sensor
inputs.

Based on what color is detected, either Motor 1 or Motor 2 must be
activated when the object is in front of the motor. Activation of a motor
involves pushing the object into the correct bin, thereby sorting the objects.

The implementation contains two periodic and two sporadic tasks. The
periodic task PeriodicReadSensor, reads the input from the sensors, to de-
termine whether an object has passed by, and of which color. Each time an
object is detected, the time of detection is added to the corresponding list.
The periodic task PeriodicMotorSpooler reads this list, and fire a sporadic
event when the object must be pushed off the conveyor belt. Two instances
of SporadicPushMotor, one for white and one for blue, starts either Motor
1 or Motor 2 when invoked.

RTSM was originally implemented for SCJ, but it has been updated to use
SCJ2. RTSM is implemented for both versions of SCJ2. When conducting
experiments the performance optimized version is used.

Additionally a simplified version of RTSM has been developed, which
contains the same worst case path, but paths resulting in a lower WCET
have been omitted. This version is referred to as RTSMSimple.

All three versions are available on the enclosed CD, in the projects
RTSM, RTSMNoRelativeTime, and RTSMNoRelativeTimeSimple respectively.
A video of the actual machine is also available on the enclosed CD.

RTSM is a simple example of a hard real-time system, but it is sufficient
as a case study. It includes periodic and sporadic tasks, blocking regions, and
dependencies between tasks. These are interesting properties of a system,
when performing schedulability analysis.
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Project Focus

The focus of this project is to develop a tool for schedulability analysis of
hard real-time Java systems, named Schedulability Analyzer for Real-Time
Systems (SARTS). Rather than relying on slack in the schedulability analy-
sis, the philosophy is to include more aspects of the system being analyzed,
to refine the analysis.False positives are not acceptable, and the goal of the
project, is that the result of a final version of SARTS provides safe guar-
antees about the schedulability of the analyzed system. The result must
not be more pessimistic than what is possible with traditional approaches,
presented in Chapter 3.

SARTS is a model-based approach to schedulability analysis. The sys-
tem being verified is translated into an abstract time preserving model for
Uppaal.

An additional goal of SARTS is to automate the verification process,
where the system is automatically translated from Java to a finite state
model. This reduces human errors in the verification process, and it allows
the developer to focus on the actual implementation of the system. Further-
more the developer needs no knowledge of model checking in order to use
SARTS.

The next part describes the implementation of SARTS.
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Implementation
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Technology Choices

The translation to a finite state model is done by inspecting the compiled
Java program, i.e. Java class files, together with the Java source code,
gathering the information needed. This information includes control flow of
the system together with loop bounds and execution time of each bytecode.
In order to achieve a more accurate analysis, information about blocking
should be included in the model as well. Additionally, information about
the number of tasks in the system and the parameters for these tasks should
be available, in order to simulate the system correctly.

In order to perform the translation the following information must be
retrieved:

• Control flow

• Execution time for each bytecode

• Loop bounds

• Blocking information

• Task parameters

The following sections describe tools and frameworks which could be used
to retrieve these information. Additionally different model checkers are in-
troduced. A summary describes which of these tools are used in the imple-
mentation of SARTS.

8.1 Soot

Soot [10] is a Java optimization framework capable of inspecting and chang-
ing Java class files. Soot has been used in various projects for analysis and
transformations of Java applications [16], e.g. Bandera [21] and Polychrony
[18].
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Soot provides four internal representations of the program to be an-
alyzed, Baf, Jimple, Shimple and Grimp, each with some advantages in
different situations:

• Baf is an abstract representation of Java bytecode with no constant
pool and reduced instruction set.

• Jimple is a three address code representation of the Java bytecode.

• Shimple is a static single assignment form of the Jimple representa-
tion.

• Grimp is a Java-like representation of the Jimple code.

Soot gives the ability to freely switch between the intermediate representa-
tions. A more thorough explanation of the intermediate representations can
be found in [6].

All four representations make abstractions over the actual bytecode, and
change the flow of the original application. This makes Soot difficult to
use, since SARTS requires the exact flow of the bytecode. Additionally,
even though Soot has been used in various projects, it still very much lacks
documentation, making it difficult to use to its full potential.

8.2 BCEL

The Byte Code Engineering Library (BCEL), provides a simple API for
analyzing and modifying Java class files. BCEL is currently used in vari-
ous projects, e.g. static analysis in FindBugs [24] and in AspectJ [13] for
pointcut identification and code injection.

BCEL provides an internal representation, which describes the concrete
class in low level detail. This internal representation provides access to
all the information stored in Java class files, such as classes, methods, and
bytecode. Additionally, a thorough documentation of BCEL is provided as a
detailed Javadoc documentation of the API and a manual providing details
about the Java class file format and some project examples using BCEL.

BCEL provides a simple and powerful representation of Java bytecode,
for performing transformation and analysis.

8.3 Java 6 API

With the newest Java version three new APIs are made available. These
provide the ability to customize the Java compiler and to perform source
code analysis on Java programs, from within Java programs. The three
APIs are: Java Compiler API (JSR 199), Pluggable Annotation Processing
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API (JSR 269), and Compiler Tree API [19]. This section gives a brief
introduction to the functionality of these APIs.

The compiler API enables developers to invoke the Java compiler from
within Java programs. The API provides several classes for accessing and
configuring the Java compiler.

The annotation processing API enables developers to create custom an-
notation processors and plug them into the compiler. The processor is con-
figured to accept different annotations, and is invoked when the compiler
encounters an element annotated with the corresponding annotation.

The compiler tree API enables the developer to create visitors, to visit
the syntax tree of the Java application being compiled.

Combining these tree APIs developers can analyze the Java source code,
and retrieve the information needed.

8.4 Modeling Tools

Several modeling tools for verification already exist. These tools are highly
optimized and the tool developed in this project does therefore use an ex-
isting modeling tool. Several existing tools have been described in [6], in-
cluding Uppaal [39], TIMES [37], Bandera [21], Moby/RT [25], and Java
PathFinder [23]. These tools all have different advantages and disadvan-
tages, but some of them has some interesting features, making them more
suitable for this project.

A tool like Bandera [8] translates Java source code to an intermediate
representation, on which slicing and abstraction is performed. This inter-
mediate representation is then translated to the input of a model checker,
to perform verification. Using this technique different model checkers are
supported. However, Bandera has no notion of time, which is critical in
real-time systems. Bandera is therefore not suitable in this project, but the
idea of an intermediate representation of the implemented system, before a
translation to a specific model checker is used.

A tool like TIMES [3] already supports a schedulability analysis of a
real-time system. However, TIMES is intended for an initial modeling tool,
corresponding to step 2 in Figure 2.1. TIMES has a lot of restrictions on
what computation is actually possible by periodic threads. This might be
suitable for an initial model, but seems too restrictive when automatically
doing full translating from code to a model, and is therefore not used in
this project. TIMES includes no context switch or scheduler cost in the
schedulability analysis, which may be considered significant in some systems.

Polychrony [18] is another interesting tool, but is not described in [6]. It
allows translation of Java to its input language SIGNAL [38] targeted hard
real-time systems. However, they do not mention how WCET is handled.
The support for Java is only a plug-in to the existing Polychrony, however
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it has not been possible to locate this plug-in and actually try it in practice,
and it is therefore not used in this project.

The modeling tool used in this project is Uppaal because it has several
advantages, when performing schedulability analysis. It has a notion of
time through clocks, and it furthermore supports stopwatches, which allow
time to stop. How these features are used is discussed in further details in
Chapter 11. Uppaal is developed at Aalborg university which also results
in some advantages. The authors are familiar with Uppaal, and it is easy
to get support on specific topics about Uppaal from the employees at the
university.

8.5 Summary

The following paragraphs describe which tools are used to retrieve which
information.

Execution time. In BCEL, the actual bytecode for each method is avail-
able as a list of instructions. The WCET for each bytecode, executed on
JOP, is specified in [32].

Control flow. Control flow concerns the flow of control between instruc-
tions in the analyzed code.

In BCEL, the instructions to where control may flow, for each instruc-
tion, is readily available and it is straight forward to analyze control flow
using BCEL.

Loop bounds. The loop bound annotations are available in the Java
source code only, as these are written as comments which are ignored during
compilation into Java class files. When analyzing control flow, loop bounds
must be considered and should influence the model. The loop bounds are
essential to the execution time of the loop and hence need to be incorpo-
rated into the model. As described in Section 2.2, loop annotations must be
specified by the developer.

A mapping from each bytecode to line number in the source code is
available in the class files and hence in BCEL, and using this information,
the loop bound annotations can be retrieved.

Blocking. Each method is marked with a synchronized flag, and two byte-
code instructions, monitorenter and monitorexit enclose synchronized re-
gions of code. No extra effort is needed to retrieve this information as this
is readily available in BCEL.
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Task parameters. Task parameters are derived from the periodic and
sporadic parameters used in the Java profile described in Section 4.2.1.
These values must then be used to parameterize the tasks in the model
as described in Section 11.4.

Retrieving the task parameters for periodic and sporadic threads is
doable in BCEL, but this is unfeasible due to the low level representation
of BCEL.

A better representation is using the Java 6 APIs. An abstract syntax
tree of the main method is parsed to retrieve information about instantia-
tion of tasks, and their release parameters.

The majority of the analyses are done using BCEL, because of close the cor-
respondence between the actual execution and the generated model, where
Soot performs abstractions over the bytecode. Another reason for not using
Soot is the lack of documentation. Since Soot is a powerful analysis frame-
work, which would aid in some optimizations of the analysis, a mapping from
the current intermediate representation to the Soot representations might
be useful, but considered future work.

Java 6 API is used to inspect the source code for task parameters, a
more appropriate level for retrieving this information.

The next chapter describes the design of SARTS.
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Design

SARTS translates a real-time Java system, into a corresponding Uppaal
model, in order to perform schedulability analysis. The architecture of
SARTS is depicted in Figure 9.1.

Java 
Translation

SARTS Intermediate 
representation

UPPAAL 
Translation

Analysis Abstraction

Real-time 
system

Schedulability 
analysis

Transformation

Figure 9.1: Architecture of SARTS

The real-time system must initially be implemented in Java, using the
SCJ2 profile described in Chapter 4. This system is translated to SARTS
Intermediate Representation (SIR); the intermediate representation devel-
oped for SARTS. How this translation is performed is described in Chapter
10.

This intermediate representation is an abstraction of a Java program,
and is described in Section 9.1. Different kinds of analyses and abstractions
can be performed on this intermediate representation. This could be to gain
knowledge of dependencies in the control flow of the program, which can
result in a more accurate schedulability analysis, as described in Section
3.5. The analysis and transformations implemented in the current version
are, decorating SIR with WCET, and collapsing SIR to a more compact
representation, as described in Section 13.2.

SIR is translated to a Uppaal model, on which the actual schedulability
analysis is performed. How this is performed is described in Chapter 11.
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9.1 SARTS Intermediate Representation

The purpose of the intermediate representation is to represent the imple-
mented Java application in a more abstract form. An abstract model of the
intermediate representation is depicted in Figure 9.2. The actual implemen-
tation is located in the intermediate package.

ClassA

ClassB ClassC

Class1 ClassN

Method1

MethodN

CFG1

. . . . .

CFGN

. .
 .

. .
 .

Class Graph

Methods

Figure 9.2: Intermediate representation

The class graph represents all classes associated with the specific imple-
mented real-time system, representing the class hierarchy, i.e. a child node
represents a specialization of a class. The root node in the class graph must
therefore be java.lang.Object. Each class contains a set of methods, each
of which contains a control flow graph (CFG) for the specific method, along
with the actual instructions in the method implementation.

As an abstraction to the actual Java bytecode, the concept of basic blocks
is introduced. A Basic block contains a list of the Java bytecode instructions
it represents and the cost of executing these along with extra information
e.g. loop bound in the case of a loop basic block. The different types of
basic blocks and their class hierarchy is depicted in Figure 9.3.

AbstractBasicBlock

SimpleBasicBlock BranchingBasicBlock EmptyBasicBlock

IfBasicBlock LoopBasicBlock

MethodCallingBasicBlock MonitorEnterBasicBlock MonitorExitBasicBlock

SporadicInvokeBasicBlock

Figure 9.3: Basic block hierarchy

AbstractBasicBlock has a WCET attribute, denoting the execution
time of the Java bytecode the block represents. This is used in the schedu-
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lability analysis, and it enables basic blocks to be merged into a new basic
block and then calculate the new WCET for the new block. The different
types of basic blocks are described below:

• SimpleBasicBlock: This is a sequence of bytecode instructions with
exactly one predecessor and exactly one successor.

• MethodCallingBasicBlock: This represents a method invocation.
It contains a list of possible methods, which can be invoked.

– SporadicInvokeBasicBlock This is a special case of a method
invoke, where a sporadic task is invoked. It is supplied with the
event corresponding to the sporadic task invoked.

• BranchingBasicBlock: This is an abstract class, representing a
branching in the control flow.

– IfBasicBlock: Represents an if branch, and therefore contains
two outgoing edges.

– LoopBasicBlock: Represents any kind of a loop. It contains
a LoopBound object, which has a list of possible entrance nodes
to the loop, and a list of possible exit nodes. It also contains
an estimated loop bound for the actual loop, specified by the
developer of the real-time system.

• MonitorEnter- and MonitorExitBasicBlock: Represents when a
synchronized region is entered or left.

• EmptyBasicBlock: These blocks do not represent actual instruc-
tions, and are added for convenience reasons, e.g. one is added in the
beginning and the end of a method.

The next chapter describes how Java is translated to SIR.
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Java Translation

The class sarts.generator.JavaTranslator is used to translate Java to
SIR. This class is instantiated with the main class of the analyzed system,
and the SIR, contained in a IntermediateData object is returned from the
method buildIR(). This method uses three visitors to build the intermedi-
ate representation. First the entire class hierarchy is built using the visitor
ClassGraphBuilder. This creates a class graph, ClassGraph, which is tra-
versed, and for every method of every class a control flow graph is created
consisting of basic blocks, representing the actual bytecode. This translation
is done using the two visitors, LocationBuilder and TransitionBuilder.
Where LocationBuilder creates the basic blocks, and TransitionBuilder
creates the relations between them. The visitors are implemented as BCEL
bytecode visitors. The three visitors are described in the following sections.

10.1 Class Graph Builder

The class builder recursively traverses every method of every class. The only
visit method implemented is visitLoadClass, which is an abstraction over
all bytecode instructions which can cause the JVM to load a new class. The
type of the class which can be loaded is added to a queue, and parsed as well.
For every class parsed the parent class is parsed as well, this way a complete
class hierarchy is built. The reason for building the complete class hierarchy
and not only the classes directly accessed, is that inherited methods must be
parsed as well. Only the relevant parts of this class hierarchy are translated
to Uppaal, as described in Section 13.1.

10.2 Location Builder

The location builder creates basic blocks corresponding to the bytecode. For
most instructions, a SimpleBasicBlock is created using the helper method
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createBasicBlock. Several instruction require special handling, some of
these are described below.

Branch Instructions. The visit method visitBranchInstruction is an
abstraction over all jump instructions, conditional and unconditional. If the
index of the jump is positive, i.e. the jump is forward, a IfBasicBlock is
created. If the index is negative, i.e. the jump is backward, it means that
this jump is part of a loop, and a LoopBasicBlock is created. The target
of the loop is used as an identifier of the loop, so all instructions targeting
the same instruction are part of the same loop. A LoopBound object is
created for this target, and all loop instructions targeting this target are
added to this object. The loop bound for this loop must be found in the
source code and added to the LoopBound object. The LoopBound object is
used in the translation to Uppaal, where the loop bound counters need to
be incremented on all possible loop nodes.

This approach to loop identification, relies on specific patterns gener-
ated by the compiler. If a different compiler is used, which generates loops
differently, this approach might not work.

Switch instructions are not supported in the current implementation and
an error is printed if such instructions occur.

Invoke Instructions. The visit method visitInvokeInstruction is an
abstraction over all invoke instructions. There are three special cases of
invoke instructions which need to be handled: Native method invocation,
firing of sporadic events, and other method invocations.

A special case is native method invocations, which are translated to the
correct instructions.

Calls to RealtimeSystem.fire(int) result in a firing of a sporadic
event, and must be translated as such. This is handled by finding the actual
event being fired in the source code, and creating a SpoadicInvokeBasicBlock.
Other method invocations are handled by creating a MethodCallingBasicBlock.

Monitors. The visit methods visitMONITORENTER and visitMONITOREXIT,
correspond to the instructions MONITORENTER and MONITOREXIT. These are
handled by creating a MonitorEnterBasicBlock or MonitorExitBasicBlock,
respectively.

Java Implemented Bytecode. Some bytecode instructions are imple-
mented in Java. These are translated into invocation of the correct method
in the class com.jopdesign.sys.JVM. For instance the bytecode NEW is trans-
lated into an invocation of the method JVM.f_new. This is handled by
creating a MethodCallingBasicBlock to the correct method, instead of a
SimpleBasicBlock for these instructions.
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10.3 Transition Builder

The transition builder creates the flow in the control flow graph. It does this
by adding edges between the basic blocks created by the location builder.

LoopBasicBlocks are handled specially, since all jumps inside loop which
exit the loop need to be found. This is needed by Uppaal to know when a
loop has been exited, so it wont be exited too early, and to be able to reset
the loop bound counter.

The next two chapters describe how schedulability analysis is performed
using Uppaal and how SIR is translated to Uppaal models.
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Uppaal Schedulability
Analysis Model

This chapter describes the different principles behind the Uppaal schedu-
lability analysis model. How SIR is translated to Uppaal is described in
Chapter 12, this translation is then combined with the Uppaal model de-
scribed in this chapter, in order to provide a schedulability analysis for the
entire system.

A short introduction to the syntax and terms used when creating a model
in Uppaal is described in Appendix B, and a more thorough description of
Uppaal is available in [5].

11.1 Stopwatches

The Uppaal model used in this project uses a new feature in the develop-
ment version of Uppaal called stopwatches. The stopwatch feature enables
the developer to stop one or more clocks independent of the rest. Clock can
be stopped by adding an invariant to a location in the template, depicted
in Figure 11.1. The expression must evaluate to either 0 or 1, where 0 stops
the given clock, and 1 enables it.

clockName’ == expression

Figure 11.1: Stopwatch syntax

The idea is that when a thread is in a state which requires execution
time, the following invariant is added:
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1 executionTime <= WCET &&
2 executionTime ’ == expression

Listing 11.1: Execution invariant

Where executionTime is reset on all incoming and outgoing transitions.
WCET is the execution time of the corresponding Java bytecode(s). All
outgoing transitions have the guard executionTime == WCET. The clock
executionTime is stopped if the current thread is not running, and the
thread is therefore in the given state until it has been executing for WCET
time. This allows preemption by simply stopping the clock of the currently
executing thread.

11.2 Global Declarations

The following declarations are shared among all templates in the model,
that is all tasks, classes, and the scheduler. These are shown in Listing 11.2.

1 const int periodicThreads;
2 const int sporadicThreads;
3 const int totalThreads = periodicThreads +

sporadicThreads;
4 const int schedulerID = 0;
5

6 typedef int[1, periodicThreads] PeriodicID;
7 typedef int[periodicThreads + 1, totalThreads] SporadicID

;
8 typedef int[1, totalThreads] ThreadID;
9

10 bool schedulable[ThreadID ];
11 bool fireable[SporadicID ];
12 int threadPriority[ThreadID ];
13 int running[totalThreads +1];
14 int selectedThreadPriority = -1;
15

16 chan fire[SporadicID ];
17 chan run[ThreadID ];
18 broadcast chan GO;
19

20 void runScheduler (){ ... }
21

22 bool synchronized = false;
23 bool interruptWaiting = false;
24 int monitorDepth = 0;
25 void monitorEnter (){ ... }
26 void monitorExit (){ ... }

Listing 11.2: Global declarations
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• Lines 1-4: Constants set to the amount of periodic tasks, sporadic
tasks, total tasks, and the scheduler ID.

• Lines 6-8: Defines new types for periodic, sporadic and thread ID.

• Line 10: An array indicating which threads are ready to be sched-
uled. Only periodic threads which has not completed their period, and
sporadic threads which have been fired, are ready to be scheduled.

• Line 11: Indicates whether a sporadic thread is ready to be fired, i.e.
its minimum inter-arrival time since last invoke of fire has passed.

• Line 12: Constants set to the priority of each thread. This priority
is assigned using the deadline monotonic priority assignment.

• Line 13: An array used to denote which thread is currently executing,
where 1 indicates executing and 0 stopped. This is a single processor
system so only one thread can execute at a given time. The scheduler
index is 0. The rest of the indices in the array correspond to the
periodic and sporadic threads in the system.

• Line 14: Represents the priority of the currently running thread.

• Line 16: Used to signal when a sporadic thread is fired.

• Line 17: Used to invoke the run method corresponding to the thread.

• Line 18: A broadcast channel used to ensure all threads are in the
correct state, when initializing the system.

• Line 20: Stops the currently running thread and starts the scheduler
by setting the 0 index in running to 1, and the rest to 0.

• Line 22: Used to determine whether the executing thread is in a
synchronized state, thus disabling interrupts.

• Line 23: If interrupts occur when a thread is in a synchronized state,
the interrupt is saved until the thread leaves the synchronized state.

• Lines 24-26: Used when synchronized states are entered and left, and
updates synchronized accordingly. Nesting is controlled by monitorDepth.
If a synchronized region is left the scheduler is invoked if interrupts
are waiting.
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GO!

selectThread(),
executionTime = 0

idle(),
executionTime = 0

executionTime <= wcet && 
executionTime’ == running[schedulerID]

Running

executionTime == wcet

!exists(i:ThreadID)schedulable[i] exists(i:ThreadID)schedulable[i]

Figure 11.2: Scheduler model

11.3 The Scheduler

The purpose of the scheduler is to schedule the thread with the highest
priority, which is ready to be scheduled. The scheduler model is depicted in
Figure 11.2.

Initially the broadcast channel GO! is signaled to ensure all threads are
in their correct state. The scheduler then executes for wcet time. If there
are any schedulable threads, the highest priority thread is selected, by set-
ting the corresponding index in the running array to 1. If no threads are
schedulable all indices in running are set to 0. This is handled by the two
methods selectThread() and idle() respectively.

11.4 Periodic Thread

For each periodic and sporadic thread in the Java program, a base model is
added. The base model for the periodic thread is depicted in Figure 11.3.
This model must be supplied with parameters to determine its ID, period,
deadline, and offset corresponding to the actual Java implementation of the
thread.

Initially the thread waits if an offset is specified. If the thread has a
higher priority than the currently running thread, it stops the currently
running thread and starts the scheduler, by calling runScheduler(). In the
actual Java implementation, it is not the threads responsibility to notify the
scheduler, but instead the scheduler’s responsibility. However, this imple-
mentation is not suitable in Uppaal, since it would make the model unnec-
essarily complicated. The implementation of runScheduler() is shown in
Listing 11.3.
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run[pID]?

run[pID]!

GO?

runScheduler()

GO?

schedulable[pID] = true,
releasedTime = 0

schedulable[pID] = false,
runScheduler()

ReadyToBeScheduled

releasedTime <= offset

releasedTime <= period

CheckForOffset

ExecutingThread

DONE

offset == 0

offset != 0

releasedTime == offset

threadPriority[pID] < selectedThreadPriority

threadPriority[pID] >= selectedThreadPriority

releasedTime == period

releasedTime <= deadline

releasedTime <= deadline

Figure 11.3: PeriodicThread base model

1 void runScheduler (){
2 int i;
3 if (synchronized){
4 interruptWaiting = true;
5 } else {
6 for (i = 0; i <= totalThreads; i++){
7 running[i] = 0;
8 }
9 running[schedulerID] = 1;

10 }
11 }

Listing 11.3: Implementation of runScheduler

• Lines 3-4: If the system is in a synchronized region an interrupt is
scheduled.

• Lines 5-10: Otherwise all threads are stopped and the scheduler is
started.

The run channel is signaled with the current ID of the thread, run[pID]!,
it then waits for a response on the same channel, which indicates the thread
is done with its run logic. It is then ensured that it has completed before its
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deadline, otherwise it results in a deadlock, and the system is not schedula-
ble. The scheduler model is invoked to determine which thread to schedule
next. The same procedure continues for each period of the periodic thread.

11.5 Sporadic Thread

The sporadic model is similar to the periodic model, except it must be
invoked by signaling fire with the sporadic ID. The base model is depicted
in Figure 11.4. This model must be supplied with parameters for its ID,
minimum inter-arrival time, and deadline. When the minimum inter-arrival
time since the last release of this task has passed, the firable array is set
to true for the specific task, and it is ready to be fired again.

run[sID]!

fire[sID]?

run[sID]?

fireable[sID] = true schedulable[sID] = true,
fireable[sID] = false,
releasedTime = 0,
runScheduler()

GO? ReadyToBeScheduledReadyToBeFired

ExecutingThread

DONE

schedulable[sID] = false,
runScheduler()

releasedTime == minIA

releasedTime <= deadline

releasedTime <= deadline

releasedTime = 0,
fireable[sID] = true releasedTime <= minIA

Figure 11.4: SporadicThread base model

11.6 Performing Schedulability Analysis

The scheduler and the concept of periodic and sporadic tasks in the Uppaal
model have been discussed in this chapter, how each of the methods are
translated to Uppaal is described in Chapter 12. If a periodic or sporadic
task misses its deadline, then the model is in a deadlock state, because the
invariant of the ExecutingThread in Figure 11.3 or 11.4, is violated. If
a deadlock cannot occur in the system, then the system must be schedu-
lable, because no deadlines are can be missed. In order to determine the
schedulability of the model the following query is used:

A[]not deadlock

If this property is satisfied, the system is schedulable.
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11.6.1 Decidability

In general, the reachability problem for timed automata extended with stop-
watches is undecidable [1], where it is decidable for timed automata without
stopwatches. Let A be a timed automata using stopwatches. If A can be re-
duced to a timed automata without stopwatches, then reachability problems
for A are decidable.

This section describes how a SARTS model can be reduced to a model
without stopwatches.

SARTS generates a system of timed automata extended with stopwatches,
where stopwatches are used to model preemption. In the model, each basic
block requires one location in the model and a number of outgoing transi-
tions, depending on the type of block, e.g. branching. In each location the
clock representing the execution time associated with the running thread,
can be stopped to simulate preemption. The model generated is determin-
istic in the sense that preemption can only happen at integer points in time
i.e. when threads are released and when executing threads are done execut-
ing. The use of stopwatches allow simpler models, in terms of locations and
transitions, to express preemption with the granularity of one clock cycle in
the model. Although since the preemption occurs only when periodic tasks
are released, when sporadic threads are fired by periodic threads, and when
a thread is done executing, actual preemption at this granularity is very
unlikely. This can be equally modeled without the use of stopwatches, by
explicitly adding a preempted location to each basic block and thereby al-
low preemption before entering a non-preemptive state, where the execution
time for this single basic block is elapsing. To illustrate how it is modeled,
a simple example of two sequential instructions is depicted in Figure 11.5
using stopwatches, and how this can be modeled without stopwatches is
depicted in Figure 11.6.

The idea here is that it is not possible to preempt the model when ex-
ecuting an instruction, e.g. when it is in state Inst1, but it is possible to
preempt it before the next instruction is executing, e.g. in state Inst1Done.
Interrupts are performed by setting the interruptWaiting variable to true.
The currently executing task then preempts itself and starts the scheduler,
which invokes the correct thread again, i.e. the thread with the highest pri-
ority is invoked. This pattern must then be applied to all states in the model,
in order to convert from a model with stopwatches, to one without. Pre-
emption is therefore only possible between instructions, but splitting basic
blocks into blocks which require one clock cycle each, a preemption granu-
larity equal to the model using stopwatches, is achieved, but without the use
of stopwatches. This, however, makes the models very large, and will in turn
influence verification time. Since it is possible to model this without using
stopwatches, the reachability problem is decidable. The reduction from a
model with stopwatches to one without is only an indication of how it can
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methodExample[tID]!

methodExample[tID]?
executionTime = 0

executionTime = 0

Inst1

Waiting

Inst2

executionTime = 0
executionTime == inst2

executionTime <= inst1 &&
executionTime' == running[tID]

executionTime == inst1

executionTime <= inst2 &&
executionTime' == running[tID]

Figure 11.5: Preemption with stopwatches

runScheduler!
schedule[tID]?

schedule[tID]?

runScheduler!

executionTime = 0

executionTime = 0

executionTime = 0

executionTime = 0

Inst1Done

Inst2

Inst1

executionTime <= inst2

Inst3

Preempted1

Preempted2Inst2Done

executionTime = 0

interruptWaiting == true

executionTime == inst2

interruptWaiting == false

executionTime <= inst1

executionTime = 0

interruptWaiting == true

executionTime == inst1

interruptWaiting == false

Figure 11.6: Preemption without stopwatches
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be performed, and not exactly a proof. It is an open question whether the
performance is significantly increased by using stopwatches, since the model
is significantly smaller in the number of locations and transitions.

The next chapter describes the actual translation of basic blocks from SIR
to Uppaal.
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Uppaal Translation

The Uppaal translation is located in the sarts.uppaal.translation pack-
age. It consists of a set of visitors, which visit the entire intermediate rep-
resentation, described in Section 9.1. A Uppaal template is then created
for each method in the system. This template represents the CFG built of
the different types of basic blocks. The corresponding Uppaal template for
each of the basic blocks is described in the following sections.

12.1 Simple Basic Block

A basic block modeled in Uppaal is depicted in Figure 12.1. The state is
named BasicX where X is an increasing variable used to ensure each state
has a unique name. An invariant is added to ensure the model stays in this
state as long as the WCET of the represented bytecode. Whether the given
task is executing is denoted by executionTime’ == running[tID] using
stopwatches as described in Section 11.1. The execution time is reset on
the outgoing edge to ensure the model stays in the next state in the correct
amount of time.

executionTime = 0

executionTime <= instX && 
executionTime’ == running[tID]

BasicX

executionTime == instX

Figure 12.1: Basic Block
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Each basic block, uses the same notation to represent the correct amount
of time spent in a state. When describing the rest of the basic block types,
only additional information added to the template is described.

12.2 Method Calling Basic Block

When a method invocation is performed, it corresponds to switching to
another template in Uppaal. This is modeled as depicted in Figure 12.2.
A channel for each method in the real-time system is added to the Uppaal
model, and the correct method must be invoked. At compile time it is not
always possible to uniquely identify, which implementation of a method will
be invoked. This is due to dynamic dispatching, described further in Section
15.1. This is handled by adding all possible implementations of the specific
method to the Uppaal template, denoted by methodName1 to methodNameN.
The template then changes state to running_MethodCallingX and waits
until the method returns, by signaling on the corresponding channel. Note
that the running_MethodCallingX and returningFrom_MethodCallingX
locations are added during the translation to Uppaal, and are not present
in SIR.

Using this design ensures that Uppaal considers all possible method
candidates for this call. However, this might be pessimistic and an approach
to refine the set of method candidates is discussed in Section 15.1.

The variable methodSwitchCost is set to the cost of fetching the method
returned to, into the cache. In the current implementation method caches
are always assumed to miss. How the use of a method cache could be
implemented is discussed in Section 15.4.

12.2.1 Sporadic Invoke Basic Block

A special case of method invocation is when fire is invoked, corresponding
to releasing a sporadic task. How this is modeled is depicted in Figure 12.3.
When releasing sporadic tasks, their minimum inter-arrival time must be
met, which is ensured by checking whether the specific sporadic thread is
ready to be fired, using the firable array, described in Section 11.5.

If the sporadic thread is not ready to be released, the template enters
a committed state and continues to loop, resulting in a livelock. Uppaal
then backtracks and select another branch in a previous branching block.
If the sporadic thread is ready to be released, fire[Y] is signaled and the
scheduler is run in order to determine which task to execute. Note that
this design assumes that the minimum inter-arrival time is not violated in
the actual implementation, which might not be true in the actual real-time
system. However, this is a problem in the specification of the system or the
implementation of the real-time system, discussed in Section 15.3.
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methodNameN[tID]!

methodName1[tID]? methodNameN[tID]?

executionTime = 0

executionTime = 0,
methodSwitchCost = Y

methodName1[tID]!

MethodCallingX

executionTime <= methodSwitchCost && 
executionTime' == running[tID]

executionTime <= instX && 
executionTime' == running[tID]

running_MethodCallingX

returningFrom_MethodCallingX

executionTime = 0

executionTime == instX executionTime == instX

executionTime = 0

executionTime = 0,
methodSwitchCost = Y

executionTime == methodSwitchCost

Figure 12.2: Invoke of a standard method

fire[Y]!
executionTime = 0

executionTime <= instX && 
executionTime' == running[tID]

executionTime == instX && 
fireable[Y] == false

SporadicInvokeX

executionTime = 0

executionTime == instX && 
fireable[Y] == true

Figure 12.3: Invoke of a fire method
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12.3 If Basic Block

When reaching an If location, Uppaal performs a nondeterministic choice
between transitions, illustrated in Figure 12.4.

ThenBody and ElseBody each represent one or many blocks, in the figure,
abbreviated for readability, and EndIf represents the next basic block after
the if block.

executionTime = 0 executionTime = 0

ThenBody

IfX
executionTime <= instX && 
executionTime' == running[tID]

ElseBody

EndIf

executionTime == instX executionTime == instX

Figure 12.4: If basic block

12.4 Loop Basic Block

When loops are modeled in Uppaal they must be supplied with a loop
bound annotation from the source code, which in this project is assumed to
be specified by the programmer. The code inside the loop is then run as
many times as the loop bound indicates, as depicted in Figure 12.5. Each
time the loop is entered the loop bound variable is incremented, and reset
when the loop is complete.
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executionTime = 0,
loopBoundY++

loopBoundY = 0 LoopX

executionTime <= instX && 
executionTime' == running[tID]

LoopBody

LoopExit

executionTime == instX &&
loopBoundY < Z

loopBoundY == Z

Figure 12.5: Loop basic block

12.5 Synchronization

JOP disables interrupts inside a synchronized region, interrupts occuring
during a synchronized region is handled when the region is left. Nesting of
synchronized regions are allowed, and interrupts are enabled again when the
last synchronized region has been left. How this is modeled in Uppaal is
depicted in Figure 12.6 and 12.7.

monitorEnter()

executionTime <= instX && 
executionTime’ == running[tID]

MonitorEnterX

executionTime = 0
executionTime == instX

Figure 12.6: Monitor enter basic block
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executionTime = 0,
monitorExit()

executionTime <= instX && 
executionTime’ == running[tID]

MonitorExitX

executionTime == instX

Figure 12.7: Monitor exit basic block

Where the monitorEnter method is added when entering a synchro-
nized region, disabling interrupts. The monitorExit method is added when
leaving a synchronized region, enabling interrupts if the last synchronized
region is left. If interrupts have been requested during a synchronized re-
gion, the scheduler is invoked. The implementation of monitorEnter and
monitorExit are shown in Listing 12.1.

1 void monitorEnter (){
2 synchronized = true;
3 monitorDepth ++;
4 }
5

6 void monitorExit (){
7 monitorDepth --;
8 if (monitorDepth == 0){
9 if (interruptWaiting == true){

10 interruptWaiting = false;
11 runScheduler ();
12 }
13 synchronized = false;
14 }
15 }

Listing 12.1: Implementation of monitorEnter and monitorExit

The depth of the synchronized region is incremented each time monitorEnter
is invoked and decremented each time monitorExit is invoked. If the depth
is 0, meaning the outer synchronized region has been left, the scheduler
is invoked if interrupts are waiting. The implementation of runScheduler
is shown in Listing 11.3. Synchronized methods are supported by adding
monitorEnter and monitorExit to the incoming and outgoing transitions
when a MethodCallingBasicBlock is translated.
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12.6 Empty Basic Block

As described in the design, empty basic blocks are only added for conve-
nience reasons and do not represent any bytecode. A basic block is modeled
like a basic block, where the waiting time is set to 0, because no bytecode
is executed. An empty block is added to the beginning and the end of each
template, to represent method invoke and return. On a method invoke, the
cost of loading the method into the method cache is added to the cost of
the first empty basic block.

This concludes the explanation of the implementation of SARTS. To im-
prove performance of the verification process, several optimizations have
been implemented. These optimizations are described in the next chapter.
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Optimizations

This chapter describes some of the optimizations which have been imple-
mented, in the current version of SARTS. The idea is to describe why these
optimizations help and how much. The optimizations presented in this chap-
ter mainly focus on reducing the state space of the model, and in general
reduce the execution time needed to verify the system. Some optimizations
additionally result in a more accurate analysis, while still being an over ap-
proximation. Additional optimizations, which have not been implemented
yet, are discussed in Chapter 15.

When experiments have been conducted in this project, the computer
being used to verify the models, has the following specification: Sun Fire
X4100, with two 2.4 GHz CPUs (Dual Core AMD Opteron 275) and 4096
MB RAM running Suse Linux Enterprise Desktop 10 - 64bit. The version
of Uppaal used is 4.1.0 (rev. 3425), February 2008.

13.1 Remove Unused Templates

In the initial phase, the Java implementation is translated to SIR, described
in Chapter 10. Each time an object is created, the class is translated to SIR
together with all parent implementations of that class. Translating a class
to SIR includes translating all methods in the class to SIR. This results in a
lot of unused methods being translated to SIR. Before SIR is translated to
Uppaal, it is checked whether a method is used in the actual execution of
the system. This includes hiding the methods invoked during scheduling and
sporadic invoke, because this is handled by a default template in Uppaal,
described in Chapter 11. This greatly reduces the amount of templates in
the final Uppaal model, increasing the throughput of the verification, as
less states are considered. RTSMSimple has been translated to a Uppaal
model with and without unused templates being removed. How this reflects
the amount of templates and verification time is shown in Table 13.1.

This reduction does not compromise the accuracy of the verification,
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Configuration Number of templates Verification time
Standard 460 Out of memory

Templates removed 17 1m 55s

Table 13.1: Removal of unused templates

because only unused methods are removed. It has not been possible to get
the verification to terminate without this optimization, simply because the
system runs out of memory. The system ran out of memory after 75 minutes.

13.2 Collapse Basic Blocks

When Java is translated to SIR each bytecode is represented by a basic
block, this results in long sequences of basic blocks. Preemption is possi-
ble during a basic block, because of stopwatches, i.e. a basic block with a
WCET of 100, and a sequence of 10 basic blocks with a WCET of 10 rep-
resents the same system, in regards to timing behavior. Sequences of basic
blocks are therefore collapsed into one basic block, where the WCET of each
block is added together. Collapsing basic blocks results in a more compact
model, which result in a faster verification. A more compact model is also
an advantage when manually inspecting the models, due to a more simple
representation increasing the overview of the model. How collapsing of ba-
sic blocks affects the number of total states in the system, when translating
RTSMSimple, is shown in Table 13.2.

Configuration Number of states Verification time
Standard 383 2m 36s

Collapsing of basic blocks 209 1m 55s

Table 13.2: Collapsing of basic blocks

13.3 Remove Invalid Traces

As mentioned, the schedulability analysis is performed by verifying that
the translated model contains no deadlocks. A method for reducing the
amount of traces, examined by Uppaal, is to introduce livelocks, thereby
eliminating an invalid trace. This technique has been used when invoking
sporadic tasks.

It is assumed that the minimum inter-arrival time for a sporadic task is
not violated, as it can result in unpredictable behavior. If a trace to a firing
of a sporadic task, where the minimum inter-arrival time requirement is not
met, it is assumed that this is not a valid trace, since this would violate the
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requirements. This is handled by entering a livelock, as depicted in Figure
13.1.

fire[2]!

SporadicInvokeBasic1

fireable[2] == false

Force_Backtrack

Basic2 Basic3

fireable[2] == true

Figure 13.1: Invoke of sporadic task

The old approach is depicted in Figure 13.2, where the trace continues
instead of forcing a backtrack. This approach has two flaws, the state space
is increased, because an invalid trace is completed. Furthermore, this trace
might result in a more pessimistic analysis, because the trace, which leads
to this sporadic invoke might have a higher WCET or blocking regions.

fire[2]!

SporadicInvokeBasic1

fireable[2] == false

Basic2 Basic3

fireable[2] == true

Figure 13.2: Old invoke of sporadic task

The approach used in the current implementation, Figure 13.1, assumes
that other alternatives are available, i.e. a previous branch exists, not lead-
ing to firing of the sporadic event. If no such alternative is available the
analysis can result in a false positive, this problem is discussed in Section
15.3.

13.3.1 Experiment

In order to illustrate the improvement of introducing a livelock to remove
invalid traces, a small example is used. The system consists of a periodic
and a sporadic task. The sporadic run method is empty and the periodic run
method is shown in Listing 13.1. This example is not a realistic example,
but illustrates the improvements of introducing livelocks.

The idea behind the example is that the if condition on line 3 is only
true once in the loop, and the minimum inter-arrival time of the sporadic
task is therefore not violated.
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1 protected boolean run() {
2 for (int i = 0; i < foo.length; i++){ //@WCA loop =10

3 if (foo[i] == true){
4 RealtimeSystem.fire (2);
5 complexMethod ();
6 }
7 }
8 return true;
9 }

Listing 13.1: Invalid trace removal example

If the backtrack state is removed, complexMethod is in the worst case
executed 10 times instead of 1, thus resulting in a pessimistic analysis. The
result of the experiment is shown in Table 13.3.

Configuration Verification time Result
Standard 0.31s Satisfied

No sporadic backtrack 2.32s MAYBE NOT satisfied

Table 13.3: Removal of invalid traces

As expected the addition of the livelock state reduces the state space,
and thus reduces verification time. This is a very simple example, but it
illustrates how the verification time needed is significantly higher without the
optimizations. When the sporadic backtracking is removed, Uppaal returns
Property is MAYBE NOT satisfied, and the system is determined as
not schedulable by SARTS.

13.4 Limit Total Execution Time

It might be possible to determine whether a system is schedulable before
Uppaal has examined the entire model, by limiting the total execution
time of the model. Note this is not the execution time of the verification,
but the amount of time each trace in the system is examined regarding its
clocks. This is handled by adding a global clock to the system, and then
add a bound for when the scheduler should stop. The idea is that if this
time is met, and no deadlocks have been detected, then the system must be
schedulable.

This value is determined by least common multipe (LCM) of the periods
of all periodic tasks in the system, referred to as hyper period. The maximum
load on the processor is when all the tasks are released, known as a critical
instant [7], a point in time which will be repeated each hyper period. If no
deadlocks have occurred in all possible traces to this point, the system must
be schedulable. Worth noting is how the choice of periods can influence

77



13.4. LIMIT TOTAL EXECUTION TIME

LCM, e.g. prime numbers are not a good choice. However, this value is not
sufficient if one or more of the periodic tasks have an offset. It also requires
that none of the sporadic tasks are running, because if they are, the next
hyper period will not be equal to the first.

How this can be added to the scheduler template is depicted in Figure
13.3, where X denotes LCM of the periods of all periodic tasks in the system.

GO!

selectThread(),
executionTime = 0

idle(),
executionTime = 0

executionTime <= wcet && 
totalExecutionTime <= X &&
executionTime' == running[schedulerID]

totalExecutionTime == X &&
running[AllTasks] == 0 &&
schedulable[SporadicTasks] == false

Running

executionTime == wcet &&
totalExecutionTime < X

!exists(i:ThreadID)schedulable[i] exists(i:ThreadID)schedulable[i]

Figure 13.3: Limit total execution time

When X time has passed, the system enters a livelock state. None of the
tasks in the system must be running, ensured by running[AllTasks] == 0.
All sporadic tasks must either have completed their execution or not have
been released, ensured by schedulable[SporadicTasks] == false. This
ensures that the sporadic tasks are not in the ExecutingThread state, de-
picted in Figure 11.4 Section 11.5. Note that AllTasks and SporadicTasks
in the figure represents IDs of periodic and sporadic tasks respectively. If
these additional guards are added to the scheduler, and the system is verified
to be schedulable, it is sufficient. However, the system might be determined
not to be schedulable if one of the sporadic tasks has not been completed,
but the system might be schedulable anyways. A less restrictive addition to
the scheduler template is depicted in Figure 13.4.

This modification ensures that the system enters an idle state after X
amount of time has passed. If the system is determined to be schedulable
with this approach, it is indeed schedulable. Note if the system is determined
to not be schedulable with this restriction, removing it does not help.

The optimization described in this section is not implemented; it is not
automatically generated as a part of the translation. However, the opti-
mization in Figure 13.3 has been used in all the experiments performed in
Chapter 14.

How these approaches affect the verification time is shown in Table 13.4.
Note that all the experiments have been conducted with a depth first search
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GO!

selectThread(),
executionTime = 0

idle(),
executionTime = 0

totalExecutionTime >= X

totalExecutionTime < X

executionTime <= wcet && 
executionTime' == running[schedulerID]

Running

executionTime == wcet

!exists(i:ThreadID)schedulable[i] exists(i:ThreadID)schedulable[i]

Figure 13.4: Limit total execution time - less restrictive

and aggressive state space reduction, to reduce the verification time. The
most restrictive bound yields a significantly lower verification time. It is
therefore advised to use the approach from Figure 13.3, and it has also been
used in all the experiments conducted in this report.

Configuration Verification time Result
Figure 13.3 approach 51s Satisfied
Figure 13.4 approach 401m 21s Satisfied

No bound 712m 54s Satisfied

Table 13.4: Limitation of total execution time of RTSMSimple

This concludes the implementation of SARTS and the different optimiza-
tions implemented. A list of limitations of the current implementation can
be found in Appendix C. The next part describes the results and future
directions of SARTS.
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Results
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Chapter 14

Experiments

This chapter documents a series of experiments conducted, to evaluate the
implementation of SARTS. SARTS is used to perform a full schedulability
analysis, where tools like WCA and Volta support only an isolated WCET
analysis for each method. A direct comparison is therefore not possible.
However, a modified version of SARTS is available in sarts.MethodWCET,
which allows WCET analysis for a specific method, in order to allow a com-
parison with WCA and Volta. Volta is based upon WCA and should return
the same WCET result, and only provides a more user friendly output. How-
ever, JOP has been updated with new execution times, and WCA has been
updated accordingly, whether the current version of Volta is updated is un-
known. WCA and Volta uses the same approach to WCET analysis, and it is
the approach which is interesting to compare to SARTS and not the specific
tool. SARTS is therefore only compared to WCA in the experiments.

14.1 WCET Calculation

WCA only supports WCET calculations for a single method. These values
are then used in traditional approaches, described in Chapter 3, in order
to determine whether the system is schedulable. However, the utilization
test requires the tasks to be independent and non-blocking. The experiment
presented in this section is used to illustrate that SARTS and WCA result
in the same WCET estimate. A small method with nested loops is shown in
Listing 14.1. This method is used as an example to illustrate the accuracy
of WCA, and is therefore used in this experiment.

The interesting part of the method is whether the tool can determine
the most time consuming path, i.e. the first loop. The method is analyzed
with WCA, SARTS, and executed on JOP, where the actual amount of clock
cycles used is determined. The method is invoked with b = true in order
to hit the worst case path.
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1 public static int measure(boolean b, int val) {
2 int i, j;
3 for (i=0; i<10; ++i) { //@WCA loop =10

4 if (b) {
5 for (j=0; j<3; ++j) { //@WCA loop=3

6 val *= val;
7 }
8 } else {
9 for (j=0; j<4; ++j) { //@WCA loop=4

10 val += val;
11 }
12 }
13 }
14 return val;
15 }

Listing 14.1: Method example

The result of the experiment is shown in Table 14.1. WCA and SARTS

WCET
JOP 1369
WCA 1553

SARTS 1553

Table 14.1: WCET results for measure

return, as expected, the same result, because they both use the most resent
bytecode instruction costs for JOP. However, this seems to be a pessimistic
result, which is not entirely true. The execution of the code on JOP does not
include return val; which is translated to iload_1 and ireturn, which
cost 1 and 23 clock cycles respectively. return val; is not included because
the timeBegin(); and timeEnd(); are inserted after line 1 and 13 respec-
tively. The difference between the calculated and the measured WCET is
now 160 clock cycles. This is caused by the anomaly with the iinc instruc-
tion, as described in Section 5.4, which is measured to 4 clock cycles, but
specified as 8 clock cycles. In the worst case path, iinc is used 40 times,
which is a difference of 160 clock cycles, which explains the difference. So
if iinc was updated to take 4 clock cycles and iload_1 and ireturn were
included, the measurement would be equal to the calculated WCET.

14.2 Conditional Sporadic Events

This experiment shows how dependencies between sporadic tasks are de-
tected in SARTS. The dependency consists of a periodic task firing two
sporadic tasks in mutually exclusive branches.
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The system tested consists of one periodic thread and two sporadic
threads. The run method for the periodic thread is shown in Listing 14.2.
The periodic class Experiment2 fires either event 1 or event 2, but never
both in the same period. The period and minimum inter-arrival times are
set to 4 microseconds. The sporadic tasks have the same WCET.

1 public class Experiment2 extends PeriodicThread {
2 public boolean run() {
3 if(b) {
4 RealtimeSystem.fire (1);
5 } else {
6 RealtimeSystem.fire (2);
7 }
8 return true;
9 }

10 }

Listing 14.2: Conditional sporadic invoke

The WCET for each run method can be seen in Table 14.2. The period
calculated into clock cycles is 240. Calculating the processor utilization for
this system gives: (

161
240

)
+

(
64
240

)
+

(
64
240

)
= 1.20 (14.1)

This shows that the system uses more than the available processor time, and
is therefore not schedulable according to any of the approaches described in
Chapter 3. Running SARTS on this system will correctly show is as being
schedulable, since the model checker can deduct that the two sporadic events
will never be fired at the same time. A time-line for the execution of the
system can be seen in Figure 14.1.

WCET
Periodic thread 161
Sporadic thread 64

Table 14.2: WCET for the threads

14.3 Scaling

Several experiments have been conducted to illustrate the scalability of
SARTS. The experiments consider only the time used to verify the sys-
tem in Uppaal, because the translation time is insignificant. The different
optimizations described in Chapter 13 have all been enabled in the experi-
ments. Both the standard version and RTSMSimple have been verified, with
and without the use of RelativeTime, to reduce verification time.
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0 240 480

Periodic

Sporadic 1

Time

Process

Process release time

Process completion time – deadline met

Deadline missed

Executing

Preempted

Sporadic 2

Figure 14.1: Time-line for conditional sporadic invoke

Two different compilers, javac and Eclipse, are used, as these generate
different bytecode. This make the generated models different, influencing
the verification time.

The execution of the verification for each of the configurations is shown
in Table 14.3. These results indicate that SARTS does not scale well.

System Compiler Verification time Result
RTSM Javac 27h 15m 26s Satisfied
RTSM Eclipse 5h 42m 10s Satisfied
RTSMSimple Javac 14m 29s Satisfied
RTSMSimple Eclipse 1m 55s Satisfied

Table 14.3: Verification time of RTSM

However, it is possible to reduce the time needed to verify the systems,
using the options available in Uppaal. Additional tests have therefore been
conducted. Table 14.4 is the same experiments where a depth first search
instead of breath first search is used, and aggressive state space reduction is
enabled.

System Compiler Verification time Result
RTSM Javac 6h 30m 01s Satisfied
RTSM Eclipse 1h 28m 29s Satisfied
RTSMSimple Javac 4m 23s Satisfied
RTSMSimple Eclipse 51s Satisfied

Table 14.4: Verification time of RTSM using depth first search and aggressive
state space reduction

Uppaal also supports a convex-hull approximation option, reducing ver-
ification time at the cost of an over approximate answer. If Uppaal using
convex hull determines the property to be satisfied, then it is also satisfied
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without the approximation. The result of this experiment is shown in Table
14.5.

System Compiler Verification time Result
RTSM Javac 52s Satisfied
RTSM Eclipse 37s Satisfied
RTSMSimple Javac 16s Satisfied
RTSMSimple Eclipse 9s Satisfied

Table 14.5: Verification time of RTSM using convex-hull approximation

An interesting indication of the poor scalability is the difference in ver-
ification time even though it is the same system, but with a different com-
piler. The generated models for RTSMSimple have been inspected, to detect
the difference. The only major difference is in the isEmpty() method in
BoundedBuffer, where the final if statement is translated differently. The
two different models are depicted in Figure 14.2.

WCET = 1

WCET = 23

Return

Basic

IF

GOTO

End

Basic

WCET = 1

WCET = 4

WCET = 1

WCET = 23

Return

Basic

IF

Return

End

Basic

WCET = 1

WCET = 23

(a) (b)

Figure 14.2: (a) Compiled with Javac (b) Compiled with Eclipse

These two models are semantically equivalent, disregarding execution
time. The Javac version has a single return statement and a jump to this
statement from the other branch, the Eclipse version has two return state-
ments. In the Eclipse version both branches have the same cost. The state
of the model when the template enters the end location is therefore indepen-
dent of the previous branch, and the branch becomes insignificant. If this
optimization is introduced in the Javac model, it has a similar verification
time as the Eclipse version. This indicates how small changes in the model
can drastically change the verification time needed.
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14.4 Summary

Experiments have been conducted to test the accuracy and scalability of
SARTS. It has been shown that SARTS is capable of determining a precise
WCET estimate of a method, compared to executing it on JOP. This esti-
mate is comparable to WCA. It has been shown that SARTS is capable of
producing a less pessimistic result than possible with traditional approaches.
These two results show that it is possible to derive locally accurate WCET
estimates, combining this with information about the control flow of the
actual execution of the system, results in a more accurate analysis. How-
ever, SARTS has some issues regarding scalability, even small changes in the
program can drastically change the verification time needed. Several opti-
mizations are available in Uppaal, which can reduce the verification time,
while still providing sound results.

Further improvements to increase the accuracy and scalability of SARTS
are discussed in the next chapter.
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Improvements

In this chapter, some bottlenecks of the current implementation are con-
sidered and some suggestions for improvements are presented. These im-
provements have not been implemented, but are considered as future work
suggestions. The goal is to lower the state space of the model in order to
speed up verification, but also to get a more tight result while still being
sound.

15.1 Method Invocation

In a program, the virtual methods may cause more methods to be consid-
ered at runtime, what is known as dynamic dispatching, i.e. finding the
correct implementation of a method. In Java, methods are by default vir-
tual as described in Section 16.2. The current implementation of SARTS
will make Uppaal consider all possible methods at a given method call.
This makes the resulting analysis pessimistic, as the method with highest
execution cost and/or particular interleaving will dominate the analysis and
also increase the state space since more choices are considered. Reducing the
set of possible methods which can be invoked on a method call, is therefore
an improvement to the state space and possibly a more tight analysis.

As an example, consider the Java code snippet in Listing 15.1. The class
diagram in Figure 15.1 shows the relationship between Triangle, Drawable
and several other classes. The draw methods considered in this piece of code,
if translated into a model, will be from the classes: Drawable, Character,
Shape, Square, and Triangle, while the correct implementation actually
will be from Triangle.

1 Drawable d = new Triangle ();
2 d.draw();

Listing 15.1: Java code snippet
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+draw()

Drawable

+draw()

Character

+draw()

Shape

+draw()

Triangle

+draw()

Square

Figure 15.1: Class diagram of Drawable

15.1.1 Static analysis

Static analysis can be used to solve this problem, by minimizing the set of
methods considered in a method call. This must be an over approximation
to preserve the correctness of the analysis. Knowing the concrete type of all
objects at any given time in the program, will provide enough information
to identify the concrete method at a method call. To be able to reduce the
set of method implementations considered at a given virtual method call,
the concrete type of the object on which the method is specified must be
known. Thus, the problem of identifying method implementation can be
solved if the concrete type of the object is known.

An analysis for type inference for Java is presented in [40]. The analysis
presented is used for checking down casts of objects, but the technique can
be used for performing concrete class analysis as well; this analysis would
provide a conservative estimate of the type of each object in the program
[40].

Additionally, this analysis could be extended by selecting from this con-
servative set of types, the type of an object appropriately in each execution
path. This amounts to generating Uppaal code, which would execute ab-
stractions of the actual code, which only tracks the possible types of given
objects.

15.2 Predicate Abstraction

Predicate abstraction is widely used in conjunction with model checking, to
verify safety properties of systems [4]. This makes it obvious to incorporate
predicate abstraction in SARTS.

The advantages of predicate abstraction are twofold: are tighter analysis
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and a reduced state space. Knowledge about predicates can limit branches
in the verification process, reducing the state space, as well as possibly
removing invalid traces.

The idea is to create abstractions over values in the Java program, and
track the value of these predicates during the verification in Uppaal.

A suggestion to how predicate abstraction can be applied to the Uppaal
model is presented in the remainder of this section.

The predicate abstraction can be inserted into the Uppaal model by
creating variables for each predicate. These variables are represented using
three-valued logic, the values being: TRUE, FALSE and UNKNOWN. A new type
and some constants defined for this purpose are shown in Listing 15.2. All
condition variables are of type Condition, and are assigned the value TRUE,
FALSE, or UNKNOWN.

1 typedef int[0,2] Condition;
2

3 const Condition TRUE = 0;
4 const Condition FALSE = 1;
5 const Condition UNKNOWN = 2;

Listing 15.2: Types and variables for predicate abstraction

When a branch is encountered in the model, the appropriate branch
needs to be taken if the value of the predicate is known. If the value is
unknown, a nondeterministic choice is made, and the variable is updated to
the correct value. This is depicted in Figure 15.2.

condition2 = condition1

condition1 = TRUE

condition1 == UNKNOWN ||
condition1 == TRUE

condition1 == UNKNOWN ||
condition1 == FALSE

condition2 == FALSE

condition2 == TRUE

condition1 = FALSEIf2condition1 == UNKNOWN

If1

condition1 == UNKNOWN

condition1 = FALSE

condition1 = TRUEFigure 15.2: Branch with predicate abstraction

Whenever a variable is updated in the Java program the predicate in the
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Uppaal model needs to be updated as well.

15.2.1 Experiment

This experiment calculates the WCET for a method using SARTS and
WCA, and compares it to the actual execution time on JOP. The method
tested is shown in Listing 15.3. Both simple methods contain only a single
i++, and both complex methods contain a loop which iterates 10 times.

1 public void testMethod () {
2 if(condition1){
3 simpleMethod1 ();
4 condition2 = true;
5 } else {
6 complexMethod1 ();
7 condition2 = false;
8 }
9

10 if(condition2)
11 complexMethod2 ();
12 else

13 simpleMethod2 ();
14 }

Listing 15.3: Predicate abstraction experiment

Two measurements are conducted on JOP, with condition1 set to true
and false respectively. The execution time is calculated using WCA, us-
ing standard SARTS, and finally using SARTS with predicate abstraction.
The model using predicate abstraction is constructed manually as described
above. The method cache has also been manually inserted in the model,
to make the result consistent with WCA and JOP, as described in Section
15.4.3.

Configuration Execution time
JOP - true 446
JOP - false 438
WCA 590
SARTS- no abstraction 590
SARTS- with abstraction 467

Table 15.1: Execution times

The calculated times can be seen in Table 15.1. It can be seen that
without abstraction, SARTS calculates the same value as WCA. With ab-
straction added the value calculated by SARTS is 21 higher than the actual
execution. This is the problem with the return instruction not being added.
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The method is a void method, a return from a void takes exactly 21 clock
cycles, making the result exactly equal to that of the actual execution.

15.3 Sporadic Thread

To reduce the number of traces explored while model checking, live locks
are placed in the model where invalid traces would be explored, discussed
in Section 13.3. Section 13.3 deals with invalid traces regarding the firing of
sporadic tasks, which requires the adherence to the specification of minimum
inter-arrival time of sporadic tasks. It is currently not possible to verify that
a trace will always reach the end of a run method whenever a run method
is entered. This would be expressed in Uppaal as A[](p imply E <> q),
which means that reaching p it should always be possible to reach q; this is
not allowed in Uppaal because nesting of quantifiers is not allowed. This
is a problem because if all traces from a periodic task release reach firing of
a sporadic task, where minimum inter-arrival time requirement is not met,
the system will be considered schedulable; based on wrong assumptions.
Unfortunately, both solutions presented in Section 13.3 may result in op-
timistic analysis when the specification of minimum inter-arrival times are
not adhered to. An example where SARTS fails in detecting an unschedu-
lable system is presented in Table 15.2. This system contains three threads,
one sporadic thread S and 2 periodic threads P0 and P1. In this system,
the minimum inter-arrival time specification of S is ignored by P0, and S
will be fired every 10 milliseconds, preventing P1 to meet its deadline. The
time-line of the system is depicted in Figure 15.3, where it can be seen that
the deadline of P1 will be missed and the system is not schedulable.

In SARTS, the backtracking construction will make the system enter
a livelock at the second release of P0, because the minimum inter-arrival
time of S is has not elapsed. Using the old construction skipping the firing
of the sporadic thread when the minimum inter-arrival time requirement is
violated, will cause P1 to meet the deadline because S will not be fired.

Process Period, T WCET, C Deadline, D

P0 10 5 9
S 20 5 10
P1 20 5 20

Table 15.2: False positive example

The cause of this problem is the system not adhering to the require-
ments specified, an error, which is not considered in SARTS, where it is
assumed that this specification is adhered to. This should be ensured before
performing model checking.
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Figure 15.3: Time-line for false positive

15.4 Method Cache

The current implementation does not consider the method cache imple-
mented in JOP. To ensure an over approximation, a method miss is always
assumed. This results in a pessimistic analysis, and could be improved by
supporting the method cache as it is implemented on JOP, as described
in Section 5.2. The introduction of a correct representation of the method
cache results in a more accurate analysis, at the cost of verification time. A
suggestion to how the method cache could be implemented is presented in
this section.

Additional variables and functions must be added to the Uppaal model,
in order to track the state of the method cache. The variables added are
shown in Listing 15.4, note that the values are specified in words, which is
4 bytes on JOP.

1 const int CACHE_SIZE = 1024;
2 const int BLOCK_COUNT = 16;
3 const int BLOCK_SIZE = CACHE_SIZE / BLOCK_COUNT;
4 const int METHODS = 10;
5 typedef int[0,METHODS] MethodId;
6

7 const int MAXSIZE = CACHE_SIZE;
8 typedef int[1,MAXSIZE] MethodSize;
9 const MethodSize ACTUALSIZE[METHODS] =

10 { 10, 10, 30, 120, 40, 90, 70, 110, 30, 60};
11

12 typedef int[0,BLOCK_COUNT -1] Index;
13 Index current = 0;
14 MethodId cache[BLOCK_COUNT ];

Listing 15.4: Method cache variables

• Line 1: Specifies the size of the cache in words.
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• Line 2: Specifies how many blocks the cache is divided into.

• Line 3: The amount of words which can be stored in each block.

• Line 4: The total number of methods in the system.

• Line 5: Method identifiers where 0 denotes no method.

• Line 7: The maximum amount of words a method can contain.

• Lines 8-10: The size of each method in the system, measured in
words.

• Lines 12-14: An array representing the cache, with the initial index
set to 0.

The variables CACHE_SIZE and BLOCK_COUNT depend on how JOP is con-
figured. In this example JOP is configured with a 4KB cache divided into 16
blocks. The amount of methods and the size of them, specified in METHODS
and ACTUALSIZE, depend on the actual system being analyzed. On method
invoke and method return, it must be determined whether the method is
present in the cache. A simple linear search is performed through the cache
to determine whether the specified MethodId already exists in the cache.
This is performed using the present function presented in Listing 15.5.

1 bool present(MethodId id) {
2 int c;
3 for (c = 0; c < BLOCK_COUNT; c++)
4 if(cache[c] == id)
5 return true;
6 return false;
7 }

Listing 15.5: Determine whether a method is in the cache

If the specified method does not exist in the method cache, it must be
fetched from memory, possibly replacing other methods. This is performed
using the replace function shown in Listing 15.6.

1 void replace(MethodId id) {
2 int c = current;
3 int s = (ACTUALSIZE[id -1]+( BLOCK_SIZE -1))/BLOCK_SIZE;
4 cache[c] = id;
5 c++;
6 if (c == BLOCK_COUNT) c = 0;
7 while (--s > 0) {
8 cache[c] = 0;
9 c++;

10 if (c == BLOCK_COUNT) c = 0;
11 }
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12 current = c;
13 }

Listing 15.6: Insert the method into the cache

• Line 2: The current index in the cache is stored.

• Line 3: The amount of blocks the method needs is calculated.

• Line 4: The current index is set to the ID of the selected method.

• Lines 5-11: The remaining indices, corresponding to the block size
of the method, are set to 0.

• Line 12: The current index in the cache is updated.

These methods must be used when invoking and returning from methods
in the Uppaal model, to simulate to the actual method cache on JOP.

15.4.1 Method Invoke

The cost of invoking a method is dependent on the method type, the ex-
act formulae for each type are available in [32]. As an example, a private
method is invoked with invokespecial, and the WCET for this instruction
is defined by the formula:

74 + r +
{

r − 3 : r > 3
0 : r ≤ 3

+
{

r − 2 : r > 2
0 : r ≤ 2

+
{

l − 37 : l > 37
0 : l ≤ 37

In the version of JOP used in this project, the number of clock cycles used to
read a word from memory, r, is 1, and the formula can therefore be reduced
to:

74 + 1 +
{

l − 37 : l > 37
0 : l ≤ 37

As it can be seen, the method cache only improves the performance if the
load time, l, is greater than 37. The load time l is defined by:

l =
{

6 + (n + 1)(2 + cws) : cache miss
4 : cache hit

Where the cache wait state, cws, is 0 in the version of JOP used in this
project, and n is defined by the size of the method in words. The size of
the method must be at least 15 words, in order to benefit from the method
cache.

If the size of a method is 50 words, the load cost l is 108 on a miss, and
the cost of the invoke is therefore 146. This is an increase of 71 clock cycles
compared to a hit.
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15.4.2 Method Return

The cost of returning from a method is dependent on the return type, the
exact formulae for each type are available in [32]. As an example, the cost
of returning void is defined by:

21 +
{

r − 3 : r > 3
0 : r ≤ 3

+
{

l − 9 : l > 9
0 : l ≤ 9

The load cost, l, is now related to the size of the method which is returned
to. Even a method size of 1 word results in a load cost of 10, and therefore
benefits from a cache hit. If the size of the method is 10, the load cost is 28
on a miss, and the cost of the return is therefore 40. This is an increase of
19 clock cycles in case of a miss.

15.4.3 Method Cache Experiment

A small experiment is conducted to show how this improvement would affect
the analysis.

The experiment is conducted on different versions of SARTS and the
result is compared to WCA and the actual execution on JOP. Listing 15.7
contains a method named run. This is a static version of the run method of
the sporadic thread in RTSM, introduced in Chapter 6.

1 protected static boolean run(){
2 if (state == IDLE){
3 motor.setMotorPercentage(Motor.STATE_FORWARD ,
4 false , 100);
5 state = FORWARD;
6 } else if (state == FORWARD){
7 motor.setMotorPercentage(Motor.STATE_BACKWARD ,
8 false , 100);
9 state = BACKWARD;

10 } else if (state == BACKWARD){
11 motor.setMotorPercentage(Motor.STATE_BRAKE ,
12 false , 100);
13 state = IDLE;
14 }
15 return true;
16 }

Listing 15.7: Method cache example

The invoke of setMotorPercentage results in further method invoca-
tions, and utilizing the method cache implemented on JOP results in a
lower execution time, compared to no method cache.

The worst case path is when state equals BACKWARD, and the last two
parameters in setMotorPercentage are set to true and a negative value
respectively. The results for this method are shown in Table 15.3.
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WCET
JOP 713
WCA 801

SARTS(a) 817
SARTS(b) 801
SARTS(c) 738

Table 15.3: WCET results for run method

The calculation of the WCET of the method has been performed using
different modifications of SARTS, referred to as (a), (b), and (c). SARTS
(a) is the result of the current implementation, where method cache is not
included, and it is therefore a pessimistic result. The current implementa-
tion of WCA supports a two block method cache. SARTS (b) is a manually
modified version of the translated model, to represent a two block method
cache, and it provides the same result as WCA. The final SARTS (c) config-
uration is a manual modification of the translated model, to represent the
actual method cache on JOP. The problem with the experiment performed
on JOP is similar to the one described in Section 14.1, where return true;
is not included, which costs 24 clock cycles. However, there is still a dif-
ference of 1 clock cycle. This difference may be because of some pessimism
introduced in the formula to calculate the cost of loading in the method into
the cache. However several tests indicate that this pessimism is maximum
1 clock cycle, and is introduced because the size of a method is measured in
words consisting of four bytes.

This experiment shows how the introduction of a method cache can
reduce the pessimism of the WCET analysis, and still be an upper bound
of the actual execution cost. However, an important note is that the use
of a method cache in WCA might result in an optimistic analysis, because
each method is analyzed isolated. When a thread is preempted the contents
of the method cache can not be guaranteed once the thread is scheduled
again. SARTS includes the entire execution of the system, and it is therefore
possible to know the exact content of the method cache at a given state in
the system, and it will therefore not result in an optimistic analysis, which
might be the case with WCA.

15.5 Scheduler

In the current implementation, the scheduler cost is not considered and is
set to the cost of one clock cycle in the Uppaal model. This should in a
final implementation be parameterized with the actual cost of running the
scheduler.
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The scheduler cost can be expressed by the formula:

schedulercost = Sin + Sout + C(N)

where

• N is the number of threads in the system.

• Sin is the cost of switching to the scheduler, and save the context of
the currently executing thread.

• Sout is the cost of switching from the scheduler to the selected thread,
and restoring its context.

• C(N) is the scheduler cost given the number of threads in the system.

By analyzing the system, the number of threads in the system is known.
The scheduler contains loops dependent on the number of threads in the
system. These loop bounds can be derived from this thread count, and thus
the worst case execution time for the scheduler, C(N) can be calculated.

Sin and Sout depend on the current state of the system; the content
of the method cache, the current stack size, and the thread switched from
and to. The method cache and the stack is currently not implemented in
SARTS, and the scheduler cost is therefore not possible to incorporate in
the analysis. How the method cache can be implemented is described in
Section 15.4. The size of the stack can be calculated by analyzing push and
pop instructions and tracking the call graph.

Adding scheduler cost to the Uppaal model will make the analysis more
accurate.

15.6 Soot

An improvement to SARTS would be to incorporate Soot into the generation
of the intermediate representation and thereby enable further analysis of the
system being translated, e.g. type inference, as discussed in Section 15.1.1.

Using Soot in this manner poses two problems: mapping the interme-
diate representations of Soot to SIR, and mapping the analysis results into
the model checker. Mapping Soot to SIR can be done in two ways, reim-
plementing the translator to use Soot, and creating the map directly, or
implementing a mapper which traverses the Soot intermediate representa-
tions and SIR to create a map. The first solution would be the better since
it is cleaner, however SARTS is not implemented using Soot as described in
Section 8.5, so the second solution would be viable as well. Using Soot di-
rectly also makes it possible to use Soot Java Bytecode optimizations on the
system before it is uploaded to the hardware platform. This would improve
the execution time of the system, since the underlying hardware probably
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has no JIT compiler performing optimizations. Since this might simplify the
system it might also lower the time required to perform verification.

15.7 Collapsing

In the current implementation all branches and loops from the Java code
are present in the Uppaal model. This is done to maintain the control flow
of the actual application. This, however, might be unnecessary. Only the
areas of the control flow which contain instructions which are not local are
actually needed. A local instruction is an instruction which does not affect
other tasks, or the system overall. A branch where only local instructions
exist in both paths could be collapsed to reduce the state space of the model.
This could be done by calculating the worst case path through the branch
and creating a single basic block, requiring a WCET equal to that worst case.
This way the state space could be significantly reduced, since all areas of the
system which do not affect other tasks can be collapsed into a single block.
The solution suggested is problematic as described in Section 16.1, where a
blocking region can be moved past a point where it would have prevented a
higher priority thread from executing. A way to circumvent this problem is
to perform changes in both the model and the program itself, i.e. the Java
class file, by padding the cheapest branch, adding execution time. As an
example, consider a simple branching if-statement. The cheapest of the two
branches, cheapest in terms of execution time, could be padded with nop
instructions with the execution time of 1 clock cycle, such that the branch is
execution time symmetric. Since selecting either branch is of no significance
to the execution time, this branch can be collapsed into one block.

This technique will add execution time, but the WCET is preserved.
However this is not a problem for the overall system, since average execu-
tion time is not important. This technique could also be extended, by the
developer being able to choose where to pad branches, inside an IDE, e.g.
Eclipse. In the case of loops it may be possible to apply a dynamic padding
such that a loop with upper iteration bound of 1000 could only terminate
at 10 different execution times. This could be done by querying the number
of cycles used by a thread before and after a loop.
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15.8 Summary

Several improvements have been proposed. Preliminary tests indicate the
benefits of these improvements.

Some improvements increase the accuracy of the verification, albeit at
an increased verification time. Whether the gained accuracy is worth a
slower verification time needs further research to determine. Researching
and implementing these improvements is considered future work.

The next chapter decribes problems and issues with the presented ap-
proach.
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Reflections

This chapter describes a problem with the model-based schedulability ap-
proach used in SARTS, and issues with Java as a programming language for
hard real-time systems.

16.1 WCET and Blocking

While model-based schedulability seems like an attractive approach, there
are some problems when blocking is introduced. The problem is that as-
suming the worst case execution path can postpone a blocking region which
would have affected a higher priority thread. An example of an actual ex-
ecution is depicted in Figure 16.1. It can be seen that the lower priority
thread enters a blocking region which prevents the higher priority thread
from executing, causing a missed deadline. The execution path verified by
the model checker is depicted in Figure 16.2. Here the lower priority thread
has a longer execution time prior to entering the blocking region, allowing
the higher priority thread to preempt it. This execution path will not result
in a missed deadline.

a

b

Time

Process

Executing

Preempted

Blocked

Executing with lock

a

b

Time

Process

Figure 16.1: Actual execution

Unless this problem is solved, the model-based schedulability approach is
not sound. A safe approach to solving this problem is to verify every possible
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Executing with lock

a

b

Time

Process

Figure 16.2: Execution verified

path generated by an execution time in the discrete interval between best
and worst case execution time.

This problem disappears if the best and worst case always is the same,
which in return results in a very deterministic model, thus reducing the veri-
fication time needed. This can be achieved by using the technique described
in Section 15.7.

Considering these extra paths in the model will significantly increase the
complexity of verifying the model. It is believed that the complexity can
be reduced by using approaches such as collapsing, but applying this will
require further research.

16.2 Programming Language

This section discusses the use of the Java programming language for embed-
ded real-time systems, both from the perspective of the analysis developed,
but also from the general perspective of using Java for embedded real-time
systems.

Using Java in real-time embedded systems poses some challenges due to
the design of the language. This includes the heavy use of the heap and
thus the garbage collector, but also the ability to add meta data, such as
loop annotations.

16.2.1 Language Usage

Among reasons for using Java for real-time embedded systems is the great
number of developers who learn Java as their first language. Although this
is true, some characteristics of the Java language and embedded systems
may require changes in the way programs are written.

16.2.1.1 Performance

Programming for performance is one way of lowering the cost of a system.
Lower performance requirements allows cheaper hardware and thus lower
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production costs e.g. when a company produces millions of devices, cutting
off a few cents on each item can be considered significant.

In general, coding for efficiency means that the developer should not rely
on clever optimizing performed by the compiler, since many optimizations
in Java are difficult to safely perform [36]. An example, presented in [36],
illustrates simple optimizations, can easily be performed by the developer.

1 for(int i=0; i<size()*2; i++) {...}

Listing 16.1: Code example

In this example, i<size()*2 is evaluated for every iteration of the loop. This
can be optimized manually by the developer, by storing the value size()*2
evaluates to. This optimization is platform independent, and can thus be
used regardless of the underlying hardware. This example assumes that
size() has no side effects and returns a constant value.

In Java, methods are virtual by default, which gives the worst execu-
tion time of method invokes. Optimizations can be applied by declaring
methods private, final or static which will remove the need for dynamic
dispatching.

Besides knowing what general optimizations to apply, knowledge about
the target device could help the developer optimize the code. Using JOP,
some instructions are not implemented in microcode directly, but are imple-
mented as static Java methods. These instructions, in addition to not being
supported by hardware have the overhead of requiring a method call. This
means that using e.g. floats or longs may be surprisingly much slower than
expected, and also have an impact on the method cache.

The choice of compiler can greatly affect the execution time. The general
philosophy in Java is to leave all optimizations to the JIT compiler. In
hard real-time systems, such a compiler is not available, and static bytecode
optimizations need to be made by the bytecode generator.

16.2.1.2 Libraries

One of the advantages of Java is the large set of library functions avail-
able. Unfortunately, when developing real-time embedded systems and pre-
dictability is crucial, standard Java library cannot be used. Instead, a pre-
dictable set of library functions should be provided, which is both analyzable
and thoroughly documented such that the developer can choose the func-
tionality based on knowledge about how the actual parameters influence the
execution time. The library should be analyzable, which in many contexts
means that the source code needs to be available, for correct annotations.
An example of a real-time library for Java is the Canteen library [15].
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16.2.2 Missing Features

The following sections describe some features which could improve Java in
regards to being a better real-time language.

16.2.2.1 Memory Features

In Java, non-primitive types are allocated on the heap. This may waste
resources in systems with limited resources, since these objects must later
be garbage collected. In situations where objects are only created in order
to aggregate or abstract over information passed to a method, e.g. Relative
time, as proposed in Section 4.2.2, there is no need to allocate this on the
heap, since the object is not referenced outside the scope of this method.
Alternatively, the RelativeTime object could be replaced by the primitive
stack allocated type long representing relative time, at the loss of abstrac-
tion; also, this would not work if relative time contained more than one
primitive type.

Stack allocated objects are required in order to achieve the abstraction
along with the ability to control how memory is allocated i.e. when to
use stack and when to use heap. This is done in languages like C#, by
introducing struct, which has the same characteristics as a class except that
it is stack allocated and thus a value type, not a reference type. The high-
performance language X10, developed by IBM, has value classes, which can
be used to the same effect as stack allocated structures [12]. When variables
of value types are assigned, the data is copied as opposed to copying only
the reference as done in the assignment of reference types. This means
that structs are de-allocated when the scope they exist in is destroyed, as
primitive types.

Introducing structs in the Java languages should pose no problem as
long as structs have constant size, since the stack height must be known
statically.

16.2.2.2 Annotations

Annotations were added to the Java language in Java 5.0 [35]. Using anno-
tations the developer can attach meta-data to the program being developed;
data that is compiled into the class files and can even be retrieved at runtime
using reflection. Standard annotations such as @Override or @Deprecated
are available, but also custom annotations can be created by the developer.
Java allows annotation of declarations, such as constructors and fields, but
not statements, such as while loops.

Several analysis tools require annotation of loop statements in the pro-
gram, namely the upper bound of loop iterations. Since annotations pro-
vided by the Java language cannot be applied to statements, these annota-
tions are written as comments, which are ignored by the compiler, requiring
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the annotated source code while analyzing the program.
Allowing annotations on loops would ease the development of tools, such

as SARTS, giving them access to loop annotations without requiring the
source code.

16.2.3 Summary

In this section, the use of Java for real-time embedded systems has been
discussed along with some improvements which would ease the development
of tools. The need for real-time libraries with predictable properties is also
required to further ease the development of such systems in Java. Although
many programmers are introduced to Java as their first and maybe only
programming language, the transition into developing real-time embedded
systems does not happen without further education. The development of
profiles like SCJ2 is an attempt to make Java more suitable for real-time
development, but it is still limited by the language. Features like structs
and fine grained annotations cannot be added through a profile, but need
to be a part of the language.
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Conclusion

An automated model-based schedulability analysis of hard real-time systems
has been presented and implemented in this project.

This has resulted in a prototype application, SARTS, which automat-
ically translates a real-time system implemented in Java to an abstract
time preserving Uppaal model. Verification can then be performed on this
model, in order to determine whether the system is schedulable. This trans-
lation is an abstraction of the Java code, including the actual bytecode, in
order to determine the WCET of the implementation, which is used in the
schedulability analysis.

The automatic translation from Java to Uppaal ensures the correspon-
dence between the actual implementation, and the model being verified.
However, further work needs to be conducted in order to prove that this
translation is correct. This automatic translation also allows the developer
to abstract away from the actual verification process and no knowledge of
model checking is required. However, the developer still has to annotate
loop bounds, which is a source of errors.

The state space explosion when performing model checking is a known
problem, and limits the ability to use model checking for complex systems.
The scalability of SARTS has been examined, and it does not scale very
well; even small changes in the implementation can cause dramatic change
in verification time. However, several optimizations have been implemented,
and it has been shown how it significantly reduces the verification process.
Further improvements have been discussed in order to increase the accuracy
and scalability of SARTS.

Several experiments have been conducted, in order to compare SARTS
to existing tools, and the actual execution on JOP. It has been shown that
SARTS is also capable of performing WCET analysis comparable with tools
such as WCA. Furthermore it has been shown how the use of a model-based
approach can lead to a more accurate result than traditional approaches to
schedulability analysis; achieving the goal of our thesis.
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SARTS, as a proof of concept application has been developed and proves
as an interesting direction for schedulability analysis. For this to be a com-
plete tool, much work still needs to be done to make the analysis sound and
to improve performance. Furthermore, the usability of SARTS can greatly
be increased by incorporating it into a development environement, e.g. as a
plug-in to Eclipse, in order to provide a natural link between the develop-
ment and the verification process.
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Future Work

This chapter discusses some of the future work directions of SARTS, includ-
ing a lot of different research areas. Some of the functionality which can
improve the accuracy and the performance of SARTS have been discussed
in Chapter 15.

18.1 Multicore

Research is currently being conducted in order to develop a multicore version
of JOP [26]. This multicore version is still intended for hard real-time sys-
tems, and predictability is therefore necessary. The functionality of SARTS
must be extended to support the additional features of a multicore hardware
architecture. If the underlying hardware is predictable, it should be possi-
ble to incorporate this feature in SARTS. This could probably be done by
introducing additional schedulers, representing the used scheduling strategy.

18.2 Additional Scheduling Strategies

The current implementation of SARTS assumes a deadline monotonic schedul-
ing strategy is used. It would be desirable to be able to switch the scheduling
strategy, e.g. to a EDF or VBS strategy.

18.3 Hardware Interrupts

It is currently only possible to invoke sporadic tasks through periodic tasks.
Hardware interrupts can therefore only be handled by having a periodic
task poll for an interrupt and then fire a sporadic event. This is also a
limitation on JOP where a polling technique must be used. However, it
should be possible to model hardware interrupts as sporadic tasks, provided
a minimum inter-arrival time is present and obeyed.
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18.4 Change Underlying Hardware

It should be possible to change the underlying hardware, so the analysis
is not bound to JOP. This should be a rather straight forward procedure,
providing the new hardware is predictable regarding execution time. The
WCET for each bytecode must be known and updated. Additional JOP
specific features must be disabled, e.g. the method cache. If the new hard-
ware has any performance increasing features, this must also be added to
the translation. JOP can be clocked at different frequencies. The default is
60 Mhz, and the maximum is 100 Mhz, changing clock frequency requires
only small modifications of SARTS.

18.5 User Feedback

The feedback from SARTS is very limited, e.g. when performing a schedu-
lability analysis, it returns yes or no. If the system is schedulable, it would
be desirable to know the lower limit of processor clock frequency while still
being schedulable, in order to reduce production cost. If the system is not
schedulable, it would be desirable to know what the clock frequency must
be, in order to determine whether to buy a faster CPU or reduce the com-
plexity of the system. It would also be desirable to know exactly which tasks
miss their deadline, beneficial when performing optimizations of the system,
before a new analysis is performed. When performing a WCET analysis of
a specific method, it is only possible to verify whether the WCET is higher
than X and lower than Y. It would be desirable to get the WCET value of
each method in order to reduce execution time in case a system is deemed
not schedulable.

A plug-in to the IDE, e.g. Eclipse, would also increase the usability of
SARTS, where the actual translation and model checking is hidden for the
user, and only the result is returned. The IDE could highlight the worst
case path in the system, furthermore it should be possible to see the WCET
for each statement in the IDE. Furthermore adding collapsing functionality
into the IDE would provide the developer with a tool to make the code more
deterministic.

18.6 Theoretical Work

The decidability of SARTS is discussed in Section 11.6.1, where it is shown
how the model can be translated to a timed automata without stopwatches,
thus the problem is decidable. However, further work must be conducted
in order to prove that the translation from Java to Uppaal is correct. The
current implementation is not sound, because not all paths are examined,
i.e. when a loop is exited before its bound is met. This can result in moving
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the occurrence of a blocking region, resulting in an optimistic analysis. This
problem is described in Section 16.1. These issues must be solved before
SARTS can be used to provide a reliable verification of industrial products.

18.7 Scalability Improvements

Scalability is a well known problem when using model checking, and SARTS
is no exception. However, several possible improvements have been dis-
cussed, and further research needs to be conducted in order to determine
how these affect scalability. An interesting approach is to improve the de-
terminism in the implementation as discussed in Section 15.7.

An important note is to use the optimizations already available in Uppaal,
such as convex-hull approximation; if the system is said to be schedulable
using convex-hull approximation it is guaranteed to be schedulable. Verifi-
cation time is also reduced by using more standard optimizations provided
in Uppaal, such as aggressive state space reduction.
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Appendix A

Acronyms

BCEL Byte Code Engineering Library.

CFG control flow graph.

EDF Earliest Deadline First.

FPS Fixed-Priority Scheduling.
FSM finite state machine.

JML Java Modeling Language.
JOP Java Optimized Processor.
JVM Java Virtual Machine.

LCM least common multipe.

RTSJ Real-Time Specification for Java.
RTSM Real-Time Sorting Machine.

SARTS Schedulability Analyzer for Real-Time Sys-
tems.

SCJ Safety Critical Java.
SIR SARTS Intermediate Representation.

VBS Value-Based Scheduling.

WCA WCET Analyzer.
WCET Worst Case Execution Time.
WCRT Worst Case Response Time.
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Appendix B

Uppaal

Uppaal is a verification tool developed in co-operation between Uppsala
University and Aalborg University [39]. This appendix provides an intro-
duction to parts of the syntax used in Uppaal. For a more throughout
description see [5]. This is only the most basic of Uppaal in order to ease
the understanding of the models presented in this report.

A small example is used to describe some of the terminology used in Uppaal,
when creating a model. The example illustrates a simple buffer, which allows
add and remove instructions, and a couple of clients requesting to add or
remove from the buffer. The example is depicted in Figure B.1, containing
both the client and buffer model.

Idle

remove[id]!

add[id]!

Ready
size >= 0

client: ClientID
remove[client]?
size--

client: ClientID
notFull()
add[client]?
size++

(a) (b)

Figure B.1: (a) A simple client communicating with (b) a simple buffer.

In general a Uppaal model contains a set of finite state machines (FSMs),
called templates. The buffer and the client are templates. These templates
represent parts of the system, and consist of two basic elements, states and
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transitions. A state is represented by a circle, and a transition is a directed
edge between two states. Each state can have a unique name attached, e.g.
the buffer has a state called Ready and the client a state called Idle. The
name must only be unique for the given template. Each state can have an
invariant, a Boolean expression which must always evaluate to true when
the FSM is in this state. For example size >= 0, while the buffer is in the
Ready state, this ensures that the buffer can’t be dequeued when it is empty.

Transitions connect states, and they can loop to the same state. A
transition can have four attributes:

• Select: Non-deterministically selects a value from a type and assigns
it to a variable. The syntax is: <Variable Name> : <Type>, e.g. the
buffer uses client: ClientID to represent the client requesting an
add or remove. ClientID is defined as an integer with a specific range
representing the number of clients.

• Guard: A Boolean expression which must evaluate to true for the
FSM to be able to follow the transition, e.g. notFull() prevents the
clients from adding more elements if the buffer is full. Here notFull()
is a custom developed method returning true if the buffer is not full,
and false otherwise. This could also be guaranteed using an invariant
stating size <= MaxSize. Note even though the guard is fulfilled,
the transaction cannot be performed if it violates the invariant of the
target node.

• Sync: Sends or receives on a channel, which is shared among the
machines. An “!” represents send/signal and a “?” represents re-
ceive/listen, e.g. remove[client]? receives a remove request from a
specific client.

• Update: A comma separated list of variable assignments, using nor-
mal assignment operators, e.g. size++ increments the size of the
buffer.

To ease the readability of the model, the attributes are color-coded by type
and attributes should be placed near the corresponding state or transition.

The states in the template can be normal, urgent, or committed. A
simple example depicted in Figure B.2 is used to describe the different states.
Three different templates are shown, called P0, P1, and P2 representing three
isolated processes, each containing a local clock x. Time is represented
by clocks in Uppaal, which are constantly increasing and represented by
natural numbers. A template must contain exactly one initial state, which
is the starting point, represented by a small circle inside the state. Each of
the processes has the initial state set to S0, the clock x is then reset on the
transition to state S1, which is normal in P0, urgent in P1, and committed
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P0
S2S1S0

x = 0

P1
S2S1S0

x = 0

P2
S2S1S0

x = 0

Figure B.2: Three different automata with a local clock [5].

in P2. An urgent state is represented by a small “U” and committed by a
small “C” inside the state. The following describes how the difference in the
S1 state affects the different processes.

• Normal: Time can elapse in this state, and the value of the clock x
in state S2 cannot be ensured.

• Urgent: The time is frozen during an urgent state. The value of the
clock x is therefore ensured to also be 0 when entering S2. An urgent
state is semantically equivalent to resetting a designated clock, y, on
all incoming edges and add the invariant y<=0 to the state, ensuring
it to leave before time elapses.

• Committed: Similar to urgent states, time is frozen. Furthermore,
if a template is in a committed state, the next transaction must leave
this state, i.e. when P2 is in S1 the only possible transition is to S2,
independent of other states in the system. Note, if P1 is in S1, then
P0 is able to take a transition, but if P2 is in S1, then P0 cannot take
a transition.

At first glance the difference between urgent and committed might not seem
that obvious, but the strength of committed is the ability to create an atomic
sequence. When different templates need to exchange values, this must be
done through public variables, e.g. the buffer from the first example might
be extended to return the dequeued value to the client. If several clients can
communicate with several buffers, and the public variable is shared between
the buffers, can result in a race condition, the committed state ensure that
this is not possible. This concludes the description of Uppaal.
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Appendix C

Limitations

The current implementation of SARTS has the following limitations.

Packages. A package must be defined for the system being verified for
SARTS to translate the system correctly.

Anonymous classes. It is not possible to use anonymous classes, e.g.
implement a periodic thread in the main method.

Release parameters. When instantiating release parameters, the values
must be literals, i.e. it is not possible to use variables. Also, the instanti-
ation of release parameters must be performed as a parameter to the task
constructor, i.e.
new SporadicThreadImpl(new SporadicParameters(1,4,2));

Sporadic fire. When using RealtimeSystem.fire(int) the value must
be a literal, similar to release parameters.

Switch case. Switch statements are not supported, and will cause errors.

Recursion. Recursion is not allowed in SCJ2, but it is not detected by
SARTS. If recursion is used, the current implementation always determines
the system to not be schedulable.

Java libraries. Java libraries are not allowed in SCJ2, using these will
cause errors.

Interfaces. Interfaces are not supported, using interfaces will cause errors.
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