1,818 research outputs found

    Switching frequency regulation in sliding mode control by a hysteresis band controller

    Get PDF
    © 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksFixing the switching frequency is a key issue in sliding mode control implementations. This paper presents a hysteresis band controller capable of setting a constant value for the steady-state switching frequency of a sliding mode controller in regulation and tracking tasks. The proposed architecture relies on a piecewise linear modeling of the switching function behavior within the hysteresis band, and consists of a discrete-time integral-type controller that modifies the amplitude of the hysteresis band of the comparator in accordance with the error between the desired and the actually measured switching period. For tracking purposes, an additional feedforward action is introduced to compensate the time variation of the switching function derivatives at either sides of the switching hyperplane in the steady state. Stability proofs are provided, and a design criterion for the control parameters to guarantee closed-loop stability is subsequently derived. Numerical simulations and experimental results validate the proposal.Accepted versio

    Fast Adaptive Robust Differentiator Based Robust-Adaptive Control of Grid-Tied Inverters with a New L Filter Design Method

    Get PDF
    In this research, a new nonlinear and adaptive state feedback controller with a fast-adaptive robust differentiator is presented for grid-tied inverters. All parameters and external disturbances are taken as uncertain in the design of the proposed controller without the disadvantages of singularity and over-parameterization. A robust differentiator based on the second order sliding mode is also developed with a fast-adaptive structure to be able to consider the time derivative of the virtual control input. Unlike the conventional backstepping, the proposed differentiator overcomes the problem of explosion of complexity. In the closed-loop control system, the three phase source currents and direct current (DC) bus voltage are assumed to be available for feedback. Using the Lyapunov stability theory, it is proven that the overall control system has the global asymptotic stability. In addition, a new simple L filter design method based on the total harmonic distortion approach is also proposed. Simulations and experimental results show that the proposed controller assurances drive the tracking errors to zero with better performance, and it is robust against all uncertainties. Moreover, the proposed L filter design method matches the total harmonic distortion (THD) aim in the design with the experimental result

    A new robust control using adaptive fuzzy sliding mode control for a DFIG supplied by a 19-level inverter with less number of switches

    Get PDF
    This article presents the powers control of a variable speed wind turbine based on a doubly fed induction generator (DFIG) because of their advantages in terms of economy and control. The considered system consists of a DFIG whose stator is connected directly to the electrical network and its rotor is supplied by a 19-level inverter with less number of switches for minimize the harmonics absorbed by the DFIG, reducing switching frequency, high power electronic applications because of their ability to generate a very good quality of waveforms, and their low voltage stress across the power devices. In order to control independently active and reactive powers provided by the stator side of the DFIG to the grid and ensure high performance and a better execution, three types of robust controllers have been studied and compared in terms of power reference tracking, response to sudden speed variations, sensitivity to perturbations and robustness against machine parameters variations.В статье описывается управление мощностью ветряной турбины переменной скорости на основе асинхронного генератора двойного питания ввиду их преимуществ с точки зрения экономичности и управления. Рассматриваемая система состоит из асинхронного генератора двойного питания, статор которого подключен непосредственно к электрической сети, а его ротор питается от 19-уровневого инвертора с меньшим количеством коммутаторов для минимизации гармоник, поглощаемых генератором, уменьшая частоту переключения, и устройств силовой электроники вследствие их способности генерировать высокое качество сигналов и низкого уровня напряжения на них. Чтобы независимо управлять активной и реактивной мощностью, подаваемой стороной статора указанного генератора в сеть, и обеспечивать высокую производительность и лучшее конструктивное исполнение, изучены и сопоставлены три типа робастных контроллеров с точки зрения отслеживания мощности, реакции на внезапное изменение скорости, чувствительности к возмущениям и устойчивости к изменениям параметров машины

    DISCRETE TIME QUASI-SLIDING MODE-BASED CONTROL OF LCL GRID INVERTERS

    Get PDF
    Application of a discrete time (DT) sliding mode controller (SMC) in the control structure of the primary controller of a three-phase LCL grid inverter is presented. The design of the inverter side current control loop is performed using a DT linear model of the grid inverter with LCL filter at output terminals. The DT quasi-sliding mode control was used due to its robustness to external and parametric disturbances. Additionally, in order to improve disturbance compensation, a disturbance compensator is also implemented. Also, a specific anti-windup mechanism has been implemented in the structure of the controller to prevent large overshoots in the inverter response in case of random disturbances of grid voltages, or sudden changes in the commanded power. The control of the grid inverter is realized in the reference system synchronized with the voltage of the power grid. The development of the digitally realized control subsystem is presented in detail, starting from theoretical considerations, through computer simulations to experimental tests. The experimental results confirm good static and dynamic performance

    Advances in Control of Power Electronic Converters

    Get PDF
    This book proposes a list of contributions in the field of control of power electronics converters for different topologies: DC-DC, DC-AC and AC-DC. It particularly focuses on the use of different advanced control techniques with the aim of improving the performances, flexibility and efficiency in the context of several operation conditions. Sliding mode control, fuzzy logic based control, dead time compensation and optimal linear control are among the techniques developed in the special issue. Simulation and experimental results are provided by the authors to validate the proposed control strategies

    Park Vector Based Sliding Mode Control of UPS With Unbalanced and Nonlinear Load

    Get PDF
    In this paper an inverter is taken as a member of Variable Structure System (VSS). A new Park vector based variable structure control (VSC) method is proposed. A modified definition of the Park vector is introduced to handle the effect of zero phase-sequence component caused by an asymmetrical load. The design of a sliding mode controller consists of two main steps. Firstly, the design of the sliding surface, secondly, the design of the control which holds the system trajectory on the sliding surface. A complex sliding surface is proposed. The inverter is switched in such a way that the system trajectory gets as close to the sliding surface as possible. This paper focuses on the switching rule. Experimental results of a 100 KVA inverter are presented

    Single-Phase Bi-directional Ćuk Inverter for Battery Applications

    Get PDF
    Bidirectional inverters are widely applied in photovoltaic and wind systems that require battery power backup. They are advantageous over unidirectional inverters because of their ability to convert DC power into AC power and then AC power back into DC power to recharge for storage purposes. Generally, bidirectional inverters are designed to have multiple power stages and/or make use of transformers for isolation and voltage/current gain. This usually increases the cost of production and oftentimes reduces the efficiency of the system. At the same time, attempts at eliminating usage of transformers and reduction in the number of power stages limits the range of bidirectional inverters’ capabilities. This is because battery applications today require low voltage DC-AC inverters with AC-DC power flow capability to store energy for later use. As such, only buck-boost based topologies are majorly being proposed and used for this functionality. The buck boost converter is the most widely used in such applications because of its higher efficiency, low component count and simple structure. It has drawbacks, however, such as: pulsating input and output currents - this leads to lower high electromagnetic interference; lower power factor during AC-DC power flow rectification when the batteries are being recharged; and external filter is also required during this power flow to keep the charging voltage constant. This research proposes a bidirectional inverter that attempts to overcome the drawbacks of the widely used buck-boost converter-based topology. The bidirectional inverter proposed in this work is based on a bidirectional Ćuk converter. The Ćuk converter has both continuous input and output currents. A galvanic isolation option on a Ćuk converter is simpler than a buck boost converter - this is important for grid tied systems. The inverter is based on a pseudo DC-link architecture - it uses a front end Ćuk converter cascaded with an unfolding bridge to convert DC power into AC power. The switches in the converter stage are switched at high frequency, while the switches in the unfolding stage are switched slower at the grid frequency. This configuration is desirable over the two-stage topologies because the switching losses in the unfolding bridge are lower because of this low switching frequency used. This configuration also ensures good switch utilization at the unfolding stage by lowering the parasitic effects on the power transfer. The proposed inverter has 4 modes of operation: during modes I and II the power is positive, and it converts DC power into AC power; during modes III and IV the power is negative, and it converts AC power back into DC power. The inverter is designed such that during DC-AC power flow, the input and output inductor currents and coupling capacitor voltage are continuous for improved efficiency. During the AC-DC power flow, the coupling capacitor voltage is discontinuous to achieve a higher input power factor by improving the AC line current, thereby simultaneously increasing the efficiency. The inverter was analysed in terms of: the dead time inserted into the switches to avoid shoot through and shortcircuiting switches; the parasitic effects on the power transfer ratio. Because the Cúk inverter is a high order system, several robust control strategies, such as sliding mode and current control have been proposed. These control methods require complex theory and present practical challenges to be reviewed. As such a new nested loop control strategy was proposed based on the dynamics of the coupling capacitor as the primary energy storage in the Cúk inverter. The control strategy uses 2 loops: an inner current loop and an outer voltage loop. Lead compensators were designed for both the current and voltage loops to achieve good dynamic response at a high bandwidth. Both simulated and experimental results showed that the bidirectional inverter was able to meet the design specifications. The control strategy showed good dynamic response and disturbance rejection under several inverter variations. Although the efficiency during simulations was above 96%, the experimental efficiency dropped significantly because the inverter was built on a Vero board for easy manipulation. The AC input power factor was > 0.95 for both simulated and experimental results
    corecore