8,207 research outputs found

    Model of experts for decision support in the diagnosis of leukemia patients

    Get PDF
    Objective: Recent advances in the field of biomedicine, specifically in the field of genomics, have led to an increase in the information available for conducting expression analysis. Expression analysis is a technique used in transcriptomics, a branch of genomics that deals with the study of messenger ribonucleic acid (mRNA) and the extraction of information contained in the genes. This increase in information is reflected in the exon arrays, which require the use of new techniques in order to extract the information. The purpose of this study is to provide a tool based on a mixture of experts model that allows the analysis of the information contained in the exon arrays, from which automatic classifications for decision support in diagnoses of leukemia patients can be made. The proposed model integrates several cooperative algorithms characterized for their efficiency for data processing, filtering, classification and knowledge extraction. The Cancer Institute of the University of Salamanca is making an effort to develop tools to automate the evaluation of data and to facilitate de analysis of information. This proposal is a step forward in this direction and the first step toward the development of a mixture of experts tool that integrates different cognitive and statistical approaches to deal with the analysis of exon arrays. The mixture of experts model presented within this work provides great capacities for learning and adaptation to the characteristics of the problem in consideration, using novel algorithms in each of the stages of the analysis process that can be easily configured and combined, and provides results that notably improve those provided by the existing methods for exon arrays analysis. Material and methods: The material used consists of data from exon arrays provided by the Cancer Institute that contain samples from leukemia patients. The methodology used consists of a system based on a mixture of experts. Each one of the experts incorporates novel artificial intelligence techniques that improve the process of carrying out various tasks such as pre-processing, filtering, classification and extraction of knowledge. This article will detail the manner in which individual experts are combined so that together they generate a system capable of extracting knowledge, thus permitting patients to be classified in an automatic and efficient manner that is also comprehensible for medical personnel. Results and conclusion: The system has been tested in a real setting and has been used for classifying patients who suffer from different forms of leukemia at various stages. Personnel from the Cancer Institute supervised and participated throughout the testing period. Preliminary results are promising, notably improving the results obtained with previously used tools. The medical staff from the Cancer Institute considers the tools that have been developed to be positive and very useful in a supporting capacity for carrying out their daily tasks. Additionally the mixture of experts supplies a tool for the extraction of necessary information in order to explain the associations that have been made in simple terms. That is, it permits the extraction of knowledge for each classification made and generalized in order to be used in subsequent classifications. This allows for a large amount of learning and adaptation within the proposed system

    Simple and Effective Visual Models for Gene Expression Cancer Diagnostics

    Get PDF
    In the paper we show that diagnostic classes in cancer gene expression data sets, which most often include thousands of features (genes), may be effectively separated with simple two-dimensional plots such as scatterplot and radviz graph. The principal innovation proposed in the paper is a method called VizRank, which is able to score and identify the best among possibly millions of candidate projections for visualizations. Compared to recently much applied techniques in the field of cancer genomics that include neural networks, support vector machines and various ensemble-based approaches, VizRank is fast and finds visualization models that can be easily examined and interpreted by domain experts. Our experiments on a number of gene expression data sets show that VizRank was always able to find data visualizations with a small number of (two to seven) genes and excellent class separation. In addition to providing grounds for gene expression cancer diagnosis, VizRank and its visualizations also identify small sets of relevant genes, uncover interesting gene interactions and point to outliers and potential misclassifications in cancer data sets

    Personalized medicine support system : resolving conflict in allocation to risk groups and predicting patient molecular response to targeted therapy

    Get PDF
    Treatment management in cancer patients is largely based on the use of a standardized set of predictive and prognostic factors. The former are used to evaluate specific clinical interventions, and they can be useful for selecting treatments because they directly predict the response to a treatment. The latter are used to evaluate a patient’s overall outcomes, and can be used to identify the risks or recurrence of a disease. Current intelligent systems can be a solution for transferring advancements in molecular biology into practice, especially for predicting the molecular response to molecular targeted therapy and the prognosis of risk groups in cancer medicine. This framework primarily focuses on the importance of integrating domain knowledge in predictive and prognostic models for personalized treatment. Our personalized medicine support system provides the needed support in complex decisions and can be incorporated into a treatment guide for selecting molecular targeted therapies.Haneen Banjar, David Adelson, Fred Brown, and Tamara Leclerc

    Cancer 2.0: A Summary of Recent Research

    Get PDF
    Outlines findings on Internet access and use among cancer patients compared with other chronic disease patients, the demand for health information online, the role of social network sites, and implications for cancer treatment and research

    An Approach for Leukemia Classification Based on Cooperative Game Theory

    Get PDF

    The relapsed acute lymphoblastic leukemia network (ReALLNet): a multidisciplinary project from the spanish society of pediatric hematology and oncology (SEHOP)

    Get PDF
    Acute lymphoblastic leukemia (ALL) is the most common pediatric cancer, with survival rates exceeding 85%. However, 15% of patients will relapse; consequently, their survival rates decrease to below 50%. Therefore, several research and innovation studies are focusing on pediatric relapsed or refractory ALL (R/R ALL). Driven by this context and following the European strategic plan to implement precision medicine equitably, the Relapsed ALL Network (ReALLNet) was launched under the umbrella of SEHOP in 2021, aiming to connect bedside patient care with expert groups in R/R ALL in an interdisciplinary and multicentric network. To achieve this objective, a board consisting of experts in diagnosis, management, preclinical research, and clinical trials has been established. The requirements of treatment centers have been evaluated, and the available oncogenomic and functional study resources have been assessed and organized. A shipping platform has been developed to process samples requiring study derivation, and an integrated diagnostic committee has been established to report results. These biological data, as well as patient outcomes, are collected in a national registry. Additionally, samples from all patients are stored in a biobank. This comprehensive repository of data and samples is expected to foster an environment where preclinical researchers and data scientists can seek to meet the complex needs of this challenging population. This proof of concept aims to demonstrate that a network-based organization, such as that embodied by ReALLNet, provides the ideal niche for the equitable and efficient implementation of “what's next” in the management of children with R/R ALL.Peer ReviewedPostprint (published version

    Intelligent techniques using molecular data analysis in leukaemia: an opportunity for personalized medicine support system

    Get PDF
    The use of intelligent techniques in medicine has brought a ray of hope in terms of treating leukaemia patients. Personalized treatment uses patient’s genetic profile to select a mode of treatment. This process makes use of molecular technology and machine learning, to determine the most suitable approach to treating a leukaemia patient. Until now, no reviews have been published from a computational perspective concerning the development of personalized medicine intelligent techniques for leukaemia patients using molecular data analysis. This review studies the published empirical research on personalized medicine in leukaemia and synthesizes findings across studies related to intelligence techniques in leukaemia, with specific attention to particular categories of these studies to help identify opportunities for further research into personalized medicine support systems in chronic myeloid leukaemia. A systematic search was carried out to identify studies using intelligence techniques in leukaemia and to categorize these studies based on leukaemia type and also the task, data source, and purpose of the studies. Most studies used molecular data analysis for personalized medicine, but future advancement for leukaemia patients requires molecular models that use advanced machine-learning methods to automate decision-making in treatment management to deliver supportive medical information to the patient in clinical practice.Haneen Banjar, David Adelson, Fred Brown, and Naeem Chaudhr

    INTERACTIVE NEURO-FUZZY EXPERT SYSTEM FOR DIAGNOSIS OF LEUKEMIA

    Get PDF
    Leukemia is closely linked with the blood or bone marrow. Leukemia is regard as cancer of the blood cells (usually white blood cells). The abnormal white blood cells formed in leukemia also accumulate in the organs of the body such as the spleen, liver, lymph nodes, testes, and brain, and interfere with normal functioning of the organ. Leukemia is of four common type; Acute lymphocytic leukemia, acute myelogenous leukemia, chronic lymphocytic leukemia and chronic myelogenous leukemia. Leukemia symptoms are predominantly paleness, fatigue, bone pain, asthemia, palpitation, frequent infection, nose bleeding and thrombocytopenia. Neuro-Fuzzy Logic explores approximation techniques from neural networks to finds the parameter of a fuzzy system. In this paper, the traditional procedure for the medical diagnosis of leukemia employed by physician is analyzed using neuro-fuzzy inference procedure. From the system designed if the patient is having five or more of the enlisted symptoms, the patient is experiencing 201C;severe Leukemia201D; and should go for treatment urgently. If it is approximately four of the symptoms the patient is experiencing, the patient 201C;might be suffering from Leukemia201D; and hence should see a physician right away, but if it is three or less of the enlisted symptoms, the patient is not 201C;suffering from Leukemia201D;. The system which demonstrates the practical application of Information and Communication Technology (ICT) in the health sector is interactive and tells the patient his current condition as regards Leukemia
    • …
    corecore