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ABSTRACT
In the paper we show that diagnostic classes in cancer gene
expression data sets, which most often include thousands of
features (genes), may be effectively separated with simple
two-dimensional plots such as scatterplot and radviz graph.
The principal innovation proposed in the paper is a method
called VizRank, which is able to score and identify the best
among possibly millions of candidate projections for visual-
izations. Compared to recently much applied techniques in
the field of cancer genomics that include neural networks,
support vector machines and various ensemble-based ap-
proaches, VizRank is fast and finds visualization models that
can be easily examined and interpreted by domain experts.
Our experiments on a number of gene expression data sets
show that VizRank was always able to find data visualiza-
tions with a small number of (two to seven) genes and ex-
cellent class separation. In addition to providing grounds
for gene expression cancer diagnosis, VizRank and its visu-
alizations also identify small sets of relevant genes, uncover
interesting gene interactions and point to outliers and po-
tential misclassifications in cancer data sets.

Keywords
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ing, Data Mining, Data Visualization

1. INTRODUCTION
DNA microarrays simultaneously measure the expression

of thousand of genes in a biological sample to determine
which genes are differently expressed in various cells and
tissues. Gene expression measurement may provide for a
powerful tool in uncovering the genetic mechanisms causing
the loss of cell cycle control and the consecutive development
of cancer. Several recent studies of different cancer types [1,
2, 10, 13, 17, 18, 19, 20] have demonstrated the superior
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performance of gene expression profiles for cancer classifi-
cation when compared to standard morphological criteria.
The ultimate goal of this approach is improvement and in-
dividualization of treatment and detection of pathogenomic
biological markers of different tumors for earlier diagnosis
and prognosis.

Gene expression data analysis is characterized by extreme-
ly high data dimensionality due to thousands of gene expres-
sion values measured for each sample on an array. At the
same time, the number of samples (patients) is far smaller.
The analysis of this peculiar and noisy data has been chal-
lenged by a number of different approaches in bioinformatics
that include feature subset selection to focus only on genes
that bear most information on the cancer type, unsupervised
and supervised machine learning methods, and various vi-
sualization techniques.

In unsupervised analysis of cancer gene expression data, a
standard procedure is to select a set of the most informative
genes and then use them in principal component analysis
(PCA) [13]. It has been shown that, under appropriate gene
selection, visualization of data using the first two principal
components may reveal separated clusters, each comprising
the data of a prevailing diagnostic class. While such an
approach can demonstrate that diagnostic classes may be
separated by gene expression data, the clinical and genomic
interpretation of the results is hard as each component may
combine expression of tens or hundreds of genes.

To use the diagnostic class information in the learning
process, a number of recent studies supervised machine learn-
ing techniques such as artificial neural networks [13], k-
nearest neighbors with weighted voting of informative genes [10]
and support vector machines (SVM) [9, 21]. While it was
recently shown that SVM are a method to uncover mod-
els with most reliable classifications [21], such classification
models often combine relatively weak contributions of up
to thousands of genes and are therefore hard to understand
and interpret by the domain experts.

The research reported in this paper aimed to investigate
how “hard” are gene expression cancer data sets in terms of
finding good and simple classifiers. Our working hypothesis
was that visualizations that include only a few genes and
use the untransformed gene expression data can provide for
a clear separation of diagnostic classes. Differently from the
related work, we address the problem of finding good visu-
alizations directly with an algorithm that uses a powerful
heuristic to search through a space of possible data projec-
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Figure 1: An example of scatterplot (a) and radviz (b) visualization of the leukemia data set (see Section 4.1
for details) that both exhibit good separation of diagnostic classes. For radviz and a selected data instance
we also show the corresponding attachments to gene anchors (“springs”) and related values of normalized
gene expressions.

tions and a machine learning approach that evaluates and
assigns a score for each projection. The visualization scoring
and search algorithm called VizRank and exploration of its
utility in the analysis of cancer expression data sets are two
principal contributions of this paper. Using two planar geo-
metric visualizations, namely scatterplot when visualizing
two genes and radviz for visualizations with three genes or
more, we show that we are always able to find simple visu-
alizations which include only a handful of genes and provide
for a clear split of diagnostic classes.

Two examples of such graphs visualizing gene expression
data on leukemia are shown in Figure 1. Besides being
simple, allowing to depict both individual role of visualized
genes and their interactive effects, these visualizations also
identify relevant genes for cancer prediction and can provide
grounds for identification of potential outliers.

In the paper, we first introduce the two geometric visual-
ization methods used, scatterplot and radviz. Components
of VizRank, which include search algorithm, a method for
scoring of visualizations, and a search heuristic are presented
next. We then use VizRank on a set of eight cancer gene ex-
pression data sets, where we report on the role of the heuris-
tic, experimentally assess how likely it is to find a good and
simple visualization, and present the best visualization for
each of the data sets. We show that these simple visual-
izations provide clear separation of diagnostic classes and
include biologically relevant genes.

2. TWO-DIMENSIONAL GEOMETRIC
VISUALIZATION METHODS

Many techniques exist that can be used to visualize mul-
tidimensional data. VizRank method proposed in this pa-
per can be applied to any geometric visualization method,
that is, any method where data instances are visualized as

points in a two-dimensional space and the values of visual-
ized features only influence the position of the data point
in the graph, and not its size, shape or color. In this pa-
per we present results using two such methods – a scatter-
plot, a method for visualizing data using two features, and
radviz, which can concurrently visualize a larger number of
features. Since scatterplot is perhaps the simplest and well-
known multi-dimensional visualization method, we here in
detail describe only radviz.

In radviz [12], m visualized features are represented as
anchor points equally spaced around the perimeter of a unit
circle (see Figure 1.b for example). Data instances are shown
as points inside the circle, and the position of the instance
within a graph can be explained using a physical analogy
with multiple springs. There are m springs attached to the
instance point, one for each of the feature anchors. The stiff-
ness of each spring in terms of Hooke’s law is determined by
the corresponding feature value – the greater the value, the
greater the corresponding stiffness. The point representing
the data instance is then placed at the position where the
sum of all spring forces equals 0 (see [4] for mathematical
details). To bring values of features on the same scale and to
allow for a simpler interpretation of radviz graphs, features
are standardized to the interval between 0 and 1.

Figure 1.b shows an example of a radviz graph; the graph
shows “springs” for a selected data instance, this being close
to the anchor with gene SET bearing the largest standard-
ized expression (0.61) and somewhere in-between anchors
for genes CD19 and PARG with a similar expression (0.54
vs. 0.47, respectively). The “attractive force” of other three
genes in this particular graph is smaller.

In radviz the points that have approximately equal values
of features that lie on the opposite sides of the circle will
lie close to the center of the circle. On the other hand, the
points with one of the features having a much larger value



than others will lie close to the anchor of that feature. The
particular visualization using a selected set of features will
therefore largely depend on the position/order of feature an-
chors. Placing two highly correlated features that are good
at discriminating between classes on the opposite side of the
circle will make them useless in the visualization, since their
joint effect will be cancelled out. On the other hand, they
might generate a projection with well separated classes if
their anchors are placed adjacently. The “correct” place-
ment of feature anchors was for instance crucial for a nice
separation of classes in Figure 1.b, where the three anchors
(genes) on the left side of the circle attract data points from
the ALL class and anchors (genes) on the right side of the
circle attract points with AML class value.

3. VIZRANK: FINDING INFORMATIVE
DATA VISUALIZATIONS

The two visualizations in Figure 1 can be considered in-
teresting because the data instances that belong to different
class are well-separated. They show data projections for
which we can visually infer rules for discriminating between
different class values. When features are in abundance, the
main question is how to find the most informative data pro-
jections as the manual search through the projection space
is not feasible.

3.1 VizRank Algorithm
We have developed a method called VizRank to enable an

automatic, algorithm-based search for the most informative
data visualizations. For a given data set and a visualization
method, VizRank returns a ranked list of most informative
data projections along with the numerical assessments of
their “interestingness”. In this way the data analyst is re-
lieved of the unguided search through numerous possible
projections, and can focus only on the top-rated visualiza-
tions that can provide the best insight into the data.

VizRank evaluates each by generating a corresponding vi-
sualization using a selected visualization method and com-
putes its score based on how well the visualization separates
the instances of different class. In other words, the visu-
alization score is related to how likely it is for an analyst
to spot a visual pattern in the projection that reveals some
regularity in the domain.

VizRank solves the problem of projection assessment by
applying a machine learning method on the graphically rep-
resented data and estimates the accuracy of the induced
classifier. Input to machine learning are x and y coordi-
nates of the points representing data instances in the as-
sessed graph and their corresponding class labels. The esti-
mated predictive accuracy of the classifier on this data set
is then used as a score for the particular projection. Notice
that if the data instances in the projection are clearly sep-
arated, the predictive accuracy for some machine learning
algorithms is expected to be high. High visualization scores
computed in this way are therefore indicators of usefulness
of a visualization.

We use k-nearest neighbor (k-NN) with Euclidian distance
metrics as a supervised machine learning method for visu-
alization scoring. When applied to our 2-dimensional visu-
alizations, Euclidian distance well matches the intuitive dis-
tance used by human observer when viewing the graph [5].
Using this distance metrics, k-NN predicts class value of an

instance by observing the class distribution of its k near-
est instances in the evaluated projection. If the prediction
matches the true observation, this would mean that an in-
stance is surrounded by instances with the matching prevail-
ing class. Since k-NN does not impose any constraints on
decision boundaries that separate instances from different
classes, we believe this method may be the most suitable for
our visualization scoring and may well match the interest-
ingness as seen from the perspective of human analysts.

In our experiments, we use leave-one-out evaluation sche-
ma to obtain the predictive accuracy of a k-NN classifier.
For a parameter k, we have followed the recommendation
by Dasarathy [6] which, to classify each instance, uses a

neighborhood of k =
√

N instances, where N is the number
of instances in the data set. To make the method less sen-
sitive to the choice of k we also use weighted voting, where
contribution of each instance in the neighborhood decreases
with the distance, so that close neighbors have greater in-
fluence on the prediction than those farther away from the
instance being classified.

3.2 Measure for Prediction Accuracy
There are several measures (scoring functions) we could

use to evaluate the performance of k-NN classifier. One of
the most often used measures is classification accuracy that
is defined as the proportion of correctly classified instances.
For the purpose of projection evaluation we found that clas-
sification accuracy is too crisp as it considers only if the
example was correctly or incorrectly classified and ignores
the prediction uncertainty. As an example, Figure 2 shows
two radviz projections of the MLL data set that both have
100% classification accuracy. However, the visualization on
the left has a much nicer separation of the classes and should
therefore be favored over the projection on the right.

When prediction is based on the weighted proportion of
the neighboring instances belonging to each class, k-NN can
be regarded as a probabilistic classifier. To appropriately
consider the predicted class probabilities, we measure the
projection interestingness as an average probability P that
the classifier assigns to the correct class:

P = E(PC(y|x)) =
1

N

N

i=1

PC(yi|xi) (1)

Here, N is the number of instances in the data set, and
PC(yi|xi) is the probability assigned to the correct class
value yi for example xi by the classifier C. Using this mea-
sure we can take into account the prediction uncertainty
for examples in Figure 2.b that lie on the boundary be-
tween MLL and AML group and lower the projection value
accordingly. Average probabilities assigned to the correct
classes P for these two projections are 99.63% and 97.98%,
respectively, favoring the visualization with a clearer class
separation.

3.3 Search Heuristic
In the data sets with thousands of features, such as those

on cancer gene expressions, number of possible possible data
projections is extremely high. Using a data set with m
features, there are m(m − 1)/2 different scatterplot projec-
tions. For SRBCT, the smallest data set in terms of num-
ber of the features considered in this paper, the number of
different scatterplot visualizations is 2,656,508. For radviz
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Figure 2: Two projections of the MLL data set (see Section 4.1 for details). Classification accuracy of k-NN
classifier on both projections is 100%, while the average probability of correct classification P is 99.63% (a),
and 97.98% (b).

method, the number of different projections is even consid-
erably higher, since the method can concurrently visualize
a larger number of features and has to consider different
placement of these in the graph. Even for a computerized
method it is therefore impossible to exhaustively search over
all possible projections and search heuristic must be used in-
stead.

The search heuristic we developed for VizRank starts by
estimating the predictive quality of each single feature us-
ing the ReliefF measure [15]. Other feature scoring function
may be used instead, but we choose to use ReliefF since
it can detect feature interactions and could possibly assign
higher scores to features that could be overlooked using some
other, univariate analysis measure. Next, for each projec-
tion, a rough estimate of its usefulness is computed as the
sum of ReliefF’s values for features that are present in the
projection. VizRank then assesses projections starting with
those with those most promising according to sum-of-ReliefF
value. As we show in the next section, such heuristic is suc-
cessful and allows VizRank to evaluate only a small subset
of projections to find those with best class discrimination.

4. EXPERIMENTS AND CASE STUDIES
We have used eight cancer gene expression data sets to

evaluate the proposed approach. Experiments on these data
sets were not only an academic exercise to assess our algo-
rithms: the data sets come from recent clinical studies for
which the problem of finding most informative genes and
gene interactions is still open and highly relevant.

4.1 Data sets
In our experimental study we have considered eight pub-

licly available cancer gene expression data sets with two to
five distinct diagnostic categories, 40 to 203 samples (pa-
tients) and 2308 to 12625 features (gene expressions). The
basic information on these is summarized in Table 1.

Three data sets, leukemia [10], diffuse large B-cell lym-

phoma (DLBCL) [19] and prostate tumor [20] include two
diagnostic categories. The leukemia data consists of 73 tis-
sue samples, including 48 with acute lymphoblastic leukemia
(ALL) samples and 25 with acute myeloid leukemia (AML),
each with 7074 gene expression values. The DLBCL data
set includes expressions of 7070 genes for 77 patients, 59
with DLBCL and 19 with follicular lymphoma (FL). The
prostate tumor data set includes 12533 genes measured for
52 prostate tumor and 50 normal tissue samples.

The other five data sets analyzed in this work are mul-
ticategory. The mixed lineage leukemia (MLL) [1] data set
includes 12533 gene expression values for 72 samples ob-
tained from the peripheral blood or bone marrow samples
of affected individuals. The ALL samples with a chromo-
somal translocation involving the mixed lineage gene were
diagnosed as MLL, so three different leukemia classes were
obtained (AML, ALL and MLL). The small round blue cell
tumors (SRBCT) data set [13] consists of four types of tu-
mors in childhood, including Ewing’s sarcoma (EWS), rhab-
domyosarcoma (RB), neuroblastoma (NB) and Burkitt’s lym-
phoma (BL). It includes 83 samples derived from both tu-
mor biopsy and cell lines and 2308 genes. For the analysis
of the brain tumor gene expression data, we used the A1
data set [18] that includes 40 embryonal tumor samples of
the central nervous system (10 medulloblastomas (MD), 10
malignant gliomas (MG), 5 rhabdoid tumors (Rh), 6 prim-
itive neuroectodermal tumors (PN) and 4 normal cerebella
(Nc)) and 7129 genes. The glioblastoma data set [17] con-
sists of 50 brain tumor samples, including 28 glioblastomas
and 22 anaplastic oligodendrogliomas that are additionally
classified as classic (CG, CO) or non-classic (NG, NO). The
last data set is the lung cancer data set [2] that contains
12600 gene expression values for 203 lung tumor samples
(139 adenocarcinomas (AD), 21 squamous cell lung carci-
nomas (SQ), 20 pulmonary carcinoids (COID), 6 small cell
lung cancers (SMLC) and 17 normal lung samples (NL)).

All data sets except the SRBCT were obtained from Affy-



Table 1: Cancer-related gene expression data sets used in our study. Basic statistics of the data sets include
the number of examples, diagnostic classes and genes included in a data set, and proportion of examples in
the majority diagnostic class. Last two columns show the average probability of correct classification (P ) for
the top-ranked scatterplot and radviz projection.

Number of Major Score for top projection
Data set Samples Classes Genes class Scatterplot Radviz
Leukemia 73 2 7074 52.8% 98.0 100.0
MLL 72 3 12533 38.9% 94.8 99.9
SRBCT 83 4 2308 34.9% 87.6 100.0
Prostate 102 2 12533 51.0% 91.7 97.7
DLBCL 77 2 7070 75.3% 96.8 100.0
Glioblastoma 50 4 12625 30.0% 80.4 94.6
Brain tumor 40 5 7129 25.0% 78.5 92.6
Lung cancer 203 5 12600 68.5% 93.4 96.5

metrix gene chips and are available at http://www.broad.-
mit.edu/cancer/. The SRBCT gene expression data set
was obtained from cDNA microarrays and is available at
http://research.nhgri.nih.gov/microarray/Supplement/.

4.2 Distribution of Visualization Scores
In the study, we let VizRank evaluate a large number of

projections and were interested in the distribution of evalua-
tion scores. It turns out that only a relatively small propor-
tion of visualizations bear high interestingness score as as-
signed by VizRank. For instance, Figure 3 shows that among
5,000 top-ranked scatterplots identified by our heuristic in
the MLL data set, there only a few projections scored above
90%. The fast drop in the projection scores is welcomed and
indicates that there are only a few projections that are most
relevant and are needed to be considered for a detailed in-
spection by an analyst. We have observed similar projection
score distributions on other data sets, also when increasing
the total number of evaluated projections.
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Figure 3: Visualization scores for the best 5,000
scatterplot projections of the MLL data set. Visual-
izations were ranked based on their score, starting
with best-scored visualization.

4.3 Utility of Search Heuristic
Our hypothesis is that the utility of search heuristic would

allow VizRank to reduce the number of projections it needs
to evaluate, and search over projections with consequently
highest projection scores first. The later is important in
terms of user’s interface, and would allow to present pro-
jections with good class separation even within the first few
seconds of the search time.

We have compared a heuristic search and a search with
a random selection of projections in terms of the best pro-
jection found. Figure 4 shows the results on SRBCT data
set: the plot shows the score of the best-found projection
as a function of a number of projections being evaluated.
The value of heuristic is clear, as when compared to a ran-
dom search allows to find much better projections even if
only a few have been considered. For the reasons of brevity
the results on other data sets are not shown here, but are
qualitatively very similar to those shown in Figure 4.
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Figure 4: The importance of the heuristic for fast
identification of top-ranked projections. The figure
shows projection score for the best found projections
on the SRBCT data set using radviz method with
and without the use of heuristic.



4.4 Best-Scored Visualizations
For each of the cancer gene expression data sets we used

VizRank to find top-ranked scatterplot and radviz visual-
izations. Due to extremely large number of possible projec-
tions, for each data set VizRank was constrained to evaluate
only 200,000 projections as selected by the search heuristic.
The typical performance of VizRank on such data sets using
a Pentium 4 PC with 2.4GHz processor is about 30 projec-
tions per second, so the typical evaluation time for 200,000
projections was about two hours.

Although the radviz method can in principle visualize an
arbitrary number of features, this has a significant influ-
ence on interpretation value of the visualization. Also, if
the method is able to find visualizations with clear sepa-
ration of diagnostic classes using only a small number of
features, these should be preferred over visualizations with
many features. For this reason, we have only investigated
radviz projections with 3 to 7 features.

Visualizations with highest VizRank scores for MLL, pros-
tate, DLBCL, glioblastoma, brain tumor, and lung cancer
data sets are shown in Figure 6, for leukemia in Figure 1.b,
and for SRBCT in Figure 5.a. The best radviz visualizations
scored higher than the best scatterplots. The best scored
radviz visualizations included anywhere from five (MLL) up
to seven features (glioblastoma and brain tumor). Most of
the visualizations show a clear separation of instances from
different diagnostic classes, with the only exception of brain
tumor (two outliers) and lung cancer, where instances of the
AD class group together but are placed within the group
with prevailing SQ class. Interestingly, the adenocarcino-
mas in the lung cancer data set are also histologically not
a unique class. It was reported by Bhattacharjee et. al [2]
that seven adenocarcinomas express high levels of squamous-
associated genes and also display histological evidence of
squamous features. In addition to these seven mixed AD-SQ
tumor samples, 12 other adenocarcinomas were suspected to
be extrapulmonary metastases, thus adding to histological
diversity of the AD class.

4.5 Considerations on Overfitting
One could claim that in the space of a very high number

of projections there is always a chance to find a projection
with good or even excellent class separation. Even for a
random data set, if using enough features, VizRank could
then find an excellent projection and would, in this sense,
overfit the data.

Our theoretical analysis, though, points to a quite dif-
ferent conclusion. The probability that a random planar
geometric visualization will offer a clear separation of the
instances with different class is:

p = c! · 1

c

N

where N denotes a number of instances in the data set and
c is the number of different class labels. The above for-
mula was derived by computing the probability that in such
visualization instances are grouped within c clusters, each
containing only instances of the same class.

If, for example, we compute the chance that a random vi-
sualization of SRBCT data set offers a clear class separation,
we obtain the probability of 2.57 × 10−49 (SRBCT data set
has 83 instances and 4 class values). Notice that this prob-

ability is low, and even with high number of projections the
chances that we will find one with clear separation, if the
data would be random, are slim.

To address this issue in an experiment, we have randomly
permuted the class values in the SRBCT data set and used
VizRank to rank the projections. We evaluated 500,000
most promising radviz projections as identified by our heuris-
tic. The best found projection is shown in Figure 5.b. Notice
that the resulting visualization is almost completely uninfor-
mative as the classes overlap. We performed a similar exper-
iments on all other data sets and observed similar results,
i.e., none of the visualizations found separated the classes
well.

Using this results together with the biological interpreta-
tion of results in our case studies (see next section), we can
conclude that the clear separation of classes in the shown
projections could not be attributed to chance but are rather
a demonstration of a true regularity in the data.

4.6 On Biological Relevance and
Gene Selection

We studied the biological relevance of genes appearing in
the best visual projections. We assumed that most useful
genes in discriminating different tumor types would mostly
be markers of different tissue or cell origin and not be nec-
essary related to cancer pathogenesis. However, many of
the genes appearing in the best radviz projections are anno-
tated as cancer or cancer-related genes according to the atlas
of genetics and cytogenetics in oncology and haematology
(www.infobiogen.fr/services/chromcancer/index.html). For
example, BAX, DNTT, CD22 and TOP2B genes shown in
the two projections of the MLL data set (Figure 2) are can-
cer related.

On the other hand, for the prostate data set, where we
try to differentiate tumor and normal tissue samples based
on gene expression profile, one would expect the “marker”
genes to be cancer related. We support our hypothesis by
ascertaining that all six genes used in the best radviz projec-
tion (Figure 6.b) are cancer related according to the cancer
gene atlas.

We here present a biological interpretation of the genes
used in the best visualizations of the MLL data set. One
can observe in Figure 2.b that instances with ALL class la-
bel lie closer to the anchor points of the DNTT and CD22
gene than instances either in MLL or AML diagnostic class.
This finding is consistent with the work of Armstrong et
al. [1], in which they report on genes DNTT and CD22
to be specifically expressed in ALL. There is also a well-
founded biological explanation for the appearance of the
CD22 and DNTT genes in some of the best projections sep-
arating different classes of the MLL data set. It was proven
that the presence of cytoplasmic CD22 protein, a human B-
lymphocyte-restricted antigen, is a useful marker for B-cell
precursor acute lymphocytic leukemia [3]. There is evidence
also that terminal deoxynucleotidyl transferase (DNTT) is
a unique DNA polymerase expressed in the lymphoid pre-
cursors of B- and T-cell lineage at the earliest recognizable
stages of lymphopoiesis. DNTT is also expressed on their
malignant counterparts, making it an important marker in
distinguishing lymphoblastic leukemia from other haemato-
logic neoplasms [16].

Instead of considering only the best rated visualization,
we can examine several top ranked projections to find genes
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Figure 5: (a) The best radviz plot from the SRBCT data set. (b) The best radviz projection from the SRBCT
data set, where the class labels were randomly permuted.

that are relevant in the differentiation of different cancer
types. Therefore it is valuable to know if a particular gene is
present only in one good projection or if it appears in several
top ranked projections. In Figure 7 we show a plot that
lists the first 20 genes present in the top-rated scatterplot
projections of the MLL data set. For each pair of genes (one
from the x and one from the y axis), a black box indicates
if their scatterplot projection is ranked among the best 500.
The figure shows that the three genes – MME, POU2AF1
and LGALS1 – stand out in the number of their appearances
in the top-ranked projections. Interestingly, all three genes
are among the specifically expressed genes in MLL, ALL
or AML leukemic samples reported by Armstronget al. [1].
In their work, MME and POU2AF1 are the first and tenth
gene, respectively, most highly correlated with ALL, while
LGALS1 is the eight most highly correlated gene with MLL
compared with the remaining two classes.

We found similar biological relevance of genes that partic-
ipated in the best visualizations of other data sets. It turns
out that VizRank does not only find good projections which
can well separate the diagnostic classes, but at the same time
also finds genes that were already experimentally proven to
be relevant in the diagnosis of different cancer types. Most
of our visualizations included in this paper point to non-
linear gene interactions, giving VizRank an advantage over
univariate feature selection algorithms prevailingly used in
the current related work in the area.

Tumorigenesis in humans is a multi-step process, where
the steps reflect four to seven stochastic genetic alterations
that drive the progressive transformation of normal human
cells into highly malignant derivatives [11]. During the pro-
cess of this transformation gene regulatory networks are dis-
rupted causing alteration in the expression of many genes.
We can not, in general, assert that the genes shown in the
best ranked projections are those that are responsible for
the cancer transformation. However, these genes can clearly
be used to differentiate between different cancer types and
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Figure 7: Genes on the x and y axis are the first
20 genes from the list of top-ranked scatterplot pro-
jections of the leukemia data set. Each black box
indicates that the corresponding genes on the x and
y axis form a scatterplot that is ranked as one of the
best 500 scatterplots.

moreover, some of them are known pathognomonic markers
of special cancer types, while others might turn out to be so
in the future.
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Figure 8: Screenshot of the Orange data mining suite (a) with radviz visualization widget (b) and VizRank
dialog (c) that shows a list of best-rated projections for the MLL data set. Second-best projection is selected
and shown in radviz.

5. CONCLUSION
Perhaps most striking and to a good degree unexpected

result from experiments reported in this work is that we
found a simple geometric visualizations that clearly visually
differentiate among cancer types for all cancer gene expres-
sion data sets investigated. This finding complements recent
related work in the area that demonstrates that gene expres-
sion cancer data can provide ground for reliable classifica-
tion models. However, our “visual” classification models are
much simpler and comprise much smaller number of genes
when compared to those of, say, recently published artifi-
cial neural networks and support vector machines models
that most often use anywhere from 50 features (genes) and
encrypt their relation with the diagnostic class in at best
hard-to-interpret model.

VizRank, a method we propose to find the most infor-
mative visualizations, is relatively fast: good visualizations
with clear class separations are often provided to an exper-
imentalists within minutes, with subsequent small improve-
ments in the score of best rated visualization by letting the
program run further.

The approach presented here is of course not limited to
cancer gene expression analysis, and can be applied to search
for good geometric visualizations on any class-labeled data
set that includes continuous or nominal features. VizRank
is freely available within a Scatterplot and Radviz widget in
Orange open-source data mining suite [7, 8] (see Figure 8).
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