4,022 research outputs found

    Parallel processing and expert systems

    Get PDF
    Whether it be monitoring the thermal subsystem of Space Station Freedom, or controlling the navigation of the autonomous rover on Mars, NASA missions in the 1990s cannot enjoy an increased level of autonomy without the efficient implementation of expert systems. Merely increasing the computational speed of uniprocessors may not be able to guarantee that real-time demands are met for larger systems. Speedup via parallel processing must be pursued alongside the optimization of sequential implementations. Prototypes of parallel expert systems have been built at universities and industrial laboratories in the U.S. and Japan. The state-of-the-art research in progress related to parallel execution of expert systems is surveyed. The survey discusses multiprocessors for expert systems, parallel languages for symbolic computations, and mapping expert systems to multiprocessors. Results to date indicate that the parallelism achieved for these systems is small. The main reasons are (1) the body of knowledge applicable in any given situation and the amount of computation executed by each rule firing are small, (2) dividing the problem solving process into relatively independent partitions is difficult, and (3) implementation decisions that enable expert systems to be incrementally refined hamper compile-time optimization. In order to obtain greater speedups, data parallelism and application parallelism must be exploited

    Adaptive Resonance Theory: Self-Organizing Networks for Stable Learning, Recognition, and Prediction

    Full text link
    Adaptive Resonance Theory (ART) is a neural theory of human and primate information processing and of adaptive pattern recognition and prediction for technology. Biological applications to attentive learning of visual recognition categories by inferotemporal cortex and hippocampal system, medial temporal amnesia, corticogeniculate synchronization, auditory streaming, speech recognition, and eye movement control are noted. ARTMAP systems for technology integrate neural networks, fuzzy logic, and expert production systems to carry out both unsupervised and supervised learning. Fast and slow learning are both stable response to large non stationary databases. Match tracking search conjointly maximizes learned compression while minimizing predictive error. Spatial and temporal evidence accumulation improve accuracy in 3-D object recognition. Other applications are noted.Office of Naval Research (N00014-95-I-0657, N00014-95-1-0409, N00014-92-J-1309, N00014-92-J4015); National Science Foundation (IRI-94-1659

    Anergy in self-directed B lymphocytes from a statistical mechanics perspective

    Full text link
    The ability of the adaptive immune system to discriminate between self and non-self mainly stems from the ontogenic clonal-deletion of lymphocytes expressing strong binding affinity with self-peptides. However, some self-directed lymphocytes may evade selection and still be harmless due to a mechanism called clonal anergy. As for B lymphocytes, two major explanations for anergy developed over three decades: according to "Varela theory", it stems from a proper orchestration of the whole B-repertoire, in such a way that self-reactive clones, due to intensive interactions and feed-back from other clones, display more inertia to mount a response. On the other hand, according to the `two-signal model", which has prevailed nowadays, self-reacting cells are not stimulated by helper lymphocytes and the absence of such signaling yields anergy. The first result we present, achieved through disordered statistical mechanics, shows that helper cells do not prompt the activation and proliferation of a certain sub-group of B cells, which turn out to be just those broadly interacting, hence it merges the two approaches as a whole (in particular, Varela theory is then contained into the two-signal model). As a second result, we outline a minimal topological architecture for the B-world, where highly connected clones are self-directed as a natural consequence of an ontogenetic learning; this provides a mathematical framework to Varela perspective. As a consequence of these two achievements, clonal deletion and clonal anergy can be seen as two inter-playing aspects of the same phenomenon too

    Engineering Semantic Self-composition of Services Through Tuple-Based Coordination

    Get PDF
    Service self-composition is a well-understood research area focusing on service-based applications providing new services by automatically combining pre-existing ones. In this paper we focus on tuple-based coordination, and propose a solution leveraging logic tuples and tuple spaces to support semantic self-composition for services. A full-stack description of the solution is provided, ranging from a theoretical formalisation to a technologically valuable design and implementation

    A WSDL-Based Type System for WS-BPEL

    Get PDF
    We tackle the problem of providing rigorous formal foundations to current software engineering technologies for web services. We focus on two of the most used XML-based languages for web services: WSDL and WS-BPEL. To this aim, first we select an expressive subset of WS-BPEL, with special concern for modeling the interactions among web service instances in a network context, and define its operational semantics. We call ws-calculus the resulting formalism. Then, we put forward a rigorous typing discipline that formalizes the relationship existing between ws-calculus terms and the associated WSDL documents and supports verification of their compliance. We prove that the type system and the operational semantics of ws-calculus are ‘sound’ and apply our approach to an example application involving three interacting web services

    QNRs: toward language for intelligent machines

    Get PDF
    Impoverished syntax and nondifferentiable vocabularies make natural language a poor medium for neural representation learning and applications. Learned, quasilinguistic neural representations (QNRs) can upgrade words to embeddings and syntax to graphs to provide a more expressive and computationally tractable medium. Graph-structured, embedding-based quasilinguistic representations can support formal and informal reasoning, human and inter-agent communication, and the development of scalable quasilinguistic corpora with characteristics of both literatures and associative memory. To achieve human-like intellectual competence, machines must be fully literate, able not only to read and learn, but to write things worth retaining as contributions to collective knowledge. In support of this goal, QNR-based systems could translate and process natural language corpora to support the aggregation, refinement, integration, extension, and application of knowledge at scale. Incremental development of QNRbased models can build on current methods in neural machine learning, and as systems mature, could potentially complement or replace today’s opaque, error-prone “foundation models” with systems that are more capable, interpretable, and epistemically reliable. Potential applications and implications are broad

    Learning, Categorization, Rule Formation, and Prediction by Fuzzy Neural Networks

    Full text link
    National Science Foundation (IRI 94-01659); Office of Naval Research (N00014-91-J-4100, N00014-92-J-4015) Air Force Office of Scientific Research (90-0083, N00014-92-J-4015
    corecore